WorldWideScience

Sample records for industrial application prior

  1. Sparse Multivariate Modeling: Priors and Applications

    DEFF Research Database (Denmark)

    Henao, Ricardo

    This thesis presents a collection of statistical models that attempt to take advantage of every piece of prior knowledge available to provide the models with as much structure as possible. The main motivation for introducing these models is interpretability since in practice we want to be able...... a general yet self-contained description of every model in terms of generative assumptions, interpretability goals, probabilistic formulation and target applications. Case studies, benchmark results and practical details are also provided as appendices published elsewhere, containing reprints of peer...

  2. Industrial applications and metallurgy

    International Nuclear Information System (INIS)

    Torres M, N.; Melendrez C, G.; Morales, F.L.

    1989-01-01

    From 1961 the use of nuclear energy in the industrial field in Colombia has a big advance. Today nuclear isotopes are used by private companies in this kind of application the Area of Industrial Applications and Metallurgy was the institution section that has trained and has transferred the technology needed for this purpose

  3. OCT for industrial applications

    Science.gov (United States)

    Song, Guiju; Harding, Kevin

    2012-11-01

    Optical coherence tomography (OCT), as an interferometric method, has been studied as a distance ranger. As a technology capable of producing high-resolution, depth-resolved images of biological tissue, OCT had been widely used for the application of ophthalmology and has been commercialized in the market today. Enlightened by the emerging research interest in biomedical domain, the applications of OCT in industrial inspection were rejuvenated by a few groups to explore its potential for characterizing new materials, imaging or inspecting industrial parts as a service solution[3]. Benefiting from novel photonics components and devices, the industrial application of the older concepts in OCT can be re-visited with respect to the unique performance and availability. Commercial OCT developers such as Michelson Diagnostics (MDL; Orpington, U.K.) and Thorlabs (Newton, NJ) are actively exploring the application of OCT to industrial applications and they have outlined meaningful path toward the metrology application in emerging industry[3]. In this chapter, we will introduce the fundamental concepts of OCT and discuss its current and potential industrial applications.

  4. Industrial applications at GANIL

    International Nuclear Information System (INIS)

    Delagrange, H.

    1993-01-01

    After a first round of industrial applications using heavy ion beams, GANIL has refocused these activities along the lines defined by a strategy and market study. Heavy ion industrial applications take their roots in the physical effects of the interactions occurring between heavy ion projectiles and matter. Specific equipments operated by GANIL or CIRIL allow users to take benefit from these effects. By heavy ion irradiation, industrial companies qualify radiation hardened electronic components and sensitize plastic films to produce 'nuclear track' membranes. Research and development programs with laboratories of the public sector, focus on heavy ion lithography dedicated to large area luminescent flat screens with field emitter microtips and on tribology with radioactive implanted ions. Even sometimes facing difficulties to fill the gap between industry and research, GANIL is eager to promote heavy ion beam technologies. (author) 36 refs., 6 figs., 5 tabs

  5. Industrial applications of radiations

    International Nuclear Information System (INIS)

    Gallien, C.L.

    1988-01-01

    Radiation processing refers to the use of ionizing radiation to initiate chemical or biological changes in various materials as a substitute for conventional thermal or chemical processes. The method was inroduced in the industrial field 30 years ago and is now being widely used for numerous applications, among which industrial radiography, polymer modification, sterilization or decontamination, and food preservation. Both electron beam accelerators and gamma sources can be used, depending mainly of the amount of radiation and the penetration required. Radiation processing presents an increasing economical importance; in 1986 the market volume of ionized products ranged 3 billion $ [fr

  6. MHD pilot industrial applications

    International Nuclear Information System (INIS)

    Freeman, M.; Riviere-Wekstein, G.

    1994-01-01

    MHD industrial applications (and their historical developments) are sketched in the fields of nuclear fission, nuclear fusion and marine vehicles propelling. Nuclear fission projects resulted in promising prototypes between 1972 and 1980, especially for liquid-metal MHD generators. All of them have been stopped by the scientific policies of the governments. Nuclear fusion projects used mainly the equilibrium plasma of tokamak type reactors; some military projects used pulsed plasma to perform pulsed MHD generators. Marine vehicle propelling is the most advanced field. By june 1992, the japanese sea-going boat 'Yamato 1' was sailing with two MHD propellers. A few months later, the building of 'Yamato 2' has begun

  7. Industrial applications of computer tomography

    International Nuclear Information System (INIS)

    Sheng Kanglong; Qiang Yujun; Yang Fujia

    1992-01-01

    Industrial computer tomography (CT) and its application is a rapidly developing field of high technology. CT systems have been playing important roles in nondestructive testing (NDT) of products and equipment for a number of industries. Recently, the technique has advanced into the area of industrial process control, bringing even greater benefit to mankind. The basic principles and typical structure of an industrial CT system Descriptions are given of some successful CT systems for either NDT application or process control purposes

  8. Industrial applications of nuclear technology

    International Nuclear Information System (INIS)

    Vargas, Celso

    2010-01-01

    Industrial applications of nuclear technology have been very diverse worldwide. This type of technology has begun to introduce in Costa Rica to evaluate and improve different industrial processes. These applications have been classified into two or three categories, according to the criteria used. Nucleonic control systems, the gamma logging and radiotracers are determined. (author) [es

  9. Radioisotope applications in GDR industries

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1984-01-01

    Contributions of the Central Institute for Isotope and Radiation Research in the field of isotope techniques in the industries are reviewed. Results of basic research in radiation application and tracer techniques are presented. Progress and trends of radionuclide techniques in important fields of application like chemical engineering, power industries, and microelectronics are analysed. (author)

  10. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  11. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  12. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  13. Some applications of industrial neutrongraphy

    International Nuclear Information System (INIS)

    Joode, A.S.; Mury, A.G.O.S.

    1987-01-01

    The techniques used and main applications of neutrongraphy as non destructive inspection are presented. The advantages of this technique in relation to radiography and gamagraphy for using in industries are shown. (E.G.) [pt

  14. Industrial Applications of Image Processing

    Science.gov (United States)

    Ciora, Radu Adrian; Simion, Carmen Mihaela

    2014-11-01

    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  15. Industrial accelerators and their applications

    CERN Document Server

    Hamm, Marianne E

    2012-01-01

    This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams.

  16. Radioisotope applications in industry

    International Nuclear Information System (INIS)

    Frevert, E.

    1983-03-01

    The practical applications of the isotope technique are reported and illustrated by examples of works of the Department of Isotope Application of the Austrian Research Centre Seibersdorf. First the field of process controlling device and controll is described, including thickness, density and moisture gauging, the estimation of coatings and material compounds, the location of material defects and the level control. After this a detailed description of all kinds of tracer investigations is given like measurements of flow rate, intermixture, distribution and volume, investigations of corrosion, wear and lubrication and locations of all kind. A short description of gas ionisation, sources of light and isotope batteries is mentioned. Finally a general view of the applications in the fields of chemistry, biology, agriculture and medicine and the most important of the Austrian law of protective screen and its enactment are given. (Author) [de

  17. Prior image constrained image reconstruction in emerging computed tomography applications

    Science.gov (United States)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation

  18. Industrial applications of electron accelerators

    CERN Document Server

    Cleland, M R

    2006-01-01

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  19. Industrial applications of electron beam

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1997-01-01

    The review of industrial applications with use of electron beams has been done. Especially the radiation technologies being developed in Poland have been shown. Industrial installations with electron accelerators as radiation source have been applied for: modification of polymers; modification of thyristors; sterilization of health care materials; radiopreservation of food and other consumer products; purification of combustion flue gases in heat and power plants. 14 refs, 6 tabs, 7 figs

  20. Industrial applications of radiation chemistry

    International Nuclear Information System (INIS)

    Puig, Jean Rene

    1959-01-01

    The status of industrial applications of radiation chemistry as it stands 6 months after the second Geneva international conference is described. The main features of the interaction of ionizing radiations with matter are briefly stated and a review is made of the best studied and the more promising systems of radiation chemistry. The fields of organics, plastics, heterogeneous catalysis are emphasized. Economies of radiation production and utilization are discussed. Reprint of a paper published in Industries atomiques - no. 5-6, 1959

  1. Evolution of Industry Knowledge in the Public Domain: Prior Art Searching for Software Patents

    Directory of Open Access Journals (Sweden)

    Jinseok Park

    2005-03-01

    Full Text Available Searching prior art is a key part of the patent application and examination processes. A comprehensive prior art search gives the inventor ideas as to how he can improve or circumvent existing technology by providing up to date knowledge on the state of the art. It also enables the patent applicant to minimise the likelihood of an objection from the patent office. This article explores the characteristics of prior art associated with software patents, dealing with difficulties in searching prior art due to the lack of resources, and considers public contribution to the formation of prior art databases. It addresses the evolution of electronic prior art in line with technological development, and discusses laws and practices in the EPO, USPTO, and the JPO in relation to the validity of prior art resources on the Internet. This article also investigates the main features of searching sources and tools in the three patent offices as well as non-patent literature databases. Based on the analysis of various searching databases, it provides some strategies of efficient prior art searching that should be considered for software-related inventions.

  2. Industrial applications of radiation technology

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2012-01-01

    During the past one decade, Radiation Technology applications utilizing gamma radiation and high energy electrons have made a big way into the Indian industry bringing quality and value-added products in a more environment-friendly way. While radiation sterilization of health care products, hygienization of food materials, modification of polymer materials etc. are established as successful processes world wide including India, new applications are emerging especially in the field of environmental remediation. Two types of installations viz. gamma irradiators and high energy electron accelerators are in use right now to carry out such applications. The aim of the talk is to put forward before the audience about the potential applications developed in India and abroad, role of Department of Atomic Energy and current status of radiation processing for industrial utilization

  3. Industrial applications of computed tomography

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Carmignato, S.; Kruth, J. -P.

    2014-01-01

    The number of industrial applications of Computed Tomography(CT) is large and rapidly increasing. After a brief market overview, the paper gives a survey of state of the art and upcoming CT technologies, covering types of CT systems, scanning capabilities, and technological advances. The paper...

  4. Industrial applications of radiation technology

    International Nuclear Information System (INIS)

    Sabharwal, Sunil

    2005-01-01

    In recent years, radiation processing has emerged as an alternative to conventional technologies such as thermal and chemical processing for many industrial applications. The industry is expanding at a fast rate all over the world. The actual industrial benefits on commercial basis, however, depends on the need of the individual society and may vary from country to country. In India, the applications of radiation technology have been found in areas of health care, agriculture, food preservation, industry and environment. Both gamma radiation and electron beam accelerators are being utilized for this purpose. Presently, 6 commercial gamma irradiators housing about 1.5 million curie 60 Co and an annual turnover of over US$ 2 million and 3 commercial electron beam (EB) accelerators with installed capacity of 185 kW are commercially operating in India. The new areas being explored include use of electron beam irradiation for surface treatment, radiation processed membranes for a variety of applications and radiation processing of natural polymers. In the present paper, the current status of this program, especially the recent developments and future direction of radiation processing technology is reviewed. (author)

  5. Industrial applications or electron beams

    International Nuclear Information System (INIS)

    Martin, J. I.

    2001-01-01

    Industrial use of electron beams began in the 1950's with the crosslinking of polyethylene film and wire insulation. Today the number of electron beam Processing Systems installed for industrial applications throughout the world has grown to more than six hundred stations in over 35 countries. Total installed power is now approaching 40 megawatts (over 8 million tons of products per year). Electron beam is now utilized by many major industries including plastics, automotive, rubber goods, wire and cable, electrical insulation, semiconductor, medical, packaging, or pollution control. The principal effect of high-energy electrons is to produce ions in the materials treated, resulting in the liberation of orbital electrons. As a result, the original molecule is modified and the ree radicals combine to form new molecules with new chemical reactions or dis organisation od the DNA chains of living organisms (insects, fungus, microorganisms, etc.). (Author) 8 refs

  6. Industrial applications of electron accelerators

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    The interaction of high-energy radiation with organic systems produces very reactive, short-lived, ionic and free-radical species. The chemical changes brought about by these species are very useful in several systems, and are the basis of the growth of the electron processing industry. Some typical areas of the industrial use of electron accelerators are crosslinking wire and cable insulation, manufacturing heat shrink plastic items, curing coatings, and partially curing rubber products. Electron accelerators are also being considered in other areas such as sewage treatment, sterilizing medical disposables, and food irradiation. An emerging application of industrial electron accelerators is the production of advanced composites for the aerospace and other industries. Traditionally, the carbon-, aramid- and glass-fibre-reinforced composites with epoxy matrices are produced by thermal curing. However, equivalent composites with acrylated-epoxy matrices can be made by electron curing. Cost estimates suggest that electron curing could be more economical than thermal curing. Food irradiation has traditionally been an application for 60 Co γ-radiation. With the increasing demand for food irradiation in various countries, it may become necessary to use electron accelerators for this purpose. Since the dose rate during gamma and electron irradiation are generally very different, a review of the relevant work on the effect of dose rates has been done. This paper presents an overview of the industrial applications of electron accelerator for radiation processing, emphasises the electron curing of advanced composites and, briefly reviews the dose-rate effects in radiation processing of advanced composites and food irradiation. (author). 84 refs., 8 tabs

  7. Cutinases: properties and industrial applications.

    Science.gov (United States)

    Pio, Tatiana Fontes; Macedo, Gabriela Alves

    2009-01-01

    Cutinases, also known as cutin hydrolases (EC 3.1.1.74) are enzymes first discovered from phytopathogenic fungi that grow on cutin as the sole carbon source. Cutin is a complex biopolymer composed of epoxy and hydroxy fatty acids, and forms the structural component of higher plants cuticle. These enzymes share catalytic properties of lipases and esterases, presenting a unique feature of being active regardless the presence of an oil-water interface, making them interesting as biocatalysts in several industrial processes involving hydrolysis, esterification, and trans-esterification reactions. Cutinases present high stability in organic solvents and ionic liquids, both free and microencapsulated in reverse micelles. These characteristics allow the enzyme application in different areas such as food industry, cosmetics, fine chemicals, pesticide and insecticide degradation, treatment and laundry of fiber textiles, and polymer chemistry. The present chapter describes the characteristics, potential applications, and new perspectives for these enzymes.

  8. Application of hydrocyanic acid vapor generation via focused microwave radiation to the preparation of industrial effluent samples prior to free and total cyanide determinations by spectrophotometric flow injection analysis.

    Science.gov (United States)

    Quaresma, Maria Cristina Baptista; de Carvalho, Maria de Fátima Batista; Meirelles, Francis Assis; Santiago, Vânia Maria Junqueira; Santelli, Ricardo Erthal

    2007-02-01

    A sample preparation procedure for the quantitative determination of free and total cyanides in industrial effluents has been developed that involves hydrocyanic acid vapor generation via focused microwave radiation. Hydrocyanic acid vapor was generated from free cyanides using only 5 min of irradiation time (90 W power) and a purge time of 5 min. The HCN generated was absorbed into an accepting NaOH solution using very simple glassware apparatus that was appropriate for the microwave oven cavity. After that, the cyanide concentration was determined within 90 s using a well-known spectrophotometric flow injection analysis system. Total cyanide analysis required 15 min irradiation time (90 W power), as well as chemical conditions such as the presence of EDTA-acetate buffer solution or ascorbic acid, depending on the effluent to be analyzed (petroleum refinery or electroplating effluents, respectively). The detection limit was 0.018 mg CN l(-1) (quantification limit of 0.05 mg CN l(-1)), and the measured RSD was better than 8% for ten independent analyses of effluent samples (1.4 mg l(-1) cyanide). The accuracy of the procedure was assessed via analyte spiking (with free and complex cyanides) and by performing an independent sample analysis based on the standard methodology recommended by the APHA for comparison. The sample preparation procedure takes only 10 min for free and 20 min for total cyanide, making this procedure much faster than traditional methodologies (conventional heating and distillation), which are time-consuming (they require at least 1 h). Samples from oil (sour and stripping tower bottom waters) and electroplating effluents were analyzed successfully.

  9. Industrial applications of affective engineering

    CERN Document Server

    Shiizuka, Hisao; Lee, Kun-Pyo; Otani, Tsuyoshi; Lim, Chee-Peng

    2014-01-01

    This book examines the industrial applications of affective engineering. The contributors cover new analytical methods such as fluctuation, fuzzy logic, fractals, and complex systems. These chapters also include interdisciplinary research that traverses a wide range of fields, including information engineering, human engineering, cognitive science, psychology, and design studies. The text is split into two parts: theory and applications. This work is a collection of the best papers from ISAE2013 (International Symposium of Affective Engineering) held at Kitakyushu, Japan and Japan Kansei Engineering Meeting on March 6-8, 2013.

  10. Radiotracer Generators for Industrial Applications

    International Nuclear Information System (INIS)

    2013-01-01

    Radiotracers have been widely used throughout industry to optimize processes, solve problems, improve product quality, save energy and reduce pollution. Their technical, economic and environmental benefits have been recognized by both the industrial and the environmental sectors. The most important radiotracer techniques have been transferred to many developing Member States through IAEA Technical Cooperation projects. However, in spite of their manifest benefits, radiotracer techniques continue to be underutilized, not only by developing countries but also by more industrialized nations. There are a number of factors that restrict the usage of the radioisotope techniques, but chief among them is the timely availability of suitable radiotracers. Ensuring timely availability of suitable radionuclides is a main hurdle to the use of radiotracer techniques in industry. For developing countries that do not possess radioisotope production facilities, the long time required for import of radionuclides not only completely rules out the use of short half-life nuclides, but also makes it impossible for the radioisotope applications teams to respond to problems of an urgent nature. Many possible radiotracer investigations are not being carried out in developing countries because of this problem. Even in industrialized countries, radionuclide supply is often a problem, as many of the former suppliers of industrial radionuclides have switched their production facilities to serve the more lucrative radiopharmaceuticals market. Obtaining continuity of supply of radionuclides with which to carry out extended studies in difficult-to-access locations, such as offshore oil platforms, is also a significant challenge. Making use of tracers from radionuclide generators can alleviate the difficulties associated with radioisotope supply. Two commercially available medical radionuclide generators, 99 Mo/ 99 mTc and 113 Sn/ 113 mIn, have been used for this purpose, but their use has been

  11. Radioisotope tracer applications in industry

    International Nuclear Information System (INIS)

    Rao, S.M.

    1987-01-01

    Radioisotope tracers have many advantages in industrial trouble-shooting and studies on process kinetics. The applications are mainly of two types: one leading to qualitative (Yes or No type) information and the other to quantitative characterisation of flow processes through mass balance considerations and flow models. ''Yes or No'' type methods are mainly used for leakage and blockage locations in pipelines and in other industrial systems and also for location of water seepage zones in oil wells. Flow measurements in pipelines and mercury inventory in electrolytic cells are good examples of tracer methods using the mass balance approach. Axial dispersion model and Tanks-in-Series model are the two basic flow models commonly used with tracer methods for the characterisation of kinetic processes. Examples include studies on flow processes in sugar crystallisers as well as in a precalcinator in a cement plant. (author). 18 figs

  12. Advanced glossmeters for industrial applications

    Science.gov (United States)

    Kuivalainen, Kalle; Oksman, Antti; Juuti, Mikko; Myller, Kari; Peiponen, Kai-Erik

    2010-05-01

    In this paper, we present three new types of diffractive-optical-element (DOE)-based glossmeters (DOGs) that have been developed for both laboratory and online local specular gloss measurements of objects in industrial processes. The three are denoted as the handheld wireless glossmeter, µDOG two-dimensional (2D) and µDOG one-dimensional (1D), respectively. These glossmeters are designed to operate under conditions where gloss measurement with conventional glossmeters is impossible or difficult, or when fine structures of the gloss over a surface are an issue. Here, we show the applicability of the handheld glossmeter and µDOG 2D in the inspection of gloss from rough stainless steel plates finished by different machining methods. We also briefly introduce the concept of online gauge µDOG 1D for gloss assessment in industrial measurement environments.

  13. The industrial application of radioisotopes

    International Nuclear Information System (INIS)

    Frevert, E.

    1991-01-01

    In this paper the two main fields of the industrial application of radioisotopes are introduced. In the field of process controlling device and control first about the transmission and the backscattering methods is reported. Then the x-ray fluorescence method and the moisture gauging with neutrons are mentioned. Also the measuring of depth of charge. In the field of tracer investigations about all kinds of flow and intermixture measurements is reported. And investigations of corrosion, wear and lubrication and precise location of nonmetallic pipe lines are mentioned. (Author)

  14. Industrial applications of radiotracers in Indonesia

    International Nuclear Information System (INIS)

    Wandowo

    1994-01-01

    Applications of isotopes and radiation have been developed since 1970 at the Centre for Application of Isotopes and Radiation, National Atomic Energy Agency or BATAN. The scope of applications cover various fields, namely, agriculture, medicine, hydrology, sedimentology and industry. The use of radiotracers prove to be very beneficial for problem solving in industrial process plants and this technique will continuously be promoted by BATAN to industries in Indonesia. Several examples of radiotracer applications in industries which have been carried out by the Group of Industry of the Centre for Application of Isotopes and Radiation are presented. (author). 7 refs., 4 figs., 1 tab

  15. Radioisotopes - their applications in industrial radiography

    International Nuclear Information System (INIS)

    Rao, H.R.S.

    1977-01-01

    The nature of radioisotopes and their industrial applications with special reference to industrial radiography are outlined. The various aspects of industrial radiography such as source size, source containers, films, density of radiography, radiographic quality and applications are discussed in brief. (M.G.B.)

  16. Design research and industrial applicability

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup

    1997-01-01

    Imprinted paper (copies of overheads in English) on the nature of design research, the transformation process for industrial utilization and the challenges of ENDREA from industry.......Imprinted paper (copies of overheads in English) on the nature of design research, the transformation process for industrial utilization and the challenges of ENDREA from industry....

  17. Industrial and Systems Engineering Applications in NASA

    Science.gov (United States)

    Shivers, Charles H.

    2006-01-01

    A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

  18. Industrial Applications of Pulsed Power Technology

    Science.gov (United States)

    Takaki, Koichi; Katsuki, Sunao

    Recent progress of the industrial applications of pulsed power is reviewed in this paper. Repetitively operated pulsed power generators with a moderate peak power have been developed for industrial applications. These generators are reliable and low maintenance. Development of the pulsed power generators helps promote industrial applications of pulsed power for such things as food processing, medical treatment, water treatment, exhaust gas treatment, ozone generation, engine ignition, ion implantation and others. Here, industrial applications of pulsed power are classified by application for biological effects, for pulsed streamer discharges in gases, for pulsed discharges in liquid or liquid-mixture, and for bright radiation sources.

  19. Prior processes and their applications nonparametric Bayesian estimation

    CERN Document Server

    Phadia, Eswar G

    2016-01-01

    This book presents a systematic and comprehensive treatment of various prior processes that have been developed over the past four decades for dealing with Bayesian approach to solving selected nonparametric inference problems. This revised edition has been substantially expanded to reflect the current interest in this area. After an overview of different prior processes, it examines the now pre-eminent Dirichlet process and its variants including hierarchical processes, then addresses new processes such as dependent Dirichlet, local Dirichlet, time-varying and spatial processes, all of which exploit the countable mixture representation of the Dirichlet process. It subsequently discusses various neutral to right type processes, including gamma and extended gamma, beta and beta-Stacy processes, and then describes the Chinese Restaurant, Indian Buffet and infinite gamma-Poisson processes, which prove to be very useful in areas such as machine learning, information retrieval and featural modeling. Tailfree and P...

  20. Application of Statistical Increase in Industrial Quality

    International Nuclear Information System (INIS)

    Akhmad-Fauzy

    2000-01-01

    Application of statistical method in industrial field is slightly newcompared with agricultural and biology. Statistical method which is appliedin industrial field more focus on industrial system control and useful formaintaining economical control of produce quality which is produced on bigscale. Application of statistical method in industrial field has increasedrapidly. This fact is supported by release of ISO 9000 quality system in 1987as international quality standard which is adopted by more than 100countries. (author)

  1. Industrial applications of radioisotope techniques in Poland

    International Nuclear Information System (INIS)

    Michalik, J.St.

    1985-01-01

    A general review of applications of radioisotope techniques in the Polish industry for about 25 years is given. The radiotracer methods used in metallurgy, hydrometallurgy, glass industry, oil and petroleum industries, in material testing and in other industries are described. Neutron activation analysis methods as well as nuclear gauges for industry (thickness meters, density meters, conveyer belt weigher, acid concentration meters and others) are also presented. The economic advantages of industrial applications of radioisotope techniques are described too. 42 refs., 43 figs., 11 tabs. (author)

  2. Survey on industrial applications of radioactive tracers

    International Nuclear Information System (INIS)

    Kim, Jae Rok; Yoo, Young Soo; Lee, Jong Doo; Awh, Ok Doo; Kim, Jun Hyung

    1986-12-01

    Current status and future feasibilities of industrial tracer applications in the Republic of Korea have been surveyed. Microleak detection using Krypton-85 in eight electronics industrial companies, and efficiency tests of steam generators in four nuclear power plants using Sodium-24 are the principal applications in Korea. Future applications are expected for mercury inventory in one soda industrial company, and alkali movement studies in two cement industrial companies. Korean industries expressed deep interest in leak detection in underground pipelines, abrasion/corrosion studies, mixing rate and residence time measurements. (Author)

  3. Industrial application of nuclear techniques in Australia

    International Nuclear Information System (INIS)

    Easey, J.F.

    1981-01-01

    The applications of nuclear techniques in Australia was reviewed - the work has been to aid: mining and mineral sector, the manufacturing, chemical and petroleum industries, hydrology and sedimentology

  4. Application of orthodontic forces prior to autotransplantation - case reports.

    Science.gov (United States)

    Cho, J-H; Hwang, H-S; Chang, H-S; Hwang, Y-C

    2013-02-01

    This case report describes the successful autotransplantation of mandibular molars after application of orthodontic forces and discusses the advantages of this technique, that is, pre-application of an orthodontic force for autotransplantation. After clinical and radiographic examination, autotransplantation was planned with the patient's written informed consent. An orthodontic force was applied, and the surgical procedure was performed after tooth mobility had increased. Root canal treatment was performed within 2 weeks of autotransplantation. At the 1-year follow-up, the transplanted teeth revealed asymptomatic and healthy periodontal conditions. Autotransplantation is the surgical movement of a tooth from its original location to another site. The pre-application of orthodontic force technique was recently introduced for autogenous tooth transplantation. Pre-application of an orthodontic force may be a useful treatment option for autotransplantation. © 2012 International Endodontic Journal.

  5. Industrial applications of nuclear techniques in Poland

    International Nuclear Information System (INIS)

    Michalik, J.St.

    1981-01-01

    Application of radioisotope techniques in a number of Polish industries was reviewed. Studies on the usage of radiotracer as an evaluation method for technological processes were carried out and the advantages of such application were discussed

  6. Prior art relevant to active beads patent application

    CSIR Research Space (South Africa)

    Moolman, S

    2002-06-01

    Full Text Available -extrusion of shell (gelatin) and core (oral refrigerant or spice condiment) US 4,332,790 Nestlé patent on manufacturing fat microcapsules containing micro-organisms Patents cited by International Search Report on previous application US 5,543,162 Polymeric...

  7. Biocatalysts: application and engineering for industrial purposes.

    Science.gov (United States)

    Jemli, Sonia; Ayadi-Zouari, Dorra; Hlima, Hajer Ben; Bejar, Samir

    2016-01-01

    Enzymes are widely applied in various industrial applications and processes, including the food and beverage, animal feed, textile, detergent and medical industries. Enzymes screened from natural origins are often engineered before entering the market place because their native forms do not meet the requirements for industrial application. Protein engineering is concerned with the design and construction of novel enzymes with tailored functional properties, including stability, catalytic activity, reaction product inhibition and substrate specificity. Two broad approaches have been used for enzyme engineering, namely, rational design and directed evolution. The powerful and revolutionary techniques so far developed for protein engineering provide excellent opportunities for the design of industrial enzymes with specific properties and production of high-value products at lower production costs. The present review seeks to highlight the major fields of enzyme application and to provide an updated overview on previous protein engineering studies wherein natural enzymes were modified to meet the operational conditions required for industrial application.

  8. HTGR Industrial Application Functional and Operational Requirements

    International Nuclear Information System (INIS)

    Demick, L.E.

    2010-01-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  9. Mechatronics ideas for industrial application

    CERN Document Server

    Szewczyk, Roman; Trojnacki, Maciej; Kaliczyńska, Małgorzata

    2015-01-01

    This book presents recent advances and developments in control, automation, robotics, and measuring techniques. It presents contributions of top experts in the fields, focused on both theory and industrial practice. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation, and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems.  

  10. Applications of radionuclides in industry

    International Nuclear Information System (INIS)

    Leveque, P.

    1955-01-01

    After a brief recall of a few concepts (mass number, charge and beams properties) and the description of used detectors (ionization chamber, Geiger-Mueller counter, scintillation counters), some radionuclides applications are described. In a first part, the well-developed applications are presented in three distinct groups: continuous applications such as β and γ gauges (determination hydrogen content of an hydrocarbon and content of an emulsion; discharge of static electricity), discontinuous applications such as radiography and autoradiography, wear or manufacture problems (distribution of a fungicide on tobacco) and finally, applications in research laboratories such as diffusion, exchange and solubility. It also describes the applications which are still in development such as the action of beams on matter (reticulation and degradation of polymers, monomers polymerisation, cold sterilization). In conclusion, few advices on the opportunity of such applications and the choice of the radionuclides are given. (M.P.)

  11. Technological and industrial applications of neutrons

    International Nuclear Information System (INIS)

    Weitkamp, C.

    1976-07-01

    Technological and industrial applications of neutrons are reviewed except applications in power generation, biology and medicine, and solid-state research. Techniques are grouped in three main categories: isotope production, material testing, and material analysis. Following a brief description of the different methods, an attempt is made to assess their applicability and to point out current developments. (orig.) [de

  12. Technological and industrial applications of neutrons

    International Nuclear Information System (INIS)

    Weitkamp, C.

    1977-01-01

    Technological and industrial applications of neutrons are reviewed except applications in power generation, biology and medicine, and solid-state research. Techniques are grouped in three main catagories: material production, material testing, and material analysis. Following a brief description of the different methods, an attempt is made to assess their applicability and to point out current developments. (author)

  13. On industrial application of structural reliability theory

    Energy Technology Data Exchange (ETDEWEB)

    Thoft-Christensen, P

    1998-06-01

    In this paper it is shown that modern structural reliability theory is being successfully applied to a number of different industries. This review of papers is in no way complete. In the literature there is a large number of similar applications and also application not touched on in this presentation. There has been some concern among scientists from this area that structural reliability theory is not being used by industry. It is probably correct that structural reliability theory is not being used by industry as much as it should be used. However, the work by the ESReDA Working Group clearly shows the vary wide application of structural reliability theory by many different industries. One must also have in mind that industry often is reluctant to publish data related to safety and reliability. (au) 32 refs.

  14. On industrial application of structural reliability theory

    International Nuclear Information System (INIS)

    Thoft-Christensen, P.

    1998-01-01

    In this paper it is shown that modern structural reliability theory is being successfully applied to a number of different industries. This review of papers is in no way complete. In the literature there is a large number of similar applications and also application not touched on in this presentation. There has been some concern among scientists from this area that structural reliability theory is not being used by industry. It is probably correct that structural reliability theory is not being used by industry as much as it should be used. However, the work by the ESReDA Working Group clearly shows the vary wide application of structural reliability theory by many different industries. One must also have in mind that industry often is reluctant to publish data related to safety and reliability. (au)

  15. Industrial applications of the Kalman filter

    DEFF Research Database (Denmark)

    Auger, François; Hilairet, Mickael; Guerrero, Josep M.

    2013-01-01

    The Kalman filter has received a huge interest from the industrial electronics community and has played a key role in many engineering fields since the 70s, ranging, without being exhaustive, trajectory estimation, state and parameter estimation for control or diagnosis, data merging, signal...... processing and so on. This paper provides a brief overview of the industrial applications and implementation issues of the Kalman filter in six topics of the industrial electronics community, highlighting some relevant reference papers and giving future research trends....

  16. Industrial applications of neutron diffraction

    International Nuclear Information System (INIS)

    Felcher, G.P.

    1989-01-01

    Neutron diffraction (or, to be more general, neutron scattering) is a most versatile and universal tool, which has been widely employed to probe the structure, the dynamics and the magnetism of condensed matter. Traditionally used for fundamental research in solid state physics, this technique more recently has been applied to problems of immediate industrial interest, as illustrated in examples covering the main fields of endeavour. 14 refs., 14 figs

  17. Industrial applications of radioisotope tracers

    International Nuclear Information System (INIS)

    Easey, J.F.

    1985-01-01

    Radioisotope tracing techniques are powerful tools for analysing the behaviour of large systems and investigating industrially or economically important processes. The results of radioisotope experiments can yield important information, for example, on parameters such as flow rates, mixing phenomena, flow abnormalities and leaks. Some examples of current AAEC research are described, covering studies on hearth drainage in blast furnaces, flow behaviour in waste-water treatment ponds, and sediment transport in marine environments

  18. The industrial applications of ionizing radiations

    International Nuclear Information System (INIS)

    1992-10-01

    This report presents all industrial applications of ionizing radiations in France, for food preservation, radiosterilization of drugs, medical materials and cosmetic products, for radiation chemistry of polymers. This report also describes the industrial plants of irradiation (electron, cobalt 60). Finally, it explains the legal and safety aspects

  19. Application of Bayesian Decision Theory Based on Prior Information in the Multi-Objective Optimization Problem

    Directory of Open Access Journals (Sweden)

    Xia Lei

    2010-12-01

    Full Text Available General multi-objective optimization methods are hard to obtain prior information, how to utilize prior information has been a challenge. This paper analyzes the characteristics of Bayesian decision-making based on maximum entropy principle and prior information, especially in case that how to effectively improve decision-making reliability in deficiency of reference samples. The paper exhibits effectiveness of the proposed method using the real application of multi-frequency offset estimation in distributed multiple-input multiple-output system. The simulation results demonstrate Bayesian decision-making based on prior information has better global searching capability when sampling data is deficient.

  20. Chapter 13. Industrial Application of Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Design and application of modern pure tap water components and systems in industries, in particular food processing industry.......Design and application of modern pure tap water components and systems in industries, in particular food processing industry....

  1. Industrial application of radiation curing

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takashi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    The contents are advantages of radiation processes - a solvent-free system, less energy consumative, higher production rate, processability at ambient temperature; electron beams vs. ultraviolet curing; applications -broad spectrum of markets use radiation curable materials.

  2. Industrial application of radiation curing

    International Nuclear Information System (INIS)

    Takashi Sasaki

    1993-01-01

    The contents are advantages of radiation processes - a solvent-free system, less energy consumative, higher production rate, processability at ambient temperature; electron beams vs. ultraviolet curing; applications -broad spectrum of markets use radiation curable materials

  3. Dielectric heating. Industrial applications; Chauffage dielectrique. Applications industrielles

    Energy Technology Data Exchange (ETDEWEB)

    Roussy, G. [Nancy-1 Univ. Henri Poincare, Dir. de Recherche 54 (France); Rochas, J.F. [Societe Sairem, 75 - Paris (France); Oberlin, C. [Electricite de France (EDF), Div. de Recherche, 75 - Paris (France)

    2003-11-01

    The heating of insulating or badly power conducting products using high frequency (HF) electromagnetic waves and microwaves (MW) is used in several industrial applications. This article presents some examples of conventional or recent applications of dielectric heating in the industry: 1 - selection criteria between HF and MW heating systems; 2 - HF applications: traditional applications (wood forming and sticking, welding of thermoplastic materials, drying of textile materials, correction of the humidity profile in the paper industry, end-baking of biscuits in the food industry), recent applications (over-moulding of automotive glazing materials, gluing and moulding of plastic parts in the automotive industry, drying of the coating of textile ropes), innovative applications; 3 - microwave applications: traditional applications (moderating of frozen meat by 915 MHz microwaves, drying of coatings on polystyrene or sand core models for foundry, pre-vulcanization of rubber sections, 2450 MHz pasteurization of pumpable products with morsels), examples of recent applications (continuous dehydration in vacuum, MW assisted granulator-dryers in the pharmaceutical industry, decontamination of hospital wastes), examples of innovative applications in the chemical sector, applications in progress; 4 - conclusion. (J.S.)

  4. Industrial Applications of Low Temperature Plasmas

    International Nuclear Information System (INIS)

    Bardsley, J N

    2001-01-01

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed

  5. On Industrial Application of Structural Reliability Theory

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    For the last two decades we have seen an increasing interest in applying structural reliability theory to many different industries. However, the number of real applications is much smaller than what one would expect. At the beginning most applications were in the design/analyses area especially...

  6. The applications of nanotechnology in food industry.

    Science.gov (United States)

    Rashidi, Ladan; Khosravi-Darani, Kianoush

    2011-09-01

    Nanotechnology has the potential of application in the food industry and processing as new tools for pathogen detection, disease treatment delivery systems, food packaging, and delivery of bioactive compounds to target sites. The application of nanotechnology in food systems will provide new methods to improve safety and the nutritional value of food products. This article will review the current advances of applications of nanotechnology in food science and technology. Also, it describes new current food laws for nanofood and novel articles in the field of risk assessment of using nanotechnology in the food industry.

  7. Linacs for medical and industrial applications

    International Nuclear Information System (INIS)

    Hamm, R.W.

    1986-01-01

    Linear accelerators for medical and industrial applications have become an important commercial business. Microwave electron linacs for cancer radiation therapy and high-energy industrial radiography form the bulk of this market, but these, as well as induction linacs, are now being offered for radiation processing applications such as sterilization of disposable medical products, food preservation and material modifications. The radio frequency quadrupole (RFQ) linac has now made the ion linac also practical for commercial applications in medicine and industry, including radiation therapy, isotope production, neutron production, materials modification, and energy transfer processes. Ion linacs for several of these applications will soon be commercially available. The market for both ion and electron linacs is expected to significantly grow in several exciting and important areas

  8. Application of radiation and isotopes in industry

    International Nuclear Information System (INIS)

    Andrzej, G. Chmielewski

    2006-01-01

    Full text: A vast variety of nuclear techniques is available for industrial, environmental, medical and research applications. Sealed or open radioisotope sources are applied as radiotracer in the system, in nucleonic gauges, in non destructive testing and in nuclear analytical techniques. Beside of isotopes X-ray tubes and accelerators operated in e-/X mode as a source of radiation are applied as well. These methods are used for process and material control, non-destructive evaluation of wells, castings and assembled machinery help to make industrial processes safer and more cost effective. For natural resource exploration radiotracers (RTT), sealed sources and nucleonic gauges (NCS) are used in the oil industry, in mineral processing and waste water treatment plants. Radioisotopes make important contributions in several sectors of economic significance including medicine industry, agriculture, structural safety and research. They are generally produced in research reactors or cyclotrons. More than 150 different radioisotopes in different forms are in use for various applications. Non-destructive testing (NDT) is essential for quality assurance of various products in diverse industries and construction projects apart from well established NDT protocols for industrial components, machinery and chemical pipelines, new techniques and applications, such as digital radiography for ecological safety, online inspection of concrete structures and pipe corrosion, are being developed. The new applications concern cargo inspection where Co 60 or e-/X sources are used. Radioisotopes are applied as radiotracers in industry and environment. Oil fields and refineries, chemical and metallurgical industries and wastewater purification installations are the end users benefiting from radioisotope techniques. Radioisotope techniques (radiotracers, gamma scanning, tomography and single particle tracking) are extensively used to identify and quantify multiphase reactors (phase hold

  9. Industrial radiography techniques and their applications

    International Nuclear Information System (INIS)

    Wamorkar, R.R.

    1981-01-01

    Various aspects of industrial radiography are discussed. These include: radiation sources, geometrical unsharpness of image, radiation attenuation in the specimen, radiation effect of film, types of film, intensifying screens, exposure time calculations, source to film distance and sensivitity. Radiography techniques for examination of welded joints on flat plate and pipes or cylindrical objects, and castings are indicated. Applications of radiography in various industries are mentioned. (M.G.B.)

  10. Application of Laplace transform to industrial problems

    International Nuclear Information System (INIS)

    Dubois, D.J.M.; Vagner, J.

    1989-01-01

    This paper presents two industrial applications of a new methodology based on Laplace transform properties which has been implemented in an industrial finite element program. In structures endowed with thermal and mechanical properties constant with the temperature, the stresses are computed for unit thermal shocks applied on the areas which are actually affected by the temperature variations. The analytical formulation and the general feature of this implementation are presented

  11. Application of fuzzy logic control in industry

    International Nuclear Information System (INIS)

    Van der Wal, A.J.

    1994-01-01

    An overview is given of the various ways fuzzy logic can be used to improve industrial control. The application of fuzzy logic in control is illustrated by two case studies. The first example shows how fuzzy logic, incorporated in the hardware of an industrial controller, helps to finetune a PID controller, without the operator having any a priori knowledge of the system to be controlled. The second example is from process industry. Here, fuzzy logic supervisory control is implemented in software and enhances the operation of a sintering oven through a subtle combination of priority management and deviation-controlled timing

  12. Industrial application of high power disk lasers

    Science.gov (United States)

    Brockmann, Rüdiger; Havrilla, David

    2008-02-01

    Laser welding has become one of the fastest growing areas for industrial laser applications. The increasing cost effectiveness of the laser process is enabled by the development of new highly efficient laser sources, such as the Disk laser, coupled with decreasing cost per Watt. TRUMPF introduced the Disk laser several years ago, and today it has become the most reliable laser tool on the market. The excellent beam quality and output powers of up to 10 kW enable its application in the automotive industry as well as in the range of thick plate welding, such as heavy construction and ship building. This serves as an overview of the most recent developments on the TRUMPF Disk laser and its industrial applications like cutting, welding, remote welding and hybrid welding, too. The future prospects regarding increased power and even further improved productivity and economics are presented.

  13. 37 CFR 1.130 - Affidavit or declaration to disqualify commonly owned patent or published application as prior art.

    Science.gov (United States)

    2010-07-01

    ... disqualify commonly owned patent or published application as prior art. 1.130 Section 1.130 Patents... or declaration to disqualify commonly owned patent or published application as prior art. (a) When.... patent or U.S. patent application publication which is not prior art under 35 U.S.C. 102(b), and the...

  14. Solidification as low cost technology prior to land filling of industrial hazardous waste sludge.

    Science.gov (United States)

    El-Sebaie, O; Ahmed, M; Ramadan, M

    2000-01-01

    The aim of this study is to stabilize and solidify two different treated industrial hazardous waste sludges, which were selected from factories situated close to Alexandria. They were selected to ensure their safe transportation and landfill disposal by reducing their potential leaching of hazardous elements, which represent significant threat to the environment, especially the quality of underground water. The selected waste sludges have been characterized. Ordinary Portland Cement (OPC), Cement Kiln Dust (CKD) from Alexandria Portland Cement Company, and Calcium Sulphate as a by-product from the dye industry were used as potential solidification additives to treat the selected treated waste sludges from tanning and dyes industry. Waste sludges as well as the solidified wastes have been leach-tested, using the General Acid Neutralization Capacity (GANC) procedure. Concentration of concerning metals in the leachates was determined to assess changes in the mobility of major contaminants. The treated tannery waste sludge has an acid neutralization capacity much higher than that of the treated dyes waste sludge. Experiment results demonstrated the industrial waste sludge solidification mix designs, and presented the reduction of contaminant leaching from two types of waste sludges. The main advantages of solidification are that it is simple and low cost processing which includes readily available low cost solidification additives that will convert industrial hazardous waste sludges into inert materials.

  15. Industrial tracer application in people's republic of china

    International Nuclear Information System (INIS)

    Sun Maoyi

    1987-01-01

    A number of important applications of radioisotopes and their compounds used as tracers in petroleum industry, metallurgical industry, mechanical industry, chemical industry, electronic industry, hydrology and water conservancy in China are introduced in this paper. And the tracer technique applied to entomology is also mentioned. The industrial tracer applications are successful and beneficial in People's Republic of China from the examples given. (author)

  16. Industrial applications of refrigeration. Utilizing industries; Applications industrielles du froid. Industries utilisatrices

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, Ch. [Ecole Centrale de Lyon, 69 - Ecully (France); Groupement pour la Recherche sur les Echangeurs Thermiques, GRETh (France)

    2001-10-01

    Refrigeration is used in most of the industrial domains: food industry (conservation of the organoleptic properties and sanitary quality of products, control of fermentation, of juice concentration and of the dehydration of products), transformation industries (plastic industry, rubber industry, mechanical industry (fretting, hardening and surface treatment of materials, dehumidification of compressed air), liquefaction and purification of industrial gases and hydrocarbons, processing of wastes (removal of VOCs, purification of liquid effluents etc..), civil engineering (consolidation of soils, cooling of big concrete structures), leisure (skating rink, artificial snow). (J.S.)

  17. Industrial applications of low energy accelerator technologies

    International Nuclear Information System (INIS)

    Park, Jae Won; Kim, Hyung Jin; Kim, Jun Yeon; Lee, Jae Sang; Yeo, Sun Mog; Lee, Ji Ah

    2008-05-01

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  18. A new industrial application of magnetic separation

    International Nuclear Information System (INIS)

    Beharrell, P.A.

    2000-09-01

    The aim of this work was to investigate the application of magnetic separation to the removal and recovery of carbon steel grinding swarf from machining fluids used in large-scale industrial manufacturing processes such as in the automotive industry. Magnetic separation is a technology which has found widespread application in the mineral processing industry and in particular the beneficiation of kaolin clay for use in the paper industry. The technical feasibility of the application was demonstrated in the early stages of the work by the successful treatment of industrial samples using a crude laboratory-scale separator. In addition, the fluid and swarf material underwent extensive analysis using electron microscope-based optical and spectroscopic techniques in order to ascertain the presence of other undesirable components of the fluid that would require removal also. It was demonstrated by these results that the overall objective of the project was the development and testing of a laboratory-scale system which would allow the optimum operational parameters to be ascertained for the design of a commercially viable, large-scale system. A series of detailed trials on large volumes of industrial samples was carried out in conjunction with the development of the modifications that were required to existing magnetic separation theory in order to accommodate the particulars of this application. The trial system was tested to low applied magnetic strengths and high fluid flow velocities in order to optimise the economics of the application, resulting in extraction efficiencies of the order of 99.998% being achieved. During the course of the project, a new type of matrix cleaning system was developed for which a patent was applied and this was successfully tested in the trial system. Economic appraisal of the application suggests that an industrial-scale system could provide reliable, high quality recovery of grinding swarf at a cost of around one cent per cubic metre of

  19. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  20. Industrial waste treatment and application in rubber production

    Science.gov (United States)

    Pugacheva, I. N.; Popova, L. V.; Repin, P. S.; Molokanova, L. V.

