Sample records for induces illusory motion

  1. Active Control Does Not Eliminate Motion-Induced Illusory Displacement

    Directory of Open Access Journals (Sweden)

    Ian M. Thornton


    Full Text Available When the sine-wave grating of a Gabor patch drifts to the left or right, the perceived position of the entire object is shifted in the direction of local motion. In the current work we explored whether active control of the physical position of the patch overcomes such motion induced illusory displacement. In Experiment 1 we created a simple computer game and asked participants to continuously guide a Gabor patch along a randomly curving path using a joystick. When the grating inside the Gabor patch was stationary, participants could perform this task without error. When the grating drifted to either left or right, we observed systematic errors consistent with previous reports of motion-induced illusory displacement. In Experiment 2 we created an iPad application where the built-in accelerometer tilt control was used to steer the patch through as series of “gates”. Again, we observed systematic guidance errors that depended on the direction and speed of local motion. In conclusion, we found no evidence that participants could adapt or compensate for illusory displacement given active control of the target.

  2. Haptically Induced Illusory Self-motion and the Influence of Context of Motion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Nordahl, Rolf; Sikström, Erik;


    The ability of haptic stimuli to augment visually and auditorily induced self-motion illusions has in part been investigated. However, haptically induced illusory self-motion in environments deprived of explicit motion cues remain unexplored. In this paper we present an experiment performed...... of the feet. The experiment was based on the a within-subjects design and included four conditions, each representing one context of motion: an elevator, a train compartment, a bathroom, and a completely dark environment. The audiohaptic stimuli was identical across all conditions. The participants’ sensation...... of movement was assessed by means of existing measures of illusory self-motion, namely, reported self-motion illusion per stimulus type, illusion compellingness, intensity and onset time. Finally the participants were also asked to estimate the experienced direction of movement. While the data obtained from...

  3. Action can amplify motion-induced illusory displacement.

    Directory of Open Access Journals (Sweden)

    Franck eCaniard


    Full Text Available Local motion is known to produce strong illusory displacement in the perceived position of globally static objects. For example, if a dot-cloud or grating drifts to the left within a stationary aperture, the perceived position of the whole aperture will also be shifted to the left. Previously, we used a simple tracking task to demonstrate that active control over the global position of an object did not eliminate this form of illusion. Here, we used a new iPad task to directly compare the magnitude of illusory displacement under active and passive conditions. In the active condition, participants guided a drifting Gabor patch along a virtual slalom course by using the tilt control of an iPad. The task was to position the patch so that it entered each gate at the direct center, and we used the left/right deviations from that point as our dependent measure. In the passive condition, participants watched playback of standardized trajectories along the same course. We systematically varied deviation from midpoint at gate entry, and participants made 2AFC left/right judgments. We fitted cumulative normal functions to individual distributions and extracted the PSE as our dependent measure. To our surprise, the magnitude of displacement was consistently larger under active than under passive conditions. Importantly, control conditions ruled out the possibility that such amplification results from lack of motor control or differences in global trajectories as performance estimates were equivalent in the two conditions in the absence of local motion. Our results suggest that the illusion penetrates multiple levels of the perception-action cycle, indicating that one important direction for the future of perceptual illusions may be to more fully explore their influence during active vision.

  4. Auditorily-induced illusory self-motion: a review. (United States)

    Väljamäe, Aleksander


    The aim of this paper is to provide a first review of studies related to auditorily-induced self-motion (vection). These studies have been scarce and scattered over the years and over several research communities including clinical audiology, multisensory perception of self-motion and its neural correlates, ergonomics, and virtual reality. The reviewed studies provide evidence that auditorily-induced vection has behavioral, physiological and neural correlates. Although the sound contribution to self-motion perception appears to be weaker than the visual modality, specific acoustic cues appear to be instrumental for a number of domains including posture prosthesis, navigation in unusual gravitoinertial environments (in the air, in space, or underwater), non-visual navigation, and multisensory integration during self-motion. A number of open research questions are highlighted opening avenue for more active and systematic studies in this area.

  5. Illusory visual motion stimulus elicits postural sway in migraine patients

    Directory of Open Access Journals (Sweden)

    Shu eImaizumi


    Full Text Available Although the perception of visual motion modulates postural control, it is unknown whether illusory visual motion elicits postural sway. The present study examined the effect of illusory motion on postural sway in patients with migraine, who tend to be sensitive to it. We measured postural sway for both migraine patients and controls while they viewed static visual stimuli with and without illusory motion. The participants’ postural sway was measured when they closed their eyes either immediately after (Experiment 1, or 30 seconds after (Experiment 2, viewing the stimuli. The patients swayed more than the controls when they closed their eyes immediately after viewing the illusory motion (Experiment 1, and they swayed less than the controls when they closed their eyes 30 seconds after viewing it (Experiment 2. These results suggest that static visual stimuli with illusory motion can induce postural sway that may last for at least 30 seconds in patients with migraine.

  6. Perception of illusory contours enhanced in motion

    Institute of Scientific and Technical Information of China (English)

    倪睿; 王志宏; 吴新年; 汪云九; 李东光


    Investigation on illusory contours is important for understanding the mechanisms un-derlying the object recognition of human visual system. Numerous researches have shown that illusory contours formed in motion and stereopsis are generated by the unmatched features. Here we conduct three psychophysical experiments to test if Kanizsa illusory contours are also caused by unmatched information. Different types of motion (including horizontal translation, radial ex-panding and shrinking) are utilized in the experiments. The results show that no matter under what kind of motion, when figures or background move separately illusory contours are perceived stronger, and there is no significant difference between the perceived strength in these two types of motion. However, no such enhancement of perceived strength is found when figures and background move together. It is found that the strengthened unmatched features generate the enhancement effect of illusory contour perception in motion. Thus the results suggest that the process of unmatched information in visual system is a critical step in the formation of illusory contours.

  7. Illusory position shift induced by motion within a moving envelope during smooth-pursuit eye movements. (United States)

    Hisakata, Rumi; Terao, Masahiko; Murakami, Ikuya


    The static envelope of a Gabor patch with a moving carrier appears to shift in the direction of the carrier motion; this phenomenon is known as the motion-induced position shift (De Valois & De Valois, 1991; Ramachandran & Anstis, 1990). This conventional stimulus configuration contains at least three covarying factors: the retinal carrier velocity, the environmental carrier velocity, and the carrier velocity relative to the envelope velocity, which happens to be zero. We manipulated these velocities independently to identify which is critical, and we measured the perceived position of the moving Gabor patch relative to a reference stimulus moving in the same direction at the same speed. In the first experiment, the position of the moving envelope observed with fixation appeared to shift in the direction of the carrier velocity relative to the envelope velocity. Furthermore, the illusion was more pronounced when the carrier moved in a direction opposite to that of the envelope. In the second and third experiments, we measured the illusion during smooth-pursuit eye movement in which the envelope was either static or moving, thereby dissociating retinal and environmental velocities. Under all conditions, the illusion occurred according to the envelope-relative velocity of the carrier. Additionally, the illusion was more pronounced when the carrier and envelope moved in opposite directions. We conclude that the carrier's envelope-relative velocity is the primary determinant of the motion-induced position shift.

  8. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  9. Neural Mechanisms of Illusory Motion: Evidence from ERP Study

    Directory of Open Access Journals (Sweden)

    Xu Y. A. N. Yun


    Full Text Available ERPs were used to examine the neural correlates of illusory motion, by presenting the Rice Wave illusion (CI, its two variants (WI and NI and a real motion video (RM. Results showed that: Firstly, RM elicited a more negative deflection than CI, NI and WI between 200–350ms. Secondly, between 500–600ms, CI elicited a more positive deflection than NI and WI, and RM elicited a more positive deflection than CI, what's more interesting was the sequential enhancement of brain activity with the corresponding motion strength. We inferred that the former component might reflect the successful encoding of the local motion signals in detectors at the lower stage; while the latter one might be involved in the intensive representations of visual input in real/illusory motion perception, this was the whole motion-signal organization in the later stage of motion perception. Finally, between 1185–1450 ms, a significant positive component was found between illusory/real motion tasks than NI (no motion. Overall, we demonstrated that there was a stronger deflection under the corresponding lager motion strength. These results reflected not only the different temporal patterns between illusory and real motion but also extending to their distinguishing working memory representation and storage.

  10. Illusory Speed is Retained in Memory during Invisible Motion

    Directory of Open Access Journals (Sweden)

    Luca Battaglini


    Full Text Available The brain can retain speed information in early visual short-term memory in an astonishingly precise manner. We investigated whether this (early visual memory system is active during the extrapolation of occluded motion and whether it reflects speed misperception due to contrast and size. Experiments 1A and 2A showed that reducing target contrast or increasing its size led to an illusory speed underestimation. Experiments 1B, 2B, and 3 showed that this illusory phenomenon is reflected in the memory of speed during occluded motion, independent of the range of visible speeds, of the length of the visible trajectory or the invisible trajectory, and of the type of task. These results suggest that illusory speed is retained in memory during invisible motion.

  11. Primary visual cortex activity along the apparent-motion trace reflects illusory perception.

    Directory of Open Access Journals (Sweden)

    Lars Muckli


    Full Text Available The illusion of apparent motion can be induced when visual stimuli are successively presented at different locations. It has been shown in previous studies that motion-sensitive regions in extrastriate cortex are relevant for the processing of apparent motion, but it is unclear whether primary visual cortex (V1 is also involved in the representation of the illusory motion path. We investigated, in human subjects, apparent-motion-related activity in patches of V1 representing locations along the path of illusory stimulus motion using functional magnetic resonance imaging. Here we show that apparent motion caused a blood-oxygenation-level-dependent response along the V1 representations of the apparent-motion path, including regions that were not directly activated by the apparent-motion-inducing stimuli. This response was unaltered when participants had to perform an attention-demanding task that diverted their attention away from the stimulus. With a bistable motion quartet, we confirmed that the activity was related to the conscious perception of movement. Our data suggest that V1 is part of the network that represents the illusory path of apparent motion. The activation in V1 can be explained either by lateral interactions within V1 or by feedback mechanisms from higher visual areas, especially the motion-sensitive human MT/V5 complex.

  12. Vertical illusory self-motion through haptic stimulation of the feet

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Nilsson, Niels Christian; Turchet, Luca


    Circular and linear self-motion illusions induced through visual and auditory stimuli have been studied rather extensively. While the ability of haptic stimuli to augment such illusions has been investigated, the self-motion illusions which primarily are induced by stimulation of the haptic...... modality remain relatively unexplored. In this paper, we present an experiment performed with the intention of investigating whether it is possible to use haptic stimulation of the main supporting areas of the feet to induce vertical illusory self-motion on behalf of unrestrained participants during...... to generate the haptic feedback while the final condition included no haptic feedback. Analysis of self-reports were used to assess the participants' experience of illusory self-motion. The results indicate that such illusions are indeed possible. Significant differences were found between the condition...

  13. Images of Illusory Motion in Primary Visual Cortex

    DEFF Research Database (Denmark)

    Larsen, Axel; Madsen, Kristoffer; Ellegaard Lund, Torben


    Illusory motion can be generated by successively flashing a stationary visual stimulus in two spatial locations separated by several degrees of visual angle. In appropriate conditions, the apparent motion is indistinguishable from real motion: The observer experiences a luminous object traversing...... a continuous path from one stimulus location to the other through intervening positions where no physical stimuli exist. The phenomenon has been extensively investigated for nearly a century but little is known about its neurophysiological foundation. Here we present images of activations in the primary visual...... cortex in response to real and apparent motion. The images show that during apparent motion, a path connecting the cortical representations of the stimulus locations is filled in by activation. The activation along the path of apparent motion is similar to the activation found when a stimulus...

  14. How visual illusions illuminate complementary brain processes: illusory depth from brightness and apparent motion of illusory contours. (United States)

    Grossberg, Stephen


    Neural models of perception clarify how visual illusions arise from adaptive neural processes. Illusions also provide important insights into how adaptive neural processes work. This article focuses on two illusions that illustrate a fundamental property of global brain organization; namely, that advanced brains are organized into parallel cortical processing streams with computationally complementary properties. That is, in order to process certain combinations of properties, each cortical stream cannot process complementary properties. Interactions between these streams, across multiple processing stages, overcome their complementary deficiencies to compute effective representations of the world, and to thereby achieve the property of complementary consistency. The two illusions concern how illusory depth can vary with brightness, and how apparent motion of illusory contours can occur. Illusory depth from brightness arises from the complementary properties of boundary and surface processes, notably boundary completion and surface-filling in, within the parvocellular form processing cortical stream. This illusion depends upon how surface contour signals from the V2 thin stripes to the V2 interstripes ensure complementary consistency of a unified boundary/surface percept. Apparent motion of illusory contours arises from the complementary properties of form and motion processes across the parvocellular and magnocellular cortical processing streams. This illusion depends upon how illusory contours help to complete boundary representations for object recognition, how apparent motion signals can help to form continuous trajectories for target tracking and prediction, and how formotion interactions from V2-to-MT enable completed object representations to be continuously tracked even when they move behind intermittently occluding objects through time.

  15. Illusory sensation of movement induced by repetitive transcranial magnetic stimulation


    Mark Schram Christensen; Jesper Lundbye-Jensen; Michael James Grey; Alexandra Damgaard Vejlby; Bo Belhage; Jens Bo Nielsen


    Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb movement and its associated somatosensory feedback. Afferent and efferent neural signalling was abolished in the arm with ischemic nerve block, and in the leg with spinal nerve block. Movement sensation was...

  16. Illusory sensation of movement induced by repetitive transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Lundbye-Jensen, J.; Grey, M.J.;


    Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb moveme...... premotor cortex stimulation was less affected by sensory and motor deprivation than was primary motor cortex stimulation. We propose that repetitive transcranial magnetic stimulation over dorsal premotor cortex produces a corollary discharge that is perceived as movement....

  17. Illusory sensation of movement induced by repetitive transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Mark Schram Christensen

    Full Text Available Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb movement and its associated somatosensory feedback. Afferent and efferent neural signalling was abolished in the arm with ischemic nerve block, and in the leg with spinal nerve block. Movement sensation was assessed following trains of high-frequency repetitive transcranial magnetic stimulation applied over primary motor cortex, dorsal premotor cortex, and a control area (posterior parietal cortex. Magnetic stimulation over primary motor cortex and dorsal premotor cortex produced a movement sensation that was significantly greater than stimulation over the control region. Movement sensation after dorsal premotor cortex stimulation was less affected by sensory and motor deprivation than was primary motor cortex stimulation. We propose that repetitive transcranial magnetic stimulation over dorsal premotor cortex produces a corollary discharge that is perceived as movement.

  18. Aftereffect of Adaptation to Illusory Brightness


    Xinguang Cao; Hiroyuki Ito


    Several figures are known to induce illusory brightness. We tested whether adaptation to illusory brightness produced an aftereffect in brightness. After viewing a gray square area having illusory brightness (e.g., due to brightness contrast or illusory contours) for ten seconds, the illusion-inducing surround vanished. After three seconds, subjects reported whether the square area was seen as brighter than, darker than, or the same brightness as a control gray square area. The luminance of t...

  19. Differential brain activity states during the perception and nonperception of illusory motion as revealed by magnetoencephalography. (United States)

    Crowe, David A; Leuthold, Arthur C; Georgopoulos, Apostolos P


    We studied visual perception using an annular random-dot motion stimulus called the racetrack. We recorded neural activity using magnetoencephalography while subjects viewed variants of this stimulus that contained no inherent motion or various degrees of embedded motion. Subjects reported seeing rotary motion during viewing of all stimuli. We found that, in the absence of any motion signals, patterns of brain activity differed between states of motion perception and nonperception. Furthermore, when subjects perceived motion, activity states within the brain did not differ across stimuli of different amounts of embedded motion. In contrast, we found that during periods of nonperception brain-activity states varied with the amount of motion signal embedded in the stimulus. Taken together, these results suggest that during perception the brain may lock into a stable state in which lower-level signals are suppressed.

  20. Illusory Centrifugal Motion Direction Observed in Brief Stimuli: Psychophysics and Energy Model

    Directory of Open Access Journals (Sweden)

    Ruyuan Zhang


    Full Text Available All stationary stimuli of fixed duration have motion energy and the amount of motion energy increases with decreasing duration. Consequently, perception of motion direction could be biased if the readout mechanisms are unbalanced. Previous physiological study showed prefered direction of MT neurons in peripheral tend to be oriented away from fovea(Albright, 1989. Given the broadening of motion energy in brief stimuli, such effect should increase as the stimulus duration decreases. Here, we tested this hypothesis by presenting vertical gratings (0.5c/deg, raised cosine spatial envelope, radius = 5deg, 98% contrast with different speeds(2,4,8 16deg/sec and direction(moving towards fovea or moving away from fovea. And Stimuli were presented in a temporal Gaussian envelope with durations ranging between 5 and 500ms. Observers' task was to identify perceived motion direction (guessing when unsure. Results showed that as predicted, the observers were biased to perceive these stimuli as moving away from fovea. In summary, briefly presented stationary stimuli are perceived as moving in centrifugal direction when presented in visual periphery. One possible explanation for this illusion is that these stimuli, by virtue of their broad temporal frequency spectrum, stimulate centrifugally biased motion mechanisms in area MT.

  1. Illusory Tactile Motion Perception: An Analog of the Visual Filehne Illusion. (United States)

    Moscatelli, Alessandro; Hayward, Vincent; Wexler, Mark; Ernst, Marc O


    We continually move our body and our eyes when exploring the world, causing our sensory surfaces, the skin and the retina, to move relative to external objects. In order to estimate object motion consistently, an ideal observer would transform estimates of motion acquired from the sensory surface into fixed, world-centered estimates, by taking the motion of the sensor into account. This ability is referred to as spatial constancy. Human vision does not follow this rule strictly and is therefore subject to perceptual illusions during eye movements, where immobile objects can appear to move. Here, we investigated whether one of these, the Filehne illusion, had a counterpart in touch. To this end, observers estimated the movement of a surface from tactile slip, with a moving or with a stationary finger. We found the perceived movement of the surface to be biased if the surface was sensed while moving. This effect exemplifies a failure of spatial constancy that is similar to the Filehne illusion in vision. We quantified this illusion by using a Bayesian model with a prior for stationarity, applied previously in vision. The analogy between vision and touch points to a modality-independent solution to the spatial constancy problem.

  2. Illusory contour formation survives crowding. (United States)

    Lau, Jonathan Siu Fung; Cheung, Sing-Hang


    Flanked objects are difficult to identify using peripheral vision due to visual crowding, which limits conscious access to target identity. Nonetheless, certain types of visual information have been shown to survive crowding. Such resilience to crowding provides valuable information about the underlying neural mechanism of crowding. Here we ask whether illusory contour formation survives crowding of the inducers. We manipulated the presence of illusory contours through the (mis)alignment of the four inducers of a Kanizsa square. In the inducer-aligned condition, the observers judged the perceived shape (thin vs. fat) of the illusory Kanizsa square, manipulated by small rotations of the inducers. In the inducer-misaligned condition, three of the four inducers (all except the upper-left) were rotated 90°. The observers judged the orientation of the upper-left inducer. Crowding of the inducers worsened observers' performance significantly only in the inducer-misaligned condition. Our findings suggest that information for illusory contour formation survives crowding of the inducers. Crowding happens at a stage where the low-level featural information is integrated for inducer orientation discrimination, but not at a stage where the same information is used for illusory contour formation.

  3. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion. (United States)

    Harvie, Daniel S; Smith, Ross T; Hunter, Estin V; Davis, Miles G; Sterling, Michele; Moseley, G Lorimer


    Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can't be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50(o) of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%-200%-the Motor Offset Visual Illusion (MoOVi)-thus simulating more or less movement than that actually occurring. At 50(o) of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360(o) immersive virtual reality with and without three-dimensional properties, was also investigated. Perception of head movement was dependent on visual-kinaesthetic feedback (p = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and

  4. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion

    Directory of Open Access Journals (Sweden)

    Daniel S. Harvie


    Full Text Available Background Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can’t be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. Method In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%–200%—the Motor Offset Visual Illusion (MoOVi—thus simulating more or less movement than that actually occurring. At 50o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual feedback, the presence of a virtual body reference, and the use of 360o immersive virtual reality with and without three-dimensional properties, was also investigated. Results Perception of head movement was dependent on visual-kinaesthetic feedback (p = 0.001, partial eta squared = 0.17. That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Discussion Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The Mo

  5. Sensorimotor aspects of high-speed artificial gravity: II. The effect of head position on illusory self motion (United States)

    Mast, F. W.; Newby, N. J.; Young, L. R.


    The effects of cross-coupled stimuli on the semicircular canals are shown to be influenced by the position of the subject's head with respect to gravity and the axis of rotation, but not by the subject's head position relative to the trunk. Seventeen healthy subjects made head yaw movements out of the horizontal plane while lying on a horizontal platform (MIT short radius centrifuge) rotating at 23 rpm about an earth-vertical axis. The subjects reported the magnitude and duration of the illusory pitch or roll sensations elicited by the cross-coupled rotational stimuli acting on the semicircular canals. The results suggest an influence of head position relative to gravity. The magnitude estimation is higher and the sensation decays more slowly when the head's final position is toward nose-up (gravity in the subject's head x-z-plane) compared to when the head is turned toward the side (gravity in the subject's head y-z-plane). The results are discussed with respect to artificial gravity in space and the possible role of pre-adaptation to cross-coupled angular accelerations on earth.

  6. Fooling the eyes: the influence of a sound-induced visual motion illusion on eye movements.

    Directory of Open Access Journals (Sweden)

    Alessio Fracasso

    Full Text Available The question of whether perceptual illusions influence eye movements is critical for the long-standing debate regarding the separation between action and perception. To test the role of auditory context on a visual illusion and on eye movements, we took advantage of the fact that the presence of an auditory cue can successfully modulate illusory motion perception of an otherwise static flickering object (sound-induced visual motion effect. We found that illusory motion perception modulated by an auditory context consistently affected saccadic eye movements. Specifically, the landing positions of saccades performed towards flickering static bars in the periphery were biased in the direction of illusory motion. Moreover, the magnitude of this bias was strongly correlated with the effect size of the perceptual illusion. These results show that both an audio-visual and a purely visual illusion can significantly affect visuo-motor behavior. Our findings are consistent with arguments for a tight link between perception and action in localization tasks.

  7. Infrasonic induced ground motions (United States)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  8. Visual sensitivity is a stronger determinant of illusory processes than auditory cue parameters in the sound-induced flash illusion. (United States)

    Kumpik, Daniel P; Roberts, Helen E; King, Andrew J; Bizley, Jennifer K


    The sound-induced flash illusion (SIFI) is a multisensory perceptual phenomenon in which the number of brief visual stimuli perceived by an observer is influenced by the number of concurrently presented sounds. While the strength of this illusion has been shown to be modulated by the temporal congruence of the stimuli from each modality, there is conflicting evidence regarding its dependence upon their spatial congruence. We addressed this question by examining SIFIs under conditions in which the spatial reliability of the visual stimuli was degraded and different sound localization cues were presented using either free-field or closed-field stimulation. The likelihood of reporting a SIFI varied with the spatial cue composition of the auditory stimulus and was highest when binaural cues were presented over headphones. SIFIs were more common for small flashes than for large flashes, and for small flashes at peripheral locations, subjects experienced a greater number of illusory fusion events than fission events. However, the SIFI was not dependent on the spatial proximity of the audiovisual stimuli, but was instead determined primarily by differences in subjects' underlying sensitivity across the visual field to the number of flashes presented. Our findings indicate that the influence of auditory stimulation on visual numerosity judgments can occur independently of the spatial relationship between the stimuli. © 2014 ARVO.

  9. Illusory movement of stationary stimuli in the visual periphery: evidence for a strong centrifugal prior in motion processing. (United States)

    Zhang, Ruyuan; Kwon, Oh-Sang; Tadin, Duje


    Visual input is remarkably diverse. Certain sensory inputs are more probable than others, mirroring statistical regularities of the visual environment. The visual system exploits many of these regularities, resulting, on average, in better inferences about visual stimuli. However, by incorporating prior knowledge into perceptual decisions, visual processing can also result in perceptions that do not match sensory inputs. Such perceptual biases can often reveal unique insights into underlying mechanisms and computations. For example, a prior assumption that objects move slowly can explain a wide range of motion phenomena. The prior on slow speed is usually rationalized by its match with visual input, which typically includes stationary or slow moving objects. However, this only holds for foveal and parafoveal stimulation. The visual periphery tends to be exposed to faster motions, which are biased toward centrifugal directions. Thus, if prior assumptions derive from experience, peripheral motion processing should be biased toward centrifugal speeds. Here, in experiments with human participants, we support this hypothesis and report a novel visual illusion where stationary objects in the visual periphery are perceived as moving centrifugally, while objects moving as fast as 7°/s toward fovea are perceived as stationary. These behavioral results were quantitatively explained by a Bayesian observer that has a strong centrifugal prior. This prior is consistent with both the prevalence of centrifugal motions in the visual periphery and a centrifugal bias of direction tuning in cortical area MT, supporting the notion that visual processing mirrors its input statistics.

  10. Parietal cortex mediates conscious perception of illusory gestalt. (United States)

    Zaretskaya, Natalia; Anstis, Stuart; Bartels, Andreas


    Grouping local elements into a holistic percept, also known as spatial binding, is crucial for meaningful perception. Previous studies have shown that neurons in early visual areas V1 and V2 can signal complex grouping-related information, such as illusory contours or object-border ownerships. However, relatively little is known about higher-level processes contributing to these signals and mediating global Gestalt perception. We used a novel bistable motion illusion that induced alternating and mutually exclusive vivid conscious experiences of either dynamic illusory contours forming a global Gestalt or moving ungrouped local elements while the visual stimulation remained the same. fMRI in healthy human volunteers revealed that activity fluctuations in two sites of the parietal cortex, the superior parietal lobe and the anterior intraparietal sulcus (aIPS), correlated specifically with the perception of the grouped illusory Gestalt as opposed to perception of ungrouped local elements. We then disturbed activity at these two sites in the same participants using transcranial magnetic stimulation (TMS). TMS over aIPS led to a selective shortening of the duration of the global Gestalt percept, with no effect on that of local elements. The results suggest that aIPS activity is directly involved in the process of spatial binding during effortless viewing in the healthy brain. Conscious perception of global Gestalt is therefore associated with aIPS function, similar to attention and perceptual selection.

  11. Aftereffect of Adaptation to Illusory Brightness

    Directory of Open Access Journals (Sweden)

    Xinguang Cao


    Full Text Available Several figures are known to induce illusory brightness. We tested whether adaptation to illusory brightness produced an aftereffect in brightness. After viewing a gray square area having illusory brightness (e.g., due to brightness contrast or illusory contours for ten seconds, the illusion-inducing surround vanished. After three seconds, subjects reported whether the square area was seen as brighter than, darker than, or the same brightness as a control gray square area. The luminance of the tested square area was physically unchanged. The results show that when the black surround inducing brightness contrast suddenly became gray (i.e., vanished, the center gray square tended to look darker than a control gray square. Similarly, after viewing a subjective square consisting of black-line terminations, the square area tended to look darker than the control even though the afterimage of the lines could not be seen. These results indicate that induced or illusory brightness causes an aftereffect in brightness regardless of the appearance of negative afterimages of the illusion-inducing components.

  12. Attentional modulation of motion-induced blindness

    Institute of Scientific and Technical Information of China (English)

    GENG HaiYan; SONG QianLan; LI YunFeng; XU Shan; ZHU Ying


    When a global moving pattern is superimposed on high-contrast stationary or slowly moving stimuli,the stimuli can be perceived as disappearing and reappearing alternately for periods of several seconds. This visual illusory phenomenon was named "motion-induced blindness" (MIB) in recent literature. So far there is no consensus on the mechanism of MIB, especially on the role of attention in this phenomenon. To examine the effect of spatial attention on MIB, the present study manipulated the participants' spatial attention by asking them to respond to two targets simultaneously presented in bilateral visual fields (the divided-attention condition) or only respond to one of them (the focused-attention condition). A central arrow was presented as an endogenous cue to index the target visual field in the focused-attention condition, while a point was presented instead in the divided-attention condition. The results show that the percentage of accumulated invisibility period was larger for the targets in the focused-attention condition than for those in the divided-attention condition.This effect of attentionis significant in upper visual field (UVF) and left lower visual field (left LVF); that is, this effect shows a hemispheric asymmetry in LVF but not in UVF. Furthermore, the percentage of accumulated invisibility period was larger for targets in left LVF than for those in right LVF in the focused-attention condition, but no hemispheric asymmetry was found in the divided-attention condition.In addition, the increased percentage of accumulated invisibility period in the focused-attention condition originated merely in the enhancement of the mean phase duration of disappearance in LVF, while the disappearance occurred more frequently and lasted longer for each occurrence, which led to an increase in the total invisibility period, in the focused- than divided-attention condition in UVF. These results suggest that the modulation of spatial attention on MIB has different

  13. Illusory movements induced by tendon vibration in right- and left-handed people. (United States)

    Tidoni, Emmanuele; Fusco, Gabriele; Leonardis, Daniele; Frisoli, Antonio; Bergamasco, Massimo; Aglioti, Salvatore Maria


    Frequency-specific vibratory stimulation of peripheral tendons induces an illusion of limb movement that may be useful for restoring proprioceptive information in people with sensorimotor disability. This potential application may be limited by inter- and intra-subject variability in the susceptibility to such an illusion, which may depend on a variety of factors. To explore the influence of stimulation parameters and participants' handedness on the movement illusion, we vibrated the right and left tendon of the biceps brachii in a group of right- and left-handed people with five stimulation frequencies (from 40 to 120 Hz in step of 20 Hz). We found that all participants reported the expected illusion of elbow extension, especially after 40 and 60 Hz. Left-handers exhibited less variability in reporting the illusion compared to right-handers across the different stimulation frequencies. Moreover, the stimulation of the non-dominant arm elicited a more vivid illusion with faster onset relative to the stimulation of the dominant arm, an effect that was independent from participants' handedness. Overall, our data show that stimulation frequency, handedness and arm dominance influence the tendon vibration movement illusion. The results are discussed in reference to their relevance in linking motor awareness, improving current devices for motor ability recovery after brain or spinal damage and developing prosthetics and virtual embodiment systems.

  14. The role of attention in ambiguous reversals of structure-from-motion.

    Directory of Open Access Journals (Sweden)

    Solveiga Stonkute

    Full Text Available Multiple dots moving independently back and forth on a flat screen induce a compelling illusion of a sphere rotating in depth (structure-from-motion. If all dots simultaneously reverse their direction of motion, two perceptual outcomes are possible: either the illusory rotation reverses as well (and the illusory depth of each dot is maintained, or the illusory rotation is maintained (but the illusory depth of each dot reverses. We investigated the role of attention in these ambiguous reversals. Greater availability of attention--as manipulated with a concurrent task or inferred from eye movement statistics--shifted the balance in favor of reversing illusory rotation (rather than depth. On the other hand, volitional control over illusory reversals was limited and did not depend on tracking individual dots during the direction reversal. Finally, display properties strongly influenced ambiguous reversals. Any asymmetries between 'front' and 'back' surfaces--created either on purpose by coloring or accidentally by random dot placement--also shifted the balance in favor of reversing illusory rotation (rather than depth. We conclude that the outcome of ambiguous reversals depends on attention, specifically on attention to the illusory sphere and its surface irregularities, but not on attentive tracking of individual surface dots.

  15. Paranormal believers are more prone to illusory agency detection than skeptics

    NARCIS (Netherlands)

    van Elk, M.


    It has been hypothesized that illusory agency detection is at the basis of belief in supernatural agents and paranormal beliefs. In the present study a biological motion perception task was used to study illusory agency detection in a group of skeptics and a group of paranormal believers. Participan

  16. Paranormal believers are more prone to illusory agency detection than skeptics

    NARCIS (Netherlands)

    van Elk, M.


    It has been hypothesized that illusory agency detection is at the basis of belief in supernatural agents and paranormal beliefs. In the present study a biological motion perception task was used to study illusory agency detection in a group of skeptics and a group of paranormal believers.

  17. Wind-induced ground motion (United States)

    Naderyan, Vahid; Hickey, Craig J.; Raspet, Richard


    Wind noise is a problem in seismic surveys and can mask the seismic signals at low frequency. This research investigates ground motions caused by wind pressure and shear stress perturbations on the ground surface. A prediction of the ground displacement spectra using the measured ground properties and predicted pressure and shear stress at the ground surface is developed. Field measurements are conducted at a site having a flat terrain and low ambient seismic noise. Triaxial geophones are deployed at different depths to study the wind-induced ground vibrations as a function of depth and wind velocity. Comparison of the predicted to the measured wind-induced ground displacement spectra shows good agreement for the vertical component but significant underprediction for the horizontal components. To validate the theoretical model, a test experiment is designed to exert controlled normal pressure and shear stress on the ground using a vertical and a horizontal mass-spring apparatus. This experiment verifies the linear elastic rheology and the quasi-static displacements assumptions of the model. The results indicate that the existing surface shear stress models significantly underestimate the wind shear stress at the ground surface and the amplitude of the fluctuation shear stress must be of the same order of magnitude as the normal pressure. Measurement results show that mounting the geophones flush with the ground provides a significant reduction in wind noise on all three components of the geophone. Further reduction in wind noise with depth of burial is small for depths up to 40 cm.

  18. Illusory Late Heavy Bombardments. (United States)

    Boehnke, Patrick; Harrison, T Mark


    The Late Heavy Bombardment (LHB), a hypothesized impact spike at ∼3.9 Ga, is one of the major scientific concepts to emerge from Apollo-era lunar exploration. A significant portion of the evidence for the existence of the LHB comes from histograms of (40)Ar/(39)Ar "plateau" ages (i.e., regions selected on the basis of apparent isochroneity). However, due to lunar magmatism and overprinting from subsequent impact events, virtually all Apollo-era samples show evidence for (40)Ar/(39)Ar age spectrum disturbances, leaving open the possibility that partial (40)Ar* resetting could bias interpretation of bombardment histories due to plateaus yielding misleadingly young ages. We examine this possibility through a physical model of (40)Ar* diffusion in Apollo samples and test the uniqueness of the impact histories obtained by inverting plateau age histograms. Our results show that plateau histograms tend to yield age peaks, even in those cases where the input impact curve did not contain such a spike, in part due to the episodic nature of lunar crust or parent body formation. Restated, monotonically declining impact histories yield apparent age peaks that could be misinterpreted as LHB-type events. We further conclude that the assignment of apparent (40)Ar/(39)Ar plateau ages bears an undesirably high degree of subjectivity. When compounded by inappropriate interpretations of histograms constructed from plateau ages, interpretation of apparent, but illusory, impact spikes is likely.

  19. The Poggendorff illusion driven by real and illusory contour: Behavioral and neural mechanisms. (United States)

    Shen, Lu; Zhang, Ming; Chen, Qi


    The Poggendorff illusion refers to the phenomenon that the human brain misperceives a diagonal line as being apparently misaligned once the diagonal line is interrupted by two parallel edges, and the size of illusion is negatively correlated with the angle of interception of the oblique, i.e. the sharper the oblique angle, the larger the illusion. This optical illusion can be produced by both real and illusory contour. In this fMRI study, by parametrically varying the oblique angle, we investigated the shared and specific neural mechanisms underlying the Poggendorff illusion induced by real and illusory contour. At the behavioral level, not only the real but also the illusory contours were capable of inducing significant Poggendorff illusion. The size of illusion induced by the real contour, however, was larger than that induced by the illusory contour. At the neural level, real and illusory contours commonly activated more dorsal visual areas, and the real contours specifically activated more ventral visual areas. More importantly, examinations on the parametric modulation effects of the size of illusion revealed the specific neural mechanisms underlying the Poggendorff illusion induced by the real and the illusory contours, respectively. Left precentral gyrus and right middle occipital cortex were specifically involved in the Poggendorff illusion induced by the real contour. On the other hand, bilateral intraparietal sulcus (IPS) and right lateral occipital complex (LOC) were specifically involved in the Poggendorff illusion induced by the illusory contour. Functional implications of the above findings were further discussed.

  20. Now you feel it, now you don't: how robust is the phenomenon of illusory tactile experience? (United States)

    McKenzie, Kirsten J; Poliakoff, Ellen; Brown, Richard J; Lloyd, Donna M


    Recent studies have reported that in normal healthy individuals, the perception of illusory sensations in one modality can be induced by the presentation of a stimulus in another modality. These illusory sensations may arise from the activation of a tactile representation in memory induced by the non-target stimulus, in a process mirroring that thought to be responsible for many forms of medically unexplained symptoms. The reliability of illusory-touch reports was investigated here in two experiments with a novel perceptual paradigm designed to simulate the occurrence of somatoform symptoms in the laboratory. A concurrent light significantly increased the number of tactile stimuli reported, and resulted in a higher number of illusory-touch reports, while the modality of the trial start cue did not affect subsequent responses. In addition, a strong relationship was found between the rates of illusory sensations that participants produced in successive sessions, indicating that the tendency to report illusory sensations is a robust phenomenon.

  1. Electrotactile stimuli delivered across fingertips inducing the Cutaneous Rabbit Effect. (United States)

    Warren, Jay P; Santello, Marco; Helms Tillery, Stephen I


    Previous studies have been unable to induce the Cutaneous Rabbit Effect (CRE) when the most likely perceived location of the illusory stimulus is on a non-continuous skin area. To determine whether the CRE could be elicited when each of the delivered stimuli were on non-continuous skin areas, we developed a new electrotactile stimulation paradigm attempting to induce the CRE across the fingertips. Though our stimulation paradigm differed from classic reduced CRE paradigms through the use of electrotactile stimuli, focusing the subject attention to a 'likely' illusory site, and the inclusion of a fourth stimulation site (two stimuli after the illusory stimulus), these factors were not the cause of the illusory effect we observed. Experiments conducted on the forearm validated that our paradigm elicited similar results to those reported in previous CRE studies that used either 3-stimulation-point mechanical or electrotactile stimuli with subject attention focused on the 'likely' illusory site. Across the fingertips, we observed an increase in stimulus mislocalization onto the middle fingertip, the 'likely' perceived location of the illusory stimuli, under Illusory Rabbit Trains compared to the Motion Bias Trains. Because the Motion Bias Trains should not induce a perceived location shift of the illusory stimulus but stimulates the adjacent digits in a similar way to the Illusory Rabbit Trains, differences observed between their mislocalization rates between these trains indicate that the CRE can be induced across the fingertips. These results provide the first evidence that the CRE can 'jump' when the stimuli occur across non-continuous skin areas.

  2. Illusory correlation and social anxiety

    NARCIS (Netherlands)

    de Jong, Peter; Merckelbach, H; Bogels, S; Kindt, M


    An illusory correlation (IC) experiment examined the presence of a phobia-relevant covariation bias in the context of social anxiety. Low (n = 28) and high (n = 32) social anxious women were shown a series of slides comprising pictures of angry, happy and neutral faces which were randomly paired wit

  3. Paranormal believers are more prone to illusory agency detection than skeptics. (United States)

    van Elk, Michiel


    It has been hypothesized that illusory agency detection is at the basis of belief in supernatural agents and paranormal beliefs. In the present study a biological motion perception task was used to study illusory agency detection in a group of skeptics and a group of paranormal believers. Participants were required to detect the presence or absence of a human agent in a point-light display. It was found that paranormal believers had a lower perceptual sensitivity than skeptics, which was due to a response bias to 'yes' for stimuli in which no agent was present. The relation between paranormal beliefs and illusory agency detection held only for stimuli with low to intermediate ambiguity, but for stimuli with a high number of visual distractors responses of believers and skeptics were at the same level. Furthermore, it was found that illusory agency detection was unrelated to traditional religious belief and belief in witchcraft, whereas paranormal beliefs (i.e. Psi, spiritualism, precognition, superstition) were strongly related to illusory agency detection. These findings qualify the relation between illusory pattern perception and supernatural and paranormal beliefs and suggest that paranormal beliefs are strongly related to agency detection biases.

  4. Respiratory impact on motion sickness induced by linear motion

    NARCIS (Netherlands)

    Mert, A.; Klöpping-Ketelaars, I.; Bles, W.


    Motion sickness incidence (MSI) for vertical sinusoidal motion reaches a maximum at 0.167 Hz. Normal breathing frequency is close to this frequency. There is some evidence for synchronization of breathing with this stimulus frequency. If this enforced breathing takes place over a larger frequency ra

  5. Lacking control increases illusory pattern perception. (United States)

    Whitson, Jennifer A; Galinsky, Adam D


    We present six experiments that tested whether lacking control increases illusory pattern perception, which we define as the identification of a coherent and meaningful interrelationship among a set of random or unrelated stimuli. Participants who lacked control were more likely to perceive a variety of illusory patterns, including seeing images in noise, forming illusory correlations in stock market information, perceiving conspiracies, and developing superstitions. Additionally, we demonstrated that increased pattern perception has a motivational basis by measuring the need for structure directly and showing that the causal link between lack of control and illusory pattern perception is reduced by affirming the self. Although these many disparate forms of pattern perception are typically discussed as separate phenomena, the current results suggest that there is a common motive underlying them.

  6. Inducing Tropical Cyclones to Undergo Brownian Motion (United States)

    Hodyss, D.; McLay, J.; Moskaitis, J.; Serra, E.


    Stochastic parameterization has become commonplace in numerical weather prediction (NWP) models used for probabilistic prediction. Here, a specific stochastic parameterization will be related to the theory of stochastic differential equations and shown to be affected strongly by the choice of stochastic calculus. From an NWP perspective our focus will be on ameliorating a common trait of the ensemble distributions of tropical cyclone (TC) tracks (or position), namely that they generally contain a bias and an underestimate of the variance. With this trait in mind we present a stochastic track variance inflation parameterization. This parameterization makes use of a properly constructed stochastic advection term that follows a TC and induces its position to undergo Brownian motion. A central characteristic of Brownian motion is that its variance increases with time, which allows for an effective inflation of an ensemble's TC track variance. Using this stochastic parameterization we present a comparison of the behavior of TCs from the perspective of the stochastic calculi of Itô and Stratonovich within an operational NWP model. The central difference between these two perspectives as pertains to TCs is shown to be properly predicted by the stochastic calculus and the Itô correction. In the cases presented here these differences will manifest as overly intense TCs, which, depending on the strength of the forcing, could lead to problems with numerical stability and physical realism.

  7. The effects of fixation and restricted visual field on vection-induced motion sickness (United States)

    Stern, Robert M.; Hu, Senqi; Anderson, Richard B.; Leibowitz, Herschel W.; Koch, Kenneth L.


    Approximately 60 percent of healthy human subjects experience motion sickness when exposed to a rotating optokinetic drum. Here, the effects of certain visual factors on susceptibility to motion sickness were determined. Vection data (illusory self-motion), horizontal eye movement recordings, subjective motion sickness report, and a measure of gastric myoelectric activity were obtained from 45 subjects, who were randomly divided into the following three groups: a control group that observed the entire visual field with no fixation, a group that fixated on a central target, and a third group that had a visual field restricted to 15 deg. The experimental session was divided into three 12-min periods: baseline, drum rotation, and recovery. The results showed that fixation greatly reduced nystagmus and slightly reduced vection. The restricted visual field slightly reduced nystagmus and greatly reduced vection. Both of these manipulations significantly reduced symptoms of motion sickness and abnormal gastric myoelectric activity.

  8. Variability induced motion in Kepler data

    CERN Document Server

    Makarov, Valeri V


    Variability induced motion (VIM) is an observable effect in simultaneous astrometric and photometric measurements caused by brightness variation in one of the components of a double source or blended image, which manifests itself as a strongly correlated shift of the optical photocenter. We have processed the entire collection of the Kepler long-cadence light curve data looking for correlated signals in astrometry and photometry on the time basis of a quarter year. Limiting the VIM correlation coefficient to 0.3, VIM events are detected for 129,525 Kepler stars at least in one quarter. Of 7305 Kepler objects of interest (KOI), 4440 are detected as VIM at least once. Known variable stars and resolved double stars have elevated rates of VIM detection. Confident VIM occurrences are found for stars with suggested superflare events, indicating possible signal contamination. We present a complete catalog of all quarterly VIM detections. This catalog should be checked for such astrophysically significant events as t...

  9. Observers can reliably identify illusory flashes in the illusory flash paradigm. (United States)

    van Erp, Jan B F; Philippi, Tom G; Werkhoven, Peter


    In the illusory flash paradigm, a single flash may be experienced as two flashes when accompanied by two beeps or taps, and two flashes may be experienced as a single flash when accompanied by one beep or tap. The classic paradigm restricts responses to '1' and '2' (2-AFC), ignoring possible qualitative differences between real and illusory flashes and implicitly assuming that illusory flashes are indistinguishable from real flashes. We added a third response category 'different from that of either 1 or 2 flashes' (3-AFC). Eight naïve and 6 experienced observers responded to 160 real and 160 illusory flash trials. Experienced observers were exposed to 1,200 trials before the experiment but without receiving feedback on their performance. The third response category was used for only 4 % of the real flash trials and for 44 % of the illusory flash trials. Experienced observers did so more often (78 %) than naïve observers (18 %). This shows that observers can reliably identify illusory flashes and indicates that mere exposure to illusory flash trials (without feedback) is enough to detect and classify potential qualitative differences between real and illusory flashes.

  10. Motion Sickness Induced by Optokinetic Drums

    NARCIS (Netherlands)

    Bos, J.E.; Bles, W.