    2018-03-01

    The paper provides for the relevance of various industrial waste treatment and application, as well as their secondary commercialization. It considers treatment of secondary polymer materials turning to additives applied in rubber production, in particular, in production of conveyor and V-type belts used in mechanical engineering. It is found that oligomers obtained from petroleum by-products can be used as an impregnating compound for fiber materials. Such adhesive treatment prior to introduction of impregnating compounds into elastomeric materials improves adhesion and complements performance of obtained composites.

  1. The industrial application of radioisotopes in Australia

    International Nuclear Information System (INIS)

    Easey, J.F.

    1987-01-01

    Over the past 10 years, the Australian Atomic Energy Commission has conducted a wide-ranging program of radioisotope applications to solve industrial problems of local, regional or national importance. Most of the investigations have been concerned with the behaviour of large complex systems. Broadly, the work covers such economically important fields as flow studies, environmental studies and coastal engineering studies. (author)

  2. Radiation technology in emerging industrial applications. Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    In many industrial applications radiation processing has proven to be a technology of choice either because of its economic competitiveness or its technical superiority. Although the chemical effects of ionizing radiation have been known for more than a century, its industrial applications became possible only after the availability of reliable gamma sources and powerful electron accelerators during the last couple of decades.The programmes of the International Atomic Energy Agency (IAEA) in radiation processing are implemented through the Department of Nuclear Sciences and Applications and the Department of Technical Co-operation. The IAEA has been active in this field for many years, contributing to new developments, training, promotion and transfer of technology. In September 1997, the IAEA held an international symposium in Zakopane, Poland on the 'Use of radiation technology for the conservation of environment' where the status of current developments and of applications of radiation processing in the control of environmental pollution was reviewed (IAEA-TECDOC-1023, 1998). Recent developments and achievements in various aspects of radiation processing have been assessed continuously through the organization of consultants meetings, advisory group meetings and research co-ordination meetings. Worldwide growing interest in the use of radiation technology in various new industrial applications, as exemplified by the reports and presentations made at these meetings, has led the IAEA to organize a symposium to cover every aspect of radiation processing and, exclusively, the emerging industrial applications of radiation technology. The International Symposium on Radiation Technology in Emerging Industrial Applications was convened in November 2000 in Beijing, China. Its main purpose was to bring scientists,technologists, industrialists and regulatory authorities together with a view of exchanging information and reviewing the status of current developments and

  3. Radiation technology in emerging industrial applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    In many industrial applications radiation processing has proven to be a technology of choice either because of its economic competitiveness or its technical superiority. Although the chemical effects of ionizing radiation have been known for more than a century, its industrial applications became possible only after the availability of reliable gamma sources and powerful electron accelerators during the last couple of decades.The programmes of the International Atomic Energy Agency (IAEA) in radiation processing are implemented through the Department of Nuclear Sciences and Applications and the Department of Technical Co-operation. The IAEA has been active in this field for many years, contributing to new developments, training, promotion and transfer of technology. In September 1997, the IAEA held an international symposium in Zakopane, Poland on the 'Use of radiation technology for the conservation of environment' where the status of current developments and of applications of radiation processing in the control of environmental pollution was reviewed (IAEA-TECDOC-1023, 1998). Recent developments and achievements in various aspects of radiation processing have been assessed continuously through the organization of consultants meetings, advisory group meetings and research co-ordination meetings. Worldwide growing interest in the use of radiation technology in various new industrial applications, as exemplified by the reports and presentations made at these meetings, has led the IAEA to organize a symposium to cover every aspect of radiation processing and, exclusively, the emerging industrial applications of radiation technology. The International Symposium on Radiation Technology in Emerging Industrial Applications was convened in November 2000 in Beijing, China. Its main purpose was to bring scientists,technologists, industrialists and regulatory authorities together with a view of exchanging information and reviewing the status of current developments and

  4. Conducting polymers: Synthesis and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The Conducting Polymer project funded by the AIM Materials Program is developing new methods for the synthesis of electronically conducting polymers and is evaluating new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1994 are electrochemical capacitors and membranes for gas separation. As an active material in electrochemical capacitors, conducting polymers have the potential of storing large amounts of electrical energy in low cost materials. Such devices are needed in electronics for power failure back-up and peak power, in power supplies for filtering, and in electric vehicles for peak power and load leveling. As a gas electrically adapt the membrane for specific gas combinations. Potential energy savings in the US. for this application are estimated at 1 to 3 quads/yr.

  5. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  6. Industrial applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Hossain, T.Z.

    2001-01-01

    Neutron activation analysis has been widely used in the industry and over the years played a key role in the development of manufacturing process as well as monitoring of the process flow. In this context NAA has been utilized both in R and D, and in the factory as a flexible analytical tool. It has been used successfully in numerous industries including broad categories such as Chemical, Pharmaceutical, Mining, Photographic, Oil and Gas, Automobile, Defense, Semiconductor and Electronic industries. Dow Chemical owns and operates a research reactor for analytical measurements of samples generated in both R and D, and manufacturing area in its plant in Midland, Michigan. Although most industries do not have reactors on their campus but use an off site reactor regularly, and often have in-house neutron sources such as a 252 Cf used primarily for NAA. In most industrial materials analysis laboratory NAA is part of a number of analytical techniques such as ICP-MS, AA, SIMS, FTIR, XRF, TXRF etc. Analysis of complex industrial samples may require data from each of these methods to provide a clear picture of the materials issues involved. With the improvement of classical analytical techniques, and the introduction of new techniques, e.g. TXRF, the role of NAA continues to be a key bench mark technique that provides accurate and reliable data. The strength of the NAA in bulk analysis is balanced by its weakness in providing surface sensitive or spatially resolved analysis as is required by many applications. (author)

  7. Medical and industrial application of radiation

    International Nuclear Information System (INIS)

    Ajayi, I.R.

    1999-01-01

    While dosimetry is not a radiation application, accurate dosage of radiation of utmost importance for all radiation applications. For both therapeutic and industrial applications it can be matter of life and death. For this reason, great efforts have been made to ensure that radiation dosages given to patients and used in all industrial applications are as near as possible to those prescribed. The World Health Organization (WHO) and the IAEA, together with many National Standard Laboratories and with the International Bureau of Weight and Measures, have been very active and successful during the last 20 years in ascertaining that normal cobalt-60 therapy unit. For this purpose, 63 Secondary Standard Dosimetry Laboratories have been established of which more than half are in developing countries. FRPS houses one of the Secondary Standard Dosimetry Laboratories. As accurate dosimetry is a prerequisite in radiotherapy, so it is in industrial exposures and all laboratories responsible for dosimetry have to make frequent intercomparisons with one of the Primary Standard Dosimetry Laboratories. The SSDL at FRPS hopes to commence this as soon as our new Harshaw 6600 TLD reader arrives. This has already been approved by the IAEA. Much high doses of radiation are used for some industrial applications, as discussed in a previous lecture, such as sterilization of rubber, and food preservation and newly developed techniques are being used for the assurance of the prescribed dose. IAEA provides assistance in this area also through the secondary standard dosimetry laboratories. The IAEA has a broad programme of assistance which includes the calibration of all instruments in the laboratories of the participants, be it for radiation protection, or high dose measurements

  8. Industrial applications of irradiation as a service

    International Nuclear Information System (INIS)

    Martin, J. I.

    2002-01-01

    Industrial use of electron beams began in the 1950's with the crosslinking of polyethylene film and wire insulation. Today the number of electron began Processing Systems installed for industrial applications throughout the world has grown to more than six hundred stations in over 35 countries. Total installed power is now approaching 40 megawasls (over 8 million tons of products per year). Electron Beam is now utilized by many major industries including plastic, automotive, rubber goods, wire and cable, electrical insulation, semiconductor, medical, packaging, or pollution control. The principal effect of high-energy electrons is to produce ions in the materials treated, resulting in the liberation of orbital electrons. As a result, the original molecule is modified and the ree radicals combine to form new molecules with new chemical reactions or dis organization of the DNA chains of living organisms (insects, fungus, microorganisms, etc.). (Author)

  9. Xylanases and Their Applications in Baking Industry

    Directory of Open Access Journals (Sweden)

    Masood Sadiq Butt

    2008-01-01

    Full Text Available Xylan is the second most abundant polysaccharide and a major component of plant cell wall. Cereal xylans contain large quantities of L-arabinose and are therefore, often referred to as arabinoxylans. Xylanases are hydrolytic enzymes, which randomly cleave the β-1,4 backbone of this complex plant cell wall polysaccharide. Different species of Aspergillus and Trichoderma produce these enzymes. Xylanases are of great value in baking as they have been found to improve the bread volume, crumb structure and reduce stickiness. When xylanases are used at optimum levels, they play a significant role in increasing shelf life of bread and reduce bread staling. There is an increasing trend in baking industry towards the application of xylanases in bread production. This review discusses the application of xylanase in the bakery industry, alone and in combination with other enzymes when it shows synergism in the action with them.

  10. Proceedings of industrial applications of fluid mechanics

    International Nuclear Information System (INIS)

    Sherif, S.A.; Morrow, T.B.; Marshall, L.R.; Dalton, C.

    1990-01-01

    The is the fourth Forum on Industrial Applications of Fluid Mechanics sponsored by the Fluid Mechanics Committee of the ASME Fluids Engineering Division. The Forum objective is to promote the discussion and interchange of current information on developing and state-of-the-art applications of fluid mechanics technology. The program is organized as a technical forum to encourage the presentation of new ideas, especially those which may be so innovative that a conservative review process might delay their dissemination to the fluids engineering community. Four sessions and a total of 17 papers are scheduled for this program. Three of the four sessions were devoted to contributed papers, while the fourth is a panel discussion with three invited presentations. All papers were reviewed editorially to assure that they are related to the forum theme The papers were not evaluated technically, and therefore carry no endorsement from the Fluid Mechanics Committee or the Fluids Engineering Division with regard to peer evaluation. The forum presentations will focus on specific applications of fluid mechanics technology. Lively discussion of the papers is encouraged at the forum. The Fluid Mechanics Committee plans to sponsor a forum with an industrial applications theme each year at the ASME Winter Annual Meeting. In 1991, the scope of the forum will be enlarged to include the topic of textile applications of fluid mechanics, and another panel session featuring speakers with industrial experience in different areas of fluid mechanics applications. In future years, it is anticipated that the forum will solicit papers from other areas where fluid mechanics technology is applied

  11. Algorithms for reconstructing images for industrial applications

    International Nuclear Information System (INIS)

    Lopes, R.T.; Crispim, V.R.

    1986-01-01

    Several algorithms for reconstructing objects from their projections are being studied in our Laboratory, for industrial applications. Such algorithms are useful locating the position and shape of different composition of materials in the object. A Comparative study of two algorithms is made. The two investigated algorithsm are: The MART (Multiplicative - Algebraic Reconstruction Technique) and the Convolution Method. The comparison are carried out from the point view of the quality of the image reconstructed, number of views and cost. (Author) [pt

  12. APPLICATION OF GRANULATION TECHNOLOGY IN VARIOUS INDUSTRIES

    Directory of Open Access Journals (Sweden)

    B. V. YEGOROV

    2017-10-01

    Full Text Available Science and practice proved the high efficiency of granulated mixed fodders. This article presents an overview of granulation technologies for various industries. This article discusses the application of granulation technologies in various industries. The processes of granulation are mass technological processes currently used in a wide range of industries: feed industry, food industry, pharmaceutical industry, fertilizer production, polyethylene, metal production, mining, etc. A wide range of different materials are granulated, including chemicals, iron ore, mixed fodder, and much more. Granulation is a process of pressing or shaping a material in the form of granules.  Granulation is widely used in the production of pigments, dyes, synthetic detergents, catalysts, plastics, soot, chemical reagents, etc. The use of granular raw materials in the metallurgical industry helps not only to mechanize processes, but also to increase their intensity by increasing the contact surface of interacting media. Granular fertilizers retain their properties for a long time. In the mining industry, granulation processes are used at the stage of preparation and enrichment of raw materials and release of the finished product.  Particular attention is paid to the feed industry. Granulation allows to ensure stable homogeneity, to improve sanitary and hygienic parameters, to increase nutritional value, to increase the storage period, improve the physical properties. However, despite all the advantages, the existing granulation production lines have a relatively high productivity and, at the same time, a high energy intensity. In this regard, this article proposes a technology for improving the granulation of mixed fodders. According to a preliminary literary review, It should be concluded that improving the technology of the granulation process for feed production is a topical issue in the feed industry today. The development of technology for improving the

  13. Economics on nuclear techniques application in industry

    International Nuclear Information System (INIS)

    Kato, Masao

    1979-01-01

    The economics of the application of nuclear techniques to industry is discussed. Nuclear techniques were applied to gauging (physical measurement), analysis, a radioactive tracer method, electrolytic dissociation, and radiography and were found to be very economical. They can be applied to manufacturing, mining, oceano-engineering, environmental engineering, and construction, all of which have a great influence on economics. However, because the application of a radioactive tracer technique does not have a direct influence on economics, it is difficult to estimate how beneficial it is. The cost-benefit ratio method recommended by IAEA was used for economical calculations. Examples of calculations made in gauging and analysis are given. (Ueda, J.)

  14. Ionizing radiations: medical and industrial applications

    International Nuclear Information System (INIS)

    Vidal, H.

    1994-01-01

    Medical diagnosis with X-rays is the best known use of ionizing radiations on account of its wide diffusion (about 57 500 units in France). Other medical applications of artificial radionuclides involving a smaller number of installations are also well known, i.e. gamma teletherapy (167 units), brachytherapy (119 units) or therapy using unsealed sources (257 units). The industrial uses of ionising radiation, the diversity of which is very large, are generally less well known. The use of X- and gamma rays for non-destructive testing or food preservation and the use of tracers have some notoriety, but few people know that radioactive sources are involved in the measurement of parameters controlling industrial processes. The number of persons authorized to hold, use and/or sell artificial radionuclides amounts to about 4 800, all applications included. Approximately 650 of them are involved in therapy and 500 in medical research. The aim of this paper, which is not exhaustive, is to review a few typical applications of radionuclides both in the medical and industrial fields. It also supplies data both on the number of people authorized to use each technique and the radionuclides involved. (author). 10 tabs

  15. Electron Beam Scanning in Industrial Applications

    Science.gov (United States)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  16. The Swedish nuclear industry way to approach higher demands on characterisation prior to clearance

    International Nuclear Information System (INIS)

    Larsson, Arne; Hellsten, Erik; Berglund, Malin; Larsson, Lars

    2012-01-01

    The Swedish Radiation Safety Authority (SSM) has introduced new regulations for clearance SSMFS 2011:2 'Regulations concerning clearance of material, rooms, buildings and soil from activities with ionizing radiation'. The new regulations came into force January 1, 2012. Compared to the previous regulations these new regulations have a broader scope and have introduced new conditions such as nuclide specific clearance levels. Clearance is practiced to reduce the amount of radioactive waste generated. Cleared material can be reused, recycled or if these two possibilities are not available, disposed of as conventional waste. To be able to meet the requirements for clearance the Swedish nuclear industry has jointly developed guidance for clearance in the form of a handbook and a training course covering the competence requirements in the new regulations. The handbook was developed by a team of representatives from the Swedish nuclear license holders managed by Studsvik on behalf of Swedish Nuclear Fuel and Waste Management Company (SKB). The training program was developed in co-operation between Nuclear Safety and training Company (KSU) and Studsvik on behalf of the Swedish nuclear license holders. A major challenge in the adoption to the new regulations is how to provide robust yet cost effective characterisation data. This is especially difficult for mobile materials and equipment which cannot be fully tracked but also for other materials and areas where the nuclide fingerprint has varied over the years. To be able to deal with these issues a lot of attention has to be paid to the historical inventory records and traceability in the clearance process. Materials, rooms and buildings have been divided in four categories with different requirements on frequency and requirements of measurements. The categories are named 'extremely small risk', 'small risk', 'risk' and 'known contamination above clearance levels'. The two day training course is dived into seven parts

  17. Computational methods for industrial radiation measurement applications

    International Nuclear Information System (INIS)

    Gardner, R.P.; Guo, P.; Ao, Q.

    1996-01-01

    Computational methods have been used with considerable success to complement radiation measurements in solving a wide range of industrial problems. The almost exponential growth of computer capability and applications in the last few years leads to a open-quotes black boxclose quotes mentality for radiation measurement applications. If a black box is defined as any radiation measurement device that is capable of measuring the parameters of interest when a wide range of operating and sample conditions may occur, then the development of computational methods for industrial radiation measurement applications should now be focused on the black box approach and the deduction of properties of interest from the response with acceptable accuracy and reasonable efficiency. Nowadays, increasingly better understanding of radiation physical processes, more accurate and complete fundamental physical data, and more advanced modeling and software/hardware techniques have made it possible to make giant strides in that direction with new ideas implemented with computer software. The Center for Engineering Applications of Radioisotopes (CEAR) at North Carolina State University has been working on a variety of projects in the area of radiation analyzers and gauges for accomplishing this for quite some time, and they are discussed here with emphasis on current accomplishments

  18. Solid state gas sensors. Industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Maximilian [Siemens AG, Muenchen (Germany). Corporate Technology; Lehmann, Mirko (eds.) [Innovative Sensor Technology (IST) AG, Wattwil (Switzerland)

    2012-11-01

    Written by experts. Richly illustrated. Encourages future research and investments in the fascinating field of gas sensors. Gas sensor products are very often the key to innovations in the fields of comfort, security, health, environment, and energy savings. This compendium focuses on what the research community labels as solid state gas sensors, where a gas directly changes the electrical properties of a solid, serving as the primary signal for the transducer. It starts with a visionary approach to how life in future buildings can benefit from the power of gas sensors. The requirements for various applications, such as for example the automotive industry, are then discussed in several chapters. Further contributions highlight current trends in new sensing principles, such as the use of nanomaterials and how to use new sensing principles for innovative applications in e.g. meteorology. So as to bring together the views of all the different groups needed to produce new gas sensing applications, renowned industrial and academic representatives report on their experiences and expectations in research, applications and industrialisation.

  19. BR2 reactor: medical and industrial applications

    International Nuclear Information System (INIS)

    Ponsard, B.

    2005-01-01

    The radioisotopes are produced for various applications in the nuclear medicine (diagnostic, therapy, palliation of metastatic bone pain), industry (radiography of welds, ...), agriculture (radiotracers, ...) and basic research. Due to the availability of high neutron fluxes (thermal neutron flux up to 10 15 n/cm 2 .s), the BR2 reactor is considered as a major facility through its contribution for a continuous supply of products such 99 Mo ( 99 mTc), 131 I, 133 Xe, 192 Ir, 186 Re, 153 Sm, 90 Y, 32 P, 188 W ( 188 Re), 203 Hg, 82 Br, 41 Ar, 125 I, 177 Lu, 89 Sr, 60 Co, 169 Yb, 147 Nd, and others. Neutron Transmutation Doped (NTD) silicon is produced for the semiconductor industry in the SIDONIE (Silicon Doping by Neutron Irradiation Experiment) facility, which is designed to continuously rotate and traverse the silicon through the neutron flux. These combined movements produce exceptional dopant homogeneity in batches of silicon measuring 4 and 5-inches in diameter by up to 750 mm in length. The main objectives of work performed were to provide a reliable and qualitative supply of radioisotopes and NTD-silicon to the customers in accordance with a quality system that has been certified to the requirements of the EN ISO 9001: 2000. This new Quality System Certificate has been obtained in November 2003 for the Production of radioisotopes for medical and industrial applications and the Production of Neutron Transmutation Doped (NTD) Silicon in the BR2 reactor

  20. Future applications of superconductors for industrial use

    International Nuclear Information System (INIS)

    Reddy, S.P.

    1988-01-01

    Superconductors have been in existence for many years. Recent developments in superconductivity at higher temperatures are directed towards the potential use of superconductors at ambient temperatures. The diligent efforts of the scientific, engineering, and political agencies in researching and developing superconducting materials have resulted in encouraging accomplishments. Although superconductors could be used in every branch of electrical engineering, the authors focuses on a few areas in this paper. The power distribution and utilization in a typical industry is compared to that of a system using superconductors. Brief discussions of various machines with superconductors at ambient temperatures, based on developments made so far on large superconducting machines, for potential industrial applications are included in this paper

  1. Ultrasonic nondestructive evaluation systems industrial application issues

    CERN Document Server

    Callegari, Sergio; Montisci, Augusto; Ricci, Marco; Versaci, Mario

    2015-01-01

    This book covers the practical implementation of ultrasonic NDT techniques in an industrial environment, discussing several issues that may emerge and proposing strategies for addressing them successfully.  It aims to bridge advanced academic research results and their application to industrial procedures. The topics covered in the text range from the basic operation of an ultrasonic NDT system to the simulation of the measurement operations; from the choice and generation of the signals energizing the system to the different ways of exploiting the probes and their output signals; and from quality assessment evaluation to the use of soft computing techniques for classification. Throughout the text, an effort is made to embrace a system view where the physical and technological aspects of sensing are addressed together with higher abstraction levels, such as signal and information processing. Consequently, the book aims at guiding the reader through the various tasks requested for developing a complete ultras...

  2. Selected industrial and environmental applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.

    1999-01-01

    A review of the applications of Instrumental Neutron Activation Analysis (INAA) in the industrial and environmental fields is given. Detection limits for different applications are also given. (author)

  3. Photogrammetric methods of measurement in industrial applications

    International Nuclear Information System (INIS)

    Godding, R.; Groene, A.; Heinrich, G.; Schneider, C.T.

    1993-01-01

    Methods for 3D measurement are required for very varied applications in the industrial field. This includes tasks of quality assurance and plant monitoring, among others. It should be possible to apply the process flexibly it should require as short interruptions of production as possible and should meet the required accuracies. These requirements can be met by photogrammetric methods of measurement. The article introduces these methods and shows their capabilities from various selected examples (eg: the replacement of large components in a pressurized water reactor, and aircraft measurements (orig./DG) [de

  4. Microprocessors applications in the nuclear industry

    International Nuclear Information System (INIS)

    Ethridge, C.D.

    1980-01-01

    Microprocessors in the nuclear industry, particularly at the Los Alamos Scientific Laboratory, have been and are being utilized in a wide variety of applications ranging from data acquisition and control for basic physics research to monitoring special nuclear material in long-term storage. Microprocessor systems have been developed to support weapons diagnostics measurements during underground weapons testing at the Nevada Test Site. Multiple single-component microcomputers are now controlling the measurement and recording of nuclear reactor operating power levels. The CMOS microprocessor data-acquisition instrumentation has operated on balloon flights to monitor power plant emissions. Target chamber mirror-positioning equipment for laser fusion facilities employs microprocessors

  5. THz wave sensing for petroleum industrial applications

    Science.gov (United States)

    Al-Douseri, Fatemah M.; Chen, Yunqing; Zhang, X.-C.

    2006-04-01

    We present the results of terahertz (THz) sensing of gasoline products. The frequency-dependent absorption coefficients, refractive indices, and complex dielectric constants of gasoline and xylene isomers were extracted in the spectral range from 0.5 3.0 THz. The THz spectra of gasoline (#87, #89, #93) and related BTEX (benzene, toluene, ethylbenzene, and xylene) compounds were studied by using Fourier transform infrared spectroscopy (FTIR) in the 1.5 20 THz (50 660 cm-1). The xylene isomers, which are used as antiknock agent in gasoline were determined quantitatively in gasoline in the THz range. Our investigations show the potential of THz technology for the petroleum industrial applications.

  6. Radiotracer injector: An Industrial Application (RIIA)

    International Nuclear Information System (INIS)

    Noraishah Othman; Mohd Arif Hamzah; Fadil Ismail; Nurliyana Abdullah

    2011-01-01

    The radiotracer injector is meant for transferring liquid radiotracer in the system for industrial radiotracer application with minimal radiation exposure to the operator. The motivation of its invention is coming from the experience of the workers who are very concern about the radiation safety while handling with the radioactive source. The idea ensuring the operation while handling the radioactive source is fast and safe without interrupting the efficiency and efficacy of the process. Thus, semi automated device assisting with pneumatic technology is applied for its invention. (author)

  7. Digital and analogue industrial radiography, application fields

    International Nuclear Information System (INIS)

    Willems, Peter; Millord, Erik Yardin

    2000-01-01

    Full text: Reusable phosphor screens for computer radiography (CR), amorphous selenium screens for direct radiography (DR), film digitalisation (FD) constitute imaging methods accepted by industry and are used for non-destructive radiographic testing (RT). Economic pressures are involving and affecting digital RT technology. Standards and codes for film radiography and radioscopy qualification do no longer cover the wide range of digital RT applications. It will be our task to optimise the performance of digital RT characterisation and to create appropriate examination methods to use all these new and existent technologies. In the meantime, an increasing automation and control of manual methods of analogue radiography can as well be expected. (author)

  8. NDT applications in the aircraft industry

    International Nuclear Information System (INIS)

    Aguilar, E.C.

    1994-01-01

    Non-destructive testing (NDT) in the aircraft industry is used primarily to detect process defects in the manufacturing stage and failure defects in the in-service stage. Inspection techniques such as X- or gamma ray radiography are used for examination. Eddy current and ultrasonic are applied for examination, fluorescent penetrant and magnetic particles are applied for examination of aircraft and engine. With the wide scope of application, this paper discussed one type of NDT that is much used in aircraft being the latest technique in aircraft manufacturing. 1 fig

  9. An HTR cogeneration system for industrial application

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Van Heek, A.I.; Kikstra, J.F.

    1999-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of that study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220C. The economic characteristics of this installation turned out to be much more favourable using modern cost data. 15 refs

  10. Industrial applications of electron beam technology

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan

    1997-01-01

    Electron beam technology was first introduced in Malaysia in 1989 with the conclusion of the bilateral cooperation between the Malaysian Institute for Nuclear Technology Research (MINT) and Japan International Co-operation Agency (JICA) on Radiation Application Projects. Two electron beam accelerators with energy of 3.0 MeV and 200 keV were installed at MINT. These two accelerators pave the way for R and D to be carried out in radiation processing of polymers for cross-linking and surface curing. In 1994, another electron beam accelerator was installed in the private sector for cross-linking of home appliance wires. Since then, two more accelerators were installed in the private sector for cross-linking of heat shrinkable plastic films. Recently, a local company has acquired a low energy electron beam machine for cross-linking of plastic film. Within a period of 7 years, industrial applications of electron beam technology in Malaysia have increased significantly

  11. Superplasticity: basic character and industrial applications

    International Nuclear Information System (INIS)

    Suery, M.; Baudelet, B.

    1981-01-01

    This paper is concerned with the fundamental aspects and the industrial applications of superplasticity. Correlations between structure and mechanical properties are considered and it is shown that a material with fine grains may exhibit very large elongations as long as no structural evolution leads either to earlier failure or to a change in the deformation mechanism. This large plastic stability is the consequence of the high strain rate sensitivity resulting from particular deformation mechanisms which may operate in materials with a very fine structure. The advantages of superplastic materials for which forming operations derived from processes for thermoplastics have been applied, justify the industrial applications. Superplasticity is then mainly used for the production of low and intermediate series of pieces which are often complex in shape and difficult to form through an other technique. However, the disadvantages especially correlated to the low forming rates and the need of special metallurgical structures lead to the search of new processes synchronizing the elaboration of the alloy and the forming operation under superplastic conditions [fr

  12. Waterborne UV coating for industrial applications

    International Nuclear Information System (INIS)

    Bhattacharya, I.N.

    2007-01-01

    (Full Text): Solvent borne industrial coatings are being replaced by environment friendly coatings like Ultra Violet (UV) or Electron Beam (Eb) cured coatings, Powder coatings and Waterborne coatings. Waterborne systems enjoy the biggest share from this shift. UV and EB coatings provide the advantages of instant cure at room temperature, high scratch and abrasion resistance combined with excellent chemical resistance. Polyurethane (PU) chemistry is the dominant chemistry in Industrial coatings as they provide a very high level of performance. Most PU coatings are solvent based 2-component systems comprising of a resin and a cross linker. Polyurethane dispersions (PUD) in water in single pack are available but mainly addresses the Do It Yourself (DIY) market because of their slow drying speeds. Performance of PUD in most cases is inferior to solvent borne 2-component PU systems.Therefore the combination of PU dispersion and UV/EB curable technology has led to new innovative waterborne polymers called UV curable polyurethane dispersions (UVPUD). UVPUD are zero VOC systems as they are coalescent free. They are higher in molecular weight than standard UV curable products resulting in lower shrinkage coatings and provide good adhesion to substrates. Their low-viscosity makes them suitable for application by spray, curtain coater and even roller coater, without having to use monomers. UVPUD display superior chemical and mechanical properties necessary to protect high quality surface from the challenging usage conditions. UVPUD resins are therefore tailor-made to address performance needs like excellence in outdoor durability, scratch resistance, stain resistance, adhesion etc. UVPUD technology is now growing rapidly in industrial coatings for applications such as resilient flooring, wooden parquet flooring, automotive interior plastics, mobile phones etc. (Author)

  13. On effeciency of isotopes application in industry

    International Nuclear Information System (INIS)

    Yankovskij, L.

    1979-01-01

    The final results of the long term work in the field of research, projecting and pilot production are: the technology; methods and instruments of the isotope technique and their applications in the peoples economy, especially in industry. Effectiveness of isotope technique and especially its economic effectiveness depends on the scale of application of these techniques (instrument, method, technology) in different branches of the peoples economy. Comparing expenses on istope and radiation researches with total economic effectiveness of the isotope techniques application in some countries, the total economic effectiveness of the isotope researches has been determined. The main content of the paper is the analysis of structure and dynamics of the efficiency factor for the isotope technique application in separate countries for long period of time. Determination of the total economic efficiency of the whole branch of researches, conducted according to the methodology developed by the author, on the example of isotope research in some countries, permits to make a conclusion about the state and development tendencies of these researches in the international scale and can be a good base for making decisions in the field of the scientific policy of countries [ru

  14. Mobile robotics application in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.L.; White, J.R. [REMOTEC, Inc., Oak Ridge, TN (United States)

    1995-03-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.

  15. Mobile robotics application in the nuclear industry

    International Nuclear Information System (INIS)

    Jones, S.L.; White, J.R.

    1995-01-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980's, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities

  16. Applications of Radiation Processing in Industry

    International Nuclear Information System (INIS)

    Abad, Lucille V.

    2015-01-01

    Radiation processing has long been known as commercially viable technology that can be beneficially used to enhance the characteristics of many materials. Several gamma irradiators and electron beam accelerators are operating worldwide which are utilized for various established industrial applications. These could be used for the following processes: a) radiation crosslinking e.g. crosslinking of wires and cables, heat shrinkable film and tube productions, manufacture of plastic bags and tubings for medical products, pre-curing of automobile tire components, curing of polymeric coatings, etc. b) radiation degradation e.g. Scrap Teflon (Polytetraflouroethylene) to form powders, disinfestations and pasteurization of agricultural products, sterilization of medical products, etc.; and c) radiation grafting e.g. grafted non-woven fabrics for metal adsorbent. Emerging applications for radiation processing include grafted membranes for fuel cell, electrodes, cell sheet for tissue engineering, nanoparticle production, polymer composite synthesis, and fibrous catalyst for biodiesel production. Current researches at the Philippine Nuclear Research Institute consist of crosslinking of natural and synthetic polymers for medical application e.g. wound dressing, hemostats, and bioimplants for vesicouretal reflux (VUR); grafting of natural and synthetic fabrics for metal adsorbents; and radiation degradation of carrageenan as plant growth promoter. (author)

  17. An HTR cogeneration system for industrial applications

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Heek, A.I. van; Kikstra, J.F.

    2001-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of this study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220 deg. C. The economic characteristics of this installation turned out to be much more favourable using modern data. The research work for this installation is embedded in a programme that has links to the major HTR projects in the world. Accordingly ECN participates in several IAEA Co-ordinated Research Programmes (CRPs). Besides this, ECN is involved in the South African PBMR-project. Finally, ECN participates in the European Concerted Action on Innovative HTR. (author)

  18. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  19. Health problems of industrial applications of radioisotopes

    International Nuclear Information System (INIS)

    Kudrna, J.

    1976-01-01

    Radiation hygiene problems of industrial radioisotope applications are discussed. The observance of regulations is emphasised. Radiation protection is based on the principle of preventing early radiation damage and limiting late radiation damage to an acceptable level. The basic requirement is that the cumulated dose should be as low as possible, i.e., as low as is practically feasible in considering economic and social aspects. Notices 59/72 and 65/72, Collection of Laws, rule that if the limit of 3/10 of the maximum permissible dose is likely to be reached, control zones should be defined and marked at places of work where radioisotopes are handled. The characteristics of such a control zone are listed and the measures to be taken in case of accident are outlined. (B.S.)

  20. Cost benefit ratio of industrial tracer applications

    International Nuclear Information System (INIS)

    Thyn, J.

    1990-01-01

    Simple relations are given, which could help to estimate the expected annual savings resulting from the application of radioisotope methods for the mixing time, segregation effect or residence time distribution determination. Criteria for estimation of benefit at optimum transition of the continuous production from one quality to another, criteria for estimate the benefits on basis of known holdup and for estimate of benefits resulting from knowledge of the distribution function of residence time and of the kinetics of chemical reaction are presented. Further are demonstrated two examples of evaluation of the economic effect of the results of a system analysis in chemical industry where beside the measurements of residence time distribution by help of radiotracers are used also results of other experimental methods and that practically without increasing production cost. (orig.) [de

  1. A Localised Corrosion Cell for Industrial Applications

    DEFF Research Database (Denmark)

    Andersen, A.; Hilbert, Lisbeth Rischel; Jansen, P.

    2003-01-01

    The LOCORR-CELL™ developed by FORCE TECHNOLOGY is an electrochemical cell for industrial applications estimating localised corrosion. The cell is constructed in a carbon steel casing for direct mounting into the system. It is based on an oxygen concentration element reflecting the interaction...... between the environment formed under a deposit or in a crevice. The essential feature of the method is that it reflects the influence of oxygen content, conductivity and temperature as well as the influence of corrosion inhibitors, MIC and other effects that have an effect on localised corrosion under...... deposits and in crevices. The measuring principle in the cell is based on measurements of the galvanic current flow between the steel anode covered by a porous glass frit and the surrounding steel casing. The current is measured by a zero-resistance circuit-instrument and the activity can be presented...

  2. Confocal fluorescence techniques in industrial application

    Science.gov (United States)

    Eggeling, Christian; Gall, Karsten; Palo, Kaupo; Kask, Peet; Brand, Leif

    2003-06-01

    The FCS+plus family of evaluation tools for confocal fluorescence spectroscopy, which was developed during recent years, offers a comprehensive view to a series of fluorescence properties. Originating in fluorescence correlation spectroscopy (FCS) and using similar experimental equipment, a system of signal processing methods such as fluorescence intensity distribution analysis (FIDA) was created to analyze in detail the fluctuation behavior of fluorescent particles within a small area of detection. Giving simultaneous access to molecular parameters like concentration, translational and rotational diffusion, molecular brightness, and multicolor coincidence, this portfolio was enhanced by more traditional techniques of fluorescence lifetime as well as time-resolved anisotropy determination. The cornerstones of the FCS+plus methodology will be shortly described. The inhibition of a phosphatase enzyme activity gives a comprehensive industrial application that demonstrates FCS+plus' versatility and its potential for pharmaceutical drug discovery.

  3. Winter Annual Weed Response to Nitrogen Sources and Application Timings prior to a Burndown Corn Herbicide

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2015-01-01

    Full Text Available Autumn and early preplant N applications, sources, and placement may affect winter annual weed growth. Field research evaluated (1 the effect of different nitrogen sources in autumn and early preplant on total winter annual weed growth (2006–2010, and (2 strip-till and broadcast no-till N applied in autumn and early preplant on henbit (Lamium amplexicaule L. growth (2008–2010 prior to a burndown herbicide application. Total winter annual weed biomass was greater than the nontreated control when applying certain N sources in autumn or early preplant for no-till corn. Anhydrous ammonia had the lowest average weed density (95 weeds m−2, though results were inconsistent over the years. Winter annual weed biomass was lowest (43 g m−2 when applying 32% urea ammonium nitrate in autumn and was similar to applying anhydrous ammonia in autumn or early preplant and the nontreated control. Henbit biomass was 28% greater when applying N in the autumn compared to an early preplant application timing. Nitrogen placement along with associated tillage with strip-till placement was important in reducing henbit biomass. Nitrogen source selection, application timing, and placement affected the impact of N on winter annual weed growth and should be considered when recommending a burndown herbicide application timing.

  4. Condensing boiler applications in the process industry

    International Nuclear Information System (INIS)

    Chen, Qun; Finney, Karen; Li, Hanning; Zhang, Xiaohui; Zhou, Jue; Sharifi, Vida; Swithenbank, Jim

    2012-01-01

    Major challenging issues such as climate change, energy prices and fuel security have focussed the attention of process industries on their energy efficiency and opportunities for improvement. The main objective of this research study was to investigate technologies needed to exploit the large amount of low grade heat available from a flue gas condensing system through industrial condensing boilers. The technology and application of industrial condensing boilers in various heating systems were extensively reviewed. As the condensers require site-specific engineering design, a case study was carried out to investigate the feasibility (technically and economically) of applying condensing boilers in a large scale district heating system (40 MW). The study showed that by recovering the latent heat of water vapour in the flue gas through condensing boilers, the whole heating system could achieve significantly higher efficiency levels than conventional boilers. In addition to waste heat recovery, condensing boilers can also be optimised for emission abatement, especially for particle removal. Two technical barriers for the condensing boiler application are corrosion and return water temperatures. Highly corrosion-resistant material is required for condensing boiler manufacture. The thermal design of a 'case study' single pass shell-and-tube condensing heat exchanger/condenser showed that a considerable amount of thermal resistance was on the shell-side. Based on the case study calculations, approximately 4900 m 2 of total heat transfer area was required, if stainless steel was used as a construction material. If the heat transfer area was made of carbon steel, then polypropylene could be used as the corrosion-resistant coating material outside the tubes. The addition of polypropylene coating increased the tube wall thermal resistance, hence the required heat transfer area was approximately 5800 m 2 . Net Present Value (NPV) calculations showed that the choice of a carbon

  5. OIT Wireless Telemetry for Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Manges, WW

    2002-09-03

    ability of wireless sensor networks to operate cooperatively in an environment that includes wireless LANs, wireless headsets, RF heating, wireless crane controls and many other users of the electromagnetic spectrum will probably be the most important issue we can address. A network of units (Figure 1) has been developed that demonstrates the feasibility of direct-sequence spread spectrum wireless sensor networking for industrial environments. The hardware consists of a group of reprogrammable transceivers that can act as sensor nodes or network nodes or both. These units and the team that built them are the heart of a test bed development system that has been used successfully in demonstrations at various industrial sites. As previously reported, these units have been successfully tested at a paper mill. More recently, these units were utilized in a permanent installation at a steel mill. Both of these applications demonstrated the ease with which a new network could be installed, and the reality that DSSS units can operate successfully in plants where narrow band transmitters had previously caused interference with plant operations.

  6. Nano- and microfabrication for industrial and biomedical applications

    NARCIS (Netherlands)

    Luttge, R.

    2016-01-01

    Nano- and Microfabrication for Industrial and Biomedical Applications, Second Edition, focuses on the industrial perspective on micro- and nanofabrication methods, including large-scale manufacturing, the transfer of concepts from lab to factory, process tolerance, yield, robustness, and cost. The

  7. Remote sensing applications for the dam industry

    Energy Technology Data Exchange (ETDEWEB)

    Pryse-Phillips, A.; Woolgar, R. [Hatch Ltd., St. John' s, NL (Canada); Puestow, T.; Warren, S. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). C-Core; Rogers, K. [Nalcor Energy, St. John' s, NL (Canada); Khan, A. [Government of Newfoundland and Labrador, St. Johns, NL (Canada)

    2009-07-01

    There has been an increase in the earth observation missions providing satellite imagery for operational monitoring applications. This technique has been found to be especially useful for the surveillance of large, remote areas, which is challenging to achieve in a cost-effective manner by conventional field-based or aerial means. This paper discussed the utility of satellite-based monitoring for different applications relevant to hydrology and water resources management. Emphasis was placed on the monitoring of river ice covers in near, real-time and water resources management. The paper first outlined river ice monitoring using remote sensing on the Lower Churchill River. The benefits of remote sensing over traditional survey methods for the dam industry was then outlined. Satellite image acquisition and interpretation for the Churchill River was then presented. Several images were offered. Watershed physiographic characterization using remote sensing was also described. It was concluded that satellite imagery proved to be a useful tool to develop physiographic characteristics when conducting rainfall-runoff modelling. 3 refs., 1 tab., 11 figs.

  8. Industrial and technological applications of neutrons

    International Nuclear Information System (INIS)

    Fontana, M.; Rustichelli, F.

    1992-01-01

    Owing to the construction of intense neutron sources and to the remarkable progress in acquisition and elaboration equipment, neutron scattering techniques have been employed more and more not only in basic research, but also in technological areas and for the solution of specific industrial problems. This is shown by the saturation of neutron beam time available at the main European sources and by an analysis of the users' distribution. Furthermore, the condensed-matter scientific community uses neutron scattering much more often now as a reference method and as an irreplaceable complement to other already well-established techniques. The aim of this Enrico Fermi course, on which the book is based, is to provide an up-to-date picture of the main results obtained (or obtainable) by means of neutron techniques in applied research. Emphasis is placed on the information and help these techniques can offer in some major areas of condensed-matter physics and materials science and to their possible developments in the near future. The volume is basically organized in topical subjects: for each one a brief introduction to the fundamentals is given, followed by examples of the concrete or potential applications. The first half deals mainly with applications of neutron scattering to materials science (metallurgy, magnetic materials, superconductors), while the second half mainly deals with polymers, micellar fluids, interfaces and liquid crystals

  9. Accelerator beam application in science and industry

    International Nuclear Information System (INIS)

    Hagiwara, M.

    1996-01-01

    Various accelerator beams are being used widely in science and industry. The area of their applications is so wide and rapidly expanding. This paper focuses on recent efforts made in the field of radiation chemistry, especially in materials development using electron and ion beams. Concerning the applications of electron beams, synthesis of SiC fibers, improvement of radiation resistance of polytetrafluoroethylene (PTFE) and preparation of an adsorbent for uranium recovery from sea water were described. In the synthesis of SiC, the electron beams were used effectively to cross-link precursor fibers to prevent their deformation upon heating for their pyrolysis to SiC fibers. The improvement of radiation resistance of PTFE was resulted successfully by its crosslinking. As to the preparation of the adsorbent for uranium recovery, chelating resins containing amidoxime groups were shown to work as a good adsorbent of uranium from sea water. The Takasaki Radiation Chemistry Research Establishment of JAERI completed the accelerator facility named TIARA for R and D of ion beam applications three years ago. Some results were presented on the studies about radiation effects on solar cells and LSIs for space use and synthesis of functional materials. Radiation resistance of solar cells was tested with both electron and proton beams using a beam scanning technique for the irradiation to a wide area, and ultra-fast transient current induced by heavy ion microbeam was measured for studies on mechanisms of single event upset (SEU) in LSIs. In the synthesis of organic functional materials, a temperature responsive particle track membrane was developed. Techniques for RBS and NRA using heavy ion beams were established for analyzing structures of multi-layered materials. Single crystalline thin film of diamond was successfully formed on Si substrate under the deposition of mass separated C-12 ions of 100 eV. (author)

  10. Industrial wireless sensor networks applications, protocols, and standards

    CERN Document Server

    Güngör, V Çagri

    2013-01-01

    The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent processing. In this regard, IWSNs play a vital role in creating more reliable, efficient, and productive industrial systems, thus improving companies' competitiveness in the marketplace. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards examines the current state of the art in industrial wireless sensor networks and outline

  11. Effect of Toothpaste Application Prior to Dental Bleaching on Whitening Effectiveness and Enamel Properties.

    Science.gov (United States)

    Vieira-Junior, W F; Lima, D A N L; Tabchoury, C P M; Ambrosano, G M B; Aguiar, F H B; Lovadino, J R

    2016-01-01

    The purpose of this study was to investigate the effects on the enamel properties and effectiveness of bleaching using 35% hydrogen peroxide (HP) when applying toothpastes with different active agents prior to dental bleaching. Seventy enamel blocks (4 × 4 × 2 mm) were submitted to in vitro treatment protocols in a tooth-brushing machine (n=10): with distilled water and exposure to placebo gel (negative control [NC]) or HP bleaching (positive control [PC]); and brushing with differing toothpastes prior to HP bleaching, including potassium nitrate toothpaste (PN) containing NaF, conventional sodium monofluorophosphate toothpaste (FT), arginine-based toothpastes (PA and SAN), or a toothpaste containing bioactive glass (NM). Color changes were determined using the CIE L*a*b* system (ΔE, ΔL, Δa, and Δb), and a roughness (Ra) analysis was performed before and after treatments. Surface microhardness (SMH) and cross-sectional microhardness (CSMH) were analyzed after treatment. Data were analyzed with repeated measures ANOVA for Ra, one-way ANOVA (SMH, ΔE, ΔL, Δa, and Δb), split-plot ANOVA (CSMH), and Tukey post hoc test (α PA = SAN > all other groups) or decreased HP effects (CSMH). Ra increased in all bleached groups, with the exception of NM, which did not differ from the NC. The variation in the color variables (ΔL, Δa, and Δb) explained 21% of the variation in the physical surface variables (Ra and SMH). The application of toothpaste prior to dental bleaching did not interfere with the effectiveness of treatment. The bioactive glass based toothpaste protected the enamel against the deleterious effects of dental bleaching.

  12. Biometrics and smart card based applications for nuclear industry

    International Nuclear Information System (INIS)

    Nishanth Reddy, J.; Dheeraj Reddy, J.; Narender Reddy, J.

    2004-01-01

    Biometrics has emerged as a convenient, foolproof and well-accepted technology for identification around the globe. Nucleonix has developed innovative solutions based on finger scan biometrics for various industries. This paper closely looks into the application areas for the nuclear industry and how it will benefit this industry, in terms of identification, access control, security of PCs and applications, attendance, machinery usage control and other custom applications. (author)

  13. Handbook of industrial refractories technology principles, types, properties and applications

    CERN Document Server

    Caniglia, Stephen

    1989-01-01

    Encompasses the entire range of industrial refractory materials and forms: properties and their measurement, applications, manufacturing, installation and maintenance techniques, quality assurance, and statistical process control.

  14. Application of tracer technique in cement industry

    International Nuclear Information System (INIS)

    Baran'ai, L.

    1979-01-01

    Application is stated of the radioisotope indication method in the cement industry. The method was applied in three directions. In the first direction, by means of labelling of 300 steel mill balls by cobalt-60, wear of them was examined. The degree of wear of milling balls in the process of milling was determined according to the decrease of their weight. Radioactive label served only for tracing controll balls. In the second direction, according to the natural radioactivity being presented in ashes by radioisotopes radium-226 and thorium-229, amount of ashes in the products of cement milling was determined (in the mill product, cement product, flying dust and back loading groats). In the third direction, by means of labelling of definite fractions of mille by radioisotope gold-198, optimization of technological parameters of silos were raw meal is homogenization. The following technological parameters have been established: amount of homogenized material; time of homogenization and frequency of intensity changing of supplied compressed air jet [ru

  15. Heat pipes. Design and industrial applications

    International Nuclear Information System (INIS)

    Semeria, R.

    1974-01-01

    Heat pipes are thermosiphons with vaporization where we can distinguish a boiler, a condenser, and eventually an adiabatic zone. To insure the returning liquid flow from the condenser to the boiler, surface tension forces, associated with the gravity forces, if need be, are used. For this, the condensing liquid is sucked by a capillary structure, generally situated against the inner wall. The review of the design methods, and particularly the prediction of the maximal performances shows the advantages and limitations of such devices. The main difficulties are technological for the heat pipes with high temperature liquid metals. The thermohydrodynamical limitations are: the maximum power which can be calculated by a balance between the friction forces and the active ones, the maximum heat flux leading to the dry-out of the evaporator, the critical conditions for the start up associated with the sonic conditions in the vapour phase. The description of heat pipes designed for some industrial applications (mainly for space) is given [fr

  16. Microbial xylanases: engineering, production and industrial applications.

    Science.gov (United States)

    Juturu, Veeresh; Wu, Jin Chuan

    2012-01-01

    and paper industries for a longer time but more and more attention has been paid to using them in producing sugars and other chemicals from lignocelluloses in recent years. Mining new genes from nature, rational engineering of known genes and directed evolution of these genes are required to get tailor-made xylanases for various industrial applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Industrial applications of electron beam accelerators

    International Nuclear Information System (INIS)

    Braid, W.G. Jr.

    1976-01-01

    The use of electron beam accelerators for crosslinking polyolefins for shrinking food packaging is discussed. Irradiation procedures, accelerator characteristics, and industrial operations are described

  18. Some applications of natural radioactivity in industry and agriculture

    International Nuclear Information System (INIS)

    Ma Yonghe; Xu Qiujing

    1992-01-01

    There are natural radioactivity isotopes of uranium, thorium and potassium everywhere in nature. The characteristics of these isotopes form the basis of various applications. Some applications of natural radioactivity in industry and agriculture are introduced

  19. Videoscope applications in oil and gas industries

    International Nuclear Information System (INIS)

    Hashim Bachek

    2003-01-01

    The need of inspection not only for external condition but for both internal and external. How we are going to check and know the internal condition of a piping as small as 4 inch or tube sheet of 10 mm outside diameter. Due to the nature of its operation which carries high temperature products or water it is very essential to know the internal condition before its too late where this may cause explosion or failure to any part or equipment which will claim lives and causes huge lost to the plant owner. With the aid of video scope inspection service or commonly called CCTV you now can see and inspect the internal condition of a small pipe or tube sheet or any in access item or equipment. Not only you can inspect but with the latest CCTV technologies you also can size the defect length and record the findings in CD-Rom for monitoring purposes. You can observe the growth of a defects and decide whether or not to repair or when to repair. CCTV has many field application beside normal tube inspection?its also can be used for special task such to inspect cause of blockage, to check any left over materials before box-up, to confirm presence or absence, etc. With various camera sizes and with or without control head many inspection task has been successfully completed.Normal defect that can be expected from CCTV inspection are such as erosion, burn trough, blockage, hard sediments, left behind item (before the box beam) pitting, etc. We have experience in inspecting the following items for major oil and gas petrochemical plant as well as special request from various industries sector. (Author)

  20. Nucleonic guages in Philippine industry: current applications

    International Nuclear Information System (INIS)

    Pedregosa, R.V.; Cayabo, L.B.; Leopando, L.L.

    1996-01-01

    Nucleonic gauges have been used in Philippine industries for more than thirty years. There are now close to 500 units being used to determine and/or control level, density, concentration, weight and other parameters. Gauges are found in the food, cement, mineral processing, steel, paper, cigarette, plastic and construction industries. (author)

  1. Radiation curing technology progress and its industrial applications in Japan

    International Nuclear Information System (INIS)

    Ukachi, Takashi

    2003-01-01

    Optics, electronics and display industries are now the driving forces for the Japanese radiation curing technology. The purpose of this paper is to overview the newly developed radiation curing technology in Japan, in particular, its industrial applications, and to present the market figures in radiation curing applications, which were surveyed by RadTech Japan in 2002 afresh. (author)

  2. Virtual reality application in oil and gas industry | Shammar | Journal ...

    African Journals Online (AJOL)

    Virtual reality application in oil and gas industry. ... is the key factor for considering AR as an effective tool to be used in maintenance work. Works related to applications of VR for energy exploration and safety training for petroleum industry is ...

  3. Application of the nucleonic control systems in industry

    International Nuclear Information System (INIS)

    Urbanski, P.

    2001-01-01

    The aim of this report is the presentation of the present status and future trends in the application of ionising radiation for industrial measurements. A brief presentation of the nucleonic gauging principles and techniques is given and the application of measuring systems in the various branches of the worldwide and Polish industry is described. (author)

  4. Twenty years of isotope applications in the Hungarian aluminium industry

    International Nuclear Information System (INIS)

    Bujdoso, E.

    1982-01-01

    After a short review of the isotope techniques applied in the Hungarian aluminium industry some special applications and their results are briefly outlined. Industrial and laboratory scale trace constituent determinations, isotope and activation analytical methods and the application of sealed radiation sources are discussed. It has been shown that the related R+D activity followed closely the development trends of the aluminium industry. The references given is a comprehensive bibliography of Hungarian publications in this field. (author)

  5. Management Model Applicable to Metallic Materials Industry

    Directory of Open Access Journals (Sweden)

    Adrian Ioana

    2013-02-01

    Full Text Available This paper presents an algorithmic analysis of the marketing mix in metallurgy. It also analyzes the main correlations and their optimizing possibilities through an efficient management. Thus, both the effect and the importance of the marketing mix, for components (the four “P-s” areanalyzed in the materials’ industry, but their correlations as well, with the goal to optimize the specific management. There are briefly presented the main correlations between the 4 marketing mix components (the 4 “P-s” for a product within the materials’ industry, including aspects regarding specific management.Keywords: Management Model, Materials Industry, Marketing Mix, Correlations.

  6. Thixoforming of Steels and Industrial Applications

    International Nuclear Information System (INIS)

    Ahmed, Rassili; Marc, Robelet; Regis, Bigot; Dirk, Fischer

    2007-01-01

    Thixoforming of steels becomes more and more investigated. Recent works show the economical potential of the process and lead to many industrial tests. In deed, compared to light metals, thixoformed steels open new markets and allow new designs of industrial parts taking into account, material and energy saving as well as industrial criteria such as parts quality and life.The Thixosteel consortium is developing new tools either in modelling, material study, assessment, parts design, adequate tools and equipments. Recent results and actual state of the art is presented and discussed

  7. Passenger bus industry weather information application.

    Science.gov (United States)

    2011-03-21

    Adverse weather significantly affects the United States national transportation system, including commercial companies : that rely on highways to support their enterprises. The Passenger Bus (Motorcoach) Industry (PBI) is one such affected : user who...

  8. HYBRID COOLING SYSTEM FOR INDUSTRIAL APPLICATION

    African Journals Online (AJOL)

    ES Obe

    1980-03-01

    Mar 1, 1980 ... and plastic-ware production. ... molds in glass and plastic forming processes. ... increased more than five times over that achieved by using the gas (air) ... industrial manufacture. 2. .... commercial forming machine with the.

  9. Industrial application of radiation disinfestation of grain

    International Nuclear Information System (INIS)

    Zakladnoj, G.A.; Men'shenin, A.I.; Pertsovskij, E.S.; Salimov, R.A.; Cherepkov, V.G.; Krsheminskij, V.S.

    1982-01-01

    One of the main reasons for grain losses during storage is its damage by pest insects. Chemical methods widely used at present for grain decontamination have some shortcomings. In this connection a radiation method for grain disinfestation is developed and introduced in industry. First in the world experimental-industrial disinfestator on the base of electron accelerators is put into operation at Odessa port elevator

  10. Application of Actuarial Modelling in Insurance Industry

    OpenAIRE

    Burcã Ana-Maria; Bãtrînca Ghiorghe

    2011-01-01

    In insurance industry, the financial stability of insurance companies represents an issue of vital importance. In order to maintain the financial stability and meet minimum regulatory requirements, actuaries apply actuarial modeling. Modeling has been at the center of actuarial science and of all the sciences from the beginning of their journey. In insurance industry, actuarial modeling creates a framework that allows actuaries to identify, understand, quantify and manage a wide range of risk...

  11. Radiotracer applications in industry - A guidebook

    International Nuclear Information System (INIS)

    2004-01-01

    and CFD calculations. This approach can be extended to many industrial situations. (3) Tracer experiments in a wastewater treatment plant (WWTP). The efficiency of several devices in a WWTP (primary and secondary clarifiers, aeration tank) is investigated by means of radiotracers. Modelling allows characterization of the flow patterns (bypassing, stagnant zones) in these devices. (4) Radioactive tracers in oil and geothermal fields. This section describes tracer preparation, injection, sampling and measurement, as well as several case applications for interwell communications and flow parameter determination

  12. The recent industrial EB applications in Japan

    International Nuclear Information System (INIS)

    Nakai, Koji; Kashiwagi, Masayuki; Mizusawa, Kenichi

    1995-01-01

    The conventional applications of electron beam processing such as, crosslinking of electric wire and cable insulations, polyethylene foam, and of rubber tire components have been the main part of the EB business for many years. New applications are continuing to appear, however, the growth of the new applications has been relatively slow. Nissin High-Voltage, as one of the worlds leading manufacturers of electron beam equipments, continues to develop and improve EB equipment to meet the requirements of these new applications. In this paper recent EB applications and its improvements are described. (author)

  13. Novel Radioisotope Applications in Industry Promoted by the IAEA

    International Nuclear Information System (INIS)

    Thereska, J.

    2001-01-01

    Presently, there is a lively activity in further development and use of radioisotope technology. Novel radioisotope applications in industry are promoted by the IAEA. Radioisotope technology is contributing significantly to improving and optimising process performance bringing an annual economic benefit to world-wide industry of several billion US$. Probably, an average benefit to cost ratio of 40:1 is reasonably representative of radioisotope applications in industry. There are few short-term investments, which will give a return of this magnitude. The cost effectiveness of radioisotope applications should be widely promulgated to encourage industrialists to take full advantage of the technology. (author)

  14. Aspergilli: Systems biology and industrial applications

    DEFF Research Database (Denmark)

    Knuf, Christoph; Nielsen, Jens

    2012-01-01

    possible to implement systems biology tools to advance metabolic engineering. These tools include genome-wide transcription analysis and genome-scale metabolic models. Herein, we review achievements in the field and highlight the impact of Aspergillus systems biology on industrial biotechnology....

  15. Application of Thermoeconomics to Industrial Ecology

    Directory of Open Access Journals (Sweden)

    Alicia Valero

    2010-03-01

    Full Text Available Industrial Ecology involves the transformation of industrial processes from linear to closed loop systems: matter and energy flows which were initially considered as wastes become now resources for existing or new processes. In this paper, Thermoeconomics, commonly used for the optimization and diagnosis of energy systems, is proposed as a tool for the characterization of Industrial Ecology. Thermoeconomics is based on the exergy analysis (Thermodynamics but goes further by introducing the concepts of purpose and cost (Economics. It is presented in this study as a systematic and general approach for the analysis of waste flow integration. The formulation is based on extending the thermoeconomic process of the cost formation of wastes in order to consider their use as input for other processes. Consequently, it can be applied to important Industrial Ecology issues such as identification of integration possibilities and efficiency improvement, quantification of benefits obtained by integration, or determination of fair prices based on physical roots. The capability of the methodology is demonstrated by means of a case study based on the integration of a power plant, a cement kiln and a gas-fired boiler.

  16. Applications of neutron activation analysis in industry

    International Nuclear Information System (INIS)

    Zaini Hamzah.

    1985-01-01

    Neutron activation analysis technique is discussed in brief. This technique is used for quality control of raw materials, process materials and finished products, as well as activities in research and development for the improvement of the products and new products. The uses of this technique in several experienced industries are mentioned (author)

  17. The ABCs of Cost Allocation in the Wood Products Industry: Applications in the Furniture Industry

    OpenAIRE

    Quesada-Pineda, Henry J.

    2010-01-01

    Discusses the basics of cost accounting and explains the strengths and weaknesses of two cost accounting techniques - the direct method and the activity-based costing method - using simple examples and applications to the furniture industry.

  18. Applications of radioisotopes in industry and healthcare in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Dien, N.N.; Quang, N.H. [Nucealr Research Institute, Dalat, (Viet Nam)

    1997-10-01

    Nowadays, in Vietnam radioisotopes have been used very widely in various socio-economic branches, especially in industry and healthcare. Applications of radioisotopes have significant meaning in economic development, people health protection, as well as in scientific research. In this paper, the present status and main applications of radiation and radioactive isotopes in industry and healthcare in Vietnam are reported. In order to control and monitor industrial processes, nucleonic control systems and radioactive tracer techniques have been utilized. Actually, sealed source applications are popular in Vietnam industry. A number of nuclear control devices and gauges have been used in the various industrial factories, such as liquid level gauges in steel industry, cement and beverage factories; density and moisture gauges in paper industry, etc. Tracer technique and sealed source applications have also been utilized in industrial production plants and in trouble-shooting in the petroleum industry. For medicine purposes, two departments of nuclear medicine were primarily established at the beginning of the 1970s. At the present time, a number of nuclear medicine departments have been set up and they have been equipped with advanced equipment. Main activities are focused on thyroid function studies, nuclear cardiology, brain scans, gastrointestinal studies, bone scans, etc. Since march 1984 Dalat nuclear research reactor of nominal power of 500 kW has been reconstructed and put into operation. This reactor is unique in Vietnam and has become an important scientific tool for development of nuclear techniques and radioisotope applications for socio-economic progress. Thanks to this important scientific tool, a variety of radioisotopes for medicine and industry applications as well as for scientific research has been produced. Utilization of the Dalat research reactor for radioisotope production is also summarized in this paper

  19. Applications of radioisotopes in industry and healthcare in Vietnam

    International Nuclear Information System (INIS)

    Dien, N.N.; Quang, N.H.

    1997-01-01

    Nowadays, in Vietnam radioisotopes have been used very widely in various socio-economic branches, especially in industry and healthcare. Applications of radioisotopes have significant meaning in economic development, people health protection, as well as in scientific research. In this paper, the present status and main applications of radiation and radioactive isotopes in industry and healthcare in Vietnam are reported. In order to control and monitor industrial processes, nucleonic control systems and radioactive tracer techniques have been utilized. Actually, sealed source applications are popular in Vietnam industry. A number of nuclear control devices and gauges have been used in the various industrial factories, such as liquid level gauges in steel industry, cement and beverage factories; density and moisture gauges in paper industry, etc. Tracer technique and sealed source applications have also been utilized in industrial production plants and in trouble-shooting in the petroleum industry. For medicine purposes, two departments of nuclear medicine were primarily established at the beginning of the 1970s. At the present time, a number of nuclear medicine departments have been set up and they have been equipped with advanced equipment. Main activities are focused on thyroid function studies, nuclear cardiology, brain scans, gastrointestinal studies, bone scans, etc. Since march 1984 Dalat nuclear research reactor of nominal power of 500 kW has been reconstructed and put into operation. This reactor is unique in Vietnam and has become an important scientific tool for development of nuclear techniques and radioisotope applications for socio-economic progress. Thanks to this important scientific tool, a variety of radioisotopes for medicine and industry applications as well as for scientific research has been produced. Utilization of the Dalat research reactor for radioisotope production is also summarized in this paper

  20. Advances in Information Technology and Industry Applications

    CERN Document Server

    2012-01-01

    With success of ICEEE 2010 in Wuhan, China, and December 4 to 5, 2010, the second International Conference of Electrical and Electronics Engineering (ICEEE 2011) will be held in Macau, China, and December 1 to 2, 2011. ICEEE is an annual conference to call together researchers, engineers, academicians as well as industrial professionals from all over the world to present their research results and development activities in Electrical and Electronics Engineering along with Computer Science and Technology, Communication Technology, Artificial Intelligence, Information Technology, etc.   This year ICEEE is sponsored by International Industrial Electronics Center, Hong Kong. And based on the deserved reputation, more than 750 papers have been submitted to ICEEE 2011, from which about 94 high quality original papers have been selected for the conference presentation and inclusion in the “Advanced Computer, Communication, and Control” book based on the referees’ comments from peer-refereed. All the papers wi...

  1. Industrial application of the gamma rays

    International Nuclear Information System (INIS)

    Villalobos C, H.

    2010-09-01

    The advance in the production of the sealed sources of Ir-192 and their containers have been very useful and beneficent for the radiological protection of the operators of these sources in the practice of the industrial X-rays. The manufacturers of these devices have improved their designs day to day in order to offer the maximum radiological protection to the moment to operate them. (Author)

  2. Advanced materials for application in the aerospace and automotive industries

    CSIR Research Space (South Africa)

    Damm, O

    2008-11-01

    Full Text Available The CSIR conducts research and development (R&D) involving advanced materials with applications in the local automotive and aerospace industries. The relevance of these R&D programmes is illustrated by positioning them in the context of key industry...

  3. Engineering of systems for application of scientific computing in industry

    OpenAIRE

    Loeve, W.; Loeve, W.

    1992-01-01

    Mathematics software is of growing importance for computer simulation in industrial computer aided engineering. To be applicable in industry the mathematics software and supporting software must be structured in such a way that functions and performance can be maintained easily. In the present paper a method is described for development of mathematics software in such a way that this requirement can be met.

  4. The influence of industrial applications on a control system toolbox

    International Nuclear Information System (INIS)

    Clout, P.

    1992-01-01

    Vsystem is as an open, advanced software application toolbox for rapidly creating fast, efficient and cost-effective control and data-acquisition systems. Vsystem's modular architecture is designed for single computers, networked computers and workstations running under VAX/VMS or VAX/ELN. At the heart of Vsystem lies Vaccess, a user extendible real-time database and library of access routines. The application database provides the link to the hardware of the application and can be organized as one database or separate database installed in different computers on the network. Vsystem has found application in charged-particle accelerator control, tokamak control, and industrial research, as well as its more recent industrial applications. This paper describes the broad feature of Vsystem and the influence that recent industrial applications have had on the software. (author)

  5. Lipases industrial applications: focus on food and agroindustries

    Directory of Open Access Journals (Sweden)

    Guerrand David

    2017-07-01

    Full Text Available Enzymes developed and produced for industrial applications represent a market estimated at a global value comprised between $5000 million and $5500 million in 2016. The major applications for industrial enzymes include food and beverages (dairy, bakery, fruit juices, beer, wine, detergents, biofuel productions, animal feed, and other applications such as textiles, leather, and paper processing. Altogether, food and feed applications account for 55–60% of the global enzymes market, and market is still growing at an estimated 6–8% annual growth. The lipases category represents less than 10% of the global enzymes market, with a broad range of industrial applications: detergents, oil processing, food processing and pharmaceutical end-users. Existing applications and new development in the food and agroindustries sectors are reviewed.

  6. Industrial application of electron beams for grafting and vulcanization

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    The topics discussed are radiation graft polymerization; industrial application of radiation grafting - ion exchange membrane for a battery separator, ammonia adsorbent, non-flammable PE (polyethylene) foam; R and D on radiation grafting, radiation vulcanization of natural rubber.

  7. Hybrid Cooling System for Industrial Application | Ezekwe | Nigerian ...

    African Journals Online (AJOL)

    Hybrid Cooling System for Industrial Application. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... more than five times over that achieved by using the gas (air) phase alone. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  8. Industrial application of electron beams for grafting and vulcanization

    International Nuclear Information System (INIS)

    Keizo Makuuchi

    1994-01-01

    The topics discussed are radiation graft polymerization; industrial application of radiation grafting - ion exchange membrane for a battery separator, ammonia adsorbent, non-flammable PE (polyethylene) foam; R and D on radiation grafting, radiation vulcanization of natural rubber

  9. Workshop on scientific and industrial applications of free electron lasers

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.

    1990-05-01

    A Workshop on Scientific and Industrial Applications of Free Electron Lasers was organized to address potential uses of a Free Electron Laser in the infrared wavelength region. A total of 13 speakers from national laboratories, universities, and the industry gave seminars to an average audience of 30 persons during June 12 and 13, 1989. The areas covered were: Free Electron Laser Technology, Chemistry and Surface Science, Atomic and Molecular Physics, Condensed Matter, and Biomedical Applications, Optical Damage, and Optoelectronics

  10. Applications of neutrons for laboratory and industrial activation analysis problems

    International Nuclear Information System (INIS)

    Szabo, Elek; Bakos, Laszlo

    1986-01-01

    This chapter presents some particular applications and case studies of neutrons in activation analysis for research and industrial development purposes. The reactor neutrons have been applied in Hungarian laboratories for semiconductor research, for analysis of geological (lunar) samples, and for a special comparator measurement of samples. Some industrial applications of neutron generator and sealed sources for analytical problems are presented. Finally, prompt neutron activation analysis is outlined briefly. (R.P.)

  11. Review of Industrial Applications of Structural Reliability Theory

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    For the last two decades we have seen an increasing interest in applying structural reliability theory to many different industries. However, the number of real practical applications is much smaller than what one would expect.......For the last two decades we have seen an increasing interest in applying structural reliability theory to many different industries. However, the number of real practical applications is much smaller than what one would expect....

  12. Expert System Applications for the Electric Power Industry: Proceedings

    International Nuclear Information System (INIS)

    1992-06-01

    A conference on Expert System Applications for the Electric Power Industry was held in Boston on September 8--11, 1991 to provide a forum for technology transfer, technical information exchange, and education. The conference was attended by more than 150 representatives of electric utilities, equipment manufacturers, engineering consulting organizations, universities, national laboratories, and government agencies. The meeting included a keynote address, 70 papers, and 18 expert system demonstrations. Sessions covered expert systems in power system planning operations, fossil power plant applications, nuclear power plant applications, and intelligent user interfaces. The presentations showed how expert systems can provide immediate benefits to the electric power industry in many applications. Individual papers are indexed separately

  13. Computer applications in the nuclear reprocessing industry

    International Nuclear Information System (INIS)

    McKenzie, H.G.; Swartfigure, G.T.

    1985-01-01

    The subject is discussed under the headings: introduction; benefits of computer application; factors affecting productivity; implementation of engineering design systems; the conceptual model; system design database; plant design system; pipe detailing system; overall assessment of benefits; conclusions. (U.K.)

  14. Industrial Applications of High Power Ultrasonics

    Science.gov (United States)

    Patist, Alex; Bates, Darren

    Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.

  15. Validation and industrial application of AFM

    DEFF Research Database (Denmark)

    Kofod, Niels

    This thesis has been prepared as one of the requirements of the industrial researcher and Ph.D- degree. This thesis represented the 2 nd version of this thesis. The work has been carried out from January 1999 to January 2002 at The Danish Institute of Fundamental Metrology (DFM) and The Institute...... of Manufacturing Engineering and Management (IPL), Technical University of Denmark (DTU). The work has been carried out under supervision from Dr. Jørgen Garnæs, DFM, Dr. Techn. Leonardo De Chiffre, IPL/DTU and Dr. Hans Nørgaard Hansen. I would like to thank my supervisors for their inspiration and valuable...

  16. Industrial Application Of Environmentally Conscious Design

    DEFF Research Database (Denmark)

    McAloone, Timothy Charles

    in the design process is key to environmentally conscious design;- the environmental profile of a product is affected the most in the very early stages of the design process, particularly in the pre-specification stage, where tools for environmentally conscious design decision-making are lacking...... when companies have integrated environmental considerations into the design process.In the context of advanced practitioners of environmentally conscious design in the Western European and North American electrical/electronics industry sector, it is shown that:- the timing of environmental decisions...... into their product development processes. This starts with motivation, leading to widening communication and information flows and finally to whole-life thinking....

  17. A scale-free structure prior for graphical models with applications in functional genomics.

    Directory of Open Access Journals (Sweden)

    Paul Sheridan

    Full Text Available The problem of reconstructing large-scale, gene regulatory networks from gene expression data has garnered considerable attention in bioinformatics over the past decade with the graphical modeling paradigm having emerged as a popular framework for inference. Analysis in a full Bayesian setting is contingent upon the assignment of a so-called structure prior-a probability distribution on networks, encoding a priori biological knowledge either in the form of supplemental data or high-level topological features. A key topological consideration is that a wide range of cellular networks are approximately scale-free, meaning that the fraction, , of nodes in a network with degree is roughly described by a power-law with exponent between and . The standard practice, however, is to utilize a random structure prior, which favors networks with binomially distributed degree distributions. In this paper, we introduce a scale-free structure prior for graphical models based on the formula for the probability of a network under a simple scale-free network model. Unlike the random structure prior, its scale-free counterpart requires a node labeling as a parameter. In order to use this prior for large-scale network inference, we design a novel Metropolis-Hastings sampler for graphical models that includes a node labeling as a state space variable. In a simulation study, we demonstrate that the scale-free structure prior outperforms the random structure prior at recovering scale-free networks while at the same time retains the ability to recover random networks. We then estimate a gene association network from gene expression data taken from a breast cancer tumor study, showing that scale-free structure prior recovers hubs, including the previously unknown hub SLC39A6, which is a zinc transporter that has been implicated with the spread of breast cancer to the lymph nodes. Our analysis of the breast cancer expression data underscores the value of the scale

  18. Application of industrial CT in reverse engineering technology

    International Nuclear Information System (INIS)

    Fang Liyong; Li Hui; Bai Jinping; Li Bailin

    2013-01-01

    The basic principle and basic steps of reverse engineering technology based on industrial CT are described. The recent research progresses and situation at home and abroad of reverse engineering technology based on industrial CT image are respectively described, analyzed and summarized from two routes which are surface segmentation and volume segmentation. An example of conch is used to exhibit the results from the two routes in reverse engineering technology based on industrial CT image. Finally, some difficulties in application and the future developments of reverse engineering technology based on industrial CT are prospected. (authors)

  19. Application of knowledge based software to industrial automation in Japan

    International Nuclear Information System (INIS)

    Matsumoto, Yoshihiro

    1985-01-01

    In Japan, large industrial undertakings such as electric utilities or steel works are making first steps towards knowledge engineering, testing the applicability of knowledge based software to industrial automation. The goal is to achieve more intelligent, computer-aided assistance for the personnel and thus to enhance safety, reliability, and maintenance efficiency in large industrial plants. The article presents various examples showing advantages and draw-backs of such systems, and potential applications among others in nuclear or fossil fueled power plants or in electricity supply control systems. (orig./HP) [de

  20. Development of applications for Indian industry using electron beam technology

    International Nuclear Information System (INIS)

    Sarma, K.S.S.; Khader, S.A.; Sabharwal, S.

    2009-01-01

    This paper presents a report on the industrial applications that have been developed and demonstrated to the Indian industry using 2MeV/20kW Electron Beam accelerator at BARC-BRIT in the field of polymer modifications (crosslinking and degradation), gem stone coloration etc. Technological scale demonstration of the applications citing the benefits in terms of clean technology and better economics, encouraged three companies in private industry to set up EB facilities for the treatment of cable insulations, heat shrinkable products, diamond and gem stones during the last five years. Recent work on EB processing of automobile rubber tires is also included. (author)

  1. Implementation of NFC technology for industrial applications: case flexible production

    Science.gov (United States)

    Sallinen, Mikko; Strömmer, Esko; Ylisaukko-oja, Arto

    2007-09-01

    Near Field communication (NFC) technology enables a flexible short range communication. It has large amount of envisaged applications in consumer, welfare and industrial sector. Compared with other short range communication technologies such as Bluetooth or Wibree it provides advantages that we will introduce in this paper. In this paper, we present an example of applying NFC technology to industrial application where simple tasks can be automatized and industrial assembly process can be improved radically by replacing manual paperwork and increasing trace of the products during the production.

  2. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  3. OOA composite structures applicable in railway industry

    Directory of Open Access Journals (Sweden)

    Rusnáková Soňa

    2017-01-01

    Full Text Available Composite sandwich structures offers several advantages over conventional structural materials such as lightweight, high bending and torsional stiffness, superior thermal insulation and excellent acoustic damping. In the aerospace industry, sandwich composites are commonly manufactured using the autoclave process which is associated with high operating cost. Out-of-autoclave (OOA manufacturing has been shown to be capable of producing low cost and high performance composites. In this paper we present results of experimental testing of various sandwich materials according various standards and actual requirements in transport industry. We compared the different types of surface and paint systems, because these layers are the most important in contact with the surrounding environment and load conditions. In the experimental measurements were used various materials. For the core of the sandwich structure were selected aluminium honeycomb, aramid honeycomb and PET (Polyethylene terephthalate foam core. Support layers were chosen two kinds of predimpregnated materials. The conditions of measurements were requirements for strength and rigidity, safety - flame resistance and reflectivity resistance. The samples were tested at the 3 - point bending test according to standard EN ISO 178, by modified test to determine the force required to rapture threaded insert, by test of reflectivity according to UIC CODE 844-4 R and according to standard EN 45545-2 fire protection of railway vehicles.

  4. Development and application of industrial radioisotope instruments in China

    International Nuclear Information System (INIS)

    Lu Yanxiao

    1994-09-01

    Industrial radioisotope instruments are emerging as advanced monitoring, controlling and automation tools for industries in China. Especially the on-line analysis systems based on radioisotope instruments, referred to as nucleonic control systems (NCS), have more and more important role in the modernization and optimization of industrial processes. Over nearly four decades significant progress has been made in the development and application of radioisotope instruments in China. After a brief review of the history of radioisotope instruments, the state of the art of this kind of instruments and recent examples of their applications are given. Technical and economic benefits have resulted from the industrial applications of radioisotope instruments and the sales of products of their own in marketing. It is expected that along with the high speed growth of national economy, there will be greater demand for radioisotope instruments and nucleonic control systems in Chinese industry to promote the technological transformation and progress of traditional industries and to establish high-tech industries with technology-intensive products. Sustained efforts for the research and development of radioisotope instrument should be made to up-grade domestic instruments and to satisfy the needs of the smaller scale industries more common in China for low cost systems. (1 fig., 2 tabs.)

  5. Technology Roadmaps: Carbon Capture and Storage in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    A new technology roadmap on Carbon Capture and Storage in Industrial Applications, released today in Beijing, shows that carbon capture and storage (CCS) has the potential to reduce CO2 emissions from industrial applications by 4 gigatonnes in 2050. Such an amount is equal to roughly one-tenth of the total emission cuts needed from the energy sector by the middle of the century. This requires a rapid deployment of CCS technologies in various industrial sectors, and across both OECD and non-OECD countries. The roadmap, a joint report from the International Energy Agency (IEA) and the United Nations Industrial Development Organization (UNIDO), says that over 1800 industrial-scale projects are required over the next 40 years.

  6. Application of microbial α-amylase in industry - A review

    Directory of Open Access Journals (Sweden)

    Paula Monteiro de Souza

    2010-12-01

    Full Text Available Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  7. Application of microbial α-amylase in industry - A review.

    Science.gov (United States)

    de Souza, Paula Monteiro; de Oliveira Magalhães, Pérola

    2010-10-01

    Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  8. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  9. Engineering Thermostable Microbial Xylanases Toward its Industrial Applications.

    Science.gov (United States)

    Kumar, Vishal; Dangi, Arun Kumar; Shukla, Pratyoosh

    2018-03-01

    Xylanases are one of the important hydrolytic enzymes which hydrolyze the β-1, 4 xylosidic linkage of the backbone of the xylan polymeric chain which consists of xylose subunits. Xylanases are mainly found in plant cell walls and are produced by several kinds of microorganisms such as fungi, bacteria, yeast, and some protozoans. The fungi are considered as most potent xylanase producers than that of yeast and bacteria. There is a broad series of industrial applications for the thermostable xylanase as an industrial enzyme. Thermostable xylanases have been used in a number of industries such as paper and pulp industry, biofuel industry, food and feed industry, textile industry, etc. The present review explores xylanase-substrate interactions using gene-editing tools toward the comprehension in improvement in industrial stability of xylanases. The various protein-engineering and metabolic-engineering methods have also been explored to improve operational stability of xylanase. Thermostable xylanases have also been used for improvement in animal feed nutritional value. Furthermore, they have been used directly in bakery and breweries, including a major use in paper and pulp industry as a biobleaching agent. This present review envisages some of such applications of thermostable xylanases for their bioengineering.

  10. Industrial applications of sol-gel technology

    International Nuclear Information System (INIS)

    Tuloch, S.M.; Tulloch, G.E.

    1995-01-01

    The purpose of this paper has been to provide a broad, rather than comprehensive view. We have presented a range of applications and only a selection of involved companies and researchers and have relied to a large extent on published information. Nevertheless, we are sure that our view of the importance of Sol-gel technology as an emerging technology, with enormous impact across a wide range of manufacturing, is demonstrated. Applications which are either in production or have been foreshadowed include four broad categories: coatings, fibres, powders and monoliths

  11. A decade of industrial tracer applications in Australia

    International Nuclear Information System (INIS)

    Charlton, S.

    1999-01-01

    Full text: The application of radiotracer technology to the solution of problems in Australian industry dates back to the 1950's and has been well chronicled elsewhere. However, it may confidently be asserted that the most significant growth in industrial applications has taken place over the last decade. This is no accident. In the last Quarter of 1989, Tracerco Australasia was established as a partnership between ICI Australia and ANSTO with the specific remit of promoting and selling radioisotope applications to industry. Effectively, this marked the commencement of the 'commercialisation' of industrial radiotracing in Australia. Though organisational and ownership changes have subsequently taken place, the business established in 1989 continues to flourish and now, one decade after its inception, it is appropriate both to review the achievements of the last ten years and to identify the challenges and opportunities of the future. Accordingly, this paper describes the growth of the radiotracer applications business, analyses its current activities both geographically and by industrial sector and examines trends in technology utilisation. The criteria which need to be met to ensure the continuing expansions and development of industrial radiotracer applications are also discussed

  12. Industrial Applications of radioisotopes and radiation technology and Agency's role

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Haji-Saeid, M.

    2004-01-01

    Applications of radioisotopes and radiation technology are contributing significantly in many areas of science and technology, industry and environment, towards sustainable development, improving the quality of life and cleaner and safer national industries. There are three major classes impacting industrial scale operations, namely, (a) radiation processing/treatment, (b) radiotracer and sealed source techniques to monitor industrial processes/columns/vessels and (c) industrial gamma radiography and tomography. Radiation processing applying gamma sources and electron accelerators for material treatment/modification is an established technology. There are over 160 gamma industrial irradiators and 1300 industrial electron accelerators in operation worldwide. Development of new materials, especially for health care and environment protection, and advanced products (for electronics, solar energy systems, biotechnology etc) are the main objectives of R and D activity in radiation processing technology. The International Atomic Energy Agency (IAEA, Agency) is involved in supporting both the development and transfer of radiation technology. Thanks to Agency's efforts, advanced radiation processing centres have been established in many Member States (MS), e.g. Malaysia, Egypt, Iran, Poland, Brazil, Hungary. Hydrogel dressing for wounds, radiation vulcanised latex, degraded natural polymer are examples of useful product outcomes. Demonstration of effective treatment of flue gas in pilot plant as well as industrial scale and industrial wastewater in pilot plant scale has shown promise for tackling industrial emissions/effluents using electron beam machines. Industrial radiotracer and gamma sealed source techniques are largely used for analyzing industrial process systems. Initially used as trouble-shooting measures, they play a vital role in process parameter optimization, improved productivity, on-line monitoring and could lead to even pre-commissioning benchmarking. Gamma

  13. Industrial Applications of radioisotopes and radiation technology and Agency's role

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Haji-Saeid, M.

    2004-01-01

    Full text: Applications of radioisotopes and radiation technology are contributing significantly in many areas of science and technology, industry and environment, towards sustainable development, improving the quality of life and cleaner and safer national industries. There are three major classes impacting industrial scale operations, namely, (a) radiation processing/treatment, (b) radiotracer and sealed source techniques to monitor industrial processes/columns/vessels and (c) industrial gamma radiography and tomography. Radiation processing applying gamma sources and electron accelerators for material treatment/modification is an established technology. There are over 160 gamma industrial irradiators and 1300 industrial electron accelerators in operation worldwide. Development of new materials, especially for health care and environment protection, and advanced products (for electronics, solar energy systems, biotechnology etc) are the main objectives of R and D activity in radiation processing technology. The International Atomic Energy Agency (IAEA, Agency) is involved in supporting both the development and transfer of radiation technology. Thanks to Agency's efforts, advanced radiation processing centres have been established in many Member States (MS), e.g. Malaysia, Egypt, Iran, Poland, Brazil, Hungary. Hydrogel dressing for wounds, radiation vulcanised latex, degraded natural polymer are examples of useful product outcomes. Demonstration of effective treatment of flue gas in pilot plant as well as industrial scale and industrial wastewater in pilot plant scale has shown promise for tackling industrial emissions/effluents using electron beam machines. Industrial radiotracer and gamma sealed source techniques are largely used for analyzing industrial process systems. Initially used as trouble-shooting measures, they play a vital role in process parameter optimization, improved productivity, on-line monitoring and could lead to even pre

  14. Biobased Packaging - Application in Meat Industry

    Directory of Open Access Journals (Sweden)

    S. Wilfred Ruban

    2009-04-01

    Full Text Available Because of growing problems of waste disposal and because petroleum is a nonrenewable resource with diminishing quantities, renewed interest in packaging research is underway to develop and promote the use of “bio-plastics.” In general, compared to conventional plastics derived from petroleum, bio-based polymers have more diverse stereochemistry and architecture of side chains which enable research scientists a greater number of opportunities to customize the properties of the final packaging material. The primary challenge facing the food (Meat industry in producing bio-plastic packaging, currently, is to match the durability of the packaging with product shelf-life. Notable advances in biopolymer production, consumer demand for more environmentally-friendly packaging, and technologies that allow packaging to do more than just encompass the food are driving new and novel research and developments in the area of packaging for muscle foods. [Vet. World 2009; 2(2.000: 79-82

  15. Diffractive optics for industrial and commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, J. [Joensuu Univ. (Finland); Wyrowski, F. [eds.] [Jena Univ. (Germany)

    1997-12-31

    The following topics were dealt with: diffractive optics, diffraction gratings, optical system design with diffractive optics, continuous-relief diffractive lenses and microlens arrays, diffractive bifocal intraocular lenses, diffractive laser resonators, diffractive optics for semiconductor lasers, diffractive elements for optical image processing, photorefractive crystals in optical measurement systems, subwavelenth-structured elements, security applications, diffractive optics for solar cells, holographic microlithography. 999 refs.

  16. Elicitation of expert prior opinion: application to the MYPAN trial in childhood polyarteritis nodosa.

    Directory of Open Access Journals (Sweden)

    Lisa V Hampson

    Full Text Available Definitive sample sizes for clinical trials in rare diseases are usually infeasible. Bayesian methodology can be used to maximise what is learnt from clinical trials in these circumstances. We elicited expert prior opinion for a future Bayesian randomised controlled trial for a rare inflammatory paediatric disease, polyarteritis nodosa (MYPAN, Mycophenolate mofetil for polyarteritis nodosa.A Bayesian prior elicitation meeting was convened. Opinion was sought on the probability that a patient in the MYPAN trial treated with cyclophosphamide would achieve disease remission within 6-months, and on the relative efficacies of mycophenolate mofetil and cyclophosphamide. Expert opinion was combined with previously unseen data from a recently completed randomised controlled trial in ANCA associated vasculitis.A pan-European group of fifteen experts participated in the elicitation meeting. Consensus expert prior opinion was that the most likely rates of disease remission within 6 months on cyclophosphamide or mycophenolate mofetil were 74% and 71%, respectively. This prior opinion will now be taken forward and will be modified to formulate a Bayesian posterior opinion once the MYPAN trial data from 40 patients randomised 1:1 to either CYC or MMF become available.We suggest that the methodological template we propose could be applied to trial design for other rare diseases.

  17. Technical property and application of industrial computed tomography

    International Nuclear Information System (INIS)

    Sun Lingxia; Ye Yunchang

    2006-01-01

    The main technical property of industrial computed tomography (ICT) and its application in non-destructive testing (NDT) were described. And some examples of ICT applications in such fields as defects detection, welding quality, density uniformity, structure analysis and making-up quality were given. (authors)

  18. Radioisotope applications in petroleum and gas industries

    International Nuclear Information System (INIS)

    Castagnet, A.C.; Agudo, E.G.; Duarte, U.

    1974-01-01

    The principal radioisotopic technique used for studying and /or controling the drilling, completion, treatment and oil well secondary recovery operations are described. In this cases the radioisotopes are employed almost exclusively as 'markers', in the form of localized and dispersed tracers. The growing acceptance of these techniques is essentially, a consequence of the confidence in the reliability of the data and conclusions derived from their application

  19. Application of Ultrasound in the Food Industry

    Directory of Open Access Journals (Sweden)

    Javier Orlando Delgado

    2012-06-01

    Full Text Available Ultrasound is an emerging technology with more research and development for food preservation, one of the qualities of is the reduction of the concentration of microorganisms, inhibition of enzyme activity without altering the physical, chemical and nutritional foods.It was conducted direffent literature sources analysis to develop a document with ultrasound applications in main food technology processing, the benefits of cavitation effect, intensity and frequency applied in each of researching works that have been made today.

  20. Liquid Marbles: From Industrial to Medical Applications

    Directory of Open Access Journals (Sweden)

    Roxana-Elena Avrămescu

    2018-05-01

    Full Text Available Liquid marbles are versatile structures demonstrating a pseudo-Leidenfrost wetting regime formed by encapsulating microscale volumes of liquid in a particle shell. The liquid core is completely separated from the exterior through air pockets. The external phase consists of hydrophobic particles, in most cases, or hydrophilic ones distributed as aggregates. Their interesting features arise from the double solid-fluid character. Thus, these interesting formations, also known as “dry waters”, have gained attention in surface science. This review paper summarizes a series of proposed formulations, fabrication techniques and properties, in correlation with already discovered and emerging applications. A short general review of the surface properties of powders (contact angle, superficial tension is proposed, followed by a presentation of liquid marbles’ properties (superficial characteristics, elasticity, self-propulsion etc.. Finally, applications of liquid marbles are discussed, mainly as helpful and yet to be exploited structures in the pharmaceutical and medical field. Innovative pharmaceutical forms (Pickering emulsions are also means of use taken into account as applications which need further investigation.

  1. Industrial applications of high energy micro-beams

    International Nuclear Information System (INIS)

    Bakhru, H.; Nickles, E.; Haberl, A.W.

    1995-01-01

    The University at Albany ion scanning microprobe has been used for industrial applications. Several examples of such applications will be presented. Focused proton and helium ion beams of 1-2 μm dimensions have been used for the analysis. Rutherford backscattering spectrometry (RBS) and particle induced X-ray emission (PIXE) analysis have been performed on very large scale integrated circuits, thin film superconductors, small structures of high voltage cables and for several other industrial applications. Several examples of chemical and microstructural analysis will be presented. (orig.)

  2. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  3. Some important applications of accelerators in medicine and industry

    International Nuclear Information System (INIS)

    Jongen, Y.

    1996-01-01

    Accelerators, and cyclotrons in particular, have long been dedicated to research. Nowadays, they are industrial devices heavily used in various fields. The Belgian company Ion Beam Applications, probably the largest private company manufacturing cyclotrons, has largely contributed to the dissemination of this technology into the medical and radio-pharmaceutical community. This paper will present different applications of cyclotrons in these fields, from radioisotope production to radiotherapy, based on IBA's experience since 1986, date of construction of the CYCLONE 30 prototype, a cyclotron that revolutionized cyclotron technology for medicine and industry. Possible industrial applications of cyclotrons will also be mentioned, together with applications of another type of accelerator recently introduced in the market by IBA: the Rhodotron. (author)

  4. Mineral legislations applicable to beach sand industry

    International Nuclear Information System (INIS)

    D'Cruz, Eric

    2016-01-01

    India has got a wealth of natural resources in different geological environs and shoreline placers form an important constituent of the natural resources. Large reserves of beach sand minerals, viz. imenite, rutile, leucoxene, zircon, sillimanite, garnet and monazite are the economic minerals in the coastal and inland placer sands. In the federal structure of India, the State Governments are the owners of minerals located within their respective boundaries. The State Governments grant the mineral concessions for all the minerals located within the boundary of the State, under the provisions of the Acts and Rules framed for the purpose. Though the mineral wealth is under the control of the State, the power for framing the rules for the grant of mineral concessions vastly rest with the Central Government. Since mineral concessions are often granted for a longer duration of thirty to fifty years or more, a historical perspective of these rules are imperative in understanding the issues involved with BSM mining industry. Under the Govt. of India Act, 1935, Regulation of Mines and Oilfields and Mineral Development was kept under Federal control, declared by Federal Law. The word 'Federal' was substituted by the word 'Dominion' by the India (Provincial Constitution) Order, 1947. No legislation was, however, enacted in pursuance of above power until after Independence. However, the Govt. on India made the Mining Concession (Central) Rules, 1939 for regulating grants of prospecting license

  5. Applications of radiation within the wine industry

    International Nuclear Information System (INIS)

    Wilson, K.J.; Moran, G.; Boreham, D.

    2003-01-01

    The objective was to test the feasibility of taint removal in industrial wines through the use of radiation. The process used the cobalt-60 source in the McMaster University Nuclear Reactor. When wine, composed mainly of water (∼87%), alcohol (∼10%), acid (∼2%), and anthrocyanins/tannins (∼0.1%), is irradiated, water molecules are hydrolyzed generating free radicals in solution. These free radicals are oxidizing agents that will oxidize other molecules in the wine. The focus has been a specific taint introduced into 2000-2001 vintages by the Asian lady-bird beetle (Harmonia Axyridis) whose population has increased dramatically of late. This taint - thought to be a methoxy-pyrazine - is detectable by taste in 1-2 parts per trillion (ppt). Preliminary sensory evaluation has shown that radiation dramatically improves tainted wines by eliminating the lady beetle taint. Chemical tests have indicated that radiation is acting as an oxidizing agent, reducing levels of SO 2 (introduced into wines to prevent oxidation) by nearly 40-70%. Research ongoing involves the detection of the taint (the implicated methoxy-pyrazine) by mass spectrometry as a taint assessment tool, and an indicator that radiation has removed the taint

  6. Miniaturised optical sensors for industrial applications

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Hanson, Steen Grüner

    2010-01-01

    . The technology is based on compact and low-cost laser sources such as Vertical Cavity Surface Emitting Lasers (VCSELs). The methods characterise the object motion by speckle translation in the near field (imaging) or far field (optical Fourier transform) by optical spatial filtering velocimetry. The volume...... of the two optical solutions is less than 1 cm3, including the application specific integrated circuit (ASIC), which processes the data and interfaces a PC/Laptop directly via a USB driver. The sensors are designed for working distances of 2 and 12 mm for near field and far field, respectively. We...