    Motion sickness is not only elicited by certain kinds of self-motion, but also by motion of a visual scene. In case of the latter, optokinetic drums are often used and a visual-vestibular conflict is assumed to cause the sickness. When the rotation axis is Earth vertical however, different studies s

  11. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka


    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  12. Rizatriptan reduces vestibular-induced motion sickness in migraineurs. (United States)

    Furman, Joseph M; Marcus, Dawn A; Balaban, Carey D


    A previous pilot study suggested that rizatriptan reduces motion sickness induced by complex vestibular stimulation. In this double-blind, randomized, placebo-controlled study we measured motion sickness in response to a complex vestibular stimulus following pretreatment with either rizatriptan or a placebo. Subjects included 25 migraineurs with or without migraine-related dizziness (23 females) aged 21-45 years (31.0 ± 7.8 years). Motion sickness was induced by off-vertical axis rotation in darkness, which stimulates both the semicircular canals and otolith organs of the vestibular apparatus. Results indicated that of the 15 subjects who experienced vestibular-induced motion sickness when pretreated with placebo, 13 showed a decrease in motion sickness following pretreatment with rizatriptan as compared to pretreatment with placebo (P rizatriptan, reduces vestibular-induced motion sickness by influencing serotonergic vestibular-autonomic projections.

  13. Can walking motions improve visually induced rotational self-motion illusions in virtual reality? (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y


    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems.

  14. Enzymatically induced motion at nano- and micro-scales (United States)

    Gáspár, Szilveszter


    In contrast to adenosine triphosphate (ATP)-dependent motor enzymes, other enzymes are little-known as ``motors'' or ``pumps'', that is, for their ability to induce motion. The enhanced diffusive movement of enzyme molecules, the self-propulsion of enzyme-based nanomotors, and liquid pumping with enzymatic micropumps were indeed only recently reported. Enzymatically induced motion can be achieved in mild conditions and without the use of external fields. It is thus better suited for use in living systems (from single-cell to whole-body) than most other ways to achieve motion at small scales. Enzymatically induced motion is thus not only new but also important. Therefore, the present work reviews the most significant discoveries in enzymatically induced motion. As we will learn, freely diffusing enzymes enhance their diffusive movement by nonreciprocal conformational changes which parallel their catalytic cycles. Meanwhile, enzyme-modified nano- and micro-objects turn chemical energy into kinetic energy through mechanisms such as bubble recoil propulsion, self-electrophoresis, and self-diffusiophoresis. Enzymatically induced motion of small objects ranges from enhanced diffusive movement to directed motion at speeds as high as 1 cm s-1. In spite of the progress made in understanding how the energy of enzyme reactions is turned into motion, most enzymatically powered devices remain inefficient and need improvements before we will witness their application in real world environments.

  15. Suppressive and enhancing effects in early visual cortex during illusory shape perception: A comment on. (United States)

    Moors, Pieter


    In a recent functional magnetic resonance imaging study, Kok and de Lange (2014) observed that BOLD activity for a Kanizsa illusory shape stimulus, in which pacmen-like inducers elicit an illusory shape percept, was either enhanced or suppressed relative to a nonillusory control configuration depending on whether the spatial profile of BOLD activity in early visual cortex was related to the illusory shape or the inducers, respectively. The authors argued that these findings fit well with the predictive coding framework, because top-down predictions related to the illusory shape are not met with bottom-up sensory input and hence the feedforward error signal is enhanced. Conversely, for the inducing elements, there is a match between top-down predictions and input, leading to a decrease in error. Rather than invoking predictive coding as the explanatory framework, the suppressive effect related to the inducers might be caused by neural adaptation to perceptually stable input due to the trial sequence used in the experiment.

  16. Adaptation to an Illusory Duration: Nothing Like the Real Thing?

    Directory of Open Access Journals (Sweden)

    John Hotchkiss


    Full Text Available Recent work has shown that adapting to a visual or auditory stimulus of a particular duration leads to a repulsive distortion of the perceived duration of a subsequently presented test stimulus. This distortion seems to be modality-specific and manifests itself as an expansion or contraction of perceived duration dependent upon whether the test stimulus is longer or shorter than the adapted duration. It has been shown (Berger et al 2003, Journal of Vision 3, 406–412 that perceived events can be as effective as actual events in inducing improvements in performance. In light of this, we investigated whether an illusory visual duration was capable of inducing a duration after-effect in a visual test stimulus that was actually no different in duration from the adaptor. Pairing a visual stimulus with a concurrent auditory stimulus of subtly longer or shorter duration expands or contracts the duration of the visual stimulus. We mapped out this effect and then chose two auditory durations (one long, one short that produced the maximum distortion in the perceived duration of the visual stimulus. After adapting to this bimodal stimulus, our participants were asked to reproduce a visual duration. Group data showed that participants, on average, reproduced the physical duration of the visual test stimulus accurately; in other words, there was no consistent effect of adaptation to an illusory duration.

  17. Visual search of illusory contours: Shape and orientation effects

    Directory of Open Access Journals (Sweden)

    Gvozdenović Vasilije


    Full Text Available Illusory contours are specific class of visual stimuli that represent stimuli configurations perceived as integral irrespective of the fact that they are given in fragmented uncompleted wholes. Due to their specific features, illusory contours gained much attention in last decade representing prototype of stimuli used in investigations focused on binding problem. On the other side, investigations of illusory contours are related to problem of the level of their visual processing. Neurophysiologic studies show that processing of illusory contours proceed relatively early, on the V2 level, on the other hand most of experimental studies claim that illusory contours are perceived with engagement of visual attention, binding their elements to whole percept. This research is focused on two experiments in which visual search of illusory contours are based on shape and orientation. The main experimental procedure evolved the task proposed by Bravo and Nakayama where instead of detection, subjects were performing identification of one among two possible targets. In the first experiment subjects detected the presence of illusory square or illusory triangle, while in the second experiment subject were detecting two different orientations of illusory triangle. The results are interpreted in terms of visual search and feature integration theory. Beside the type of visual search task, search type proved to be dependent of specific features of illusory shapes which further complicate theoretical interpretation of the level of their perception.

  18. Visual motion detection sensitivity is enhanced by an orthogonal motion aftereffect. (United States)

    Takemura, Hiromasa; Murakami, Ikuya


    A recent study (H. Takemura & I. Murakami, 2010) showed enhancement of motion detection sensitivity by an orthogonal induced motion, suggesting that a weak motion component can combine with an orthogonal motion component to generate stronger oblique motion perception. Here we examined how an orthogonal motion aftereffect (MAE) affects motion detection sensitivity. After adaptation to vertical motion, a Gabor patch barely moving leftward or rightward was presented. As a result of an interaction between horizontal physical motion and a vertical MAE, subjects perceived the stimulus as moving obliquely. Subjects were asked to judge the horizontal direction of motion irrespective of the vertical MAE. The performance was enhanced when the Gabor patch was perceived as moving obliquely as the result of a weak MAE. The enhancement effect depended on the strength of the MAE for each subject rather than on the temporal frequency of the adapting stimulus. These results suggest that weak motion information that is hard to detect can interact with orthogonal adaptation and yield stronger oblique motion perception, making directional judgment easier. Moreover, the present results indicate that the enhancement effect of orthogonal motion involves general motion integration mechanisms rather than a specific mechanism only applicable to a particular type of illusory motion.

  19. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    CERN Document Server

    Muller, Peter B; Marin, Alvaro G; Barnkob, Rune; Augustsson, Per; Laurell, Thomas; Kaehler, Christian J; Bruus, Henrik


    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh streaming in shallow, infinite, parallel-plate channels, our theory does include the effect of the microchannel side walls. The resulting predictions agree well with numerics and experimental measurements of the acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537 um and 5.33 um. The 3D particle motion was recorded using astigmatism particle tracking velocimetry under controlled thermal and acoustic conditions in a long, straight, rectangular microchannel actuated in one of its transverse standing ultrasound-wave resonance modes with one or two half-wavelengths. The acoustic energy density is calibrated in situ based on measurements of the radiation dominated motion of large 5-um-diam particles...

  20. Motion-induced synchronization in metapopulations of mobile agents

    CERN Document Server

    Gómez-Gardeñes, Jesús; Sinatra, Roberta; Latora, Vito


    We study the influence of motion on the emergence of synchronization in a metapopulation of random walkers moving on a heterogeneous network and subject to Kuramoto interactions at the network nodes. We discover a novel mechanism of transition to macroscopic dynamical order induced by the walkers' motion. Furthermore, we observe two different microscopic paths to synchronization: depending on the rules of the motion, either low-degree nodes or the hubs drive the whole system towards synchronization. We provide analytical arguments to understand these results.

  1. Electronically induced atom motion in engineered CoCun nanostructures. (United States)

    Stroscio, Joseph A; Tavazza, Francesca; Crain, Jason N; Celotta, Robert J; Chaka, Anne M


    We have measured the quantum yield for exciting the motion of a single Co atom in CoCu(n) linear molecules constructed on a Cu(111) surface. The Co atom switched between two lattice positions during electron excitation from the tip of a scanning tunneling microscope. The tip location with highest probability for inducing motion was consistent with the position of an active state identified through electronic structure calculations. Atom motion within the molecule decreased with increased molecular length and reflected the corresponding variation in electronic structure.

  2. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Rossi, M.; Marín, Á. G.;


    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh...... streaming in shallow, infinite, parallel-plate channels, our theory does include the effect of the microchannel side walls. The resulting predictions agree well with numerics and experimental measurements of the acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537 and 5.33 μm. The 3......D particle motion was recorded using astigmatism particle tracking velocimetry under controlled thermal and acoustic conditions in a long, straight, rectangular microchannel actuated in one of its transverse standing ultrasound-wave resonance modes with one or two half-wavelengths. The acoustic...

  3. Determinants of intergroup differentiation in the illusory correlation task.

    NARCIS (Netherlands)

    Berndsen, M.; Spears, R.; van der Pligt, J.; McGarty, C.


    Illusory correlation refers to the perceived (but erroneous) relation between stimuli. Recent research in this area has shown that the perception of illusory correlation between two groups and their behaviors can be a product of attempts to differentiate between these groups. This is due to

  4. Determinants of intergroup differentiation in the illusory correlation task

    NARCIS (Netherlands)

    Berndsen, M; Spears, R; van der Pligt, J; McGarty, C

    Illusory correlation refers to the perceived (but erroneous) relation between stimuli. In social psychology this phenomenon has been related to stereotype formation. Recent research in this area has shown that the perception of illusory correlation between two groups and their behaviours can be a

  5. Inducing illusory ownership of a virtual body

    Directory of Open Access Journals (Sweden)

    Mel Slater


    Full Text Available We discuss three experiments that investigate how virtual limbs and bodies can come to feel like real limbs and bodies. The first experiment shows that an illusion of ownership of a virtual arm appearing to project out of a person’s shoulder can be produced by tactile stimulation on a person’s hidden real hand and synchronous stimulation on the seen virtual hand. The second shows that the illusion can be produced by synchronous movement of the person’s hidden real hand and a virtual hand. The third shows that a weaker form of the illusion can be produced when a brain-computer interface is employed to move the virtual hand by means of motor imagery without any tactile stimulation. We discuss related studies that indicate that the ownership illusion may be generated for an entire body. This has important implications for the scientific understanding of body ownership and several practical applications.

  6. Neural correlates of induced motion perception in the human brain. (United States)

    Takemura, Hiromasa; Ashida, Hiroshi; Amano, Kaoru; Kitaoka, Akiyoshi; Murakami, Ikuya


    A physically stationary stimulus surrounded by a moving stimulus appears to move in the opposite direction. There are similarities between the characteristics of this phenomenon of induced motion and surround suppression of directionally selective neurons in the brain. Here, functional magnetic resonance imaging was used to investigate the link between the subjective perception of induced motion and cortical activity. The visual stimuli consisted of a central drifting sinusoid surrounded by a moving random-dot pattern. The change in cortical activity in response to changes in speed and direction of the central stimulus was measured. The human cortical area hMT+ showed the greatest activation when the central stimulus moved at a fast speed in the direction opposite to that of the surround. More importantly, the activity in this area was the lowest when the central stimulus moved in the same direction as the surround and at a speed such that the central stimulus appeared to be stationary. The results indicate that the activity in hMT+ is related to perceived speed modulated by induced motion rather than to physical speed or a kinetic boundary. Early visual areas (V1, V2, V3, and V3A) showed a similar pattern; however, the relationship to perceived speed was not as clear as that in hMT+. These results suggest that hMT+ may be a neural correlate of induced motion perception and play an important role in contrasting motion signals in relation to their surrounding context and adaptively modulating our motion perception depending on the spatial context.

  7. Predicting Ground Motion from Induced Earthquakes in Geothermal Areas (United States)

    Douglas, J.; Edwards, B.; Convertito, V.; Sharma, N.; Tramelli, A.; Kraaijpoel, D.; Cabrera, B. M.; Maercklin, N.; Troise, C.


    Induced seismicity from anthropogenic sources can be a significant nuisance to a local population and in extreme cases lead to damage to vulnerable structures. One type of induced seismicity of particular recent concern, which, in some cases, can limit development of a potentially important clean energy source, is that associated with geothermal power production. A key requirement for the accurate assessment of seismic hazard (and risk) is a ground-motion prediction equation (GMPE) that predicts the level of earthquake shaking (in terms of, for example, peak ground acceleration) of an earthquake of a certain magnitude at a particular distance. Few such models currently exist in regard to geothermal-related seismicity, and consequently the evaluation of seismic hazard in the vicinity of geothermal power plants is associated with high uncertainty. Various ground-motion datasets of induced and natural seismicity (from Basel, Geysers, Hengill, Roswinkel, Soultz, and Voerendaal) were compiled and processed, and moment magnitudes for all events were recomputed homogeneously. These data are used to show that ground motions from induced and natural earthquakes cannot be statistically distinguished. Empirical GMPEs are derived from these data; and, although they have similar characteristics to recent GMPEs for natural and mining-related seismicity, the standard deviations are higher. To account for epistemic uncertainties, stochastic models subsequently are developed based on a single corner frequency and with parameters constrained by the available data. Predicted ground motions from these models are fitted with functional forms to obtain easy-to-use GMPEs. These are associated with standard deviations derived from the empirical data to characterize aleatory variability. As an example, we demonstrate the potential use of these models using data from Campi Flegrei.

  8. Illusory vowels and illusory tones in the perception of consonant clusters by monolingual Chinese Mandarin speakers


    Guan, Qianwen


    International audience; Previous work shows that listeners tend to perceive an illusory vowel inside consonant clusters that are illegal in their native language [1],[2]. But few studies have been concerned with the perception of tones in connection with L2 phonotactics, specifically for L1 speakers of tone languages. This study examines how L1 speakers of a tone language (Mandarin) perceive the clusters of an L2 language without tone (Russian). The issue that we address is how the perception...

  9. Reinterpreting illusory correlation : From biased covariation to meaningful categorisation

    NARCIS (Netherlands)

    Berndsen, M; Spears, R


    The illusory correlation effect has traditionally been conceived as an irrational information processing bias arising form the greater attention or weight accorded to infrequent and thus distinction co-occurrences (Hamilton & Gifford, 1976). Alternative explanations for this effect are considered

  10. A historical note on illusory contours in shadow writing. (United States)

    Vezzani, Stefano; Marino, Barbara F M


    It is widely accepted that illusory contours have been first displayed and discussed by Schumann (1900, Zeitschrift für Psychologie und Physiologie der Sinnesorgane 23 1-32). Here we show that, before him, Jastrow (1899, Popular Science Monthly 54 299-312) produced illusory contours consisting of a shadow word. A brief history of shadow writing in psychological literature from Jastrow to Brunswik is presented, in which the contributions of Pillsbury, Warren, Koffka, and Benussi are examined.

  11. Vection-induced gastric dysrhythmias and motion sickness (United States)

    Koch, K. L.; Stern, R. M.


    Gastric electrical and mechanical activity during vection-induced motion sickness was investigated. The contractile events of the antrum and gastric myoelectric activity in healthy subjects exposed to vection were measured simultaneously. Symptomatic and myoelectric responses of subjects with vagotomy and gastric resections during vection stimuli were determined. And laboratory based computer systems for analysis of the myoelectric signal were developed. Gastric myoelectric activity was recorded from cutaneous electrodes, i.e., electrogastrograms (EGGs), and antral contractions were measured with intraluminal pressure transducers. Vection was induced by a rotating drum. gastric electromechanical activity was recorded during three periods: 15 min baseline, 15 min drum rotation (vection), and 15 to 30 min recovery. Preliminary results showed that catecholamine responses in nauseated versus symptom-free subjects were divergent and pretreatment with metoclopramide HC1 (Reglan) prevented vection-induced nausea and reduced tachygastrias in two previously symptomatic subjects.

  12. Motion-induced positional biases in the flash-lag configuration. (United States)

    Shi, Zhuanghua; de'Sperati, Claudio


    When both stationary and moving objects are present in the visual field, localizing objects in space may become difficult, as shown by illusory phenomena such as the Fröhlich effect and the flash-lag effect. Despite the efforts to decipher how motion and position information are combined to form a coherent visual representation, a unitary picture is still lacking. In the flash-lag effect, a flash presented in alignment with a moving stimulus is perceived to lag behind it. We investigated whether this relative spatial localization (i.e., judging the position of the flash relative to that of the moving stimulus) is the result of a linear combination of two absolute localization mechanisms--that is, the coding of the flash position in space and the coding of the position of the moving stimulus in space. In three experiments we showed that (a) the flash is perceived to be shifted in the direction of motion; (b) the moving stimulus is perceived to be ahead of its physical position, the forward shift being larger than that of the flash; (c) the linear combination of these two shifts is quantitatively equivalent to the flash-lag effect, which was measured independently. The results are discussed in relation to perceptual and motor localization mechanisms.

  13. Motion

    CERN Document Server

    Graybill, George


    Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str

  14. Adaptation-Induced Compression of Event Time Occurs Only for Translational Motion. (United States)

    Fornaciai, Michele; Arrighi, Roberto; Burr, David C


    Adaptation to fast motion reduces the perceived duration of stimuli displayed at the same location as the adapting stimuli. Here we show that the adaptation-induced compression of time is specific for translational motion. Adaptation to complex motion, either circular or radial, did not affect perceived duration of subsequently viewed stimuli. Adaptation with multiple patches of translating motion caused compression of duration only when the motion of all patches was in the same direction. These results show that adaptation-induced compression of event-time occurs only for uni-directional translational motion, ruling out the possibility that the neural mechanisms of the adaptation occur at early levels of visual processing.

  15. Current-induced domain wall motion in ferromagnetic semiconductors (United States)

    Ohno, Hideo


    Low magnetization (˜0.05 T) and high spin-polarization in ferromagnetism of transition metal-doped GaAs allow us to explore a number of spin-dependent phenomena not readily accessible in metal ferromagnets. Spin-polarized current induced domain wall (DW) motion in (Ga,Mn)As [1, 2] reveals rich physics resulting from the interaction between spin-polarized electrons and localized spins inside a magnetic DW. By using a 30 nm thick (Ga,Mn)As layer (xMn = 0.045) with perpendicular magnetic anisotropy, we have measured by magneto-optical Kerr microscopy a wide range of velocity-current density curves in the sample temperature range of 97 -- 107 K. Two regimes are found in the current density dependence of the DW velocity. At high-current densities (> 2 x 10^5 A/cm^2), the domain wall velocity is approximately a linear function of the current density above a threshold current density. This result will be compared to the recent theories of DW motion. At low-current densities, the functional form of the velocity-current curves follow an empirical scaling law, obtained by modifying the one for magnetic-field induced creep. This shows that current-induced DW creep is present. We have also determined the intrinsic resistance of the DW in a similar configuration [3]. *M. Yamanouchi, D. Chiba, F. Matsukura, and H. Ohno, Nature 428, 539 (2004). *M. Yamanouchi, D. Chiba, F. Matsukura, T. Dietl and H. Ohno, Phys. Rev. Lett. 96, 096601 (2006). *D. Chiba, M. Yamanouchi, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. Lett. 96, 096602 (2006).

  16. Mechanics of Coriolis stimulus and inducing factors of motion sickness. (United States)

    Isu, N; Shimizu, T; Sugata, K


    To specify inducing factors of motion sickness comprised in Coriolis stimulus, or cross-coupled rotation, the sensation of rotation derived from the semicircular canal system during and after Coriolis stimulus under a variety of stimulus conditions, was estimated by an approach from mechanics with giving minimal hypotheses and simplifications on the semicircular canal system and the sensory nervous system. By solving an equation of motion of the endolymph during Coriolis stimulus, rotating angle of the endolymph was obtained, and the sensation of rotation derived from each semicircular canal was estimated. Then the sensation derived from the whole semicircular canal system was particularly considered in two cases of a single Coriolis stimulus and cyclic Coriolis stimuli. The magnitude and the direction of sensation of rotation were shown to depend on an angular velocity of body rotation and a rotating angle of head movement (amplitude of head oscillation when cyclic Coriolis stimuli) irrespective of initial angle (center angle) of the head relative to the vertical axis. The present mechanical analysis of Coriolis stimulus led a suggestion that the severity of nausea evoked by Coriolis stimulus is proportional to the effective value of the sensation of rotation caused by the Coriolis stimulus.

  17. Development of enhanced piezoelectric energy harvester induced by human motion. (United States)

    Minami, Y; Nakamachi, E


    In this study, a high frequency piezoelectric energy harvester converted from the human low vibrated motion energy was newly developed. This hybrid energy harvester consists of the unimorph piezoelectric cantilever and a couple of permanent magnets. One magnet was attached at the end of cantilever, and the counterpart magnet was set at the end of the pendulum. The mechanical energy provided through the human walking motion, which is a typical ubiquitous presence of vibration, is converted to the electric energy via the piezoelectric cantilever vibration system. At first, we studied the energy convert mechanism and the performance of our energy harvester, where the resonance free vibration of unimorph cantilever with one permanent magnet under a rather high frequency was induced by the artificial low frequency vibration. The counterpart magnet attached on the pendulum. Next, we equipped the counterpart permanent magnet pendulum, which was fluctuated under a very low frequency by the human walking, and the piezoelectric cantilever, which had the permanent magnet at the end. The low-to-high frequency convert "hybrid system" can be characterized as an enhanced energy harvest one. We examined and obtained maximum values of voltage and power in this system, as 1.2V and 1.2 µW. Those results show the possibility to apply for the energy harvester in the portable and implantable Bio-MEMS devices.

  18. Pleasant music as a countermeasure against visually induced motion sickness. (United States)

    Keshavarz, Behrang; Hecht, Heiko


    Visually induced motion sickness (VIMS) is a well-known side-effect in virtual environments or simulators. However, effective behavioral countermeasures against VIMS are still sparse. In this study, we tested whether music can reduce the severity of VIMS. Ninety-three volunteers were immersed in an approximately 14-minute-long video taken during a bicycle ride. Participants were randomly assigned to one of four experimental groups, either including relaxing music, neutral music, stressful music, or no music. Sickness scores were collected using the Fast Motion Sickness Scale and the Simulator Sickness Questionnaire. Results showed an overall trend for relaxing music to reduce the severity of VIMS. When factoring in the subjective pleasantness of the music, a significant reduction of VIMS occurred only when the presented music was perceived as pleasant, regardless of the music type. In addition, we found a gender effect with women reporting more sickness than men. We assume that the presentation of pleasant music can be an effective, low-cost, and easy-to-administer method to reduce VIMS.

  19. When brain damage "improves" perception: neglect patients can localize motion-shifted probes better than controls. (United States)

    de Vito, Stefania; Lunven, Marine; Bourlon, Clémence; Duret, Christophe; Cavanagh, Patrick; Bartolomeo, Paolo


    When we look at bars flashed against a moving background, we see them displaced in the direction of the upcoming motion (flash-grab illusion). It is still debated whether these motion-induced position shifts are low-level, reflexive consequences of stimulus motion or high-level compensation engaged only when the stimulus is tracked with attention. To investigate whether attention is a causal factor for this striking illusory position shift, we evaluated the flash-grab illusion in six patients with damaged attentional networks in the right hemisphere and signs of left visual neglect and six age-matched controls. With stimuli in the top, right, and bottom visual fields, neglect patients experienced the same amount of illusion as controls. However, patients showed no significant shift when the test was presented in their left hemifield, despite having equally precise judgments. Thus, paradoxically, neglect patients perceived the position of the flash more veridically in their neglected hemifield. These results suggest that impaired attentional processes can reduce the interaction between a moving background and a superimposed stationary flash, and indicate that attention is a critical factor in generating the illusory motion-induced shifts of location.

  20. Illusory Rotation of a Spoked Wheel

    Directory of Open Access Journals (Sweden)

    Stuart Anstis


    Full Text Available A disk was divided into 16 stationary sectors of different grey levels that stepped around clockwise. When thin stationary spokes of constant mid-grey separated the sectors, the spokes showed robust and striking counterclockwise apparent motion, and when stopped, they gave a brisk clockwise motion aftereffect. The spokes had to match the grey of some of the sectors. We attribute these effects to small displacements across the thickness of the spokes that stimulated hard-wired motion detectors.

  1. From local to global processing: the development of illusory contour perception. (United States)

    Nayar, Kritika; Franchak, John; Adolph, Karen; Kiorpes, Lynne


    Global visual processing is important for segmenting scenes, extracting form from background, and recognizing objects. Local processing involves attention to the local elements, contrast, and boundaries of an image at the expense of extracting a global percept. Previous work is inconclusive regarding the relative development of local and global processing. Some studies suggest that global perception is already present by 8 months of age, whereas others suggest that the ability arises during childhood and continues to develop during adolescence. We used a novel method to assess the development of global processing in 3- to 10-year-old children and an adult comparison group. We used Kanizsa illusory contours as an assay of global perception and measured responses on a touch-sensitive screen while monitoring eye position with a head-mounted eye tracker. Participants were tested using a similarity match-to-sample paradigm. Using converging measures, we found a clear developmental progression with age such that the youngest children performed near chance on the illusory contour discrimination, whereas 7- and 8-year-olds performed nearly perfectly, as did adults. There was clear evidence of a gradual shift from a local processing strategy to a global one; young children looked predominantly at and touched the "pacman" inducers of the illusory form, whereas older children and adults looked predominantly at and touched the middle of the form. These data show a prolonged developmental trajectory in appreciation of global form, with a transition from local to global visual processing between 4 and 7 years of age.

  2. Visual search of illusory contours: an attempt of automatization

    Directory of Open Access Journals (Sweden)

    Gvozdenović Vasilije


    Full Text Available Laboratory of Experimental Psychology, University of Belgrade Recent research, which was mostly focused on assessing the types of visual search of illusory contours, showed that visual search is dependent on factors like target configuration and task type. Some experimental research supports the theory of parallel search while other research supports the theory of serial search of illusory contours. The inconsistency is most likely due to the fact that various types of illusory contour configurations were used in set creation. Up to this point, our research indicated that the serial search is used in most cases. Some exceptions of search type have been proven in some modification of task type but nevertheless the search profile remained serial. In this article, we are reporting on two visual search experiments. The first experiment was an investigation of a specific feature of a Kanisza type illusory triangle, orientation. The validity of the profile defined in the first experiment was tested in our second experiment with an attempt to automatize the visual search by the multiplication of the initial experimental trials. Our results confirmed that, regardless of the number of experimental trials, the visual search profile remains serial.

  3. Phobia-relevant illusory correlations : The role of phobic responsivity

    NARCIS (Netherlands)

    de Jong, Peter; Merckelbach, H


    The authors investigated the role of phobic responsivity in the generation of phobia-relevant illusory correlations. As a means of disentangling the contributions of prior fear and elicited fear responses, half of a group of phobic women received 1 mg alprazolam (n = 21), and half received a placebo

  4. Positive Illusory Bias in Children with ADHD in Physical Education (United States)

    Bishop, Jason C.; Block, Martin E.


    Attention deficit/hyperactivity disorder is a common developmental disorder that can cause a motor-skill delay in children. Positive illusory bias (PIB)--the belief that one is better at performing a task or a skill than one actually is--may be one cause of this delay. Although nearly everyone experiences a mild and healthy PIB, students with ADHD…

  5. [Oniric images as illusory appearances in Greek ancient thought]. (United States)

    Cavini, Walter


    This essay traces the history of 'oniric images' as phantasmata in the Greek ancient thought from Homer to Stoicism. The author will follow the indications furnished by the concept of 'oniric deceit', i.e., phantasma as illusory appearance hiding to the sleeper its own deceitful nature.

  6. Betting on Illusory Patterns: Probability Matching in Habitual Gamblers. (United States)

    Gaissmaier, Wolfgang; Wilke, Andreas; Scheibehenne, Benjamin; McCanney, Paige; Barrett, H Clark


    Why do people gamble? A large body of research suggests that cognitive distortions play an important role in pathological gambling. Many of these distortions are specific cases of a more general misperception of randomness, specifically of an illusory perception of patterns in random sequences. In this article, we provide further evidence for the assumption that gamblers are particularly prone to perceiving illusory patterns. In particular, we compared habitual gamblers to a matched sample of community members with regard to how much they exhibit the choice anomaly 'probability matching'. Probability matching describes the tendency to match response proportions to outcome probabilities when predicting binary outcomes. It leads to a lower expected accuracy than the maximizing strategy of predicting the most likely event on each trial. Previous research has shown that an illusory perception of patterns in random sequences fuels probability matching. So does impulsivity, which is also reported to be higher in gamblers. We therefore hypothesized that gamblers will exhibit more probability matching than non-gamblers, which was confirmed in a controlled laboratory experiment. Additionally, gamblers scored much lower than community members on the cognitive reflection task, which indicates higher impulsivity. This difference could account for the difference in probability matching between the samples. These results suggest that gamblers are more willing to bet impulsively on perceived illusory patterns.

  7. Effects of thermal motion on electromagnetically induced absorption

    CERN Document Server

    Tilchin, E; Wilson-Gordon, A D; 10.1103/PhysRevA.83.053812


    We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited to ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusion-like e...

  8. Vertical Heterophoria and Susceptibility to Visually-induced Motion Sickness (United States)

    Jackson, Danielle N.; Bedell, Harold E.


    Motion sickness is reported to be a common symptom in patients with vertical heterophoria. The goal of this study was to assess the relationship between vertical phoria and susceptibility to motion sickness in a non-clinical sample of 43 subjects. Vertical phoria was measured with a Maddox rod after 30 s of occlusion. To evaluate susceptibility to motion sickness, subjects read text while sitting inside a rotating optokinetic drum for 10 min. Subjects rated their level of motion sickness at 1 min intervals during drum rotation and the magnitude of 13 motion-sickness symptoms after drum rotation ended. The magnitude of vertical phoria ranged from 0 to 2.13 prism diopters (pd) with a mean of 0.46 pd and correlated significantly with both the maximum rating of motion sickness during drum rotation and the summed symptom score following rotation. A vertical phoria of 0.75 pd discriminated best between subjects with low vs. high summed motion-sickness-symptom scores (p vertical phorias vertical phorias > 0.75 pd reduced motion-sickness symptoms in 2 of the 4 subjects tested. The results confirm an association between vertical phoria and motion sickness, but suggest the relationship may not be causal. PMID:22390327

  9. P3-23: Center/Surround Motion Interactions Measured Using a Nulling Procedure

    Directory of Open Access Journals (Sweden)

    Soo Hyun Park


    Full Text Available Many direction-selective neurons have a receptive field structure that promotes suppressive interactions between center and surround regions. These interactions sculpt the overall pattern of activity among those neurons and, therefore, presumably impact perceived direction of motion. To test this conjecture, we have assessed the effect of motion signals produced by a moving stimulus on perceived motion within a neighboring region. On each trial a vertical bar (inducer appeared at 8 eccentricity in the upper visual field, moving either leftward or rightward, and a circular shaped random dot kinematogram (test appeared at 4 eccentricity. The test dots moved randomly except when the inducer passed nearby the test, at which time a pulse of coherent motion occurred in one of the two directions within the test. Coherence strength was adjusted by QUEST to maintain equal likelihood (point of subjective equality: PSE of leftward and rightward reports of perceived direction during this motion pulse. The inducer caused a substantial shift in PSE: it was necessary for the test to contain 50% coherent motion in the same direction as that of the inducer to nullify the illusory motion within the test caused by the inducer. The effect of the inducer could also be offset by simultaneously presenting a second inducer moving in the opposite direction. This pattern of results implies substantial suppressive interactions between neighboring moving stimuli, interactions whose strength and direction can be assessed psychophysically using nulling procedures.

  10. Is the Positive Illusory Bias Illusory? Examining Discrepant Self-Perceptions of Competence in Girls with ADHD (United States)

    Swanson, Erika N.; Owens, Elizabeth B.; Hinshaw, Stephen P.


    It has been claimed that excessively positive self-perceptions of competence are a key risk factor for concurrent and subsequent impairments in youth with attention-deficit/ hyperactivity disorder (ADHD). We examined whether girls with ADHD demonstrate positive illusory self-perceptions in scholastic competence, social acceptance, and behavioral…

  11. Object-centered reference frames in depth as revealed by induced motion. (United States)

    Léveillé, Jasmin; Myers, Emma; Yazdanbakhsh, Arash


    An object-centric reference frame is a spatial representation in which objects or their parts are coded relative to others. The existence of object-centric representations is supported by the phenomenon of induced motion, in which the motion of an inducer frame in a particular direction induces motion in the opposite direction in a target dot. We report on an experiment made with an induced motion display where a degree of slant is imparted to the inducer frame using either perspective or binocular disparity depth cues. Critically, the inducer frame oscillates perpendicularly to the line of sight, rather than moving in depth. Participants matched the perceived induced motion of the target dot in depth using a 3D rotatable rod. Although the frame did not move in depth, we found that subjects perceived the dot as moving in depth, either along the slanted frame or against it, when depth was given by perspective and disparity, respectively. The presence of induced motion is thus not only due to the competition among populations of planar motion filters, but rather incorporates 3D scene constraints. We also discuss this finding in the context of the uncertainty related to various depth cues, and to the locality of representation of reference frames.

  12. Probing motions between equivalent RNA domains using magnetic field induced residual dipolar couplings: accounting for correlations between motions and alignment. (United States)

    Zhang, Qi; Throolin, Rachel; Pitt, Stephen W; Serganov, Alexander; Al-Hashimi, Hashim M


    Approaches developed thus for extracting structural and dynamical information from RDCs have rested on the assumption that motions do not affect molecular alignment. However, it is well established that molecular alignment in ordered media is dependent on conformation, and slowly interconverting conformational substates may exhibit different alignment properties. Neglecting these correlation effects can lead to aberrations in the structural and dynamical analysis of RDCs and diminish the utility of RDCs in probing motions between domains having similar alignment propensities. Here, we introduce a new approach based on measurement of magnetic field induced residual dipolar couplings in nucleic acids which can explicitly take into account such correlations and demonstrate measurements of motions between two "magnetically equivalent" domains in the transactivation response element (TAR) RNA.

  13. Biological motion distorts size perception (United States)

    Veto, Peter; Einhäuser, Wolfgang; Troje, Nikolaus F.


    Visual illusions explore the limits of sensory processing and provide an ideal testbed to study perception. Size illusions - stimuli whose size is consistently misperceived - do not only result from sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, whether the ecological relevance of biological motion can also distort perceived size. We asked observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light figures do not elicit the same effect. We also show the phenomenon using an indirect paradigm: observers judged the relative size of a disc that followed an inverted PLW larger than a disc following an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings present a novel case of illusory size perception, where ecological importance leads to a distorted perception of size.

  14. Biological motion distorts size perception (United States)

    Veto, Peter; Einhäuser, Wolfgang; Troje, Nikolaus F.


    Visual illusions explore the limits of sensory processing and provide an ideal testbed to study perception. Size illusions – stimuli whose size is consistently misperceived – do not only result from sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, whether the ecological relevance of biological motion can also distort perceived size. We asked observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light figures do not elicit the same effect. We also show the phenomenon using an indirect paradigm: observers judged the relative size of a disc that followed an inverted PLW larger than a disc following an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings present a novel case of illusory size perception, where ecological importance leads to a distorted perception of size. PMID:28205639

  15. Motion-induced interruptions and postural equilibrium in linear lateral accelerations. (United States)

    Matsangas, P; McCauley, M E; Gehl, G; Kiser, J; Bandstra, A; Blankenship, J; Pierce, E


    This study assesses lateral tipping motion-induced interruptions (MIIs) in a simulated motion environment. The objective is to revisit MII occurrence and sway motion relationship by focusing on the frequency and acceleration of the lateral motion stimulus. Results verify that MIIs increase with increasing peak sway acceleration, but the effect of sway frequency is not as clear as that of acceleration. Complex multidirectional motions create more tipping MIIs than unidirectional motion. Research should incorporate acceleration, frequency and motion complexity as factors influencing MII occurrence. To describe a temporary loss of balance without tipping, the term 'probable' MII is introduced. This term fills the gap between the theoretical definition and a human-centred perception of an MII where loss of balance is not a binary phenomenon. The 'probable' MIIs were 16-67% more common than the 'definite' MIIs. The developed mathematical model of MII occurrence versus sway acceleration (amplitude, frequency) approximated the observed MIIs with less than 9% difference.

  16. Induced motion of domain walls in multiferroics with quadratic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimchuk, Victor S., E-mail: [National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremohy Avenue 37, 03056 Kiev (Ukraine); Shitov, Anatoliy A., E-mail: [Donbass National Academy of Civil Engineering, Derzhavina Street 2, 86123 Makeevka, Donetsk Region (Ukraine)


    We theoretically study the dynamics of 180-degree domain wall of the ab-type in magnetic materials with quadratic magnetoelectric interaction in external alternating magnetic and electric fields. The features of the oscillatory and translational motions of the domain walls and stripe structures depending on the parameters of external fields and characteristics of the multiferroics are discussed. The possibility of the domain walls drift in a purely electric field is established. - Highlights: • We study DW and stripe DS in multiferroics with quadratic magnetoelectric interaction. • We build up the theory of oscillatory and translational (drift) DW and DS motion. • DW motion can be caused by crossed alternating electric and magnetic fields. • DW motion can be caused by alternating “pure” electric field. • DW drift velocity is formed by the AFM and Dzyaloshinskii interaction terms.

  17. Conditioned taste aversion induced by motion is prevented by selective vagotomy in the rat (United States)

    Fox, Robert A.; Mckenna, Susan


    The role of the vagus nerve in motion-induced conditioned taste aversion (CTA) was studied in hooded rats. Animals with complete, selective gastric vagotomy failed to form conditioned taste aversion after multiple conditioning sessions in which the conditioned stimulus (a cider vinegar solution) was drunk immediately before a 30-min exposure to vertical axis rotation at 150 deg/s. Results are discussed with reference to the use of CTA as a measure of motion-induced 'sickness' or gastrointestinal disturbance, and because motion-induced CTA requires that both the vagus nerve and the vestibular apparatus be intact, in light of the possible convergence of vegal and vestibular functions.

  18. A pilot study of rizatriptan and visually-induced motion sickness in migraineurs


    Furman, Joseph M.; Marcus, Dawn A.


    Background: Limited evidence suggests that rizatriptan given before vestibular stimulation reduces motion sickness in persons with migraine-related dizziness. The present study was designed to test whether rizatriptan is also effective in protecting against visually-induced motion sickness and to test whether rizatriptan blocks the augmentation of motion sickness by head pain. Material and Methods: Using randomized double-blind, placebo-controlled methodology, 10 females, 6 with migrainous ve...

  19. Whether dots moving in two directions appear coherent or transparent depends on directional biases induced by surrounding motion. (United States)

    Takemura, Hiromasa; Tajima, Satohiro; Murakami, Ikuya


    When two random-dot patterns moving in different directions are superimposed, motion appears coherent or transparent depending on the directional difference. In addition, when a pattern is surrounded by another pattern that is moving, the perceived motion of the central stimulus is biased away from the direction of the surrounding motion. That phenomenon is known as induced motion. How is the perception of motion coherence and transparency modulated by surrounding motion? It was found that two random-dot horizontal motions surrounded by another stimulus in downward motion appeared to move in two oblique directions: left-up and right-up. Consequently, when motion transparency occurs, each of the two motions interacts independently with the induced motion direction. Furthermore, for a central stimulus consisting of two physical motions in left-up and right-up directions, the presence of the surrounding stimulus in a vertical motion modulated the perceptual solution of motion coherence/transparency such that if interactions with an induced motion signal narrow the apparent directional difference between the two central motions, then motion coherence is preferred over motion transparency. Therefore, whether a moving stimulus is perceived as coherent or transparent is determined based on the internal representation of motion directions, which can be altered by spatial interactions between adjacent regions.

  20. Measurement of modulation induced by interaction between bubble motion and liquid-phase motion in the decaying turbulence formed by an oscillating-grid

    Institute of Scientific and Technical Information of China (English)

    Yasuyuki Nagami; Takayuki Saito


    In multiphase flows,dynamical gas-liquid interactions are essential for in-depth understanding of their multi-scale phenomena and complicated structures.The purpose of the present study is to clearly extract the modulation in bubble motion and liquid motion induced by bubble-liquid interaction and to discuss the relations between bubble motion and liquid-phase motion.For this particular purpose,the decaying turbulence formed in a cylindrical acrylic pipe (diameter 149 mm,height 600 mm) by using an oscillatinggrid was employed.Uniform single bubbles were launched from an in-house bubble launching device into the decaying turbulence.By comparing the bubble motion in the stagnant water with that in the oscillating-grid decaying turbulence,the transition of the 2D bubble motion (i.e.,zigzagging motion)to 3D motion was enhanced in the latter.In addition,the initial conditions of the bubble motion that was not influenced by the ambient turbulence were carefully confirmed.In the area where the bubble motion started to translate from 2D motion into 3D motion,the modulation of ambient liquid-phase motion was obtained by PIV/LIF measurement.By combining these results,we quantitatively discussed the modulation of the bubble motion and ambient liquid-phase motion and considered the dominant factor for the enhancement to be the bubble-liquid interaction.

  1. Effect of wind turbine surge motion on rotor thrust and induced velocity

    DEFF Research Database (Denmark)

    Vaal, J.B., de; Hansen, Martin Otto Laver; Moan, T.


    Offshore wind turbines on floating platforms will experience larger motions than comparable bottom fixed wind turbines—for which the majority of industry standard design codes have been developed and validated. In this paper, the effect of a periodic surge motion on the integrated loads and induc...

  2. How vestibular stimulation interacts with illusory hand ownership. (United States)

    Lopez, Christophe; Lenggenhager, Bigna; Blanke, Olaf


    Artificial stimulation of the peripheral vestibular system has been shown to improve ownership of body parts in neurological patients, suggesting vestibular contributions to bodily self-consciousness. Here, we investigated whether galvanic vestibular stimulation (GVS) interferes with the mechanisms underlying ownership, touch, and the localization of one's own hand in healthy participants by using the "rubber hand illusion" paradigm. Our results show that left anodal GVS increases illusory ownership of the fake hand and illusory location of touch. We propose that these changes are due to vestibular interference with spatial and/or temporal mechanisms of visual-tactile integration leading to an enhancement of visual capture. As only left anodal GVS lead to such changes, and based on neurological data on body part ownership, we suggest that this vestibular interference is mediated by the right temporo-parietal junction and the posterior insula.

  3. How vestibular stimulation interacts with illusory hand ownership


    Lopez, Christophe; Lenggenhager, Bigna; Blanke, Olaf


    Artificial stimulation of the peripheral vestibular system has been shown to improve ownership of body parts in neurological patients, suggesting vestibular contributions to bodily self-consciousness. Here, we investigated whether galvanic vestibular stimulation (GVS) interferes with the mechanisms underlying ownership, touch, and the localization of one's own hand in healthy participants by using the "rubber hand illusion" paradigm. Our results show that left anodal GVS increases illusory ow...

  4. Reduction of skin stretch induced motion artifacts in electrocardiogram monitoring using adaptive filtering. (United States)

    Liu, Yan; Pecht, Michael G


    The effectiveness of electrocardiogram (ECG) monitors can be significantly impaired by motion artifacts which can cause misdiagnoses, lead to inappropriate treatment decisions, and trigger false alarms. Skin stretch associated with patient motion is a significant source of motion artifacts in current ECG monitoring. In this study, motion artifacts are adaptively filtered by using skin strain as the reference variable. Skin strain is measured non-invasively using a light emitting diode (LED) and an optical sensor incorporated in an ECG electrode. The results demonstrate that this device and method can significantly reduce skin strain induced ECG artifacts.

  5. A pilot study of rizatriptan and visually-induced motion sickness in migraineurs

    Directory of Open Access Journals (Sweden)

    Joseph M. Furman, Dawn A. Marcus


    Full Text Available Background: Limited evidence suggests that rizatriptan given before vestibular stimulation reduces motion sickness in persons with migraine-related dizziness. The present study was designed to test whether rizatriptan is also effective in protecting against visually-induced motion sickness and to test whether rizatriptan blocks the augmentation of motion sickness by head pain. Material and Methods: Using randomized double-blind, placebo-controlled methodology, 10 females, 6 with migrainous vertigo (V+ and four without vertigo (V- received 10 mg rizatriptan or placebo two hours prior to being stimulated by optokinetic stripes. Visual stimulation was coupled with three pain conditions: no pain (N, thermally-induced hand pain (H and temple pain (T. Motion sickness and subjective discomfort were measured. Results: Motion sickness was less after pre-treatment with rizatriptan for 4 of 10 subjects and more for 5 of 10 subjects. Augmentation of motion sickness by head pain was seen in 6 of 10 subjects; this effect was blunted by rizatriptan in 4 of these 6 subjects. Subjective discomfort was significantly more noticeable in V+ subjects as compared with V- subjects. Conclusions: These pilot data suggest that rizatriptan does not consistently reduce visually-induced motion sickness in migraineurs. Rizatriptan may diminish motion sickness potentiation by cranial pain.

  6. Pulsar motions from neutrino oscillations induced by a violation of the equivalence principle

    CERN Document Server

    Barkovich, M; D'Olivo, J C; Montemayor, R


    We analize a possible explanation of the pulsar motions in terms of resonant neutrino transitions induced by a violation of the equivalence principle (VEP). Our approach, based on a parametrized post-Newtonian (PPN) expansion, shows that VEP effects give rise to highly directional contributions to the neutrino oscillation length. These terms induce anisotropies in the linear and angular momentum of the emitted neutrinos, which can account for both the observed translational and rotational pulsar motions. The violation needed to produce the actual motions is completely compatible with the existing bounds.

  7. An alternative to traditional mirror therapy: illusory touch can reduce phantom pain when illusory movement does not. (United States)

    Schmalzl, Laura; Ragnö, Christina; Ehrsson, H Henrik


    There is evidence that amputation leads to cortical reorganization, and it has been suggested that phantom pain might be related to a consequently emerging incongruence of motor intention, somatosensation and visual feedback. One therapeutic approach that has the potential to temporarily resolve this visuo-proprioceptive dissociation is mirror therapy, during which amputees typically move their intact limb while observing its reflection in a mirror, which in turn evokes the illusory perception of movement of their phantom limb. However, while the action of moving the phantom relieves pain for some patients, it can actually increase cramping sensations in others. In the current study we therefore implemented an alternative version of the mirror therapy involving a visuotactile illusion, to explore whether it might be effective with amputees for whom the action of moving the phantom increases phantom pain. We recruited six upper limb amputees who had been previously exposed to the classical mirror therapy with no or limited success, and exposed them to two differential experimental conditions involving visualization paired with either illusory movement or illusory touch of the phantom hand. While none of the participants benefitted from the movement condition, five participants showed a significant pain reduction during the stroking condition. Albeit preliminary, our results represent an encouraging finding of possible future clinical relevance, and indicate that the type of multisensory stimulation that most efficiently reduces phantom pain can vary in different sub-populations of amputees.

  8. Effect of boundary conditions and convection on thermally induced motion of beams subjected to internal heating

    Institute of Scientific and Technical Information of China (English)

    MALIK Pravin; KADOLI Ravikiran; GANESAN N.


    Numerical exercises are presented on the thermally induced motion of internally heated beams under various heat transfer and structural boundary conditions. The dynamic displacement and dynamic thermal moment of the beam are analyzed taking into consideration that the temperature gradient is independent as well as dependent on the beam displacement. The effect of length to thickness ratio of the beam on the thermally induced vibration is also investigated. The type of boundary conditions has its influence on the magnitude of dynamic displacement and dynamic thermal moment. A sustained thermally induced motion is observed with progress of time when the temperature gradient being evaluated is dependent on the forced convection generated due to beam motion. A finite element method (FEM) is used to solve the structural equation of motion as well as the heat transfer equation.

  9. New motion illusion caused by pictorial motion lines. (United States)

    Kawabe, Takahiro; Miura, Kayo


    Motion lines (MLs) are a pictorial technique used to represent object movement in a still picture. This study explored how MLs contribute to motion perception. In Experiment 1, we reported the creation of a motion illusion caused by MLs: random displacements of objects with MLs on each frame were perceived as unidirectional global motion along the pictorial motion direction implied by MLs. In Experiment 2, we showed that the illusory global motion in the peripheral visual field captured the perceived motion direction of random displacement of objects without MLs in the central visual field, and confirmed that the results in Experiment 1 did not stem simply from response bias, but resulted from perceptual processing. In Experiment 3, we showed that the spatial arrangement of orientation information rather than ML length is important for the illusory global motion. Our results indicate that the ML effect is based on perceptual processing rather than response bias, and that comparison of neighboring orientation components may underlie the determination of pictorial motion direction with MLs.

  10. Expectation-based and data-based illusory correlation : The effects of confirming versus disconfirming evidence

    NARCIS (Netherlands)

    Berndsen, M; VanderPligt, J; Spears, R


    The present study (n = 154) examines the effects of expectations and stimulus information on the perception of illusory correlation. There have been few studies attempting to integrate expectation-based and data- (distinctiveness-) based processes. These studies suggest that data-based illusory

  11. Expectation-based and data-based illusory correlation : The effects of confirming versus disconfirming evidence

    NARCIS (Netherlands)

    Berndsen, M; VanderPligt, J; Spears, R


    The present study (n = 154) examines the effects of expectations and stimulus information on the perception of illusory correlation. There have been few studies attempting to integrate expectation-based and data- (distinctiveness-) based processes. These studies suggest that data-based illusory corr

  12. A case of illusory own-body perceptions after transcranial magnetic stimulation of the cerebellum

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Kammers, M.P.M.; Enter, D.; Honk, E.J. van


    Illusory own-body perceptions are 'body in space' misinterpretations of the brain and belong to the class of out-of-body experiences wherein the angular gyrus seems importantly implicated. In the present study additional cerebellum involvement in illusory own-body perceptions was investigated in a h

  13. Illusory Recollection: The Compelling Subjective Remembrance of Things that Never Happened. Insights from the DRM Paradigm

    Directory of Open Access Journals (Sweden)

    Hedwige Dehon


    Full Text Available Illusory recollection is the subjective detailed feeling of remembering that sometimes accompanies false remembering of events that never happened (e.g., high confidence, “Remember” judgements, or even remembrance of precise details supposedly associated with the false event. In this review, typical illusory recollection measures obtained from laboratory studies will be depicted, with a focus on the DRM paradigm (Deese, 1959; Roediger & McDermott, 1995, one of the most largely used procedures to study memory distortion and its associated illusory recollection. The theoretical explanations of illusory recollection will be described and contrasted in light of factors affecting the phenomenon, in order to show their strengths and limits. Although the focus on the origins of illusory recollection is relatively recent, overall, this review suggests that DRM false memories can be an excellent tool to study this phenomenon under controlled conditions and to gain insights on false memories occurring in everyday life.

  14. Respiratory-Induced Prostate Motion Using Wavelet Decomposition of the Real-Time Electromagnetic Tracking Signal

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuting [Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, California (United States); Liu, Tian; Yang, Xiaofeng [Department of Radiation Oncology, Emory University Hospital, Winship Cancer Institute, Atlanta, Georgia (United States); Wang, Yuenan [Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland (United States); Khan, Mohammad K., E-mail: [Department of Radiation Oncology, Emory University Hospital, Winship Cancer Institute, Atlanta, Georgia (United States)


    Purpose: The objective of this work is to characterize and quantify the impact of respiratory-induced prostate motion. Methods and Materials: Real-time intrafraction motion is observed with the Calypso 4-dimensional nonradioactive electromagnetic tracking system (Calypso Medical Technologies, Inc. Seattle, Washington). We report the results from a total of 1024 fractions from 31 prostate cancer patients. Wavelet transform was used to decompose the signal to extract and isolate the respiratory-induced prostate motion from the total prostate displacement. Results: Our results show that the average respiratory motion larger than 0.5 mm can be observed in 68% of the fractions. Fewer than 1% of the patients showed average respiratory motion of less than 0.2 mm, whereas 99% of the patients showed average respiratory-induced motion ranging between 0.2 and 2 mm. The maximum respiratory range of motion of 3 mm or greater was seen in only 25% of the fractions. In addition, about 2% patients showed anxiety, indicated by a breathing frequency above 24 times per minute. Conclusions: Prostate motion is influenced by respiration in most fractions. Real-time intrafraction data are sensitive enough to measure the impact of respiration by use of wavelet decomposition methods. Although the average respiratory amplitude observed in this study is small, this technique provides a tool that can be useful if one moves to smaller treatment margins (≤5 mm). This also opens ups the possibility of being able to develop patient specific margins, knowing that prostate motion is not unpredictable.

  15. Motions of Curves in the Projective Plane Inducing the Kaup-Kupershmidt Hierarchy

    Directory of Open Access Journals (Sweden)

    Emilio Musso


    Full Text Available The equation of a motion of curves in the projective plane is deduced. Local flows are defined in terms of polynomial differential functions. A family of local flows inducing the Kaup-Kupershmidt hierarchy is constructed. The integration of the congruence curves is discussed. Local motions defined by the traveling wave cnoidal solutions of the fifth-order Kaup-Kupershmidt equation are described.

  16. Current-induced domain wall motion in nanoscale ferromagnetic elements

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, G [Laboratoire de Physique des Solides, CNRS, Universite Paris-sud 11, 91405 Orsay Cedex (France); Boulle, O [SPINTEC, CEA/CNRS/UJF/GINP, INAC, 38054 Grenoble Cedex 9 (France); Klaeui, M, E-mail: [SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Laboratory of Nanomagnetism and Spin Dynamics, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)


    We review the details of domain wall (DW) propagation due to spin-polarized currents that could potentially be used in magnetic data storage devices based on domains and DWs. We discuss briefly the basics of the underlying spin torque effect and show how the two torques arising from the interaction between the spin-polarized charge carriers and the magnetization lead to complex dynamics of a spin texture such as a DW. By direct imaging we show how confined DWs in nanowires can be displaced using currents in in-plane soft-magnetic materials, and that when using short pulses, fast velocities can be attained. For high-anisotropy out-of-plane magnetized wires with narrow DWs we present approaches to deducing the torque terms and show that in these materials potentially more efficient domain wall motion could be achieved.

  17. Measurement of oscillopsia induced by vestibular Coriolis stimulation. (United States)

    Sanderson, Jeffrey; Oman, Charles M; Harris, Laurence R


    We demonstrate a new method for measuring the time constant of head-movement-contingent oscillopsia (HMCO) produced by vestibular Coriolis stimulation. Subjects briskly rotated their heads around pitch or roll axes whilst seated on a platform rotating at constant velocity. This induced a cross-coupled vestibular Coriolis illusion. Simultaneous with the head movement, a visual display consisting of either a moving field of white dots on a black background or superimposed on a subject-stationary horizon, or a complete virtual room with conventional furnishings appeared. The scene's motion was driven by a simplified computer model of the Coriolis illusion. Subjects either nulled (if visual motion was against the illusory body rotation) or matched (if motion was in the same direction as the illusory motion) the sensation with the exponentially slowing scene motion, by indicating whether its decline was too fast or too slow. The model time constant was approximated using a staircase technique. Time constants comparable to that of the Coriolis vestibular ocular reflex were obtained. Time constants could be significantly reduced by adding subject-stationary visual elements. This technique for measuring oscillopsia might be used to quantify adaptation to artificial gravity environments. In principle more complex models can be used, and applied to other types of oscillopsia such as are experienced by BPPV patients or by astronauts returning to Earth.

  18. Illusory reversal of causality between touch and vision has no effect on prism adaptation rate

    Directory of Open Access Journals (Sweden)

    Hirokazu eTanaka


    Full Text Available Learning, according to Oxford Dictionary, is to gain knowledge or skill by studying, from experience, from being taught, etc. In order to learn from experience, the central nervous system has to decide what action leads to what consequence, and temporal perception plays a critical role in determining the causality between actions and consequences. In motor adaptation, causality between action and consequence is implicitly assumed so that a subject adapts to a new environment based on the consequence caused by her action. Adaptation to visual displacement induced by prisms is a prime example; the visual error signal associated with the motor output contributes to the recovery of accurate reaching, and a delayed feedback of visual error can decrease the adaptation rate. Subjective feeling of temporal order of action and consequence, however, can be modified or even reversed when her sense of simultaneity is manipulated with an artificially delayed feedback. Our previous study (Tanaka, Homma & Imamizu (2011 Exp Brain Res demonstrated that the rate of prism adaptation was unaffected when the subjective delay of visual feedback was shortened. This study asked whether subjects could adapt to prism adaptation and whether the rate of prism adaptation was affected when the subjective temporal order was illusory reversed. Adapting to additional 100 ms delay and its sudden removal caused a positive shift of point of simultaneity in a temporal-order judgment experiment, indicating an illusory reversal of action and consequence. We found that, even in this case, the subjects were able to adapt to prism displacement with the learning rate that was statistically indistinguishable to that without temporal adaptation. This result provides further evidence to the dissociation between conscious temporal perception and motor adaptation.

  19. Coherent illusory contours reduce microsaccade frequency. (United States)

    Makin, Alexis D J; Ackerley, Rochelle; Wild, Kelly; Poliakoff, Ellen; Gowen, Emma; El-Deredy, Wael


    Synchronized high-frequency gamma band oscillations (30-100 Hz) are thought to mediate the binding of single visual features into whole-object representations. For example, induced gamma band oscillations (iGBRs) have been recorded ∼ 280 ms after the onset of a coherent Kanizsa triangle, but not after an incoherent equivalent shape. However, several recent studies have provided evidence that the EEG-recorded iGBR may be a by-product of small saccadic eye movements (microsaccades). Considering these two previous findings, one would hypothesis that there should be more microsaccades following the onset of a coherent Kanizsa triangle. However, we found that microsaccade rebound rate was significantly higher after an incoherent triangle was presented. This result suggests that microsaccades are not a reliable indicator of perceptual binding, and, more importantly, implies that iGBR cannot be universally produced by ocular artefacts.

  20. Motion-induced eddy current thermography for high-speed inspection (United States)

    Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian


    This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  1. Internal-external correlation investigations of respiratory induced motion of lung tumors. (United States)

    Ionascu, Dan; Jiang, Steve B; Nishioka, Seiko; Shirato, Hiroki; Berbeco, Ross I


    In gated radiation therapy procedures, the lung tumor position is used directly (by implanted radiopaque markers) or indirectly (by external surrogate methods) to decrease the volume of irradiated healthy tissue. Due to a risk of pneumothorax, many clinics do not implant fiducials, and the gated treatment is primarily based on a respiratory induced external signal. The external surrogate method relies upon the assumption that the internal tumor motion is well correlated with the external respiratory induced motion, and that this correlation is constant in time. Using a set of data that contains synchronous internal and external motion traces, we have developed a dynamic data analysis technique to study the internal-external correlation, and to quantitatively estimate its underlying time behavior. The work presented here quantifies the time dependent behavior of the correlation between external respiratory signals and lung implanted fiducial motion. The corresponding amplitude mismatch is also reported for the lung patients studied. The information obtained can be used to improve the accuracy of tumor tracking. For the ten patients in this study, the SI internal-external motion is well correlated, with small time shifts and corresponding amplitude mismatches. Although the AP internal-external motion reveals larger time shifts than along the SI direction, the corresponding amplitude mismatches are below 5 mm.

  2. Research on the Wave-Induced Ship Motions in Front of Different Types of Wharf (United States)

    Li, Yan Bao; Jiang, Xue Lian

    One important function of the port is to protect ship or some other facilities from wave attack so as to stably handle cargoes. In current design codes, there are mainly two expressions of the tranquility standard of harbor basin: one is the acceptable wave height in front of wharf; the other is the tolerable amplitude of ship motion. However, ship motions are affected by some more factors simultaneously, such as wave frequency, wave height, incident wave direction, ship properties and wharf type. This paper presents some computed results of the wave-induced ship motions on the basis of a port case in China. First, the Simple Green Function method is employed to solve and compare the 2-dimension hydrodynamic coefficients in front of open or bulkhead wharf. The results show a great difference between them. Then, this paper computes and discusses the ship motions in front of open wharf at different wave frequencies and incident wave directions.

  3. Chemisorption-facilitated dislocation emission and motion, and induced nucleation of brittle nanocrack

    Institute of Scientific and Technical Information of China (English)

    宿彦京; 王燕斌; 褚武扬


    Using a special TEM constant deflection device, the change in dislocation configuration ahead of a loaded crack tip before and after adsorption of Hg atoms and the initiation of liquid metal-induced nanocracks (LMIC) have been observed. The results show that chemisorption of Hg atoms can facilitate dislocation emission, multiplication and motion. Nanocracks will be initiated in the dislocation-free zone (DFZ) or at the crack tip when chemisorption-facilitated dislocation emission, multiplication and motion reach a critical condition. On the basis of the available experimental evidence concerning liquid metal embnttlement (LME), a new mechanism for this phenomenon is considered. This involves the fact that the decrease in surface energy induced by chemisorption of Hg atoms results in a reduction in the critical stress intensity factors for dislocation emission and the resistance for dislocation motion. On the other hand, the plastic work and KIC will decrease with the decrease in the surface energy.

  4. Modeling on thermally induced coupled micro-motions of satellite with complex flexible appendages

    Directory of Open Access Journals (Sweden)

    Zhicheng Zhou


    Full Text Available To describe the characteristics of thermally induced coupled micro-motions more exactly, a numerical model is proposed for a satellite system consisting of a rigid body and the complex appendages. The coupled governing equations including the effects of transient temperature differences are formulated within the framework of the Lagrangian Method based on the finite element models of flexible structures. Meanwhile, the problem of coupling between attitude motions of rigid body and vibrations of flexible attachments are addressed with explicit expressions. Thermally induced micro-motions are examined in detail for a simple satellite with a large solar panel under the disturbance of thermal environment from earth shadow to sunlight area in the earth orbit. The results show that the thermal–mechanical performances of an on-orbit satellite can be well predicted by the proposed finite element model.

  5. Stopping power and polarization induced in a plasma by a fast charged particle in circular motion

    Energy Technology Data Exchange (ETDEWEB)

    Villo-Perez, Isidro [Departamento de Electronica, Tecnologia de las Computadoras y Proyectos, Universidad Politecnica de Cartagena, Cartagena (Spain); Arista, Nestor R. [Division Colisiones Atomicas, Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, Bariloche (Argentina); Garcia-Molina, Rafael [Departamento de Fisica, Universidad de Murcia, Murcia (Spain)


    We describe the perturbation induced in a plasma by a charged particle in circular motion, analysing in detail the evolution of the induced charge, the electrostatic potential and the energy loss of the particle. We describe the initial transitory behaviour and the different ways in which convergence to final stationary solutions may be obtained depending on the basic parameters of the problem. The results for the stopping power show a resonant behaviour which may give place to large stopping enhancement values as compared with the case of particles in straight-line motion with the same linear velocity. The results also explain a resonant effect recently obtained for particles in circular motion in magnetized plasmas. (author)

  6. Does chronic idiopathic dizziness reflect an impairment of sensory predictions of self-motion?

    Directory of Open Access Journals (Sweden)

    Joern K Pomper


    Full Text Available Most patients suffering from chronic idiopathic dizziness do not present signs of vestibular dysfunction or organic failures of other kinds. Hence, this kind of dizziness is commonly seen as psychogenic in nature, sharing commonalities with specific phobias, panic disorder and generalized anxiety. A more specific concept put forward by Brandt and Dieterich (1986 states that these patients suffer from dizziness because of an inadequate compensation of self-induced sensory stimulation. According to this hypothesis self-motion-induced reafferent visual stimulation is interpreted as motion in the world since a predictive signal reflecting the consequences of self-motion, needed to compensate the reafferent stimulus, is inadequate. While conceptually intriguing, experimental evidence supporting the idea of an inadequate prediction of the sensory consequences of own movements has as yet been lacking. Here we tested this hypothesis by applying it to the perception of background motion induced by smooth-pursuit eye movements. As a matter of fact, we found the same mildly undercompensating prediction, responsible for the perception of slight illusory world motion („Filehne illusion in the 15 patients tested and their age-matched controls. Likewise, the ability to adapt this prediction to the needs of the visual context was not deteriorated in patients. Finally, we could not find any correlation between measures of the individual severity of dizziness and the ability to predict. In sum, our results do not support the concept of a deviant prediction of self-induced sensory stimulation as cause of chronic idiopathic dizziness.

  7. The efficacy of airflow and seat vibration on reducing visually induced motion sickness

    NARCIS (Netherlands)

    D'Amour, S.; Bos, J.E.; Keshavarz, B.


    Visually induced motion sickness (VIMS) is a well-known sensation in virtual environments and simulators, typically characterized by a variety of symptoms such as pallor, sweating, dizziness, fatigue, and/or nausea. Numerous methods to reduce VIMS have been previously introduced; however, a reliable

  8. Mixed Messages: Illusory Durations Induced by Cue Combination

    Directory of Open Access Journals (Sweden)

    Craig Aaen-Stockdale


    Full Text Available Pairing a visual stimulus with a concurrent auditory stimulus of subtly longer or shorter duration expands or contracts the duration of that visual stimulus, even when the observer is asked to ignore the irrelevant auditory component. Here we map out this relationship and find a roughly linear relationship between perceived duration of the visual component and the duration of the irrelevant auditory component. Beyond this ‘window of integration’ the obligatory combination of cues breaks down rather suddenly, at durations 0.2 log units longer or shorter than baseline. Conversely, a visual duration has virtually no effect on the perceived duration of a concurrently presented auditory duration. A model is presented based on obligatory combination of visual and auditory cues within a window defined by the respective JNDs of vision and audition.

  9. Translational Optic Flow Induces Shifts in Direction of Active Forward and Backward Self-Motion

    Directory of Open Access Journals (Sweden)

    Kenzo Sakurai


    Full Text Available Previously, we reported that when observers passively experience real linear oscillatory somatic motion while viewing orthogonal visual optic flow patterns, their perceived motion direction is intermediate to those specified by visual and vestibular information individually (Sakurai et al., 2002, ACV; 2003, ECVP; 2010, VSS; Kubodera et al., 2010, APCV. Here, we extend those studies to active somatic motion, measuring the angular shift in body direction after active body motion while viewing synchronized orthogonal optic flow. Experimental visual stimuli consisted of 1 second of translating leftward (rightward random-dots and 1 second of random noise. Control stimuli consisted of two 1-second intervals of random noise separated by a static interval. Observers viewed the stimulus for 30 seconds through a face-mounted display while actively stepping forward and backward such that their forward body movement was synchronized with the random-dot translational motion. Observers' body direction was measured before and after each trial. Translational optic flow induced shifts in body direction that were opposite to shifts in perceived direction with passive viewing in our previous reports. Observers may have compensated their body motion in response to perceived direction shifts similar to those we reported for passive viewing.

  10. Strategies for reducing intra-fraction motion induced dosimetric effects in proton therapy (United States)

    Zhao, Li

    Intra-fraction respiration motion during radiation delivery presents a major challenge to radiation therapy. There has been a growing effort to characterize and manage internal organ motion in radiation therapy, however very few studies focus on tackling this issue in proton therapy. Current practice for treating lung tumors in proton therapy is still to apply population-based margins to account for internal tumor motion, which can lead to target underdosage and normal tissue overdosage. This thesis explores the intra-fraction motion induced dosimetric effects from both computational treatment planning and experimental studies. Four-dimensional CT scans are used to analyze the patient-specific tumor motion characteristics. A feasible method to design the range compensator by using the maximum intensity projection (MIP) images is proposed. Results demonstrate that this MIP approach ensures adequate tumor coverage throughout the entire respiratory cycle whilst maintaining normal tissue dose under clinical constraints. Based on 4D-CT scans, dose convolution is used for assessing the accuracy of Gaussian probability density function for modeling the patient-specific respiratory motion on dose distribution. Non-negligible dose discrepancy is observed in comparisons of convolved dose distributions, and patient-specific respiration PDF is advocated. In addition, an experimental phantom study primarily focusing on the interplay effect between target motion and the scanning beam motion is implemented in two proton beam delivery systems: double scattering and uniform scanning. Measurement results suggest that dose blurring effect is dominant, and interplay effect is trivial in the uniform scanning system due to dose repainting.

  11. Study on Performances of Car-following Models Induced by Motions of a Leading Car

    Institute of Scientific and Technical Information of China (English)


    This paper investigated the performances of a well-known car-following model with numerical simulations in describing the deceleration process induced by the motion of a leading car. A leading car with a pre-specified speed profile was used to test the above model. The results show that this model is to some extent deficient in performing the process aforementioned. Modifications of the model to overcome these deficiencies were demonstrated and a modified car-following model was proposed accordingly. Furthermore, the delay time of car motion of the new model were studied.

  12. Hydrogen-enhanced dislocation emission, motion and nucleation of hydrogen-induced cracking for steel

    Institute of Scientific and Technical Information of China (English)

    吕宏; 李密丹; 张天成; 褚武扬


    The change in dislocation configuration ahead of a loaded crack tip before and after charging with hydrogen was in situ investigated in TEM using a special constant deflection loading device The results showed that hydrogen could facilitate dislocation emission, multiplication and motion The change in displacement field ahead of a loaded notch tip for a bulk specimen before and after charging with hydrogen was in situ measured by the laser moire interferometer technique. The results showed that hydrogen could enlarge the plastic zone and increase the plastic strain The in situ observation in TEM showed that when hydrogen-enhanced dislocation emission and motion reached a critical condition, a nanocrack of hydrogen-induced cracking ( HIC) would nucleate in the dislocation-free zone (DFZ) or at the main crack tip. The reasons for hydrogen-enhanced dislocation emission, multiplication and motion, and the mechanisms of nucleation of HIC have been discussed

  13. The influence of trait anxiety and illusory kinesthesia on pain threshold. (United States)

    Imai, Ryota; Osumi, Michihiro; Ishigaki, Tomoya; Morioka, Shu


    [Purpose] It has also been reported that decreased activity in the reward pathway causes a decrease in brain activity in the descending pain control system in people with high trait anxiety. Activation of this system is dependent on both the reward pathway and motor areas. Recently, studies have also shown that motor areas are activated by illusory kinesthesia. It was aimed to explore whether anxiety trait modulates the influence of illusory kinesthesia on pain threshold. [Subjects and Methods] The pain threshold and trait anxiety at rest before vibratory tendon stimulation (the task) were measured. After the task, the pain threshold, the illusory kinesthesia angle, and the intensity of illusory kinesthesia for patients with and without illusory kinesthesia were measured. A total of 35 healthy right-handed students participated, among whom 22 and 13 were included in the illusion and no-illusion groups, respectively. [Results] There was a significant increase in the pain threshold after task completion in both groups; however, there was no statistically significant difference between the two groups. Correlational analysis revealed that State-Trait Anxiety Inventory-trait score correlated negatively with the pain threshold in the no-illusion group, but there was no correlation in the illusion group. [Conclusion] The pain threshold improved regardless of the size of trait anxiety in the illusion group, but did not improve merely through sensory input by vibratory stimulation in the no-illusion group. Thus, illusory kinesthesia has effect of increasing the pain threshold.

  14. Lack of gender difference in motion sickness induced by vestibular Coriolis cross-coupling. (United States)

    Cheung, Bob; Hofer, Kevin

    It has been reported that females are more susceptible to motion sickness than males. Supporting evidence is primarily based on retrospective survey questionnaires and self-reporting. We investigated if there is a gender difference in motion sickness susceptibility using objective and subjective measurements under controlled laboratory conditions. Thirty healthy subjects (14 males and 16 females) between the ages of 18-46 years were exposed to Coriolis cross-coupling stimulation, induced by 120 degrees /s yaw rotation and a simultaneous 45 degrees pitch forward head movement in the sagittal plane every 12 seconds. Cutaneous forearm and calf blood flow, blood pressure, and heart rate were monitored. Graybiel's diagnostic criteria were used to assess sickness susceptibility before and after motion exposure. Golding and Kerguelen's scale was used to assess the severity of symptoms during motion exposure. A significant (p<0.01) increase of forearm and calf blood flow during cross-coupling stimulation was observed in both sexes. However, the subjective symptoms rating and blood flow measurements indicate that there was no significant difference between male and female subjects. Our data also suggests that females may be more inclined to admit discomfort as indicated by their responses to a survey of motion sickness history prior to the experiment.

  15. Time dilation induced by object motion is based on spatiotopic but not retinotopic positions

    Directory of Open Access Journals (Sweden)

    Ricky K. C. eAu


    Full Text Available Time perception of visual events depends on the visual attributes of the scene. Previous studies reported that motion of object can induce an illusion of lengthened time. In the present study, we asked the question whether such time dilation effect depends on the actual physical motion of the object (spatiotopic coordinate, or its relative motion with respect to the retina (retinotopic coordinate. Observers were presented with a moving stimulus and a static reference stimulus in separate intervals, and judged which interval they perceived as having a longer duration, under conditions with eye fixation (Experiment 1 and with eye movement at same velocity as the moving stimulus (Experiment 2. The data indicated that the perceived duration was longer under object motion, and depended on the actual movement of the object rather than relative retinal motion. These results are in support with the notion that the brain possesses a spatiotopic representation regarding the real world positions of objects in which the perception of time is associated with.

  16. Motion-induced error reduction by combining Fourier transform profilometry with phase-shifting profilometry. (United States)

    Li, Beiwen; Liu, Ziping; Zhang, Song


    We propose a hybrid computational framework to reduce motion-induced measurement error by combining the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP). The proposed method is composed of three major steps: Step 1 is to extract continuous relative phase maps for each isolated object with single-shot FTP method and spatial phase unwrapping; Step 2 is to obtain an absolute phase map of the entire scene using PSP method, albeit motion-induced errors exist on the extracted absolute phase map; and Step 3 is to shift the continuous relative phase maps from Step 1 to generate final absolute phase maps for each isolated object by referring to the absolute phase map with error from Step 2. Experiments demonstrate the success of the proposed computational framework for measuring multiple isolated rapidly moving objects.

  17. Freezing motion-induced dephasing in an atomic-ensemble quantum memory

    CERN Document Server

    Jiang, Yan; Bao, Xiao-Hui; Pan, Jian-Wei


    Motion-induced dephasing is a dominant decoherence mechanism for atom-gas quantum memories. In this paper, we develop a new coherent manipulation technique which enables arbitrary engineering of the spin-wave momentum with neglectable noise. By zeroing the spin-wave momentum, motion-induced dephasing can be frozen completely. We experimentally demonstrate this scheme with laser-cooled atoms in a DLCZ configuration. By applying the freezing pulses, memory lifetime gets extended significantly to the limit of atom cloud expansion and does not depend on the detection angle anymore. The observed high cross-correlation above 20 proves that high-fidelity memory operation is well preserved after coherent manipulation.

  18. Visual stimuli induced by self-motion and object-motion modify odour-guided flight of male moths (Manduca sexta L.). (United States)

    Verspui, Remko; Gray, John R


    Animals rely on multimodal sensory integration for proper orientation within their environment. For example, odour-guided behaviours often require appropriate integration of concurrent visual cues. To gain a further understanding of mechanisms underlying sensory integration in odour-guided behaviour, our study examined the effects of visual stimuli induced by self-motion and object-motion on odour-guided flight in male M. sexta. By placing stationary objects (pillars) on either side of a female pheromone plume, moths produced self-induced visual motion during odour-guided flight. These flights showed a reduction in both ground and flight speeds and inter-turn interval when compared with flight tracks without stationary objects. Presentation of an approaching 20 cm disc, to simulate object-motion, resulted in interrupted odour-guided flight and changes in flight direction away from the pheromone source. Modifications of odour-guided flight behaviour in the presence of stationary objects suggest that visual information, in conjunction with olfactory cues, can be used to control the rate of counter-turning. We suggest that the behavioural responses to visual stimuli induced by object-motion indicate the presence of a neural circuit that relays visual information to initiate escape responses. These behavioural responses also suggest the presence of a sensory conflict requiring a trade-off between olfactory and visually driven behaviours. The mechanisms underlying olfactory and visual integration are discussed in the context of these behavioural responses.

  19. Perception of linear horizontal self-motion induced by peripheral vision /linearvection/ - Basic characteristics and visual-vestibular interactions (United States)

    Berthoz, A.; Pavard, B.; Young, L. R.


    The basic characteristics of the sensation of linear horizontal motion have been studied. Objective linear motion was induced by means of a moving cart. Visually induced linear motion perception (linearvection) was obtained by projection of moving images at the periphery of the visual field. Image velocity and luminance thresholds for the appearance of linearvection have been measured and are in the range of those for image motion detection (without sensation of self motion) by the visual system. Latencies of onset are around 1 sec and short term adaptation has been shown. The dynamic range of the visual analyzer as judged by frequency analysis is lower than the vestibular analyzer. Conflicting situations in which visual cues contradict vestibular and other proprioceptive cues show, in the case of linearvection a dominance of vision which supports the idea of an essential although not independent role of vision in self motion perception.

  20. Deciding what to see: the role of intention and attention in the perception of apparent motion. (United States)

    Kohler, Axel; Haddad, Leila; Singer, Wolf; Muckli, Lars


    Apparent motion is an illusory perception of movement that can be induced by alternating presentations of static objects. Already in Wertheimer's early investigation of the phenomenon [Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung. Zeitschrift fur Psychologie, 61, 161-265], he mentions that voluntary attention can influence the way in which an ambiguous apparent motion display is perceived. But until now, few studies have investigated how strong the modulation of apparent motion through attention can be under different stimulus and task conditions. We used bistable motion quartets of two different sizes, where the perception of vertical and horizontal motion is equally likely. Eleven observers participated in two experiments. In Experiment 1, participants were instructed to either (a) hold the current movement direction as long as possible, (b) passively view the stimulus, or (c) switch the movement directions as quickly as possible. With the respective instructions, observers could almost double phase durations in (a) and more than halve durations in (c) relative to the passive condition. This modulation effect was stronger for the large quartets. In Experiment 2, observers' attention was diverted from the stimulus by a detection task at fixation while they still had to report their conscious perception. This manipulation prolonged dominance durations for up to 100%. The experiments reveal a high susceptibility of ambiguous apparent motion to attentional modulation. We discuss how feature- and space-based attention mechanisms might contribute to those effects.

  1. ac current generation in chiral magnetic insulators and Skyrmion motion induced by the spin Seebeck effect. (United States)

    Lin, Shi-Zeng; Batista, Cristian D; Reichhardt, Charles; Saxena, Avadh


    We show that a temperature gradient induces an ac electric current in multiferroic insulators when the sample is embedded in a circuit. We also show that a thermal gradient can be used to move magnetic Skyrmions in insulating chiral magnets: the induced magnon flow from the hot to the cold region drives the Skyrmions in the opposite direction via a magnonic spin transfer torque. Both results are combined to compute the effect of Skyrmion motion on the ac current generation and demonstrate that Skyrmions in insulators are a promising route for spin caloritronics applications.

  2. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow. (United States)

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato


    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity.

  3. Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Leping, E-mail: [North China Electric Power University, Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy, Power and Mechanical Engineering (China); Peterson, George P.; Yoda, Minani [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering (United States); Wang Buxuan [Tsinghua University, Department of Thermal Engineering (China)


    The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.

  4. Manipulating antiferromagnets with magnetic fields: Ratchet motion of multiple domain walls induced by asymmetric field pulses (United States)

    Gomonay, O.; Kläui, M.; Sinova, J.


    Future applications of antiferromagnets (AFs) in many spintronics devices rely on the precise manipulation of domain walls. The conventional approach using static magnetic fields is inefficient due to the low susceptibility of AFs. Recently proposed electrical manipulation with spin-orbit torques is restricted to metals with a specific crystal structure. Here, we propose an alternative, broadly applicable approach: using asymmetric magnetic field pulses to induce controlled ratchet motion of AF domain walls. The efficiency of this approach is based on three peculiarities of AF dynamics. First, a time-dependent magnetic field couples with an AF order parameter stronger than a static magnetic field, which leads to higher mobility of the domain walls. Second, the rate of change of the magnetic field couples with the spatial variation of the AF order parameter inside the domain, and this enables a synchronous motion of multiple domain walls with the same structure. Third, tailored asymmetric field pulses in combination with static friction can prevent backward motion of domain walls and thus lead to the desired controlled ratchet effect. The proposed use of an external field, rather than internal spin-orbit torques, avoids any restrictions on size, conductivity, and crystal structure of the AF material. We believe that our approach paves a way for the development of AF-based devices based on the controlled motion of AF domain walls.

  5. Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership.

    Directory of Open Access Journals (Sweden)

    Shoko Kanaya

    Full Text Available Although visual information seems to affect thermal perception (e.g. red color is associated with heat, previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI wherein an individual feels that a prosthetic (rubber hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.

  6. Spatial Frequency Modulates the Degree of Illusory Second Flash Perception. (United States)

    Takeshima, Yasuhiro; Gyoba, Jiro


    When a brief single flash is presented simultaneously with two brief beeps, the number of presented flashes is often perceived as two. This phenomenon is referred to as the fission illusion. Several effects related to the fission illusion have been investigated using both psychophysical and neurophysiological methods. The present study examined the effects of spatial frequency on the fission illusion. At a low spatial frequency, transient channels respond preferably; conversely, sustained channels respond preferably at a high spatial frequency. Sustained channels differ in temporal properties from transient channels and are characterized by poor temporal resolution and slow-onset responses. In our previous study, visual stimuli presented at a slow processing speed were not conducive to the fission illusion. Therefore, we hypothesized that the fission illusion would not be difficult to observe when using high spatial frequencies. The results indicated that the degree of the perceived illusory second flash was reduced when spatial frequency was high as compared to when it was is low. Furthermore, according to signal detection theory, this difference between high and low spatial frequencies was not attributed to participants' response biases. Therefore, the fission illusion likely will not occur in conditions of slow processing speed and long response latencies in sustained channels, which respond preferably to high spatial frequency stimuli. Overall, the results indicated that the fission illusion was affected by temporal characteristics of lower-order sensory processing stages.

  7. Plasticity of illusory vowel perception in Brazilian-Japanese bilinguals. (United States)

    Parlato-Oliveira, Erika; Christophe, Anne; Hirose, Yuki; Dupoux, Emmanuel


    Previous research shows that monolingual Japanese and Brazilian Portuguese listeners perceive illusory vowels (/u/ and /i/, respectively) within illegal sequences of consonants. Here, several populations of Japanese-Brazilian bilinguals are tested, using an explicit vowel identification task (experiment 1), and an implicit categorization and sequence recall task (experiment 2). Overall, second-generation immigrants, who first acquired Japanese at home and Brazilian during childhood (after age 4) showed a typical Brazilian pattern of result (and so did simultaneous bilinguals, who were exposed to both languages from birth on). In contrast, late bilinguals, who acquired their second language in adulthood, exhibited a pattern corresponding to their native language. In addition, an influence of the second language was observed in the explicit task of Exp. 1, but not in the implicit task used in Exp. 2, suggesting that second language experience affects mostly explicit or metalinguistic skills. These results are compared to other studies of phonological representations in adopted children or immigrants, and discussed in relation to the role of age of acquisition and sociolinguistic factors.

  8. Visual field and task influence illusory figure responses. (United States)

    Abu Bakar, Afiza; Liu, Lichan; Conci, Markus; Elliott, Mark A; Ioannides, Andreas A


    In normal viewing conditions, many objects are often hidden or occluded by others, therefore restricting the information that enters the eye. One ability that the human visual system has developed to compensate for this visual limitation is to relate the surrounding elements to globally interpret the whole scene. The appearance of illusory figures (IF) based on surrounding elements also relies on this similar function. In the present study, we hypothesized that different mechanisms may be used by the brain to process IF from the center and periphery of the visual field. We compared magnetoencephalographic responses to IFs presented at different parts of the visual field under three task loads. For central presentation, IF specific responses peaked first in V1/V2 (96-101 ms), and then in the lateral occipital complex (LOC; 132-141 ms), independent of task. For peripheral presentation, the relative modulation towards IF was markedly reduced in V1/V2 and LOC while prominent activation peaks now shifted to the Fusiform Gyrus (from 200 ms onwards). Additionally, the type of task influenced processing at early stages beginning in V1/V2 (87 ms). Our results show that retinal eccentricity plays a crucial role in IF processing: figural completion at the center of the visual field is achieved in an 'automatic' and seemingly effortless fashion whereas peripheral stimulus locations necessitate higher-order object completion stages which rely more heavily on attentional demands.

  9. Current induced domain wall motion in nanostripes with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Su Jung; Tan, Reasmey P.; Chun, Byong Sun [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Young Keun, E-mail: [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)


    We report micromagnetic modeling results of current induced domain wall (DW) motion in magnetic devices with perpendicular magnetic anisotropy by solving the Landau-Lifschitz-Gilbert equation including adiabatic and non-adiabatic terms. A nanostripe model system with dimensions of 500 nm (L)x25 nm (W)x5 nm (H) was selected for calculating the DW motion and its width, as a function of various parameters such as non-adiabatic contribution, anisotropy constant (K{sub u}), saturation magnetization (M{sub s}), and temperature (T). The DW velocity was found to increase when the values of K{sub u} and T were increased and the M{sub s} value decreased. In addition, a reduction of the domain wall width could be achieved by increasing K{sub u} and lowering M{sub s} values regardless of the non-adiabatic constant value.


    Institute of Scientific and Technical Information of China (English)


    In regions with broad water surfaces such as lakes, reservoirs and coastal areas, the wind stress on the flow motion generates a significant impact. The wind stress is an unsteady force which makes numerical simulation difficult. This paper presents a two-dimensional (2-D) mathematical model of the impact of wind-induced motion on suspended sediment transport at Beijing's 13-Ling Reservoir. The model uses the Diagonal Cartesian Method (DCM) with a wetting-drying dynamic boundary to trace variations in the water level. The calculation results have been tested against in situ measurements. The measurements confirm the model's accuracy and agreement with the actual situation at the reservoir. The calculations also indicate that wind stress holds the key to suspended sediment transport at Beijing's 13-Ling Reservoir, especially when westerly winds prevail.

  11. Linewidth of electromagnetically induced transparency under motional averaging in a coated vapor cell

    Institute of Scientific and Technical Information of China (English)

    Xu Zhi-Xiang; Qu Wei-Zhi; Gao Ran; Hu Xin-Hua; Xiao Yan-Hong


    The linewidth of electromagnetically induced transparency (EIT) in a coated Rb vapor cell was studied under a magnetic field gradient.The nonlinear broadening of the EIT linewidth with the magnetic field gradient was observed.It was found that the motional averaging of the field gradient was more pronounced at higher laser intensities and larger beam sizes.In the same regime,there was a small linewidth decrease with the increasing magnetic field gradient.We have established a Monte-Carlo model,which gave results in good qualitative agreement with our experiment.Physics pictures for the above phenomena were also suggested.These results provide an understanding of the EIT linewidth behavior under motional averaging,and should be useful for applications in quantum optics and metrology based on coated vapor cells.

  12. Influence of Rigid Body Motions on Rotor Induced Velocities and Aerodynamic Loads of a Floating Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    de Vaal, Jacobus B.; Hansen, Martin Otto Laver; Moan, Torgeir


    This paper discusses the influence of rigid body motions on rotor induced velocities and aerodynamic loads of a floating horizontal axis wind turbine. Analyses are performed with a simplified free wake vortex model specifically aimed at capturing the unsteady and non-uniform inflow typically...... experienced by a floating wind turbine. After discussing the simplified model in detail, comparisons are made to a state of the art free wake vortex code, using test cases with prescribed platform motion. It is found that the simplified model compares favourably with a more advanced numerical model......, and captures the essential influences of rigid body motions on the rotor loads, induced velocities and wake influence....

  13. Meaning-seeking in the illusory correlation paradigm : The active role of participants in the categorization process

    NARCIS (Netherlands)

    Berndsen, M; McGarty, C; van der Pligt, J; Spears, R

    The present research examines the role of categorical perception (McGarty, Haslam, Turner, & Oakes, 1993) in the illusory correlation paradigm. This approach assumes that the search for meaningful differences between two stimulus groups can lead to the illusory correlation effect. This explanation

  14. Meaning-seeking in the illusory correlation paradigm : The active role of participants in the categorization process

    NARCIS (Netherlands)

    Berndsen, M; McGarty, C; van der Pligt, J; Spears, R


    The present research examines the role of categorical perception (McGarty, Haslam, Turner, & Oakes, 1993) in the illusory correlation paradigm. This approach assumes that the search for meaningful differences between two stimulus groups can lead to the illusory correlation effect. This explanation i

  15. Ground Motions Induced by Precipitation and Fluvial Processes: An Example from Taiwan (United States)

    Yang, Chu-Fang; Chi, Wu-Cheng; Lai, Ying-Ju


    Ground motions can be induced by weather-related processes. Analyzing such signals might help quantify those natural processes. Here, we used continuous seismic, meteorological and stream data to analyze broadband ground motions during heavy precipitation events in Taiwan. We detected long period seismic signals in drainage basins during two meteorological cases: Typhoon Morakot in 2009 and East Asian rainy season in 2012. The amplitudes of the seismic waveform correlate well with the amount of the precipitation and the derivative of water level and discharge in a nearby river. We proposed that these seismic signals were induced by ground tilt induced by the loading from the increased water volume in the nearby river. Furthermore, we used the seismic data to estimate and quantify the strength of precipitation during such events. The seismically derived precipitation correlates well with the observed meteorological data. It shows that the long period seismic data may be used to monitor rainfall in real-time. Next, we will try to test our tilt hypothesis using other independent datasets.

  16. On Known Unknowns: Fluency and the Neural Mechanisms of Illusory Truth. (United States)

    Wang, Wei-Chun; Brashier, Nadia M; Wing, Erik A; Marsh, Elizabeth J; Cabeza, Roberto


    The "illusory truth" effect refers to the phenomenon whereby repetition of a statement increases its likelihood of being judged true. This phenomenon has important implications for how we come to believe oft-repeated information that may be misleading or unknown. Behavioral evidence indicates that fluency, the subjective ease experienced while processing information, underlies this effect. This suggests that illusory truth should be mediated by brain regions previously linked to fluency, such as the perirhinal cortex (PRC). To investigate this possibility, we scanned participants with fMRI while they rated the truth of unknown statements, half of which were presented earlier (i.e., repeated). The only brain region that showed an interaction between repetition and ratings of perceived truth was PRC, where activity increased with truth ratings for repeated, but not for new, statements. This finding supports the hypothesis that illusory truth is mediated by a fluency mechanism and further strengthens the link between PRC and fluency.

  17. A New Demonstration of the Illusory Letters Phenomenon: Graphemic Restoration in Arabic Word Perception. (United States)

    Jordan, Timothy R; Sheen, Mercedes; AlJassmi, Maryam A; Paterson, Kevin B


    The illusory letters phenomenon (ILP) is a unique demonstration that words can be perceived as complete even when letters are physically absent. However, the ILP has only ever been reported for a Latinate language (English), and it is unknown whether the illusion occurs for alphabetic languages with fundamentally different visual properties. Here we report a demonstration of the ILP for Arabic in which stimuli containing only the exterior letters of three-letter Arabic words and a nonsense pattern in the interior position were presented to fluent Arabic readers. Despite being incomplete, participants perceived these stimuli as complete Arabic words with all letters visible in their appropriate positions, and were unable to distinguish between illusory and normal displays. This finding provides an important extension of the original ILP and suggests that alphabetic languages may be widely susceptible to the phenomenon and reading generally may occur as a process augmented by illusory percepts.