  7. Review of radionuclide applications in industrial measurements

    International Nuclear Information System (INIS)

    Pechlak, B.; Thyn, J.

    1980-01-01

    The Radiotracer Service Group of the UVVVR Prague has developed and has been applying in practice radioactive tracer techniques for monitoring material flow through technological and transport systems, handling gases, liquids and solids. The techniques allow monitoring the quality of output materials (the degree of homogenization etc.), the material balance and the function of specific equipment. Standard methods are briefly characterized for computer processing of the results. The applications are described of radioactive tracer techniques in the production of concrete and in the detection of leaks of heating systems which supply several houses. (Ha)

  8. Gas turbine applications in the drying industry

    Energy Technology Data Exchange (ETDEWEB)

    Tapper, R.C.

    2000-07-01

    The purpose of this report is to determine if it is feasible to utilize the hot exhaust gas discharged from gas turbines in direct applications. This report illustrates the technical feasibility and economic viability of using gas turbines in drying applications. The size of turbines in this investigation ranges from 2 MW to 10 MW. In addition, an implementation strategy has been developed to employ this new system. The method used to structure the scope of this undertaking is as follows: Step 1. Collecting information by contacting dryer manufacturer and companies drying different products. Information was also gathered by literature studies and the internet. Thomas register is a great tool when it comes to company and market searches. Step 2. Looking into if it is technically possible to use the exhaust gas directly into dryers. The parameters needed for these calculations were gathered in step 1, and some of the more important are temperature, mass flow, heat demand, and information about how the dryer works. The computer program Gatecycle is a great help when it comes to finding the right turbine for a dryer. Step 3. When it was obvious that it would work for some drying applications, the profitability was tested with the help of some spreadsheets. Step 4. The market was also evaluated as a last step. Market analysis was performed with the help of Porter's (Porter is one of the most famous strategy gurus) different models. The point of this is to find ways to be unique so that competitors will have a harder time copying the new system. It is shown in the report that for the right kind of projects, this new application for turbines is profitable. It is important to realize that this new system is not profitable for every drying plant. This is a general study with general input parameters. Every plant has its' own in-parameters and has to be evaluated individually. The most important factors determining if it is profitable or not are: Local electricity

  9. Industry

    International Nuclear Information System (INIS)

    Schindler, I.; Wiesenberger, H.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of the industry in Austria. It gives a review of the structure and types of the industry, the legal framework and environmental policy of industrial relevance. The environmental situation of the industry in Austria is analyzed in detail, concerning air pollution (SO 2 , NO x , CO 2 , CO, CH 4 , N 2 O, NH 3 , Pb, Cd, Hg, dioxin, furans), waste water, waste management and deposit, energy and water consumption. The state of the art in respect of the IPPC-directives (European Integrated Pollution Prevention and Control Bureau) concerning the best available techniques of the different industry sectors is outlined. The application of European laws and regulations in the Austrian industry is described. (a.n.)

  10. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  11. Application of Object-Based Industrial Controls for Cryogenics

    CERN Document Server

    Casas-Cubillos, J; Gomes, P; Pezzetti, M; Sicard, Claude Henri; Varas, F J

    2002-01-01

    The first application of the CERN Unified Industrial Control system (UNICOS) has been developed for the 1.8 K refrigerator at point 1.8 in mid-2001. This paper presents the engineering methods used for application development, in order to reach the objectives of maintainability and reusability, in the context of a development done by an external consortium of engineering firms. It will also review the lessons learned during this first development and the improvements planned for the next applications.

  12. Application of the geothermal energy in the industrial processes

    International Nuclear Information System (INIS)

    Popovska-Vasilevska, Sanja

    2001-01-01

    In the worldwide practice, the geothermal energy application, as an alternative energy resource, can be of great importance. This is especially case in the countries where exceptional natural geothermal potential exists. Despite using geothermal energy for both greenhouses heating and balneology, the one can be successfully implemented in the heat requiring industrial processes. This kind of use always provides greater annual heat loading factor, since the industrial processes are not seasonal (or not the greater part of them). The quality of the geothermal resources that are available in Europe, dictates the use within the low-temperature range technological processes. However, these processes are significantly engaged in different groups of processing industries. But, beside this fact the industrial application of geothermal energy is at the beginning in the Europe. (Original)

  13. Review of neutron radiographic applications in industrial and biological systems

    International Nuclear Information System (INIS)

    Ashraf, M.M.; Khan, A.R.

    1992-10-01

    Neutron radiography is a non-destructive testing technique and is being used worldwide for the design and the development of reactor fuels for research and power reactors. It is also being used for non-destructive examination of nuclear industrial products. In addition to its explosives and other industrial sectors. In addition to its applications in industrial sectors, the technique is widely used for research and development activities in biological systems. A review of technical applications of neutron radiography in different fields particularly in nuclear fuel management, aerospace industry, explosives and biology is presented. The methodology of neutron radiography is also discussed in detail along with the advantages of the technique. In addition, the potential of the neutron radiography facility at PINSTECH has been described. (author)

  14. EBSD applications in the steel and nuclear industries

    International Nuclear Information System (INIS)

    Nave, M.D.

    2005-01-01

    EBSD has established itself as an invaluable tool for materials science problem-solving in the steel and nuclear industries. In the steel industry, it increases our understanding of the deformation and recrystallization processes that influence the formability of steel sheets. It is also used to improve welding procedures and identify phases that accelerate corrosion. In the nuclear industry, EBSD plays a central role in extending the life of fuel cladding materials by shedding new light on the mechanisms of hydride formation. It is also used in efforts to improve the processing of material used for the storage of nuclear waste. This presentation provides an overview of EBSD applications within these two industries, emphasizing the broad applicability and practical usefulness of the technique. (author)

  15. 1994 Thermal spray industrial applications: Proceedings

    International Nuclear Information System (INIS)

    Berndt, C.C.; Sampath, S.

    1994-01-01

    The 7th National Thermal Spray Conference met on June 20--24, 1994, in Boston, Massachusetts. The conference was sponsored by the Thermal Spray Division of ASM International and co-sponsored by the American Welding Society, Deutscher Verband fur Schweisstechnik e.V., High Temperature Society of Japan, International Thermal Spray Association, and Japanese Thermal Spraying Society. The conference covered applications for automobiles, aerospace, petrochemicals, power generation, and biomedical needs. Materials included metals, ceramics, and composites with a broad range of process developments and diagnostics. Other sections included modeling and systems control; spray forming and reactive spraying; post treatment; process, structure and property relationships; mechanical properties; and testing, characterization and wear. One hundred and seventeen papers have been processed separately for inclusion on the data base

  16. Application of engineering surveying in engineering industry

    Directory of Open Access Journals (Sweden)

    Lucia Forgáčová

    2005-11-01

    Full Text Available This is a presentation of the application of surveying principles used in a process of building the electrolytic tinning line at the U.S.Steel s.r.o. Kosice. The work involved is setting up a new network of measuring points, as well as the effective implementation of suitable methodologies, instruments and measuring tools. All of these were focal points for the survey, required during the installation of machinery units for the new tinning line. The coil producing technology utilised on the line entails a high speed movement. In this context all methods and final measurements were adapted to a very high standard of precision in order to ensure a safe working environment and exclude the risk of malfunctions in the final production stage. The smallest variations in the positioning of machinery units, compared with technical drawings, could rise a danger of coil breakdown, line malfunction or personal injury.

  17. Industry Pack Modules in Beam Instrumentation Applications

    CERN Document Server

    Bravin, Enrico; CERN. Geneva. SPS and LEP Division

    1997-01-01

    In order to improve the performances of the VME based data acquisition systems new technologies coming up on the market have been investigated in the last few years. The IP-BUS developed by Green Spring computers has been adopted in several applications. By using intelligent carrier boards (the existing are based on the 680x0 CPU family) it is possible to build embedded systems and group them together in the same crate. This solution improves the potentialities of VME by lowering the load of data flow over the bus. Only preprocessed data is exchanged between the different embedded modules. The IP modules also offer a cheap solution for normal VME implementations using passive carrier boards. In this paper we describe our experience so far by describing the use we make of these new products and the problems we encountered on the way

  18. Industrial applications of electron beam; Przemyslowe zastosowamia wiazki elektronow

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The review of industrial applications with use of electron beams has been done. Especially the radiation technologies being developed in Poland have been shown. Industrial installations with electron accelerators as radiation source have been applied for: modification of polymers; modification of thyristors; sterilization of health care materials; radiopreservation of food and other consumer products; purification of combustion flue gases in heat and power plants. 14 refs, 6 tabs, 7 figs.

  19. Research on optical applications in nuclear industry

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Shin, Jang Soo; Lee, Sang Mock; Baik, Sung Hoon; Kwon, Seong Ouk; Hong, Suc Kyoung; Kim, Duk Hyeon

    1988-12-01

    The laser fluorometer developed in 1987 has been modified to compensate the inner filter and quenching effects. The signal processing electronic circuit was redesigned and a computer interface was introduced for data processing. It has been already used in routine chemical analysis in the chemical analysis division. Its application to uranium monitoring in conversion plant is being investigated. Also, we found that it can be used in trace analysis of samarium and europium with detection limit of 1 ppb and 0.1 ppb, respectively. The IRMPA/D process of CDF 3 and CHF 3 have been studied. The pressure effects of CDF 3 ,CHF 3 and added buffer gas were investigated. Mainly, the change in reaction rate was examined while varying the pressure of CDF 3 , CHF 3 and buffer gas. The IRMPD reaction ratio of CDF 3 and CHF 3 from below 0.1 torr up to a few torr was studied and the buffer gas pressure effect was investigated at constant pressure of CDF 3 or CHF 3 of 1 torr. Several kinds of buffer gas, Ar, N 2 , and SF 6 , were used to investigate the buffer gas pressure effect. We applied double exposure holographic interferometry, and analyzed qualitatively the distortion due to thermal heat and vibration. The research on holographic remote inspection will be achieved to apply this technique to the nuclear fuel cycle facilities. (Author)

  20. Nuclear gauge application in road industry

    Science.gov (United States)

    Azmi Ismail, Mohd

    2017-11-01

    Soil compaction is essential in road construction. The evaluation of the degree of compaction relies on the knowledge of density and moisture of the compacted layers is very important to the performance of the pavement structure. Among the various tests used for making these determinations, the sand replacement density test and the moisture content determination by oven drying are perhaps the most widely used. However, these methods are not only time consuming and need wearisome procedures to obtain the results but also destructive and the number of measurements that can be taken at any time is limited. The test can on be fed back to the construction site the next day. To solve these problems, a nuclear technique has been introduced as a quicker and easier way of measuring the density and moisture of construction materials. Nuclear moisture density gauges have been used for many years in pavement construction as a method of non-destructive density testing The technique which can determine both wet density and moisture content offers an in situ method for construction control at the work site. The simplicity, the speed, and non-destructive nature offer a great advantage for quality control. This paper provides an overview of nuclear gauge application in road construction and presents a case study of monitoring compaction status of in Sedenak - Skudai, Johor rehabilitation projects.

  1. The thin layer activation method and its applications in industry

    International Nuclear Information System (INIS)

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools

  2. The thin layer activation method and its applications in industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools.

  3. Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction

    International Nuclear Information System (INIS)

    Lauzier, Pascal Thériault; Chen Guanghong

    2013-01-01

    Purpose: The ionizing radiation imparted to patients during computed tomography exams is raising concerns. This paper studies the performance of a scheme called dose reduction using prior image constrained compressed sensing (DR-PICCS). The purpose of this study is to characterize the effects of a statistical model of x-ray detection in the DR-PICCS framework and its impact on spatial resolution. Methods: Both numerical simulations with known ground truth and in vivo animal dataset were used in this study. In numerical simulations, a phantom was simulated with Poisson noise and with varying levels of eccentricity. Both the conventional filtered backprojection (FBP) and the PICCS algorithms were used to reconstruct images. In PICCS reconstructions, the prior image was generated using two different denoising methods: a simple Gaussian blur and a more advanced diffusion filter. Due to the lack of shift-invariance in nonlinear image reconstruction such as the one studied in this paper, the concept of local spatial resolution was used to study the sharpness of a reconstructed image. Specifically, a directional metric of image sharpness, the so-called pseudopoint spread function (pseudo-PSF), was employed to investigate local spatial resolution. Results: In the numerical studies, the pseudo-PSF was reduced from twice the voxel width in the prior image down to less than 1.1 times the voxel width in DR-PICCS reconstructions when the statistical model was not included. At the same noise level, when statistical weighting was used, the pseudo-PSF width in DR-PICCS reconstructed images varied between 1.5 and 0.75 times the voxel width depending on the direction along which it was measured. However, this anisotropy was largely eliminated when the prior image was generated using diffusion filtering; the pseudo-PSF width was reduced to below one voxel width in that case. In the in vivo study, a fourfold improvement in CNR was achieved while qualitatively maintaining sharpness

  4. Applications of nuclear microprobes in the semiconductor industry

    International Nuclear Information System (INIS)

    Takai, M.

    1996-01-01

    Possible nuclear microprobe applications in semiconductor industries are discussed. A unique technique using soft-error mapping and ion beam induced current measurements for reliability testing of dynamic random access memories such as soft-error immunity and noise carrier suppression has been developed for obtaining design parameters of future memory devices. Nano-probes and small installation areas are required for the use of microprobes in the semiconductor industry. Issues arising from microprobe applications such as damage induced by the probe beam are clarified. (orig.)

  5. Dependent Prior: An Application in Spinal Anaesthesia Drug Therapy on SBP in Cesarean patients.

    Directory of Open Access Journals (Sweden)

    Atanu Bhattacharjee

    2013-12-01

    Full Text Available Cesarean section is widely used operation procedure in the world. The regional anesthesia is preferred than general anesthesia. The risk of fetus is higher in general than in regional anesthesia. The drug treatment effect on regional anesthesia plays an important role to control the systolic blood pressure (SBP during the surgery. The goal of this work is to know the effective drug to control the SBP among cesarean anesthetic patients. The dependent prior with Bayesian approach is applied in the binary response data set. The secondary data in anesthesia has been applied to compare the two drug treatments, viz. (1 Phenylephrine and (2 Ephedrine, in cesarean patients with spinal anesthesia. In both drug groups the mean of SBP has been found controlled over the duration of the surgery. No rapid changes of SBP level among the patients are observed. At the end of study it is found that the means of SBP cesarean anesthetic patients are found higher in Phenylephrine group. The Bayesian dependent prior is found to offer effective tool for drug treatment effect comparison. The drug treatment effect Ephedrine is found to be more effective to control the SBP over the duration of surgery than Phenylephrine.

  6. 40 CFR 95.3 - Findings prior to application to Attorney General.

    Science.gov (United States)

    2010-07-01

    ... Attorney General. 95.3 Section 95.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... General. The Administrator, or the Administrator's designee, may apply to the Attorney General for a... application to the Attorney General; (c) The patent under which a patent license is sought in the application...

  7. New applications of near infrared spectroscopy in the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Groenewald, C.A. (Peter Rassloff Instruments and Services, Norwood, South Africa)

    The near infrared spectroscopic method of analysis was initially developed for rapid analyses of protein in wheat. A brief explanation of the theory and history of near infrared spectroscopic analysis will be given. Research was done on the application of near infrared spectroscopic (NIR) in the food industry. Especially exciting was the breakthrough achieved in applying NIR to determine the dry solid content of bread. Such application could revolutionise the baking industry. Results will also be presented of research done on the application of NIR techniques for the determination of protein and fat in bread based on dry matter; hardness in wheat; absorption and sedimentation in pasta products; and use in process control in snack products manufacture. The limitations that were found in the application of NIR analysis will also be covered. The developments in NIR technology may result in these methods becoming standard practice in many food laboratories.

  8. New applications of near infrared spectroscopy in the food industry

    International Nuclear Information System (INIS)

    Groenewald, C.A.

    1984-01-01

    The near infrared spectroscopic method of analysis was initially developed for rapid analyses of protein in wheat. A brief explanation of the theory and history of near infrared spectroscopic analysis will be given. Research was done on the application of near infrared spectroscopic (NIR) in the food industry. Especially exciting was the breakthrough achieved in applying NIR to determine the dry solid content of bread. Such application could revolutionise the baking industry. Results will also be presented of research done on the application of NIR techniques for the determination of protein and fat in bread based on dry matter; hardness in wheat; absorption and sedimentation in pasta products; and use in process control in snack products manufacture. The limitations that were found in the application of NIR analysis will also be covered. The developments in NIR technology may result in these methods becoming standard practice in many food laboratories

  9. Bromelain: an overview of industrial application and purification strategies.

    Science.gov (United States)

    Arshad, Zatul Iffah Mohd; Amid, Azura; Yusof, Faridah; Jaswir, Irwandi; Ahmad, Kausar; Loke, Show Pau

    2014-09-01

    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.

  10. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications

    Science.gov (United States)

    Yu, Anthony C.; Chen, Haoxuan; Chan, Doreen; Agmon, Gillie; Stapleton, Lyndsay M.; Sevit, Alex M.; Tibbitt, Mark W.; Acosta, Jesse D.; Zhang, Tony; Franzia, Paul W.; Langer, Robert; Appel, Eric A.

    2016-12-01

    Hydrogels are a class of soft material that is exploited in many, often completely disparate, industrial applications, on account of their unique and tunable properties. Advances in soft material design are yielding next-generation moldable hydrogels that address engineering criteria in several industrial settings such as complex viscosity modifiers, hydraulic or injection fluids, and sprayable carriers. Industrial implementation of these viscoelastic materials requires extreme volumes of material, upwards of several hundred million gallons per year. Here, we demonstrate a paradigm for the scalable fabrication of self-assembled moldable hydrogels using rationally engineered, biomimetic polymer-nanoparticle interactions. Cellulose derivatives are linked together by selective adsorption to silica nanoparticles via dynamic and multivalent interactions. We show that the self-assembly process for gel formation is easily scaled in a linear fashion from 0.5 mL to over 15 L without alteration of the mechanical properties of the resultant materials. The facile and scalable preparation of these materials leveraging self-assembly of inexpensive, renewable, and environmentally benign starting materials, coupled with the tunability of their properties, make them amenable to a range of industrial applications. In particular, we demonstrate their utility as injectable materials for pipeline maintenance and product recovery in industrial food manufacturing as well as their use as sprayable carriers for robust application of fire retardants in preventing wildland fires.

  11. EPRI expert system activities for nuclear utility industry application

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    This paper reports on expert systems which have reached a level of maturity where they offer considerable benefits for the nuclear utility industry. The ability of expert systems to enhance expertise makes them an important tool for the nuclear utility industry in the areas of engineering, operations and maintenance. Benefits of expert system applications include comprehensive and consistent reasoning, reduction of time required for activities, retention of human expertise and ability to utilize multiple experts knowledge for an activity. The Electric Power Research Institute (EPRI) has been performing four basic activities to help the nuclear industry take advantage of this expert system technology. The first is the development of expert system building tools which are tailored to nuclear utility industry applications. The second is the development of expert system applications. The third is work in developing a methodology for verification and validation of expert systems. The last is technology transfer activities to help the nuclear utility industry benefit from expert systems. The purpose of this paper is to describe the EPRI activities

  12. Studying and modelling variable density turbulent flows for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.; Simonin, O.; Caruso, A.; Delalondre, C.; Dalsecco, S.; Mechitoua, N.

    1996-07-01

    Industrial applications are presented in the various fields of interest for EDF. A first example deals with transferred electric arcs couplings flow and thermal transfer in the arc and in the bath of metal and is related with applications of electricity. The second one is the combustion modelling in burners of fossil power plants. The last one comes from the nuclear power plants and concerns the stratified flows in a nuclear reactor building. (K.A.). 18 refs.

  13. Studying and modelling variable density turbulent flows for industrial applications

    International Nuclear Information System (INIS)

    Chabard, J.P.; Simonin, O.; Caruso, A.; Delalondre, C.; Dalsecco, S.; Mechitoua, N.

    1996-07-01

    Industrial applications are presented in the various fields of interest for EDF. A first example deals with transferred electric arcs couplings flow and thermal transfer in the arc and in the bath of metal and is related with applications of electricity. The second one is the combustion modelling in burners of fossil power plants. The last one comes from the nuclear power plants and concerns the stratified flows in a nuclear reactor building. (K.A.)

  14. Formal methods for industrial critical systems a survey of applications

    CERN Document Server

    Margaria-Steffen, Tiziana

    2012-01-01

    "Today, formal methods are widely recognized as an essential step in the design process of industrial safety-critical systems. In its more general definition, the term formal methods encompasses all notations having a precise mathematical semantics, together with their associated analysis methods, that allow description and reasoning about the behavior of a system in a formal manner.Growing out of more than a decade of award-winning collaborative work within the European Research Consortium for Informatics and Mathematics, Formal Methods for Industrial Critical Systems: A Survey of Applications presents a number of mainstream formal methods currently used for designing industrial critical systems, with a focus on model checking. The purpose of the book is threefold: to reduce the effort required to learn formal methods, which has been a major drawback for their industrial dissemination; to help designers to adopt the formal methods which are most appropriate for their systems; and to offer a panel of state-of...

  15. Application of radiation in industrial processes (Paper No. IT-01)

    International Nuclear Information System (INIS)

    Murthy, T.S.

    1990-02-01

    The application of radiations both from gamma irradiation sources and electron beams has immense potential in diverse fields of industry and public health care programmes. The technical and economic effectiveness of radiation technology has been well demonstrated in different parts of the world and in India over last few years. The major applications for using this technology favourably considered all over the world include radiation sterilisation of medical products, hygienisation of sewage sludge, radiation processing of wood plastic composites, vulcanisation of natural rubber latex, cross linking of wires and cables using radiation, production of bio materials and drugs release systems and treatment of flue gases. Some of the areas which have been successfully exploited on an industrial or semi industrial scale in India and the current status of this programme is high lighted in this paper. (author). 9 refs

  16. Model Oriented Application Generation for Industrial Control Systems

    CERN Document Server

    Copy, B; Blanco Vinuela, E; Fernandez Adiego, B; Nogueira Ferandes, R; Prieto Barreiro, I

    2011-01-01

    The CERN Unified Industrial Control Systems framework (UNICOS) is a software generation methodology and a collection of development tools that standardizes the design of industrial control applications [1]. A Software Factory, named the UNICOS Application Builder (UAB) [2], was introduced to ease extensibility and maintenance of the framework, introducing a stable metamodel, a set of platformindependent models and platformspecific configurations against which code generation plugins and configuration generation plugins can be written. Such plugins currently target PLC programming environments (Schneider and SIEMENS PLCs) as well as SIEMENS WinCC Open Architecture SCADA (previously known as ETM PVSS) but are being expanded to cover more and more aspects of process control systems. We present what constitutes the UNICOS metamodel and the models in use, how these models can be used to capture knowledge about industrial control systems and how this knowledge can be leveraged to generate both code and configuratio...

  17. Radioisotope applications for troubleshooting and optimizing industrial processes

    International Nuclear Information System (INIS)

    2002-03-01

    This brochure is intended to present the state-of -the-art in techniques for gamma scanning and neutron backscattering for troubleshooting inspection of columns, vessels, pipes, and tanks in many industrial processing sectors. It aims to provide not only an extensive description of what can be achieved by the application of radioisotope sealed sources but also sound experience-based guidance on all aspects of designing, carrying out and interpreting the results of industrial applications. Though it is written primarily for radioisotope practitioners, the brochure is also intended to function as an ambassador for the technology by promoting its benefits to governments, to the general public and to industrial end-users

  18. Design and applications of Computed Industrial Tomographic Imaging System (CITIS)

    International Nuclear Information System (INIS)

    Ramakrishna, G.S.; Umesh Kumar; Datta, S.S.; Rao, S.M.

    1996-01-01

    Computed tomographic imaging is an advanced technique for nondestructive testing (NDT) and examination. For the first time in India a computed aided tomography system has been indigenously developed in BARC for testing industrial components and was successfully demonstrated. The system in addition to Computed Tomography (CT) can also perform Digital Radiography (DR) to serve as a powerful tool for NDT applications. It has wider applications in the fields of nuclear, space and allied fields. The authors have developed a computed industrial tomographic imaging system with Cesium 137 gamma radiation source for nondestructive examination of engineering and industrial specimens. This presentation highlights the design and development of a prototype system and its software for image reconstruction, simulation and display. The paper also describes results obtained with several tests specimens, current development and possibility of using neutrons as well as high energy x-rays in computed tomography. (author)

  19. A new e-beam application in the pharmaceutical industry

    International Nuclear Information System (INIS)

    Sadat, Theo; Malcolm, Fiona

    2005-01-01

    The paper presents a new electron beam application in the pharmaceutical industry: an in-line self-shielded atropic transfer system using electron beam for surface decontamination of products entering a pharmaceutical filling line. The unit was developed by Linac Technologies in response to the specifications of a multi-national pharmaceutical company, to solve the risk of microbial contamination entering a filling line housed inside an isolator. In order to fit the sterilization unit inside the pharmaceutical plant, a 'miniature' low-energy (200 keV) electron beam accelerator and e-beam tunnel were designed, all conforming to the pharmaceutical good manufacturing practice (GMP) regulations. Process validation using biological indicators is described, with reference to the regulations governing the pharmaceutical industry. Other industrial applications of a small-sized self-shielded electron beam sterilization unit are mentioned

  20. Applications of prebiotics in food industry: A review.

    Science.gov (United States)

    Singla, Vinti; Chakkaravarthi, S

    2017-12-01

    Benefits of prebiotics for stimulating a healthy intestinal tract are well known. From suppression of pathogens to proliferation of indigenous bacteria of intestines, prebiotics have it all. Since the research on the scope of prebiotics is expanding, new applications are coming up every day thus upgrading the choices consumer has for a healthy living. Incorporation of prebiotics in a wide range of products that food industry offers on shelf is an innovative way to replace fat and sugars along with enhancing the mouthfeel by providing better tongue lubrication. In some cases, the thermal stability of the product is improved along with other sensory, textural and physiological benefits. This paper gives an overview of the various prebiotics available from different sources and their applications in various segments of food industry, notably dairy, beverage, processed fruit-vegetable, bakery, confectionary, extruded snack, sweetener, infant formula, pet food and livestock industry. The effects observed on addition of various prebiotics are also elaborated.

  1. Industrial applications of heavy ions beams at GANIL

    International Nuclear Information System (INIS)

    Bieth, C.; Van Den Bossche, M.; Busardo, D.; Balanzat, E.; Meslage, J.; Pierrard, P.

    1988-01-01

    After a year of research and development, BSI and GANIL started an industrial production of microporous membranes. The status of the technical and commercial problems is given. With the collaboration of indutrial firms, other applications are studied, like: non reflecting surfaces, ion implantation, surface treatment, radiation damage

  2. Hard facings used in welded joints. Industrial applications

    International Nuclear Information System (INIS)

    Delair, J.

    1998-01-01

    In this article, two industrial application cases of special hard facings used in offshore and nuclear fabrications are described into details. These hard facings concern more particularly 1)the heterogeneous joints of a martensitic steel on an ordinary carbon steel 2)the homogeneous joints of a high resistive low alloy carbon steel. (O.M.)

  3. Applications of radio frequency identification systems in the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Hind, D [Davis Derby Limited (United Kingdom)

    1994-12-31

    The paper describes the application of Radio Frequency Identification (RFID) systems in the mining industry for both surface and underground mines. The history of the RFID system, types available, the transponder, and the various techniques used are described and compared. The design and certification of a system for use in a hazardous area are described, noting the hazard of inadvertent detonator ignition. 2 refs.

  4. Effects of industrial effluents and fertilizer applications on the growth ...

    African Journals Online (AJOL)

    A field experiment was conducted in south-western Nigeria to determine the effects of different fertilizer applications on the growth performance of sunflower when cultivated in an Alfisols contaminated with effluents from a paints industry. This was with a view to assessing the yield and nutrient quality of harvested sunflower ...

  5. Possibilities of radioisotopic fluorescence analysis application in copper industry

    International Nuclear Information System (INIS)

    Parus, J.; Kierzek, J.

    1983-01-01

    The main applications of X-ray fluorescence analysis in copper industry such as: copper ores and other materials from flotation analysis, lead and silver determination in blister copper, analysis of metallurgic dusts and copper base alloys analysis are presented. (A.S.)

  6. Industrial robots in Europe - market, applications and developments

    Science.gov (United States)

    Schraft, R. D.

    1975-01-01

    Different companies involving a wide range of products and manufacturing processes were studied to define the requirements for industrial robots. A survey of all such automatic units offered on the world market was made to establish a data base. Principal applications include coating, spot welding, and loading and unloading operations.

  7. Industrial applications of multi-functional, multi-phase reactors

    NARCIS (Netherlands)

    Harmsen, G.J.; Chewter, L.A.

    1999-01-01

    To reveal trends in the design and operation of multi-functional, multi-phase reactors, this paper describes, in historical sequence, three industrial applications of multi-functional, multi-phase reactors developed and operated by Shell Chemicals during the last five decades. For each case, we

  8. Application of combined heat and power in Malaysia Industrial Sector

    International Nuclear Information System (INIS)

    Zaredah Hashim; Faridah Mohd Taha

    2010-01-01

    Malaysia is still working on continuing its economic growth especially in the industrial sector in order to achieve vision 2020. The rapid industrialization process has caused increment in the energy demand, which simultaneously increases carbon dioxide (CO 2 ) emissions. Energy efficient technologies are strongly needed for reducing the energy requirement and to avoid the depleting of energy resources. This project focused on the application of integrated resource planning (IRP) in industrial sector using Combined Heat and Power (CHP), as a strategy for Demand Side Management (DSM). This approach is another way for meeting near and future energy requirement in Malaysia's industrial sector. Two scenarios which are Business As Usual (BAU) and CHP were developed using End Use Model EUM), to forecast the energy demand and CO 2 emission in Malaysia's industries. The effectiveness of the proposed method is then simulated using Long Range Energy Alternative Planning System (LEAP) software and Comparative Model for Projects of Engineering Economics and Energy Environmental Development (COMPEED) analysis. Evaluations were based on the potential of energy saving and CO 2 reduction. Scope of research was limited to pulp and paper industrial sub sector. The research data were extracted from Energy Audit Reports conducted by Malaysia Energy Center (PTM). An engineering calculation was demonstrated. Two designs of CHP applications for the pulp and paper industrial sector are according to heating and electricity sizing. It was found that the most energy efficient and CO 2 reduction for Malaysia's industrial sector is the CHP based on heating requirement. The method was found to be able of save fuel and GHG emission compared to the reference case. (author)

  9. Parametric boundary reconstruction algorithm for industrial CT metrology application.

    Science.gov (United States)

    Yin, Zhye; Khare, Kedar; De Man, Bruno

    2009-01-01

    incorporated as prior knowledge to improve the convergence of an iterative approach. In this paper, the feasibility of parametric boundary reconstruction algorithm is demonstrated with both simple and complex simulated objects. Finally, the proposed algorithm is applied to the experimental industrial CT system data.

  10. Comparison of the effects of hamstring stretching using proprioceptive neuromuscular facilitation with prior application of cryotherapy or ultrasound therapy

    Science.gov (United States)

    Magalhães, Francisco Elezier Xavier; Junior, Arlindo Rodrigues de Mesquita; Meneses, Harnold’s Tyson de Sousa; Moreira dos Santos, Rayele Pricila; Rodrigues, Ezaine Costa; Gouveia, Samara Sousa Vasconcelos; Gouveia, Guilherme Pertinni de Morais; Orsini, Marco; Bastos, Victor Hugo do Vale; Machado, Dionis de Castro Dutra

    2015-01-01

    [Purpose] Stretching using proprioceptive neuromuscular facilitation involve physiological reflex mechanisms through submaximal contraction of agonists which activate Golgi organ, promoting the relaxation reflex. The aim of this study was to evaluate the effects of proprioceptive neuromuscular facilitation alone and with prior application of cryotherapy and thermotherapy on hamstring stretching. [Subjects and Methods] The sample comprised of 32 young subjects with hamstring retraction of the right limb. The subjects were randomly allocated to four groups: the control, flexibility PNF, flexibility PNF associated with cryotherapy, flexibility PNF in association with ultrasound therapy. [Results] After 12 stretching sessions, experimental groups showed significant improvements compared to the control group. Moreover, we did not find any significant differences among the experimental groups indicating PNF stretching alone elicits similar results to PNF stretching with prior administration of cryotherapy or thermotherapy. [Conclusion] PNF without other therapy may be a more practical and less expensive choice for clinical care. PMID:26157261

  11. [FADCC in NIHS for prior consultation system of application of food additives].

    Science.gov (United States)

    Akiyama, Hiroshi; Sato, Kyoko

    2015-01-01

    An increasing number of inquiries about application of food additives have been made from businesses in and outside Japan. The Ministry of Health, Labour and Welfare (MHLW) is requested to expedite the procedure for designation and revision of use standards. In June 2014, the MHLW set up a center for consultation on application concerning food additives (Food Additive Designation Consultation Center, FADCC) in the National Institute of Health Sciences, aiming to smoothly and expeditiously handle clerical work for designation or revision of the use standards. FADCC gives advice on how to prepare documents on the information such as physicochemical characteristics, effectiveness, safety, daily intake and use standards, based on actual cases and experience.

  12. Included or excluded: an analysis of the application of the free, prior ...

    African Journals Online (AJOL)

    ... which are often conspicuously lacking during land grabbing contracts, its application in and during land grabbing might be useful to set the basis for the recognition, promotion, and enforcement of local communities' rights in Cameroon. Keywords: Cross-border insolvency; companies; list of persons who may seek a stay ...

  13. Co-ensiling as a new technique for long-term storage of agro-industrial waste with low sugar content prior to anaerobic digestion.

    Science.gov (United States)

    Hillion, Marie-Lou; Moscoviz, Roman; Trably, Eric; Leblanc, Yoann; Bernet, Nicolas; Torrijos, Michel; Escudié, Renaud

    2018-01-01

    Biodegradable wastes produced seasonally need an upstream storage, because of the requirement for a constant feeding of anaerobic digesters. In the present article, the potential of co-ensiling biodegradable agro-industrial waste (sugar beet leaves) and lignocellulosic agricultural residue (wheat straw) to obtain a mixture with low soluble sugar content was evaluated for long-term storage prior to anaerobic digestion. The aim is to store agro-industrial waste while pretreating lignocellulosic biomass. The dynamics of co-ensiling was evaluated in vacuum-packed bags at lab-scale during 180 days. Characterization of the reaction by-products and microbial communities showed a succession of metabolic pathways. Even though the low initial sugars content was not sufficient to lower the pH under 4.5 and avoid undesirable fermentations, the methane potential was not substantially impacted all along the experiment. No lignocellulosic damages were observed during the silage process. Overall, it was shown that co-ensiling was effective to store highly fermentable fresh waste evenly with low sugar content and offers new promising possibilities for constant long-term supply of industrial anaerobic digesters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Applications of radionuclides in industry; Applications des radioelements a l'industrie

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, P [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires

    1955-07-01

    After a brief recall of a few concepts (mass number, charge and beams properties) and the description of used detectors (ionization chamber, Geiger-Mueller counter, scintillation counters), some radionuclides applications are described. In a first part, the well-developed applications are presented in three distinct groups: continuous applications such as {beta} and {gamma} gauges (determination hydrogen content of an hydrocarbon and content of an emulsion; discharge of static electricity), discontinuous applications such as radiography and autoradiography, wear or manufacture problems (distribution of a fungicide on tobacco) and finally, applications in research laboratories such as diffusion, exchange and solubility. It also describes the applications which are still in development such as the action of beams on matter (reticulation and degradation of polymers, monomers polymerisation, cold sterilization). In conclusion, few advices on the opportunity of such applications and the choice of the radionuclides are given. (M.P.)

  15. Mechanical vapor compression refrigeration for low temperature industrial applications today

    International Nuclear Information System (INIS)

    Ferguson, J.E.

    1987-01-01

    If the super conductor industry settles out at a temperature of -100 0 F or above, mechanical refrigeration will be vying for the cooling business. Today there very definitely is a break point in the application of equipment at approximately -120 0 F or 189 0 K. Other technologies are generally utilized below this level. However, with market potential comes invention and breakthroughs in refrigeration can also occur. Today standard refrigeration systems are cost effective, reliable and produced in the millions for high temperature applications of +10 0 F to +40 0 F evaporator temperature. Lower temperatures require additional hardware, consume additional power and are produced today in limited quantities for special applications

  16. Potential Applications of Carbohydrases Immobilization in the Food Industry

    Science.gov (United States)

    Contesini, Fabiano Jares; de Alencar Figueira, Joelise; Kawaguti, Haroldo Yukio; de Barros Fernandes, Pedro Carlos; de Oliveira Carvalho, Patrícia; Nascimento, Maria da Graça; Sato, Hélia Harumi

    2013-01-01

    Carbohydrases find a wide application in industrial processes and products, mainly in the food industry. With these enzymes, it is possible to obtain different types of sugar syrups (viz. glucose, fructose and inverted sugar syrups), prebiotics (viz. galactooligossacharides and fructooligossacharides) and isomaltulose, which is an interesting sweetener substitute for sucrose to improve the sensory properties of juices and wines and to reduce lactose in milk. The most important carbohydrases to accomplish these goals are of microbial origin and include amylases (α-amylases and glucoamylases), invertases, inulinases, galactosidases, glucosidases, fructosyltransferases, pectinases and glucosyltransferases. Yet, for all these processes to be cost-effective for industrial application, a very efficient, simple and cheap immobilization technique is required. Immobilization techniques can involve adsorption, entrapment or covalent bonding of the enzyme into an insoluble support, or carrier-free methods, usually based on the formation of cross-linked enzyme aggregates (CLEAs). They include a broad variety of supports, such as magnetic materials, gums, gels, synthetic polymers and ionic resins. All these techniques present advantages and disadvantages and several parameters must be considered. In this work, the most recent and important studies on the immobilization of carbohydrases with potential application in the food industry are reviewed. PMID:23344046

  17. Design and Test of Object Aligning Grippers for Industrial Applications

    DEFF Research Database (Denmark)

    Ellekilde, Lars-Peter; Petersen, Henrik Gordon

    2006-01-01

    In this paper we will present a new concept for gripping objects in industrial applications. We assume that a priori, the object pose is only known with a relative low accuracy. Despite this, our method can lead to high accuracy gripping suitable for e.g. industrial assembly. Our concept...... is to augment a simple parallel gripper by mounting a set of object speci?c jaws. Given the right shapes these jaws enable the gripper to automatically align the object, and thereby compensate for errors in the original object pose estimation. We will introduce a couple of automatic and semi-automatic design...

  18. Application Filters for TCP/IP Industrial Automation Protocols

    Science.gov (United States)

    Batista, Aguinaldo B.; Kobayashi, Tiago H.; Medeiros, João Paulo S.; Brito, Agostinho M.; Motta Pires, Paulo S.

    The use of firewalls is a common approach usually meant to secure Automation Technology (AT) from Information Technology (TI) networks. This work proposes a filtering system for TCP/IP-based automation networks in which only certain kind of industrial traffic is permitted. All network traffic which does not conform with a proper industrial protocol pattern or with specific rules for its actions is supposed to be abnormal and must be blocked. As a case study, we developed a seventh layer firewall application with the ability of blocking spurious traffic, using an IP packet queueing engine and a regular expression library.

  19. Synthesis of industrial applications of local approach to fracture models

    International Nuclear Information System (INIS)

    Eripret, C.

    1993-03-01

    This report gathers different applications of local approach to fracture models to various industrial configurations, such as nuclear pressure vessel steel, cast duplex stainless steels, or primary circuit welds such as bimetallic welds. As soon as models are developed on the basis of microstructural observations, damage mechanisms analyses, and fracture process, the local approach to fracture proves to solve problems where classical fracture mechanics concepts fail. Therefore, local approach appears to be a powerful tool, which completes the standard fracture criteria used in nuclear industry by exhibiting where and why those classical concepts become unvalid. (author). 1 tab., 18 figs., 25 refs

  20. Technology and application of two sets of industrial electron accelerators

    International Nuclear Information System (INIS)

    Hua Degen

    2000-01-01

    The radiation industry in China Academy of Engineering Physics (CAEP) has had a big scale, and the two sets of industrial electron accelerators play important roles. The Electron Processing System (E.P.S), which was introduced in 1987, is a powerful electron accelerator. And the 10 MeV Accelerator, which is a traveling wave linear electron accelerator, has the higher electron energy. Both of the stes are equipped the driving devices under the beam, and has made a considerable economic results. This article describes the technology and application of the two electron accelerators. (author)

  1. Applications of industrial computed tomography at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Kruger, R.P.; Morris, R.A.; Wecksung, G.W.

    1980-01-01

    A research and development program was begun three years ago at the Los Alamos Scientific Laboratory (LASL) to study nonmedical applications of computed tomography. This program had several goals. The first goal was to develop the necessary reconstruction algorithms to accurately reconstruct cross sections of nonmedical industrial objects. The second goal was to be able to perform extensive tomographic simulations to determine the efficacy of tomographic reconstruction with a variety of hardware configurations. The final goal was to construct an inexpensive industrial prototype scanner with a high degree of design flexibility. The implementation of these program goals is described

  2. Industrial application of thermal image processing and thermal control

    Science.gov (United States)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  3. Industry approach to BE applications - Past and future

    International Nuclear Information System (INIS)

    Martin, R.P.

    2004-01-01

    With each passing year the nuclear industry, like all private industry, becomes more reliant on computer-based analysis tools. While this is primarily driven by competition and the natural advancement of computing power, computer analysis tools are also an excellent way to capture engineering know-how. As the average age of nuclear industry personnel approaches 50 years, this becomes increasingly important. The engineers that are retiring today have witnessed a remarkable evolution of computational tools during their tenure. For some, it is the difference between a pencil-and slide- rule and a desktop supercomputer. A curious aspect of this evolution is the question How has industry capitalized on all this advancement? Of course, the answer depends on who is being asked. Part of the answer must come from a historical review. This paper takes an engineer's approach to assessing history. In contrast, a mathematician's approach might be to look at where we have started and where we are today and fit a plausible story to the data. Engineers, on the other hand, have to consider other motivations. Webster Dictionary defines engineering as the application of scientific and mathematical principles to practical ends such as the design, manufacture, and operation of efficient and economical structures, machines, processes, and systems. Clearly, the engineers approach to any problem begins with science and math. The key difference to how an engineer approaches a problem is that 'practical', 'efficient', and 'economical' are on equal footing with 'scientific and mathematical principles'. Basically, engineers go through the same 'curve fitting' approach to every problem, but include more unknowns. Hence, the standard engineers' model is y = C 1 (science) + C 2 (math) + C 3 (practicality) + C 4 (efficiency) C 5 (economics). Computer codes used in the nuclear industry represent a broad spectrum of engineering applications including computer-aided design, structural and mechanical

  4. Application of system-level FMEA in the nuclear industry

    International Nuclear Information System (INIS)

    Crocker, W.; Parmar, R.; Salvador, M.; Forystek, A.; Xu, C.

    2012-01-01

    Failure Modes and Effects Analysis (FMEA) is an analytical technique used to assess risk that is applied in various industries such as aerospace, automotive and health care. A recent application in the nuclear industry of FMEA methodology to support the design modification process at a major electrical utility in Ontario is examined. This application of FMEA involves assessing proposed design changes by systematically identifying various component failure modes and their effect on the parent system with respect to the related employee, environmental, production and nuclear safety impact. In doing so, any design weaknesses are identified along with potential corrective actions such as adding redundant components. FMEA is being applied early in the design process with the focus on finding the problems before equipment is installed where failures may manifest into serious safety and economic consequences. To illustrate the application of FMEA in the nuclear industry, the results of a recent study will be presented with a walk through of the analysis process along with overall study findings. The study involved application of FMEA to support a design modification to replace the existing Condenser Steam Dump Valve (CSDV) actuator and top works (associated instrumentation, e.g., solenoid valves) on an operating reactor. (author)

  5. Application of system-level FMEA in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, W.; Parmar, R.; Salvador, M. [AMEC NSS Ltd., Toronto, Ontario (Canada); Forystek, A.; Xu, C. [Bruce Power, Tiverton, Ontario (Canada)

    2012-07-01

    Failure Modes and Effects Analysis (FMEA) is an analytical technique used to assess risk that is applied in various industries such as aerospace, automotive and health care. A recent application in the nuclear industry of FMEA methodology to support the design modification process at a major electrical utility in Ontario is examined. This application of FMEA involves assessing proposed design changes by systematically identifying various component failure modes and their effect on the parent system with respect to the related employee, environmental, production and nuclear safety impact. In doing so, any design weaknesses are identified along with potential corrective actions such as adding redundant components. FMEA is being applied early in the design process with the focus on finding the problems before equipment is installed where failures may manifest into serious safety and economic consequences. To illustrate the application of FMEA in the nuclear industry, the results of a recent study will be presented with a walk through of the analysis process along with overall study findings. The study involved application of FMEA to support a design modification to replace the existing Condenser Steam Dump Valve (CSDV) actuator and top works (associated instrumentation, e.g., solenoid valves) on an operating reactor. (author)

  6. Safety applications of computer based systems for the process industry

    International Nuclear Information System (INIS)

    Bologna, Sandro; Picciolo, Giovanni; Taylor, Robert

    1997-11-01

    Computer based systems, generally referred to as Programmable Electronic Systems (PESs) are being increasingly used in the process industry, also to perform safety functions. The process industry as they intend in this document includes, but is not limited to, chemicals, oil and gas production, oil refining and power generation. Starting in the early 1970's the wide application possibilities and the related development problems of such systems were recognized. Since then, many guidelines and standards have been developed to direct and regulate the application of computers to perform safety functions (EWICS-TC7, IEC, ISA). Lessons learnt in the last twenty years can be summarised as follows: safety is a cultural issue; safety is a management issue; safety is an engineering issue. In particular, safety systems can only be properly addressed in the overall system context. No single method can be considered sufficient to achieve the safety features required in many safety applications. Good safety engineering approach has to address not only hardware and software problems in isolation but also their interfaces and man-machine interface problems. Finally, the economic and industrial aspects of the safety applications and development of PESs in process plants are evidenced throughout all the Report. Scope of the Report is to contribute to the development of an adequate awareness of these problems and to illustrate technical solutions applied or being developed

  7. Layered Thermal Insulation Systems for Industrial and Commercial Applications

    Science.gov (United States)

    Fesmire, James E.