  18. Real-time electron dynamics simulation of two-electron transfer reactions induced by nuclear motion (United States)

    Suzuki, Yasumitsu; Yamashita, Koichi


    Real-time electron dynamics of two-electron transfer reactions induced by nuclear motion is calculated by three methods: the numerically exact propagation method, the time-dependent Hartree (TDH) method and the Ehrenfest method. We find that, as long as the nuclei move as localized wave packets, the TDH and Ehrenfest methods can reproduce the exact electron dynamics of a simple charge transfer reaction model containing two electrons qualitatively well, even when nonadiabatic transitions between adiabatic states occur. In particular, both methods can reproduce the cases where a complete two-electron transfer reaction occurs and those where it does not occur.

  19. Magnetic domain-wall motion twisted by nanoscale probe-induced spin transfer (United States)

    Wang, J.; Xie, L. S.; Wang, C. S.; Zhang, H. Z.; Shu, L.; Bai, J.; Chai, Y. S.; Zhao, X.; Nie, J. C.; Cao, C. B.; Gu, C. Z.; Xiong, C. M.; Sun, Y.; Shi, J.; Salahuddin, S.; Xia, K.; Nan, C. W.; Zhang, J. X.


    A method for deterministic control of magnetism using an electrical stimulus is highly desired for the new generation of magnetoelectronic devices. Much effort has been focused on magnetic domain-wall (DW) motion manipulated by a successive injection of spin-polarized current into a magnetic nanostructure. However, an integrant high-threshold current density of 1011˜1012A /m2 inhibits the integration with low-energy-cost technology. Here, we report an approach to manipulate a single magnetic domain wall with a perpendicular anisotropy in a manganite/dielectric/metal capacitor using a probe-induced spin displacement. A spin-transfer torque (STT) occurs in the strongly correlated manganite film during the spin injection into the capacitor from the nanoscale magnetized tip with an ultralow voltage of 0.1 V, where a lower bound of the estimated threshold spin-polarized current density is ˜108A /m2 at the tip/manganite interface. The dynamic of DW motions are analyzed using the Landau-Lifshitz-Gilbert method. This probe-voltage-controlled DW motion, at an ambient condition, demonstrates a critical framework for the fundamental understanding of the manipulation of the nanomagnet systems with low-energy consumption.

  20. Enhancement of Absorption by Micro-Mixing induced by Villi Motion (United States)

    Wang, Yanxing; Brasseur, James; Banco, Gino


    Motions of surface villi create microscale flows that can couple with lumen-scale eddies to enhance absorption at the epithelium of the small intestine. Using a multigrid strategy within the lattice-Boltzmann framework, we model a macro-scale cavity flow with microscale ``villi'' in pendular motion on the lower surface and evaluate the couplings between macro and micro-scale fluid motions, scalar mixing, and uptake of passive scalar at the villi surface. We study the influences of pendular frequency, villous length, and villous groupings on absorption rate. The basic mechanism underlying the enhancement of absorption rate by a villous-induced ``micro-mixing layer'' (MML) is the microscale ``pumping'' of low concentration fluid from between groups of villi coupled with the return of high concentration fluid into the villi groups from the macroscale flow. The MML couples with the macrosacle eddies through a diffusion layer that separates micro and macro mixed layers. The absorption rate increases with frequency of villi oscillation due to enhanced vertical pumping. We discover a critical villus length above which absorption rate increases significantly. The absorption is influenced by villus groupings in a complex way due to the interference between vertical and horizontal geometry vs. MML scales. We conclude that optimized villi motility can enhance absorption and may underlie an explanation for the existence of villi in the gut. [Supported by NSF

  1. Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. (United States)

    Banakou, Domna; Groten, Raphaela; Slater, Mel


    An illusory sensation of ownership over a surrogate limb or whole body can be induced through specific forms of multisensory stimulation, such as synchronous visuotactile tapping on the hidden real and visible rubber hand in the rubber hand illusion. Such methods have been used to induce ownership over a manikin and a virtual body that substitute the real body, as seen from first-person perspective, through a head-mounted display. However, the perceptual and behavioral consequences of such transformed body ownership have hardly been explored. In Exp. 1, immersive virtual reality was used to embody 30 adults as a 4-y-old child (condition C), and as an adult body scaled to the same height as the child (condition A), experienced from the first-person perspective, and with virtual and real body movements synchronized. The result was a strong body-ownership illusion equally for C and A. Moreover there was an overestimation of the sizes of objects compared with a nonembodied baseline, which was significantly greater for C compared with A. An implicit association test showed that C resulted in significantly faster reaction times for the classification of self with child-like compared with adult-like attributes. Exp. 2 with an additional 16 participants extinguished the ownership illusion by using visuomotor asynchrony, with all else equal. The size-estimation and implicit association test differences between C and A were also extinguished. We conclude that there are perceptual and probably behavioral correlates of body-ownership illusions that occur as a function of the type of body in which embodiment occurs.

  2. Evaporation condensation-induced bubble motion after temperature gradient set-up (United States)

    Nikolayev, Vadim S.; Garrabos, Yves; Lecoutre, Carole; Pichavant, Guillaume; Chatain, Denis; Beysens, Daniel


    Thermocapillary (Marangoni) motion of a gas bubble (or a liquid drop) under a temperature gradient can hardly be present in a one-component fluid. Indeed, in such a pure system, the vapor-liquid interface is always isothermal (at saturation temperature). However, evaporation on the hot side and condensation on the cold side can occur and displace the bubble. We have observed such a phenomenon in two different fluids submitted to a temperature gradient under reduced gravity: hydrogen under magnetic compensation of gravity in the HYLDE facility at CEA-Grenoble and water in the DECLIC facility onboard the ISS. The experiments and the subsequent analysis are performed in the vicinity of the vapor-liquid critical point to benefit from critical universality. In order to better understand the phenomena, a 1D numerical simulation has been performed. After the temperature gradient is imposed, two regimes can be evidenced. At early times, the temperatures in the bubble and the surrounding liquid become different thanks to their different compressibility and the "piston effect" mechanism, i.e. the fast adiabatic bulk thermalization induced by the expansion of the thermal boundary layers. The difference in local temperature gradients at the vapor-liquid interface results in an unbalanced evaporation/condensation phenomenon that makes the shape of the bubble vary and provoke its motion. At long times, a steady temperature gradient progressively forms in the liquid (but not in the bubble) and induces steady bubble motion towards the hot end. We evaluate the bubble velocity and compare with existing theories.

  3. Motion of a colloidal sphere with interfacial self-electrochemical reactions induced by a magnetic field. (United States)

    Hsieh, Tzu H; Keh, Huan J


    The motion of a spherical colloidal particle with spontaneous electrochemical reactions occurring on its surface in an ionic solution subjected to an applied magnetic field is analyzed for an arbitrary zeta potential distribution. The thickness of the electric double layer adjacent to the particle surface is assumed to be much less than the particle radius. The solutions of the Laplace equations governing the magnetic scalar potential and electric potential, respectively, lead to the magnetic flux and electric current density distributions in the particle and fluid phases of arbitrary magnetic permeabilities and electric conductivities. The Stokes equations modified with the Lorentz force contribution for the fluid motion are dealt by using a generalized reciprocal theorem, and closed-form formulas for the translational and angular velocities of the colloidal sphere induced by the magnetohydrodynamic effect are obtained. The dipole and quadrupole moments of the zeta potential distribution over the particle surface cause the particle translation and rotation, respectively. The induced velocities of the particle are unexpectedly significant, and their dependence on the characteristics of the particle-fluid system is physically different from that for electromagnetophoretic particles or phoretic swimmers.

  4. Numerical evaluation of E-fields induced by body motion near high-field MRI scanner. (United States)

    Crozier, S; Liu, F


    In modern magnetic resonance imaging (MRI), both patients and radiologists are exposed to strong, nonuniform static magnetic fields inside or outside of the scanner, in which the body movement may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in the human model when moving at various positions around the magnet. The numerical calculations are based on an efficient, quasistatic, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively-shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are easy to extrapolate to very high field strengths for the safety evaluation at a variety of field strengths and motion velocities.

  5. Source mechanism inversion and ground motion modeling of induced earthquakes in Kuwait - A Bayesian approach (United States)

    Gu, C.; Toksoz, M. N.; Marzouk, Y.; Al-Enezi, A.; Al-Jeri, F.; Buyukozturk, O.


    The increasing seismic activity in the regions of oil/gas fields due to fluid injection/extraction and hydraulic fracturing has drawn new attention in both academia and industry. Source mechanism and triggering stress of these induced earthquakes are of great importance for understanding the physics of the seismic processes in reservoirs, and predicting ground motion in the vicinity of oil/gas fields. The induced seismicity data in our study are from Kuwait National Seismic Network (KNSN). Historically, Kuwait has low local seismicity; however, in recent years the KNSN has monitored more and more local earthquakes. Since 1997, the KNSN has recorded more than 1000 earthquakes (Mw Institutions for Seismology (IRIS) and KNSN, and widely felt by people in Kuwait. These earthquakes happen repeatedly in the same locations close to the oil/gas fields in Kuwait (see the uploaded image). The earthquakes are generally small (Mw < 5) and are shallow with focal depths of about 2 to 4 km. Such events are very common in oil/gas reservoirs all over the world, including North America, Europe, and the Middle East. We determined the location and source mechanism of these local earthquakes, with the uncertainties, using a Bayesian inversion method. The triggering stress of these earthquakes was calculated based on the source mechanisms results. In addition, we modeled the ground motion in Kuwait due to these local earthquakes. Our results show that most likely these local earthquakes occurred on pre-existing faults and were triggered by oil field activities. These events are generally smaller than Mw 5; however, these events, occurring in the reservoirs, are very shallow with focal depths less than about 4 km. As a result, in Kuwait, where oil fields are close to populated areas, these induced earthquakes could produce ground accelerations high enough to cause damage to local structures without using seismic design criteria.

  6. Haptic feedback attenuates illusory bias in pantomime-grasping: evidence for a visuo-haptic calibration. (United States)

    Chan, Jillian; Heath, Matthew


    Relative visual information has been shown to mediate grasping responses directed to an area previously occupied by a target object (i.e., pantomime-grasping) and is an information type functionally distinct from the absolute visual information supporting naturalistic grasping (i.e., grasping a physical target). Pantomime- and naturalistic grasps differ not only in terms of their visual properties, but also because the former lacks physical interaction with a target object (i.e., no-haptic feedback). The absence of haptic feedback may represent a reason why pantomime- and naturalistic grasps differ. To address this issue, participants completed pantomime-grasps to objects embedded in fins-in and fins-out configurations of the Müller-Lyer (ML) illusion following a 2000-ms visual delay when haptic feedback was unavailable (H- condition), and when experimentally induced (H+ condition). In particular, in the H+ condition the experimenter placed a physical target object between participants' thumb and forefinger after they completed their grasping response. H- and H+ conditions were performed when online vision was available (i.e., Experiment 1) and when withdrawn (i.e., Experiment 2). If haptic feedback influences grasping, then the absolute information afforded from physically touching a target object (i.e., the H+ condition) should result in aperture metrics that are refractory-or attenuated-to the relative properties of the ML figures. Grip apertures in H- and H+ conditions were "tricked" in a direction consistent with the perceptual effects of the ML illusion; however, Experiment 2 showed that illusory effects were attenuated in the H+ condition. In other words, responses without online vision showed evidence of a visuo-haptic calibration. These results provide convergent evidence that haptic and visual feedback play a salient role in considering the extant literature's documented report of kinematic differences between pantomime- and naturalistic grasps.

  7. Decoding Illusory Self-location from Activity in the Human Hippocampus

    Directory of Open Access Journals (Sweden)

    Arvid eGuterstam


    Full Text Available Decades of research have demonstrated a role for the hippocampus in spatial navigation and episodic and spatial memory. However, empirical evidence linking hippocampal activity to the perceptual experience of being physically located at a particular place in the environment is lacking. In this study, we used a multisensory out-of-body illusion to perceptually ‘teleport’ six healthy participants between two different locations in the scanner room during high-resolution functional magnetic resonance imaging (fMRI. The participants were fitted with MRI-compatible head-mounted displays that changed their first-person visual perspective to that of a pair of cameras placed in one of two corners of the scanner room. To elicit the illusion of being physically located in this position, we delivered synchronous visuo-tactile stimulation in the form of an object moving towards the cameras coupled with touches applied to the participant’s chest. Asynchronous visuo-tactile stimulation did not induce the illusion and served as a control condition. We found that illusory self-location could be successfully decoded from patterns of activity in the hippocampus in all of the participants in the synchronous (P0.05. At the group-level, the decoding accuracy was significantly higher in the synchronous than in the asynchronous condition (P=0.012. These findings associate hippocampal activity with the perceived location of the bodily self in space, which suggests that the human hippocampus is involved not only in spatial navigation and memory but also in the construction of our sense of bodily self-location.

  8. Velocity scaling of cue-induced smooth pursuit acceleration obeys constraints of natural motion. (United States)

    Ladda, Jennifer; Eggert, Thomas; Glasauer, Stefan; Straube, Andreas


    Information about the future trajectory of a visual target is contained not only in the history of target motion but also in static visual cues, e.g., the street provides information about the car's future trajectory. For most natural moving targets, this information imposes strong constraints on the relation between velocity and acceleration which can be exploited by predictive smooth pursuit mechanisms. We questioned how cue-induced predictive changes in pursuit direction depend on target speed and how cue- and target-induced pursuit interact. Subjects pursued a target entering a +/-90 degrees curve and moving on either a homogeneous background or on a low contrast static band indicating the future trajectory. The cue induced a predictive change of pursuit direction, which occurred before curve onset of the target. The predictive velocity component orthogonal to the initial pursuit direction started later and became faster with increasing target velocity. The predictive eye acceleration increased quadratically with target velocity and was independent of the initial target direction. After curve onset, cue- and target-induced pursuit velocity components were not linearly superimposed. The quadratic increase of eye acceleration with target velocity is consistent with the natural velocity scaling implied by the two-thirds power law, which is a characteristic of biological controlled movements. Comparison with linear pursuit models reveals that the ratio between eye acceleration and actual or expected retinal slip cannot be considered a constant gain factor. To obey a natural velocity scaling, this acceleration gain must linearly increase with target or pursuit velocity. We suggest that gain control mechanisms, which affect target-induced changes of pursuit velocity, act similarly on predictive changes of pursuit induced by static visual cues.


    NARCIS (Netherlands)

    HOORENS, [No Value; BUUNK, BP


    In the present paper, the relationship between illusory superiority (the belief to be better than others) and unrealistic optimism (the expectancy of a better future for oneself than for others) is examined, and the relationship of both self-serving biases to the person positivity bias (the more ben

  10. Expectation-based and data-based illusory correlation: the effects of confirming versus disconfirming evidence

    NARCIS (Netherlands)

    Berndsen, M.; van der Pligt, J.; Spears, R.; McGarty, C.


    Examined the effects of expectations and stimulus information on the perception of illusory correlation. Expectation was manipulated by telling 154 psychology students that group B behaved more negatively than group A vs by providing no expectation. Ss were also provided with information contained

  11. Quantitative analysis of illusory movement : spatial filtering and line localization in the human visual system

    NARCIS (Netherlands)

    Jansonius, Nomdo M.; Stam, Lucas; de Jong, Tim; Pijpker, Ben A.


    A narrow bar or line (width around 1 arcmin) between two fields of which the luminances are sinusoidally and in counterphase modulated in time appears to make an oscillatory movement. It is possible to annihilate this illusory movement with a real movement and thus to analyze this phenomenon quantit

  12. Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows. (United States)

    Palmisano, Stephen; Summersby, Stephanie; Davies, Rodney G; Kim, Juno


    Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.

  13. The effects of structural setting on the azimuthal velocities of blast induced ground motion in perlite

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, S.G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)


    A series of small scale explosive tests were performed during the spring of 1994 at a perlite mine located near Socorro, NM. The tests were designed to investigate the azimuthal or directional relationship between small scale geologic structures such as joints and the propagation of explosively induced ground motion. Three shots were initiated within a single borehole located at ground zero (gz) at depths varying from the deepest at 83 m (272 ft) to the shallowest at 10 m (32 ft). The intermediate shot was initiated at a depth of 63 m (208 ft). An array of three component velocity and acceleration transducers were placed in two concentric rings entirely surrounding the single shot hole at 150 and 300 azimuths as measured from ground zero. Data from the transducers was then used to determine the average propagation velocity of the blast vibration through the rock mass at the various azimuths. The rock mass was mapped to determine the prominent joint orientations (strike and dip) and the average propagation velocities were correlated with this geologic information. The data from these experiments shows that there is a correlation between the orientation of prominent joints and the average velocity of ground motion. It is theorized that this relationship is due to the relative path the ground wave follows when encountering a joint or structure within the rock mass. The more prominent structures allow the wave to follow along their strike thereby forming a sort of channel or path of least resistance and in turn increasing the propagation velocity. Secondary joints or structures may act in concert with more prominent features to form a network of channels along which the wave moves more freely than it may travel against the structure. The amplitudes of the ground motion was also shown to vary azimuthally with the direction of the most prominent structures.

  14. Respiration induced fiducial motion tracking in ultrasound using an extended SFA approach (United States)

    Cao, Kunlin; Bednarz, Bryan; Smith, L. S.; Foo, Thomas K. F.; Patwardhan, Kedar A.


    Radiation therapy (RT) plays an essential role in the management of cancers. The precision of the treatment delivery process in chest and abdominal cancers is often impeded by respiration induced tumor positional variations, which are accounted for by using larger therapeutic margins around the tumor volume leading to sub-optimal treatment deliveries and risk to healthy tissue. Real-time tracking of tumor motion during RT will help reduce unnecessary margin area and benefit cancer patients by allowing the treatment volume to closely match the positional variation of the tumor volume over time. In this work, we propose a fast approach which enables transferring the pre-estimated target (e.g. tumor) motion extracted from ultrasound (US) image sequences in training stage (e.g. before RT) to online data in real-time (e.g. acquired during RT). The method is based on extracting feature points of the target object, exploiting low-dimensional description of the feature motion through slow feature analysis, and finding the most similar image frame from training data for estimating current/online object location. The approach is evaluated on two 2D + time and one 3D + time US acquisitions. The locations of six annotated fiducials are used for designing experiments and validating tracking accuracy. The average fiducial distance between expert's annotation and the location extracted from our indexed training frame is 1.9+/-0.5mm. Adding a fast template matching procedure within a small search range reduces the distance to 1.4+/-0.4mm. The tracking time per frame is on the order of millisecond, which is below the frame acquisition time.

  15. Effects of Visual Vertical and Motion for Visually-Induced Body Sway

    Directory of Open Access Journals (Sweden)

    Toshihiro Takahashi


    Full Text Available Our previous study (Takahashi, Fukuda, Kaneko, 2010 reported that for the perception of the gravitational vertical (up-down of visual images, the information processed in the early stage of visual system, such as the luminance distribution and edges, seemed to have large effects when the stimulus was presented for a short time. When the presentation time increased, this tendency decreased with the increase of the influence of the information processed in a relatively higher stage of visual system such as knowledge or inference. The information regarding the gravitational vertical is also important in our actions such as walking and standing upright. In this study, we aimed to identify the visual factors to affect our action related to the gravitational vertical. We manipulated the factors such as the luminance distribution, motion, edges and meaning in natural pictures. As an indicator of action, we measured the observers' body sway induced by rotating the pictures periodically clockwise and counterclockwise. The results showed the motion and edges had large effects and the luminance distribution had little effect on body sway. We discuss the difference between perception and action in the processing of the information regarding the gravitational vertical.

  16. The efficacy of airflow and seat vibration on reducing visually induced motion sickness. (United States)

    D'Amour, Sarah; Bos, Jelte E; Keshavarz, Behrang


    Visually induced motion sickness (VIMS) is a well-known sensation in virtual environments and simulators, typically characterized by a variety of symptoms such as pallor, sweating, dizziness, fatigue, and/or nausea. Numerous methods to reduce VIMS have been previously introduced; however, a reliable countermeasure is still missing. In the present study, the effect of airflow and seat vibration to alleviate VIMS was investigated. Eighty-two participants were randomly assigned to one of four groups (airflow, vibration, combined airflow and vibration, and control) and then exposed to a 15 min long video of a bicycle ride shot from first-person view. VIMS was measured using the Fast Motion Sickness Scale (FMS) and the Simulator Sickness Questionnaire (SSQ). Results showed that the exposure of airflow significantly reduced VIMS, whereas the presence of seat vibration, in contrast, did not have an impact on VIMS. Additionally, we found that females reported higher FMS scores than males, however, this sex difference was not found in the SSQ scores. Our findings demonstrate that airflow can be an effective and easy-to-apply technique to reduce VIMS in virtual environments and simulators, while vibration applied to the seat is not a successful method.

  17. Laser-induced motion in nanoparticle suspension droplets on a surface (United States)

    Dietzel, Mathias; Poulikakos, Dimos


    The fluid and particle motion in a volatile colloidal nanoparticle suspension droplet ("nano-ink") spreading on a flat surface upon local heating through a laser beam is investigated numerically. The laser diameter, laser intensity, and the absorption coefficient of the nano-ink as well as the substrate thermal diffusivity were varied. The simulations are conducted with a finite-element method discretization of the extended axisymmetric Navier-Stokes equations in Lagrangian coordinates, accounting for evaporation, thermocapillarity, and Young-force-driven wetting for the fluid phase as well as for inertia-controlled particle motion for the solid phase. An additional continuous particle coagulation model with a locally monodispersed particle distribution is solved on the locations of the discrete computational particles for example cases. The localized heating leads, through the action of thermocapillarity, to a displacement of the liquid in the radial (outward) direction. A dimple in the droplet center region is formed as a consequence, which becomes flattened for larger laser beam diameters due to a significant enlargement in spreading. Substrates with high thermal diffusivity or large thermal contact resistance to the liquid can inhibit the Marangoni-induced enlargement of the droplet footprint. The coagulation model predicts for large absorption coefficients particle clustering primarily at the free surface, which prevents the formation of structures (built by the coagulated nanoparticles) with a uniform thickness.

  18. Bursting-like motion induced by time-varying delay in an internet congestion control model

    Institute of Scientific and Technical Information of China (English)

    Shu Zhang; Jian Xu


    Time delay is an important parameter in the problem of internet congestion control.According to some researches,time delay is not always constant and can be viewed as a periodic function of time for some cases.In this work,an internet congestion control model is considered to study the time-varying delay induced bursting-like motion,which consists of a rapid oscillation burst and quiescent steady state.Then,for the system with periodic delay of small amplitude and low frequency,the method of multiple scales is employed to obtain the amplitude of the oscillation.Based on the expression of the asymptotic solution,it can be found that the relative length of the steady state increases with amplitude of the variation of time delay and decreases with frequency of the variation of time delay.Finally,an effective method to control the bursting-like motion is proposed by introducing a periodic gain parameter with appropriate amplitude.Theoretical results are in agreement with that from numerical method.

  19. Strains Induced in Urban Structures by Ultra-High Frequency Blasting Rock Motions: A Case Study (United States)

    Dowding, C. H.; Hamdi, E.; Aimone-Martin, C. T.


    This paper describes measurement and interpretation of strains induced in two, multiple story, older, urban structures by ultra-high frequency rock blast excitation from contiguous excavation. These strains are obtained from relative displacements found by integrating time correlated velocity time histories from multiple positions on the structures and foundation rock. Observations are based on ten instrumented positions on the structures and in the foundation rock during eight blast events, which provided over 70 time histories for analysis. The case study and measurements allowed the following conclusions: despite particle velocities in the rock that greatly exceed regulatory limits, strains in external walls are similar to or lower than those necessary to crack masonry structures and weak wall covering materials. These strains are also lower than those sustained by single story residential structures when excited by low frequency motions with particle velocities below regulatory limits. Expected relative displacements calculated with pseudo velocity single degree of freedom response spectra of excitation motions measured in the rock are similar to those measured.

  20. The role of the parasympathetic nervous system in visually induced motion sickness: systematic review and meta-analysis. (United States)

    Farmer, Adam D; Al Omran, Yasser; Aziz, Qasim; Andrews, Paul L


    The parasympathetic nervous system (PNS) has been implicated in the development of visually induced motion sickness. The objective of this study was to perform a systematic review and meta-analysis of the effect of visually induced motion sickness on validated parameters of PNS tone. Methods followed PRISMA recommendations. Controlled trials reporting validated measures of PNS tone in visually induced motion sickness in healthy adults were included. One reviewer performed the screening of articles and data extraction, and two reviewers independently performed methodological evaluation. Data were synthesised using standardised mean differences (SMDs) for all relevant outcomes using a random-effects model. Publication bias was assessed via funnel plots and Egger's test. The search strategy identified seven citations comprising 237 healthy individuals. The mean quality score was 4/10 (range 3-7). There was no difference between baseline PNS tone between individuals who developed visually induced motion sickness and those that did not. Visually induced motion sickness (VIMS)-sensitive individuals had a reduction in PNS tone, following exposure to the stimulus (mean weighted SMD = -0.45, 95% confidence interval -0.64 to -0.27, Z = -4.8, p < 0.0001). There was no evidence of heterogeneity or publication bias. These data suggest that baseline PNS parameters do not provide a useful measure of predicting the probability of developing visually induced motion sickness. However, a fall in PNS tone, as indicated by cardiac activity, is characteristic in sensitive individuals. Further work is needed to characterise these responses in clinical populations, in conjunction with improvements and standardisation in study design.

  1. Validation of the dyspnea index in adolescents with exercise-induced paradoxical vocal fold motion. (United States)

    De Guzman, Vanessa; Ballif, Catherine L; Maurer, Rie; Hartnick, Christopher J; Raol, Nikhila


    Paradoxical vocal fold motion (PVFM) affects almost 1 million adolescents in the United States. However, to date, no disease-specific objective measure exists to assess symptom severity and response to treatment in adolescents with exercise-induced PVFM. To validate the Dyspnea Index (DI) quality-of-life instrument (previously validated for adults with breathing disorders) in children aged 12 to 18 years with exercise-induced PVFM and to determine the minimum significant DI change corresponding to patient-reported or caregiver-reported improvement or worsening of symptoms. A longitudinal study of 56 patients (age range, 12-18 years) diagnosed as having exercise-induced PVFM and their caregivers from February 1, 2013, to September 30, 2013, in an outpatient pediatric otolaryngology office practice. The DI was administered to patients and caregivers, with items modified to reflect the perspective of caregivers. Appropriate DI change was measured to reflect improvement or worsening of symptoms. Test-retest reliability was accomplished by having a subset of patients and caregivers complete the instrument twice within 2 weeks before therapy. Internal consistency was assessed by calculation of Cronbach α. Discriminant validity and convergent validity were determined by comparing DIs with assessment of global change in symptoms. The patient and caregiver mean (SD) DI changes were -12.9 (9.6) and -14.7 (9.3), respectively (P therapy.

  2. Rolling motion of an elastic cylinder induced by elastic strain gradients (United States)

    Chen, Lei; Chen, Shaohua


    Recent experiment shows that an elastic strain gradient field can be utilized to transport spherical particles on a stretchable substrate by rolling, inspired by which a generalized plane-strain Johnson-Kendall-Roberts model is developed in this paper in order to verify possible rolling of an elastic cylinder adhering on an elastic substrate subject to a strain gradient. With the help of contact mechanics, closed form solutions of interface tractions, stress intensity factors, and corresponding energy release rates in the plane-strain contact model are obtained, based on which a possible rolling motion of an elastic cylinder induced by strain gradients is found and the criterion for the initiation of rolling is established. The theoretical prediction is consistent well with the existing experimental observation. The result should be helpful for understanding biological transport mechanisms through muscle contractions and the design of transport systems with strain gradient.

  3. Anion recognition and cation-induced molecular motion in a heteroditopic [2]rotaxane. (United States)

    Leontiev, Alexandre V; Jemmett, Charlotte A; Beer, Paul D


    A heteroditopic [2]rotaxane consisting of a calix[4]diquinone-isophthalamide macrocycle and 3,5-bis-amide pyridinium axle components with the capability of switching between two positional isomers in response to barium cation recognition is synthesised. The anion binding properties of the rotaxane's interlocked cavity together with Na(+) , K(+) , NH(4) (+) and Ba(2+) cation recognition capabilities are elucidated by (1) H NMR and UV-visible spectroscopic titration experiments. Upon binding of Ba(2+) , molecular displacement of the axle's positively charged pyridinium group from the rotaxane's macrocyclic cavity occurs, whereas the monovalent cations Na(+) , K(+) and NH(4) (+) are bound without causing significant co-conformational change. The barium cation induced shuttling motion can be reversed on addition of tetrabutylammonium sulfate.

  4. Non-local dynamics governing the self-induced motion of a planar vortex filament (United States)

    Van Gorder, Robert A.


    While the Hasimoto planar vortex filament is one of the few exact solutions to the local induction approximation (LIA) approximating the self-induced motion of a vortex filament, it is natural to wonder whether such a vortex filament solution would exist for the non-local Biot-Savart dynamics exactly governing the filament motion, and if so, whether the non-local effects would drastically modify the solution properties. Both helical vortex filaments and vortex rings are known to exist under both the LIA and non-local Biot-Savart dynamics; however, the planar filament is a bit more complicated. In the present paper, we demonstrate that a planar vortex filament solution does exist for the non-local Biot-Savart formulation, provided that a specific non-linear integral equation (governing the spatial structure of such a filament) has a non-trivial solution. By using the Poincaré-Lindstedt method, we are able to obtain an accurate analytical approximation to the solution of this integral equation under physically reasonable assumptions. To obtain these solutions, we approximate local effects near the singularity of the integral equation using the LIA and non-local effects using the Biot-Savart formulation. Mathematically, the results constitute an analytical solution to an interesting nonlinear singular integro-differential equation in space and time variables. Physically, these results show that planar vortex filaments exist and maintain their forms under the non-local Biot-Savart formulation, as one would hope. Due to the regularization approach utilized, we are able to compare the structure of the planar filaments obtained under both LIA and Biot-Savart formulations in a rather straightforward manner, in order to determine the role of the non-locality on the structure of the planar filament.

  5. Temperature dependence of carrier spin polarization determined from current-induced domain wall motion in a Co/Ni nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, K.; Koyama, T.; Hiramatsu, R.; Kobayashi, K.; Ono, T. [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Chiba, D. [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 322-0012 (Japan); Fukami, S. [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Tanigawa, H.; Suzuki, T. [RENESAS Electronics Corporation, Sagamihara, Kanagawa 252-5298 (Japan); Ohshima, N. [NEC Energy Device Ltd., 1120 Shimokuzawa, Chuo-ku, Sagamihara, Kanagawa 252-5298 (Japan); Ishiwata, N. [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Nakatani, Y. [University of Electro-communications, Chofu, Tokyo 182-8585 (Japan)


    We have investigated the temperature dependence of the current-induced magnetic domain wall (DW) motion in a perpendicularly magnetized Co/Ni nanowire at various temperatures and with various applied currents. The carrier spin polarization was estimated from the measured domain wall velocity. We found that it decreased more with increasing temperature from 100 K to 530 K than the saturation magnetization did.

  6. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger


    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  7. Illusory correlations and control across the psychosis continuum: the contribution of hypersalient evidence-hypothesis matches. (United States)

    Balzan, Ryan P; Delfabbro, Paul H; Galletly, Cherrie A; Woodward, Todd S


    It has recently been proposed that individuals with delusions may be hypersalient to evidence-hypothesis matches, which may contribute to the formation and the maintenance of delusions. However, empirical support for the construct is limited. Using cognitive tasks designed to elicit the illusory correlation bias (i.e., perception of a correlation in which none actually exists) and the illusion of control bias (i.e., overestimation of one's personal influence over an outcome), the current article investigates the possibility that individuals with delusions are hypersalient to evidence-hypothesis matches. It was hypothesized that this hypersalience may increase a person's propensity to rely on such illusory correlations and estimates of control. A total of 75 participants (25 participants diagnosed with schizophrenia with a history of delusions, 25 nonclinical participants with delusion proneness, and 25 controls without delusion proneness) completed computerized versions of the "fertilizer" illusory correlation task developed by Kao and Wasserman (J Exp Psychol Learn Mem Cogn 19:1363-1386; 1993) and the "light-onset" illusion of control task created by Alloy and Abramson (J Exp Psychol Gen 108:441-485; 1979). The results across both tasks showed that the participants with schizophrenia were more susceptible than the nonclinical groups to illusory correlations (i.e., higher estimates of covariation between unrelated events) and illusions of control (i.e., higher estimates of control and perceived connection between the responses and the outcome). These results suggest that delusional ideation is linked to a hypersalience of evidence-hypothesis matches. The theoretical implications of this cognitive mechanism on the formation and the maintenance of delusions are discussed.

  8. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    KAUST Repository

    Akosa, Collins Ashu


    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  9. Acoustic-induced motion of the bushcricket (Mecopoda elongata, Tettigoniidae) tympanum. (United States)

    Nowotny, Manuela; Hummel, Jennifer; Weber, Melanie; Möckel, Doreen; Kössl, Manfred


    Bushcrickets have a tonotopically organised hearing organ, the so-called crista acustica, in the tibia of the forelegs. This organ responds to a frequency range of about 5-80 kHz and lies behind the anterior tympanum on top of a trachea branch. We analyzed the sound-induced vibration pattern of the anterior tympanum, using a Laser-Doppler-Vibrometer Scanning microscope system, in order to identify frequency-dependent amplitude and phase of displacement. The vibration pattern evoked by a frequency sweep (4-79 kHz) showed an amplitude maximum which would correspond to the resonance frequency of an open tube system. At higher frequencies of about 30 kHz a difference in the amplitude and phase response between the distal and the proximal part of the tympanum was detected. The inner plate of the tympanum starts to wobble at this frequency. This higher mode in the motion pattern is not explained by purely acoustic characteristics of the tracheal space below the tympanum but may depend on the mechanical impedance of the tympanum plate. In accordance with a previous hypothesis, the tympanum moves over the whole tested frequency range in the dorso-ventral direction like a hinged flap with the largest displacement in its ventral part and no higher modes of vibration.

  10. Pulsed Rydberg four-wave mixing with motion-induced dephasing in a thermal vapor

    CERN Document Server

    Chen, Yi-Hsin; Löw, Robert; Pfau, Tilman


    We report on time-resolved pulsed four-wave mixing (FWM) signals in a thermal Rubidium vapor involving a Rydberg state. We observe FWM signals with dephasing times up to 7 ns, strongly dependent on the excitation bandwidth to the Rydberg state. The excitation to the Rydberg state is driven by a pulsed two-photon transition on ns time scales. Combined with a third cw de-excitation laser, a strongly directional and collective emission is generated according to a combination of the phase matching effect and averaging over Doppler classes. In contrast to a previous report [1] using off-resonant FWM, at a resonant FWM scheme we observe additional revivals of the signal shortly after the incident pulse has ended. We infer that this is a revival of motion-induced constructive interference between the coherent emissions of the thermal atoms. The resonant FWM scheme reveals a richer temporal structure of the signals, compared to similar, but off-resonant excitation schemes. A simple explanation lies in the selectivity...

  11. Pulsed Rydberg four-wave mixing with motion-induced dephasing in a thermal vapor. (United States)

    Chen, Yi-Hsin; Ripka, Fabian; Löw, Robert; Pfau, Tilman

    We report on time-resolved pulsed four-wave mixing (FWM) signals in a thermal Rubidium vapor involving a Rydberg state. We observe FWM signals with dephasing times up to 7 ns, strongly dependent on the excitation bandwidth to the Rydberg state. The excitation to the Rydberg state is driven by a pulsed two-photon transition on ns timescales. Combined with a cw de-excitation laser, a strongly directional and collective emission is generated according to a combination of the phase matching effect and averaging over Doppler classes. In contrast to a previous report (Huber et al. in Phys Rev A 90: 053806, 2014) using off-resonant FWM, at a resonant FWM scheme we observe additional revivals of the signal shortly after the incident pulse has ended. We infer that this is a revival of motion-induced constructive interference between the coherent emissions of the thermal atoms. The resonant FWM scheme reveals a richer temporal structure of the signals, compared to similar, but off-resonant excitation schemes. A simple explanation lies in the selectivity of Doppler classes. Our numerical simulations based on a four-level model including a whole Doppler ensemble can qualitatively describe the data.

  12. Topological dynamics and current-induced motion in a skyrmion lattice (United States)

    Martinez, J. C.; Jalil, M. B. A.


    We study the Thiele equation for current-induced motion in a skyrmion lattice through two soluble models of the pinning potential. Comprised by a Magnus term, a dissipative term and a pinning force, Thiele’s equation resembles Newton’s law but in virtue of the topological character to the first, it differs significantly from Newtonian mechanics and because the Magnus force is dominant, unlike its mechanical counterpart—the Coriolis force—skyrmion trajectories do not necessarily have mechanical counterparts. This is important if we are to understand skyrmion dynamics and tap into its potential for data-storage technology. We identify a pinning threshold velocity for the one-dimensional pinning potential and for a two-dimensional attractive potential we find a pinning point and the skyrmion trajectories toward that point are spirals whose frequency (compare Kepler’s second law) and amplitude-decay depend only on the Gilbert constant and potential at the pinning point. Other scenarios, e.g. other choices of initial spin velocity, a repulsive potential, etc are also investigated.

  13. Changes of decay rates of radioactive 111In and 32P induced by mechanic motion

    Institute of Scientific and Technical Information of China (English)


    The changes of decay rates of radionuclide 111In(electron capture) and 32P(β decay) induced by exter-nal mechanic motion are studied. The results indicate that,in the external circular rotation in clockwise and anticlockwise centrifuge on Northern Hemisphere(radius 8 cm,2000 r/min) ,the half life of 111In compared with the referred(2.83 d) is decreased at 2.83% and increased at 1.77%,respectively;the half life of 32P compared with the referred(14.29 d) is decreased at 3.78% and increased at 1.75%,respec-tively. When the clockwise and anticlockwise rotations increase to 4000 r/min,the half life of 111In is decreased at 11.31% and increased at 6.36%,respectively;the half life of 32P is decreased at 10.08% and increased at 4.34%,respectively. When the circular rotation is removed,the decay rates of 111In and 32P return back to the referred,respectively. It is found that the external circular rotations in clockwise and anticlockwise centrifuge selectively increased and decreased the decay rates of 111In and 32P,respec-tively,and the effects are strongly dependent on the strength of circular rotation. It is suggested that these effects may be caused by the chiral interaction.

  14. Moment tensor inversion of ground motion from mining-induced earthquakes, Trail Mountain, Utah (United States)

    Fletcher, Joe B.; McGarr, A.


    A seismic network was operated in the vicinity of the Trail Mountain mine, central Utah, from the summer of 2000 to the spring of 2001 to investigate the seismic hazard to a local dam from mining-induced events that we expect to be triggered by future coal mining in this area. In support of efforts to develop groundmotion prediction relations for this situation, we inverted ground-motion recordings for six mining-induced events to determine seismic moment tensors and then to estimate moment magnitudes M for comparison with the network coda magnitudes Mc. Six components of the tensor were determined, for an assumed point source, following the inversion method of McGarr (1992a), which uses key measurements of amplitude from obvious features of the displacement waveforms. When the resulting moment tensors were decomposed into implosive and deviatoric components, we found that four of the six events showed a substantial volume reduction, presumably due to coseismic closure of the adjacent mine openings. For these four events, the volume reduction ranges from 27% to 55% of the shear component (fault area times average slip). Radiated seismic energy, computed from attenuation-corrected body-wave spectra, ranged from 2.4 ?? 105 to 2.4 ?? 106 J for events with M from 1.3 to 1.8, yielding apparent stresses from 0.02 to 0.06 MPa. The energy released for each event, approximated as the product of volume reduction and overburden stress, when compared with the corresponding seismic energies, revealed seismic efficiencies ranging from 0.5% to 7%. The low apparent stresses are consistent with the shallow focal depths of 0.2 to 0.6 km and rupture in a low stress/low strength regime compared with typical earthquake source regions at midcrustal depths.

  15. Implicit and Explicit Illusory Correlation as a Function of Political Ideology (United States)

    Carraro, Luciana; Negri, Paolo; Castelli, Luigi; Pastore, Massimiliano


    Research has demonstrated that people who embrace different ideological orientations often show differences at the level of basic cognitive processes. For instance, conservatives (vs. liberals) display an automatic selective attention for negative (vs. positive) stimuli, and tend to more easily form illusory correlations between negative information and minority groups. In the present work, we further explored this latter effect by examining whether it only involves the formation of explicit attitudes or it extends to implicit attitudes. To this end, following the typical illusory correlation paradigm, participants were presented with members of two numerically different groups (majority and minority) each performing either a positive or negative behaviour. Negative behaviors were relatively infrequent, and the proportion of positive and negative behaviors within each group was the same. Next, explicit and implicit (i.e., IAT-measured) attitudes were assessed. Results showed that conservatives (vs. liberals) displayed stronger explicit as well as implicit illusory correlations effects, forming more negative attitudes toward the minority (vs. majority) group at both the explicit and implicit level. PMID:24820311

  16. Electrophysiological correlates of learning-induced modulation of visual motion processing in humans

    Directory of Open Access Journals (Sweden)

    Viktor Gál


    Full Text Available Training on a visual task leads to increased perceptual and neural responses to visual features that were attended during training as well as decreased responses to neglected distractor features. However, the time course of these attention-based modulations of neural sensitivity for visual features has not been investigated before. Here we measured event related potentials (ERP in response to motion stimuli with different coherence levels before and after training on a speed discrimination task requiring object-based attentional selection of one of the two competing motion stimuli. We found that two peaks on the ERP waveform were modulated by the strength of the coherent motion signal; the response amplitude associated with motion directions that were neglected during training was smaller than the response amplitude associated with motion directions that were attended during training. The first peak of motion coherence-dependent modulation of the ERP responses was at 300 ms after stimulus onset and it was most pronounced over the occipitotemporal cortex. The second peak was around 500 ms and was focused over the parietal cortex. A control experiment suggests that the earlier motion coherence-related response modulation reflects the extraction of the coherent motion signal whereas the later peak might index accumulation and readout of motion signals by parietal decision mechanisms. These findings suggest that attention-based learning affects neural responses both at the sensory and decision processing stages.

  17. Impact of motion along the field direction on geometric-phase-induced false electric dipole moment signals

    CERN Document Server

    Yan, H


    Geometric-phase-induced false electric dipole moment (EDM) signals, resulting from interference between magnetic field gradients and particle motion in electric fields, have been studied extensively in the literature, especially for neutron EDM experiments utilizing stored ultracold neutrons and co-magnetometer atoms. Previous studies have considered particle motion in the transverse plane perpendicular to the direction of the applied electric and magnetic fields. We show, via Monte Carlo studies, that motion along the field direction can impact the magnitude of this false EDM signal if the wall surfaces are rough such that the wall collisions can be modeled as diffuse, with the results dependent on the size of the storage cell's dimension along the field direction.

  18. Image Processing for Capturing Motions of Crowd and Its Application to Pedestrian-Induced Lateral Vibration of a Footbridge

    Directory of Open Access Journals (Sweden)

    Junji Yoshida


    Full Text Available An image processing technique to capture motions of crowds is proposed and it is applied to understanding pedestrian-induced lateral vibration in a footbridge. Firstly, an outline of recording sequential images of vibration in the bridge is described and, then an image processing for human-head recognition from a single image of crowd is developed. In this method, conventional template matching techniques with human-head templates are extended by employing some selected templates, an updated search-algorithm and a classifier for clustering. Consequently, more than 50% of human-heads could be identified by the proposed method. Then, motions of detected human-heads, together with the bridge response, are tracked. Finally, interaction between the motions of pedestrians and the vibration of the bridge is discussed, with the emphasis on synchronization between the responses of the pedestrians and the bridge.

  19. Increased secretion of growth hormone, prolactin, antidiuretic hormone, and cortisol induced by the stress of motion sickness. (United States)

    Eversmann, T; Gottsmann, M; Uhlich, E; Ulbrecht, G; von Werder, K; Scriba, P C


    The stress of motion sickness was experimentally provoked by Coriolis effect. Significant and reproducible increases from the basal serum level (delta mean +/- S.E.) of antidiuretic hormone delta - ADH: 48.2 +/- 4.6 pg/ml; p less than 0.0005), of growth hormone (delta - hGH: 10.0 +/- 1.2 ng/ml; p less than 0.0005), of prolactin (delta - hPRL: 186.5 +/- 29.9 muU/ml; p less than 0.0005), and of cortisol (delta - F; 12.3 +/- 0.9 microgram%; p less than 0.0005) were observed, whereas the luteinizing hormone levels did not change significantly. The stimulation of hormone secretion induced by different degrees of motion sickness seems to correlate with the severity of motion sickness. The secretion of antidiuretic hormones is the most sensitive indicator for the stress of motion sickness whereas growth hormone, prolactin, and cortisol responses to the stress of motion sickness are more delayed and less pronounced.

  20. Visual motion transforms visual space representations similarly throughout the human visual hierarchy. (United States)

    Harvey, Ben M; Dumoulin, Serge O


    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Investigating the influence of respiratory motion on the radiation induced bystander effect in modulated radiotherapy (United States)

    Cole, Aidan J.; McGarry, Conor K.; Butterworth, Karl T.; McMahon, Stephen J.; Hounsell, Alan R.; Prise, Kevin M.; O'Sullivan, Joe M.


    Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy and may contribute towards uncertainties in radiotherapy planning. This study investigates the potential radiobiological implications occurring due to tumour motion in areas of geometric miss in lung cancer radiotherapy. A bespoke phantom and motor-driven platform to replicate respiratory motion and study the consequences on tumour cell survival in vitro was constructed. Human non-small-cell lung cancer cell lines H460 and H1299 were irradiated in modulated radiotherapy configurations in the presence and absence of respiratory motion. Clonogenic survival was calculated for irradiated and shielded regions. Direction of motion, replication of dosimetry by multi-leaf collimator (MLC) manipulation and oscillating lead shielding were investigated to confirm differences in cell survival. Respiratory motion was shown to significantly increase survival for out-of-field regions for H460/H1299 cell lines when compared with static irradiation (p < 0.001). Significantly higher survival was found in the in-field region for the H460 cell line (p < 0.030). Oscillating lead shielding also produced these significant differences. Respiratory motion and oscillatory delivery of radiation dose to human tumour cells has a significant impact on in- and out-of-field survival in the presence of non-uniform irradiation in this in vitro set-up. This may have important radiobiological consequences for modulated radiotherapy in lung cancer.

  2. Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires

    KAUST Repository

    Ivanov, Yurii P.


    The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.

  3. Real-space observation of molecular motion induced by femtosecond laser pulses. (United States)

    Bartels, Ludwig; Wang, Feng; Möller, Dietmar; Knoesel, Ernst; Heinz, Tony F


    Femtosecond laser irradiation is used to excite adsorbed CO molecules on a Cu110 surface; the ensuing motion of individual molecules across the surface is characterized on a site-to-site basis by in situ scanning tunneling microscopy. Adsorbate motion both along and perpendicular to the rows of the Cu110 surface occurs readily, in marked contrast to the behavior seen for equilibrium diffusion processes. The experimental findings for the probability and direction of the molecular motion can be understood as a manifestation of strong coupling between the adsorbates' lateral degrees of freedom and the substrate electronic excitation produced by the femtosecond laser radiation.

  4. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Directory of Open Access Journals (Sweden)

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  5. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    KAUST Repository

    Bang, Do


    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  6. [Changes in left ventricular regional wall motion induced by Verapamil (author's transl)]. (United States)

    Barbieri, E; Allegri, P; Morlino, T; Vincenzi, M


    28 subjects with atherosclerotic lesions of coronary arteries were studied by means of cineventriculography both before and after IV administration of verapamil Regional wall motion has been analyzed by means of two different methods. Imporvement of regional wall motion has been demonstrated in about 65% of cases. No significant result has been achieved in segments corresponding to previous infarctions. Such a response does not differ substantially from that evoked by nitroglycerin or other calcium antagonist drugs.

  7. Estimation of internal organ motion-induced variance in radiation dose in non-gated radiotherapy (United States)

    Zhou, Sumin; Zhu, Xiaofeng; Zhang, Mutian; Zheng, Dandan; Lei, Yu; Li, Sicong; Bennion, Nathan; Verma, Vivek; Zhen, Weining; Enke, Charles


    In the delivery of non-gated radiotherapy (RT), owing to intra-fraction organ motion, a certain degree of RT dose uncertainty is present. Herein, we propose a novel mathematical algorithm to estimate the mean and variance of RT dose that is delivered without gating. These parameters are specific to individual internal organ motion, dependent on individual treatment plans, and relevant to the RT delivery process. This algorithm uses images from a patient’s 4D simulation study to model the actual patient internal organ motion during RT delivery. All necessary dose rate calculations are performed in fixed patient internal organ motion states. The analytical and deterministic formulae of mean and variance in dose from non-gated RT were derived directly via statistical averaging of the calculated dose rate over possible random internal organ motion initial phases, and did not require constructing relevant histograms. All results are expressed in dose rate Fourier transform coefficients for computational efficiency. Exact solutions are provided to simplified, yet still clinically relevant, cases. Results from a volumetric-modulated arc therapy (VMAT) patient case are also presented. The results obtained from our mathematical algorithm can aid clinical decisions by providing information regarding both mean and variance of radiation dose to non-gated patients prior to RT delivery.

  8. High-Resolution Multi-Shot Spiral Diffusion Tensor Imaging with Inherent Correction of Motion-Induced Phase Errors (United States)

    Truong, Trong-Kha; Guidon, Arnaud


    Purpose To develop and compare three novel reconstruction methods designed to inherently correct for motion-induced phase errors in multi-shot spiral diffusion tensor imaging (DTI) without requiring a variable-density spiral trajectory or a navigator echo. Theory and Methods The first method simply averages magnitude images reconstructed with sensitivity encoding (SENSE) from each shot, whereas the second and third methods rely on SENSE to estimate the motion-induced phase error for each shot, and subsequently use either a direct phase subtraction or an iterative conjugate gradient (CG) algorithm, respectively, to correct for the resulting artifacts. Numerical simulations and in vivo experiments on healthy volunteers were performed to assess the performance of these methods. Results The first two methods suffer from a low signal-to-noise ratio (SNR) or from residual artifacts in the reconstructed diffusion-weighted images and fractional anisotropy maps. In contrast, the third method provides high-quality, high-resolution DTI results, revealing fine anatomical details such as a radial diffusion anisotropy in cortical gray matter. Conclusion The proposed SENSE+CG method can inherently and effectively correct for phase errors, signal loss, and aliasing artifacts caused by both rigid and nonrigid motion in multi-shot spiral DTI, without increasing the scan time or reducing the SNR. PMID:23450457

  9. The Alternative Omen Effect: Illusory negative correlation between the outcomes of choice options. (United States)

    Marciano-Romm, Déborah; Romm, Assaf; Bourgeois-Gironde, Sacha; Deouell, Leon Y


    In situations of choice between uncertain options, one might get feedback on both the outcome of the chosen option and the outcome of the unchosen option ("the alternative"). Extensive research has shown that when both outcomes are eventually revealed, the alternative's outcome influences the way people evaluate their own outcome. In a series of experiments, we examined whether the outcome of the alternative plays an additional role in the decision-making process by creating expectations regarding the outcome of the chosen option. Specifically, we hypothesized that people see a good (bad) alternative's outcome as a bad (good) sign regarding their own outcome when the two outcomes are in fact uncorrelated, a phenomenon we call the "Alternative Omen Effect" (ALOE). Subjects had to repeatedly choose between two boxes, the outcomes of which were then sequentially revealed. In Experiments 1 and 2 the alternative's outcome was presented first, and we assessed the individual's prediction of their own outcome. In Experiment 3, subjects had to predict the alternative's outcome after seeing their own. We find that even though the two outcomes were in fact uncorrelated, people tended to see a good (bad) alternative outcome as a bad (good) sign regarding their own outcome. Importantly, this illusory negative correlation affected subsequent behavior and led to irrational choices. Furthermore, the order of presentation was critical: when the outcome of the chosen option was presented first, the effect disappeared, suggesting that this illusory negative correlation is influenced by self-relevance. We discuss the possible sources of this illusory correlation as well as its implications for research on counterfactual thinking.

  10. Relationship Between EGG and the Dynamic Process of Motion Sickness Induced by Optokinetic Vection%视动错觉诱发的运动病动态发生过程与胃电的联系

    Institute of Scientific and Technical Information of China (English)

    张华; 杨芬; 刘志强; 张复生; 彭远开; 杨天德


    Objective To investigate the correlation between Electrogastrography(EGG) and the occurrence of nausea or/and vomit as well as the development of motion sickness(MS) induced by optokinetic stimulation(OPS) and to provide a clue and method for prediction and prevention of MS. Method Twenty male subjects,aged from 18 to 25 years,performed the test only once with the optokinetic drum rotated around a vertical axis at the speed of 60°/s for 15 min.Nausea and EGG signals were observed and recorded. Result (1)Both the increment of tachygastric percentage and the decrement of primary wave precentage of EGG in eleven subjects with nausea were significantly larger than those in nine subjects with no nausea(both P<0.001). (2)The circular vection preceded the changes of EGG in eleven subjects with nauseac while the MS scores in eleven subjects with nausea were higher than those in nine subjects with no nause (P<0.001).(3)During the rotation of drum,the decrement of primary wave percentage or the increment of tachgastria percentage also preceded the occurrence of nausea in eleven subjects with nausea(both P<0.01). Conclusion(1)The changes of EGG in subjects with nausea were significantly greater than those of EGG in subjects with no nausea.(2)There was a close relationship between circular vection or illusory self-rotation and EGG changes as well as the occurring of nausea induced by OPS.(3)Changes of EGG preceded the nausea of MS induced by OPS.%目的 在视动刺激诱发运动病过程中,探讨胃电的变化与运动病恶心症状动态发生过程的联系,为运动病的预测和防护提供思路和依据。方法 20名18~25岁的健康男性,分别接受15 min的单纯视动刺激实验,记录了运动病症状并采集了胃电信号。 结果 (1) 11名恶心发生者运动病分值明显高于9名恶心未发生者(P<0.001);同时,恶心发生者胃节律过速百分比的增加和主导慢波百分比的减少都明显大于9名恶心未发生者


    Institute of Scientific and Technical Information of China (English)

    王双连; 郭乙木; 甘春标


    This paper studies chaotic motions in quasi-integrable Hamiltonian systems with slow-varying parameters under both harmonic and noise excitations.Based on the dynamic theory and some assumptions of excited noises, an extended form of the stochastic Melnikov method is presented. Using this extended method, the homoclinic bifurcations and chaotic behavior of a nonlinear Hamiltonian system with weak feed-back control under both harmonic and Gaussian white noise excitations are analyzed in detail. It is shown that the addition of stochastic excitations can make the parameter threshold value for the occurrence of chaotic motions vary in a wider region. Therefore, chaotic motions may arise easily in the system. By the Monte-Carlo method, the numerical results for the time-history and the maximum Lyapunov exponents of an example system are finally given to illustrate that the presented method is effective.

  12. Current-induced domain wall motion in Co/Ni nano-wires with different Co and Ni thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, K; Chiba, D; Koyama, T; Yamada, G; Ono, T [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 (Japan); Tanigawa, H; Fukami, S; Suzuki, T; Ohshima, N; Ishiwata, N [NEC Corporation, 1120 Shimokuzawa, Chuo-ku, Sagamihara, Kanagawa 252-5298 (Japan); Nakatani, Y, E-mail: [University of Electro-communications, Chofu, Tokyo, 182-8585 (Japan)


    The authors have investigated magnetic domain wall motion induced by electric currents in ferromagnetic nano-wires made of Co/Ni multilayers. The thicknesses of Co and Ni layers were changed, whereas the numbers of layer stacks of Co and Ni were the same in all samples. The sample with thinner total Co/Ni thickness showed the lower threshold current density for the domain wall motion as an overall trend, which is qualitatively in agreement with the expectation by the theory based on the adiabatic spin-transfer model. The lowest threshold current density was 2.9x10{sup 11} A/m{sup 2} obtained in the sample with the total Co/Ni thickness of 3.4 nm and the wire width of 110 nm.

  13. Bunch motion in the presence of the self-induced voltage due to a reactive impedance with RF off

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikova, E. [European Organization for Nuclear Research, Geneva (Switzerland)


    Analytic self-consistent solutions have been found for the nonlinear Vlasov equation describing different types of behaviour with time of an intense bunch under the influence of voltage induced due to a reactive part of broad band impedance. The problem is solved for the particular type of the initial distribution function in longitudinal phase space which is elliptic and corresponds to parabolic line density. This paper is devoted to the consideration of the effects in the machine with RF off. In this case the induced voltage is changing with time and can significantly affect bunch motion. The same method applied in the case with RF on allows the time dependent effects of potential well distortion to be analysed. Numerical estimations for the CERN SPS show that effect of induced voltage is important for beam manipulations with RF off. Measurements of the change in the rate of debunching with intensity can be used to estimate the value of the reactive impedance. (author)

  14. Effects of dynamic luminance modulation on visually induced self-motion perception: observers' perception of illumination is important in perceiving self-motion. (United States)

    Nakamura, Shinji; Seno, Takeharu; Ito, Hiroyuki; Sunaga, Shoji


    Coherent luminance modulation of visual objects affects visually induced perception of self-motion (vection). The perceptual mechanism underlying the effects of dynamic luminance modulation were investigated with a visual stimulus simulating an external environment illuminated by a moving spotlight (the normal spotlight condition) or an inverted luminance version of it (the inverted luminance condition). Two psychophysical experiments indicated that vection was generally weakened in the inverted luminance condition. The results cannot be fully explained by the undesirable differences of luminosity within the experimental environment, and suggest that the contrast polarity of the visual stimulus has a significant impact on vection. Furthermore, the results show that the dynamic luminance variations weaken vection in the normal spotlight condition in which the observers perceived illumination modulations. In contrast, in the inverted luminance condition, in which the observers cannot perceive the illumination manipulation, the dynamic luminance variations may not impair vection, and may even be expected to strengthen vection, even though they shared similar global and systematic luminance variation with the normal spotlight condition. These experiments suggest that the observer's perception of illumination is a key factor in considering the effects of dynamic luminance modulation of the visual stimulus.

  15. Motion-Induced Interruptions and Postural Equilibrium in Linear Lateral Accelerations (United States)


    state of fitness, medication use, alcohol and caffeinated 13 drinks consumption, basic demographic information, and completed the Motion Sickness...Wertheim, A. H., Heus, R., & Vrijkotte, T. G. M. (1994). Energy expenditure, physical workload and postural control during walking on a moving platform

  16. Standardization of motion sickness induced by left-right and up-down reversing prisms (United States)

    Reschke, M. F.; Vanderploeg, J. M.; Brumley, E. A.; Kolafa, J. J.; Wood, S. J.


    Reversing prisms are known to produce symptoms of motion sickness, and have been used to provide a chronic stimulus for training subjects on symptom recognition and regulation. However, testing procedures with reversing prisms have not been standardized. A set of procedures were evaluated which could be standardized using prisms for provocation and to compare the results between Right/Left Reversing Prisms (R/L-RP) and Up/Down Reversing Prisms (U/D-RP). Fifteen subjects were tested with both types of prisms using a self paced walking course throughout the laboratory with work stations established at specified intervals. The work stations provided tasks requiring eye-hand-foot coordination and various head movements. Comparisons were also made between these prism tests and two other standardized susceptibility tests, the KC-135 parabolic static chair test and the Staircase Velocity Motion Test (SVMT). Two different types of subjective symptom reports were compared. The R/L-RP were significantly more provocative than the U/D-RP. The incidence of motion sickness symptoms for the R/L-RP was similar to the KC-135 parabolic static chair test. Poor correlations were found between the prism tests and the other standardized susceptibility tests, which might indicate that different mechanisms are involved in provoking motion sickness for these different tests.

  17. Measuring Motion-Induced B0-Fluctuations in the Brain Using Field Probes

    DEFF Research Database (Denmark)

    Andersen, Mads; Hanson, Lars G.; Madsen, Kristoffer Hougaard


    Purpose: Fluctuations of the background magnetic field (B0) due to body and breathing motion can lead to significant artifacts in brain imaging at ultrahigh field. Corrections based on real-time sensing using external field probes show great potential. This study evaluates different aspects of fi...

  18. Decoupled pelvis adjustment to induce lumbar motion: A technique that controls low back load in sitting

    NARCIS (Netherlands)

    Geffen, van Paul; Reenalda, Jasper; Veltink, Peter H.; Koopman, Bart F.J.M.


    Static sitting in confined settings have been associated with low back pain in sedentary occupations such as office works and car driving. To prevent lumbar discomfort in prolonged static sitting, periodic motion of the lumbar spine is needed. Because the pelvis forms the basis for lumbar spine curv

  19. Motion aftereffect of combined first-order and second-order motion. (United States)

    van der Smagt, M J; Verstraten, F A; Vaessen, E B; van Londen, T; van de Grind, W A


    When, after prolonged viewing of a moving stimulus, a stationary (test) pattern is presented to an observer, this results in an illusory movement in the direction opposite to the adapting motion. Typically, this motion aftereffect (MAE) does not occur after adaptation to a second-order motion stimulus (i.e. an equiluminous stimulus where the movement is defined by a contrast or texture border, not by a luminance border). However, a MAE of second-order motion is perceived when, instead of a static test pattern, a dynamic test pattern is used. Here, we investigate whether a second-order motion stimulus does affect the MAE on a static test pattern (sMAE), when second-order motion is presented in combination with first-order motion during adaptation. The results show that this is indeed the case. Although the second-order motion stimulus is too weak to produce a convincing sMAE on its own, its influence on the sMAE is of equal strength to that of the first-order motion component, when they are adapted to simultaneously. The results suggest that the perceptual appearance of the sMAE originates from the site where first-order and second-order motion are integrated.

  20. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy. (United States)

    McMullan, G; Vinothkumar, K R; Henderson, R


    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å(2) for every incident 300 keV e(-)/Å(2). The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e(-)/Å(2) per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination.

  1. Multi-Hazard Analysis for the Estimation of Ground Motion Induced by Landslides and Tectonics (United States)

    Iglesias, Rubén; Koudogbo, Fifame; Ardizzone, Francesca; Mondini, Alessandro; Bignami, Christian


    Space-borne synthetic aperture radar (SAR) sensors allow obtaining all-day all-weather terrain complex reflectivity images which can be processed by means of Persistent Scatterer Interferometry (PSI) for the monitoring of displacement episodes with extremely high accuracy. In the work presented, different PSI strategies to measure ground surface displacements for multi-scale multi-hazard mapping are proposed in the context of landslides and tectonic applications. This work is developed in the framework of ESA General Studies Programme (GSP). The present project, called Multi Scale and Multi Hazard Mapping Space based Solutions (MEMpHIS), investigates new Earth Observation (EO) methods and new Information and Communications Technology (ICT) solutions to improve the understanding and management of disasters, with special focus on Disaster Risk Reduction rather than Rapid Mapping. In this paper, the results of the investigation on the key processing steps for measuring large-scale ground surface displacements (like the ones originated by plate tectonics or active faults) as well as local displacements at high resolution (like the ones related with active slopes) will be presented. The core of the proposed approaches is based on the Stable Point Network (SPN) algorithm, which is the advanced PSI processing chain developed by ALTAMIRA INFORMATION. Regarding tectonic applications, the accurate displacement estimation over large-scale areas characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. In this context, a low-resolution approach based in the integration of differential phase increments of velocity and topographic error (obtained through the fitting of a linear model adjustment function to data) will be evaluated. Data from the default mode of Sentinel-1, the Interferometric Wide Swath Mode, will be considered for this application. Regarding landslides

  2. Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish

    Directory of Open Access Journals (Sweden)

    Verónica Pérez-Schuster


    Full Text Available Following moving visual stimuli (conditioning stimuli, CS, many organisms perceive, in the absence of physical stimuli, illusory motion in the opposite direction. This phenomenon is known as the motion aftereffect (MAE. Here, we use MAE as a tool to study the neuronal basis of visual motion perception in zebrafish larvae. Using zebrafish eye movements as an indicator of visual motion perception, we find that larvae perceive MAE. Blocking eye movements using optogenetics during CS presentation did not affect MAE, but tectal ablation significantly weakened it. Using two-photon calcium imaging of behaving GCaMP3 larvae, we find post-stimulation sustained rhythmic activity among direction-selective tectal neurons associated with the perception of MAE. In addition, tectal neurons tuned to the CS direction habituated, but neurons in the retina did not. Finally, a model based on competition between direction-selective neurons reproduced MAE, suggesting a neuronal circuit capable of generating perception of visual motion.

  3. Inhibition drives configural superiority of illusory Gestalt: Combined behavioral and drift-diffusion model evidence. (United States)

    Nie, Qi-Yang; Maurer, Mara; Müller, Hermann J; Conci, Markus


    Illusory Kanizsa figures demonstrate that a perceptually completed whole is more than the sum of its composite parts. In the current study, we explored part/whole relationships in object completion using the configural superiority effect (CSE) with illusory figures (Pomerantz & Portillo, 2011). In particular, we investigated to which extent the CSE is modulated by closure in target and distractor configurations. Our results demonstrated a typical CSE, with detection of a configural whole being more efficient than the detection of a corresponding part-level target. Moreover, the CSE was more pronounced when grouped objects were presented in distractors rather than in the target. A follow-up experiment systematically manipulated closure in whole target or, respectively, distractor configurations. The results revealed the effect of closure to be again stronger in distractor, rather than in target configurations, suggesting that closure primarily affects the inhibition of distractors, and to a lesser extent the selection of the target. In addition, a drift-diffusion model analysis of our data revealed that efficient distractor inhibition expedites the rate of evidence accumulation, with closure in distractors particularly speeding the drift toward the decision boundary. In sum, our findings demonstrate that the CSE in Kanizsa figures derives primarily from the inhibition of closed distractor objects, rather than being driven by a conspicuous target configuration. Altogether, these results support a fundamental role of inhibition in driving configural superiority effects in visual search.

  4. Illusory correlation and group impression formation in young and older adults. (United States)

    Mutter, S A


    This study investigated whether a greater illusory correlation bias is present in older adults' memory and evaluative judgment for majority and minority social groups and, if so, whether this bias might be due to an age-related decline in the ability to engage in on-line processing of group-trait information. Young and older adults read desirable and undesirable trait adjectives about the members of 2 groups under either no-distraction or distraction conditions. Group A had twice as many members as Group B and, for both groups, desirable traits occurred twice as often as undesirable traits. Afterwards, participants completed group-trait memory and evaluative judgment tasks. Greater illusory correlation in memory and evaluative judgment after distraction suggested that diverting resources to competing tasks produced deficits in both memory for specific group-trait information and on-line group impression formation. Older adults' memory for specific group-trait information was disrupted more by distraction than was young adults' memory. However, there were no age differences in evaluative judgment after either distraction condition, suggesting that on-line impression formation activities remain intact in old age. These findings are interpreted within the framework of fuzzy trace theory.

  5. Illusory superiority and schizotypal personality: explaining the discrepancy between subjective/objective psychopathology. (United States)

    Cohen, Alex S; Auster, Tracey L; MacAulay, Rebecca K; McGovern, Jessica E


    An interesting paradox has emerged from the literature regarding schizotypy--defined as the personality organization reflecting a putative liability for schizophrenia--spectrum disorders. Across certain cognitive, emotional, quality of life, and other functional variables, individuals with schizotypy report experiencing relatively severe levels of pathology. However, on objective tests of these same variables, individuals with schizotypy perform largely in the healthy range. These subjective impairments are paradoxical in that individuals with schizotypy, typically recruited from undergraduate college populations, should be healthier in virtually every conceivable measure compared to chronic, older outpatients with severe mental illness. The present study evaluated the idea that the subjective deficits associated with schizotypy largely reflect a lack of illusory superiority bias-a normally occurring bias associated with an overestimation of self-reported positive qualities and underestimation of negative qualities compared to others. In the present study, both state-measured using laboratory emotion-induction methods-and trait positive and negative emotion was assessed across self (e.g., how do you feel at this moment?) and other (e.g., how do most people feel at this moment?) domains in 39 individuals with self-reported schizotypy and 39 matched controls. Controls demonstrated an illusory superiority effect across both state and trait measures whereas individuals with schizotypy did not. These results were not explained by severity of mental health symptoms. These results suggest that a cognitive bias, or lack thereof, is a marker of schizotypy and a potential target for further research and therapy.

  6. Event-related potentials and illusory conjunctions in the time domain

    Directory of Open Access Journals (Sweden)

    Beatriz Gil-Gómez de Liaño


    Full Text Available (Rapid Serial Visual Presentation, RSVP can migrate forming a wrong combination or illusory conjunction. Several serial and parallel models have been proposed to explain the generation of this type of errors. The behavioral results fit better the two-stage parallel model than other serial and parallel models. However, they have not been studied the psychophysiological correlates that distinguish successful bindings from Illusory Conjunctions. The goal here is to collect electrophysiological records during this task to determine the degree to which they converge with the evidence from behavioral results. One RSVP task required to identify the only uppercase word in a stream of lowercase words at a rate of 12 items/sec. As in previous experiments, more intrusions from post-target items than from pre-target items were observed. The results from eventrelated potentials are also more supportive for the two-stage parallel model than for the serial or other parallel models, as reflected in the differential waves associated to correct and wrong combinations


    Directory of Open Access Journals (Sweden)

    Jialong Jiao


    Full Text Available In order to accurately predict wave induced motion and load responses of ships, a new experimental methodology is proposed. The new method includes conducting tests with large-scale models under natural environment conditions. The testing technique for large-scale model measurement proposed is quite applicable and general to a wide range of standard hydrodynamics experiments in naval architecture. In this study, a large-scale segmented self-propelling model allowed for investigating seakeeping performance and wave load behaviour as well as the testing systems were designed and experiments performed. A 2-hour voyage trial of the large-scale model aimed to perform a series of simulation exercises was carried out at Huludao harbour in October 2014. During the voyage, onboard systems, operated by crew, were used to measure and record the sea waves and the model responses. The post-voyage analysis of the measurements, both of the sea waves and the model’s responses, were made to predict the ship’s motion and load responses of short-term under the corresponding sea state. Furthermore, numerical analysis of short-term prediction was made by an in-house code and the result was compared with the experiment data. The long-term extreme prediction of motions and loads was also carried out based on the numerical results of short-term prediction.

  8. Audition influences color processing in the sound-induced visual flash illusion


    Mishra, Jyoti; Martinez, Antigona; Hillyard, Steven A.


    Multisensory interactions can lead to illusory percepts, as exemplified by the sound-induced extra flash illusion (SIFI: Shams et al., 2000, 2002). In this illusion, an audio-visual stimulus sequence consisting of two pulsed sounds and a light flash presented within a 100 ms time window generates the visual percept of two flashes. Here, we used colored visual stimuli to investigate whether concurrent auditory stimuli can affect the perceived features of the illusory flash. Zero, one or two pu...

  9. Motion of liquid drops on surfaces induced by asymmetric vibration: role of contact angle hysteresis. (United States)

    Mettu, Srinivas; Chaudhury, Manoj K


    Hysteresis of wetting, like the Coulombic friction at solid/solid interface, impedes the motion of a liquid drop on a surface when subjected to an external field. Here, we present a counterintuitive example, where some amount of hysteresis enables a drop to move on a surface when it is subjected to a periodic but asymmetric vibration. Experiments show that a surface either with a negligible or high hysteresis is not conducive to any drop motion. Some finite hysteresis of contact angle is needed to break the periodic symmetry of the forcing function for the drift to occur. These experimental results are consistent with simulations, in which a drop is approximated as a linear harmonic oscillator. The experiment also sheds light on the effect of the drop size on flow reversal, where drops of different sizes move in opposite directions due to the difference in the phase of the oscillation of their center of mass.

  10. Shear-induced fractures and three-dimensional motions in an organogel


    Grondin, Pauline; Manneville, Sébastien; Pozzo, Jean-Luc; Colin, Annie


    International audience; The flow behavior of a viscoelastic organogel is investigated using ultrasonic velocimetry combined with rheometry. Our gel presents a decreasing flow curve, i.e., the measured stress decreases as a function of the applied shear rate. Strikingly, we note that the local flow curve calculated from the velocity profiles also exhibits a decreasing part. We attribute this regime to the presence of a fracturing process and three-dimensional motions in the bulk of the sample.

  11. Shear-induced fractures and three-dimensional motions in an organogel (United States)

    Grondin, Pauline; Manneville, Sébastien; Pozzo, Jean-Luc; Colin, Annie


    The flow behavior of a viscoelastic organogel is investigated using ultrasonic velocimetry combined with rheometry. Our gel presents a decreasing flow curve, i.e., the measured stress decreases as a function of the applied shear rate. Strikingly, we note that the local flow curve calculated from the velocity profiles also exhibits a decreasing part. We attribute this regime to the presence of a fracturing process and three-dimensional motions in the bulk of the sample.

  12. Array-induced collective transport in the Brownian motion of coupled nonlinear oscillator systems


    Zheng, Zhigang; Hu, Bambi; Hu, Gang


    Brownian motion of an array of harmonically coupled particles subject to a periodic substrate potential and driven by an external bias is investigated. In the linear response limit (small bias), the coupling between particles may enhance the diffusion process, depending on the competition between the harmonic chain and the substrate potential. An analytical formula of the diffusion rate for the single-particle case is also obtained. In the nonlinear response regime, the moving kink may become...

  13. Queueing induced by bidirectional motor motion near the end of a microtubule (United States)

    Ashwin, Peter; Lin, Congping; Steinberg, Gero


    Recent live observations of motors in long-range microtubule (MT) dependent transport in the fungus Ustilago maydis have reported bidirectional motion of dynein and an accumulation of the motors at the polymerization-active (the plus-end) of the microtubule. Quantitative data derived from in vivo observation of dynein has enabled us to develop an accurate, quantitatively-valid asymmetric simple exclusion process (ASEP) model that describes the coordinated motion of anterograde and retrograde motors sharing a single oriented microtubule. We give approximate expressions for the size and distribution of the accumulation, and discuss queueing properties for motors entering this accumulation. We show for this ASEP model, that the mean accumulation can be modeled as an M/M/∞ queue that is Poisson distributed with mean Farr/pd , where Farr is the flux of motors that arrives at the tip and pd is the rate at which individual motors change direction from anterograde to retrograde motion. Deviations from this can in principle be used to gain information about other processes at work in the accumulation. Furthermore, our work is a significant step toward a mathematical description of the complex interactions of motors in cellular long-range transport of organelles.

  14. Detection of visual events along the apparent motion trace in patients with paranoid schizophrenia. (United States)

    Sanders, Lia Lira Olivier; Muckli, Lars; de Millas, Walter; Lautenschlager, Marion; Heinz, Andreas; Kathmann, Norbert; Sterzer, Philipp


    Dysfunctional prediction in sensory processing has been suggested as a possible causal mechanism in the development of delusions in patients with schizophrenia. Previous studies in healthy subjects have shown that while the perception of apparent motion can mask visual events along the illusory motion trace, such motion masking is reduced when events are spatio-temporally compatible with the illusion, and, therefore, predictable. Here we tested the hypothesis that this specific detection advantage for predictable target stimuli on the apparent motion trace is reduced in patients with paranoid schizophrenia. Our data show that, although target detection along the illusory motion trace is generally impaired, both patients and healthy control participants detect predictable targets more often than unpredictable targets. Patients had a stronger motion masking effect when compared to controls. However, patients showed the same advantage in the detection of predictable targets as healthy control subjects. Our findings reveal stronger motion masking but intact prediction of visual events along the apparent motion trace in patients with paranoid schizophrenia and suggest that the sensory prediction mechanism underlying apparent motion is not impaired in paranoid schizophrenia.

  15. The Positive Illusory Bias: Do Inflated Self-Perceptions in Children with ADHD Generalize to Perceptions of Others? (United States)

    Evangelista, Nicole M.; Owens, Julie S.; Golden, Catherine M.; Pelham, William E., Jr.


    This study examined whether children with symptoms of attention-deficit/hyperactivity disorder (ADHD) demonstrate positive illusory perceptions of their own competence and others' competence. Participants (67 children with ADHD symptoms; 40 non-ADHD children) completed the Self-Perception Profile for Children and rated actors' competence in videos…

  16. Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness.

    Directory of Open Access Journals (Sweden)

    Angelo G Solimini

    Full Text Available BACKGROUND: The increasing popularity of commercial movies showing three dimensional (3D images has raised concern about possible adverse side effects on viewers. METHODS AND FINDINGS: A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15 were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie. Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. CONCLUSIONS: Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators.

  17. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue.

    Directory of Open Access Journals (Sweden)

    Kurt H Schütte

    Full Text Available Small wireless trunk accelerometers have become a popular approach to unobtrusively quantify human locomotion and provide insights into both gait rehabilitation and sports performance. However, limited evidence exists as to which trunk accelerometry measures are suitable for the purpose of detecting movement compensations while running, and specifically in response to fatigue. The aim of this study was therefore to detect deviations in the dynamic center of mass (CoM motion due to running-induced fatigue using tri-axial trunk accelerometry. Twenty runners aged 18-25 years completed an indoor treadmill running protocol to volitional exhaustion at speeds equivalent to their 3.2 km time trial performance. The following dependent measures were extracted from tri-axial trunk accelerations of 20 running steps before and after the treadmill fatigue protocol: the tri-axial ratio of acceleration root mean square (RMS to the resultant vector RMS, step and stride regularity (autocorrelation procedure, and sample entropy. Running-induced fatigue increased mediolateral and anteroposterior ratios of acceleration RMS (p < .05, decreased the anteroposterior step regularity (p < .05, and increased the anteroposterior sample entropy (p < .05 of trunk accelerometry patterns. Our findings indicate that treadmill running-induced fatigue might reveal itself in a greater contribution of variability in horizontal plane trunk accelerations, with anteroposterior trunk accelerations that are less regular from step-to-step and are less predictable. It appears that trunk accelerometry parameters can be used to detect deviations in dynamic CoM motion induced by treadmill running fatigue, yet it is unknown how robust or generalizable these parameters are to outdoor running environments.

  18. Measurement of anomalous resistance induced by chaotic motion of electrons in a magnetic null point

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Keita; Yoshida, Zensho; Himura, Haruhiko; Morikawa, Junji; Nakashima, Chihiro; Saitoh, Haruhiko; Tahara, Shigeru; Fukao, Masayuki [Tokyo Univ., Graduate School of Frontier Sciences, Tokyo (Japan); Uchida, Taijiro [ULVAC Japan, Ltd. Hagisono, Chigasaki, Kanagawa (Japan)


    Chaotic motion of particle in magnetic null regions can produce a large collisionless resistivity. In order to measure the macroscopic resistivity, a new instrument using a Pockels crystal has been developed. This measurement can detect a high frequency electric field in plasmas. The Pockels probe satisfies the frequency response with 13.56 MHz and the sensitivity as low as 3x10{sup 2} V/m, which proves the capability of measuring the local electric fields in a plasma discharged by a radio-frequency method. (author)

  19. How illusory is the solitaire illusion? Assessing the degree of misperception of numerosity in adult humans

    Directory of Open Access Journals (Sweden)

    Christian Agrillo


    Full Text Available The Solitaire illusion occurs when the spatial arrangement of items influences the subjective estimation of their quantity. Unlike other illusory phenomena frequently reported in humans and often also in non-human animals, evidence of the Solitaire illusion in species other than humans remains weak. However, before concluding that this perceptual bias affects quantity judgments differently in human and non-human animals, further investigations on the strength of the Solitaire illusion is required. To date, no study has assessed the exact misperception of numerosity generated by the Solitaire arrangement, and the possibility exists that the numerical effects generated by the illusion are too subtle to be detected by non-human animals.The present study investigated the strength of this illusion in adult humans. In a relative numerosity task, participants were required to select which array contained more blue items in the presence of two arrays made of identical blue and yellow items. Participants perceived the Solitaire illusion as predicted, overestimating the Solitaire array with centrally clustered blue items as more numerous than the Solitaire array with blue items on the perimeter. Their performance in the presence of the Solitaire array was similar to that observed in control trials with numerical ratios larger than 0.67, suggesting that the illusory array produces a substantial overestimation of the number of blue items in one array relative to the other. This aspect was more directly investigated in a numerosity identification task in which participants were required to estimate the number of blue items when single arrays were presented one at a time. In the presence of the Solitaire array, participants slightly overestimated the number of items when they were centrally located while they underestimated the number of items when those items were located on the perimeter. Items located on the perimeter were perceived to be 76% as numerous

  20. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. (United States)

    Li, Quan; Fuks, Gad; Moulin, Emilie; Maaloum, Mounir; Rawiso, Michel; Kulic, Igor; Foy, Justin T; Giuseppone, Nicolas


    Making molecular machines that can be useful in the macroscopic world is a challenging long-term goal of nanoscience. Inspired by the protein machinery found in biological systems, and based on the theoretical understanding of the physics of motion at the nanoscale, organic chemists have developed a number of molecules that can produce work by contraction or rotation when triggered by various external chemical or physical stimuli. In particular, basic molecular switches that commute between at least two thermodynamic minima and more advanced molecular motors that behave as dissipative units working far from equilibrium when fuelled with external energy have been reported. However, despite recent progress, the ultimate challenge of coordinating individual molecular motors in a continuous mechanical process that can have a measurable effect at the macroscale has remained elusive. Here, we show that by integrating light-driven unidirectional molecular rotors as reticulating units in a polymer gel, it is possible to amplify their individual motions to achieve macroscopic contraction of the material. Our system uses the incoming light to operate under far-from-equilibrium conditions, and the work produced by the motor in the photostationary state is used to twist the entangled polymer chains up to the collapse of the gel. Our design could be a starting point to integrate nanomotors in metastable materials to store energy and eventually to convert it.

  1. Enhanced perceptions of control and predictability reduce motion-induced nausea and gastric dysrhythmia. (United States)

    Levine, Max E; Stern, Robert M; Koch, Kenneth L


    Nausea is a debilitating condition that is typically accompanied by gastric dysrhythmia. The enhancement of perceived control and predictability has generally been found to attenuate the physiological stress response. The aim of the present study was to test the effect of these psychosocial variables in the context of nausea, motion sickness, and gastric dysrhythmia. A 2x2, independent-groups, factorial design was employed in which perceived control and predictability were each provided at high or low levels to 80 participants before exposure to a rotating optokinetic drum. Ratings of nausea were obtained throughout a 6-min baseline period and a 16-min drum rotation period. Noninvasive recordings of the electrical activity of the stomach called electrogastrograms were also obtained throughout the study. Nausea scores were significantly lower among participants with high control than among those with low control, and were significantly lower among participants with high predictability than among those with low predictability. Estimates of gastric dysrhythmia obtained from the EGG during drum rotation were significantly lower among participants with high predictability than among those with low predictability. A significant interaction effect of control and predictability on gastric dysrhythmia was also observed, such that high control was only effective for arresting the development of gastric dysrhythmia when high predictability was also available. Stronger perceptions of control and predictability may temper the development of nausea and gastric dysrhythmia during exposure to provocative motion. Psychosocial interventions in a variety of nausea contexts may represent an alternative means of symptom control.

  2. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors (United States)

    Li, Quan; Fuks, Gad; Moulin, Emilie; Maaloum, Mounir; Rawiso, Michel; Kulic, Igor; Foy, Justin T.; Giuseppone, Nicolas


    Making molecular machines that can be useful in the macroscopic world is a challenging long-term goal of nanoscience. Inspired by the protein machinery found in biological systems, and based on the theoretical understanding of the physics of motion at the nanoscale, organic chemists have developed a number of molecules that can produce work by contraction or rotation when triggered by various external chemical or physical stimuli. In particular, basic molecular switches that commute between at least two thermodynamic minima and more advanced molecular motors that behave as dissipative units working far from equilibrium when fuelled with external energy have been reported. However, despite recent progress, the ultimate challenge of coordinating individual molecular motors in a continuous mechanical process that can have a measurable effect at the macroscale has remained elusive. Here, we show that by integrating light-driven unidirectional molecular rotors as reticulating units in a polymer gel, it is possible to amplify their individual motions to achieve macroscopic contraction of the material. Our system uses the incoming light to operate under far-from-equilibrium conditions, and the work produced by the motor in the photostationary state is used to twist the entangled polymer chains up to the collapse of the gel. Our design could be a starting point to integrate nanomotors in metastable materials to store energy and eventually to convert it.

  3. Illusory Visual Completion of an Object's Invisible Backside Can Make Your Finger Feel Shorter. (United States)

    Ekroll, Vebjørn; Sayim, Bilge; Van der Hallen, Ruth; Wagemans, Johan


    In a well-known magic trick known as multiplying balls, conjurers fool their audience with the use of a semi-spherical shell, which the audience perceives as a complete ball [1]. Here, we report that this illusion persists even when observers touch the inside of the shell with their own finger. Even more intriguingly, this also produces an illusion of bodily self-awareness in which the finger feels shorter, as if to make space for the purely illusory volume of the visually completed ball. This observation provides strong evidence for the controversial and counterintuitive idea that our experience of the hidden backsides of objects is shaped by genuine perceptual representations rather than mere cognitive guesswork or imagery [2].

  4. Illusory own body perceptions: case reports and relevance for bodily self-consciousness. (United States)

    Heydrich, Lukas; Dieguez, Sebastian; Grunwald, Thomas; Seeck, Margitta; Blanke, Olaf


    Neurological disorders of body representation have for a long time suggested the importance of multisensory processing of bodily signals for self-consciousness. One such group of disorders--illusory own body perceptions affecting the entire body--has been proposed to be especially relevant in this respect, based on neurological data as well as philosophical considerations. This has recently been tested experimentally in healthy subjects showing that integration of multisensory bodily signals from the entire body with respect to the three aspects: self-location, first-person perspective, and self-identification [corrected], is crucial for bodily self-consciousness. Here we present clinical and neuroanatomical data of two neurological patients with paroxysmal disorders of full body representation in whom only one of these aspects, self-identification, was abnormal. We distinguish such disorders of global body representation from related but distinct disorders and discuss their relevance for the neurobiology of bodily self-consciousness.

  5. Evaluation of adaptation to visually induced motion sickness based on the maximum cross-correlation between pulse transmission time and heart rate

    Directory of Open Access Journals (Sweden)

    Chiba Shigeru


    Full Text Available Abstract Background Computer graphics and virtual reality techniques are useful to develop automatic and effective rehabilitation systems. However, a kind of virtual environment including unstable visual images presented to wide field screen or a head mounted display tends to induce motion sickness. The motion sickness induced in using a rehabilitation system not only inhibits effective training but also may harm patients' health. There are few studies that have objectively evaluated the effects of the repetitive exposures to these stimuli on humans. The purpose of this study is to investigate the adaptation to visually induced motion sickness by physiological data. Methods An experiment was carried out in which the same video image was presented to human subjects three times. We evaluated changes of the intensity of motion sickness they suffered from by a subjective score and the physiological index ρmax, which is defined as the maximum cross-correlation coefficient between heart rate and pulse wave transmission time and is considered to reflect the autonomic nervous activity. Results The results showed adaptation to visually-induced motion sickness by the repetitive presentation of the same image both in the subjective and the objective indices. However, there were some subjects whose intensity of sickness increased. Thus, it was possible to know the part in the video image which related to motion sickness by analyzing changes in ρmax with time. Conclusion The physiological index, ρmax, will be a good index for assessing the adaptation process to visually induced motion sickness and may be useful in checking the safety of rehabilitation systems with new image technologies.

  6. Quantum leakage of collective excitations of atomic ensemble induced by spatial motion

    Institute of Scientific and Technical Information of China (English)

    LI; Yng(李勇); YI; Su(易俗); YOU; Li(尤力); SUN; Changpu(孙昌璞)


    We generalize the conception of quantum leakage for the atomic collective excitation states. By making use of the atomic coherence state approach, we study the influence of the atomic spatial motion on the symmetric collective states of 2-level atomic ensemble due to inhomogeneous coupling. In the macroscopic limit, we analyze the quantum decoherence of the collective atomic state by calculating the quantum leakage for a very large ensemble at a finite temperature. Our investigations show that the fidelity of the atomic system will not be good in the case of atom number N →∞. Therefore, quantum leakage is an inevitable problem in using the atomic ensemble as a quantum information memory. The detailed calculations shed theoretical light on quantum processing using atomic ensemble collective qubit.

  7. Magnetic domain wall motion in Co/Ni nanowires induced by a sloped electric field (United States)

    Yamada, Keisuke; Murayama, Soh; Nakatani, Yoshinobu


    We report the sloped-electric-field (SEF)-driven motion of a magnetic domain wall (DW) in a Co/Ni nanowire with a perpendicular anisotropy using micromagnetic simulations. The results show that the DW velocity increases in proportion to the modulation ratio of the SEF, and rapidly decreases above a threshold ratio of SEF (i.e., the breakdown). We derived the analytical equation of the effective magnetic field caused by the SEF, and show the resultant DW velocity. Also, we found that the maximum DW velocity is three times faster when the Dzyaloshinskii-Moriya interaction is 0.06 erg/cm2. The results presented here offer a promising route for the design of non-volatile memory and logic devices using only the electric-field.

  8. Concerted loop motion triggers induced fit of FepA to ferric enterobactin. (United States)

    Smallwood, Chuck R; Jordan, Lorne; Trinh, Vy; Schuerch, Daniel W; Gala, Amparo; Hanson, Mathew; Hanson, Matthew; Shipelskiy, Yan; Majumdar, Aritri; Newton, Salete M C; Klebba, Phillip E


    Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles. © 2014 Smallwood et al.

  9. The Oculus Rift: A cost-effective tool for studying visual-vestibular interactions in self-motion perception

    Directory of Open Access Journals (Sweden)

    Juno eKim


    Full Text Available For years now, virtual reality devices have been applied in the field of vision science in an attempt to improve our understanding of perceptual principles underlying the experience of self-motion. Some of this research has been concerned with exploring factors involved in the visually-induced illusory perception of self-motion, known as vection. We examined the usefulness of the cost-effective Oculus Rift in generating vection in seated observers. This device has the capacity to display optic flow in world coordinates by compensating for tracked changes in 3D head orientation. We measured vection strength in three conditions of visual compensation for head movement: compensated, uncompensated, and inversely compensated. During presentation of optic flow, the observer was instructed to make periodic head oscillations (+/- 22 deg horizontal excursions at approximately 0.53 Hz. We found that vection was best in the compensated condition, and was weakest in the inversely compensated condition. Surprisingly, vection was always better in passive viewing conditions, compared with conditions where active head rotations were performed. These findings suggest that vection is highly dependent on interactions between visual, vestibular and proprioceptive information, and may be highly sensitive to limitations of temporal lag in visual-vestibular coupling using this system.

  10. Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations (United States)

    Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.


    To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.