    2015-01-01

    From the high performance arena of cryogenic equipment, several different layered thermal insulation systems have been developed for industrial and commercial applications. In addition to the proven areas in cold-work applications for piping and tanks, the new Layered Composite Insulation for Extreme Environments (LCX) has potential for broader industrial use as well as for commercial applications. The LCX technology provides a unique combination of thermal, mechanical, and weathering performance capability that is both cost-effective and enabling. Industry applications may include, for example, liquid nitrogen (LN2) systems for food processing, liquefied natural gas (LNG) systems for transportation or power, and chilled water cooling facilities. Example commercial applications may include commercial residential building construction, hot water piping, HVAC systems, refrigerated trucks, cold chain shipping containers, and a various consumer products. The LCX system is highly tailorable to the end-use application and can be pre-fabricated or field assembled as needed. Product forms of LCX include rigid sheets, semi-flexible sheets, cylindrical clam-shells, removable covers, or flexible strips for wrapping. With increasing system control and reliability requirements as well as demands for higher energy efficiencies, thermal insulation in harsh environments is a growing challenge. The LCX technology grew out of solving problems in the insulation of mechanically complex cryogenic systems that must operate in outdoor, humid conditions. Insulation for cold work includes equipment for everything from liquid helium to chilled water. And in the middle are systems for LNG, LN2, liquid oxygen (LO2), liquid hydrogen (LH2) that must operate in the ambient environment. Different LCX systems have been demonstrated for sub-ambient conditions but are capable of moderately high temperature applications as well.

  8. Multiplier Accounting of Indian Mining Industry: The Application

    Science.gov (United States)

    Hussain, Azhar; Karmakar, Netai Chandra

    2017-10-01

    In the previous paper (Hussain and Karmakar in Inst Eng India Ser, 2014. doi: 10.1007/s40033-014-0058-0), the concepts of input-output transaction matrix and multiplier were explained in detail. Input-output multipliers are indicators used for predicting the total impact on an economy due to changes in its industrial demand and output which is calculated using transaction matrix. The aim of this paper is to present an application of the concepts with respect to the mining industry, showing progress in different sectors of mining with time and explaining different outcomes from the results obtained. The analysis shows that a few mineral industries saw a significant growth in their multiplier values over the years.

  9. LEAN AND SIX SIGMA CONCEPTS APPLICATION IN PHARMACEUTICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Katarina Pavlović

    2012-03-01

    Full Text Available LEAN thinking and Six Sigma have been utilized by manufacturing industries to decrease cost and improve quality and productivity by reducing variation and production defects [1]. Because of the dramatic successes in manufacturing, there is rising interest among companies in the pharmaceutical industry, which chooses to implement LEAN in order to accomplish such goals as decreased wait time to release product to the market, reduce production waste, and improve communication with end users and raize quality level both in the production and in testing laboratories. In this article, basics of LEAN and Six Sigma are presented and suggestion was given for application of their concepts in pharmaceutical industry together with harmonization with legal regulation represented by requirements Good Manufacturing Practice (cGMP, in order to work "smarter", more cost-effectively and avoid was ting time and other resources.

  10. LEAN AND SIX SIGMA CONCEPTS - APPLICATION IN PHARMACEUTICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Katarina Pavlović

    2011-06-01

    Full Text Available LEAN thinking and Six Sigma have been utilized by manufacturing industries to decrease cost and improve quality and productivity by reducing variation and production defects. Because of the dramatic successes in manufacturing, there is rising interest among companies in the pharmaceutical industry, which choose to implement LEAN in order to accomplish such goals as decreased wait time to release product to the market, reduce production waste, improve communication with end users and raise quality level both in the production and in testing laboratories. In this article, basics of LEAN and Six Sigma are presented and suggestion was given for application of their concepts in pharmaceutical industry together with harmonization with legal regulation represented by requirements Good Manufacturing Practice (cGMP, in order to work "smarter", more cost- effectively and avoid wasting time and other resources.

  11. Plasma ion implantation technology for broad industrial application

    International Nuclear Information System (INIS)

    Deb, D.; Siambis, J.; Symons, R.

    1994-01-01

    The recently invented Plasma Ion Implantation (PII) process (1987) [J. R. Conrad, U.S. Patent No. 764394 (August 16, 1988)] is currently under intense industrial engineering investigation and development. A critical component of PII for broad industrial utilization is the availability of an efficient modulator system that applies the high voltage pulse to the workpiece. A modulator technology assessment and selection is carried out. The requirements of the PII process favor the selection of a hard-tube modulator. The PII process favors the application of beam switch tube technology such as the Litton L-5012 and L-5097. These Litton tubes have already been selected by LANL and utilized in their pilot engineering demonstration experiment with GM and the University of Wisconsin. The performance, physical operation, and potential enhancements of the Litton beam switch tubes L-5012 and L-5097 will be discussed in connection with the requirements of the emerging plasma ion implantation industrial modulator technology

  12. Cell surface engineering of industrial microorganisms for biorefining applications.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Evolutionary engineering of industrial microorganisms-strategies and applications.

    Science.gov (United States)

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  14. Terahertz thickness determination with interferometric vibration correction for industrial applications.

    Science.gov (United States)

    Pfeiffer, Tobias; Weber, Stefan; Klier, Jens; Bachtler, Sebastian; Molter, Daniel; Jonuscheit, Joachim; Von Freymann, Georg

    2018-05-14

    In many industrial fields, like automotive and painting industry, the thickness of thin layers is a crucial parameter for quality control. Hence, the demand for thickness measurement techniques continuously grows. In particular, non-destructive and contact-free terahertz techniques access a wide range of thickness determination applications. However, terahertz time-domain spectroscopy based systems perform the measurement in a sampling manner, requiring fixed distances between measurement head and sample. In harsh industrial environments vibrations of sample and measurement head distort the time-base and decrease measurement accuracy. We present an interferometer-based vibration correction for terahertz time-domain measurements, able to reduce thickness distortion by one order of magnitude for vibrations with frequencies up to 100 Hz and amplitudes up to 100 µm. We further verify the experimental results by numerical calculations and find very good agreement.

  15. Operation of industrial electrical substations. Part II: practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Jimenez, Juan J; Zerquera Izquierdo, Mariano D; Beltran Leon, Jose S; Garcia Martinez, Juan M; Alvarez Urena, Maria V; Meza Diaz, Guillermo [Universidad de Guadalajara (Mexico)]. E-mails: cheosj@yahoo.com; mdzi@hotmail.com; beltran5601@yahoo.com.mx; jmargarmtz@yahoo.com; victory_alvarez@telmexmail.com; depmec@cucei.udg.mx

    2013-03-15

    The practical application of the methodology explained in Part 1 in a Cuban industry is the principal objective of this paper. The calculus of the economical operation of the principal transformers of the industrial plant is shown of the one very easy form, as well as the determination of the equations of the losses when the transformers operate under a given load diagram. It is calculated the state load which will be passed to the operation in parallel. [Spanish] El objetivo principal de este trabajo es la aplicacion practica de la metodologia, en una industria cubana, que se explico en la Parte 1. El calculo de la operacion economica de los principales transformadores de la planta industrial se muestra de una forma muy facil, asi como la determinacion de las ecuaciones de las perdidas cuando los transformadores operan bajo un diagrama de carga dado. Se calcula la carga de estado que se pasa a la operacion en paralelo.

  16. Resolution improvement of brain PET images using prior information from MRI: clinical application on refractory epilepsy

    International Nuclear Information System (INIS)

    Silva-Rodríguez, Jesus; Tsoumpas, Charalampos; Aguiar, Pablo; Cortes, Julia; Urdaneta, Jesus Lopez

    2015-01-01

    An important counterpart of clinical Positron Emission Tomography (PET) for early diagnosis of neurological diseases is its low resolution. This is particularly important when evaluating diseases related to small hypometabolisms such as epilepsy. The last years, new hybrid systems combining PET with Magnetic Resonance (MR) has been increasingly used for several different clinical applications. One of the advantages of MR is the production of high spatial resolution images and a potential application of PET-MR imaging is the improvement of PET resolution using MR information. A potential advantage of resolution recovery of PET images is the enhancement of contrast delivering at the same time better detectability of small lesions or hypometabolic areas and more accurate quantification over these areas. Recently, Shidahara et al (2009) proposed a new method using wavelet transforms in order to produce PET images with higher resolution. We optimised Shidahara’s method (SFS-RR) to take into account possible shortcomings on the particular clinical datasets, and applied it to a group of patients diagnosed with refractory epilepsy. FDG-PET and MRI images were acquired sequentially and then co-registered using software tools. A complete evaluation of the PET/MR images was performed before and after the correction, including different parameters related with PET quantification, such as atlas-based metabolism asymmetry coefficients and Statistical Parametric Mapping results comparing to a database of 87 healthy subjects. Furthermore, an experienced physician analyzed the results of non-corrected and corrected images in order to evaluate improvements of detectability on a visual inspection. Clinical outcome was used as a gold standard. SFS-RR demonstrated to have a positive impact on clinical diagnosis of small hypometabolisms. New lesions were detected providing additional clinically relevant information on the visual inspection. SPM sensitivity for the detection of small

  17. Resolution improvement of brain PET images using prior information from MRI: clinical application on refractory epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Rodríguez, Jesus [Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela (Spain); Tsoumpas, Charalampos [University of Leeds, Leeds (United Kingdom); Aguiar, Pablo; Cortes, Julia [Nuclear Medicine Department, University Hospital (CHUS), Santiago de Compostela (Spain); Urdaneta, Jesus Lopez [Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela (Spain)

    2015-05-18

    An important counterpart of clinical Positron Emission Tomography (PET) for early diagnosis of neurological diseases is its low resolution. This is particularly important when evaluating diseases related to small hypometabolisms such as epilepsy. The last years, new hybrid systems combining PET with Magnetic Resonance (MR) has been increasingly used for several different clinical applications. One of the advantages of MR is the production of high spatial resolution images and a potential application of PET-MR imaging is the improvement of PET resolution using MR information. A potential advantage of resolution recovery of PET images is the enhancement of contrast delivering at the same time better detectability of small lesions or hypometabolic areas and more accurate quantification over these areas. Recently, Shidahara et al (2009) proposed a new method using wavelet transforms in order to produce PET images with higher resolution. We optimised Shidahara’s method (SFS-RR) to take into account possible shortcomings on the particular clinical datasets, and applied it to a group of patients diagnosed with refractory epilepsy. FDG-PET and MRI images were acquired sequentially and then co-registered using software tools. A complete evaluation of the PET/MR images was performed before and after the correction, including different parameters related with PET quantification, such as atlas-based metabolism asymmetry coefficients and Statistical Parametric Mapping results comparing to a database of 87 healthy subjects. Furthermore, an experienced physician analyzed the results of non-corrected and corrected images in order to evaluate improvements of detectability on a visual inspection. Clinical outcome was used as a gold standard. SFS-RR demonstrated to have a positive impact on clinical diagnosis of small hypometabolisms. New lesions were detected providing additional clinically relevant information on the visual inspection. SPM sensitivity for the detection of small

  18. Diaphragmless shock wave generators for industrial applications of shock waves

    Science.gov (United States)

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  19. Towards Industrial Application of Damage Models for Sheet Metal Forming

    Science.gov (United States)

    Doig, M.; Roll, K.

    2011-05-01

    Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.

  20. Smartphone and Mobile Application Utilization Prior to and Following Treatment Among Individuals Enrolled in Residential Substance Use Treatment

    Science.gov (United States)

    Dahne, Jennifer; Lejuez, C. W.

    2015-01-01

    Background Following completion of substance use treatment, it is crucial for patients to continue to utilize skills learned in treatment for optimal treatment outcomes. Mobile applications (apps) on smartphones offer a unique platform to promote utilization of evidence-based skills following completion of substance use treatment. Despite the promise of mobile apps and smartphones for treatment delivery, it remains unknown whether patients in substance use treatment in the United States have access to smartphones and utilize mobile apps on smartphones. The present study sought to determine smartphone utilization among individuals enrolled in one residential substance use treatment center in the U.S catering specifically to low-income adults. Methods Participants included 251 individuals at a residential substance use treatment center in Washington DC admitted to the center between March, 2014 and January, 2015. During the intake process, participants completed interviewer-administered demographics and psychiatric questionnaires as well as a self-report of technology utilization. Results Results indicated that the majority of patients in this residential substance use treatment center owned mobile phones prior to treatment entry (86.9%) and expected to own mobile phones after leaving treatment (92.6%). Moreover, the majority of these phones were (68.5%) or will be smartphones (72.4%) on which patients reported utilizing mobile applications (Prior to treatment: 61.3%; Post treatment: 64.3%) and accessing the internet (Prior to treatment: 61.3%; Post treatment: 65.9%). Conclusions Mobile phone and smartphone ownership among this sample were comparable to ownership among U.S. adults broadly. Findings suggest that smartphones and mobile apps may hold clinical utility for fostering continued use of treatment skills following substance use treatment completion. PMID:26231698

  1. Application of some advanced technologies in uranium industry

    International Nuclear Information System (INIS)

    Chen Zhenshi

    2004-01-01

    This presentation sets forth a brief survey of some current technologies (including exploration, mining, processing, tailings disposal, uranium mine reclamation, health and safety, etc.) in the uranium industry, relates that technology to economic, environmental and social concerns, and attempts to provide a projection of current trends into the future. Advances in technology are very important to the uranium industry because they provide various means to maintain future resource base through the discovery of new deposits; exploitation of lower-grade resources; and application of new technology to the known, but undeveloped resources. The application of advanced technology results in a continuing reduction in production costs; greatly increases in productivity; decreases or eliminates the adverse impacts on environment; as well as increases safety and well-being for employees. Thus, the sustainable development has been obtained in such aspects as resource base, economic exploitation, environmental protection and the ability to meet social obligations. (author)

  2. Magnetic multilayers and giant magnetoresistance fundamentals and industrial applications

    CERN Document Server

    2000-01-01

    Magneto-electronics is certainly one of the most rapidly expanding fields in basic research and industrial application. Magnetic multilayers are the key devices in this field; they allow the utilization of unique micromagnetic, magneto-optic, and magneto-electronic phenomena which cannot be realized on the basis of conventional materials. This book provides a detailed and well-balanced introduction to both the underlying physical fundamentals and the technological applications in terms of devices that are just entering the market or are of high industrial relevance for the near future. In particular, the employment of magnetic multilayers in magneto-optical recording, in GMR and spin-valve devices, and as configurations yielding a striking nonlinear magneto-optical response is discussed in a comprehensive way. This state-of-the-art review involves an extensive list of key references to original work and thus makes the vast knowledge already accumulated in the field accessible to the reader.

  3. RF linear accelerators for medical and industrial applications

    CERN Document Server

    Hanna, Samy

    2012-01-01

    This unique resource offers you a clear overview of medical and industrial accelerators. Using minimal mathematics, this book focuses on offering thorough explanations of basic concepts surrounding the operation of accelerators. you find well illustrated discussions designed to help you use accelerator-based systems in a safer, more productive, and more reliable manner.This practical book details the manufacturing process for producing accelerators for medical and industrial applications. You become knowledgeable about the commonly encountered real-world manufacturing issues and potential sources of defects which help you avoid costly production problems. From principles of operation and the role of accelerators in cancer radiation therapy, to manufacturing techniques and future trends in accelerator design and applications, this easy-to-comprehend volume quickly brings you up-to-speed with the critical concepts you need to understand for your work in the field.

  4. Study, design and manufacture eddy current probes for industry applications

    International Nuclear Information System (INIS)

    Nguyen Phuc; Nguyen Van Thuy; Vuong Binh Duong; Do Minh Duc; Trinh Dinh Truong; Tran Trong Duc; Do Tung Khanh; Dang Quang Trung

    2016-01-01

    This study is based on the studying, designing and manufacturing of eddy current probes for industry applications. The main tasks of this study include: i) Describes the overview and classification of eddy current probes (which can be classified into three categories based on the mode of operation: absolute eddy current probe, differential eddy current probe and reflect eddy current probe); ii) Describes the three methods of probe designing and manufacturing (including experimental, analytical and numerical designs); iii) Describes the designing and manufacturing of eddy current probes for industry applications, which based on experimental and analytical methods. Based on this study, we have successfully manufactured some current probes (including absolute eddy current probe, differential eddy current probe and reflect eddy current probe) for surface and tube inspections. (author)

  5. Reviews on laser cutting technology for industrial applications

    Science.gov (United States)

    Muangpool, T.; Pullteap, S.

    2018-03-01

    In this paper, an overview of the laser technology applied for the industrial has been reviewed. In general, this technology was used in several engineering applications such as industrial, medical, science, research sectors, etc. Focusing on the laser technology in the industrial section, it was, normally, employed for many purposes i.e. target marking, welding, drilling, and also cutting. Consequently, the laser cutting technology was, however, divided into three classifications YAG, CO2, and fiber laser, respectively. Each laser types have different advantages and disadvantages depending on the material type. The advantages by using laser cutting compared with the general cutting machines were exploited in terms of narrow kerf, high cutting speed, low heat-affected zone (HAZ), improve efficiency of the cutting process, high accuracy, etc. However, the main objectives from the technology used were increasing of the products and also decreasing the production cost. In the opposite way, some disadvantages of the technology were summarized by complexity to operate, high maintenance cost, and also high power consumption. In Thailand industry, there were many factories used this technology as a cutting process. Unfortunately, only few researches were published. It might explains that this technology were difficulty to develop, high investment, and also easy to import from aboard. For becoming to the Thailand 4.0 community, the Thailand industry might awareness to reduce the importing machine and boosting some policies to create novel innovative / know-how from the own country.

  6. The application of infrared thermometric technology in the nuclear industry

    International Nuclear Information System (INIS)

    Wang Wenjin

    1992-04-01

    In the process of bituminization of low level waste liquid, to measure the surface temperature of a moving barrel filled with waste liquid and bitumen is essential. Thus, a special infrared thermometer is developed. The property of radiation resistance for the lithium tantalate prober which is a main part of the thermometer was carefully tested. The test results show that in the nuclear industry the infrared thermometric technology is applicable

  7. Gas cluster ion beam equipments for industrial applications

    International Nuclear Information System (INIS)

    Matsuo, J.; Takaoka, G.H.; Yamada, I.

    1995-01-01

    30 keV and 200 keV gas cluster ion beam equipments have been developed for industrial applications. A gas cluster source with a non-cooled nozzle was used for both the equipments. Sufficient monomer ion suppression was achieved by using an ExB filter and chromatic lenses mass filter with low extraction voltage. These equipments are suitable to be used for low-damage surface treatment of metals, insulators and semiconductors without heavy metal contamination. (orig.)

  8. Application of radiation technology for industry and environmental protection

    International Nuclear Information System (INIS)

    Sueo Machi

    1996-01-01

    The world population today is 5.7 billion and increasing by 94 million per year. In order to meet the increasing consumption of food and energy due to the tremendous population growth, unproved technologies which are environmentally friendly, are indispensable. In this context. a number of advanced technologies have been brought about by the LISC of radiation and isotopes. This paper highlights radiation technology, applications in industry, environmental conservation, and agriculture

  9. Industrial applications and current trends in supercritical fluid technologies

    OpenAIRE

    Gamse Thomas

    2005-01-01

    Supercritical fluids have a great potential for wide fields of processes Although CO2 is still one of the most used supercritical gases, for special purposes propane or even fluorinated-chlorinated fluids have also been tested. The specific characteristics of supercritical fluids behaviour were analyzed such as for example the solubilities of different components and the phase equilibria between the solute and solvent. The application at industrial scale (decaffeinating of tea and coffee, hop...

  10. Application of CPLD in the industrial CT system

    International Nuclear Information System (INIS)

    Qi Mingrui; Li Jianmin; Zhao Haotong

    2004-01-01

    The application of CPLD (Complex Programmable Logic Devices) in the industrial CT system is discussed. The paper gives an architecture design and the realization of synchronized trigger module in the scan control sub-system; and also presents the circuit diagram and some result in detail. In the experimental CT system, it is well proved that the application of in-system programmable device supplies many advantages: the complexion of system and circuit is reduced; the process of debug and test is very simple; the system is flexible and the testing time is short. (authors)

  11. Applications of radiation technology and isotopes in industry

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [International Atomic Energy Agency, Vienna (Austria)

    1994-12-31

    This paper reports the current status of applications of radiation technology and radioisotopes in industries, environmental conservation and medical products. The topics discussed are radiation processing - features and advantages, radiation sources, polymeric products, radiation cross-linking and grafting of polymers, radiation curing of surface coating, new developments; sterilization of medical products, applications for environmental protection i.e. cleaning the flue gases, disinfection of sewage and its recycling; nucleonic control system (NCS); major mechanisms of implementation of the Agency`s programme for technology transfer - research contract programme, model projects and technical cooperation projects.

  12. 10 MeV RF electron linac for industrial applications

    International Nuclear Information System (INIS)

    2017-01-01

    Electron linacs have found numerous applications in the field of radiation processing on an industrial scale. High power RF electron linacs are commonly used for food irradiation, medical sterilization, cross-linking of polymers, etc. For this purpose, the 10 MeV RF linac has been indigenously designed, developed, commissioned and is being used regularly at 3 kW beam power. This paper gives a brief description of the linac and its utilization for various applications. Safety considerations and regulatory aspects of the linac are also discussed

  13. The application of mean control chart in managing industrial processes

    Directory of Open Access Journals (Sweden)

    Papić-Blagojević Nataša

    2013-01-01

    Full Text Available Along with the advent of mass production comes the problem of monitoring and maintaining the quality of the product, which stressed the need for the application of selected statistical and mathematical methods in the control process. The main objective of applying the methods of statistical control is continuous quality improvement through permanent monitoring of the process in order to discover the causes of errors. Shewart charts are the most popular method of statistical process control, which performs separation of controlled and uncontrolled variations along with detection of increased variations. This paper presents the example of Shewart mean control chart with application in managing industrial process.

  14. Applications of radiation technology and isotopes in industry

    International Nuclear Information System (INIS)

    Sueo Machi

    1994-01-01

    This paper reports the current status of applications of radiation technology and radioisotopes in industries, environmental conservation and medical products. The topics discussed are radiation processing - features and advantages, radiation sources, polymeric products, radiation cross-linking and grafting of polymers, radiation curing of surface coating, new developments; sterilization of medical products, applications for environmental protection i.e. cleaning the flue gases, disinfection of sewage and its recycling; nucleonic control system (NCS); major mechanisms of implementation of the Agency's programme for technology transfer - research contract programme, model projects and technical cooperation projects

  15. Industrial applications of low-temperature plasma physics

    International Nuclear Information System (INIS)

    Chen, F.F.

    1995-01-01

    The application of plasma physics to the manufacturing and processing of materials may be the new frontier of our discipline. Already partially ionized discharges are used in industry, and the performance of plasmas has a large commercial and technological impact. However, the science of low-temperature plasmas is not as well developed as that of high-temperature, collisionless plasmas. In this paper several major areas of application are described and examples of forefront problems in each are given. The underlying thesis is that gas discharges have evolved beyond a black art, and that intellectually challenging problems with elegant solutions can be found. copyright 1995 American Institute of Physics

  16. Augmented reality application for industrial non-destructive inspection training

    Science.gov (United States)

    Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav

    2018-02-01

    Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.

  17. Protein engineering and its applications in food industry.

    Science.gov (United States)

    Kapoor, Swati; Rafiq, Aasima; Sharma, Savita

    2017-07-24

    Protein engineering is a young discipline that has been branched out from the field of genetic engineering. Protein engineering is based on the available knowledge about the proteins structure/function(s), tools/instruments, software, bioinformatics database, available cloned gene, knowledge about available protein, vectors, recombinant strains and other materials that could lead to change in the protein backbone. Protein produced properly from genetic engineering process means a protein that is able to fold correctly and to do particular function(s) efficiently even after being subjected to engineering practices. Protein is modified through its gene or chemically. However, modification of protein through gene is easier. There is no specific limitation of Protein Engineering tools; any technique that can lead to change the protein constituent of amino acid and result in the modification of protein structure/function is in the frame of Protein Engineering. Meanwhile, there are some common tools used to reach a specific target. More active industrial and pharmaceutical based proteins have been invented by the field of Protein Engineering to introduce new function as well as to change its interaction with surrounding environment. A variety of protein engineering applications have been reported in the literature. These applications range from biocatalysis for food and industry to environmental, medical and nanobiotechnology applications. Successful combinations of various protein engineering methods had led to successful results in food industries and have created a scope to maintain the quality of finished product after processing.

  18. Applications of neutron radiography for the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Barton, John P.

    2016-11-01

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are in construction and plans have been announced to increase the nuclear capacity further by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in this conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Included are reviews of the diverse techniques being applied in Europe, Japan, the United States, and at many other centers. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, the techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques can be of value in development of the present and future generations of nuclear power plants world-wide.

  19. Industrial applications of N3S finite element code

    International Nuclear Information System (INIS)

    Chabard, J.P.; Pot, G.; Martin, A.

    1993-12-01

    The Research and Development Division of EDF (French utilities) has been working since 1982 on N3S, a 3D finite element code for simulating turbulent incompressible flows (Chabard et al., 1992) which has many applications nowadays dealing with internal flows, thermal hydraulics (Delenne and Pot, 1993), turbomachinery (Combes and Rieutord, 1992). The size of these applications is larger and larger: calculations until 350 000 nodes are in progress (around 2 000 000 unknowns). To achieve so large applications, an important work has been done on the choice of efficient algorithms and on their implementation in order to reduce CPU time and memory allocation. The paper presents the central algorithm of the code, focusing on time and memory optimization. As an illustration, validation test cases and a recent industrial application are discussed. (authors). 11 figs., 2 tabs., 11 refs

  20. Trends for Electron Beam Accelerator Applications in Industry

    Science.gov (United States)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  1. Applications Of A Low Cost System For Industrial Automatic Inspection

    Science.gov (United States)

    Krey, C.; Ayache, A.; Bruel, A.

    1987-05-01

    In industrial environment, some repetitive tasks wich do not need a high degree of understanding, can be solved automatically owing to Vision. Among the systems available on the market, most of them are rather expensive with various capabilities. The described system is a modular system, built with some standard circuit boards. One of the advantages of this system is that its architecture can be redefined for each application, by assembling judiciously the standard modules. The vision system has been used successfully to sort fruits according to their colour and diameter. The system can sort 8 fruits per second on each sorting line and manage simultaneously up to 16 lines. An application of sheep skin cutting has been implemented too. After chemical and mechanical treatments, the skins present many defaults all around their contour, that must be cut off. A movable camera follows and inspects the contour ; the vision system determines where the cutting device must cut the skin. A third application has been implemented ; it concerns automatic recording and reproduction of logotypes. A moving camera driven by the system picks up the points, of the logotype contours. Before reproduction, programs can modify the logotypes shape, change the scale, and so on. For every application, the system uses the world smallest CCD camera developped in the laboratory. The small dimensions of the vision system and its low cost are major advantages for a wide use in industrial automatic inspection.

  2. Nanotechnology: current uses and future applications in the food industry.

    Science.gov (United States)

    Thiruvengadam, Muthu; Rajakumar, Govindasamy; Chung, Ill-Min

    2018-01-01

    Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.

  3. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  4. Nuclear and radiation applications in industry: Tools for innovation

    International Nuclear Information System (INIS)

    Machi, S.; Iyer, R.

    1994-01-01

    Applications of nuclear and radiation technologies have been contributing to industrial efficiency, energy conservation, and environmental protection for many years. Some of these are: Manufacturing industries: Radiation processing technologies are playing increasing roles during manufacturing of such everyday products as wire and cable, automobile tires, plastic films and sheets, and surface materials. Production processes: Other techniques employing radioisotope gauges are indispensable for on-line thickness measurements during paper, plastic, and steel plate production. Processing and quality checks are made using nucleonic control systems that are common features of industrial production lines. Sterilization of medical products using electron beam accelerators or cobalt-60 radiation is better than the conventional methods. Industrial safety and product quality: Non-destructive examination or testing using gamma- or X-ray radiography is widely used for checking welds, casting, machinery, and ceramics to ensure quality and safety. Additionally, radiotracer techniques are unique tools for the optimization of chemical processes in reactors, leakage detection, and wear and corrosion studies, for example. Environmental protection: An innovative technology using electron beams to simultaneously remove sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) has been under development. The electron beam technology is very cost competitive and its byproduct can be used as agricultural fertilizer

  5. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks

    Directory of Open Access Journals (Sweden)

    Jordan Chapman

    2018-06-01

    Full Text Available Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes with respect to sustainability and process efficiency. Enzyme catalysis has been scaled up for commercial processes in the pharmaceutical, food and beverage industries, although further enhancements in stability and biocatalyst functionality are required for optimal biocatalytic processes in the energy sector for biofuel production and in natural gas conversion. The technical barriers associated with the implementation of immobilized enzymes suggest that a multidisciplinary approach is necessary for the development of immobilized biocatalysts applicable in such industrial-scale processes. Specifically, the overlap of technical expertise in enzyme immobilization, protein and process engineering will define the next generation of immobilized biocatalysts and the successful scale-up of their induced processes. This review discusses how biocatalysis has been successfully deployed, how enzyme immobilization can improve industrial processes, as well as focuses on the analysis tools critical for the multi-scale implementation of enzyme immobilization for increased product yield at maximum market profitability and minimum logistical burden on the environment and user.

  6. Model oriented application generation for industrial control systems

    International Nuclear Information System (INIS)

    Copy, B.; Barillere, R.; Blanco, E.; Fernandez Adiego, B.; Nogueira Fernandes, R.; Prieto Barreiro, I.

    2012-01-01

    The CERN Unified Industrial Control Systems framework (UNICOS) is a software generation methodology and a collection of development tools that standardizes the design of industrial control applications. A Software Factory, named the UNICOS Application Builder (UAB), was introduced to ease extensibility and maintenance of the framework, introducing a stable meta-model, a set of platform-independent models and platform-specific configurations against which code generation plug-ins and configuration generation plug-ins can be written. Such plug-ins currently target PLC programming environments (Schneider and SIEMENS PLCs) as well as SIEMENS WinCC Open Architecture SCADA (previously known as ETM PVSS) but are being expanded to cover more and more aspects of process control systems. We present what constitutes the UNICOS meta-model and the models in use, how these models can be used to capture knowledge about industrial control systems and how this knowledge can be used to generate both code and configuration for a variety of target usages. (authors)

  7. Electron beam application in industrial polymer processing - Review and outlook

    International Nuclear Information System (INIS)

    Gielenz, G.

    2001-01-01

    Full text: The various established industrial electron beam (EB) applications as related to polymers, their corresponding material and process fundamentals are discussed in this paper. The basics of nowadays most common irradiation processes, which are for continuous stranded products: Single Beam, Rotary Technique; Single Beam, Multiple Pass Technique; Dual Beam, Multiple Pass Technique; and Single Beam, Single (Multiple) Pass Technique by means of a conveyor belt or cart system for discontinuous goods are briefly addressed together with some typical examples for illustration. Some comments on the (dis)advantages and the future economic optimization potential which EB processing technologies could provide to the respective polymer processing industries are presented with respect to material, accelerator equipment and related product handling hardware. The future competitiveness of irradiation crosslinking technologies, which offer numerous advantages in comparison to conventional CV curing and silane crosslinking technologies, only can be maintained by increasing their economic attractiveness, which is: high processing speeds, high material throughput at low production costs and comparatively low capital investment of the hardware involved. Other, more sophisticated irradiation process proposals found in the literature and respective patent publications will be briefly presented, although all of which lack more or less practical evidence for industrial economic and reliable application. Finally, the authors vision of a more efficient, economical EB-process design, by combining quasi state of the art EB-equipment components with a novel beam deflection system to practically achieve a 'Dual Beam, Four Side Crossfiring Process' for continuous strand-products, will be presented. (author)

  8. Applications of building information model (BIM) in Malaysian construction industry

    Science.gov (United States)

    Tahir, M. M.; Haron, N. A.; Alias, A. H.; Al-Jumaa, A. T.; Muhammad, I. B.; Harun, A. N.

    2017-12-01

    Since the introduction of BIM in Malaysia in 2009, the technology adoption rate is slow when compared to other countries of the world. Most of the construction companies in Malaysia have an insight on the BIM concept but are yet to implement it in the management of their construction projects. By the year 2020, the Malaysian government will make BIM mandatory, this makes it important to carry out research on the possible applications of the technology. A qualitative method of enquiry was used for this study in Klang Valley using semistructured interview. The responses received were analysed using Principal component analysis (PCA). The result of the analysis showed that “quantity take-off and estimation”, “clash detection and coordination”, “integration and collaboration of stakeholders”, and “design and visualisation” as the main applications of BIM in Malaysia presently. The implication of this findings is that the Malaysian construction industry productivity is likely to increase to meet the demand of the population through the implementations of BIM. More also, BIM technology is regarded as the future of construction industry, which makes it very important for the industry.

  9. Application of solar flat plate collector in automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Wawge, P. [Peenya Alloys Pvt. Ltd., Parvati, Pune (India)

    2004-07-01

    In any industry, heating, cooling and compressed air the costliest part, which affects the production cost of any product. There are three types of indirect heat requirement or the requirement of heat can be divided in the three main categories. (1) low temp. 40 - 60 Deg. (2) Medium temp. 80 - 150 deg. (3) High Temp applications - above 150. Solar Flat Collectors have been proven for the use of solar energy for medium temp. application in hotels, boiler feed water preheating, dairy for pasteurization and some other indirect heating applications. There is another neglected area of application of Solar Flat Plate collector is heat treatment for powder coating plants where heat requirement is bet 50 Deg C - 70 Deg C. In any automobile industry the aesthetic or look of the vehicle place a very important role as far as the sale is concern (after the mechanical performance). The aesthetic means the body and colour of the vehicle. To get a long lasting good quality color, the powder coating procedure plays a major role. Before powder coating there is requirement of different chemical treatment for the removal of rust, grease and other cleaning of the specific sheet metal body parts. The time duration and chemical composition is depends on the selection of body material. A proven method of a chemical treatment is seven / eight tank process. The common system of heating chemicals is by way of electrical heaters, by diesel or other fuel fired boilers. This increases the cost of heat treatment process due the high cost of electricity (for industries rate of electricity is 1.5 to 2 times than the domestic rate) or oils. This can be replaced by Solar water heating system which can efficiently generate the temp of liquid upto 85 Deg C. (orig.)

  10. Bacterial laccase: recent update on production, properties and industrial applications.

    Science.gov (United States)

    Chauhan, Prakram Singh; Goradia, Bindi; Saxena, Arunika

    2017-10-01

    Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) are multi-copper enzymes which catalyze the oxidation of a wide range of phenolic and non-phenolic aromatic compounds in the presence or absence of a mediator. Till date, laccases have mostly been isolated from fungi and plants, whereas laccase from bacteria has not been well studied. Bacterial laccases have several unique properties that are not characteristics of fungal laccases such as stability at high temperature and high pH. Bacteria produce these enzymes either extracellularly or intracellularly and their activity is in a wide range of temperature and pH. It has application in pulp biobleaching, bioremediation, textile dye decolorization, pollutant degradation, biosensors, etc. Hence, comprehensive information including sources, production conditions, characterization, cloning and biotechnological applications is needed for the effective understanding and application of these enzymes at the industrial level. The present review provides exhaustive information of bacterial laccases reported till date.

  11. Applications of radio frequency identification systems in the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Hind, D J [Davis Derby Ltd., Derby (United Kingdom)

    1994-01-01

    Radio Frequency Identification Systems (RFID) are one of the automatic data capture technologies taking over from bar codes and magnetic swipe cards in many applications involving automatic hands free operation in arduous environments. RFID systems are based on the use of miniature radio transponders carrying encoded electronic data that is used to uniquely identify the identity of transponders. The paper reviews the types of system available and compares the various techniques involved in the different systems. The various types of transponder are described including the latest state of the art passive read/write high performance types. The problems involved in designing and certifying a system for use in hazardous areas are described, with particular reference to the problems of inadvertent detonator ignition by radio systems. Applications of RFID systems in the mining industry are described, covering applications both on the surface and underground. 1 ref., 10 figs.

  12. Recent progress of obliquely deposited thin films for industrial applications

    Science.gov (United States)

    Suzuki, Motofumi; Itoh, Tadayoshi; Taga, Yasunori

    1999-06-01

    More than 10 years ago, birefringent films of metal oxides were formed by oblique vapor deposition and investigated with a view of their application to optical retardation plates. The retardation function of the films was explained in terms of the birefringence caused by the characteristic anisotropic nanostructure inside the films. These films are now classified in the genre of the so-called sculptured thin films. However, the birefringent films thus prepared are not yet industrialized even now due to the crucial lack of the durability and the yield of products. In this review paper, we describe the present status of application process of the retardation films to the information systems such as compact disc and digital versatile disc devices with a special emphasis on the uniformity of retardation properties in a large area and the stability of the optical properties of the obliquely deposited thin films. Finally, further challenges for wide application of the obliquely deposited thin films are also discussed.

  13. Applications in Electronics Pervading Industry, Environment and Society

    CERN Document Server

    2016-01-01

    This book provides a thorough overview of cutting-edge research on electronics applications relevant to industry, the environment, and society at large. A wide spectrum of application domains are covered, from automotive to space and from health to security, and special attention is devoted to the use of embedded devices and sensors for imaging, communication, and control. The book is based on the 2014 APPLEPIES Conference, held in Rome, which brought together researchers and stakeholders to consider the most significant current trends in the field of applied electronics and to debate visions for the future. Areas covered by the conference included information communication technology; biotechnology and biomedical imaging; space; secure, clean, and efficient energy; the environment; and smart, green, and integrated transport. As electronics technology continues to develop apace, constantly meeting previously unthinkable targets, further attention needs to be directed toward the electronics applications and th...

  14. Thermophotovoltaic systems for civilian and industrial applications in Japan

    International Nuclear Information System (INIS)

    Yugami, Hiroo; Sasa, Hiromi; Yamaguchi, Masafumi

    2003-01-01

    The potential market for thermophotovoltaic (TPV) applications has been studied for civilian and industrial sectors in Japan. Comparing the performance of gas engines or turbines, as well as the underdeveloped power generation technologies such as fuel cells or chemical batteries, we have discussed the feasible application field of TPV systems to compete with those power generators. From the point of view of applicability for TPV systems in Japan, portable generators, co-generation systems and solar power plants are selected for our system analysis. The cost and performance targets of TPV systems for co-generation are also discussed by assuming a typical daily profile of electricity and hot water demands in Japanese homes. A progress report on the recent TPV research activities is given as well as a feasibility study concerning such TPV systems in Japan. (Author)

  15. 2015 Applications in Electronics Pervading Industry, Environment and Society Conference

    CERN Document Server

    2017-01-01

    This book provides a thorough overview of cutting-edge research on electronics applications relevant to industry, the environment, and society at large. It covers a broad spectrum of application domains, from automotive to space and from health to security, while devoting special attention to the use of embedded devices and sensors for imaging, communication and control. The book is based on the 2015 ApplePies Conference, held in Rome, which brought together researchers and stakeholders to consider the most significant current trends in the field of applied electronics and to debate visions for the future. Areas addressed by the conference included information communication technology; biotechnology and biomedical imaging; space; secure, clean and efficient energy; the environment; and smart, green and integrated transport. As electronics technology continues to develop apace, constantly meeting previously unthinkable targets, further attention needs to be directed toward the electronics applications and the ...

  16. DIANE stationary neutron radiography system image quality and industrial applications

    International Nuclear Information System (INIS)

    Cluzeau, S.; Huet, J.; Tourneur, P. le

    1994-01-01

    The SODERN neutron radiography laboratory has operated since February 1993 using a sealed tube generator (GENIE 46). An experimental programme of characterization (dosimetry, spectroscopy) has confirmed the expected performances concerning: neutron flux intensity, neutron energy range, residual gamma flux. Results are given in a specific report [2]. This paper is devoted to the image performance reporting. ASTM and specific indicators have been used to test the image quality with various converters and films. The corresponding modulation transfer functions are to be determined from image processing. Some industrial applications have demonstrated the capabilities of the system: corrosion detection in aircraft parts, ammunitions filling testing, detection of polymer lacks in sandwich steel sheets, detection of moisture in a probe for geophysics, residual ceramic cores imaging in turbine blades. Various computerized electronic imaging systems will be tested to improve the industrial capabilities. (orig.)

  17. Two-phase systems. Fundamentals and industrial applications

    International Nuclear Information System (INIS)

    Woillez, Jacques

    2014-01-01

    Two-phase flows are omnipresent in industrial processes in different sectors with the behaviour and control of non-mixing mixtures of gas and liquids, of several liquids, of solids and fluids which are present in the production of raw materials, in the environment, in energy production, in chemistry, in pharmaceutical or food industry. The author presents the fundamentals elements which are needed to perform hardware predictive calculations and to understand typical phenomena associated with these flows. The chapters address fluids mechanics (movement equations, Bernoulli equation, load losses, turbulence, heat exchange coefficients, thermodynamics, compressible flows), two-phase systems (characteristic values, modes of appearance of two-phase flows, conduct flows, suspension mechanics, mass transfers, similarity, numerical simulation), the applications (energy production, agitation and mixing, phase separation, sprays), and peculiar phenomena (Marangoni effect, the tea cup effect, entry jets, water hammer effect, sound speed, two-phase pumping, fluidization)

  18. Metabolic engineering of Yarrowia lipolytica for industrial applications.

    Science.gov (United States)

    Zhu, Quinn; Jackson, Ethel N

    2015-12-01

    Yarrowia lipolytica is a safe and robust yeast that has a history of industrial applications. Its physiological, metabolic and genomic characteristics have made it a superior host for metabolic engineering. The results of optimizing internal pathways and introducing new pathways have demonstrated that Y. lipolytica can be a platform cell factory for cost-effective production of chemicals and fuels derived from fatty acids, lipids and acetyl-CoA. Two products have been commercialized from metabolically engineered Y. lipolytica strains producing high amounts of omega-3 eicosapentaenoic acid, and more products are on the way to be produced at industrial scale. Here we review recent progress in metabolic engineering of Y. lipolytica for production of biodiesel fuel, functional fatty acids and carotenoids. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Prospect of radiation application in industry and agriculture

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2007-01-01

    The prospect of radiation application in industry and agriculture are described. In industry, the radiation-induced crosslinking of polymers and radiation-induced graft polymerization improved many chemical and physical properties and new functional materials were created using ion beams. In agriculture, the food irradiation improved the food hygiene and killed insect pest of fruits and vegetables. Furthermore, the sterile insect technique, mutation breeding of plants, positron imaging system for plant, sterilization of medical products, environmental conservation due to purification of flue gas and wastewater, and upgrading of natural polymer (polysaccharide etc.) have been performed. Radiation process is a clean one without use of chemical reagents. The electron beam radiation is expected to reduce the cost of radiation process compared with the gamma-ray radiation. (M.H.)

  20. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  1. Applications of radio frequency identification systems in the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Hind, D J [Davis Derby Ltd., Derby (United Kingdom)

    1995-07-01

    Radio Frequency Identification Systems (RFID) are one of the automatic data capture technologies taking over from bar codes and magnetic swipe cards in many applications involving automatic hands free operation in arduous environments. RFID systems are based on the use of miniature radio transponders carrying encoded electronic data that is used to uniquely identify the identity of transponders. This paper reviews the types of system available and compares the various techniques involved in the different systems. The various types of transponder are described including the latest state of the art passive read/write high performance types. A review of the history of RFID systems in the mining industry is also given in the paper. The problems involved in designing and certifying a system for use in hazardous areas are also described, with particular reference to the problems of inadvertent detonator ignition by radio systems. Applications of RFID systems in the mining industry are described in considerable detail, covering applications both on the surface and underground. 1 ref., 12 figs., 1 tab.

  2. Bayesian networks applied to process diagnostics. Applications in energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Widarsson, Bjoern (ed.); Karlsson, Christer; Dahlquist, Erik [Maelardalen Univ., Vaesteraas (Sweden); Nielsen, Thomas D.; Jensen, Finn V. [Aalborg Univ. (Denmark)

    2004-10-01

    Uncertainty in process operation occurs frequently in heat and power industry. This makes it hard to find the occurrence of an abnormal process state from a number of process signals (measurements) or find the correct cause to an abnormality. Among several other methods, Bayesian Networks (BN) is a method to build a model which can handle uncertainty in both process signals and the process itself. The purpose of this project is to investigate the possibilities to use BN for fault detection and diagnostics in combined heat and power industries through execution of two different applications. Participants from Aalborg University represent the knowledge of BN and participants from Maelardalen University have the experience from modelling heat and power applications. The co-operation also includes two energy companies; Elsam A/S (Nordjyllandsverket) and Maelarenergi AB (Vaesteraas CHP-plant), where the two applications are made with support from the plant personnel. The project ended out in two quite different applications. At Nordjyllandsverket, an application based (due to the lack of process knowledge) on pure operation data is build with capability to detect an abnormal process state in a coal mill. Detection is made through a conflict analysis when entering process signals into a model built by analysing the operation database. The application at Maelarenergi is built with a combination of process knowledge and operation data and can detect various faults caused by the fuel. The process knowledge is used to build a causal network structure and the structure is then trained by data from the operation database. Both applications are made as off-online applications, but they are ready for being run on-line. The performance of fault detection and diagnostics are good, but a lack of abnormal process states with known cause reduces the evaluation possibilities. Advantages with combining expert knowledge of the process with operation data are the possibility to represent

  3. Sugar ester surfactants: enzymatic synthesis and applications in food industry.

    Science.gov (United States)

    Neta, Nair S; Teixeira, José A; Rodrigues, Lígia R

    2015-01-01

    Sugar esters are non-ionic surfactants that can be synthesized in a single enzymatic reaction step using lipases. The stability and efficiency of lipases under unusual conditions and using non-conventional media can be significantly improved through immobilization and protein engineering. Also, the development of de novo enzymes has seen a significant increase lately under the scope of the new field of synthetic biology. Depending on the esterification degree and the nature of fatty acid and/or sugar, a range of sugar esters can be synthesized. Due to their surface activity and emulsifying capacity, sugar esters are promising for applications in food industry.

  4. Application of Nuclear Techniques in Industry and the Environment

    International Nuclear Information System (INIS)

    Masinza, A.S.

    2015-01-01

    Major radiotracer techniques are now in routine service industry to optimize processes, solve problems improve product quality, save energy and reduction pollution. The benefit to cost ratios of radiotracers, sealed sources and nucleonic gauges applications are considerably high; between 10:1 and 4000:1. The number of services for troubleshooting carried out worldwide per year is in excess of tens of thousands (out of them greater than 5000 are gamma scans). The number of nucleonic gauges worldwide could be estimated to be greater that 250,000 (Author)

  5. Applications of sonochemistry in Russian food processing industry.

    Science.gov (United States)

    Krasulya, Olga; Shestakov, Sergey; Bogush, Vladimir; Potoroko, Irina; Cherepanov, Pavel; Krasulya, Boris

    2014-11-01

    In food industry, conventional methodologies such as grinding, mixing, and heat treatment are used for food processing and preservation. These processes have been well studied for many centuries and used in the conversion of raw food materials to consumable food products. This report is dedicated to the application of a cost-efficient method of energy transfer caused by acoustic cavitation effects in food processing, overall, having significant impacts on the development of relatively new area of food processing such as food sonochemistry. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Electrochemical Machining – Special Equipment and Applications in Aircraft Industry

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2016-06-01

    Full Text Available Electrochemical machining is an unique method of shaping in which, for optimal parameters tool has no wear, surface layer properties after machining are similar to the core material and surface quality and accuracy increase together with material removal rate increase. Such advantages of electrochemical machining, besides of some ecological problems, create industry interest in the range of manufacturing elements made of materials with special properties (i.e. turbine blades of flow aircrafts engines. In the paper the nowadays possibilities and recent practical application of electrochemical machining in aircraft have been presented.