  11. Rectified motion in an asymmetrically structured channel due to induced-charge electrokinetic and thermo-kinetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Hideyuki, E-mail: [Frontier Research Center, Canon Inc. 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan and Department of Mechanical Systems Engineering, Shinshu University 4-17-1 Wakasato, Nagano 380-8553 (Japan)


    It would be advantageous to move fluid by the gradient of random thermal noises that are omnipresent in the natural world. To achieve this motion, we propose a rectifier that uses a thermal noise along with induced-charge electroosmosis and electrophoresis (ICEO and ICEP) around a metal post cylinder in an asymmetrically structured channel and numerically examine its rectification performance. By the boundary element method combined with the thin double layer approximation, we find that rectified motion occurs in the asymmetrically structured channel due to ICEO and ICEP. Further, by thermodynamical and equivalent circuit methods, we discuss a thermal voltage that drives a rectifier consisting of a fluidic channel of an electrolyte and an impedance as a noise source. Our calculations show that fluid can be moved in the asymmetrically structured channel by the fluctuation of electric fields due to a thermal noise only when there is a temperature difference. In addition, our simple noise argument provides a different perspective for the thermo-kinetic phenomena (around a metal post) which was predicted based on the electrolyte Seebeck effect in our previous paper [H. Sugioka, “Nonlinear thermokinetic phenomena due to the Seebeck effect,” Langmuir 30, 8621 (2014)].

  12. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Foley, E. L.; Levinton, F. M. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)


    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  13. Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cabalin, L.M.; Gonzalez, A. [Department of Analytical Chemistry, University of Malaga, E-29071 Malaga (Spain); Ruiz, J. [Department of Applied Physics I, University of Malaga, E-29071 Malaga (Spain); Laserna, J.J., E-mail: laserna@uma.e [Department of Analytical Chemistry, University of Malaga, E-29071 Malaga (Spain)


    Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s{sup -1}. Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.

  14. Laser-Induced Motion of a Nanofluid in a Micro-Channel

    Directory of Open Access Journals (Sweden)

    Tran X. Phuoc


    Full Text Available Since a photon carries both energy and momentum, when it interacts with a particle, photon-particle energy and momentum transfer occur, resulting in mechanical forces acting on the particle. In this paper we report our theoretical study on the use of a laser beam to manipulate and control the flow of nanofluids in a micro-channel. We calculate the velocity induced by a laser beam for TiO2, Fe2O3, Al2O3 MgO, and SiO2 nanoparticles with water as the base fluid. The particle diameter is 50 nm and the laser beam is a 4 W continuous beam of 6 mm diameter and 532 nm wavelength. The results indicate that, as the particle moves, a significant volume of the surrounding water (up to about 8 particle diameters away from the particle surface is disturbed and dragged along with the moving particle. The results also show the effect of the particle refractive index on the particle velocity and the induced volume flow rate. The velocity and the volume flowrate induced by the TiO2 nanoparticle (refractive index n = 2.82 are about 0.552 mm/s and 9.86 fL, respectively, while those induced by SiO2 (n = 1.46 are only about 7.569 μm/s and 0.135, respectively.

  15. The Interpretation of Motionally Induced Electric Fields in Oceans of Complex Geometry (United States)


    Magnetotelluric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.8 2D Gulf Stream Transect: Results...82 3.8 2D geometry used for calculating magnetotelluric transfer functions. . . . 84 3.9 Magnetotelluric transfer...and a magnetotelluric analysis is done to estimate the role of externally-induced signals. The observations are inconsistent with the standard 1D

  16. Motion sickness adaptation to Coriolis-inducing head movements in a sustained G flight simulator. (United States)

    Newman, Michael C; McCarthy, Geoffrey W; Glaser, Scott T; Bonato, Frederick; Bubka, Andrea


    Technological advances have allowed centrifuges to become more than physiological testing and training devices; sustained G, fully interactive flight simulation is now possible. However, head movements under G can result in vestibular stimulation that can lead to motion sickness (MS) symptoms that are potentially distracting, nauseogenic, and unpleasant. In the current study an MS adaptation protocol was tested for head movements under +Gz. Experienced pilots made 14 predetermined head movements in a sustained G flight simulator (at 3 +Gz) on 5 consecutive days and 17 d after training. Symptoms were measured after each head turn using a subjective 0-10 MS scale. The Simulator Sickness Questionnaire (SSQ) was also administered before and after each daily training session. After five daily training sessions, normalized mean MS scores were 58% lower than on Day 1. Mean total, nausea, and disorientation SSQ scores were 55%, 52%, and 78% lower, respectively. During retesting 17 d after training, nearly all scores indicated 90-100% retention of training benefits. The reduction of unpleasant effects associated with sustained G flight simulation using an adaptation training protocol may enhance the effectiveness of simulation. Practical use of sustained G simulators is also likely to be interspersed with other types of ground and in-flight training. Hence, it would be undesirable and unpleasant for trainees to lose adaptation benefits after a short gap in centrifuge use. However, current results suggest that training gaps in excess of 2 wk may be permissible with almost no loss of adaptation training benefits.

  17. Simulation of Fluid Flow in a Channel Induced by Three Types of Fin-Like Motion

    Institute of Scientific and Technical Information of China (English)


    One of many interesting research activities in biofluidmechanics is dedicated to investigations of locomotion in water.Some of propulsion mechanisms observed in the underwater world are used in the development process of underwater autonomic vehicles (AUV). In order to characterise several solutions according to their manoeuvrability, influence on the surrounding fluid and energetic efficiency, a detailed analysis of fin-like movement is indispensable.In the current paper an analysis of undulatory, oscillatory and combined fim-like movements by means of numerical simulation is carried out. The conservation equation of mass and the conservation equation of momentum are solved with the Finite Volume Method (FVM) by use of the software CFX-10.0. The undulatory and oscillatory fin movements are modelled with an equation that is implemented within an additional subroutine and joined with the main solver. Numericalsimulations are carried out in the computational domain, in which one fin is fixed in a flow-through water duct. Simulations are carded out in the range of the Re number up to 105. The results show significant influence of applied fin motion on the velocity distribution in the surrounding fluid.

  18. Investigating the fluid mechanics behind red blood cell-induced lateral platelet motion (United States)

    Crowl Erickson, Lindsay; Fogelson, Aaron


    Platelets play an essential role in blood clotting; they adhere to damaged tissue and release chemicals that activate other platelets. Yet in order to adhere, platelets must first come into contact with the injured vessel wall. Under arterial flow conditions, platelets have an enhanced concentration near blood vessel walls. This non-uniform cell distribution depends on the fluid dynamics of blood as a heterogeneous medium. We use a parallelized lattice Boltzmann-immersed boundary method to solve the flow dynamics of red cells and platelets in a periodic 2D vessel with no-slip boundary conditions. Red cells are treated as biconcave immersed boundary objects with isotropic Skalak membrane tension and an internal viscosity five times that of the surrounding plasma. Using this method we analyze the influence of shear rate, hematocrit, and red cell membrane properties on lateral platelet motion. We find that the effective diffusion of platelets is significantly lower near the vessel wall compared to the center of the vessel. Insight gained from this work could lead to significant improvements to current models for platelet adhesion where the presence of red blood cells is neglected due to computational intensity.

  19. Tidal motions and tidally induced fluxes through La Línea submarine canyon, western Alboran Sea (United States)

    Lafuente, Jesús GarcíA.; Sarhan, Tarek; Vargas, Manuel; Vargas, Juan M.; Plaza, Francisco


    Detailed observations from two mooring lines deployed in La Línea submarine canyon, western Alboran Sea, are presented. This is a narrow canyon in the sense that its width is always less than the internal radius of deformation. Tidal currents within the canyon are polarized in the along-canyon direction according to its narrow nature. They have considerable amplitude (values of around 0.5 m/s are often observed) and are forced by the internal pressure gradients associated with the baroclinic tide that is generated in the surroundings. Subsequent amplification of onshore baroclinic currents within the canyon accounts for the large amplitude observed. Cross-shelf exchange through the canyon due to tidal motions is different from zero despite the close to zero mean of tidal currents. The explanation is based on the asymmetry of water properties flowing up-canyon and down-canyon (some sort of tidal rectification). Regarding the energy flux, the canyon seems to be an adequate conduit to carry energy to the shore. Estimations made from our observations indicate that energy input onto the shelf per unit length parallel to the shore at the canyon head is enough to maintain mixing on the shelf at intermediate depths.

  20. Anisotropic tissue motion induced by acupuncture needling along intermuscular connective tissue planes. (United States)

    Fox, James R; Gray, Weili; Koptiuch, Cathryn; Badger, Gary J; Langevin, Helene M


    Acupuncture needle manipulation causes mechanical deformation of connective tissue, which in turn results in mechanical stimulation of fibroblasts, with active changes in cell shape and autocrine purinergic signaling. We have previously shown using ultrasound elastography in humans that acupuncture needle manipulation causes measurable movement of tissue up to several centimeters away from the needle. The goal of this study was to quantify the spatial pattern of tissue displacement and deformation (shear strain) in response to acupuncture needling along an intermuscular connective tissue plane compared with needling over the belly of a muscle. Eleven (11) healthy human subjects underwent a single testing session during which robotic acupuncture needling was performed while recording tissue displacement using ultrasound. Outcome measures were axial and lateral tissue displacement as well as lateral shear strain calculated using ultrasound elastography postprocessing. Tissue displacement and strain extended further in the longitudinal direction when needling between muscles, and in the transverse direction when needling over the belly of a muscle. The anisotropic tissue motion observed in this study may influence the spatial distribution of local connective tissue cellular responses following acupuncture needle manipulation.

  1. Gamma-aminobutyric acid (GABA) and neuropeptides in neural areas mediating motion-induced emesis (United States)

    Damelio, F.; Daunton, Nancy G.; Fox, Robert A.


    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid and the neuropeptides substance P and Met-enkephalin in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), dorsal motor nucleus of the vagus nerve (DMNV), and lateral vestibular nucleus (LVN). Glutamic acid decarboxylase immunoreactive (GAD-IR) terminals and fibers were observed in the AP and particularly in the ASP. A gradual decrease in the density of terminals was seen towards the solitary complex. The DMNV revealed irregularly scattered GAD-IR terminals within the neuropil or closely surrounding neuronal cell bodies. The LVN, particularly the dorsal division, showed numerous axon terminals which were mostly localize around large neurons and their proximal dendrites. Substance P immunoreactive (SP-IR) terminals and fibers showed high density in the solitary complex, in particular within the lateral division. The ASP showed medium to low density of SP-IR fibers and terminals. The AP exhibited a small number of fibers and terminals irregularly distributed. The DMNV revealed a high density of SP-IR terminals and fibers that were mainly concentrated in the periphery. Very few terminals were detected in the LVN. Met-enkephalin immunoreactive (Met-Enk-IR) fibers and terminals showed high density and uniform distribution in the DMNV. Scattered terminals and fibers were observed in the AP, ASP, and NTS (particularly the lateral division). The very few fibers were observed in the LVN surrounded the neuronal cell bodies. The present report is part of a study designed to investigate the interaction between neuropeptides and conventional neurotransmitters under conditions producing motion sickness and in the process of sensory-motor adaptation.

  2. On the migration-induced formation of the 9:7 mean motion resonance (United States)

    Migaszewski, Cezary


    We study formation of 9:7 mean motion resonance (MMR) as a result of convergent migration of two planets embedded in a disc. Depending on the migration parameters, initial orbits and planets' masses, the system may pass through the resonance or enter it (permanently or temporarily). We illustrate that a stable equilibrium of the averaged system (a periodic orbit of the N-body model) is surrounded by the region of permanent resonance capture, whose size depends on the migration parameters and the planets mass ratio. A system located inside this region tends towards the equilibrium (the capture is permanent), while a system located outside the region evolves away from the equilibrium and leaves the resonance. We verify recent results of Delisle et al. and Xu & Lai where they show that for m1 ≲ m2 (m1, m2 are the inner and outer planets' masses, respectively) the equilibrium is unstable when the migration is added, so the capture cannot be permanent. We show that for particular migration parameters the situation may be reversed (the equilibria are unstable for m1 ≳ m2). We illustrate that 9:7 MMR consists of two modes separated with a separatrix. The inner one is centred at the equilibrium and the outer one has no equilibrium in its centre. A system located outside the region of stable capture evolves from the inner into the outer mode. The evolution occurs along families of periodic orbits of the averaged system, which plays a crucial role in the dynamics after the resonance capture.

  3. Low-frequency, motionally induced electromagnetic fields in the ocean. 1. Theory (United States)

    Chave, Alan D.; Luther, Douglas S.


    The theory of electromagnetic induction by motional sources in the ocean is examined from a first principles point of view. The electromagnetic field is expanded mathematically in poloidal and toroidal magnetic modes based on the Helmholtz decomposition. After deriving a set of Green functions for the modes in an unbounded ocean of constant depth and conductivity underlain by an arbitrary one-dimensional conducting earth, a set of exact integral equations are obtained which describe the induction process in an ocean of vertically varying conductivity. Approximate solutions are constructed for the low-frequency (subinertial) limit where the horizontal length scale of the flow is large compared to the water depth, the effect of self induction is weak, and the vertical velocity is negligible, explicitly yielding complex relationships between the vertically-integrated, conductivity-weighted horizontal water velocity and the horizontal electric and three component magnetic fields and accounting for interactions with the conductive earth. After introducing geophysically reasonable models for the conductivity structures of the ocean and earth, these reduce to a spatially smoothed proportionality between the electromagnetic field components and the vertically-integrated, conductivity-weighted horizontal water velocity. An upper bound of a few times the water depth for the lateral averaging scale of the horizontal electric field is derived, and its constant of proportionality is shown to be nearly 1 for most of the deep ocean based on geophysical arguments. The magnetic field is shown to have a similar form but is a relatively weak, larger-scale average of the velocity field. Because vertical variations in the conductivity of seawater largely reflect its thermal structure and are weak beneath the thermocline, the horizontal electric field is a spatially filtered version of the true water velocity which strongly attenuates the influence of baroclinicity and accentuates the

  4. Field-induced domain wall motion of amorphous [CoSiB/Pt]{sub N} multilayers with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Y. H.; Lee, K. J.; Jung, M. H., E-mail: [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of); Yoon, J. B.; Cho, J. H.; You, C.-Y. [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of); Kim, T. W. [Department of Advanced Materials Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)


    Amorphous CoSiB/Pt multilayer is a perpendicular magnetic anisotropy material to achieve high squareness, low coercivity, strong anisotropy, and smooth domain wall (DW) motion, because of the smoother interface compared with crystalline multilayers. For [CoSiB(6 Å)/Pt (14 Å)]{sub N} multilayers with N = 3, 6, and 9, we studied the field-induced DW dynamics. The effective anisotropy constant K{sub 1}{sup eff} is 1.5 × 10{sup 6} erg/cm{sup 3} for all the N values, and the linear increment of coercive field H{sub c} with N gives constant exchange coupling J. By analyzing the field dependence of DW images at room temperature, a clear creep motion with the exponent μ = 1/4 could be observed. Even though the pinning field H{sub dep} slightly increases with N, the pinning potential energy U{sub c} is constant (=35 k{sub B}T) for all the N values. These results imply that the amorphous [CoSiB/Pt]{sub N} multilayers are inherently homogeneous compared to crystalline multilayers. For N ≤ 6, the pinning site density ρ{sub pin} is less than 1000/μm{sup 2}, which is about 1 pinning site per the typical device junction size of 30 × 30 nm{sup 2}. Also, the exchange stiffness constant A{sub ex} is obtained to be 0.48 × 10{sup −6} erg/cm, and the domain wall width is expected to be smaller than 5.5 nm. These results may be applicable for spin-transfer-torque magnetic random access memory and DW logic device applications.

  5. Controlled-motion of floating macro-objects induced by light

    Energy Technology Data Exchange (ETDEWEB)

    Lucchetta, Daniele E., E-mail:; Simoni, Francesco [Dipartimento SIMAU, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Nucara, Luca [The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Reginaldo Piaggio 34, 56025 Pontedera (Italy); Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Reginaldo Piaggio 34, 56025 Pontedera (Italy); Castagna, Riccardo, E-mail: [NEST, Istituto Nanoscienze – CNR, Scuola Normale Superiore di Pisa, 56127 Pisa (Italy)


    Photons energy can be conventionally converted to mechanical work through a series of energy-expensive steps such as for example delivery and storage. However, these steps can be bypassed obtaining a straightforward conversion of photons energy to mechanical work. As an example, in literature, high power near infrared light is used to move small objects floating on fluid surfaces, exploiting the Marangoni effect. In this work we use a low power non-collimated visible laser-light to induce thermal surface tension gradients, resulting in the movement of objects floating on fluid surfaces. By real time tracking of the object trajectories, we evaluate the average applied driving force caused by the light irradiation. In addition we show how transparent objects can be moved by light when the supporting fluids are properly doped.

  6. Sound frequency and aural selectivity in sound-contingent visual motion aftereffect.

    Directory of Open Access Journals (Sweden)

    Maori Kobayashi

    Full Text Available BACKGROUND: One possible strategy to evaluate whether signals in different modalities originate from a common external event or object is to form associations between inputs from different senses. This strategy would be quite effective because signals in different modalities from a common external event would then be aligned spatially and temporally. Indeed, it has been demonstrated that after adaptation to visual apparent motion paired with alternating auditory tones, the tones begin to trigger illusory motion perception to a static visual stimulus, where the perceived direction of visual lateral motion depends on the order in which the tones are replayed. The mechanisms underlying this phenomenon remain unclear. One important approach to understanding the mechanisms is to examine whether the effect has some selectivity in auditory processing. However, it has not yet been determined whether this aftereffect can be transferred across sound frequencies and between ears. METHODOLOGY/PRINCIPAL FINDINGS: Two circles placed side by side were presented in alternation, producing apparent motion perception, and each onset was accompanied by a tone burst of a specific and unique frequency. After exposure to this visual apparent motion with tones for a few minutes, the tones became drivers for illusory motion perception. However, the aftereffect was observed only when the adapter and test tones were presented at the same frequency and to the same ear. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the auditory processing underlying the establishment of novel audiovisual associations is selective, potentially but not necessarily indicating that this processing occurs at an early stage.

  7. Motion of a Free-Settling Spherical Particle Driven by a Laser-Induced Bubble (United States)

    Wu, Shengji; Zuo, Zhigang; Stone, Howard A.; Liu, Shuhong


    We document experimentally four different interactions of a laser-induced bubble and a free-settling particle, with different combinations of the geometric and physical parameters of the system. Our force balance model shows that four nondimensional factors involving the particle radius a , the maximum bubble radius Rmax , the initial separation distance l0 between the particle center and the bubble center, the fluid viscosity μf , and the particle and fluid densities ρp and ρf , respectively, in detail l0 /Rmax , a /Rmax , ρp /ρf , and μ*=μfTc /ρfRmax2 , where Tc=0.915 Rmax√{ρf /(p∞-pv ) } , influence the particle-bubble dynamics, and reasonably predict the maximum particle velocity and the limiting condition when the particle starts to "bounce off" the bubble during bubble growth. In particular, we also discover the high-speed ejection of the particle, and a cavity behind the particle, in cases when initially the particle is in very close proximity to the bubble. These observations offer new insights into the causal mechanism for the enhanced cavitation erosion in silt-laden water.

  8. Self-crumpling elastomers: bending motion induced by a drying stimulus (United States)

    Boulogne, François; Stone, Howard A.


    Capillary forces exerted by a liquid drop can bend elastic slender structures such as fibers or sheets. However, to successfully achieve capillary origami with sheets, it is important to make sure that the adhesion of the elastomer with the surface is low. We report an experimental study of the drying-induced peeling of a bilayer consisting of an elastomeric disk coated with a suspension of nanoparticles. We show that where capillary forces associated with the scale of the droplet can not compete with the adhesion of the elastomer on a surface, nevertheless large tensile stress developed in the coating, which resulted in a moment bending the bilayer. We attribute this stress to the nano-menisci in the pores of the colloidal material and we propose a model that describes successfully the early stage curvature of the bilayer. Thus, we show that the peeling can be conveniently controlled by the particle size and the coating thickness. We believe that such systems can be employed in various situations where delicate surfaces are involved such as in applications with optical and electronic components or in restoration of photographies, painting, wallpaper, fragile collectibles from contamination by dust, pollen, dirt, etc. The research leading to these results received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement 623541.

  9. Catalytic particles induced Marangoni flow: motion, pumping and self-assembly (United States)

    Malgaretti, Paolo; Dominguez, Alvaro; Popescu, Mihail N.; Dietrich, Siegfried

    When catalytic particles, such as Janus particles, or enzymes are in the vicinity of a fluid-fluid interface, their behavior can be strongly modulated by the presence of the interface and/or by the inhomogeneity in the transport properties of the two fluid phases. Hence, the effective interaction with the interface can lead to novel dynamical regimes absent in homogeneous fluids. For example, if the by-products of the catalysis are surface active their spatial distribution will affect the local value of the surface tension. In such a scenario, when a catalytic particle approaches a fluid-fluid interface a Marangoni flow will set up as a response to the inhomogeneity in the surface tension induced by the byproducts of the catalysis. The onset of such a flow will attract the catalytic particle towards the interface. Interestingly the strength of such an effective attraction is strongly affected by the affinity of the byproduct to the interface as well as by the transport properties of the two fluid phases. In particular, for water-oil interfaces such an effect overwhelms other means of active transport such as self-diffusiophoresis and makes it suitable to enhance particle accumulation close to fluid-fluid interfaces. Finally I will discuss the onset of collective behavior.

  10. Images of paraffin monolayer crystals with perfect contrast: minimization of beam-induced specimen motion (United States)

    Glaeser, R.M.; McMullan, G.; Faruqi, A.R.; Henderson, R.


    Quantitative analysis of electron microscope images of organic and biological two-dimensional crystals has previously shown that the absolute contrast reached only a fraction of that expected theoretically from the electron diffraction amplitudes. The accepted explanation for this is that irradiation of the specimen causes beam-induced charging or movement, which in turn causes blurring of the image due to image or specimen movement. In this paper, we used three different approaches to try to overcome this image-blurring problem for monolayer crystals of paraffin. Our first approach was to use an extreme form of spotscan imaging, in which a single image was assembled on film by the successive illumination of up to 50,000 spots each of diameter around 7nm. The second approach was to use the Medipix II detector with its zero-noise readout to assemble a time-sliced series of images of the same area in which each frame from a movie with up to 400 frames had an exposure of only 500 electrons. In the third approach, we simply used a much thicker carbon support film to increase the physical strength and conductivity of the support. Surprisingly, the first two methods involving dose fractionation respectively in space or time produced only partial improvements in contrast whereas the third approach produced many virtually perfect images, in which the absolute contrast predicted from the electron diffraction amplitudes was observed in the images. We conclude that it is possible to obtain consistently almost perfect images of beam-sensitive specimens if they are attached to an appropriately strong and conductive support, but great care is needed in practice and the problem of how best to image ice-embedded biological structures in the absence of a strong, conductive support film requires more work. PMID:21185452

  11. Classifying Motion. (United States)

    Duzen, Carl; And Others


    Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)

  12. Rotating Snakes Illusion—Quantitative Analysis Reveals a Region in Luminance Space With Opposite Illusory Rotation (United States)

    Atala-Gérard, Lea


    The Rotating Snakes Illusion employs patterns with repetitive asymmetric luminance steps forming a “snake wheel.” In the underlying luminance sequence {black, dark grey, white, light grey}, coded as {0, g1, 100, g2}, we varied g1 and g2 and measured illusion strength via nulling: Saccades were performed next to a “snake wheel” that rotated physically; observers adjusted rotation until a stationary percept obtained. Observers performed the perceptual nulling of the seeming rotation reliably. Typical settings for (g1, g2), measured from images by Kitaoka, are around (20%, 60%). Indeed, we found a marked illusion in the region (g1≈{0%–25%}, g2≈{20%–75%}) with a rotation speed of ≈1°/s. Surprisingly, we detected a second “island” around (70%, 95%) with opposite direction of the illusory rotation and weaker illusion. Our quantitative measurements of illusion strength confirmed the optimal luminance choices of the standard snake wheel and, unexpectedly, revealed an opposite rotation illusion. PMID:28228928

  13. Rotating Snakes Illusion-Quantitative Analysis Reveals a Region in Luminance Space With Opposite Illusory Rotation. (United States)

    Atala-Gérard, Lea; Bach, Michael


    The Rotating Snakes Illusion employs patterns with repetitive asymmetric luminance steps forming a "snake wheel." In the underlying luminance sequence {black, dark grey, white, light grey}, coded as {0, g1, 100, g2}, we varied g1 and g2 and measured illusion strength via nulling: Saccades were performed next to a "snake wheel" that rotated physically; observers adjusted rotation until a stationary percept obtained. Observers performed the perceptual nulling of the seeming rotation reliably. Typical settings for (g1, g2), measured from images by Kitaoka, are around (20%, 60%). Indeed, we found a marked illusion in the region (g1≈{0%-25%}, g2≈{20%-75%}) with a rotation speed of ≈1°/s. Surprisingly, we detected a second "island" around (70%, 95%) with opposite direction of the illusory rotation and weaker illusion. Our quantitative measurements of illusion strength confirmed the optimal luminance choices of the standard snake wheel and, unexpectedly, revealed an opposite rotation illusion.

  14. Neural correlates of an illusory touch experience investigated with fMRI. (United States)

    Lloyd, Donna M; McKenzie, Kirsten J; Brown, Richard J; Poliakoff, Ellen


    When asked to judge the presence or absence of near-threshold tactile stimuli, participants often report touch experiences when no tactile stimulation has been delivered ('false alarms'). The simultaneous presentation of a light flash during the stimulation period can increase the frequency of touch reports, both when touch is and is not present. Using fMRI, we investigated the BOLD response during both light-present and light-absent false alarms, testing predictions concerning two possible neural mechanisms underlying these illusory touch experiences: activation of a tactile representation in primary somatosensory cortex (SI) and/or activation of a tactile representation in late processing areas outside of sensory-specific cortex, such as medial prefrontal cortex (MPC). Our behavioural results showed that participants made false alarms in light-present and light-absent trials, both of which activated regions of the medial parietal and medial prefrontal cortex including precuneus, posterior cingulate and paracingulate cortex, suggesting the same underlying mechanism. However, only a non-significant increase in SI activity was measured in response to false alarm vs. correct rejection trials. We argue that our results provide evidence for the role of top-down regions in somatic misperception, consistent with findings from studies in humans and non-human primates.

  15. The responses to illusory contours of neurons in cortex areas 17 and 18 of the cats

    Institute of Scientific and Technical Information of China (English)


    Responses to illusory contours (ICs) were sampled from neurons incortical areas 17 and 18 of the anesthetized cats. For ICs sensitive cells, the differences of receptive field properties were compared when ICs and real contour stimuli were applied. Two hundred orientation or direction selective cells were studied. We find that about 42 percent of these cells were the ICs sensitive cells. Although their orientation or direction tuning curves to ICs bar and real bars were similar, the response modes (especially latency and time course) were different. The cells' responses to ICs were independent of the spatial phases of sinusoidal gratings, which composed the ICs. The cells' optimal spatial frequency to composing gratings the ICs was much higher than the one to moving gratings. Therefore, these cells really responded to the ICs rather than the line ends of composing gratings. For some kinds of velocity-tuning cells, the optimal velocity to moving ICs bar was much lower than the optimal velocity to moving bars. The present results demonstrate that some cells in areas 17 and 18 of cats have the ability to respond to ICs and have different response properties of the receptive fields to ICs and luminance boundaries via different neural mechanisms.

  16. Grasping the diagonal: controlling attention to illusory stimuli for action and perception. (United States)

    Stöttinger, Elisabeth; Aigner, Stefan; Hanstein, Klara; Perner, Josef


    Since the pioneering work of [Aglioti, S., DeSouza, J. F., & Goodale, M. A. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5(6), 679-685] visual illusions have been used to provide evidence for the functional division of labour within the visual system-one system for conscious perception and the other system for unconscious guidance of action. However, these studies were criticised for attentional mismatch between action and perception conditions and for the fact that grip size is not determined by the size of an object but also by surrounding obstacles. Stoettinger and Perner [Stoettinger, E., & Perner, J., (2006). Dissociating size representations for action and for conscious judgment: Grasping visual illusions without apparent obstacles. Consciousness and Cognition, 15, 269-284] used the diagonal illusion controlling for the influence of surrounding features on grip size and bimanual grasping to rule out attentional mismatch. Unfortunately, the latter objective was not fully achieved. In the present study, attentional mismatch was avoided by using only the dominant hand for action and for indicating perceived size. Results support the division of labour: Grip aperture follows actual size independent of illusory effects, while finger-thumb span indications of perceived length are clearly influenced by the illusion.

  17. A new motion illusion based on competition between two kinds of motion processing units: the accordion grating. (United States)

    Gori, Simone; Giora, Enrico; Yazdanbakhsh, Arash; Mingolla, Ennio


    Parametric psychophysical investigations are reported for two related illusory effects that occur when viewing an elementary square-wave grating while making "back and forth" head movements along the projection line. Observers report a non-rigid distortion of the pattern, including: (i) an expansion in a direction perpendicular to the stripes, and (ii) a perceived curvature of the stripes. We investigated these two phenomena independently. The first depends on the classical physiological aperture problem that confronts early cells in the vision system. Interactions between ambiguous and unambiguous motion signals, generated at line interiors and line ends, respectively, can explain why the perceived expansion occurs only in directions perpendicular to the stripes. A simple model is presented and successfully tested by a nulling psychophysical experiment with four subjects. The experiment varies key stimulus attributes that generate ambiguous and unambiguous motion signals. Regarding the illusory curvature, a differential geometry model of the optics of our display, which identifies a non-classical three-dimensional (3D) aperture problem, is proposed (Yazdanbakhsh & Gori, 2011). We tested that model by implementing its closed form prediction of distortion to design displays for a second psychophysical experiment that also uses a nulling technique. Results from four subjects allow the quantification of the degree of perceived curvature as a function of speed, distance and stimulus type (blurred vs. unblurred grating) and are compatible with the predictions of the model.

  18. Investigation of respiration induced intra- and inter-fractional tumour motion using a standard Cone Beam CT

    DEFF Research Database (Denmark)

    Gottlieb, Karina Lindberg; Hansen, Christian R; Hansen, Olfred;


    To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum.......To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum....

  19. P1-17: Pseudo-Haptics Using Motion-in-Depth Stimulus and Second-Order Motion Stimulus

    Directory of Open Access Journals (Sweden)

    Shuichi Sato


    Full Text Available Modification of motion of the computer cursor during the manipulation by the observer evokes illusory haptic sensation (Lecuyer et al., 2004 ACM SIGCHI '04 239–246. This study investigates the pseudo-haptics using motion-in-depth and second-order motion. A stereoscopic display and a PHANTOM were used in the first experiment. A subject was asked to move a visual target at a constant speed in horizontal, vertical, or front-back direction. During the manipulation, the speed was reduced to 50% for 500 msec. The haptic sensation was measured using the magnitude estimation method. The result indicates that perceived haptic sensation from motion-in-depth was about 30% of that from horizontal or vertical motion. A 2D display and the PHANTOM were used in the second experiment. The motion cue was second order—in each frame, dots in a square patch reverses in contrast (i.e., all black dots become white and all white dots become black. The patch was moved in a horizontal direction. The result indicates that perceived haptic sensation from second-order motion was about 90% of that from first-order motion.

  20. Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model. (United States)

    Bhatti, M M; Zeeshan, A; Ellahi, R


    In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞.

  1. Range of motion (ROM) restriction influences quipazine-induced stepping behavior in postnatal day one and day ten rats. (United States)

    Strain, Misty M; Brumley, Michele R


    Previous research has shown that neonatal rats can adapt their stepping behavior in response to sensory feedback in real-time. The current study examined real-time and persistent effects of ROM (range of motion) restriction on stepping in P1 and P10 rats. On the day of testing, rat pups were suspended in a sling. After a 5-min baseline, they were treated with the serotonergic receptor agonist quipazine (3.0mg/kg) or saline (vehicle control). Half of the pups had a Plexiglas plate placed beneath them at 50% of limb length to induce a period of ROM restriction during stepping. The entire test session included a 5-min baseline, 15-min ROM restriction, and 15-min post-ROM restriction periods. Following treatment with quipazine, there was an increase in both fore- and hindlimb total movement and alternated steps in P1 and P10 pups. P10 pups also showed more synchronized steps than P1 pups. During the ROM restriction period, there was a suppression of forelimb movement and synchronized steps. We did not find evidence of persistent effects of ROM restriction on the amount of stepping. However, real-time and persistent changes in intralimb coordination occurred. Developmental differences also were seen in the time course of stepping between P1 and P10 pups, with P10 subjects showing show less stepping than younger pups. These results suggest that sensory feedback modulates locomotor activity during the period of development in which the neural mechanisms of locomotion are undergoing rapid development.

  2. Time variation of Kepler transits induced by stellar rotating spots - a way to distinguish between prograde and retrograde motion I. Theory

    CERN Document Server

    Mazeh, Tsevi; Shporer, Avi


    Some transiting planets discovered by the Kepler mission display transit timing variations (TTVs) induced by stellar spots that rotate on the visible hemisphere of their parent stars. A TTV can be derived when a planet crosses a spot, modifying the shape of the transit light curve. We present an approach that can, in principle, use the derived TTVs of a planet to distinguish between a prograde and a retrograde planetary motion with respect to the stellar rotation. Assuming a single spot darker than the stellar disc, spot crossing by the planet can induce measured positive (negative) TTV, if the crossing occurs in the first (second) half of the transit. On the other hand, the motion of the spot towards (away from) the center of the stellar visible disc causes the stellar brightness to decrease (increase). Therefore, for a planet with prograde motion, the TTV is positive when the local slope of the stellar flux at the time of transit is negative, and vice versa. Using a simplistic model we show that TTVs induce...

  3. Compensation of Wave-Induced Motion and Force Phenomena for Ship-Based High Performance Robotic and Human Amplifying Systems

    Energy Technology Data Exchange (ETDEWEB)

    Love, LJL


    The decrease in manpower and increase in material handling needs on many Naval vessels provides the motivation to explore the modeling and control of Naval robotic and robotic assistive devices. This report addresses the design, modeling, control and analysis of position and force controlled robotic systems operating on the deck of a moving ship. First we provide background information that quantifies the motion of the ship, both in terms of frequency and amplitude. We then formulate the motion of the ship in terms of homogeneous transforms. This transformation provides a link between the motion of the ship and the base of a manipulator. We model the kinematics of a manipulator as a serial extension of the ship motion. We then show how to use these transforms to formulate the kinetic and potential energy of a general, multi-degree of freedom manipulator moving on a ship. As a demonstration, we consider two examples: a one degree-of-freedom system experiencing three sea states operating in a plane to verify the methodology and a 3 degree of freedom system experiencing all six degrees of ship motion to illustrate the ease of computation and complexity of the solution. The first series of simulations explore the impact wave motion has on tracking performance of a position controlled robot. We provide a preliminary comparison between conventional linear control and Repetitive Learning Control (RLC) and show how fixed time delay RLC breaks down due to the varying nature wave disturbance frequency. Next, we explore the impact wave motion disturbances have on Human Amplification Technology (HAT). We begin with a description of the traditional HAT control methodology. Simulations show that the motion of the base of the robot, due to ship motion, generates disturbances forces reflected to the operator that significantly degrade the positioning accuracy and resolution at higher sea states. As with position-controlled manipulators, augmenting the control with a Repetitive

  4. Through the Neural Magnifying Glass: Visual Acuity and Motion-Aftereffect

    Directory of Open Access Journals (Sweden)

    S.C Boyle


    Full Text Available A Sloan- or Snellen-type visual acuity chart is commonly used for routine eye examination. This test serves as a benchmark for visual acuity where observers read out letters of decreasing size at a recommended viewing distance. The smallest readable letter size is typically used as a measure of visual acuity. For example, vision of 20/20 and 10/10 describe the ability to resolve letters that subtend 5 minutes of arc at a viewing distance of 20 (6m and 10 feet (3m, respectively. Here we show that adaptation to a rotating spiral and the ensuing motion aftereffect (MAE significantly alters visual acuity in normal observers. In one group 44 observers adapted to contracting motion and in a second group 30 observers adapted to expanding motion. The results clearly demonstrate that the expanding MAE facilitated subsequent letter recognition whereas the contracting MAE impaired letter recognition. We conclude that illusory expansion enlarges the apparent size of letters thereby increasing perceptual fields and number of feature detectors. Illusory contraction on the other hand reduces the apparent size of the letters thereby decreasing perceptual fields and number of feature detectors. It is an astonishing characteristic of the visual system that motion adaptation can improve visual acuity – a measure that is typically related to the optics of the eye rather than feature recognition and cognitive inference

  5. K-space and image-space combination for motion-induced phase-error correction in self-navigated multicoil multishot DWI. (United States)

    Van, Anh T; Karampinos, Dimitrios C; Georgiadis, John G; Sutton, Bradley P


    Motion during diffusion encodings leads to different phase errors in different shots of multishot diffusion-weighted acquisitions. Phase error incoherence among shots results in undesired signal cancellation when data from all shots are combined. Motion-induced phase error correction for multishot diffusion-weighted imaging (DWI) has been studied extensively and there exist multiple phase error correction algorithms. A commonly used correction method is the direct phase subtraction (DPS). DPS, however, can suffer from incomplete phase error correction due to the aliasing of the phase errors in the high spatial resolution phases. Furthermore, improper sampling density compensation is also a possible issue of DPS. Recently, motion-induced phase error correction was incorporated in the conjugate gradient (CG) image reconstruction procedure to get a nonlinear phase correction method that is also applicable to parallel DWI. Although the CG method overcomes the issues of DPS, its computational requirement is high. Further, CG restricts to sensitivity encoding (SENSE) for parallel reconstruction. In this paper, a new time-efficient and flexible k-space and image-space combination (KICT) algorithm for rigid body motion-induced phase error correction is introduced. KICT estimates the motion-induced phase errors in image space using the self-navigated capability of the variable density spiral trajectory. The correction is then performed in k -space. The algorithm is shown to overcome the problem of aliased phase errors. Further, the algorithm preserves the phase of the imaging object and receiver coils in the corrected k -space data, which is important for parallel imaging applications. After phase error correction, any parallel reconstruction method can be used. The KICT algorithm is tested with both simulated and in vivo data with both multishot single-coil and multishot multicoil acquisitions. We show that KICT correction results in diffusion-weighted images with higher

  6. Molecular dynamics simulations of protein-tyrosine phosphatase 1B. I. Ligand-induced changes in the protein motions

    DEFF Research Database (Denmark)

    Peters, Günther H. J.; Frimurer, T.M.; Andersen, J.N.


    Activity of enzymes, such as protein tyrosine phosphatases (PTPs), is often associated with structural changes in the enzyme, resulting in selective and stereospecific reactions with the substrate. To investigate the effect of a substrate on the motions occurring in PTPs, we have performed...... in the protein were analyzed using the essential dynamics technique. Our results indicate that the predominately internal motions in PTP1B occur in a subspace of only a few degrees of freedom. Upon substrate binding, the flexibility of the protein is reduced by similar to 10%. The largest effect is found...... in the protein region, where the N-terminal of the substrate is located, and in the loop region Val(198-)Gly(209). Displacements in the latter loop are associated with the motions in the WPD loop, which contains a catalytically important aspartic acid. Estimation of the pK(a) of the active-site cysteine along...

  7. Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway

    NARCIS (Netherlands)

    Lubeck, A.J.A.; Bos, J.E.; Stins, J.F.


    Abstract Objective It is generally assumed that motion in motion images is responsible for increased postural sway as well as for visually induced motion sickness (VIMS). However, this has not yet been tested. To that end, we studied postural sway and VIMS induced by motion and still images. Method

  8. Fractional motions

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo I., E-mail: [Holon Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Shlesinger, Michael F., E-mail: [Office of Naval Research, Code 30, 875 N. Randolph St., Arlington, VA 22203 (United States)


    Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the “Noah effect”), nor long-range correlations (the “Joseph effect”). The quintessential model for processes displaying the Noah effect is Lévy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Lévy motion. In this paper we review these four random-motion models–henceforth termed “fractional motions” –via a unified physical setting that is based on Langevin’s equation, the Einstein–Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts–according to microscopic-level details–which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents—a “Noah exponent” governing their fluctuations, and a “Joseph exponent” governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions.

  9. Joint correction of Nyquist artifact and minuscule motion-induced aliasing artifact in interleaved diffusion weighted EPI data using a composite two-dimensional phase correction procedure. (United States)

    Chang, Hing-Chiu; Chen, Nan-Kuei


    Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI.

  10. Effect of a pinning field on the critical current density for current-induced domain wall motion in perpendicular magnetic anisotropy nanowires. (United States)

    Ooba, Ayaka; Fujimura, Yuma; Takahashi, Kota; Komine, Takashi; Sugita, Ryuji


    In this study, the effect of a pinning field on the critical current density for current-induced domain wall motion in nanowires with perpendicular magnetic anisotropy was investigated using micromagnetic simulations. In order to estimate the pinning field in notched nanowires, we conducted wall energy calculations for nanowires with various saturation magnetizations. The pinning field increased as the notch size increased. The pinning field decreased as the saturation magnetization decreased. As a result, the decreased in the pinning field causes the reduction of the critical current density. Therefore, a significant reduction of the critical current density can be obtained by decreasing the saturation magnetization, even if wall pinning occurs.

  11. Investigation of the motion of a viscous fluid in the vitreous cavity induced by eye rotations and implications for drug delivery (United States)

    Bonfiglio, Andrea; Repetto, Rodolfo; Siggers, Jennifer H.; Stocchino, Alessandro


    Intravitreal drug delivery is a commonly used treatment for several retinal diseases. The objective of this research is to characterize and quantify the role of the vitreous humor motion, induced by saccadic movements, on drug transport processes in the vitreous chamber. A Perspex model of the human vitreous chamber was created, and filled with a purely viscous fluid, representing eyes with a liquefied vitreous humor or those containing viscous tamponade fluids. Periodic movements were applied to the model and the resulting three-dimensional (3D) flow fields were measured. Drug delivery within the vitreous chamber was investigated by calculating particle trajectories using integration over time of the experimental velocity fields. The motion of the vitreous humor generated by saccadic eye movements is intrinsically 3D. Advective mass transport largely overcomes molecular diffusive transport and is significantly anisotropic, leading to a much faster drug dispersion than in the case of stationary vitreous humor. Disregarding the effects of vitreous humor motion due to eye movements when predicting the efficiency of drug delivery treatments leads to significant underestimation of the drug transport coefficients, and this, in turn, will lead to significantly erroneous predictions of the concentration levels on the retina.

  12. Photo-induced morphological winding and unwinding motion of nanoscrolls composed of niobate nanosheets with a polyfluoroalkyl azobenzene derivative. (United States)

    Nabetani, Yu; Takamura, Hazuki; Uchikoshi, Akino; Hassan, Syed Zahid; Shimada, Tetsuya; Takagi, Shinsuke; Tachibana, Hiroshi; Masui, Dai; Tong, Zhiwei; Inoue, Haruo


    Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials.

  13. Application of parametric equations of motion to study the laser induced multiphoton dissociation of H2+ in intense laser field. (United States)

    Kalita, Dhruba J; Rao, Akshay; Rajvanshi, Ishir; Gupta, Ashish K


    We have applied parametric equations of motion (PEM) to study photodissociation dynamics of H(2)(+). The resonances are extracted using smooth exterior scaling method. This is the first application of PEM to non-Hermitian Hamiltonian that includes resonances and the continuum. Here, we have studied how the different resonance states behave with respect to the change in field amplitude. The advantage of this method is that one can easily trace the different states that are changing as the field parameter changes.

  14. Insight derived from molecular dynamics simulation into substrate-induced changes in protein motions of proteinase K. (United States)

    Tao, Yan; Rao, Zi-He; Liu, Shu-Qun


    Because of the significant industrial, agricultural and biotechnological importance of serine protease proteinase K, it has been extensively investigated using experimental approaches such as X-ray crystallography, site-directed mutagenesis and kinetic measurement. However, detailed aspects of enzymatic mechanism such as substrate binding, release and relevant regulation remain unstudied. Molecular dynamics (MD) simulations of the proteinase K alone and in complex with the peptide substrate AAPA were performed to investigate the effect of substrate binding on the dynamics/molecular motions of proteinase K. The results indicate that during simulations the substrate-complexed proteinase K adopt a more compact and stable conformation than the substrate-free form. Further essential dynamics (ED) analysis reveals that the major internal motions are confined within a subspace of very small dimension. Upon substrate binding, the overall flexibility of the protease is reduced; and the noticeable displacements are observed not only in substrate-binding regions but also in regions opposite the substrate-binding groove/pockets. The dynamic pockets caused by the large concerted motions are proposed to be linked to the substrate recognition, binding, orientation and product release; and the significant displacements in regions opposite the binding groove/pockets are considered to play a role in modulating the dynamics of enzyme-substrate interaction. Our simulation results complement the biochemical and structural studies, highlighting the dynamic mechanism of the functional properties of proteinase K.

  15. SU-E-J-268: Is It Necessary to Account for Organs at Risk Respiratory Induced Motion Effects in Radiotherapy Planning with Tumor Tracking?

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, M; Boussion, N; Visvikis, D [INSERM UMR 1101 - LaTIM, Brest (France); Fayad, H [INSERM UMR 1101 - LaTIM, UBO, Brest (France); Pradier, O [CHRU Morvan, Radiotherapy, Brest (France)


    Purpose: The objective of this study was to evaluate the necessity to account for the organs at risk (OARs) respiratory induced motion in addition to the tumor displacement when planning a radiotherapy treatment that accounts for tumor motion. Methods: For 18 lung cancer patients, conformational radiotherapy treatment plans were generated using 3 different CT volumes: the two extreme respiratory phases corresponding to either the full inspiration (plan 1) or expiration (plan 3), as well as a manually deformed phase consisting in full inspiration combined with the full expiration tumor location (plan 2) simulating a tumor tracking plan without addressing OARs motion. Treatment plans were initially created on plan 1 and then transferred to plan 2 and 3 which represent respectively the tumor displacement only and the whole anatomic variations due to breathing. The dose coverage and the dose delivered to the OARs were compared using conformational indexes and generalized equivalent uniform dose. Results: The worst conformational indexes were obtained for plans with all anatomic deformations (Table 1) with an underestimation of the 95% isodose spreading on healthy tissue compared to plans considering the tumor displacement only. Furthermore, mean doses to the OARs when accounting for all the anatomic changes were always higher than those associated with the tumor displacement only: the mean difference between these two plans was 1±1.37 Gy (maximum of 3.8 Gy) for the heart and 1.4±1.42 Gy (maximum of 4.1 Gy) for the lung in which the tumor was located (Figure 1). Conclusion: OARs deformations due to breathing motion should be included in the treatment planning in order to avoid unnecessary OARs dose and/or allow for a tumor dose escalation. This is even more important for treatments like stereotactic radiation therapy which necessitates a high precision ballistic and dose control.