  7. Laser Isotope Enrichment for Medical and Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  8. Mass Transfer From Fundamentals to Modern Industrial Applications

    CERN Document Server

    Asano, Koichi

    2006-01-01

    This didactic approach to the principles and modeling of mass transfer as it is needed in modern industrial processes is unique in combining a step-by-step introduction to all important fundamentals with the most recent applications. Based upon the renowned author's successful new modeling method as used for the O-18 process, the exemplary exercises included in the text are fact-proven, taken directly from existing chemical plants. Fascinating reading for chemists, graduate students, chemical and process engineers, as well as thermodynamics physicists.

  9. Artificial intelligence applications in the nuclear industry: An international view

    International Nuclear Information System (INIS)

    Majumdar, D.

    1989-01-01

    For AI work in particular, proprietary needs have sometimes kept people from reporting on the progress of AI applications in the nuclear industry. Consequently, some duplicate work is being performed by several groups in different countries. Nevertheless, sharing the knowledge gained from the experiences in several countries is still fruitful; success in one country may benefit another. With this view in mind, we have gathered here, to the best of our knowledge, what is going on in different countries in the world. (orig./GL)

  10. Laser Isotope Enrichment for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Leonard Bond

    2006-01-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: (1) Pure isotopic targets for irradiation to produce medical radioisotopes. (2) Pure isotopes for semiconductors. (3) Low neutron capture isotopes for various uses in nuclear reactors. (4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ''calutrons'' (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  11. Industrial radiation and radioisotope gauging techniques and applications

    International Nuclear Information System (INIS)

    Gardner, R.P.

    1997-01-01

    The radiation and radioisotope gauging industry in the United States has primarily followed a path of development solely by the private sector. It has remained highly proprietary in nature, which is opposite to the path taken by many other countries. In other countries radiation gauge development has been controlled in large part by government-sponsored research and development, which has spawned many more publications in the open literature. Historically, some of the leaders have been Great Britain, Poland, France, Russia, and Australia. This has possibly led to the misconception that the development of this technology is being dominated by countries outside the United States. This is not a healthy situation-it would be good to see our industry begin to publish more in the open literature and to sponsor more research at universities. In efforts to promote more open-literature publication, the American Nuclear Society (ANS) sponsored a topical meeting on Industrial Radiation and Radioisotope Measurement Applications (IRRMA) in 1988 that was held again in 1992

  12. TECHNOLOGICAL APPLICATION OF MICROALGAE IN POWER INDUSTRY AND ENVIRONMENTAL PROTECTION

    Directory of Open Access Journals (Sweden)

    Ilmutdin M. Abdulagatov

    2018-01-01

    Full Text Available Abstract. Aim. The aim of the study is to show the possibility and efficiency of large-scale industrial production of microalgae in the Republic of Dagestan for the development of agriculture (feed for animals and poultry and other technological applications in the food and pharmaceutical industries for the production of algalin flour (eco bread, polyunsaturated fatty acids (omega-3, omega-6 physiologically necessary for humans, biologically active substances (astaxanthin, phycocyanin, new-generation antibiotics, biofuels and other high added value biotechnological products. The problems of using microalgae for bioremediation of the environment, in particular, purification of geothermal waters from phenols before discharging into the sewage system are considered. Methods. Microalgae are grown in closed and open type plants. Valuable algae components can be extracted using supercritical fluid technology of continuous action. Results. We give a comparative evaluation of the efficiency of using microalgae as a biological raw material in comparison with traditionally used oilseeds. Conclusion. For Dagestan, located on the shore of the Caspian Sea, with its warm climate and an abundance of solar and geothermal energy, the development of this technology is a task of great economic importance. The advantages of microalgae technologies are the basis for the creation of large-scale production of microalgae in southern Russia. Biotechnology in Dagestan can become not only profitable, but also a high-tech and innovative industry.

  13. The application of holistic risk management in the banking industry

    Directory of Open Access Journals (Sweden)

    J. Chibayambuya

    2007-12-01

    Full Text Available Purpose: The application of holistic risk management is fast becoming a standard measure of good governance in the business arena. What role can holistic risk management play in the management of risk in the financial services industry? The aim of this paper is to propose a holistic risk management framework for the management of risk. Design/Methodology/Approach: A comprehensive framework that covers the holistic view risk management is proposed/developed out of an extensive literature review. Findings: Given the deliberations of various frameworks, a holistic risk management is proposed. The proposed framework ensures that all components of risk management are taken into account when strategizing for risk management in general and holistic risk management in particular; thereby improving the management of risk in the banking industry. Implications: The article proposes a holistic approach to risk management which takes into account all the facets of risk management, e.g. analyzing, planning, strategy, communication, implementation, motivation, systems review and plan modification. This holistic approach, when implemented in the banking industry, can have a significant impact on the improved management of risk. Originality/Value: The new proposed holistic risk management framework offers a fresh perspective of strategizing for risk management in terms of risk analysis, risk planning, risk strategy, risk communication, risk implementation, risk motivation, risk review and risk plan modification.

  14. Application of large radiation sources in chemical processing industry

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1977-01-01

    Large radiation sources and their application in chemical processing industry are described. A reference has also been made to the present developments in this field in India. Radioactive sources, notably 60 Co, are employed in production of wood-plastic and concrete-polymer composites, vulcanised rubbers, polymers, sulfochlorinated paraffin hydrocarbons and in a number of other applications which require deep penetration and high reliability of source. Machine sources of electrons are used in production of heat shrinkable plastics, insulation materials for cables, curing of paints etc. Radiation sources have also been used for sewage hygienisation. As for the scene in India, 60 Co sources, gamma chambers and batch irradiators are manufactured. A list of the on-going R and D projects and organisations engaged in research in this field is given. (M.G.B.)

  15. Applications of selfshielded electron processors in industry 1987

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1988-01-01

    Many new applications of the selfshielded electron processor have emerged over the past 5 years which continue to demonstrate the advantages and practical problems associated with these efficient, compact energy sources. Many of these, such as for the curing of: binders for abrasive products, binders for magnetic media, binders for textile flocking, silicone coatings for release papers, etc., offer good prospects for growth but are thusfar in limited use. With this ever broadening base of process technology, the prospects remain 'bullish' for the expanded industrial use of these new energy sources. With their unrivalled process off-licences and high throughputs, improved appreciation of their advantageous economics assures expanded application in an increasingly energy/environmentally concerned world economy(author)

  16. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    Science.gov (United States)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  17. Potential application of lipid organogels for food industry.

    Science.gov (United States)

    Chaves, Kamila Ferreira; Barrera-Arellano, Daniel; Ribeiro, Ana Paula Badan

    2018-03-01

    Controversial issues regarding the role of trans fatty acids in food have led to progressive changes in the legislation of several countries to include more information for consumers. In response, the industries decided to gradually replace trans fat in various products with the development of fatty bases of equivalent functionality and economic viability to partially hydrogenated fats, causing, however, a substantial increase in the content of saturated fatty acids in foods. Today, the lipid science aims to define alternatives to a problem that is widely discussed by health organizations worldwide: limit the saturated fat content in food available to the population. In this context, organogels have been indicated as a viable alternative to obtain semi-solid fats with reduced content of saturated fatty acids and compatible properties for food application. The objective of this review was to present the studies that address the lipid organogels as an alternative for food application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Environmental and industrial applications of pulsed power systems

    International Nuclear Information System (INIS)

    Neau, E.L.

    1993-01-01

    The technology base formed by the development of high peak power simulators, laser drivers, free electron lasers (FEL's), and Inertial Confinement Fusion (ICF) drivers from the early 60's through the late 80's is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup applications and in supporting new types of industrial manufacturing processes. Some of these processes will require very high average beam power levels of hundreds of kilowatts to perhaps megawatts. In this paper we briefly discuss new technology capabilities and then concentrate on specific application areas that may benefit from the high specific energies and high average powers attainable with short-pulse machines

  19. Advanced Energy Saving and its Applications in Industry

    CERN Document Server

    Matsuda, Kazuo; Fushimi, Chihiro; Tsutsumi, Atsushi; Kishimoto, Akira

    2013-01-01

    The conventional approach for energy saving in a process system is to maximize heat recovery without changing any process conditions by using pinch technology. “Self-heat recuperation technology” was developed to achieve further energy saving in the process system by eliminating the necessity for any external heat input, such as firing or imported steam. Advanced Energy Saving and its Applications in Industry introduces the concept of self-heat recuperation and the application of such technology to a wide range of processes from heavy chemical complexes to other processes such as drying and gas separation processes, which require heating and cooling during operation.   Conventional energy saving items in a utility system are applied and implemented based on a single site approach, however, when looking at heavy chemical complexes, it was apparent that the low-grade heat discharged as waste from a refinery could also be used in an adjacent petrochemical plant. There could therefore be a large energy savin...

  20. Heat pump dryers theory, design and industrial applications

    CERN Document Server

    Alves-Filho, Odilio

    2015-01-01

    Explore the Social, Technological, and Economic Impact of Heat Pump Drying Heat pump drying is a green technology that aligns with current energy, quality, and environmental concerns, and when compared to conventional drying, delivers similar quality at a lower cost. Heat Pump Dryers: Theory, Design and Industrial Applications details the progression of heat pump drying-from pioneering research and demonstration work to an applied technology-and establishes principles and theories that can aid in the successful design and application of heat pump dryers. Based on the author's personal experience, this book compares heat pump dryers and conventional dryers in terms of performance, quality, removal rate, energy utilization, and the environmental effect of both drying processes. It includes detailed descriptions and layouts of heat pump dryers, outlines the principles of operation, and explains the equations, diagrams, and procedures used to form the basis for heat pump dryer dimensioning and design. The author ...

  1. Industrial applications of ion implantation into metal surfaces

    International Nuclear Information System (INIS)

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry

  2. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications

    Directory of Open Access Journals (Sweden)

    Blake Robert

    2008-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining. It is a chemolithoautrophic, γ-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1–2 and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism. Results The genome of the type strain A. ferrooxidans ATCC 23270 was sequenced and annotated to identify general features and provide a framework for in silico metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation, stress responses, DNA repair, and metal and toxic compound fluxes. Conclusion Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of A. ferrooxidans in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential.

  3. Applying advanced digital signal processing techniques in industrial radioisotopes applications

    International Nuclear Information System (INIS)

    Mahmoud, H.K.A.E.

    2012-01-01

    Radioisotopes can be used to obtain signals or images in order to recognize the information inside the industrial systems. The main problems of using these techniques are the difficulty of identification of the obtained signals or images and the requirement of skilled experts for the interpretation process of the output data of these applications. Now, the interpretation of the output data from these applications is performed mainly manually, depending heavily on the skills and the experience of trained operators. This process is time consuming and the results typically suffer from inconsistency and errors. The objective of the thesis is to apply the advanced digital signal processing techniques for improving the treatment and the interpretation of the output data from the different Industrial Radioisotopes Applications (IRA). This thesis focuses on two IRA; the Residence Time Distribution (RTD) measurement and the defect inspection of welded pipes using a gamma source (gamma radiography). In RTD measurement application, this thesis presents methods for signal pre-processing and modeling of the RTD signals. Simulation results have been presented for two case studies. The first case study is a laboratory experiment for measuring the RTD in a water flow rig. The second case study is an experiment for measuring the RTD in a phosphate production unit. The thesis proposes an approach for RTD signal identification in the presence of noise. In this approach, after signal processing, the Mel Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from the processed signal or from one of its transforms. The Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) have been tested and compared for efficient feature extraction. Neural networks have been used for matching of the extracted features. Furthermore, the Power Density Spectrum (PDS) of the RTD signal has been also used instead of the discrete

  4. Radiation processing for environmental-friendly industrial applications

    International Nuclear Information System (INIS)

    Majali, A.B.; Sabharwal, S.

    1997-01-01

    The Isotope Division of BARC is equipped with a 2-MeV electron beam (EB) accelerator and a 70,000 Ci Cobalt-60 source: these are mainly utilized to develop technologies of interest to our industries and needs. These include development of polyethylene 'O' rings having dimensional stability above the melting point, radiation degradation of PTFE and enhancement of colour in diamonds. The viscose rayon industry is an important industry in India. This industry faces stiff regulations from environmental pollution control agencies primarily due to the emission of toxic sulphur containing gases, and is in search of ways to reduce the pollution levels associated with the process. The irradiation of cellulose with ionizing radiation results in cellulose activation and reduction in the degree of polymerization (DP). There is a keen interest in utilizing radiation technology in viscose rayon production. We have utilized the 2-MeV electron beam accelerator for reducing the degree of polymerization (DP) of paper pulp. Laboratory scale tests have been carried out to standardize the conditions for processing of pulp having desired degree of polymerization. Our studies show that the use of irradiated pulp can significantly reduce the consumption of CS 2 and be beneficial in reducing pollution associated with the process. An electron-beam irradiation based process has been developed to convert the PTFE waste into a low molecular weight (1x10 4 -1x10 5 ) PTFE powder that can be easily processed into a fine micropowder having industrial demand. Even carbon or metal filled PTFE has been recycled using this process. The conventional method of crosslinking linear polymers by thermo-clinical method leads to the formation of homogeneously crosslinked materials which are extremely slow for industrial applications. Electron beam irradiation has been used to create inhomogeneous crosslinking of a temperature-sensitive polymer- poly(vinyl methyl ether)(PVME) so as to produce a fast response

  5. Biotechnological valorization of pectinolytics and their industrial applications: a review.

    Science.gov (United States)

    Irshad, Muhammad; Asgher, Muhammad; Anwar, Zahid; Ahmad, Aftab

    2014-11-01

    In the last several years, in serious consideration of the worldwide economic and environmental issues there has been an increasing research interest in the value of naturally occurring bio-sourced materials. Agro-industrial based biomass comprised of pectin is an inexpensive, renewable, abundant natural resource that could be utilized for large-scale and cost-effective production of natural products i.e., pectinolytics. Pectinolytics are one of the most widely distributed enzymes in bacteria, fungi and plants. From ancient times to date, many methods have been introduced to improve the optimization of pectinolytics to obtain high yields of maximal purity. To expand the range of natural bio-resources the rapidly evolving tools of biotechnology can lower the conversion costs and also enhance target yield of the product of interest. This green biotechnology presents a promising approach to convert most of the agricultural materials into a value-added product with multiple applications. Major advances have already been achieved in recent years in order to obtain high levels of purity with optimal yields. The present review begins with an overview of pectinolytics and their physico-chemical features, and their specific role with classification based on pectic materials. Information is also given on the culture influences and potential sources of pectinolytics, followed by a brief summary of various industrial and biotechnological applications and future considerations.

  6. Sustainable hemp-based composites for the building industry application

    Science.gov (United States)

    Schwarzova, Ivana; Stevulova, Nadezda; Junak, Jozef; Hospodarova, Viola

    2017-07-01

    Sustainability goals are essential driving principles for the development of innovative materials in the building industry. Natural plant (e.g. hemp) fibers represent an attractive alternative as reinforcing material due to its good properties and sustainability prerequisites. In this study, hemp-based composite materials, designed for building application as non-load bearing material, providing both thermal insulation and physico-mechanical properties, are presented. Composite materials were produced by bonding hemp hurds with a novel inorganic binder (MgO-based cement) and then were characterized in terms of physical properties (bulk density, water absorption), thermal properties (thermal conductivity) and mechanical properties (compressive and tensile strength). The composites exhibited promising physical, thermal and mechanical characteristics, generally comparable to commercially available products. In addition, the hemp-based composites have the advantage of a significantly low environmental impact (thanks to the nature of both the dispersed and the binding phase) and no negative effects on human health. All things considered, the composite materials seem like very promising materials for the building industry application.

  7. Progress for the Industry Application External Hazard Analyses Early Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryan, Emerald [Idaho State Univ., Pocatello, ID (United States); Bhandari, Bishwo [Idaho State Univ., Pocatello, ID (United States); Sludern, Daniel [Idaho State Univ., Pocatello, ID (United States); Pope, Chad [Idaho State Univ., Pocatello, ID (United States); Sampath, Ram [Centroid PIC, Idaho Falls, ID (United States)

    2015-09-01

    This report describes the current progress and status related to the Industry Application #2 focusing on External Hazards. For this industry application within the Light Water Reactor Sustainability (LWRS) Program Risk-Informed Safety Margin Characterization (RISMC) R&D Pathway, we will create the Risk-Informed Margin Management (RIMM) approach to represent meaningful (i.e., realistic facility representation) event scenarios and consequences by using an advanced 3D facility representation that will evaluate external hazards such as flooding and earthquakes in order to identify, model and analyze the appropriate physics that needs to be included to determine plant vulnerabilities related to external events; manage the communication and interactions between different physics modeling and analysis technologies; and develop the computational infrastructure through tools related to plant representation, scenario depiction, and physics prediction. One of the unique aspects of the RISMC approach is how it couples probabilistic approaches (the scenario) with mechanistic phenomena representation (the physics) through simulation. This simulation-based modeling allows decision makers to focus on a variety of safety, performance, or economic metrics. In this report, we describe the evaluation of various physics toolkits related to flooding representation. Ultimately, we will be coupling the flooding representation with other events such as earthquakes in order to provide coupled physics analysis for scenarios where interactions exist.

  8. A patent landscape on application of microorganisms in construction industry.

    Science.gov (United States)

    Dapurkar, Dipti; Telang, Manasi

    2017-07-01

    Construction biotechnology includes research and development of construction materials and processes that make use of various microbes. The present technology landscape gives a perspective on how microbes have been used in construction industry as cement and concrete additives by analyzing patents filed in this technology arena. All patents related to the technology of interest published globally to date have been reviewed. The earliest patent filing in this technology domain was recorded in the year 1958 and the patenting activity reached its peak around mid to late 1990s. The early technology was mainly focused on microbial polysaccharides and other metabolic products as additives. Year 2002 onwards, biomineralization has taken precedence over the other technologies with consistent patent filings indicating a shift in innovation focus. Japan has been the global leader with highest number of patents filed on application of microbes in construction industry. Southeast University, China has topped the patent assignee list with maximum number of filings followed by Kajima Corp. and Shin-Etsu Chemical Co., Ltd. Most patent applications have claimed microbe based bio-products. Construction-related microbial technologies are mainly based on activity of different microorganisms such as urease-producing, acidogenic, halophilic, alkaliphilic, nitrate and iron-reducing bacteria. Sporosarcina pasteurii has been the most widely used microbe for biomineralization.

  9. CRISPR Mediated Genome Engineering and its Application in Industry.

    Science.gov (United States)

    Kaboli, Saeed; Babazada, Hasan

    2018-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) method has been dramatically changing the field of genome engineering. It is a rapid, highly efficient and versatile tool for precise modification of genome that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This novel RNA-guided genome-editing technique has become a revolutionary tool in biomedical science and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing tool, summarize the recent advances in CRISPR/Cas9 technology to engineer the genomes of a wide variety of organisms, and discuss their applications to treatment of fungal and viral disease. We also discuss advantageous of CRISPR/Cas9 technology to drug design, creation of animal model, and to food, agricultural and energy sciences. Adoption of the CRISPR/Cas9 technology in biomedical and biotechnological researches would create innovative applications of it not only for breeding of strains exhibiting desired traits for specific industrial and medical applications, but also for investigation of genome function.

  10. Applications og gamma radiation to the forestry industry

    International Nuclear Information System (INIS)

    Sotomayor, Patricia

    1999-01-01

    Chile is a country with forestry attributes, which have been developed by government policies to the point where this sector is now the country's second source of export income, at around US$ 2 billion annually. Forestry plantations are providing the market with growing product volumes and by 2010 the availability of timber is estimated to be double that of 1996. Wood is a heavily used product worldwide, with characteristics such as durability, working ease, resistance to abrasion, and low density compared to other alternative products, putting it in demand for many applications. Nevertheless, it also has a series of limitations that restrict its field of application, the most important being dimensional instability, anisotropy in resistance properties and subject to insect and fungus attacks. The wood industry in Chile has been affected by phytosanitary restrictions imposed by the U.S.A. Around 2015 the fumigant MeBr will be prohibited by international sanitary regulations because of damage to the ozone layer. Given the big harvest that Chile will have in the coming decade, the country will have a greater need to access export markets, so it must find a technology to help it confront these prohibitions. The remanufacturing industry must also look for new markets, new products and products with greater added value, in order not to increase its exports of chips. This is the least manufactured product and has the least added value of anything that our forest can sell. Among the alternatives is the possibility of differentiating local production by generating new products from the species that are available in the country. There are nuclear techniques for improving wood properties, which have been analyzed by the CCHEN in order to meet the need of the local forestry industry. An internationally developed technique is the fabrication of wood-plastic composits, topic that has been analyzed and worked with INTEC-CHILE and privately owned companies have become interested

  11. Instrumentation for Applied Physics and Industrial Applications: Applications of Detectors in Technology, Medicine and Other Fields

    CERN Document Server

    Hillemanns, H

    2011-01-01

    Instrumentation for Applied Physics and Industrial Applications in 'Applications of Detectors in Technology, Medicine and Other Fields', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B2: Detectors for Particles and Radiation. Part 2: Systems and Applications'. This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.3 Instrumentation for Applied Physics and Industrial Applications' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content: 7.3 Instrumentation for Applied Physics and Industrial Applications 7.3.1 Applications of HEP Detectors 7.3.2 Fast Micro- and Nanoelectronics for Particle Detector Readout 7.3.2.1 Fast Counting Mode Front End Electronics 7.3.2.2 NINO,...

  12. Terahertz thickness measurements for real industrial applications: from automotive paints to aerospace industry (Conference Presentation)

    Science.gov (United States)

    Krimi, Soufiene; Beigang, René

    2017-02-01

    In this contribution, we present a highly accurate approach for real-time thickness measurements of multilayered coatings using terahertz time domain spectroscopy in reflection geometry. The proposed approach combines the benefits of a model-based material parameters extraction method to calibrate the specimen under test, a generalized modeling method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity and the precision of the minimum thickness measurement limit. Furthermore, a novel self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the car painting process and the influence of the spraying conditions and the sintering process on ceramic thermal barrier coatings (TBCs) in aircraft industry. In addition, the developed approach enables for some applications the simultaneous determination of the complex refractive index and the coating thickness. Hence, a pre-calibration of the specimen under test is not required for such cases. Due to the high robustness of the self-calibration method and the genetic optimization algorithms, the approach has been successfully applied to resolve individual layer thicknesses within multi-layered coated samples down to less than 10 µm. The regression method can be applied in time-domain, frequency-domain or in both the time and frequency-domain simultaneously. The data evaluation uses general-purpose computing on graphics processing units and thanks to the developed highly parallelized algorithm lasts less than 300 ms. Thus, industrial requirements for fast thickness measurements with an "every-second-cycle" can be fulfilled.

  13. On the potential and economic feasibility of solar industrial process-heat applications in selected Turkish industries

    International Nuclear Information System (INIS)

    Ozdogan, S.; Arikol, M.

    1992-01-01

    We discuss the potential and economic feasibility of solar, industrial process-heat applications in the Turkish food, textile and chemical industries. The study covers 18 sites and end-use temperatures up to 120 and 150 o C. A solar system composed of parabolic troughs without thermal storage is chosen. The system size investigated is 500 to 20,000m 2 . (author)

  14. Potential applications of carbon dioxide in chemical industry; Moegliche Nutzungen von Kohlendioxid in der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Behr, Arno; Neuberg, Stefan [Technische Univ. Dortmund (Germany)

    2009-10-15

    Up to now, the use of carbon dioxide as a renewable C. carbon source plays in the current public debate on CCS technology only a minor role. Though, the chemical utilization of the generally unreactive classified molecule provides same very interesting synthesis routes, which take place without toxic starting materials like phosgene. In this review a number of syntheses using CO{sub 2}, which are currently in development, will be briefly presented. Although most of them have only been investigated on laboratory or miniplant scale and require further development, they demonstrate the high potential of carbon dioxide in industrial syntheses far beyond the traditional applications such as urea or salicylic acid syntheses. Concepts for the synthesis of formic acid and a {delta}-lactone, as well as developments in photosynthesis will be presented. A crucial role in nearly all these conversions plays the catalytic activation of carbon dioxide. (orig.)

  15. Application oriented programming and control of industrial robots

    International Nuclear Information System (INIS)

    Nilsson, Klas.

    1992-07-01

    Efficient use of industrial robots requires a strong interplay between user level commands, the motion control system, and external equipment. It should also be possible for an experienced application engineer to tailor the motion control to a specific application in a convenient way, instead of deficient utilization of the device or tricky user programming which is often the case today. A layered software architecture has been designed based on an application oriented view, considering typical hardware and software constraints. The top layers or the architecture support improved integration of off-line programming with interactive teach-in programming. The proposed solution is based on a transformation of robot programs between an on-line and an off-line representation. A central part of the architecture is an intermediate software layer, allowing the experienced user to introduce application specific motion primitives, on top of the motion control system. Flexibility during system configuration combined with computing efficiency and performance at run-time is of major importance. The solution is based on so called actions, which are methods to be passed between different software layers. Such methods can be specification of nonlinear control parameters, application specific control strategies, or treatment of external sensor signals. The actions can be implemented efficiently even in the multiprocessor case by using relocatable executable pieces of code generated from a special cross-compilation strategy. The lowest layers, comprising the motion control, have to be efficient and still fit in with the upper layers. In these layers, software solutions include an external sensor interface and a concept of motion pipelining allowing sensor based motions to be partly computed in advance. An experimental platform, built around commercially available robots, has been developed to verify the proposed solutions. (au)

  16. Cost-constrained optimal sampling for system identification in pharmacokinetics applications with population priors and nuisance parameters.

    Science.gov (United States)

    Sorzano, Carlos Oscars S; Pérez-De-La-Cruz Moreno, Maria Angeles; Burguet-Castell, Jordi; Montejo, Consuelo; Ros, Antonio Aguilar

    2015-06-01

    Pharmacokinetics (PK) applications can be seen as a special case of nonlinear, causal systems with memory. There are cases in which prior knowledge exists about the distribution of the system parameters in a population. However, for a specific patient in a clinical setting, we need to determine her system parameters so that the therapy can be personalized. This system identification is performed many times by measuring drug concentrations in plasma. The objective of this work is to provide an irregular sampling strategy that minimizes the uncertainty about the system parameters with a fixed amount of samples (cost constrained). We use Monte Carlo simulations to estimate the average Fisher's information matrix associated to the PK problem, and then estimate the sampling points that minimize the maximum uncertainty associated to system parameters (a minimax criterion). The minimization is performed employing a genetic algorithm. We show that such a sampling scheme can be designed in a way that is adapted to a particular patient and that it can accommodate any dosing regimen as well as it allows flexible therapeutic strategies. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Present status of application of AI in nuclear industry

    International Nuclear Information System (INIS)

    Kitamura, Masaharu

    1989-01-01

    Artificial intelligence (AL) techniques have been introduced actively in the nuclear industry in pursuit of increased safety and efficiency. The present report outlines some AI techniques currently used in nuclear facilities. This type of techniques have increasingly been introduced to such areas as design, construction, operation, maintenance, quality control and analysis. Most of them use knowledge engineering techniques including expert systems. Positive efforts at research and application of various more advance AI techniaues have started recently. For application of AI techniques, activities in nuclear power plants can be divided into two groups. One includes 'analytical' activities such as operation, maintenance and analysis, while the other includes 'synthetic' activities such as design, construction and fuel control. The most important AI technology for the analytical activities is diagnosis. Thus the report outlines major processes to which diagnostic techniques are applicable, and knowledge description and inference methods used for diagnosis. For AI techniques for synthetic activities, some problems and possible solutions are addressed. Development efforts in and outside Japan are also outlined. (Nogami, K.)

  18. Computer technology applications in industrial and organizational psychology.

    Science.gov (United States)

    Crespin, Timothy R; Austin, James T

    2002-08-01

    This article reviews computer applications developed and utilized by industrial-organizational (I-O) psychologists, both in practice and in research. A primary emphasis is on applications developed for Internet usage, because this "network of networks" changes the way I-O psychologists work. The review focuses on traditional and emerging topics in I-O psychology. The first topic involves information technology applications in measurement, defined broadly across levels of analysis (persons, groups, organizations) and domains (abilities, personality, attitudes). Discussion then focuses on individual learning at work, both in formal training and in coping with continual automation of work. A section on job analysis follows, illustrating the role of computers and the Internet in studying jobs. Shifting focus to the group level of analysis, we briefly review how information technology is being used to understand and support cooperative work. Finally, special emphasis is given to the emerging "third discipline" in I-O psychology research-computational modeling of behavioral events in organizations. Throughout this review, themes of innovation and dissemination underlie a continuum between research and practice. The review concludes by setting a framework for I-O psychology in a computerized and networked world.

  19. Laser applications in the electronics and optoelectronics industry in Japan

    Science.gov (United States)

    Washio, Kunihiko

    1999-07-01

    This paper explains current status and technological trends in laser materials processing applications in electronics and optoelectronics industry in Japan. Various laser equipment based on solid state lasers or gas lasers such as excimer lasers or CO2 lasers has been developed and applied in manufacturing electronic and optoelectronic devices to meet the strong demands for advanced device manufacturing technologies for high-performance, lightweight, low power-consumption portable digital electronic appliances, cellular mobile phones, personal computers, etc. Representative applications of solid-state lasers are, opaque and clear defects repairing of photomasks for LSIs and LCDs, trimming of thick-film chip resistors and low resistance metal resistors, laser cutting and drilling of thin films for high-pin count semiconductor CSP packages, laser patterning of thin-film amorphous silicon solar cells, and laser welding of electronic components such as hard-disk head suspensions, optical modules, miniature relays and lithium ion batteries. Compact and highly efficient diode- pumped and Q-switched solid-state lasers in second or third harmonic operation mode are now being increasingly incorporated in various laser equipment for fine material processing. Representative applications of excimer lasers are, sub-quarter micron design-rule LSI lithography and low- temperature annealing of poly-silicon TFT LCD.

  20. Application of energy conservation technologies in Indian industries

    International Nuclear Information System (INIS)

    Zubair, K.M.

    1992-01-01

    The quadrupling of oil prices in 1973 signaled the beginning of a crises period for the oil importing countries. It hampered the economic growth of developed and developing countries alike. The pace of industrialization slowed down, recession set in and the oil importing developing nations found their balance of payment situation steadily going worse. The second increase of oil prices in 1979 further compounded the problems. It did seem that the problem of economic growth and increasing debt burden was intractable as far as developing nations were concerned. Behind this turmoil were the faint stirrings of alternative actions that sought to wean the world from its oil and fossil fuel dominated economies. These alternatives ranged from harnessing renewable energy sources, such as solar, wind and biomass to implementing end-use energy efficiency strategies. A major lesson of the oil crunch era was that energy efficiency is tangible resource by itself that competes economically with contemporary energy supply options. In addition to this, four major national priorities, viz, economic competitiveness, utilization of scare capital for development, environmental quality and energy security through oil dependence provided an urgent rationale for saving energy. While conservation consciousness has already taken roots in Pakistan industry, it needs to be nurtured and gains need to be consolidated. The need of the hour is to take stock of the situation elsewhere, particularly in similar geographical and socio-economic situations, and plan for an energy efficient tomorrow. This article attempts to delineate the notable developments that have taken place in the application of energy conservation technologies in the Indian industries. These efforts have had a salutary effect on the Indian value added sector which was saddled with old plant and machinery designed in the era of cheap energy. (author)

  1. Application of positron emission tomography in industrial research

    International Nuclear Information System (INIS)

    Jonkers, G.; van den Bergen, E.A.; Vonkeman, K.A.

    1990-01-01

    Positron Emission computed Tomography (PET) is a relatively new imaging technique, exploiting the 511 keV annihilation radiation characteristic of positron emitters. Although exclusively used till now in the field of nuclear medicine, the application of PET for the non-invasive, in-situ visualisation of processes of industrial interest is challenging, because PET can in principle be used to obtain quantitative, 2D/3D images of the flow and distribution of fluids inside process units, whose steel walls may be up to several centimeters thick. With the aid of a NeuroECAT positron tomographer the PET technique has been utilised to image important (model) processes in the petrochemical industry, using physical labelling of the phase to be imaged. First, the displacement of a brine/surfactant phase, labelled with 66 Ga-EDTA, in a piece of reservoir rock was imaged. Secondly, the dehydration of water-in-oil emulsions was monitored dynamically by labelling the water phase with 68 Ga-EDTA. The second study in particular demonstrates that in the presence of noisy data the image reconstruction method utilised strongly influences the results obtained. With the advent of PET in nuclear medicine the availability of short-lived positron emitting nuclides like 11 C (t1/2 = 20 min), 13 N (t1/2 = 10 min) and 15 0 (t1/2 = 2 min) has increased considerably, allowing the investigation of industrially important reactions by chemical labelling. Utilising the NeuroECAT in a special mode, the catalytic oxidation of carbon monoxide could be imaged in a model tubular reactor by using 11 C-labelled CO, providing information about the kinetics of the individual reaction steps and interactions and about the degree of occupation of catalytically active sites. (author)

  2. Positron beams: The journey from fundamental physics to industrial application

    International Nuclear Information System (INIS)

    Coleman, P.G.

    2002-01-01

    Monoenergetic beams of positrons developed for fundamental atomic physics experiments have evolved - via basic and applied research in condensed matter physics and chemistry - to a phase in which possibilities for commercial exploitation are becoming apparent. The evolution of positron beam technology, from table-top laboratory-based apparatus with positrons of energies controllable in the 10 0 -10 2 eV energy range and beam intensities of ∼1 s -1 , to systems capable of delivering positrons of energies from 0.02 eV to MeV at intensities as high as 10 8 s -1 , has been both steady and saltatory. The journey from fundamental research to industrial application is a classic example of scientific development; a brief summary of steps on the way is followed by an example in which an attempt is being made to harness the efficacy of positron beams applied to defect spectroscopy of semiconductor structures to create an instrument of value to the ion implantation industry

  3. Radioisotope applications in industry and environment: Indian scenario

    International Nuclear Information System (INIS)

    Pant, H.J.

    2016-01-01

    Applications of radioisotopes and radiation technology in industry, medicine and agriculture form an important part of India's programme of using nuclear technology for societal benefits. Radioisotope production in India started on a modest scale soon after 1 MW APSARA reactor at Trombay, Mumbai became critical in 1956. The scope of activities expanded thereafter. With the commissioning of 40 MW CIRUS reactor in 1960, the setting up of modern radioisotope processing laboratories in late sixties and the production of cobalt-60 in power reactors in megacurie quantities in late seventies made India self-sufficient in radioisotope production. The radioisotope production received a major boost in 1985 with the commissioning of high flux 100 MW DHRUVA reactor, which provided opportunity to extend the range of radioisotopes available in the country both in quantity as well in specific activity. The CIRUS reactor has been shutdown in year 2010 and 1 MW APSARA reactor is presently being upgraded to 5 MW. Today, The DHRUVA reactor operating at its full capacity is being used for production of 100 different radioisotopes those are used in industry, agriculture and medicine. (author)

  4. The development of VR technology for nuclear industry applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jai Wan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong

    1998-01-01

    By searching the present condition of virtual reality technology of which researches were carried out not only abroad but also the country in nuclear power industry, we confirm the possibility of practical usage of VR in it. And as a fundamental research for applications of VR in nuclear power industry, gesture recognition for remote working and VR training system for severe working were performed. 1. A study on gesture recognition for remote working : The hand gesture recognition technology using visual signal and tactile magnetic sensor as a basic study for the introduction of task command and communication were performed. 2. A study on an construction of the virtual environment training system for the task in a severe condition: A construction of virtual reality training system for the tasks in a severe working condition was implemented. This system was intended to enhance the efficiency of actual tasks through advanced practicing the motion procedures those should be performed in a severe working condition where it is difficult to access for personnel. The motion information which is came from the sensors attached on trainers body was used for construction of the virtual environment through the computer graphic procedures. The VR training system has many merits relative to the conservative training method that was performed with mock-up which was made as the same size and shape as real component in nuclear power plant. (author). 27 refs., 21 tabs., 51 figs

  5. Industrial application of geothermal energy in Southeast Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

    1980-02-01

    Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

  6. Applications of Nuclear Reaction Analysis for Semiconductor Industry

    International Nuclear Information System (INIS)

    Wei Luncun

    2003-01-01

    Many thin film samples used in the semiconductor industry contain C, N and O. The detection limits and accuracy obtained by Rutherford Backscattering Spectroscopy (RBS) measurement are limited due to the small cross section values. High energy non-Rutherford backscattering is often used to enhance the sensitivities. But non-Rutherford cross section values are irregular and can not be calculated as normal Rutherford backscattering values. It is also difficult to find an appropriate energy window that for all these elements, and high-energy ions are needed. In this paper, the Nuclear Reaction Analysis (NRA) method is used to simultaneously measure C, N and O. several applications in the semiconductor research, development, and manufacturing areas are presented

  7. Benefits of important industrial tracer applications in the GDR

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Goeldner, R.; Koennecke, H.G.; Kupsch, H.; Luther, D.; Otto, R.; Reinhardt, R.; Ulrich, H.

    1990-01-01

    Tracers can be used to label substances or objects in order to discriminate between them, to follow their movement, to record changes of concentration and distribution between phases, etc. The main advantages of tracer investigations are the contactless recording of signals without influencing the observed process (also under rigorous operation conditions), the high detection sensitivity, the large number of available tracer nuclides (problems of all branches of industry can be solved) and the fact that tracer investigation can be carried out on operating production units, so that they provide valuable checks of the validity of design and process data. The cost-to-benefit ratio can be as low as 1:50. In the following some selected examples of tracer applications and their benefits will be presented. (orig./BBR) [de

  8. Androids: application of EAP as artificial muscles to entertainment industry

    Science.gov (United States)

    Hanson, D.; Pioggia, G.; Bar-Cohen, Yoseph; de Rossi, D.

    2001-01-01

    The classic movie Metropolis (1926), which is nowadays considered a cinema milestone, has shown the possibility to build robots called androids that are science and fiction run together to realize a dream: the human-like robot. In that movie, Dr. Rotwang transforms a simple and cold calculating robot into the body of a beautiful woman. Robots have often been depicted as metal creatures with cold steel bodies, but there is no reason why metals should be the only kind of material for construction of robots. The authors examined the issues related to applying electroactive polymers materials (EAP) to the entertainment industry. EAP are offering attractive characteristics with the potential to produce more realistic models of living creatures at significantly lower cost. This paper seeks to elucidate how EAP might infiltrate and ultimately revolutionize entertainment, showing some applicative examples.

  9. Industrial Application of Configurators: From Motivations to Realized Benefits

    DEFF Research Database (Denmark)

    Kristjansdottir, Katrin; Shafiee, Sara; Hvam, Lars

    to support companies applying mass customization strategies. This articles analysis the relationship between the initial motivations manufacturing companies have for implementing configurators and the realized benefits from the application of configurators. The results presented in this paper are based......Manufacturing companies are increasingly seeking to gain the benefits from mass customization strategies as a response to increased customers’ demand for customized products. To automate the process of generating products’ specifications and guide the sales process, configurators are commonly used...... on a survey followed with interviews in 22 industrial companies. The findings show that the main motivations can be grouped into seven categories, where the successfulness of achieving the targeted benefits varies between the individual categories. Furthermore, the results highlights that substantial benefits...

  10. Application of Target Costing method in the Hospitality Industry

    Directory of Open Access Journals (Sweden)

    Andor Pajrok

    2014-12-01

    Full Text Available Traditional approaches to managing costs are based on the costs that are the result of existing capabilities and resources in the company. Adding to these costs a specified margin or profit, leads to the sales price. If the market is not ready to accept such a selling price, managers need to find opportunities for rationalization and cost reduction. Target cost management begins the process of managing the sales price and the planned profit that the market can accept, and only then is it possible to determine the cost of the product. In the planning phase of the product and the manufacturing process the approach is to finding a method to lower costs and to reduce them as much as possible. The aim this of study is to investigate the application of target (strategy cost accounting methods in the Hospitality Industry.

  11. Remote control of the industry processes. POWERLINK protocol application

    Science.gov (United States)

    Wóbel, A.; Paruzel, D.; Paszkiewicz, B.

    2017-08-01

    The present technological development enables the use of solutions characterized by a lower failure rate, and work with greater precision. This allows you to obtain the most efficient production, high speed production and reliability of individual components. The main scope of this article was POWERLINK protocol application for communication with the controller B & R through communication Ethernet for recording process parameters. This enables control of run production cycle using an internal network connected to the PC industry. Knowledge of the most important parameters of the production in real time allows detecting of a failure immediately after occurrence. For this purpose, the position of diagnostic use driver X20CP1301 B&R to record measurement data such as pressure, temperature valve between the parties and the torque required to change the valve setting was made. The use of POWERLINK protocol allows for the transmission of information on the status of every 200 μs.

  12. Current and future industrial application of electron accelerators in Thailand

    International Nuclear Information System (INIS)

    Siri-Upathum, Chyagrit

    2003-01-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  13. Melt rheology and its applications in the plastics industry

    CERN Document Server

    Dealy, John M

    2013-01-01

    This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that wil...

  14. Fluid-based radon mitigation technology development for industrial applications

    International Nuclear Information System (INIS)

    Liu, K.V.; Gabor, J.D.; Holtz, R.E.; Gross, K.C.

    1996-01-01

    The objective of the radon mitigation technology development effort is to develop an efficient and economical radon gas removal technology based on a fluid absorption process. The technology must be capable of cleaning up a wide range of radon gas stream concentrations to a level that meets EPA gas emission standards for residential and industrial applications. Argonne has recently identified a phenomenon that offers the possibility of radon recovery from the atmosphere with high efficiency at room temperature, and radon release at slightly elevated temperatures (50-60 degrees C.) such a device would offer numerous substantial advantages over conventional cryogenic charcoal systems for the removal of radon. Controlled sources of radon in Argonne's radon research facility are being used to quantitatively assess the performance of a selected class of absorbing fluids over a range of radon concentrations. This paper will discuss the design of laboratory- and engineering-scale radon absorption units and present some preliminary experimental test results

  15. Current and future industrial application of electron accelerators in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Chulalongkorn Univ., Faculty of Engineering, Bangkok (Thailand)

    2003-02-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  16. Manufacturing radioactive material for medical, research and industrial applications

    International Nuclear Information System (INIS)

    Seidel, C.W.

    1992-01-01

    Hospitals, clinics and other medical complexes are among the most extensive users of radioactive material. Nuclear medicine uses radioactive solutions of Tc-99m, Tl-201, Ga-67, I-123, Xe-133 and other radiopharmaceuticals as diagnostic tools to evaluate dynamic functions of various organs in the body, detect cancerous tumors, sites of infection or other bodily dysfunctions. Examples of monitoring blood flow to the brain of a cocaine addict will be shown. Many different radionuclides are also produced for life science research and industrial applications. Some require long irradiations and are needed only periodically. Radiopharmaceutical manufactures look for reliable suppliers that can produce quality product at a reasonable cost. Worldwide production of the processed and unprocessed radionuclides and the enriched stable nuclides that are the target materials used in the accelerators and reactors around the world will be discussed. (author)

  17. Radiation processing of natural polymers for industrial and agricultural applications

    International Nuclear Information System (INIS)

    Hegazy, El-Sayed A.; AbdEl-Rehim, H.; Diaa, D.A.; El-Barbary, A.

    2008-01-01

    Radiation induced degradation technology is a new and promising application of ionizing radiation to develop viscose, pulp, paper, food preservation, pharmaceutical production, and natural bioactive agents industries. Controlling the degree of degradation, uniform molecular weight distribution, saving achieved in the chemicals (used in conventional methods) on a cost basis, and environmentally friendly process are the beneficial effects of using radiation technology in these industries. However, for some development countries such technology is not economic. Therefore, a great efforts should be done to reduce the cost required for such technologies. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses. The addition of some additives such as potassium per-sulfate (KPS), ammonium per-sulfate (APS), or H 2 O 2 to natural polymers (carboxymethylcellulose (CMC), chitosan, carrageenan and Na-alginate) during irradiation process accelerates their degradation. The highest degradation rate of polysaccharides obtained when APS was used. The end product of irradiated CMC, chitosan, carrageenan and Na-alginate may be used as food additive or benefited in agricultural purposes. On the other hand, radiation crosslinking of PAAm or PNIPAAm is affected by the presence of natural polymer like CMC-Na and carrageenan due to their degradability which could be controlled according to its concentration in the bulk medium and irradiation dose. Accordingly, the gel content, thermo-sensitivity (LCST) and swelling properties of PNIPAAm based natural polymers could be controlled. The swelling of the prepared copolymer hydrogels was investigated for its possible use in personal care articles particularly diapers or as carriers for drug delivery systems. The prepared crosslinked copolymers possessed high and fast swelling properties in simulated urine media and the swelling ratios of CMC-Na/PAAm gels in urine are acceptable for diaper

  18. Radiation Processing of Natural Polymers for Industrial Applications

    International Nuclear Information System (INIS)

    Hegazy, E.A.

    2008-01-01

    Radiation induced degradation technology is a new and promising application of ionizing radiation to develop viscose, pulp, paper, food preservation, pharmaceutical production, and natural bioactive agents industries. Controlling the degree of degradation, uniform molecular weight distribution, saving achieved in the chemicals (used in conventional methods) on a cost basis, and environmentally friendly process are the beneficial effects of using radiation technology in these industries. However, for some development countries such technology is not economic. Therefore, a great effort should be done to reduce the cost required for such technologies. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses. The addition of some additives such as potassium per-sulfate (KPS), ammonium per-sulfate (APS), or H 2 O 2 to natural polymers (carboxy-methylcellulose (CMC), chitosan, carrageenan and Na-alginate) during irradiation process accelerates their degradation. The highest degradation rate of polysaccharides obtained when APS was used. The end product of irradiated CMC, chitosan, carrageenan and Na-alginate may be used as food additive or benefited in agricultural purposes. On the other hand, radiation crosslinking of PAAm or PNIPAAm is affected by the presence of natural polymer like CMC-Na and carrageenan due to their degradability which could be controlled according to its concentration in the bulk medium and irradiation dose. Accordingly, the gel content, thermo-sensitivity (LCST) and swelling properties of PNIPAAm based natural polymers could be controlled. The swelling of the prepared copolymer hydrogels was investigated for its possible use in personal care articles particularly diapers or as carriers for drug delivery systems. The prepared crosslinked copolymers possessed high and fast swelling properties in simulated urine media and the swelling ratios of CMC-Na /PAAm gels in urine are acceptable for diaper

  19. PBAT based nanocomposites for medical and industrial applications

    International Nuclear Information System (INIS)

    Fukushima, Kikku; Wu, Meng-Hsiu; Bocchini, Sergio; Rasyida, Amaliya; Yang, Ming-Chien

    2012-01-01

    Poly(butylene adipate-co-terephthalate) (PBAT) based nanocomposites were prepared by melt blending PBAT with 5 and 10 wt.% of clay nanoparticles (unmodified and modified montmorillonites, unmodified and modified fluoro-hectorites, and unmodified sepiolites). All nanocomposites showed a good level of clay distribution and dispersion into PBAT, especially nanocomposites with high clay chemical affinity with the polymer matrix. DSC results showed that addition of layered silicates slightly hindered kinetics and extent of crystallization of PBAT; however, sepiolite particles were able to promote polymer crystallization kinetics and the transformation of the PBAT crystal structure to a more ordered form. Similar increases in the thermal stability of PBAT in nitrogen and air were obtained upon addition of all clays, due to a barrier effect of the clays toward polymer decomposition product ablation. Preliminary biocompatibility tests indicated that PBAT based materials with 10% clay content have good biological safety and display almost no cytotoxicity. The addition of all nanofillers increased the hardness of PBAT matrix. The DMA analysis showed that all nanocomposites presented higher E′ values than neat PBAT, indicating that addition of clays improved the mechanical properties of PBAT. For layered silicate nanocomposites, the main influencing factors on the thermo-mechanical properties appeared to be the aspect ratio and dispersion of clay nanoplatelets, rather than polymer/clay chemical affinity. The highest E′ values of sepiolite based nanocomposites make this nanoparticle the most attractive material for tissue engineering and environmental industrial applications. Highlights: ► PBAT nanocomposites with high thermo-mechanical properties were obtained. ► The effects of clay presence on PBAT crystalline structure were elucidated. ► The presence of the clays used in PBAT showed good biological safety. ► Sepiolites brought the higher improvements in PBAT

  20. PBAT based nanocomposites for medical and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kikku, E-mail: kikku81@gmail.com [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan (China); Wu, Meng-Hsiu [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan (China); Bocchini, Sergio [Dipartimento di Scienze dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Rasyida, Amaliya; Yang, Ming-Chien [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan (China)

    2012-08-01

    Poly(butylene adipate-co-terephthalate) (PBAT) based nanocomposites were prepared by melt blending PBAT with 5 and 10 wt.% of clay nanoparticles (unmodified and modified montmorillonites, unmodified and modified fluoro-hectorites, and unmodified sepiolites). All nanocomposites showed a good level of clay distribution and dispersion into PBAT, especially nanocomposites with high clay chemical affinity with the polymer matrix. DSC results showed that addition of layered silicates slightly hindered kinetics and extent of crystallization of PBAT; however, sepiolite particles were able to promote polymer crystallization kinetics and the transformation of the PBAT crystal structure to a more ordered form. Similar increases in the thermal stability of PBAT in nitrogen and air were obtained upon addition of all clays, due to a barrier effect of the clays toward polymer decomposition product ablation. Preliminary biocompatibility tests indicated that PBAT based materials with 10% clay content have good biological safety and display almost no cytotoxicity. The addition of all nanofillers increased the hardness of PBAT matrix. The DMA analysis showed that all nanocomposites presented higher E Prime values than neat PBAT, indicating that addition of clays improved the mechanical properties of PBAT. For layered silicate nanocomposites, the main influencing factors on the thermo-mechanical properties appeared to be the aspect ratio and dispersion of clay nanoplatelets, rather than polymer/clay chemical affinity. The highest E Prime values of sepiolite based nanocomposites make this nanoparticle the most attractive material for tissue engineering and environmental industrial applications. Highlights: Black-Right-Pointing-Pointer PBAT nanocomposites with high thermo-mechanical properties were obtained. Black-Right-Pointing-Pointer The effects of clay presence on PBAT crystalline structure were elucidated. Black-Right-Pointing-Pointer The presence of the clays used in PBAT showed

  1. Application of electron beams irradiation in science and industry

    International Nuclear Information System (INIS)

    Hilmy, N.; Razzak, M.T.; Chosdu, R.; Soebianto, Y.S.

    1996-01-01

    The research and development of radiation technology in Indonesia is mainly conducted at the Center for Application of Isotopes and Radiation of the National Atomic Energy Agency (CAIR-BATAN). During the past 10 years, the center has gained a great progress in the development of gamma irradiation techniques for industrial processing, food preservation, health care products sterilization, and waste treatment. A low energy (300 keV, 50 mA) electron beam accelerator has been installed in cooperation with IAEA/UNDP as a training and demonstration facility for wood surface coating. In spite of the advantages of radiation curing, this technique is still unacceptable in the industries due to the uneconomical reasons and inferiority of the products. The research and development using this facility is also considered expensive, due to the high cost of the liquid nitrogen consumed by the accelerator. The medium energy (2 MeV, 10 mA) accelerator has been installed recently. This is a multipurpose irradiator provided with a belt conveyer, but also designed for wire and cable irradiation. The main technical parameters have been measured under different operating conditions during its commissioning, and the nominal dose measurement has been performed using alanine polyethylene, ethanol-chlorobenzene solution, and FWT-60 film dosimeters. Research and development of polymer cross-linking and shrinkable tubes have become the concern of the accelerator application. The radiation curable polyethylene compound for the cable insulation has been formulated with a characteristic of high voltage and heat resistant. Dosimetry of spices with 0.3-0.6 g/cm 3 density and health care products of 0.2-0.3 g/cm 3 density have been carried out for the promising food preservation and radiation sterilization, energy beam on micro-organism, and surface modification of some synthetic and natural polymers are also carried out. (J.P.N.)

  2. Receiver Operating Characteristic Analysis for Classification Based on Various Prior Probabilities of Groups with an Application to Breath Analysis

    Science.gov (United States)

    Cimermanová, K.

    2009-01-01

    In this paper we illustrate the influence of prior probabilities of diseases on diagnostic reasoning. For various prior probabilities of classified groups characterized by volatile organic compounds of breath profile, smokers and non-smokers, we constructed the ROC curve and the Youden index with related asymptotic pointwise confidence intervals.

  3. Radiation Synthesis of Some Copolymers and their Potential Industrial Applications

    International Nuclear Information System (INIS)

    Hegazy, N.R.

    2015-01-01

    The field of biomaterials has advanced rapidly in the recent years. Much attention has been focused on the research and developments of polymer for biomedical applications. One of the most promising classes of materials for biomedical applications seems to be the hydrogels. In this connection, the first part concern with preparation of various types of hydrogels by using gamma irradiation for possible Industrial uses. Novel super absorbent hydrogels were prepared successfully from carboxymethylcellulose sodium (CMC) and acrylamide (AAm) due to their good biocompatibility. The structure of the hydrogels was characterized by FT-IR and thermogravimetric analysis. Scanning electron microscopy was also carried out to study the surface morphology of the hydrogel and it verifies that the synthesized hydrogels have a porous structure then the synthesis of silver (AAm/CMC) nano composite hydrogel from the prepared (AAm/CMC) hydrogel has done and characterized using UV-visible, XRD, EDX, SEM and TEM which confirmed the formation of silver nanoparticles and determined its particle size. Their equilibrium swelling ratio in distilled water and different physiological fluids were evaluated. Moreover, the hydrogels exhibited smart swelling and shrinking in different aqueous solutions that could be controlled by changing CMC content. The second part concern with the synthesis of grafting polymers using γ-rays and the factors affect on the grafting process onto LDPE, HDPE and PP films by binary comonomer GMA:NVIm such as solvent, concentration, composition and dose were investigated. The grafted films were characterized by enough number of techniques. Afterwards, the grafted films were treated by many chemical reagents such as Isonicotinamide, 4(6) Aminouracil, Sulpha methoxy di azine and Guanidine hydrochloride at different interval times, respectively. The prepared hydrogels are promising for the applications in the biomaterials area and the applicability of grafted films to be

  4. Anomaly Detection Based on Sensor Data in Petroleum Industry Applications

    Directory of Open Access Journals (Sweden)

    Luis Martí

    2015-01-01

    Full Text Available Anomaly detection is the problem of finding patterns in data that do not conform to an a priori expected behavior. This is related to the problem in which some samples are distant, in terms of a given metric, from the rest of the dataset, where these anomalous samples are indicated as outliers. Anomaly detection has recently attracted the attention of the research community, because of its relevance in real-world applications, like intrusion detection, fraud detection, fault detection and system health monitoring, among many others. Anomalies themselves can have a positive or negative nature, depending on their context and interpretation. However, in either case, it is important for decision makers to be able to detect them in order to take appropriate actions. The petroleum industry is one of the application contexts where these problems are present. The correct detection of such types of unusual information empowers the decision maker with the capacity to act on the system in order to correctly avoid, correct or react to the situations associated with them. In that application context, heavy extraction machines for pumping and generation operations, like turbomachines, are intensively monitored by hundreds of sensors each that send measurements with a high frequency for damage prevention. In this paper, we propose a combination of yet another segmentation algorithm (YASA, a novel fast and high quality segmentation algorithm, with a one-class support vector machine approach for efficient anomaly detection in turbomachines. The proposal is meant for dealing with the aforementioned task and to cope with the lack of labeled training data. As a result, we perform a series of empirical studies comparing our approach to other methods applied to benchmark problems and a real-life application related to oil platform turbomachinery anomaly detection.

  5. Selected developments and applications of Leontief models in industrial ecology

    International Nuclear Information System (INIS)

    Stroemman, Anders Hammer

    2005-01-01

    extended for this study through the application of multi-objective optimization techniques and is used to explore efficient trade offs between reducing CO2 emissions and increasing global factor costs. Concluding Remarks: It has been the scope of this work to contribute to map the interdisciplinary landscape between input-output analysis and industrial ecology. The three first papers enters this landscape from the Industrial Ecology side, more specifically form the Life Cycle Assessment platform and the two latter from the input-output paradigm. The fundamental learning obtained is that the linear section of this landscape is described by Leontief models. Both Life Cycle Assessment, Mass Flow Analysis and Substance Flow Analysis etc. can be represented on the mathematical form proposed by Leontief. The input output framework offers a well- developed set of methodologies that can bridge the various sub-fields of industrial ecology addressing question related to inter-process flows. It seems that an acknowledgement of Leontief models as the base framework for the family of linear models in industrial ecology would be beneficial. Following the acknowledgement of Leontief's work comes that of Dantzig and the development of linear programming. In investigating alternative arrangements of production and combinations of technologies to produce a given good, the common practice in LCA has been total enumeration of all scenarios. This might be feasible, and for that sake desirable, for a limited amount combinations. However as the complexity and number of alternatives increases this will not be feasible. Dantzig invented Linear programming to address exactly this type of problem. The scientific foundation provided by Leontief and Dantzig has been crucial to the work in this thesis. It is my belief that the impact to industrial ecology of their legacy will increase further in the years to come. (Author)

  6. Expert system verification and validation for nuclear power industry applications

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    The potential for the use of expert systems in the nuclear power industry is widely recognized. The benefits of such systems include consistency of reasoning during off-normal situations when humans are under great stress, the reduction of times required to perform certain functions, the prevention of equipment failures through predictive diagnostics, and the retention of human expertise in performing specialized functions. The increased use of expert systems brings with it concerns about their reliability. Difficulties arising from software problems can affect plant safety, reliability, and availability. A joint project between EPRI and the US Nuclear Regulatory Commission is being initiated to develop a methodology for verification and validation of expert systems for nuclear power applications. This methodology will be tested on existing and developing expert systems. This effort will explore the applicability of conventional verification and validation methodologies to expert systems. The major area of concern will be certification of the knowledge base. This is expected to require new types of verification and validation techniques. A methodology for developing validation scenarios will also be studied

  7. Design verification methodology for a solenoid valve for industrial applications

    International Nuclear Information System (INIS)

    Park, Chang Dae; Lim, Byung Ju; Chun, Kyung Yul

    2015-01-01

    Solenoid operated valves (SOV) are widely used in many applications due to their fast dynamic responses, cost effectiveness, and less contamination sensitive characteristics. In this paper, we tried to provide a convenient method of design verification of SOV to design engineers who depend on their experiences and experiment during design and development process of SOV. First, we summarize a detailed procedure for designing SOVs for industrial applications. All of the design constraints are defined in the first step of the design, and then the detail design procedure is presented based on design experiences as well as various physical and electromagnetic relationships. Secondly, we have suggested a verification method of this design using theoretical relationships, which enables optimal design of SOV from a point of view of safety factor of design attraction force. Lastly, experimental performance tests using several prototypes manufactured based on this design method show that the suggested design verification methodology is appropriate for designing new models of solenoids. We believe that this verification process is novel logic and useful to save time and expenses during development of SOV because verification tests with manufactured specimen may be substituted partly by this verification methodology.

  8. Radiation in industrial processes;Applications reviewed at Warsaw Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    The uses of ionizing radiation can be divided into two broad categories. First, it can be used as a tool of investigation, measurement and testing, and secondly, it can be a direct agent in inducing chemical processes. For example, radiation can help in the detecting and locating of malignant tumours, and it can be employed also for the destruction of those tumours. Again, it can reveal intricate processes of plant growth and, at the same time, can initiate certain processes which result in the growth of new varieties of plants. Similarly in industry, radiation is both a tool of detection, testing and measurement and an active agent for the initiation of useful chemical reactions. The initiation of chemical reactions usually requires larger and more powerful sources of radiation. Such radiation can be provided by substances like cobalt 60 and caesium 137 or by machines which accelerate nuclear particles to very high energies. Of the particle-accelerating machines, the most useful in this field are those which accelerate electrons to energies considerably higher than those possessed by the electrons (beta particles) emitted by radioactive substances. These high-energy radiations produce interesting reactions both in organic life and in materials for industry. Several of the papers presented at the Warsaw conference were devoted to the application of ionizing radiation to polymerization and other useful reactions in the manufacture and treatment of plastics. The polymerization of the ethylene series of hydro-carbons was discussed from various angles and the technical characteristics and requirements were described. It was pointed out by some experts that the cross-linking effect of radiation resulted in a superior product, opening the way to new applications of polyethylene. Irradiated polyethylene film has been sold for several years, and electrical wire has been made with irradiated polyethylene as the insulating jacket. Other reactions discussed included the cross

  9. Application of Core Theory to the Airline Industry

    Science.gov (United States)

    Raghavan, Sunder

    2003-01-01

    Competition in the airline industry has been fierce since the industry was deregulated in 1978. The proponents of deregulation believed that more competition would improve efficiency and reduce prices and bring overall benefits to the consumer. In this paper, a case is made based on core theory that under certain demand and cost conditions more competition can actually lead to harmful consequences for industries like the airline industry or cause an empty core problem. Practices like monopolies, cartels, price discrimination, which is considered inefficient allocation of resources in many other industries, can actually be beneficial in the case of the airline industry in bringing about an efficient equilibrium.

  10. Industrial applications and current trends in supercritical fluid technologies

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2005-01-01

    Full Text Available Supercritical fluids have a great potential for wide fields of processes Although CO2 is still one of the most used supercritical gases, for special purposes propane or even fluorinated-chlorinated fluids have also been tested. The specific characteristics of supercritical fluids behaviour were analyzed such as for example the solubilities of different components and the phase equilibria between the solute and solvent. The application at industrial scale (decaffeinating of tea and coffee, hop extraction or removal of pesticides from rice, activity in supercritical extraction producing total extract from the raw material or different fractions by using the fractionated separation of beverages (rum, cognac, whisky, wine, beer cider, of citrus oils and of lipids (fish oils, tall oil were also discussed. The main interest is still for the extraction of natural raw materials producing food ingredients, nutraceuticals and phytopharmaceuticals but also cleaning purposes were tested such as the decontamination of soils the removal of residual solvents from pharmaceutical products, the extraction of flame retardants from electronic waste or precision degreasing and cleaning of mechanical and electronic parts. An increasing interest obviously exists for impregnation purposes based on supercritical fluids behaviour, as well as for the dying of fibres and textiles. The production of fine particles in the micron and submicron range, mainly for pharmaceutical products is another important application of supercritical fluids. Completely new products can be produced which is not possible under normal conditions. Supercritical fluid technology has always had to compete with the widespread opinion that these processes are very expensive due to very high investment costs in comparison with classical low-pressure equipment. Thus the opinion is that these processes should be restricted to high-added value products. A cost estimation for different plant sizes and

  11. Current status and recent developments of industrial radioisotope applications in Japan

    International Nuclear Information System (INIS)

    Tominaga, Hiroshi

    1985-01-01

    The current status of application of radioisotopes to industry in Japan is briefly reviewed. Radioisotope gauges are widely used in industry, but most of the radioactive tracer applications are performed in laboratories. as for the recent developments, it is noted that the majority of them are related to high technologies in industry. Some typical examples are described. They include: high accuracy coke moisture guage--dual channel gauging on-line analyzers based on 252 Cf, simultaneous neutron and gamma radiography; tracer techniques in civil engineering field, electronics industry, automobile industry and iron and steel industry.(M.G.B.)

  12. Discovery and industrial applications of lytic polysaccharide mono-oxygenases.

    Science.gov (United States)

    Johansen, Katja S

    2016-02-01

    The recent discovery of copper-dependent lytic polysaccharide mono-oxygenases (LPMOs) has opened up a vast area of research covering several fields of application. The biotech company Novozymes A/S holds patents on the use of these enzymes for the conversion of steam-pre-treated plant residues such as straw to free sugars. These patents predate the correct classification of LPMOs and the striking synergistic effect of fungal LPMOs when combined with canonical cellulases was discovered when fractions of fungal secretomes were evaluated in industrially relevant enzyme performance assays. Today, LPMOs are a central component in the Cellic CTec enzyme products which are used in several large-scale plants for the industrial production of lignocellulosic ethanol. LPMOs are characterized by an N-terminal histidine residue which, together with an internal histidine and a tyrosine residue, co-ordinates a single copper atom in a so-called histidine brace. The mechanism by which oxygen binds to the reduced copper atom has been reported and the general mechanism of copper-oxygen-mediated activation of carbon is being investigated in the light of these discoveries. LPMOs are widespread in both the fungal and the bacterial kingdoms, although the range of action of these enzymes remains to be elucidated. However, based on the high abundance of LPMOs expressed by microbes involved in the decomposition of organic matter, the importance of LPMOs in the natural carbon-cycle is predicted to be significant. In addition, it has been suggested that LPMOs play a role in the pathology of infectious diseases such as cholera and to thus be relevant in the field of medicine. © 2016 Authors; published by Portland Press Limited.

  13. Artificial neural nets application in the cotton yarn industry

    Directory of Open Access Journals (Sweden)

    Gilberto Clóvis Antoneli

    2016-06-01

    Full Text Available The competitiveness in the yarn production sector has led companies to search for solutions to attain quality yarn at a low cost. Today, the difference between them, and thus the sector, is in the raw material, meaning processed cotton and its characteristics. There are many types of cotton with different characteristics due to its production region, harvest, storage and transportation. Yarn industries work with cotton mixtures, which makes it difficult to determine the quality of the yarn produced from the characteristics of the processed fibers. This study uses data from a conventional spinning, from a raw material made of 100% cotton, and presents a solution with artificial neural nets that determine the thread quality information, using the fibers’ characteristics values and settings of some process adjustments. In this solution a neural net of the type MultiLayer Perceptron with 11 entry neurons (8 characteristics of the fiber and 3 process adjustments, 7 output neurons (yarn quality and two types of training, Back propagation and Conjugate gradient descent. The selection and organization of the production data of the yarn industry of the cocamar® indústria de fios company are described, to apply the artificial neural nets developed. In the application of neural nets to determine yarn quality, one concludes that, although the ideal precision of absolute values is lacking, the presented solution represents an excellent tool to define yarn quality variations when modifying the raw material composition. The developed system enables a simulation to define the raw material percentage mixture to be processed in the plant using the information from the stocked cotton packs, thus obtaining a mixture that maintains the stability of the entire productive process.

  14. Optimal Bayesian experimental design for priors of compact support with application to shock-tube experiments for combustion kinetics

    KAUST Repository

    Bisetti, Fabrizio; Kim, Daesang; Knio, Omar; Long, Quan; Tempone, Raul

    2016-01-01

    to account for the bounded domain of the uniform prior pdf of the parameters. The underlying Gaussian distribution is obtained in the spirit of the Laplace method, more precisely, the mode is chosen as the maximum a posteriori (MAP) estimate

  15. Insights into lignin degradation and its potential industrial applications.

    Science.gov (United States)

    Abdel-Hamid, Ahmed M; Solbiati, Jose O; Cann, Isaac K O

    2013-01-01

    -phenolic lignin model compounds. In addition to the peroxidases and laccases, fungi produce other accessory oxidases such as aryl-alcohol oxidase and the glyoxal oxidase that generate the hydrogen peroxide required by the peroxidases. Lignin-degrading enzymes have attracted the attention for their valuable biotechnological applications especially in the pretreatment of recalcitrant lignocellulosic biomass for biofuel production. The use of lignin-degrading enzymes has been studied in various applications such as paper industry, textile industry, wastewater treatment and the degradation of herbicides. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    Energy Technology Data Exchange (ETDEWEB)

    Name, No

    2014-10-01

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  17. Industrial and medical applications of accelerators with energies less than 20 MeV

    International Nuclear Information System (INIS)

    Duggan, J.L.

    1983-01-01

    In this paper the medical and industrial application of small accelerators is reviewed. Most of the material is taken from the Seventh Conference on the Application of Accelerators in Research and Industry, which was held in Denton, Texas in November of 1982. The areas covered include medical linacs, cyclotron design and production of medical radioisotopes, radiation processing, ion implantation for the metallurgical and semiconductor industries, oil and mineral exploration, trace, surface and bulk analysis, and unique accelerators for all of the above applications

  18. [Investigation on standard application of industrial dust hazard classification].

    Science.gov (United States)

    Lu, Y; Zhang, M; Chen, W H

    2017-04-20

    Objective: To investigate the application and effectiveness evaluation of the standard of GBZ/T 229.1-2010 in practice, and to explore the applicability, aiming to provide technical evidence for the revision of GBZ/T 229.1-2010. Methods: There were 2 questionnaire surveys carried out in the study, including general survey and specific survey. Databases were established and data were input with Excel 2010 and Epidata version 3.1 software. SPSS version 19.0 software was used for data cleaning and statistical analysis. Results: The general survey received 100 questionnaires, with 43 from facilities and 57 from professional expertise. There were 59 questionnaires from occupational health technical service organizations held by government, and 11 from colleges and universities. The leading three jobs using GBZ/T 229.1-2010 were the occupational hazards evaluation for constructive project (69.0%) , lecturing/training (55.0%) , occupational hazards monitoring (50.0%) , respectively. The high frequency used contents of GBZ/T 229.1-2010 were the fourth part "classification" (67.0%) , the fifth part "the principles of classification management" (59.0%) , annex A "the correct use instructions" (52.0%) , respectively. In the results of feasibility, scores of the fourth part "classification" , the fifth part "the principles of classification management" , annex A "the correct use instructions" were 3.07, 3.03, 3.23, respectively. The parts needed to be modified as priories were the fourth part "classification" (22.0%) , the fifth part "the principles of classification management" (13.0%) , annex A "the correct use instructions" (12.0%) . The specific survey received 15 questionnaires, with 12 from the employers and 3 from occupational health technical service organizations. The awareness rate of GBZ/T 229.1-2010 among occupational health professionals was 83.3%. Classification results in the employers were used for guidance on improvement measures (66.7%) , health surveillance

  19. Industrial production of MgH2 and its application

    International Nuclear Information System (INIS)

    Uesugi, H.; Sugiyama, T.; Nii, H.; Ito, T.; Nakatsugawa, I.

    2011-01-01

    Research highlights: → Tablet and powder Mg were hydrogenated in a 50 kg batch furnace based on thermal equilibrium method. → Compression of Mg tablet improved the hydrogenation yield. → Hydrolysis of MgH 2 using citric acid generated hydrogen under 373 K. → A MgH 2 -hydrogen reactor utilizing hydraulic head pressure was developed. → - Abstract: A process for the industrial production of magnesium hydride (MgH 2 ) based on a thermal equilibrium method and its application to portable hydrogen sources is proposed. Mg powders and tablets compressed with mechanically ground Mg ribbons were successfully hydrogenated in a 50-kg-batch furnace. The resultant MgH 2 showed a hydrogen yield of around 96% with good reproducibility. The compression ratio of Mg tablets was found to be an important factor in the hydrogenation yield. A hydrolysis technique using citric acid as an additive was employed to generate hydrogen under 373 K. Increasing the concentration of citric acid and the temperature accelerated the hydrolysis reactivity. A hydrogen reactor utilizing hydraulic head pressure was developed. It generated hydrogen continuously for 1 h at a flow rate of 100 ml min -1 with hydrolysis of 5 g of tablet-form MgH 2 . The conversion yield was around 70%, regardless of the flow rate.

  20. Nuclear reactor application for high temperature power industrial processes

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Zaicho, N.D.; Alexeev, A.M.; Baturov, B.B.; Karyakin, Yu.I.; Nazarov, E.K.; Ponomarev-Stepnoj, N.N.; Protzenko, A.M.; Chernyaev, V.A.

    1977-01-01

    This report gives the results of considerations on industrial heat and technology processes (in chemistry, steelmaking, etc.) from the point of view of possible ways, technical conditions and nuclear safety requirements for the use of high temperature reactors in these processes. Possible variants of energy-technological diagrams of nuclear-steelmaking, methane steam-reforming reaction and other processes, taking into account the specific character of nuclear fuel are also given. Technical possibilities and economic conditions of the usage of different types of high temperature reactors (gas cooled reactors and reactors which have other means of transport of nuclear heat) in heat processes are examined. The report has an analysis of the problem, that arises with the application of nuclear reactors in energy-technological plants and an evaluation of solutions of this problem. There is a reason to suppose that we will benefit from the use of high temperature reactors in comparison with the production based on high quality fossil fuel [ru

  1. Development of laser application technologies for nuclear industry

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Rhee, Y.; Cha, B. H.

    2004-03-01

    The stable laser isotope facility will supply raw stable isotope material to produce radioisotope elements for medical and industrial applications. The medical stable isotope, Tl-203 was separated by the isotope selective optical pumping (ISOP) method native to the laboratory for quantum optics, KAERI. The extraction rate of 10 mg/hr was achieved from the separation chamber of 80cm x 80cm x 100cm dimension. The Yb-168 separation facility was improved in stability, durability, and efficiency. The old copper vapor pumping laser system was replaced with two 40W green DPSSL's. The tunable dye laser system was also improved in stability. The extraction rate was measured as 1.5 mg/hr in the improved system. The 200W infrared DPSSL system was also developed and used for photoionization of thallium isotopes. The adaptive optics and beam path control system was applied to the isotope separation facilities. Also the beam quality of the lasers was monitored and improved. To maintain constant isotope composition during reaction process, the wavelengths of tunable lasers are locked by being the mass composition information fed back into the oscillator control unit of the lasers. To optimize isotope separation process timely, the extractor surface is directly analyzed by laser irradiation and TOF mass spectrometer. And the final products in high purity is recovered in maximum by solution chemistry

  2. Mucor indicus: biology and industrial application perspectives: a review.

    Science.gov (United States)

    Karimi, Keikhosro; Zamani, Akram

    2013-01-01

    Mucor indicus, one of the most important strains of zygomycetes fungi, has been the subject of several studies since a couple of hundred years ago. This fungus, regarded as a non-pathogenic dimorphic microorganism, is used for production of several beers and foods. Morphology of the fungus can be manipulated and well controlled by changing a number of parameters. Furthermore, M. indicus can grow on a variety of substrates including lignocellulosic hydrolysates which are mixtures of hexoses, pentoses, and different severe fermentation inhibitors. Indeed, high yield ethanol production is among the most important features of this strain. Presence of considerable amounts of chitosan in the cell wall is another important aspect of the fungus. Besides production of ethanol and chitosan, the biomass of this fungus has shown a great potential to be used as a rich nutritional source, e.g. fish feed. The fungus is also among the oleaginous fungi and produces high amounts of polyunsaturated fatty acids particularly γ-linolenic acid. Furthermore, the biomass autolysate has a high potential for yeast extract replacement in fermentation by the fungus. Additionally, the strain has shown promising results in heavy metal removal from wastewaters. This review discusses different aspects of biology and industrial application perspectives of M. indicus. Furthermore, open areas for the future basic and applied levels of research are also presented. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Data mining application in industrial energy audit for lighting

    Energy Technology Data Exchange (ETDEWEB)

    Maricar, N.M.; Kim, G.C.; Jamal, N. [Kolej Univ., Melaka (Malaysia). Faculty of Electrical Engineering

    2005-07-01

    A data mining application for lighting energy audits at industrial sites was presented. Data collection was based on the parameters needed for the analysis part of the audit. Data collection included the activity for which the room was used; its dimension; light level readings in lux; the number of luminaries; the number of lamps per luminaries; lamp fixtures; and lamp wattage. The lumen method was used to calculate the recommended numbers of luminaries in the room. The number was then compared with the existing system's luminaries. The installed load efficacy ratio (ILER) was then used to determine proper retrofit action to maximize energy usage. The difference between the calculated lux and the standard lux was used to create data subsets. A data mining algorithm was used to determine that the ILER plays an important role in calculating the efficiency of lighting systems. It was also concluded that the method can be used to minimize the time needed to analyze large amounts of lighting data. The results of case studies were also used to show that the combined data mining algorithm provided accurate assessments using existing calculated data. 7 refs., 8 tabs., 5 figs.

  4. Intra-industry adjustment to import competition: theory and application to the German clothing industry

    OpenAIRE

    Raff, Horst; Wagner, Joachim

    2009-01-01

    This paper uses an oligopoly model with heterogeneous firms to examine how an industry adjusts to rising import competition. The model predicts that in the short run the least efficient firms in the industry become inactive, surviving firms face a fall in output, mark-ups and profits, and the average productivity of survivors increases. These pro-competitive effects of import penetration on the domestic industry disappear in the long run. The predictions for the short run are confirmed in an ...

  5. Energy analysis of 108 industrial processes. Phase 1, industrial applications study

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, B. B.; Brown, H. L.

    1979-06-01

    Extensive data are compiled for energy balances in 108 industrial processes. Specific information on unit operation, material, temperature, unrecoverable losses, along with the process flow diagram is given for each of the industries. The following industries are included: meak packing; milk; canned fruits and vegetables; baked goods; sugar refining; soybean; textiles; wood products; building materials; alkalies and chlorine; inorganic gases; pigments, chemicals; plastic materials and resins; synthetic rubbers; organic fibers; pharmaceutical preparations; organic chemicals; petroleum products; fertilizers; rubber products; glass; blast furnaces and steel mills; metals; farm machinery; motor vehicles; and photographic materials. The SIC's for each industry are identified.

  6. Application of Specific Features of Industrial Products when Forming and Developing Brands of Industrial Enterprises

    Directory of Open Access Journals (Sweden)

    Yatsentiuk Stanislav V.

    2014-03-01

    Full Text Available The article analyses and structures approaches and principles of formulation of industrial products. It offers classification of goods and markets of industrial products by their characteristics and participants. It identifies main participants that make decisions at B2C and B2B markets and characterises their specific features and motivation when making decisions on purchase of products of industrial enterprises. It studies and analyses indicators of development of domestic markets of consumer goods and market of industrial products and dynamics of development of their relation in retrospective view.

  7. Industrial applications of radioisotopes: techniques and procedures of (NTIS) Nuclear Techniques Industrial Service

    International Nuclear Information System (INIS)

    Smith, S.W.; Kruger, J.

    1985-06-01

    Radioisotope handling procedures followed by personnel of the Nuclear Techniques Industrial Service (NTIS) during the conduction of investigations in industry are described. Possible radiological implications as a result of the various measuring techniques and different types of plants are discussed. Conditions under which permanent authorization has been granted for the use of radioisotopes are mentioned

  8. Extending Nuclear Technology Applications to Heavy Industry-Sharing BTI Years of Experience

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim

    2012-01-01

    In his speech, the presenter outlined several topics regarding the establishment of Industrial Technology Division since 1980 until 2012. The first topic was to relate the justification or reasonable of establishing this division with the national condition at 1980s. The need to explore nuclear technology on industrial application like nondestructive testing (NDT) and plant assessment were attract the Malaysian Nuclear Agency to do research in that fields. The establishment of division to do that research were responsible to Industrial Technology Division. Until now, this division succeed in doing research regarding industrial application and transferred it to industrial players along the nation and also international level. (author)

  9. New applications of particle accelerators in medicine, materials science, and industry

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1981-01-01

    Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future

  10. A novel TLA application in industrial plant protection

    International Nuclear Information System (INIS)

    Wallace, G.; Pohl, K.P.; Hutchinson, E.F.; Hemmingsen, I.D.

    1997-01-01

    During 1995 and 1996, there were significant eruptions from Mr. Ruapehu, a 2797 metre high volcano in the centre of the North Island of New Zealand. The surrounding countryside received a liberal coating of volcanic ash. Ruapehu is only one of several volcanoes in this area which is known as the Volcanic Plateau. The Plateau also contains the headwaters of an extensive hydroelectricity scheme involving I I power stations. The first of these is Rangipo, representing 2% of the national generating capacity. It had to be shut down for safety reasons because ash washed into the feedwater was found to be grinding through 3 mm of stainless steel within the turbines each week. The ash is two times harder than the stainless steel. Although the damage was repaired, using hardened materials, there is continuing concern as it was estimated that it would take more than 5 years to completely wash out the abrasive ash from the headwaters. We were asked to devise a warning system which could alert the station operators to the presence of ash in the intake water of the Rangipo station. Turbidity measurements were first tried, and found to be ineffective. We then turned to the technique known as Thin Layer Activation (TLA) which we have used for many years to monitor corrosion and erosion in industrial plant. Appropriate choice of particle and energy can ensure that some of the reaction products are both long-lived and decay by high energy gamma ray emission. With a known depth profile of embedded radioactivity, it is easy to calculate the loss of surface material from the corresponding decline in gamma ray activity. This can be monitored through several centimetres of steel. In the Rangipo application, a jet of the intake water is directed onto an TLA disc made of the same metal as the turbine blades. The gamma ray activity is continuously monitored from the outside of the pressure vessel containing the disc

  11. Application of VR and HF technologies for improving industrial safety

    NARCIS (Netherlands)

    Loupos, K.; Christopoulos, D.; Vezzadini, L.; Hoekstra, W.; Salem, W.; Chung, P.W.H.

    2007-01-01

    Safety in industrial environments can nowadays be regarded as an issue of major importance. Large amounts of money are spent by industries on this matter in order to improve safety in all levels, by reducing risks of causing damages to equipment, human injuries or even fatalities. Virtual Reality

  12. Industrial and commercial applications for a Triga reactor

    International Nuclear Information System (INIS)

    Green, D.

    1986-01-01

    The Physics and Radioisotope Services Group of ICI operates a Triga Reactor in support of a commercial, Industrial Radioisotope Technology Service. The technical and commercial development of this business is discussed in the context of operating a Triga Reactor in an Industrial Environment. (author)

  13. Alkaloids in the pharmaceutical industry: Structure, isolation and application

    Directory of Open Access Journals (Sweden)

    Nikolić Milan

    2003-01-01

    Full Text Available By the end of the 18th and the beginning of the 19th century a new era began in medicine, pharmaceutics and chemistry that was strongly connected with alkaloids and alkaloid drugs. Even before that it was known that certain drugs administered in limited doses were medicines, and toxic if taken in larger doses (opium, coke leaves, belladonna roots, monkshood tubers crocus or hemlock seeds. However, the identification, isolation and structural characterization of the active ingredients of the alkaloid drugs was only possible in the mid 20th century by the use of modern extraction equipment and instrumental methods (NMR, X-ray diffraction and others.In spite of continuing use over a long time, there is still great interest in investigating new drugs, potential raw materials for the pharmaceutical industry, as well as the more detailed investigation and definition of bio-active components and the indication of their activity range, and the partial synthesis of new alkaloid molecules based on natural alkaloids. The scope of these investigations, especially in the field of semi-synthesis is to make better use of the bio-active ingredients of alkaloid drugs, i.e. to improve the pharmacological effect (stronger and prolonged effect of the medicine, decreased toxicity and side effects, or to extend or change the applications. A combined classification of alkaloids was used, based on the chemical structure and origin, i.e. the source of their isolation to study alkaloid structure. For practical reasons, the following classification of alkaloids was used: ergot alkaloids, poppy alkaloids, tropanic alkaloids purine derivative alkaloids, carbon-cyclic alkaloids, and other alkaloids. The second part of this report presents a table of general procedures for alkaloid isolation from plant drugs (extraction by water non-miscible solvents, extraction by water-miscible solvents and extraction by diluted acid solutions. Also, methods for obtaining chelidonine and

  14. The Novel of Six axes Robotic Arm for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Rajendra R Aparnathi

    2014-05-01

    Full Text Available Automation technology is widely accepted and rapidly growing technology in the field of core and many other industries. Anyone can observe that due to these problems many industries are turning towards automaton. When searching for problem of labor manpower in middle-case industries, we came to know about many other things like production, speed of manufacturing and quality of the product are necessary in the current scenario. These parameters are not being well maintained in incorporate industries with manual manufacturing processes instead of using automatic system. Our objective is to solve these problems by efficient use of different technologies for making an industry fully or partially automated. By using technologies we can try to solve or reduce the effects of above problems.

  15. The applicability of micro-filters produced by nuclear methods in the food industry

    International Nuclear Information System (INIS)

    Szabo, S.A.; Ember, G.

    1982-01-01

    Problems of the applicability in the food industry of micro-filters produced by nuclear methods are dealt with. Production methods of the polymeric micro-filters, their main characteristics as well as their most important application fields (breweries, dairies, alcoholic- and soft-drink plants, wine industry) are briefly reviewed. (author)

  16. Power Measurement and Data Logger Device with High-Resolution for Industrial DC-Grid Application

    OpenAIRE

    Apse-Apsitis, Peteris; Senfelds, Armands; Avotins, Ansis; Paugurs, Arturs; Prieditis, Marcis

    2015-01-01

    Abstract – power and energy measurement and monitoring is a key leading factor for many industries in terms of energy and cost efficiency evaluation. Due to trends of Smart Grid concept application in industrial environment, including decentralized DC-Grid implementation, for precise evaluation - faster and lower cost measurement equipment is needed. Manufacturing industry use lot of industrial robots that have dynamic load characteristics, and to know their consumption faster measurement equ...

  17. Process Integration Study of Cache Valley Cheese Plant [Advanced Industrial Heat Pump Applications and Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Eastwood, A.

    1991-10-01

    This work has carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  18. [Fermentation production of microbial catalase and its application in textile industry].

    Science.gov (United States)

    Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2010-11-01

    Microbial catalase is an important industrial enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen. This enzyme has great potential of application in food, textile and pharmaceutical industries. The production of microbial catalase has been significantly improved thanks to advances in bioprocess engineering and genetic engineering. In this paper, we review the progresses in fermentation production of microbial catalase and its application in textile industry. Among these progresses, we will highlight strain isolation, substrate and environment optimization, enzyme induction, construction of engineering strains and application process optimization. Meanwhile, we also address future research trends for microbial catalase production and its application in textile industry. Molecular modification (site-directed mutagenesis and directed revolution) will endue catalase with high pH and temperature stabilities. Improvement of catalase production, based on the understanding of induction mechanism and the process control of recombinant stain fermentation, will further accelerate the application of catalase in textile industry.

  19. The Application of Industry 4.0 in Customized Furniture Manufacturing Industry

    OpenAIRE

    Wang Lin; He Jinfeng; Xu Songjie

    2017-01-01

    In the background of industrial 4.0, this paper analyzes the developmental road about customized furniture factory. Based on the concepts and features of industry 4.0, this paper analyzes the composition of the customized furniture factory, the main operation system and the operation process of the intelligent customized furniture factory. In order to achieve efficient and accurate production targets, intelligent customized furniture factory should be set up through the establishment of cyber...

  20. Prosopis jiliflora`s gum may have industrial applications; Goma de algaroba: substancia pode ter aplicacao industrial

    Energy Technology Data Exchange (ETDEWEB)

    Ponte, Isabel M.C. Baptista; Andrade, Cristina Tristao de [Universidade Federal, Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1992-10-01

    This work presents and describes the chemical analysis of several parts of Algaroba tree (Prosopis juliflora) which even though not being original from Brazil adapted very well in the desert areas of Northeast Brazil. The chemical composition of several parts of the plant is presented. Several possible industrial applications are presented and discussed 1 fig.; 1 tab.

  1. AN APPLICATION OF ANALYTIC HIERARCHY PROCESS IN THE HOSPITALITY INDUSTRY

    Directory of Open Access Journals (Sweden)

    DEMET BAYRAKTAR

    2013-05-01

    Full Text Available AHP is introduced as a decision making tool for the evaluation of investment alternatives in the hospitality industry. Services are intangible and perishable outputs that are created and consumed simultaneously or nearly simultaneously. The AHP, as a systematic approach that encompasses subjective criteria, alleviates the difficulties encountered in the evaluation of service industry operations. The proposed hierarchical structure in this paper deals with a minor investment project of the holiday village. However, it is possible to extend and apply it for larger investment projects in the hospitality industry as a decision making tool through clustering. Expert Choice for Windows (Version 9.0 is used to solve the decision problem.

  2. Radiological protection procedures for industrial applications of computed radiography

    International Nuclear Information System (INIS)

    Aquino, Josilto Oliveira de

    2009-03-01

    Due to its very particular characteristics, industrial radiography is responsible for roughly half of the relevant accidents in nuclear industry, in developed as well as in developing countries, according to the International Atomic Energy Agency (IAEA). Thus, safety and radiological protection in industrial gamma radiography have been receiving especial treatment by regulatory authorities of most Member States. The main objective of the present work was to evaluate, from the radioprotection point of view, the main advantages of computed radiography (CR) for filmless industrial radiography. In order to accomplish this, both techniques, i.e. conventional and filmless computed radiography were evaluated and compared through practical studies. After the studies performed at the present work it was concluded that computed radiography significantly reduces the inherent doses, reflecting in smaller restricted areas and costs, with consequent improvement in radiological protection and safety. (author)

  3. 14 CFR 1201.402 - NASA Industrial Applications Centers.

    Science.gov (United States)

    2010-01-01

    ... and innovative technology to nonaerospace sectors of the economy—NASA operates a network of Industrial..., Department of Computer Science, Baton Rouge, LA 70813-2065. (b) To obtain access to NASA-developed computer...

  4. Economic importance and application options of some industrial ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... local authorities and industry. ... sludge is a significant part of wastewater treatment pro- gramme. ... duct collected through the normal sewage system. ..... Thermophilic Anaerobic Digestion of Coffee Waste Containing Coffee.

  5. Application of Life Cycle Assessment (LCA) in Sugar Industries

    Science.gov (United States)

    Astuti, Arieyanti Dwi; Astuti, Rahayu Siwi Dwi; Hadiyanto, Hadiyanto

    2018-02-01

    Sugar is one of the main commodities that are needed for human life. The demand of sugar is very high with the trend increase from year to year. This condition makes the sugar industry become a leading industry that must be maintained sustainability. The sustainability of the sugar industry is influenced by the use of energy and natural resources and the resulting environmental impacts. Therefore, an effort is needed to analyze the environmental aspects and potential environmental impacts resulting from a product (sugar), by using Life Cycle Assessment (LCA). LCA is a very important tool for the analysis of a process/system from its cradle to grave. This technique is very useful in the estimation of energy usage and environmental load of a product/system. This paper aims to describe the main elements of sugar industries using Life Cycle Assessment.

  6. Application of RCM to a medium scale industry

    International Nuclear Information System (INIS)

    Deshpande, V.S.; Modak, J.P.

    2002-01-01

    The factors which are assuming considerable importance in cost effective decision making of operation of any industrial enterprise are in the order of significance liability, safety and environmental conditions. Hence, preventive maintenance (PM) optimisation is providing wide opportunities and challenges to everyone involved in all aspects of operation of industrial enterprise. Reliability centred maintenance (RCM) methodology offers the best available strategy for PM optimisation. It incorporates a new understanding of the ways in which equipment fails. In this paper, the concept of RCM has been applied to steel melting shop of a medium scale steel industry. By systematically applying the RCM methodology, failures, failure causes and effects on the system are analysed. To preserve the system function, PM categories are suggested for various failure modes in the components such as (1) time directed (2) condition directed (3) failure finding (4) run to failure. Features of predictive maintenance of a medium scale steel industry are deduced through this paper in a rather generalised form

  7. Application of enzymes in the textile industry: a review

    OpenAIRE

    Mojsov, Kiro

    2011-01-01

    The use of enzymes in textile industry is one of the most rapidly growing field in industrial enzymology. The enzymes used in the textile field are amylases, catalase, and laccase which are used to removing the starch, degrading excess hydrogen peroxide, bleaching textiles and degrading lignin. The use of enzymes in the textile chemical processing is rapidly gaining globally recognition because of their non-toxic and eco-friendly characteristics with the increasinly important requirements for...

  8. The application of holistic risk management in the banking industry

    OpenAIRE

    2008-01-01

    The banking industry in South Africa is facing three main challenges, namely: continuous change, foreign competition, and increasing levels of risk. These problems flow mainly from cultural diversity, globalisation, and rapid technological development in systems and communication. Decreasing predictability stems to a great extent from a lack of foreknowledge of how globalisation will develop, and how it can influence the South African banking industry in general and holistic risk management (...

  9. Merging Agents and Cloud Services in Industrial Applications

    OpenAIRE

    Francisco P. Maturana; Juan L. Asenjo; Neethu S. Philip; Shweta Chatrola

    2014-01-01

    A novel idea to combine agent technology and cloud computing for monitoring a plant floor system is presented. Cloud infrastructure has been leveraged as the main mechanism for hosting the data and processing needs of a modern industrial information system. The cloud offers unlimited storage and data processing in a near real-time fashion. This paper presents a software-as-a-service (SaaS) architecture for augmenting industrial plant-floor reporting capabilities. This reporting capability has...

  10. Development of Safety Kit for Industrial Radiography Application

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Ahmad; Amry Amin Abas

    2011-01-01

    A safety kit for industrial radiography has been developed. The safety kit that consist of a set of technical rod and various size of base that can be used in radiograph of pipe with diameter between half and one and half inch with utilization of collimator. With the kit, radiographers will not having anymore problem to use collimator in their work. The paper discuss about the technical measures of the safety kit and the importance of introducing it to the industry. (author)

  11. Occupational exposures in industrial application of radiation during 1999-2008

    International Nuclear Information System (INIS)

    Sanaye, S.S.; Baburajan, Sujatha; Pawar, S.G.; Nalawade, S.K.; Sapra, B.K.