  16. Color Difference Threshold of Chromostereopsis Induced by Flat Display Emission

    Directory of Open Access Journals (Sweden)

    Maris eOzolinsh


    Full Text Available The study of chromostereopsis has gained attention in the backdrop of the use of computer displays in daily life. In this context, we analyze the illusory depth sense using planar color images presented on a computer screen. We determine the color difference threshold required to induce an illusory sense of depth psychometrically using a constant stimuli paradigm. Isoluminant stimuli are presented on a computer screen, which stimuli are aligned along the blue-red line in the computer display CIE xyY color chart. Stereo disparity is generated by increasing the color difference between the central and surrounding areas of the stimuli with both areas consisting of random dots on a black background. The observed altering of illusory dept sense, thus also stereo disparity is validated using the center-of-gravity model. The induced illusory sense of the depth effect undergoes color reversal upon varying the binocular lateral eye pupil covering conditions (lateral or medial. Analysis of the retinal image point spread function for the display red and blue pixel radiation validates the altering of chromostereopsis retinal disparity achieved by increasing the color difference, and also the chromostereopsis color reversal caused by varying the eye pupil covering conditions.

  17. Sm@C2v(3)-C80: site-hopping motion of endohedral Sm atom and metal-induced effect on redox profile (United States)

    Xu, Wei; Niu, Ben; Shi, Zujin; Lian, Yongfu; Feng, Lai


    A new metallofullerene Sm@C2v(3)-C80 was synthesized and characterized. X-Ray analysis showed that the endohedral Sm atom undergoes a hopping motion between several off-center sites, even at low temperature. In addition, a comparative electrochemical study between Sm@C2v(3)-C80 and Yb@C2v(3)-C80 revealed their different redox potentials, suggesting a metal-induced effect on their redox profiles.A new metallofullerene Sm@C2v(3)-C80 was synthesized and characterized. X-Ray analysis showed that the endohedral Sm atom undergoes a hopping motion between several off-center sites, even at low temperature. In addition, a comparative electrochemical study between Sm@C2v(3)-C80 and Yb@C2v(3)-C80 revealed their different redox potentials, suggesting a metal-induced effect on their redox profiles. CCDC reference number 894168. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr32193a

  18. An in vitro comparative study of intracanal fluid motion and wall shear stress induced by ultrasonic and polymer rotary finishing files in a simulated root canal model. (United States)

    Koch, Jon; Borg, John; Mattson, Abby; Olsen, Kris; Bahcall, James


    Objective. This in vitro study compared the flow pattern and shear stress of an irrigant induced by ultrasonic and polymer rotary finishing file activation in an acrylic root canal model. Flow visualization analysis was performed using an acrylic canal filled with a mixture of distilled water and rheoscopic fluid. The ultrasonic and polymer rotary finishing file were separately tested in the canal and activated in a static position and in a cyclical axial motion (up and down). Particle movement in the fluid was captured using a high-speed digital camera and DaVis 7.1 software. The fluid shear stress analysis was performed using hot film anemometry. A hot-wire was placed in an acrylic root canal and the canal was filled with distilled water. The ultrasonic and polymer rotary finishing files were separately tested in a static position and in a cyclical axial motion. Positive needle irrigation was also tested separately for fluid shear stress. The induced wall shear stress was measured using LabVIEW 8.0 software.

  19. Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: Closed form solutions

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Safia, E-mail: [Department of Humanities and Basic Sciences, Military College of Signals, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan); Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Nadeem, S. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan)


    We discuss the peristaltic motion of a two dimensional Jeffrey fluid in an asymmetric channel under the effects of induced magnetic field and heat transfer. The problem is simplified by using long wave length and low Reynolds approximations. Exact and closed form Adomian solutions are presented. Expressions for the velocity, stream function, magnetic force function, temperature, pressure gradient and pressure rise are computed. The results of pertinent parameters are discussed. Finally, the trapping phenomena for different wave shapes are discussed. It is observed that the pressure rise for sinusoidal wave is less than trapezoidal wave and greater than triangular in a Jeffrey fluid. - Highlights: Black-Right-Pointing-Pointer The effects of induced magnetic field and heat transfer in peristaltic motion of a two dimensional Jeffrey fluid are discussed. Black-Right-Pointing-Pointer In this paper exact and closed form Adomian solutions are presented. Black-Right-Pointing-Pointer Different wave shapes are considered to observe the behavior of pressure rise and trapping phenomena.

  20. Incidence of Changes in Respiration-Induced Tumor Motion and Its Relationship With Respiratory Surrogates During Individual Treatment Fractions

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Kathleen [Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD (United States); Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); McAvoy, Thomas J. [Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD (United States); Institute of Systems Research, University of Maryland, College Park, MD (United States); George, Rohini [Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD (United States); Dietrich, Sonja [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA (United States); D' Souza, Warren D., E-mail: [Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD (United States); Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States)


    Purpose: To determine how frequently (1) tumor motion and (2) the spatial relationship between tumor and respiratory surrogate markers change during a treatment fraction in lung and pancreas cancer patients. Methods and Materials: A Cyberknife Synchrony system radiographically localized the tumor and simultaneously tracked three respiratory surrogate markers fixed to a form-fitting vest. Data in 55 lung and 29 pancreas fractions were divided into successive 10-min blocks. Mean tumor positions and tumor position distributions were compared across 10-min blocks of data. Treatment margins were calculated from both 10 and 30 min of data. Partial least squares (PLS) regression models of tumor positions as a function of external surrogate marker positions were created from the first 10 min of data in each fraction; the incidence of significant PLS model degradation was used to assess changes in the spatial relationship between tumors and surrogate markers. Results: The absolute change in mean tumor position from first to third 10-min blocks was >5 mm in 13% and 7% of lung and pancreas cases, respectively. Superior-inferior and medial-lateral differences in mean tumor position were significantly associated with the lobe of lung. In 61% and 54% of lung and pancreas fractions, respectively, margins calculated from 30 min of data were larger than margins calculated from 10 min of data. The change in treatment margin magnitude for superior-inferior motion was >1 mm in 42% of lung and 45% of pancreas fractions. Significantly increasing tumor position prediction model error (mean {+-} standard deviation rates of change of 1.6 {+-} 2.5 mm per 10 min) over 30 min indicated tumor-surrogate relationship changes in 63% of fractions. Conclusions: Both tumor motion and the relationship between tumor and respiratory surrogate displacements change in most treatment fractions for patient in-room time of 30 min.

  1. Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy (United States)

    Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia


    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  2. Saccade-induced image motion cannot account for post-saccadic enhancement of visual processing in primate MST

    Directory of Open Access Journals (Sweden)

    Shaun L Cloherty


    Full Text Available Primates use saccadic eye movements to make gaze changes. In many visual areas, including the dorsal medial superior temporal area (MSTd of macaques, neural responses to visual stimuli are reduced during saccades but enhanced afterwards. How does this enhancement arise – from an internal mechanism associated with saccade generation or through visual mechanisms activated by the saccade sweeping the image of the visual scene across the retina? Spontaneous activity in MSTd is elevated even after saccades made in darkness, suggesting a central mechanism for post-saccadic enhancement. However, based on the timing of this effect, it may arise from a different mechanism than occurs in normal vision. Like neural responses in MSTd, initial ocular following eye speed is enhanced after saccades, with evidence suggesting both internal and visually mediated mechanisms. Here we recorded from visual neurons in MSTd and measured responses to motion stimuli presented soon after saccades and soon after simulated saccades – saccade-like displacements of the background image during fixation. We found that neural responses in MSTd were enhanced when preceded by real saccades but not when preceded by simulated saccades. Furthermore, we also observed enhancement following real saccades made across a blank screen that generated no motion signal within the recorded neurons’ receptive fields. We conclude that in MSTd the mechanism leading to post-saccadic enhancement has internal origins.

  3. Collective motion in a fluid complex plasma induced by interaction with a slow projectile under microgravity conditions (United States)

    Zhukhovitskii, Dmitry; Ivlev, Alexei; Thomas, Hubertus; Fortov, Vladimir; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir; Naumkin, Vadim

    Subsonic motion of a large particle (projectile) moving through the bulk of a dust crystal formed by negatively charged small particles is investigated using the PK-3 Plus laboratory onboard the International Space Station. Tracing the dust particle trajectories show that the projectile moves almost freely through the bulk of plasma crystal, while dust particles move along characteristic alpha-shaped pathways near the large particle. We develop a theory of nonviscous dust particles motion about a projectile and calculate particle trajectories. The deformation of a cavity around a subsonic projectile in the cloud of small dust particles is investigated with due regard for friction between the dust particles and atoms of neutral gas. The pressure of a dust cloud at the surface of a cavity around the projectile can become negative, which entails the emergence of a considerable asymmetry of the cavity, i.e., the cavity deformation. Corresponding threshold velocity is calculated, which is found to decrease with increasing cavity size. Developed theory makes it possible to estimate the static pressure of dust particles in a cloud on the basis of experimental data. A good agreement with experiment validates our approach.

  4. Hyperventilation in a motion sickness desensitization program

    NARCIS (Netherlands)

    Mert, A.; Bles, W.; Nooij, S.A.E.


    Introduction: In motion sickness desensitization programs, the motion sickness provocative stimulus is often a forward bending of the trunk on a rotating chair, inducing Coriolis effects. Since respiratory relaxation techniques are applied successfully in these courses, we investigated whether these

  5. Noncommutative Brownian motion

    CERN Document Server

    Santos, Willien O; Souza, Andre M C


    We investigate the Brownian motion of a particle in a two-dimensional noncommutative (NC) space. Using the standard NC algebra embodied by the sympletic Weyl-Moyal formalism we find that noncommutativity induces a non-vanishing correlation between both coordinates at different times. The effect itself stands as a signature of spatial noncommutativity and offers further alternatives to experimentally detect the phenomena.

  6. A Common Framework for the Analysis of Complex Motion? Standstill and Capture Illusions

    Directory of Open Access Journals (Sweden)

    Max Reinhard Dürsteler


    Full Text Available A series of illusions was created by presenting stimuli, which consisted of two overlapping surfaces each defined by textures of independent visual features (i.e. modulation of luminance, color, depth, etc.. When presented concurrently with a stationary 2-D luminance texture, observers often fail to perceive the motion of an overlapping stereoscopically defined depth-texture. This illusory motion standstill arises due to a failure to represent two independent surfaces (one for luminance and one for depth textures and motion transparency (the ability to perceive motion of both surfaces simultaneously. Instead the stimulus is represented as a single non-transparent surface taking on the stationary nature of the luminance-defined texture. By contrast, if it is the 2D-luminance defined texture that is in motion, observers often perceive the stationary depth texture as also moving. In this latter case, the failure to represent the motion transparency of the two textures gives rise to illusionary motion capture. Our past work demonstrated that the illusions of motion standstill and motion capture can occur for depth-textures that are rotating, or expanding / contracting, or else spiraling. Here I extend these findings to include stereo-shearing. More importantly, it is the motion (or lack thereof of the luminance texture that determines how the motion of the depth will be perceived. This observation is strongly in favor of a single pathway for complex motion that operates on luminance-defines texture motion signals only. In addition, these complex motion illusions arise with chromatically-defined textures with smooth, transitions between their colors. This suggests that in respect to color motion perception the complex motions’ pathway is only able to accurately process signals from isoluminant colored textures with sharp transitions between colors, and/or moving at high speeds, which is conceivable if it relies on inputs from a hypothetical dual

  7. Entropy-driven binding of opioid peptides induces a large domain motion in human dipeptidyl peptidase III. (United States)

    Bezerra, Gustavo A; Dobrovetsky, Elena; Viertlmayr, Roland; Dong, Aiping; Binter, Alexandra; Abramic, Marija; Macheroux, Peter; Dhe-Paganon, Sirano; Gruber, Karl


    Opioid peptides are involved in various essential physiological processes, most notably nociception. Dipeptidyl peptidase III (DPP III) is one of the most important enkephalin-degrading enzymes associated with the mammalian pain modulatory system. Here we describe the X-ray structures of human DPP III and its complex with the opioid peptide tynorphin, which rationalize the enzyme's substrate specificity and reveal an exceptionally large domain motion upon ligand binding. Microcalorimetric analyses point at an entropy-dominated process, with the release of water molecules from the binding cleft ("entropy reservoir") as the major thermodynamic driving force. Our results provide the basis for the design of specific inhibitors that enable the elucidation of the exact role of DPP III and the exploration of its potential as a target of pain intervention strategies.

  8. Advancement of motion psychophysics: review 2001-2010. (United States)

    Nishida, Shin'ya


    This is a survey of psychophysical studies of motion perception carried out mainly in the last 10 years. It covers a wide range of topics, including the detection and interactions of local motion signals, motion integration across various dimensions for vector computation and global motion perception, second-order motion and feature tracking, motion aftereffects, motion-induced mislocalizations, timing of motion processing, cross-attribute interactions for object motion, motion-induced blindness, and biological motion. While traditional motion research has benefited from the notion of the independent "motion processing module," recent research efforts have been also directed to aspects of motion processing in which interactions with other visual attributes play critical roles. This review tries to highlight the richness and diversity of this large research field and to clarify what has been done and what questions have been left unanswered.

  9. Computational Fluid Dynamics and Experimental Study of Lock-in Phenomenon in Vortex-Induced Motions of a Cell-Truss Spar

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; YANG Jian-min; L(U) Hai-ning


    Spar platforms could be subject to vortex-induced-motions (VIM) in certain current conditions. Lock-in is a phenomenon which occurs in a range of reduced velocities in VIM. In this paper, a new concept of spar platform called cell-truss spar is studied using both computational fluid dynamics (CFD) and model test to investigate the VIM of the spar under different reduced velocities. The unique configuration of the cell-truss spar is carefully considered, and the unsteady flow around the spar is calculated and visualized in CFD simulations. A physical model with a scale ratio of 1:100 of the cell-truss spar is fabricated, and model tests are carried out in the current-generating ocean engineering basin. Many important parameters in VIM of the cell-truss spar are obtained, the occurrence of lock-in phenomenon is successfully simulated, and the mechanism and rules of lock-in are analyzed.

  10. Strong ground motion generated by controlled blasting experiments and mining induced seismic events recorded underground at deep level mines in South Africa (United States)

    Milev, A.; Selllers, E.; Skorpen, L.; Scheepers, L.; Murphy, S.; Spottiswoode, S. M.


    A number of simulated rockbursts were conducted underground at deep level gold mines in South Africa in order to estimate the rock mass response when subjected to strong ground motion. The rockbursts were simulated by means of large blasts detonated in solid rock close to the sidewall of a tunnel. The simulated rockbursts involved the design of the seismic source, seismic observations in the near and far field, high-speed video filming, a study of rock mass conditions such as fractures, joints, rock strength etc. Knowledge of the site conditions before and after the simulated rockbursts was also gained. The numerical models used in the design of the simulated rockbursts were calibrated by small blasts taking place at each experimental site. A dense array of shock type accelerometers was installed along the blasting wall to monitor the attenuation of the strong ground motion as a function of the distance from the source. The attenuation of peak particle velocities, was found to be proportional to R^-1.7. Special investigations were carried out to evaluate the mechanism and the magnitude of damage, as well as the support behaviour under excessive dynamic loading. The strong ground motion generated by mining induced seismic events was studied, as part of this work, not only to characterize the rock mass response, but also to estimate the site effect on the surface of the underground excavations. A stand-alone instrument especially designed for recording strong ground motions was used to create a large database of peak particle velocities measured on stope hangingwalls. A total number of 58 sites located in stopes where the Carbon Leader Reef, Ventersdorp Contact Reef, Vaal Reef and Basal Reef are mined, were monitored. The peak particle velocities were measured at the surface of the excavations to identify the effect of the free surface and the fractures surrounding the underground mining. Based on these measurements the generally accepted velocity criterion of 3 m

  11. Motion parallax in immersive cylindrical display systems (United States)

    Filliard, N.; Reymond, G.; Kemeny, A.; Berthoz, A.


    Motion parallax is a crucial visual cue produced by translations of the observer for the perception of depth and selfmotion. Therefore, tracking the observer viewpoint has become inevitable in immersive virtual (VR) reality systems (cylindrical screens, CAVE, head mounted displays) used e.g. in automotive industry (style reviews, architecture design, ergonomics studies) or in scientific studies of visual perception. The perception of a stable and rigid world requires that this visual cue be coherent with other extra-retinal (e.g. vestibular, kinesthetic) cues signaling ego-motion. Although world stability is never questioned in real world, rendering head coupled viewpoint in VR can lead to the perception of an illusory perception of unstable environments, unless a non-unity scale factor is applied on recorded head movements. Besides, cylindrical screens are usually used with static observers due to image distortions when rendering image for viewpoints different from a sweet spot. We developed a technique to compensate in real-time these non-linear visual distortions, in an industrial VR setup, based on a cylindrical screen projection system. Additionally, to evaluate the amount of discrepancies tolerated without perceptual distortions between visual and extraretinal cues, a "motion parallax gain" between the velocity of the observer's head and that of the virtual camera was introduced in this system. The influence of this artificial gain was measured on the gait stability of free-standing participants. Results indicate that, below unity, gains significantly alter postural control. Conversely, the influence of higher gains remains limited, suggesting a certain tolerance of observers to these conditions. Parallax gain amplification is therefore proposed as a possible solution to provide a wider exploration of space to users of immersive virtual reality systems.

  12. Unsteady fluid and heat flow induced by a submerged stretching surface while its steady motion is slowed down gradually

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M.E. [King Saud University, Riyadh (Saudi Arabia). Mechanical Engineering Department; Magyari, E. [Institute of Building Technology, ETH Zuerich (Switzerland)


    The title problem arises in the terminal stage of a large class of industrial manufacturing processes as polymer extrusion, wire drawing, drawing of plastic sheets, etc. It concerns the transient crossover to the state of rest of the fluid and heat flow which accompanies the steady fabrication process, when the devices are switched off gradually (i.e. when the motion is slowed down and the surface temperature approaches the ambient temperature continuously). The mechanical and thermal characteristics of such an unsteady process are investigated in the boundary layer approximation, assuming a linear variation of the steady stretching velocity with the longitudinal coordinate x and an inverse linear law for its decrease with time during the gradual switch-off process. For the corresponding surface temperature a general power-law variation is admitted. The paper presents the similarity analysis of several specific cases. The cases of basic interest of a constant surface temperature T{sub w} and of a constant surface heat flux q{sub w} are discussed in some detail. In the case T{sub w}=const. an exact solution is reported and the Prandtl number dependence of the corresponding surface heat flux is given for all 0

  13. Potential energy of atmospheric water vapor and the air motions induced by water vapor condensation on different spatial scales

    CERN Document Server

    Makarieva, Anastassia M


    Basic physical principles are considered that are responsible for the origin of dynamic air flow upon condensation of water vapor, the partial pressure of which represents a store of potential energy in the atmosphere of Earth. Quantitative characteristics of such flow are presented for several spatial scales. It is shown that maximum condensation-induced velocities reach 160 m/s and are realized in compact circulation patterns like tornadoes.

  14. Spinal fusion limits upper body range of motion during gait without inducing compensatory mechanisms in adolescent idiopathic scoliosis patients. (United States)

    Holewijn, R M; Kingma, I; de Kleuver, M; Schimmel, J J P; Keijsers, N L W


    Previous studies show a limited alteration of gait at normal walking speed after spinal fusion surgery for adolescent idiopathic scoliosis (AIS), despite the presumed essential role of spinal mobility during gait. This study analyses how spinal fusion affects gait at more challenging walking speeds. More specifically, we investigated whether thoracic-pelvic rotations are reduced to a larger extent at higher gait speeds and whether compensatory mechanisms above and below the stiffened spine are present. 18 AIS patients underwent gait analysis at increasing walking speeds (0.45 to 2.22m/s) before and after spinal fusion. The range of motion (ROM) of the upper (thorax, thoracic-pelvic and pelvis) and lower body (hip, knee and ankle) was determined in all three planes. Spatiotemporal parameters of interest were stride length and cadence. Spinal fusion diminished transverse plane thoracic-pelvic ROM and this difference was more explicit at higher walking speeds. Transversal pelvis ROM was also decreased but this effect was not affected by speed. Lower body ROM, step length and cadence remained unaffected. Despite the reduction of upper body ROM after spine surgery during high speed gait, no altered spatiotemporal parameters or increased compensatory ROM above or below the fusion (i.e. in the shoulder girdle or lower extremities) was identified. Thus, it remains unclear how patients can cope so well with such major surgery. Future studies should focus on analyzing the kinematics of individual spinal levels above and below the fusion during gait to investigate possible compensatory mechanisms within the spine. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Review of the research on vortex-induced motion of a new deepwater multi-column FDPSO%新型深水多立柱 FDPSO 涡激运动研究进展

    Institute of Scientific and Technical Information of China (English)

    谷家扬; 吴介; 杨建民


    Vortex-induced motions of platforms are associated with rise and mooring system′s fatigue damage, which also endanger its security and stability.Due to the small aspect ratio, significant rigid characteristic and its special mooring system of platforms, vortex-induced motions of platforms show different movement characteristics from slender body′s vortex-induced vibration such as riser.The paper mainly includes:the common heave com-pensation devices used in FDPSO, flow characteristics of multi-column and the research progress of vortex-in-duced motions of multi-column platform.Because the fluid-structure interaction problems of vortex-induced mo-tions of multi-column FDPSO in deep water and study of movement stability are really complicated, some basic i-deas and steps for the study of vortex-induced motions are provided in this paper.This paper aims to introduce research methods and the present situation of vortex-induced motions of this new type of multi-column FDPSO, which will provide a theoretical support for the suppression of vortex-induced motions and the development of sup-pression devices.%平台涡激运动易导致立管及系泊系统疲劳损伤,危害其安全、稳定性。平台由于具有较小的纵横比、显著的刚性特征及特有的系泊系统,其涡激运动显示出与立管等细长体涡激振动截然不同的运动特征。文中介绍了FDPSO常采用的特殊升沉补偿装置、多立柱绕流特性及多立柱海洋平台涡激运动的研究进展。鉴于深水多立柱FDPSO涡激运动及稳定性研究是非常复杂的流固耦合问题,文中给出了研究其涡激运动的基本思路和步骤,介绍新型多立柱FDPSO涡激运动的研究方法及现状,为其涡激运动抑制及抑制装置研制提供理论支撑。

  16. Photometric observations of three high mass X-ray binaries and a search for variations induced by orbital motion

    Institute of Scientific and Technical Information of China (English)

    Gordon E.Sarty; László L.Kiss; Kinwah Wu; Bogumil Pilecki; Daniel E.Reichart; Kevin M.Ivarsen; Joshua B.Haislip; Melissa C.Nysewander; Aaron P.LaCluyze; Helen M.Johnston; Robert R.Shobbrook


    We searched for long period variation in V-band,IC-band and RXTE X-ray light curves of the High Mass X-ray Binaries (HMXBs) LS 1698/RX J 1037.5-5647,HD 110432/1H 1249-637 and HD 161103/RX J1744.7-2713 in an attempt to discover orbitally induced variation.Data were obtained primarily from the ASAS database and were supplemented by shorter term observations made with the 24-and 40-inch ANU telescopes and one of the robotic PROMPT telescopes.Fourier periodograms suggested the existence of long period variation in the V-band light curvesof all three HMXBs,however folding the data at those periods did not reveal convincing periodic variation.At this point we cannot rule out the existence of long term V-band variation for these three sources and hints of longer term variation may be seen in the higher precision PROMPT data.Long term V-band observations,on the order of several years,taken at a frequency of at least once per week and with a precision of 0.01 mag,therefore still have a chance of revealing long term variation in these three HMXBs.

  17. Dynamic signatures of driven vortex motion.

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.


    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  18. Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine

    Institute of Scientific and Technical Information of China (English)

    马钰; 肖龙飞; 胡志强


    Due to the energy crisis and the environmental issues like pollution and global warming, the exploration for renewable and clean energies becomes crucial. The offshore floating wind turbines (OFWTs) draw a great deal of attention recently as a means to exploit the steadier and stronger wind resources available in deep water seas. This paper studies the hydrodynamic characteristics of a spar-type wind turbine known as the OC3-Hywind concept and the dynamic responses of the turbine. Response characteristics of motions and mooring loads of the system under different sea states are evaluated and the effects of the loads induced by the wind and the wave on the system are discussed. The calculations are carried out with the numerical simulation code FAST in the time domain and the frequency analysis is made by using the FFT method. The results and the conclusions from this paper might help better understand the behavior characteristics of the floating wind turbine system under actual ocean environments and provide valuable data in design and engineering practice.

  19. Applying the General Regression Neural Network to Ground Motion Prediction Equations of Induced Events in the Legnica-Głogów Copper District in Poland (United States)

    Wiszniowski, Jan


    This paper presents a study of the nonlinear estimation of the ground motion prediction equation (GMPE) using neural networks. The general regression neural network (GRNN) was chosen for its high learning rate. A separate GRNN was tested as well as a GRNN in cascade connection with linear regression (LR). Measurements of induced seismicity in the Legnica-Głogów Copper District were used in this study. Various sets of input variables were tested. The basic variables used in every case were seismic energy and epicentral distance, while the additional variables were the location of the epicenter, the location of the seismic station, and the direction towards the epicenter. The GRNN improves the GMPE. The best results were obtained when the epicenter location was used as an additional input. The GRNN model was analysed for how it can improve the GMPE with respect to LR. The bootstrap re-sampling method was used for this purpose. It proved the statistical significance of the improvement of the GMPE. Additionally, this method allows the determination of smoothness parameters for the GRNN. Parameters derived through this method have better generalisation capabilities than the smoothness parameters estimated using the holdout method.

  20. Importance of human right inferior frontoparietal network connected by inferior branch of superior longitudinal fasciculus tract in corporeal awareness of kinesthetic illusory movement. (United States)

    Amemiya, Kaoru; Naito, Eiichi


    It is generally believed that the human right cerebral hemisphere plays a dominant role in corporeal awareness, which is highly associated with conscious experience of the physical self. Prompted by our previous findings, we examined whether the right frontoparietal activations often observed when people experience kinesthetic illusory limb movement are supported by a large-scale brain network connected by a specific branch of the superior longitudinal fasciculus fiber tracts (SLF I, II, and III). We scanned brain activity with functional magnetic resonance imaging (MRI) while nineteen blindfolded healthy volunteers experienced illusory movement of the right stationary hand elicited by tendon vibration, which was replicated after the scanning. We also scanned brain activity when they executed and imagined right hand movement, and identified the active brain regions during illusion, execution, and imagery in relation to the SLF fiber tracts. We found that illusion predominantly activated the right inferior frontoparietal regions connected by SLF III, which were not substantially recruited during execution and imagery. Among these regions, activities in the right inferior parietal cortices and inferior frontal cortices showed right-side dominance and correlated well with the amount of illusion (kinesthetic illusory awareness) experienced by the participants. The results illustrated the predominant involvement of the right inferior frontoparietal network connected by SLF III when people recognize postural changes of their limb. We assume that the network bears a series of functions, specifically, monitoring the current status of the musculoskeletal system, and building-up and updating our postural model (body schema), which could be a basis for the conscious experience of the physical self.

  1. Investigation of Motion Induced Errors in Scatter Correction for the HRRT Brain Scanner. In: 2010 IEEE Nuclear Science Symposium, Conference Record (MIC), IEEE 2010

    DEFF Research Database (Denmark)

    Anton-Rodriguez, J M; Sibomana, Merence; Walker, M D;


    Patient motion during PET scans introduces errors in the attenuation correction and image blurring leading to false changes in regional radioactivity concentrations. However, the potential effect that motion has on simulation-based scatter correction is not fully appreciated. Specifically for tra...

  2. Motion Simulator (United States)


    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  3. The influence of spontaneous brain oscillations on apparent motion perception. (United States)

    Sanders, Lia Lira Olivier; Auksztulewicz, Ryszard; Hohlefeld, Friederike U; Busch, Niko A; Sterzer, Philipp


    A good example of inferential processes in perception is long-range apparent motion (AM), the illusory percept of visual motion that occurs when two spatially distinct stationary visual objects are presented in alternating sequence. The AM illusion is strongest at presentation frequencies around 3 Hz. At lower presentation frequencies, the percept varies from trial to trial between AM and sequential alternation, while at higher frequencies perception varies between AM and two simultaneously flickering objects. Previous studies have demonstrated that prestimulus alpha oscillations explain trial-to-trial variability in detection performance for visual stimuli presented at threshold. In the present study, we investigated whether fluctuations of prestimulus alpha oscillations can also account for variations in AM perception. Prestimulus alpha power was stronger when observers reported AM perception in subsequent trials with low presentation frequencies, while at high presentation frequencies there were no significant differences in alpha power preceding AM and veridical flicker perception. Moreover, when observers perceived AM the prestimulus functional connectivity between frontal and occipital channels was increased in the alpha band, as revealed by the imaginary part of coherency, which is insensitive to artefacts from volume conduction. Dynamic causal modelling of steady-state responses revealed that the most likely direction of this fronto-occipital connectivity was from frontal to occipital sources. These results point to a role of ongoing alpha oscillations in the inferential process that gives rise to the perception of AM and suggest that fronto-occipital interactions bias perception towards internally generated predictions.

  4. A nanoscale linear-to-linear motion converter of graphene. (United States)

    Dai, Chunchun; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong


    Motion conversion plays an irreplaceable role in a variety of machinery. Although many macroscopic motion converters have been widely used, it remains a challenge to convert motion at the nanoscale. Here we propose a nanoscale linear-to-linear motion converter, made of a flake-substrate system of graphene, which can convert the out-of-plane motion of the substrate into the in-plane motion of the flake. The curvature gradient induced van der Waals potential gradient between the flake and the substrate provides the driving force to achieve motion conversion. The proposed motion converter may have general implications for the design of nanomachinery and nanosensors.

  5. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise. (United States)

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan


    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Direction-Specific Impairments in Cervical Range of Motion in Women with Chronic Neck Pain: Influence of Head Posture and Gravitationally Induced Torque (United States)

    Björklund, Martin; Svedmark, Åsa; Srinivasan, Divya; Djupsjöbacka, Mats


    Background Cervical range of motion (ROM) is commonly assessed in clinical practice and research. In a previous study we decomposed active cervical sagittal ROM into contributions from lower and upper levels of the cervical spine and found level- and direction-specific impairments in women with chronic non-specific neck pain. The present study aimed to validate these results and investigate if the specific impairments can be explained by the neutral posture (defining zero flexion/extension) or a movement strategy to avoid large gravitationally induced torques on the cervical spine. Methods Kinematics of the head and thorax was assessed in sitting during maximal sagittal cervical flexion/extension (high torque condition) and maximal protraction (low torque condition) in 120 women with chronic non-specific neck pain and 40 controls. We derived the lower and upper cervical angles, and the head centre of mass (HCM), from a 3-segment kinematic model. Neutral head posture was assessed using a standardized procedure. Findings Previous findings of level- and direction-specific impairments in neck pain were confirmed. Neutral head posture was equal between groups and did not explain the direction-specific impairments. The relative magnitude of group difference in HCM migration did not differ between high and low torques conditions, lending no support for our hypothesis that impairments in sagittal ROM are due to torque avoidance behaviour. Interpretation The direction- and level-specific impairments in cervical sagittal ROM can be generalised to the population of women with non-specific neck pain. Further research is necessary to clarify if torque avoidance behaviour can explain the impairments. PMID:28099504

  7. Body ownership causes illusory self-attribution of speaking and influences subsequent real speaking. (United States)

    Banakou, Domna; Slater, Mel


    When we carry out an act, we typically attribute the action to ourselves, the sense of agency. Explanations for agency include conscious prior intention to act, followed by observation of the sensory consequences; brain activity that involves the feed-forward prediction of the consequences combined with rapid inverse motor prediction to fine-tune the action in real time; priming where there is, e.g., a prior command to perform the act; a cause (the intention to act) preceding the effect (the results of the action); and common-sense rules of attribution of physical causality satisfied. We describe an experiment where participants falsely attributed an act to themselves under conditions that apparently cannot be explained by these theories. A life-sized virtual body (VB) seen from the first-person perspective in 3D stereo, as if substituting the real body, was used to induce the illusion of ownership over the VB. Half of the 44 experimental participants experienced VB movements that were synchronous with their own movements (sync), and the other half asynchronous (async). The VB, seen in a mirror, spoke with corresponding lip movements, and for half of the participants this was accompanied by synchronous vibrotactile stimulation on the thyroid cartilage (Von) but this was not so for the other half. Participants experiencing sync misattributed the speaking to themselves and also shifted the fundamental frequency of their later utterances toward the stimulus voice. Von also contributed to these results. We show that these findings can be explained by current theories of agency, provided that the critical role of ownership over the VB is taken into account.

  8. Illusory vowels resulting from perceptual continuity: a functional magnetic resonance imaging study. (United States)

    Heinrich, Antje; Carlyon, Robert P; Davis, Matthew H; Johnsrude, Ingrid S


    We used functional magnetic resonance imaging to study the neural processing of vowels whose perception depends on the continuity illusion. Participants heard sequences of two-formant vowels under a number of listening conditions. In the "vowel conditions," both formants were always present simultaneously and the stimuli were perceived as speech-like. Contrasted with a range of nonspeech sounds, these vowels elicited activity in the posterior middle temporal gyrus (MTG) and superior temporal sulcus (STS). When the two formants alternated in time, the "speech-likeness" of the sounds was reduced. It could be partially restored by filling the silent gaps in each formant with bands of noise (the "Illusion" condition) because the noise induced an illusion of continuity in each formant region, causing the two formants to be perceived as simultaneous. However, this manipulation was only effective at low formant-to-noise ratios (FNRs). When the FNR was increased, the illusion broke down (the "illusion-break" condition). Activation in vowel-sensitive regions of the MTG was greater in the illusion than in the illusion-break condition, consistent with the perception of Illusion stimuli as vowels. Activity in Heschl's gyri (HG), the approximate location of the primary auditory cortex, showed the opposite pattern, and may depend instead on the number of perceptual onsets in a sound. Our results demonstrate that speech-sensitive regions of the MTG are sensitive not to the physical characteristics of the stimulus but to the perception of the stimulus as speech, and also provide an anatomically distinct, objective physiological correlate of the continuity illusion in human listeners.

  9. Collective motion (United States)

    Vicsek, Tamás; Zafeiris, Anna


    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  10. S3-3: Misbinding of Color and Motion in Human V2 Revealed by Color-Contingent Motion Adaptation

    Directory of Open Access Journals (Sweden)

    Fang Fang


    Full Text Available Wu, Kanai, & Shimojo (2004 Nature 429 262 described a compelling illusion demonstrating a steady-state misbinding of color and motion. Here, we took advantage of the illusion and performed psychophysical and fMRI adaptation experiments to explore the neural mechanism of color-motion misbinding. The stimulus subtended 20 deg by 14 deg of visual angle and contained two sheets of random dots, one sheet moving up and the other moving down. On the upward-moving sheet, dots in the right-end area (4 deg by 14 deg were red, and the rest of the dots were green. On the downward-moving sheet, dots in the right-end area were green, and the rest of the dots were red. When subjects fixated at the center of the stimulus, they bound the color and motion of the dots in the right-end area erroneously–the red dots appeared to move downwards and the green dots appeared to move upwards. In the psychophysical experiment, we measured the color-contingent motion aftereffect in the right-end area after adaptation to the illusory stimulus. A significant aftereffect was observed as if subjects had adapted to the perceived binding of color and motion, rather than the physical binding. For example, after adaptation, stationary red dots appeared to move upwards, and stationary green dots appeared to move downwards. In the fMRI experiment, we measured direction-selective motion adaptation effects in V1, V2, V3, V4, V3A/B, and V5. Relative to other cortical areas, V2 showed a much stronger adaptation effect to the perceived motion direction (rather than the physical direction for both the red and green dots. Significantly, the fMRI adaptation effect in V2 correlated with the color-contingent motion aftereffect across twelve subjects. This study provides the first human evidence that color and motion could be misbound at a very early stage of visual processing.

  11. Motion control report

    CERN Document Server


    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  12. Ground motion input in seismic evaluation studies

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Wu, S.C.


    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.

  13. PCA-based lung motion model

    CERN Document Server

    Li, Ruijiang; Jia, Xun; Zhao, Tianyu; Lamb, James; Yang, Deshan; Low, Daniel A; Jiang, Steve B


    Organ motion induced by respiration may cause clinically significant targeting errors and greatly degrade the effectiveness of conformal radiotherapy. It is therefore crucial to be able to model respiratory motion accurately. A recently proposed lung motion model based on principal component analysis (PCA) has been shown to be promising on a few patients. However, there is still a need to understand the underlying reason why it works. In this paper, we present a much deeper and detailed analysis of the PCA-based lung motion model. We provide the theoretical justification of the effectiveness of PCA in modeling lung motion. We also prove that under certain conditions, the PCA motion model is equivalent to 5D motion model, which is based on physiology and anatomy of the lung. The modeling power of PCA model was tested on clinical data and the average 3D error was found to be below 1 mm.

  14. Ambiguity in Tactile Apparent Motion Perception


    Emanuela Liaci; Michael Bach; Ludger Tebartz Van Elst; Heinrich, Sven P; Jürgen Kornmeier


    Background In von Schiller’s Stroboscopic Alternative Motion (SAM) stimulus two visually presented diagonal dot pairs, located on the corners of an imaginary rectangle, alternate with each other and induce either horizontal, vertical or, rarely, rotational motion percepts. SAM motion perception can be described by a psychometric function of the dot aspect ratio (“AR”, i.e. the relation between vertical and horizontal dot distances). Further, with equal horizontal and vertical dot distances (A...

  15. Perceptual shrinkage of a one-way motion path with high-speed motion. (United States)

    Nakajima, Yutaka; Sakaguchi, Yutaka


    Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4-100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation.

  16. Site specific prediction equations for peak acceleration of ground motion due to earthquakes induced by underground mining in Legnica-Głogów Copper District in Poland (United States)

    Lasocki, Stanisław


    Ground motion database from the region of Żelazny Most tailings pond, the largest in Europe ore-flotation waste repository, is used to identify ground motion prediction equations (GMPE-s) for peak horizontal and peak vertical acceleration. A GMPE model including both geometrical spreading and anelastic damping terms cannot be correctly identified and the model with only spreading term is accepted. The analysis of variance of this model's residuals with station location as grouping variable indicates that station locations contribute significantly to the observed ground motion variability. Therefore, a site specific GMPE model with relative site amplifications is assessed. Despite short distances among stations, the amplification considerably vary from point to point, up to 1.8 times for the horizontal and 3.5 times for the vertical peak amplitude. The model including site effects enhances GMPE-s fit to observations, explains more than 60% dependent variables variability and correctly accounts for site effects.

  17. Detection of postischemic regional left ventricular delayed outward wall motion or diastolic stunning after exercise-induced ischemia in patients with stable effort angina by using color kinesis. (United States)

    Ishii, Katsuhisa; Miwa, Kunihisa; Sakurai, Takahiro; Kataoka, Kazuaki; Imai, Makoto; Kintaka, Aya; Aoyama, Takeshi; Kawanami, Masaki


    To determine whether postischemic diastolic stunning could be detected using color kinesis, we evaluated regional left ventricular (LV) diastolic wall motion in 36 patients with stable effort angina and a coronary stenosis (> or = 70% of luminal diameter), and in 30 control subjects. Regional LV filling fraction in the short-axis view during the first 30% of the LV filling time (color kinesis diastolic index) was determined before, 20 minutes, 1 hour, and 24 hours after the treadmill exercise test. In 33 of the 36 patients (92%), new regional LV delayed outward motion during early diastole (color kinesis diastolic index < or = 40%) was detected at 20 minutes after exercise. The regional LV delayed diastolic wall motion showed significant improvement but persisted 1 hour afterward in 20 of 36 patients (56%), and disappeared 24 hours after exercise. Detection of regional stunned myocardium with impaired diastolic function may be a useful tool for the diagnosis of coronary artery disease.

  18. Pulsar motions from VEP neutrino oscillations (United States)

    Barkovich, M.; Casini, H.; D'Olivo, J. C.; Montemayor, R.


    We show that a violation of the equivalence principle (VEP) can explain pulsar motions. We find that both the translational and rotational velocities can be accounted by VEP induced anisotropies in the linear and angular momentum of the neutrinos emitted by the protoneutron star. The violation needed to obtain the observed motions is compatible with existing boundaries.

  19. Motion in gauge theories of gravity

    CERN Document Server

    Tresguerres, Romualdo


    A description of motion is proposed, adapted to the composite bundle interpretation of Poincar\\'e Gauge Theory. Reference frames, relative positions and time evolution are characterized in gauge-theoretical terms. The approach is illustrated by an appropriate formulation of the familiar example of orbital motion induced by Schwarzschild spacetime.

  20. Illusory hopes; Truegerische Hoffnung

    Energy Technology Data Exchange (ETDEWEB)

    Seltmann, Thomas [Energy Watch Group, Berlin (Germany); Zittel, Werner [Energy Watch Group, Berlin (Germany); Ludwig-Boelkow-Systemtechnik GmbH, Ottobrunn (Germany)


    Even environmentalists are convinced that natural gas is a clean fuel, and its consumption is increasing. While production in Europe is declining, the expansion of the expensive infrastructure for natural gas imports is going too slow. In consequence, natural gas will be the next energy source after petroleum that will be in short supply - also because reserves are overestimated and production capacities cannot be enhanced as expected. (orig.)

  1. A simple integrative method for presenting head-contingent motion parallax and disparity cues on intel x86 processor-based machines. (United States)

    Szatmary, J; Hadani, I; Julesz, B


    Rogers and Graham (1979) developed a system to show that head-movement-contingent motion parallax produces monocular depth perception in random dot patterns. Their display system comprised an oscilloscope driven by function generators or a special graphics board that triggered the X and Y deflection of the raster scan signal. Replication of this system required costly hardware that is no longer on the market. In this paper the Rogers-Graham method is reproduced with an Intel processor based IBM PC compatible machine with no additional hardware cost. An adapted joystick sampled through the standard game-port can serve as a provisional head-movement sensor. Monitor resolution for displaying motion is effectively enhanced 16 times by the use of anti-aliasing, enabling the display of thousands of random dots in real-time with a refresh rate of 60 Hz or above. A color monitor enables the use of the anaglyph method, thus combining stereoscopic and monocular parallax on a single display without the loss of speed. The power of this system is demonstrated by a psychophysical measurement in which subjects nulled head-movement-contingent illusory parallax, evoked by a static stereogram, with real parallax. The amount of real parallax required to null the illusory stereoscopic parallax monotonically increased with disparity.

  2. Rock mass response to strong ground motion generated by mining induced seismic events and blasting observed at the surface of the excavations in deep level gold mines in South Africa (United States)

    Milev, Alexander; Durrheim, Ray; Ogasawara, Hiroshi


    The strong ground motion generated by mining induced seismic events was studied to characterize the rock mass response and to estimate the site effect on the surface of the underground excavations. A stand-alone instruments, especially designed for recording strong ground motions, were installed underground at a number of deep level gold mines in South Africa. The instruments were recording data at the surface of the stope hangingwalls. A maximum value of 3 m/s was measured. Therefore data were compared to the data recorded in the solid rock by the mine seismic networks to determine the site response. The site response was defined as the ratio of the peak ground velocity measured at the surface of the excavations to the peak ground velocity inferred from the mine seismic data measured in the solid rocks. The site response measured at all mines studied was found to be 9 ± 3 times larger on average. A number of simulated rockbursts were conducted underground in order to estimate the rock mass response when subjected to extreme ground motion and derive the attenuation factors in near field. The rockbursts were simulated by means of large blasts detonated in solid rock close to the sidewall of a tunnel. The numerical models used in the design of the simulated rockbursts were calibrated by small blasts taking place at each experimental site. A dense array of shock type accelerometers was installed along the blasting wall to monitor the attenuation of the strong ground motion as a function of the distance from the source. The attenuation of the ground motion was found to be proportional to the distance from the source following R^-1.1 & R^-1.7 for compact rock and R^-3.1 & R^-3.4 for more fractured rock close to the surface of the tunnel. In addition the ground motion was compared to the quasi-static deformations taking place around the underground excavations. The quasi-static deformations were measured by means of strain, tilt and closure. A good correspondence

  3. Separating spin torque and heating effects in current-induced domain wall motion probed by high-resolution transmission electron microscopy

    DEFF Research Database (Denmark)

    Junginger, F.; Klaeui, M.; Backes, D.


    Observations of domain wall motion and transformations due to injected current pulses in permalloy zigzag structures using off-axis electron holography and Lorentz microscopy are reported. Heating on membranes leads to thermally activated random behavior at low current densities and by backcoating...