    2012-01-01

    Application of radiation in industry, medicine and research sector has increase significantly over the years. In industry main applications are industrial radiography, industrial fluoroscopy, radiation processing, luminizing, nucleonic gauges. Since the strength of the source used is generally high compared to other applications as well as the operating conditions prevailing during the exposure, radiological protection plays important role in this sector. Analysis of dose data, available with National Occupational Dose Registry of RPAD, Bhabha Atomic Research Centre, provides some insight into trends in occupational exposures received by industrial radiation workers. This helps in providing information on adequateness of radiation protection practices followed in the industry. This paper presents the trends in occupational exposure received by radiation workers in the industry during past 10 years (1999 to 2008). It is observed that there is a gradual increase in the occupational radiation workers during the period. The number of persons monitored as well as exposed is highest in industrial radiography compared to other sub-categories. Major contribution to collective dose is also from industrial radiography. The highest annual average as well as exposed average doses are contributed by industrial radiography. The monitored persons receiving dose d 5 mSv is 96.9% industry

  12. Notes on computer applications in the Canadian mineral industry and its future

    Energy Technology Data Exchange (ETDEWEB)

    Das, B M

    1983-10-01

    The importance of computer applications to the mineral industry in Canada; the formation and role of the Computer Applications and Process Control Committee (CAPC) of the CIM, and the CAPC's computer applications study in 1982 with the highlights of the study are discussed. The coal industry was the least touched by this survey. The need for computer workshops dealing with the various aspects of coal mining is stressed.

  13. The Application of Industry 4.0 in Customized Furniture Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2017-01-01

    Full Text Available In the background of industrial 4.0, this paper analyzes the developmental road about customized furniture factory. Based on the concepts and features of industry 4.0, this paper analyzes the composition of the customized furniture factory, the main operation system and the operation process of the intelligent customized furniture factory. In order to achieve efficient and accurate production targets, intelligent customized furniture factory should be set up through the establishment of cyber physical system( CPS to cover the intelligent network.

  14. Research and Application of Autodesk Fusion360 in Industrial Design

    Science.gov (United States)

    Song, P. P.; Qi, Y. M.; Cai, D. C.

    2018-05-01

    In 2016, Fusion 360, a productintroduced byAutodesk and integrating industrial design, structural design, mechanical simulation, and CAM, turns out a design platform supportingcollaboration and sharing both cross-platform and via the cloud. In previous products, design and manufacturing use to be isolated. In the course of design, research and development, the communication between designers and engineers used to go on through different software products, tool commands, and even industry terms. Moreover, difficulty also lies with the communication between design thoughts and machining strategies. Naturally, a difficult product design and R & D process would trigger a noticeable gap between the design model and the actual product. A complete product development process tends to cover several major areas, such as industrial design, mechanical design, rendering and animation, computer aided emulation (CAE), and computer aided manufacturing (CAM). Fusion 360, a perfect design solving the technical problems of cross-platform data exchange, realizes the effective control of cross-regional collaboration and presents an overview of collaboration and breaks the barriers between art and manufacturing, andblocks between design and processing. The “Eco-development of Fusion360 Industrial Chain” is both a significant means to and an inevitable trend forthe manufacturers and industrial designers to carry out innovation in China.

  15. [Health surveillance of workers with prior exposure to asbestos. Application in the metallurgy/metal mechanical field].

    Science.gov (United States)

    Rivolta, G; Della Foglia, M; Donelli, S; Riboldi, L

    2006-01-01

    To improve the health surveillance program for workers with a known previous exposure to asbestos in a big metallurgic-mechanical industry from Lombardy, the sources of risk and the different exposure levels hare been reconstructed based on specific jobs. The eligibility criteria and a specific work program including information and organization supports hare been established by a work group composed by health physicians, workers and industrial hygienists. The major goals of the program were: to listen and support each worker who perceives worries about his health status; to prevent, if possible, diseases, especially cancer, resulting from exposure; to document the existing injuries for legal compensation. The resulting actions consist of counselling; indication to follow an adequate life and work style; indication, based on specific request of worker, of sanitary checks of first or eventually second level.

  16. Radiation safety in industrial applications of nuclear techniques

    International Nuclear Information System (INIS)

    Lam, E.S.

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise. (author)

  17. Radiation safety in industrial applications of nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lam, E S [Ministry of Health, Kuala Lumpur (Malaysia)

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise.

  18. Industrial high pressure applications. Processes, equipment and safety

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, Rudolf (ed.) [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer Thermische Verfahrenstechnik

    2012-07-01

    Industrial high pressure processes open the door to many reactions that are not possible under 'normal' conditions. These are to be found in such different areas as polymerization, catalytic reactions, separations, oil and gas recovery, food processing, biocatalysis and more. The most famous high pressure process is the so-called Haber-Bosch process used for fertilizers and which was awarded a Nobel prize. Following an introduction on historical development, the current state, and future trends, this timely and comprehensive publication goes on to describe different industrial processes, including methanol and other catalytic syntheses, polymerization and renewable energy processes, before covering safety and equipment issues. With its excellent choice of industrial contributions, this handbook offers high quality information not found elsewhere, making it invaluable reading for a broad and interdisciplinary audience.

  19. Quality assurance of CT scanning for industrial applications

    DEFF Research Database (Denmark)

    Angel, Jais Andreas Breusch

    components, representing tissue types such as lean meat, fat, and bone. Establishment of traceable volume measurements for the phantoms is performed using the gravimetric method (also called water displacement). The stability has been documented for the two phantoms. For the meat processing industry...... to 1348 mL, compared to average uncertainties below 10 mL using the gravimetric method. DMRI and DTU Compute have previously developed advanced image analysis software (PigClassWeb) which performs virtual dissections in pig carcasses. A DOE was carried out to document the performance of Pig...... assurance of CT for industrial measurements both in the manufacturing and in the meat processing industries. Various methods and reference objects have been developed in this project to establish metrological traceability of measurements. Moreover investigations as well as international comparisons...

  20. Applications of nuclear methods in the automotive industry

    International Nuclear Information System (INIS)

    Schneider, E.W.; Yusuf, S.O.

    1996-01-01

    Over the years nuclear methods have proved to be a valuable asset to industry in general and to the automotive industry in particular. This paper summarizes some of the most important recent contributions of nuclear technology to the development of vehicles having high quality and long-term durability. Radiotracer methods are used to measure engine oil consumption and the wear rates of inaccessible components. Radiographic and tomographic methods are used to image fluids and structures in engines and accessory components. Tracers are used to understand combustion chemistry and quantify fluid flow. Gauging methods are used for inspection and process control. Nuclear analytical methods are used routinely for materials characterization and problem solving. Although nuclear methods are usually considered as the means of last resort, they can often be applied more easily and quickly than conventional methods when those in industrial engineering and R and D are aware of their unique capabilities. (author). 51 refs., 5 figs

  1. Industrialization

    African Journals Online (AJOL)

    Lucy

    . African states as ... regarded as the most important ingredients that went to add value to land and labour in order for countries ... B. Sutcliffe Industry and Underdevelopment (Massachusetts Addison – Wesley Publishing Company. 1971), pp.

  2. Industrialization

    African Journals Online (AJOL)

    Lucy

    scholar, Walt W. Rostow presented and supported this line of thought in his analysis of ... A Brief Historical Background of Industrialization in Africa ... indicative) The western model allowed for the political economy to be shaped by market.

  3. Merging Agents and Cloud Services in Industrial Applications

    Directory of Open Access Journals (Sweden)

    Francisco P. Maturana

    2014-01-01

    Full Text Available A novel idea to combine agent technology and cloud computing for monitoring a plant floor system is presented. Cloud infrastructure has been leveraged as the main mechanism for hosting the data and processing needs of a modern industrial information system. The cloud offers unlimited storage and data processing in a near real-time fashion. This paper presents a software-as-a-service (SaaS architecture for augmenting industrial plant-floor reporting capabilities. This reporting capability has been architected using networked agents, worker roles, and scripts for building a scalable data pipeline and analytics system.

  4. Application of flotational reagents obtained from coke-industry byproducts

    Energy Technology Data Exchange (ETDEWEB)

    N.I. Nikitin; I.N. Nikitin; N.I. Toporkova [Khar' kov Polytechnic Institute (Ukraine)

    2007-06-15

    Today, the operational efficiency of coal-preparation shops at coke plants largely depends on the flotation process, since flotation is the basic method of regenerating the slurry water in the water-slurry systems and the basic enrichment process for small-grain coal slurries. At The Coal-Chemistry Institute, attempts have been made to address the growing demand for readily available and relatively inexpensive flotational reagents. In particular, a list of promising coke-industry byproducts for use as flotational reagents has been compiled, and the possibility of reducing their toxicity has been established. In addition, various industrial byproducts and wastes have been investigated in terms of flotational activity.

  5. Bureaucracy, institutional theory and institutionaucracy: applications to the hospital industry.

    Science.gov (United States)

    Bolon, D S

    1998-01-01

    The health care industry is experiencing rapid change and uncertainty. Hospitals, in particular, are redesigning structures and processes in order to maximize efficiencies and remain economically viable. This article uses two organizational theory perspectives (bureaucracy and institutional theory) to examine many of the trends and transitions which are occurring throughout the hospital industry. It suggests that many of the key tenets of bureaucracy (rationality, efficiency, productivity, control, etc.) have been incorporated into the institutional environment as normative expectations. This synthesis or blending of these two perspectives is labeled institutionaucracy, implying that, as productivity and efficiency considerations become institutionalized, hospitals conforming to such operational standards will gain legitimacy and additional resources from their environment.

  6. Tests of cosmic ray radiography for power industry applications

    Science.gov (United States)

    Durham, J. M.; Guardincerri, E.; Morris, C. L.; Bacon, J.; Fabritius, J.; Fellows, S.; Poulson, D.; Plaud-Ramos, K.; Renshaw, J.

    2015-06-01

    In this report, we assess muon multiple scattering tomography as a non-destructive inspection technique in several typical areas of interest to the nuclear power industry, including monitoring concrete degradation, gate valve conditions, and pipe wall thickness. This work is motivated by the need for imaging methods that do not require the licensing, training, and safety controls of x-rays, and by the need to be able to penetrate considerable overburden to examine internal details of components that are otherwise inaccessible, with minimum impact on industrial operations. In some scenarios, we find that muon tomography may be an attractive alternative to more typical measurements.

  7. Tests of cosmic ray radiography for power industry applications

    Directory of Open Access Journals (Sweden)

    J. M. Durham

    2015-06-01

    Full Text Available In this report, we assess muon multiple scattering tomography as a non-destructive inspection technique in several typical areas of interest to the nuclear power industry, including monitoring concrete degradation, gate valve conditions, and pipe wall thickness. This work is motivated by the need for imaging methods that do not require the licensing, training, and safety controls of x-rays, and by the need to be able to penetrate considerable overburden to examine internal details of components that are otherwise inaccessible, with minimum impact on industrial operations. In some scenarios, we find that muon tomography may be an attractive alternative to more typical measurements.

  8. Tests of cosmic ray radiography for power industry applications

    Energy Technology Data Exchange (ETDEWEB)

    Durham, J. M., E-mail: durham@lanl.gov; Guardincerri, E.; Morris, C. L.; Bacon, J.; Fabritius, J.; Fellows, S.; Poulson, D.; Plaud-Ramos, K. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Renshaw, J. [Electric Power Research Institute, Charlotte, NC 28262-8550 (United States)

    2015-06-15

    In this report, we assess muon multiple scattering tomography as a non-destructive inspection technique in several typical areas of interest to the nuclear power industry, including monitoring concrete degradation, gate valve conditions, and pipe wall thickness. This work is motivated by the need for imaging methods that do not require the licensing, training, and safety controls of x-rays, and by the need to be able to penetrate considerable overburden to examine internal details of components that are otherwise inaccessible, with minimum impact on industrial operations. In some scenarios, we find that muon tomography may be an attractive alternative to more typical measurements.

  9. Evaluating efficiency levels comparatively: Data envelopment analysis application for Turkish textile and apparel industry

    Directory of Open Access Journals (Sweden)

    Canan Saricam

    2012-12-01

    Full Text Available Purpose: The purpose of this study is to show the usage of DEA in efficiency measurement.Design/methodology/approach: The efficiencies of textile and apparel companies were analyzed by input-oriented DEA model under variable return to scale assumption. The textile and apparel companies quoted in Istanbul Stock Exchange for the period 2003 and 2008 were evaluated in terms of efficiency level providing a framework for the calculation of input excesses and output shortages.Findings: The analysis revealed that the average efficiency scores of the apparel industry was higher than the textile industry and two industries together. The companies in the apparel industry should overcome the lack of insufficient level of exports whereas the textile industry needs to increase gross value added in order to be more efficient.Research limitations/implications: Because of missing data, four companies from textile industry and one company from apparel industry were ignored although they took place in the records of Istanbul Stock Exchange.Practical implications: This study provided a framework for DEA application in determination and comparison of efficiency performance in an industry level.Originality/value: Selecting the groups compared as textile industry, apparel industry and the two industries in general allowed discussing the comparative efficiencies of two industries eliminating the industry specific pitfalls.

  10. Applications and real life spectra in the power generation industry

    International Nuclear Information System (INIS)

    Nix, K.J.; Lindley, T.C.

    1988-12-01

    Loading spectra encountered in various structures, machines, and components in the Power Generation Industry are presented from the viewpoint of fatigue analysis and structural integrity assessment. Although particular attention is paid to loading transients in turbo-generators, other items such as pressure vessels, pumped storage, nuclear plant pressure circuitry and wind turbines are also considered. (author)

  11. Application of electron beam to industrial wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, D.K.; Boo, J.Y.; Kim, J.K.; Kim, Y.; Chung, W.; Choi, J.S.; Kang, H.J.; Pikaev, A.K.

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with EB irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an EB pilot plant for treating 1,000m 3 /day of wastewater from 60,000m 3 /day of total dyeing wastewater has been constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  12. Industrial Heat Pump for a High Temperature District Heating Application

    DEFF Research Database (Denmark)

    Poulsen, Claus Nørgaard

    by excess thermal energy from thermal solar panels. An industrial heat pump system using the natural refrigerant ammonia, is extracting the thermal energy from the storage when needed, and produce hot water at 85°C, for the district heating grid. The heat pump also acts as contributor to electricity grid...

  13. Industrial robots application in the construction of buildings and structures

    Directory of Open Access Journals (Sweden)

    Verzhbovskiy Gennady

    2017-01-01

    Full Text Available Proposals on the use of modernized industrial robots in the construction of low-rise buildings are formulated. The necessary parameters of such a mechanism are established. The time necessary for building the walls of a two-story house is determined. Features of the robots use on the construction site are described.

  14. Fundamentals and industrial applications of high power laser beam cladding

    International Nuclear Information System (INIS)

    Bruck, G.J.

    1988-01-01

    Laser beam cladding has been refined such that clad characteristics are precisely determined through routine process control. This paper reviews the state of the art of laser cladding optical equipment, as well as the fundamental process/clad relationships that have been developed for high power processing. Major categories of industrial laser cladding are described with examples chose to highlight particular process attributes

  15. Mechanical Design of Metal Dome for Industrial Application

    Science.gov (United States)

    Jin-Chee Liu, Thomas; Chen, Li-Wei; Lin, Nai-Pin

    2018-02-01

    In this paper, the mechanical design of metal domes is studied using finite element analysis. The snap-through behavior of a practical button design that uses a metal dome is found. In addition, the individual click ratio and maximum force for a variety of metal domes are determined. This paper provides guidance on button design for industrial engineers.

  16. Industrial applications of exoskeletons and their impact on physical loads

    NARCIS (Netherlands)

    de Looze, M.P.; Bosch, T.; Krause, F.; Stadler, K.; O'Sullivan, L.

    2015-01-01

    The aim of this review was to provide an overview of assistive exoskeletons that have specifically been developed for industrial purposes and to assess the potential effect of these exoskeletons on reduction of physical loading on the body. The search resulted in 40 papers describing 26 different

  17. Application of the QUENCHER methodology to the food industry

    NARCIS (Netherlands)

    Henrion, Muriel; Servaes, Mathieu; Thielecke, Frank; Fogliano, Vincenzo

    2018-01-01

    The QUENCHER method is a time and cost-saving extraction-free procedure measuring in vitro antioxidant capacity which appears highly relevant from an industrial perspective. However, grinding and exact weighting of material may be considered as critical points and were addressed in the present

  18. Solar energy applications in different agricultural and industrial processes

    International Nuclear Information System (INIS)

    Agudelo Florez, Sergio; Pineda Rios, Alexander

    2002-01-01

    Solar thermal technology can offer so much more than just domestic hot water, in this paper it is shown some solar system that can provide process heat for many industrial and agricultural requirements, for example can dry crops, extract potable water from brackish or saline supplies, destroy hazardous contaminants and be used in the manufacture of advanced material

  19. Technological Proposals for Recycling Industrial Wastes for Environmental Applications

    Directory of Open Access Journals (Sweden)

    Isabel Romero-Hermida

    2014-08-01

    Full Text Available A two-fold objective is proposed for this research: removing hazardous and unpleasant wastes and mitigating the emissions of green house gasses in the atmosphere. Thus, the first aim of this work is to identify, characterize and recycle industrial wastes with high contents of calcium or sodium. This involves synthesizing materials with the ability for CO2 sequestration as preliminary work for designing industrial processes, which involve a reduction of CO2 emissions. In this regard, phosphogypsum from the fertilizer industry and liquid wastes from the green olive and bauxite industries have been considered as precursors. Following a very simple procedure, Ca-bearing phosphogypsum wastes are mixed with Na-bearing liquid wastes in order to obtain a harmless liquid phase and an active solid phase, which may act as a carbon sequestration agent. In this way, wastes, which are unable to fix CO2 by themselves, can be successfully turned into effective CO2 sinks. The CO2 sequestration efficiency and the CO2 fixation power of the procedure based on these wastes are assessed.

  20. Engineering industrial yeast for renewable advanced biofuels applications

    Science.gov (United States)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  1. Industrial application of the gamma rays; Aplicacion industrial de los rayos gamma

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos C, H., E-mail: hvc84@hotmail.co [Adiestramiento y Capacitacion Nuclear, S. A. de C. V., Calle Jupiter Lte. 6 Mz. 11, Col. Media Luna, 04737 Mexico D. F. (Mexico)

    2010-09-15

    The advance in the production of the sealed sources of Ir-192 and their containers have been very useful and beneficent for the radiological protection of the operators of these sources in the practice of the industrial X-rays. The manufacturers of these devices have improved their designs day to day in order to offer the maximum radiological protection to the moment to operate them. (Author)

  2. Occupational exposure in Greek industrial radiography laboratories (2004-2006) and comparison of doses with other industrial applications

    International Nuclear Information System (INIS)

    Tritakis, P.; Papadomarkaki, E.; Economides, S.; Carinou, E.; Hourdakis, C.; Kamenopoulou, V.; Dimitriou, P.

    2008-01-01

    Full text: In this study the Mean Annual Dose (MAD) of all industrial radiography workers in Greece for the time period 2004-2006 is evaluated and correlated to the practice and type of equipment used. All data used in this study come from the National Dose Registry Information System of the Greek Atomic Energy Commission. The present study constitutes the follow up of two previous studies, where a Dose Constraint (DC) for industrial radiography in Greece, equal to 4.0mSv was introduced for the first time. The introduction and systematic use of a dynamic DC value aims to optimize common working practices through a continuous decrease of occupational doses. In the current work a further decrease in the industrial radiography personnel doses is observed and the factors leading to this result are analyzed. Finally, the estimated MAD value for exposed workers in industrial radiography is compared to the ones corresponding to workers in other industrial applications involving the use of ionizing radiation

  3. Nuclear industry and nuclear supervision in Japan prior to and after Fukushima; Atomwirtschaft und Atomaufsicht in Japan vor und nach Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Spatz, Philipp

    2012-06-15

    The Japanese nuclear industry owes its rise to the american message 'atoms for piece' of President Eisenhower. The Japanese reactors were built in the United States of America. The Nuclear Supervision was marked by the sponsoring spirit at the expense of security. Therefore, Fukushima was no accident. But Japan now creates a law on renewable energies. It remains unclear whether all 54 nuclear reactors being shut down jet will be connected to the power distribution line. In any case, the power supply of the country did not collapse.

  4. Effect of prior silane application on the bond strength of a universal adhesive to a lithium disilicate ceramic.

    Science.gov (United States)

    Moro, André Fábio Vasconcelos; Ramos, Amanda Barreto; Rocha, Gustavo Miranda; Perez, Cesar Dos Reis

    2017-11-01

    Universal adhesives combine silane and various monomers in a single bottle to make them more versatile. Their adhesive performance is unclear. The purpose of this in vitro study was to assess the effects of an additional silane application before using a universal adhesive on the adhesion between a disilicate glass ceramic and a composite resin by using a microshear bond strength test (μSBS) and fracture analysis immediately and after thermocycling. One hundred lithium disilicate glass ceramic disks were divided into 10 groups for bond strength testing according to the following 3 surface treatments: silane application (built-in universal adhesive or with additional application), adhesive (Adper Single Bond Plus [SB, 3M ESPE], Scotchbond Universal Adhesive [U, 3M ESPE], and mixed U with Dual Cure Activator [DCA, 3M ESPE]); or thermocycling (half of the specimens were thermocycled 10000 times). After surface treatment, 5 resin cylinders were bonded to each disk and submitted to a μSBS test. The failure mode was analyzed under a stereomicroscope and evaluated by scanning electron microscope and energy-dispersive x-ray spectroscopy. Data from the μSBS test were analyzed by 3-way ANOVA followed by the Tukey HSD post hoc test (α=.05). An additional silane application resulted in a higher μSBS result for all adhesive groups (Padhesives, which may be improved with an additional silane application. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Electro-Fermentation - Merging Electrochemistry with Fermentation in Industrial Applications.

    Science.gov (United States)

    Schievano, Andrea; Pepé Sciarria, Tommy; Vanbroekhoven, Karolien; De Wever, Heleen; Puig, Sebastià; Andersen, Stephen J; Rabaey, Korneel; Pant, Deepak

    2016-11-01

    Electro-fermentation (EF) merges traditional industrial fermentation with electrochemistry. An imposed electrical field influences the fermentation environment and microbial metabolism in either a reductive or oxidative manner. The benefit of this approach is to produce target biochemicals with improved selectivity, increase carbon efficiency, limit the use of additives for redox balance or pH control, enhance microbial growth, or in some cases enhance product recovery. We discuss the principles of electrically driven fermentations and how EF can be used to steer both pure culture and microbiota-based fermentations. An overview is given on which advantages EF may bring to both existing and innovative industrial fermentation processes, and which doors might be opened in waste biomass utilization towards added-value biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Reduced risk HTGR concept for industrial heat application

    International Nuclear Information System (INIS)

    Boardman, C.E.; Lipps, A.J.

    1982-01-01

    The industrial process heat market has been identified as major market for the High Temperature Gas-Cooled Reactor (HTGR), however, this market introduces stringent availability requirements on the reactor system relative to electric plants which feed a large existing grid. The characteristics and requirements of the industrial heat markets are summarized; the risks associated with serving this market with a single large HTGR will be discussed; and the modular concept, which has the potential to reduce both safety and investment risks, will be described. The reference modular concept described consists of several small, relatively benign nuclear heat sources linked together to supply heat energy to a balance-of-plant incorporating a process gas train/thermochemical pipe line system and a normal steam-electric plant

  7. Tangential filtration technologies membrane and applications for the industry agribusiness

    International Nuclear Information System (INIS)

    Leone, Gian Paolo; Russo, Claudio

    2015-01-01

    The membrane tangential filtration technologies are separation techniques based on the use of semipermeable filters through which, under a pushing force, it is possible to achieve separation of components or suspended in solution as a function of their dimensional characteristics and / or chemical-physical. At the laboratories of the ENEA Research Center Casaccia, as part of the program activities of the Biotechnology and agro-industry division, were studied and developed various filtration processes to membrane in the food industry. The problems have been studied by following a vision sustainable overall, always trying to pair the purification treatment to that of recovery and reuse of water and high value-added components. Ultimate goal of the research conducted is to close the production circuit, ensuring a discharge cycle zero and turning in fact a so-called spread in first, from which to obtain new products. [it

  8. Ceramic finned-plate recuperator for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.; Strumpf, H.; Kotchick, D.

    1985-01-01

    High-level recuperation of high-temperature industrial furnaces offers an economically effective means for improving both process and fuel utilization. A ceramic recuperator capable of operating in fuel gas temperatures of up to 1350/sup 0/C and providing a combustion air preheat temperature of 1100/sup 0/C can provide in excess of 50 percent savings in fuel comsumption over an unrecuperated furnace. This recuperator consists of an array of cast ceramic finned plates. The fin geometries are such that when the plates are stacked together, they form the heat transfer flow passages for both the flue gas and combustion air streams. A reference design for industrial recuperator system was created. The current development efforts conducted on this recuperator concept, as well as plans for future activities, are described.

  9. Applications of synchrotron X-rays in microelectronics industry research

    International Nuclear Information System (INIS)

    Jordan-Sweet, Jean L.; Detavernier, Christophe; Lavoie, Christian; Mooney, Patricia M.; Toney, Michael F.

    2005-01-01

    The high flux and density of X-rays produced at synchrotrons provide the microelectronics industry with a powerful probe of the structure and behavior of a wide array of solid materials that are being developed for use in devices of the future. They also are of great use in determining why currently-used materials and processes sometimes fail. This paper describes the X20 X-ray beamline facility operated by IBM at the National Synchrotron Light Source, and presents a series of three industry challenges and results that illustrate the variety of techniques used and problems addressed. The value of this research ranges from solving short-term, technically specific problems to increasing our academic understanding of materials in general. Techniques discussed include high-resolution diffraction, time-resolved diffraction, texture measurements, and grazing-incidence diffraction

  10. Application of Modern Colour Measurement Dervices in Coloration Industries

    Institute of Scientific and Technical Information of China (English)

    CHUNG Y.S.; XIN John H.; SIN K.M.

    2002-01-01

    In colour measurement ralated industry, reflectance spectrophotometer is the one of the popular measuring machine for measutring colour and quality control. Colour communications is frequently confusing. This is because the colour appearance is subject to the influence of at least three different phenomena: the light source, the object and the visual system. The variation in either the radiant quantity or the spectral distribution of the source can alter the observed colour. Because of this reason,the objective quantitative tool, colour measurement equipment and communication method; become more important in evaluating of the colour. In fact, based on the advanced in computer system and electronic device,the colour measurement becomes more and more accuracy, especiany in spectrophotometer measurement.In this paper, we will focus on the review of modern spectrophotometers in coloration industries.

  11. Assessment of application of 5S practices in ceramic industry

    Directory of Open Access Journals (Sweden)

    Danel Kleszcz

    2017-10-01

    Full Text Available Results of research connected with determining the degree of implementation of 5S practices in ceramics industry are discussed in this paper. Direct survey with employees of companies plus ex-pert interview was used in the research. A 21 point scale was used to assess the degree of implemen-tation the 5S practices at individual stages of the manufacturing process. The specificity of produc-tion in ceramics industry enforces maintaining the regime of cleanliness during production. The research revealed that the level of conscious implementation of the 5S practices in companies de-pends on the culture of organization and the degree of involvement of employees in the improvement actions in their company. The presented results are a part of the research aimed at determining refer-ence requirements for companies in terms of implementation and making use of the Lean Manage-ment (LM instruments.

  12. Solar technology and the insurance industry: Issues and applications

    Energy Technology Data Exchange (ETDEWEB)

    Deering, A.; Thornton, J. P.

    1999-07-01

    Today's insurance industry strongly emphasizes developing cost-effective hazard mitigation programs, increasing and retaining commercial and residential customers through better service, educating customers on their exposure and vulnerabilities to natural disasters, collaborating with government agencies and emergency management organizations, and exploring the use of new technologies to reduce the financial impact of disasters. Solar technology can be used in underwriting, claims, catastrophe response, loss control, and risk management. This report will address the above issues, with an emphasis on pre-disaster planning and mitigation alternatives. It will also discuss how energy efficiency and renewable technologies can contribute to reducing insurance losses and offer suggestions on how to collaborate with the utility industry and how to develop educational programs for business and consumers.

  13. Application of microwave assisted digestion in industrial hygiene

    International Nuclear Information System (INIS)

    Paudyn, A.M.; Smith, R.G.; Gawlowski, E.

    1990-01-01

    Microwave assisted digestion plays an important role in speeding up acquisition of analytical data for industrial hygiene purposes. This paper will compare hot plate and microwave assisted digestion for the determination of elements in industrial samples (air sampling filters, dusts, ashes, paints) by the ICPAES technique. Also, the determination of radionuclides in environmental samples (soils, sediments, rocks) by alpha, beta and gamma spectroscopy after the dissolution in a microwave oven will be presented. The results on the determination of elements in NIST standard reference materials and radionuclides in IAEA standards will be included. QC/QA protocols used in an occupational health laboratory setting will be discussed. Sample preparation using microwave assisted digestion proved not only to speed-up extraction of acid soluble elements, but also to achieve better recovery of some elements (Pb in paints) and give better reproducibility of determinations

  14. Applications of Mass Customization Production Mode in Chinese Steel Industry

    Institute of Scientific and Technical Information of China (English)

    ZhouShichun; DingJianhua; ChenChao

    2005-01-01

    In this paper, the conflict between individual needs of market and the efficient mass production requirement of manufacture under the background of market globalization is discussed, a trend that the main production mode for domestic steel industry should be the mass customization is pointed out, and the problems to be solved for domestic enterprise are analyzed. Summarizing the practice of Baosteel Co. LTD on the new production mode, the achievements and experiences are presented.

  15. Virtual Load Machine as Test Environment for Industrial Storage Applications

    OpenAIRE

    Schaab , Darian ,; Zimmermann , Fabian; Weckmann , Sebastian; Sauer , Alexander

    2017-01-01

    Part 3: Cyber-Physical (IIoT) Technology Deployments in Smart Manufacturing Systems; International audience; The market share of renewable energy is rising all over the world and leads to a more and more volatile energy supply. The challenge of keeping supply and demand constantly balanced is getting more complex and dynamic. Large scale energy consumers like industrial facilities need to take on an active role in the energy system and adapt their energy consumption to the energy availability...

  16. Application of Sorbents for Industrial Waste Water Purification

    Czech Academy of Sciences Publication Activity Database

    Matějková, Martina; Soukup, Karel; Kaštánek, František; Čapek, P.; Grabowski, J.; Stanczyk, K.; Šolcová, Olga

    2015-01-01

    Roč. 38, č. 4 (2015), s. 667-674 ISSN 0930-7516 R&D Projects: GA ČR(CZ) GAP204/11/1206 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : pilot sorption experiments * reactive bed * underground coal gasification Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.385, year: 2015

  17. Federal laboratory nondestructive testing research and development applicable to industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  18. A Novel of Hybrid Maintenance Management Models for Industrial Applications

    OpenAIRE

    Tahir, Zulkifli

    2010-01-01

    It is observed through empirical studies that the effectiveness of industrial process have been increased by a well organized of machines maintenance structure. In current research, a novel of maintenance concept has been designed by hybrid several maintenance management models with Decision Making Grid (DMG), Analytic Hierarchy Process (AHP) and Fuzzy Logic. The concept is designed for maintenance personnel to evaluate and benchmark the maintenance operations and to reveal important maintena...

  19. Application of Genetic Engineering for Chromium Removal from Industrial Wastewater

    OpenAIRE

    N. K. Srivastava; M. K. Jha; I. D. Mall; Davinder Singh

    2010-01-01

    The treatment of the industrial wastewater can be particularly difficult in the presence of toxic compounds. Excessive concentration of Chromium in soluble form is toxic to a wide variety of living organisms. Biological removal of heavy metals using natural and genetically engineered microorganisms has aroused great interest because of its lower impact on the environment. Ralston metallidurans, formerly known as Alcaligenes eutrophus is a LProteobacterium colonizing indus...

  20. Application of digital image processing to industrial radiography

    International Nuclear Information System (INIS)

    Bodson; Varcin; Crescenzo; Theulot

    1985-01-01

    Radiography is widely used for quality control of fabrication of large reactor components. Image processing methods are applied to industrial radiographs in order to help to take a decision as well as to reduce costs and delays for examination. Films, performed in representative operating conditions, are used to test results obtained with algorithms for the restauration of images and for the detection, characterisation of indications in order to determine the possibility of an automatic radiographs processing [fr

  1. Optimal Bayesian experimental design for priors of compact support with application to shock-tube experiments for combustion kinetics

    KAUST Repository

    Bisetti, Fabrizio

    2016-01-12

    The analysis of reactive systems in combustion science and technology relies on detailed models comprising many chemical reactions that describe the conversion of fuel and oxidizer into products and the formation of pollutants. Shock-tube experiments are a convenient setting for measuring the rate parameters of individual reactions. The temperature, pressure, and concentration of reactants are chosen to maximize the sensitivity of the measured quantities to the rate parameter of the target reaction. In this study, we optimize the experimental setup computationally by optimal experimental design (OED) in a Bayesian framework. We approximate the posterior probability density functions (pdf) using truncated Gaussian distributions in order to account for the bounded domain of the uniform prior pdf of the parameters. The underlying Gaussian distribution is obtained in the spirit of the Laplace method, more precisely, the mode is chosen as the maximum a posteriori (MAP) estimate, and the covariance is chosen as the negative inverse of the Hessian of the misfit function at the MAP estimate. The model related entities are obtained from a polynomial surrogate. The optimality, quantified by the information gain measures, can be estimated efficiently by a rejection sampling algorithm against the underlying Gaussian probability distribution, rather than against the true posterior. This approach offers a significant error reduction when the magnitude of the invariants of the posterior covariance are comparable to the size of the bounded domain of the prior. We demonstrate the accuracy and superior computational efficiency of our method for shock-tube experiments aiming to measure the model parameters of a key reaction which is part of the complex kinetic network describing the hydrocarbon oxidation. In the experiments, the initial temperature and fuel concentration are optimized with respect to the expected information gain in the estimation of the parameters of the target

  2. Occupational exposures in industrial application of radiation during 1999-2008

    International Nuclear Information System (INIS)

    Sanaye, Suresh Shantaram; Baburajan, Sujatha; Pawar, Suresh Ganpat; Nalawade, Shailesh Krishna; Sapra, Balvinder Kaur

    2012-01-01

    Radiation sources are used in various industrial applications like industrial radiograph, industrial irradiation, industrial fluoroscopy, nucleonic gauges, well logging etc., Gamma, beta X-ray as well as neutron sources are used for various applications. Number of radiation workers in this field has increased over the years. Due to operating conditions prevailing during the exposure as well as the strength of the sources used in some of the applications, radiation protection plays an important role in this field. Analysis of doses received by radiation workers in industry provides information on trends of doses as well as adequateness of radiation protection practices followed in this sector. In India, National Occupational Dose Registry System (NODRS) of Radiological Physics and Advisory Division (RPAD), Bhabha Atomic Research Centre (BARC) maintains personnel dose information of monitored radiation workers in the country. Analysis of occupational dose data of industrial radiation workers for last 10 years, i.e., 1999-2008 has been presented in this paper. It is observed that even though there is an increase in monitored radiation workers, percentage of persons receiving radiation exposure has come down during this period. There is also a decrease in the average annual dose as well as the collective dose. Further analysis of sub-categories shows that industrial radiography operations are the main contributor for collective dose (about 77%) followed by well logging and industrial X-ray operations (about 8% each). Thus, in addition to industrial radiography attention is also to be given to operations in these areas. (author)

  3. Inter laboratory comparison on Computed Tomography for industrial applications in the slaughterhouses

    DEFF Research Database (Denmark)

    Angel, Jais Andreas Breusch; Christensen, Lars Bager; Cantatore, Angela

    2014-01-01

    An intercomparison on X-ray Computed Tomography (CT) for industrial applications in the slaughterhouses was organized by the Centre for Geometrical Metrology (CGM), Department of Mechanical Engineering, Technical University of Denmark (DTU) and carried out within the project “Centre for Industrial...

  4. A Study on the Training Mode of Electronic Application-Oriented Undergraduate with Industry Needs

    Science.gov (United States)

    Wang, Zhonghua; Cheng, Lifang; Wang, Hao

    2017-01-01

    Electronic industry is an economic pillar in China. Due to the Moore's Law, the industry requires continuous development and innovation. In order to achieve these goals, the cultivation of electronic application-oriented undergraduate is essential. However, at current, the innovative educational concepts and teaching methods are lagging behind so…

  5. Biopolimers – structure, properties and applicability in the foundry industry

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2008-04-01

    Full Text Available A review of literature data concerning physicochemical properties and possibilities of practical utilisation of the most important natural biopolymers (proteins, celluloses, starch, chitozan are presented in the paper. Biopolymers being renewable natural polymers characterised by several required physicochemical properties (adhesivity, activity, no toxicity, biodegradability constitute more and more interesting processing raw material for various industrial utilisations including environment friendly binding agents for moulding sands. Protein and starch compositions are used as binding agents for moulding and core sands in the foundry industry. Preliminary tests – performed within own research - of modification and utilisation of biopolymers as binding agents for moulding sands are promising from many aspects: technological (adequate properties of moulding sands, ecological (no toxicity, biodegradability and economic (low price. Starch from the polysaccharide group seems to be especially interesting since it is abundant, easily obtainable, biodegradable and the cheapest polymer. At its actual low price and the possibility of using agricultural wastes in the production, problem of utilising starch in many industry branches can become significant, especially in Poland.

  6. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  7. A Calibrated Power Prior Approach to Borrow Information from Historical Data with Application to Biosimilar Clinical Trials.

    Science.gov (United States)

    Pan, Haitao; Yuan, Ying; Xia, Jielai

    2017-11-01

    A biosimilar refers to a follow-on biologic intended to be approved for marketing based on biosimilarity to an existing patented biological product (i.e., the reference product). To develop a biosimilar product, it is essential to demonstrate biosimilarity between the follow-on biologic and the reference product, typically through two-arm randomization trials. We propose a Bayesian adaptive design for trials to evaluate biosimilar products. To take advantage of the abundant historical data on the efficacy of the reference product that is typically available at the time a biosimilar product is developed, we propose the calibrated power prior, which allows our design to adaptively borrow information from the historical data according to the congruence between the historical data and the new data collected from the current trial. We propose a new measure, the Bayesian biosimilarity index, to measure the similarity between the biosimilar and the reference product. During the trial, we evaluate the Bayesian biosimilarity index in a group sequential fashion based on the accumulating interim data, and stop the trial early once there is enough information to conclude or reject the similarity. Extensive simulation studies show that the proposed design has higher power than traditional designs. We applied the proposed design to a biosimilar trial for treating rheumatoid arthritis.

  8. The industrial applications of shape memory alloys in North America

    International Nuclear Information System (INIS)

    Mc Schetky D, L.

    2000-01-01

    Literature in the recent past on shape memory effect alloys dwelt principally on the physical metallurgy, crystallography and kinetics of the shape memory phenomenon. By contrast, we now have books and conference proceedings devoted to the engineering aspects of SMAs, their technology and application. The dominant role SMAs now play in the field of medical and orthodontic devices is well documented and will be reviewed by others in this conference. In this paper we will discuss the commercial applications for shape memory alloy devices in the North American market; applications which are in many cases also produced in European countries and Japan. The early success of shape memory alloy couplings for joining tubing and pipe in the late 1960's was not followed by other large volume applications until the advent of shape memory eyeglass frames, brassiere underwires and cellular phone antennas. Many other applications have now evolved into mature markets and these will be reviewed. In addition to the many commercial applications cited, there are a number of other fields in which shape memory alloys are destined to play a major role; these include smart materials and adaptive structures, MEMS devices, infrastructure systems and electrical power generation and distribution. These applications are being developed with private and government funding and will also be briefly discussed. (orig.)

  9. The industrial applications of shape memory alloys in North America

    Energy Technology Data Exchange (ETDEWEB)

    Mc Schetky D, L. [Memry Corp., Brookfield, CT (United States)

    2000-07-01

    Literature in the recent past on shape memory effect alloys dwelt principally on the physical metallurgy, crystallography and kinetics of the shape memory phenomenon. By contrast, we now have books and conference proceedings devoted to the engineering aspects of SMAs, their technology and application. The dominant role SMAs now play in the field of medical and orthodontic devices is well documented and will be reviewed by others in this conference. In this paper we will discuss the commercial applications for shape memory alloy devices in the North American market; applications which are in many cases also produced in European countries and Japan. The early success of shape memory alloy couplings for joining tubing and pipe in the late 1960's was not followed by other large volume applications until the advent of shape memory eyeglass frames, brassiere underwires and cellular phone antennas. Many other applications have now evolved into mature markets and these will be reviewed. In addition to the many commercial applications cited, there are a number of other fields in which shape memory alloys are destined to play a major role; these include smart materials and adaptive structures, MEMS devices, infrastructure systems and electrical power generation and distribution. These applications are being developed with private and government funding and will also be briefly discussed. (orig.)

  10. Applications of Expert Systems within the Scottish Electricity Supply Industry

    International Nuclear Information System (INIS)

    McWhirter, A.F.

    1990-01-01

    This paper describes the areas of application of Expert Systems within the South of Scotland Electricity Board (SSEB). The SSEB interest in Expert Systems was initiated by a fault in a conventional power station however the paper describes how the development associated with that work, has resulted in applications for the Nuclear Power Stations. The paper contrasts the cost benefits and project risks associated with the uses of probabilistic systems and concludes that the cost benefits of these are at present too low to justify their use in on-line applications

  11. Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications

    International Nuclear Information System (INIS)

    Zouaghi, W; Thomson, M D; Rabia, K; Hahn, R; Blank, V; Roskos, H G

    2013-01-01

    Terahertz radiation (also called T-rays) can be employed for spectroscopy and imaging, from the laboratory to industrial applications. In this paper we give an overview of how broadband optoelectronic THz techniques (i.e. using optical lasers to achieve THz generation and detection) can be implemented, and give examples of their unique use in solid-state physics, and in biological and industrial applications. (paper)

  12. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  13. Applicability of Talent Management with Special Reference to Automobile Industry of Krishnagiri District

    OpenAIRE

    R. Santoshkumar; Dr. N. Rajasekar

    2011-01-01

    This research paper examines the applicability of Talent Management in Automobile Industry in Krishnagiri district. The primary data collected from the 100 different levels of employees in automobile industry. Hypothesis test used to measure the applicability of talent management. This paper found the executives feel that Talent Management is the competitive Advantage for the company; they believe that their company’s recruitment policy is leveraged towards recruiting top talent. This study...

  14. Mixture design: A review of recent applications in the food industry

    OpenAIRE

    Yeliz Buruk Şahin; Ezgi Aktar Demirtaş; Nimetullah Burnak

    2016-01-01

    Design of experiments (DOE) is a systematic approach to applying statistical methods to the experimental process. The main purpose of this study is to provide useful insights into mixture design as a special type of DOE and to present a review of current mixture design applications in the food industry. The theoretical principles of mixture design and its application in the food industry, based on an extensive review of the literature, are described. Mixture design types, such as simplex-latt...

  15. Accommodating Uncertainty in Prior Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Picard, Richard Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vander Wiel, Scott Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-19

    A fundamental premise of Bayesian methodology is that a priori information is accurately summarized by a single, precisely de ned prior distribution. In many cases, especially involving informative priors, this premise is false, and the (mis)application of Bayes methods produces posterior quantities whose apparent precisions are highly misleading. We examine the implications of uncertainty in prior distributions, and present graphical methods for dealing with them.

  16. Green biocides, a promising technology: current and future applications to industry and industrial processes.

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Ullah, Saleem; Ahmad, Irshad; Qureshi, Ahmad Kaleem; Balkhair, Khaled S; Abdur Rehman, Muhammad

    2014-02-01

    The study of biofilms has skyrocketed in recent years due to increased awareness of the pervasiveness and impact of biofilms. It costs the USA literally billions of dollars every year in energy losses, equipment damage, product contamination and medical infections. But biofilms also offer huge potential for cleaning up hazardous waste sites, filtering municipal and industrial water and wastewater, and forming biobarriers to protect soil and groundwater from contamination. The complexity of biofilm activity and behavior requires research contributions from many disciplines such as biochemistry, engineering, mathematics and microbiology. The aim of this review is to provide a comprehensive analysis of emerging novel antimicrobial techniques, including those using myriad organic and inorganic products as well as genetic engineering techniques, the use of coordination complex molecules, composite materials and antimicrobial peptides and the use of lasers as such or their modified use in combination treatments. This review also addresses advanced and recent modifications, including methodological changes, and biocide efficacy enhancing strategies. This review will provide future planners of biofilm control technologies with a broad understanding and perspective on the use of biocides in the field of green developments for a sustainable future. © 2013 Society of Chemical Industry.

  17. Radiation applications in industry and medicine: DAE fostering availability, quality and safety of products and service

    International Nuclear Information System (INIS)

    Ramamoorthy, N.

    2016-01-01

    Nuclear and radiation applications play a significant role in aiding industrial process management, food security and safety, health care practices, manufacturing and value-addition to certain materials, treating pollutants/waste, etc. Most of these applications have contributed to improving the quality of life and industrial efficiency. India is among the large-scale producers cum users of radioisotope products and radiation technology applications over the past nearly five decades, thanks to the Department of Atomic Energy (DAE) and its various units pioneering the development and deployment of the above-mentioned applications in our country

  18. Y-12 Industrial Landfill V. Permit application modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report contains the modifications in operations and design to meet the Tennessee Department of Environment and Conversation (TDEC) July 10, 1993, amendments to the regulations for Class 2 landfills. These modifications, though extensive in design and construction cost, are considered minor revisions and should not require a processing fee. Area 1 of ILF V, comprising approximately 20% of the ILF V footprint, was designed and submitted to TDEC prior to the implementation of current regulations. This initial area was constructed with a compacted clay liner and leachate collection system, and became operational in April 1994. The current regulations require landfills to have a composite liner with leachate collection system and closure cap. Modifications to upgrade Areas 2 and 3 of ILF V to meet the current TDEC requirements are included.

  19. Y-12 Industrial Landfill V. Permit application modifications

    International Nuclear Information System (INIS)

    1995-09-01

    This report contains the modifications in operations and design to meet the Tennessee Department of Environment and Conversation (TDEC) July 10, 1993, amendments to the regulations for Class 2 landfills. These modifications, though extensive in design and construction cost, are considered minor revisions and should not require a processing fee. Area 1 of ILF V, comprising approximately 20% of the ILF V footprint, was designed and submitted to TDEC prior to the implementation of current regulations. This initial area was constructed with a compacted clay liner and leachate collection system, and became operational in April 1994. The current regulations require landfills to have a composite liner with leachate collection system and closure cap. Modifications to upgrade Areas 2 and 3 of ILF V to meet the current TDEC requirements are included

  20. Applications of thermal lens spectrometry in food industry and agriculture.

    NARCIS (Netherlands)

    Franko, M.; Bicanic, D.; Gibkes, J.; Bremer, M.; Akkermans, E.

    1996-01-01

    Applications of CO laser dual beam thermal lens spectrometry (TLS) for detection and characterization of fatty acids, aldehydes, pesticides, and herbicides in liquid samples are described. Also reported is the first TLS measurement of thermal conductivity for oleic acid.