  4. A Double Blind Comparative Trial of Powdered Ginger Root, Hyosine Hydrobromide, and Cinnarizine in the Prophylaxis of Motion Sickness Induced by Cross Coupled Stimulation, (United States)

    A double blind laboratory trial was conducted to study the relative effectiveness of powdered ginger root (1G), hyosine (0.6 mg), cinnarizine (15 that powdered root ginger is of value in the prophylaxis of motion sickness. Significant differences in the results of performance tests were

  5. Visual motion processing in migraine: Enhanced motion after-effects are related to display contrast, visual symptoms, visual triggers and attack frequency. (United States)

    Shepherd, Alex J; Joly-Mascheroni, Ramiro M


    Background Visual after-effects are illusions that occur after prolonged viewing of visual displays. The motion after-effect (MAE), for example, is an illusory impression of motion after viewing moving displays: subsequently, stationary displays appear to drift in the opposite direction. After-effects have been used extensively in basic vision research and in clinical settings, and are enhanced in migraine. Objective The objective of this article is to assess associations between ( 1 ) MAE duration and visual symptoms experienced during/between migraine/headache attacks, and ( 2 ) visual stimuli reported as migraine/headache triggers. Methods The MAE was elicited after viewing motion for 45 seconds. MAE duration was tested for three test contrast displays (high, medium, low). Participants also completed a headache questionnaire that included migraine/headache triggers. Results For each test contrast, the MAE was prolonged in migraine. MAE duration was associated with photophobia; visual triggers (flicker, striped patterns); and migraine or headache frequency. Conclusions Group differences on various visual tasks have been attributed to abnormal cortical processing in migraine, such as hyperexcitability, heightened responsiveness and/or a lack of intra-cortical inhibition. The results are not consistent with hyperexcitability simply from a general lack of inhibition. Alternative multi-stage models are discussed and suggestions for further research are recommended, including visual tests in clinical assessments/clinical trials.

  6. Droplet Motion on a Shape Gradient Surface. (United States)

    Zheng, Yanfen; Cheng, Jiang; Zhou, Cailong; Xing, Haiting; Wen, Xiufang; Pi, Pihui; Xu, Shouping


    We demonstrate a facile method to induce water droplet motion on an wedge-shaped superhydrophobic copper surface combining with a poly(dimethylsiloxane) (PDMS) oil layer on it. The unbalanced interfacial tension from the shape gradient offers the actuating force. The superhydrophobicity critically eliminates the droplet contact line pinning and the slippery PDMS oil layer lubricates the droplet motion, which makes the droplet move easily. The maximum velocity and furthest position of droplet motion were recorded and found to be influenced by the gradient angle. The mechanism of droplet motion on the shape gradient surface is systematically discussed, and the theoretical model analysis is well matched with the experimental results.

  7. Motion in radiotherapy

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia


    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPET...

  8. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion. (United States)

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu


    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information.

  9. The Effects of Hearing Impairment, Age, and Hearing Aids on the Use of Self-Motion for Determining Front/Back Location. (United States)

    Brimijoin, W Owen; Akeroyd, Michael A


    There are two cues that listeners use to disambiguate the front/back location of a sound source: high-frequency spectral cues associated with the head and pinnae, and self-motion-related binaural cues. The use of these cues can be compromised in listeners with hearing impairment and users of hearing aids. To determine how age, hearing impairment, and the use of hearing aids affect a listener's ability to determine front from back based on both self-motion and spectral cues. We used a previously published front/back illusion: signals whose physical source location is rotated around the head at twice the angular rate of the listener's head movements are perceptually located in the opposite hemifield from where they physically are. In normal-hearing listeners, the strength of this illusion decreases as a function of low-pass filter cutoff frequency, this is the result of a conflict between spectral cues and dynamic binaural cues for sound source location. The illusion was used as an assay of self-motion processing in listeners with hearing impairment and users of hearing aids. We recruited 40 hearing-impaired participants, with an average age of 62 yr. The data for three listeners were discarded because they did not move their heads enough during the experiment. Listeners sat at the center of a ring of 24 loudspeakers, turned their heads back and forth, and used a wireless keypad to report the front/back location of statically presented signals and of dynamically moving signals with illusory locations. Front/back accuracy for static signals, the strength of front/back illusions, and minimum audible movement angle were measured for each listener in each condition. All measurements were made in each listener both aided and unaided. Hearing-impaired listeners were less accurate at front/back discrimination for both static and illusory conditions. Neither static nor illusory conditions were affected by high-frequency content. Hearing aids had heterogeneous effects from

  10. Increased urinary excretion of triiodothyronine (T3) and thyroxine (T4) and decreased serum thyreotropic hormone (TSH) induced by motion sickness. (United States)

    Habermann, J; Eversmann, T; Erhardt, F; Gottsmann, M; Ulbrecht, G; Scriba, P C


    We exposed 35 male subjects to a rotary chair and motion sickness was provoked by Coriolis effect. This stress caused an increased excretion of urinary T3 and T4 and a decrease of TSH levels in serum. The increment in urinary excretion of thyroid hormones may serve as a very useful measure for the quantitation of physical stress. Although no statistically significant change of T3, T4, and TBG levels in serum could be observed by the employed techniques, the hypothesis is favoured that motion sickness probably causes an immeasurably small increase of the free thyroid hormone fraction in serum, thereby increasing urinary excretion of T3 and T4 and, in turn, decreasing TSH secretion. Physical or psychological stress situations involve most of the endocrine systems. Contadictory results have been reported in the literature concerning the relationship between thyroid function and stress.

  11. Fractional Brownian motion of director fluctuations in nematic ordering

    DEFF Research Database (Denmark)

    Zhang, Z.; Mouritsen, Ole G.; Otnes, K.


    to determine the Hurst exponent H. Theory and experiment are in good agreement. A value of H congruent-to 1 was found for the nematic phase, characterizing fractional Brownian motion, whereas H congruent-to 0.5, reflecting ordinary Brownian motion, applies in the isotropic phase. Field-induced crossover from...... fractional to ordinary Brownian motion was observed in the nematic phase....

  12. Environmental effects and building damage induced by the vertical component of ground motion during the August 24, 2016 Amatrice (Central Italy) earthquake (United States)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon


    On August 24, 2016 an Mw 6.0 earthquake struck central Italy resulting in 299 fatalities, 388 injuries and about 3000 homeless. The provided focal mechanisms demonstrated a NW-SE striking seismic normal fault which is consistent with the spatial distribution of the coseismic surface ruptures observed along the western slope of Mt Vettore. Based on our field reconnaissance in the affected area immediately after the earthquake, extensive secondary environmental effects including landslides, rockfalls and ground cracks were also observed. Most landslides were generated within the Amatrice intermontane basin, which, instead of a flat surface, comprises isolated flat hills and ridges with relatively high and steep slopes extending several meters above the low-lying part of the basin consisting of Quaternary deposits and with several villages founded at their top. Landslides generated along the steep slopes of Amatrice, Accumoli and Pescara del Tronto flat hills were due to topographical amplification of the earthquake motion derived from accelerometric recordings analysis along with the action of the vertical component of the ground motion and the already established instability conditions resulting from river incision and erosion at the base of the hills. Strong evidences of the effect of the vertical ground motion in reinforced concrete (RC) buildings are the symmetrical buckling of reinforcement, compression damage and crushing at midheight and in other parts of columns, undamaged windows and unbroken glass panels as well as partial collapse of the buildings that usually occur along the vertical axis within the plan of the building. On the contrary, high flexible structures such as castle and bell towers in Arcuata del Tronto and Amatrice respectively were not affected by the vertical ground motion. During the action of the vertical component of the ground motion in Amatrice affected area, stationary waves were formed vertically in the observed structures resulting

  13. Magnetic fields for fluid motion. (United States)

    Weston, Melissa C; Gerner, Matthew D; Fritsch, Ingrid


    Three forces induced by magnetic fields offer unique control of fluid motion and new opportunities in microfluidics. This article describes magnetoconvective phenomena in terms of the theory and controversy, tuning by redox processes at electrodes, early-stage applications in analytical chemistry, mature applications in disciplines far afield, and future directions for micro total analysis systems. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at .).

  14. Dizziness and Motion Sickness (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Dizziness and Motion Sickness Dizziness and Motion Sickness Patient ... vision or speech, or hearing loss. What is dizziness? Dizziness can be described in many ways, such ...

  15. Diaphragm motion characterization using chest motion data for biomechanics-based lung tumor tracking during EBRT (United States)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas


    Despite recent advances in image-guided interventions, lung cancer External Beam Radiation Therapy (EBRT) is still very challenging due to respiration induced tumor motion. Among various proposed methods of tumor motion compensation, real-time tumor tracking is known to be one of the most effective solutions as it allows for maximum normal tissue sparing, less overall radiation exposure and a shorter treatment session. As such, we propose a biomechanics-based real-time tumor tracking method for effective lung cancer radiotherapy. In the proposed algorithm, the required boundary conditions for the lung Finite Element model, including diaphragm motion, are obtained using the chest surface motion as a surrogate signal. The primary objective of this paper is to demonstrate the feasibility of developing a function which is capable of inputting the chest surface motion data and outputting the diaphragm motion in real-time. For this purpose, after quantifying the diaphragm motion with a Principal Component Analysis (PCA) model, correlation coefficient between the model parameters of diaphragm motion and chest motion data was obtained through Partial Least Squares Regression (PLSR). Preliminary results obtained in this study indicate that the PCA coefficients representing the diaphragm motion can be obtained through chest surface motion tracking with high accuracy.

  16. The perception of object versus objectless motion. (United States)

    Hock, Howard S; Nichols, David F


    Wertheimer, M. (Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 61:161-265, 1912) classical distinction between beta (object) and phi (objectless) motion is elaborated here in a series of experiments concerning competition between two qualitatively different motion percepts, induced by sequential changes in luminance for two-dimensional geometric objects composed of rectangular surfaces. One of these percepts is of spreading-luminance motion that continuously sweeps across the entire object; it exhibits shape invariance and is perceived most strongly for fast speeds. Significantly for the characterization of phi as objectless motion, the spreading luminance does not involve surface boundaries or any other feature; the percept is driven solely by spatiotemporal changes in luminance. Alternatively, and for relatively slow speeds, a discrete series of edge motions can be perceived in the direction opposite to spreading-luminance motion. Akin to beta motion, the edges appear to move through intermediate positions within the object's changing surfaces. Significantly for the characterization of beta as object motion, edge motion exhibits shape dependence and is based on the detection of oppositely signed changes in contrast (i.e., counterchange) for features essential to the determination of an object's shape, the boundaries separating its surfaces. These results are consistent with area MT neurons that differ with respect to speed preference Newsome et al (Journal of Neurophysiology, 55:1340-1351, 1986) and shape dependence Zeki (Journal of Physiology, 236:549-573, 1974).

  17. Multisensory Contributions to Visual Motion Parsing

    Directory of Open Access Journals (Sweden)

    Salvador Soto-Faraco


    Full Text Available In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that the parsing object motion from self-motion induced optic flow can operate on multisensory object representations.

  18. Objects in Motion (United States)

    Damonte, Kathleen


    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  19. A study on psychological factors and motion sickness symptoms induced by motorised rotating chair%心理因素与转椅诱发晕动反应的相关研究

    Institute of Scientific and Technical Information of China (English)

    乐燕; 许恒; 杨扬; 许益飞; 包瀛春


    Objective To explore the correlation between psychological factors and motion sickness symptoms induced by motorised rotating chair. Methods Three hundred and eight-six college undergraduate students received coriolis acceleration test. Their motion sickness responses were assessed by using Graybiels diagnostic criteria. They were filled in Self-Efficacy Scale, Self-Control Schedule and Eysenck Personality Questionnaire before test. Results It had significant correlation between Self-Efficacy and motion sickness Symptoms (r = -0.386,P<0.05). Single factor and logistic regression analysis showed that Self-Efficacy was important psychological factor for motion sickness induced by motorised rotating chair. Conclusion Self-Efficacy may provide important guidelines for psychological training about improving mition sickness tolerance in laboratory.%目的 探讨心理因素与科利奥力( Coriolis)转椅诱发晕动反应的相关性.方法 对某院校386名本科学员进行科利奥力加速度体能测试,采用格瑞比尔(Graybiel)评分标准对被试者进行晕动反应评估,并在测试前填写晕动病自我效能感量表、自我控制感量表及艾森克人格量表.结果 自我效能感得分与诱发晕动病Graybiel平均得分呈负相关(r=-0.386,P <0.05),有统计学意义;单因素和Logistic回归分析表明:个体的自我效能感为转椅诱发晕动反应的相关心理因素(P<0.05).结论 自我效能感为开展提高晕动耐受性的训练提供了重要依据.

  20. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  1. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen


    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  2. Structural motion engineering

    CERN Document Server

    Connor, Jerome


    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  3. Detecting Free-Mass Common-Mode Motion Induced by Incident Gravitational Waves: Testing General Relativity and Source Direction via Fox-Smith and Michelson Interferometers

    CERN Document Server

    Tobar, Michael Edmund; Kuroda, Kazuaki


    In this paper we show that information on both the differential and common mode free-mass response to a gravitational wave can provide important information on discriminating the direction of the gravitational wave source and between different theories of gravitation. The conventional Michelson interferometer scheme only measures the differential free-mass response. By changing the orientation of the beam splitter, it is possible to configure the detector so it is sensitive to the common-mode of the free-mass motion. The proposed interferometer is an adaptation of the Fox-Smith interferometer. A major limitation to the new scheme is its enhanced sensitivity to laser frequency fluctuations over the conventional, and we propose a method of canceling these fluctuations. The configuration could be used in parallel to the conventional differential detection scheme with a significant sensitivity and bandwidth.

  4. Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. Part I: Theoretical formulation and Numerical Investigation

    CERN Document Server

    Bouscasse, Benjamin; Souto-Iglesias, Antonio; Pita, José Luis Cercós


    A single degree of freedom angular motion dynamical system involving the coupling of a moving mass that creates an external torque, a rigid tank, driven by this torque, and fluid which partially fills the tank, is analyzed in the present paper series. The analysis of such a system is relevant for understanding the energy dissipation mechanisms resulting from fluid sloshing and wave breaking. Understanding such mechanisms poses open problems in the fluid mechanics field, and they are relevant for the design of a wide range of Tuned Liquid Damper devices of substantial industrial applicability. In Part I the dynamical system is described in detail to show its nonlinear features both in terms of mechanical and fluid dynamical aspects. A semi-analytical model of the energy dissipated by the fluid, based on a hydraulic jump solution and valid for small oscillation angles, is developed. In order to extend the analysis to large oscillation angles, a Smoothed Particle Hydrodynamics solver is also developed, adapting ...

  5. The importance of synchrony and temporal order of visual and tactile input for illusory limb ownership experiences - an FMRI study applying virtual reality.

    Directory of Open Access Journals (Sweden)

    Robin Bekrater-Bodmann

    Full Text Available In the so-called rubber hand illusion, synchronous visuotactile stimulation of a visible rubber hand together with one's own hidden hand elicits ownership experiences for the artificial limb. Recently, advanced virtual reality setups were developed to induce a virtual hand illusion (VHI. Here, we present functional imaging data from a sample of 25 healthy participants using a new device to induce the VHI in the environment of a magnetic resonance imaging (MRI system. In order to evaluate the neuronal robustness of the illusion, we varied the degree of synchrony between visual and tactile events in five steps: in two conditions, the tactile stimulation was applied prior to visual stimulation (asynchrony of -300 ms or -600 ms, whereas in another two conditions, the tactile stimulation was applied after visual stimulation (asynchrony of +300 ms or +600 ms. In the fifth condition, tactile and visual stimulation was applied synchronously. On a subjective level, the VHI was successfully induced by synchronous visuotactile stimulation. Asynchronies between visual and tactile input of ±300 ms did not significantly diminish the vividness of illusion, whereas asynchronies of ±600 ms did. The temporal order of visual and tactile stimulation had no effect on VHI vividness. Conjunction analyses of functional MRI data across all conditions revealed significant activation in bilateral ventral premotor cortex (PMv. Further characteristic activation patterns included bilateral activity in the motion-sensitive medial superior temporal area as well as in the bilateral Rolandic operculum, suggesting their involvement in the processing of bodily awareness through the integration of visual and tactile events. A comparison of the VHI-inducing conditions with asynchronous control conditions of ±600 ms yielded significant PMv activity only contralateral to the stimulation site. These results underline the temporal limits of the induction of limb ownership related to

  6. Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion (United States)

    Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.


    A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.

  7. Measurement of visual motion

    Energy Technology Data Exchange (ETDEWEB)

    Hildreth, E.C.


    This book examines the measurement of visual motion and the use of relative movement to locate the boundaries of physical objects in the environment. It investigates the nature of the computations that are necessary to perform this analysis by any vision system, biological or artificial. Contents: Introduction. Background. Computation of the Velocity Field. An Algorithm to Compute the Velocity Field. The Computation of Motion Discontinuities. Perceptual Studies of Motion Measurement. The Psychophysics of Discontinuity Detection. Neurophysiological Studies of Motion. Summary and Conclusions. References. Author and Subject Indexes.

  8. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus


    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  9. Assessing Motion Induced Interruptions Using a Motion Platform (United States)


    recent sleeping habits also were excluded to mitigate the potential for false positives due to their physiological state. 4. Analysis The analysis...Both models’ parameter estimates are reported in Table 5. To assess the quality of Model 4, the confidence intervals of the betas and the residuals...morning? ( one answer only)  Yes  No 5) How many caffeinated drinks have you consumed today? (coffee, tea, caffeinated beverages, etc) ( one answer

  10. On a PCA-based lung motion model


    Li, Ruijiang; Lewis, John H.; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A.; Jiang, Steve. B.


    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772–81), we believe that the spatiotemporal relationship of the entire lung motion can be acc...

  11. Communication: Mode bifurcation of droplet motion under stationary laser irradiation. (United States)

    Takabatake, Fumi; Yoshikawa, Kenichi; Ichikawa, Masatoshi


    The self-propelled motion of a mm-sized oil droplet floating on water, induced by a local temperature gradient generated by CW laser irradiation is reported. The circular droplet exhibits two types of regular periodic motion, reciprocal and circular, around the laser spot under suitable laser power. With an increase in laser power, a mode bifurcation from rectilinear reciprocal motion to circular motion is caused. The essential aspects of this mode bifurcation are discussed in terms of spontaneous symmetry-breaking under temperature-induced interfacial instability, and are theoretically reproduced with simple coupled differential equations.

  12. Motion compensator for holographic motion picture camera (United States)

    Kurtz, R. L.


    When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.

  13. Body Motion and Graphing. (United States)

    Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy


    Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…

  14. Teaching Projectile Motion (United States)

    Summers, M. K.


    Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)

  15. Motion control systems

    CERN Document Server

    Sabanovic, Asif


    "Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...

  16. Stochastic ground motion simulation (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan


    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  17. Using intravoxel incoherent motion MR imaging to study the renal pathophysiological process of contrast-induced acute kidney injury in rats: Comparison with conventional DWI and arterial spin labelling

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Long; Zhang, Bin [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Southern Medical University, Graduate College, Guangzhou (China); Chen, Wen-bo; Liang, Chang-hong; Zhang, Shui-xing [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Chan, Kannie W.Y.; Li, Yu-guo; Liu, Guan-shu [The Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Baltimore, MD (United States)


    To investigate the potential of intravoxel incoherent motion (IVIM) to assess the renal pathophysiological process in contrast-induced acute kidney injury (CIAKI). Twenty-seven rats were induced with CIAKI model, six rats were imaged longitudinally at 24 h prior to and 30 min, 12, 24, 48, 72 and 96 h after administration; three rats were randomly chosen from the rest for serum creatinine and histological studies. D, f, D* and ADC were calculated from IVIM, and renal blood flow (RBF) was obtained from arterial spin labelling (ASL). A progressive reduction in D and ADC was observed in cortex (CO) by 3.07 and 8.62 % at 30 min, and by 25.77 and 28.16 % at 48 h, respectively. A similar change in outer medulla (OM) and inner medulla (IM) was observed at a later time point (12-72 h). D values were strongly correlated with ADC (r = 0.885). As perfusion measurement, a significant decrease was shown for f in 12-48 h and an increase in 72-96 h. A slightly different trend was found for D*, which was decreased by 26.02, 21.78 and 10.19 % in CO, OM and IM, respectively, at 30 min. f and D* were strongly correlated with RBF in the cortex (r = 0.768, r = 0.67), but not in the medulla. IVIM is an effective imaging tool for monitoring progress in renal pathophysiology undergoing CIAKI. (orig.)

  18. Topological fluid mechanics of point vortex motions

    CERN Document Server

    Boyland, P; Aref, H; Boyland, Philip; Stremler, Mark; Aref, Hassan


    Topological techniques are used to study the motions of systems of point vortices in the infinite plane, in singly-periodic arrays, and in doubly-periodic lattices. The reduction of each system using its symmetries is described in detail. Restricting to three vortices with zero net circulation, each reduced system is described by a one degree of freedom Hamiltonian. The phase portrait of this reduced system is subdivided into regimes using the separatrix motions, and a braid representing the topology of all vortex motions in each regime is computed. This braid also describes the isotopy class of the advection homeomorphism induced by the vortex motion. The Thurston-Nielsen theory is then used to analyse these isotopy classes, and in certain cases strong conclusions about the dynamics of the advection can be made.

  19. Posture, locomotion, spatial orientation, and motion sickness as a function of space flight (United States)

    Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.; Layne, C.; McDonald, V.


    This article summarizes a variety of newly published findings obtained by the Neuroscience Laboratory, Johnson Space Center, and attempts to place this work within a historical framework of previous results on posture, locomotion, motion sickness, and perceptual responses that have been observed in conjunction with space flight. In this context, we have taken the view that correct transduction and integration of signals from all sensory systems is essential to maintaining stable vision, postural and locomotor control, and eye-hand coordination as components of spatial orientation. The plasticity of the human central nervous system allows individuals to adapt to altered stimulus conditions encountered in a microgravity environment. However, until some level of adaptation is achieved, astronauts and cosmonauts often experience space motion sickness, disturbances in motion control and eye-hand coordination, unstable vision, and illusory motion of the self, the visual scene, or both. Many of the same types of disturbances encountered in space flight reappear immediately after crew members return to earth. The magnitude of these neurosensory, sensory-motor and perceptual disturbances, and the time needed to recover from them, tend to vary as a function of mission duration and the space travelers prior experience with the stimulus rearrangement of space flight. To adequately chart the development of neurosensory changes associated with space flight, we recommend development of enhanced eye movement systems and body position measurement. We also advocate the use of a human small radius centrifuge as both a research tool and as a means of providing on-orbit countermeasures that will lessen the impact of living for long periods of time with out exposure to altering gravito-inertial forces. Copyright 1998 Elsevier Science B.V.

  20. 《了不起的盖茨比》-"美国梦"幻灭的写照%The Great Gatsby__The reflection of the illusory nature of the american dream

    Institute of Scientific and Technical Information of China (English)

    王卫平; 王萍


    The disillusionment of the American Dream is an often written theme in the American literature. The Great Gatsby is one of the representative works that reflects this thene. This paper is designed to disclose the illusory nature of the American Dream through the analysis of the novel The Great Gatsby.%"美国梦"幻灭是美国文学作品里惯常的主题.是一部反映这一主题的代表作.本文旨在通过分析这部小说来揭示"美国梦"虚幻的特征.

  1. 转椅加速度试验诱发晕动病的相关心理因素研究%Study on psychological factors and motion sickness responses induced by coriolis rotating chair

    Institute of Scientific and Technical Information of China (English)

    乐燕; 许恒; 杨扬; 许益飞; 包瀛春


    Objective To explore the correlation between psychological factors and motion sickness responses induced by coriolis rotating chair.Methods Three hundred and eight-six university undergraduates received coriolis acceleration test and motion sickness responses were assessed by using Graybiel's diagnostic criteria.Before tests,the subjects were told to fill in the Self-efficacy Scale,the Self-control Scale and the Eysenck Personality Questionnaire.Results The average scores of the Self-efficacy Scale were (5.26 ± 1.98),which was negatively correlated with the scores obtained with Graybiel s diagnostic criteria (r =-0.386,P<0.05),with statistical significance.And statistically significant differences could be noted in self-efficacy between various Graybiel grades( F =7.614,P<0.05 ).Conclusions Study on related psychological factors could provide evidence for the importance of laboratory psychological training to increase the tolerance of motion sickness.%目的 探讨心理因素与转椅加速度试验诱发晕动反应的相关性.方法 对某院校386名学员进行转椅加速度体能测试,由专职人员采用格瑞比尔评分标准对被试者进行晕动反应评估,并要求被试者在测试前填写晕动病自我效能感量表、自我控制感量表及艾森克人格量表.结果 自我效能感平均得分[(5.62±1.98)]与转椅诱发晕动反应格瑞比尔得分呈一定负相关(r=-0.386,P<0.05),格瑞比尔各等级组间自我效能感得分差异有统计学意义(F=7.614,P<0.05).结论 本实验条件下,心理因素一定程度上影响晕动病的发生和发展,本结果为在实验室开展提高晕动耐受性的心理训练提供了重要依据.

  2. Give It a Tug and Feel It Grow: Extending Body Perception Through the Universal Nature of Illusory Finger Stretching

    Directory of Open Access Journals (Sweden)

    Roger Newport


    Full Text Available If British teenage boy asks you to pull his finger, it is usually an indication that he simultaneously wishes to break wind. If you were to tell him that you could pull his finger and stretch it to twice its length, you might expect a similarly irreverent response yet when we pulled the fingers of nearly 600 children and adolescents, 93% reported the illusion of stretching. Grossly distorted body representations need not be the preserve of clinical disorders and can reliably be induced in healthy participants across all ages.

  3. The reference frame of visual motion priming depends on underlying motion mechanisms. (United States)

    Yoshimoto, Sanae; Uchida-Ota, Mariko; Takeuchi, Tatsuto


    Several different types of motion mechanisms function in the human visual system. The purpose of this study was to clarify the type of reference frame, such as retinotopic and spatiotopic frames of reference, at which those different motion mechanisms function. To achieve this, we used a phenomenon called visual motion priming, in which the perceived direction of a directionally ambiguous test stimulus is influenced by the moving direction of a preceding stimulus. Previous studies have indicated that negative motion priming is induced by a low-level motion mechanism, such as a first-order motion sensor, whereas positive motion priming is induced by a high-level motion mechanism, such as a feature-tracking system. In the experiments, subjects made a saccade after the termination of a smoothly drifting priming stimulus and judged the perceived direction of a 180° phase-shifted sine-wave grating presented subsequently in retinotopic or screen-based spatiotopic coordinates. By manipulating the stimulus parameters, such as primer duration, velocity, and contrast, both positive and negative priming were observed. We found that positive priming was observed in spatiotopic coordinates, whereas negative priming was observed in retinotopic coordinates. Prominent positive priming in spatiotopic coordinates was observed only when the interval between the priming and test stimuli was longer than around 600 ms. This delayed priming effect was not caused by saccadic eye movements. These results suggest that a low-level motion mechanism functions in retinotopic coordinates, whereas a high-level motion mechanism functions in spatiotopic coordinates, in which the representation builds up slowly.

  4. Scalable motion vector coding (United States)

    Barbarien, Joeri; Munteanu, Adrian; Verdicchio, Fabio; Andreopoulos, Yiannis; Cornelis, Jan P.; Schelkens, Peter


    Modern video coding applications require transmission of video data over variable-bandwidth channels to a variety of terminals with different screen resolutions and available computational power. Scalable video coding is needed to optimally support these applications. Recently proposed wavelet-based video codecs employing spatial domain motion compensated temporal filtering (SDMCTF) provide quality, resolution and frame-rate scalability while delivering compression performance comparable to that of the state-of-the-art non-scalable H.264-codec. These codecs require scalable coding of the motion vectors in order to support a large range of bit-rates with optimal compression efficiency. Scalable motion vector coding algorithms based on the integer wavelet transform followed by embedded coding of the wavelet coefficients were recently proposed. In this paper, a new and fundamentally different scalable motion vector codec (MVC) using median-based motion vector prediction is proposed. Extensive experimental results demonstrate that the proposed MVC systematically outperforms the wavelet-based state-of-the-art solutions. To be able to take advantage of the proposed scalable MVC, a rate allocation mechanism capable of optimally dividing the available rate among texture and motion information is required. Two rate allocation strategies are proposed and compared. The proposed MVC and rate allocation schemes are incorporated into an SDMCTF-based video codec and the benefits of scalable motion vector coding are experimentally demonstrated.

  5. Ambiguity in Tactile Apparent Motion Perception.

    Directory of Open Access Journals (Sweden)

    Emanuela Liaci

    Full Text Available In von Schiller's Stroboscopic Alternative Motion (SAM stimulus two visually presented diagonal dot pairs, located on the corners of an imaginary rectangle, alternate with each other and induce either horizontal, vertical or, rarely, rotational motion percepts. SAM motion perception can be described by a psychometric function of the dot aspect ratio ("AR", i.e. the relation between vertical and horizontal dot distances. Further, with equal horizontal and vertical dot distances (AR = 1 perception is biased towards vertical motion. In a series of five experiments, we presented tactile SAM versions and studied the role of AR and of different reference frames for the perception of tactile apparent motion.We presented tactile SAM stimuli and varied the ARs, while participants reported the perceived motion directions. Pairs of vibration stimulators were attached to the participants' forearms and stimulator distances were varied within and between forearms. We compared straight and rotated forearm conditions with each other in order to disentangle the roles of exogenous and endogenous reference frames.Increasing the tactile SAM's AR biased perception towards vertical motion, but the effect was weak compared to the visual modality. We found no horizontal disambiguation, even for very small tactile ARs. A forearm rotation by 90° kept the vertical bias, even though it was now coupled with small ARs. A 45° rotation condition with crossed forearms, however, evoked a strong horizontal motion bias.Existing approaches to explain the visual SAM bias fail to explain the current tactile results. Particularly puzzling is the strong horizontal bias in the crossed-forearm conditions. In the case of tactile apparent motion, there seem to be no fixed priority rule for perceptual disambiguation. Rather the weighting of available evidence seems to depend on the degree of stimulus ambiguity, the current situation and on the perceptual strategy of the individual

  6. Inflation and Cyclotron Motion

    CERN Document Server

    Greensite, Jeff


    We consider, in the context of a braneworld cosmology, the motion of the universe coupled to a four-form gauge field, with constant field strength, defined in higher dimensions. It is found, under rather general initial conditions, that in this situation there is a period of exponential inflation combined with cyclotron motion in the inflaton field space. The main effect of the cyclotron motion is that conditions on the flatness of the inflaton potential, which are typically necessary for exponential inflation, can be evaded. There are Landau levels associated with the four-form gauge field, and these correspond to quantum excitations of the inflaton field.

  7. Optimal displacement in apparent motion and quadrature models of motion sensing (United States)

    Watson, Andrew B.


    A grating appears to move if it is displaced by some amount between two brief presentations, or between multiple successive presentations. A number of recent experiments have examined the influence of displacement size upon either the sensitivity to motion, or upon the induced motion aftereffect. Several recent motion models are based upon quadrature filters that respond in opposite quadrants in the spatiotemporal frequency plane. Predictions of the quadrature model are derived for both two-frame and multiframe displays. Quadrature models generally predict an optimal displacement of 1/4 cycle for two-frame displays, but in the multiframe case the prediction depends entirely on the frame rate.

  8. An Observer-Based Controller with a LMI-Based Filter against Wind-Induced Motion for High-Rise Buildings

    Directory of Open Access Journals (Sweden)

    Chao-Jun Chen


    Full Text Available Active mass damper (AMD control system is proposed for high-rise buildings to resist a strong wind. However, negative influence of noise in sensors impedes the application of AMD systems in practice. To reduce the adverse influence of noise on AMD systems, a Kalman filter and a linear matrix inequality- (LMI- based filter are designed. Firstly, a ten-year return period fluctuating wind load is simulated by mixed autoregressive-moving average (MARMA method, and its reliability is tested by wind speed power spectrum and correlation analysis. Secondly, a designed state observer with different filters uses wind-induced acceleration responses of a high-rise building as the feedback signal that includes noise to calculate control force in this paper. Finally, these methods are applied to a numerical example of a high-rise building and an experiment of a single span four-storey steel frame. Both numerical and experimental results are presented to verify that both Kalman filter and LMI-based filter can effectively suppress noise, but only the latter can guarantee the stability of AMD parameters.

  9. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. (United States)

    Sharff, A J; Rodseth, L E; Spurlino, J C; Quiocho, F A


    The periplasmic maltodextrin binding protein of Escherichia coli serves as an initial receptor for the active transport of and chemotaxis toward maltooligosaccharides. The three-dimensional structure of the binding protein complexed with maltose has been previously reported [Spurlino, J. C., Lu, G.-Y., & Quiocho, F. A. (1991) J. Biol. Chem. 266, 5202-5219]. Here we report the structure of the unliganded form of the binding protein refined to 1.8-A resolution. This structure, combined with that for the liganded form, provides the first crystallographic evidence that a major ligand-induced conformational change occurs in a periplasmic binding protein. The unliganded structure shows a rigid-body "hinge-bending" between the two globular domains by approximately 35 degrees, relative to the maltose-bound structure, opening the sugar binding site groove located between the two domains. In addition, there is an 8 degrees twist of one domain relative to the other domain. The conformational changes observed between this structure and the maltose-bound structure are consistent with current models of maltose/maltodextrin transport and maltose chemotaxis and solidify a mechanism for receptor differentiation between the ligand-free and ligand-bound forms in signal transduction.

  10. Biological Motion Cues Trigger Reflexive Attentional Orienting (United States)

    Shi, Jinfu; Weng, Xuchu; He, Sheng; Jiang, Yi


    The human visual system is extremely sensitive to biological signals around us. In the current study, we demonstrate that biological motion walking direction can induce robust reflexive attentional orienting. Following a brief presentation of a central point-light walker walking towards either the left or right direction, observers' performance…

  11. Projectile Motion Details. (United States)

    Schnick, Jeffrey W.


    Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)

  12. Projectile Motion with Mathematica. (United States)

    de Alwis, Tilak


    Describes how to use the computer algebra system (CAS) Mathematica to analyze projectile motion with and without air resistance. These experiments result in several conjectures leading to theorems. (Contains 17 references.) (Author/ASK)

  13. A Projectile Motion Bullseye. (United States)

    Lamb, William G.


    Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)

  14. Mathisson's helical motions demystified

    CERN Document Server

    Costa, L Filipe O; Zilhão, Miguel


    The motion of spinning test particles in general relativity is described by Mathisson-Papapetrou-Dixon equations, which are undetermined up to a spin supplementary condition, the latter being today still an open question. The Mathisson-Pirani (MP) condition is known to lead to rather mysterious helical motions which have been deemed unphysical, and for this reason discarded. We show that these assessments are unfounded and originate from a subtle (but crucial) misconception. We discuss the kinematical explanation of the helical motions, and dynamically interpret them through the concept of hidden momentum, which has an electromagnetic analogue. We also show that, contrary to previous claims, the frequency of the helical motions coincides exactly with the zitterbewegung frequency of the Dirac equation for the electron.

  15. Travelers' Health: Motion Sickness (United States)

    ... Disease Directory Resources Resources for Travelers Adventure Travel Animal Safety Blood Clots Bug Bites Business Travel Cold ... motion sickness. Adding distractions—controlling breathing, listening to music, or using aromatherapy scents such as mint or ...

  16. Toying with Motion. (United States)

    Galus, Pamela J.


    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  17. Vision and Motion Pictures. (United States)

    Grambo, Gregory


    Presents activities on persistence of vision that involve students in a hands-on approach to the study of early methods of creating motion pictures. Students construct flip books, a Zoetrope, and an early movie machine. (DDR)

  18. Coupled transverse motion

    Energy Technology Data Exchange (ETDEWEB)

    Teng, L.C.


    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs.

  19. Perpetual Motion Machine

    Directory of Open Access Journals (Sweden)

    D. Tsaousis


    Full Text Available Ever since the first century A.D. there have been relative descriptions of known devices as well as manufactures for the creation of perpetual motion machines. Although physics has led, with two thermodynamic laws, to the opinion that a perpetual motion machine is impossible to be manufactured, inventors of every age and educational level appear to claim that they have invented something «entirely new» or they have improved somebody else’s invention, which «will function henceforth perpetually»! However the fact of the failure in manufacturing a perpetual motion machine till now, it does not mean that countless historical elements for these fictional machines become indifferent. The discussion on every version of a perpetual motion machine on the one hand gives the chance to comprehend the inventor’s of each period level of knowledge and his way of thinking, and on the other hand, to locate the points where this «perpetual motion machine» clashes with the laws of nature and that’s why it is impossible to have been manufactured or have functioned. The presentation of a new «perpetual motion machine» has excited our interest to locate its weak points. According to the designer of it the machine functions with the work produced by the buoyant force

  20. PROMOTIONS: PROper MOTION Software (United States)

    Caleb Wherry, John; Sahai, R.


    We report on the development of a software tool (PROMOTIONS) to streamline the process of measuring proper motions of material in expanding nebulae. Our tool makes use of IDL's widget programming capabilities to design a unique GUI that is used to compare images of the objects from two epochs. The software allows us to first orient and register the images to a common frame of reference and pixel scale, using field stars in each of the images. We then cross-correlate specific morphological features in order to determine their proper motions, which consist of the proper motion of the nebula as a whole (PM-neb), and expansion motions of the features relative to the center. If the central star is not visible (quite common in bipolar nebulae with dense dusty waists), point-symmetric expansion is assumed and we use the average motion of high-quality symmetric pairs of features on opposite sides of the nebular center to compute PM-neb. This is then subtracted out to determine the individual movements of these and additional features relative to the nebular center. PROMOTIONS should find wide applicability in measuring proper motions in astrophysical objects such as the expanding outflows/jets commonly seen around young and dying stars. We present first results from using PROMOTIONS to successfully measure proper motions in several pre-planetary nebulae (transition objects between the red giant and planetary nebula phases), using images taken 7-10 years apart with the WFPC2 and ACS instruments on board HST. The authors are grateful to NASA's Undergradute Scholars Research Program (USRP) for supporting this research.

  1. Motion Belts: Visualization of Human Motion Data on a Timeline (United States)

    Yasuda, Hiroshi; Kaihara, Ryota; Saito, Suguru; Nakajima, Masayuki

    Because motion capture system enabled us to capture a number of human motions, the demand for a method to easily browse the captured motion database has been increasing. In this paper, we propose a method to generate simple visual outlines of motion clips, for the purpose of efficient motion data browsing. Our method unfolds a motion clip into a 2D stripe of keyframes along a timeline that is based on semantic keyframe extraction and the best view point selection for each keyframes. With our visualization, timing and order of actions in the motions are clearly visible and the contents of multiple motions are easily comparable. In addition, because our method is applicable for a wide variety of motions, it can generate outlines for a large amount of motions fully automatically.

  2. Importance of motion in motion-compensated temporal discrete wavelet transforms (United States)

    Konrad, Janusz; Bozinovic, Nikola


    Discrete wavelet transforms (DWTs) applied temporally under motion compensation (MC) have recently become a very powerful tool in video compression, especially when implemented through lifting. A recent theoretical analysis has established conditions for perfect reconstruction in the case of transversal MC-DWT, and also for the equivalence of lifted and transversal implementations of MC-DWT. For Haar MC-DWT these conditions state that motion must be invertible, while for higher-order transforms they state that motion composition must be a well-defined operator. Since many popular motion models do not obey these properties, thus inducing errors (prior to compression), it is important to understand what is the impact of motion non-invertibility or quasi-invertibility on the performance of video compression. In this paper, we present new experimental results of a study aiming at a quantitative evaluation of such impact in case of block-based motion. We propose a new metric to measure the degree with which two motion fields are not inverses of each other. Using this metric we investigate several motion inversion schemes, from simple temporal sample-and-hold, through spatial nearest-neighbor, to advanced spline-based inversion, and we compare compression performance of each method to that of independently-estimated forward and backward motion fields. We observe that compression performance monotonically improves with the reduction of the proposed motion inversion error, up to 1-1.5dB for the advanced spline-based inversion. We also generalize the problem of "unconnected" pixels by extending it to both update and prediction steps, as opposed to the update step only used in conventional methods. Initial tests show favorable results compared to previously reported techniques.


    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu


    Full Text Available This paper presents the dynamic, original, machine motion equations. The equation of motion of the machine that generates angular speed of the shaft (which varies with position and rotation speed is deduced by conservation kinetic energy of the machine. An additional variation of angular speed is added by multiplying by the coefficient dynamic D (generated by the forces out of mechanism and or by the forces generated by the elasticity of the system. Kinetic energy conservation shows angular speed variation (from the shaft with inertial masses, while the dynamic coefficient introduces the variation of w with forces acting in the mechanism. Deriving the first equation of motion of the machine one can obtain the second equation of motion dynamic. From the second equation of motion of the machine it determines the angular acceleration of the shaft. It shows the distribution of the forces on the mechanism to the internal combustion heat engines. Dynamic, the velocities can be distributed in the same way as forces. Practically, in the dynamic regimes, the velocities have the same timing as the forces. Calculations should be made for an engine with a single cylinder. Originally exemplification is done for a classic distribution mechanism, and then even the module B distribution mechanism of an Otto engine type.

  4. Image-guided tumor motion modeling and tracking (United States)

    Zhang, J.; Wu, Y.; Liu, W.; Christensen, J.; Tai, A.; Li, A. X.


    Radiation therapy (RT) is an important procedure in the treatment of cancer in the thorax and abdomen. However, its efficacy can be severely limited by breathing induced tumor motion. Tumor motion causes uncertainty in the tumor's location and consequently limits the radiation dosage (for fear of damaging normal tissue). This paper describes a novel signal model for tumor motion tracking/prediction that can potentially improve RT results. Using CT and breathing sensor data, it provides a more accurate characterization of the breathing and tumor motion than previous work and is non-invasive. The efficacy of our model is demonstrated on patient data.

  5. Pharmacological and neurophysiological aspects of space/motion sickness (United States)

    Lucot, James B.; Crampton, George H.


    A motorized motion testing device modeled after a Ferris wheel was constructed to perform motion sickness tests on cats. Details of the testing are presented, and some of the topics covered include the following: xylazine-induced emesis; analysis of the constituents of the cerebrospinal fluid (CSF) during motion sickness; evaluation of serotonin-1A (5-HT sub 1A) agonists; other 5HT receptors; antimuscarinic mechanisms; and antihistaminergic mechanisms. The ability of the following drugs to reduce motion sickness in the cats was examined: amphetamines, adenosinergic drugs, opioid antagonists, peptides, cannabinoids, cognitive enhancers (nootropics), dextromethorphan/sigma ligands, scopolamine, and diphenhydramine.

  6. Motion sickness susceptibility related to ACTH, ADH and TSH (United States)

    Kohl, R. L.; Leach, C.; Homick, J. L.; Larochelle, F. T.


    The hypothesis that endogenous levels of certain hormones might be indicative of an individual's susceptibility to stressful motion is tested in a comparison of subjects classified as less prone to motion sickness with those of higher susceptibility. The levels of ACTH and vasopressin measured before exposure to stressful motion were twice as high in the less-suceptible group. No significant differences were noted in the levels of angiotensin, aldosterone, or TSH. The differences between the two groups were greater for a given hormone than for any of the changes induced by exposure to stressful motion.

  7. The Particle--Motion Problem. (United States)

    Demana, Franklin; Waits, Bert K.


    Discusses solutions to real-world linear particle-motion problems using graphing calculators to simulate the motion and traditional analytic methods of calculus. Applications include (1) changing circular or curvilinear motion into linear motion and (2) linear particle accelerators in physics. (MDH)

  8. Motion sickness, stress and the endocannabinoid system.

    Directory of Open Access Journals (Sweden)

    Alexander Choukèr

    Full Text Available BACKGROUND: A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation. METHODOLOGY/PRINCIPAL FINDINGS: We studied the activity of the ECS in human volunteers (n = 21 during parabolic flight maneuvers (PFs. During PFs, microgravity conditions (<10(-2 g are generated for approximately 22 s which results in a profound kinetic stimulus. Blood endocannabinoids (anandamide and 2-arachidonoylglycerol, 2-AG were measured from blood samples taken in-flight before start of the parabolic maneuvers, after 10, 20, and 30 parabolas, in-flight after termination of PFs and 24 h later. Volunteers who developed acute motion sickness (n = 7 showed significantly higher stress scores but lower endocannabinoid levels during PFs. After 20 parabolas, blood anandamide levels had dropped significantly in volunteers with motion sickness (from 0.39+/-0.40 to 0.22+/-0.25 ng/ml but increased in participants without the condition (from 0.43+/-0.23 to 0.60+/-0.38 ng/ml resulting in significantly higher anandamide levels in participants without motion sickness (p = 0.02. 2-AG levels in individuals with motion sickness were low and almost unchanged throughout the experiment but showed a robust increase in participants without motion sickness. Cannabinoid-receptor 1 (CB1 but not cannabinoid-receptor 2 (CB2 mRNA expression in leucocytes 4 h after the experiment was significantly lower in volunteers with motion sickness than in participants without N&V. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that stress and motion sickness in humans are associated with impaired endocannabinoid

  9. Muscle Motion Solenoid Actuator (United States)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  10. Effect of Different Display Types on Vection and Its Interaction With Motion Direction and Field Dependence

    Directory of Open Access Journals (Sweden)

    Behrang Keshavarz


    Full Text Available Illusory self-motion (vection can be generated by visual stimulation. The purpose of the present study was to compare behavioral vection measures including intensity ratings, duration, and onset time across different visual display types. Participants were exposed to a pattern of alternating black-and-white horizontal or vertical bars that moved either in vertical or horizontal direction, respectively. Stimuli were presented on four types of displays in randomized order: (a large field of view dome projection, (b combination of three computer screens, (c single computer screen, (d large field of view flat projection screen. A Computer Rod and Frame Test was used to measure field dependence, a cognitive style indicating the person’s tendency to rely on external cues (i.e., field dependent or internal cues (i.e., field independent with respect to the perception of one’s body position in space. Results revealed that all four displays successfully generated at least moderately strong vection. However, shortest vection onset, longest vection duration, and strongest vection intensity showed for the dome projection and the combination of three screens. This effect was further pronounced in field independent participants, indicating that field dependence can alter vection.

  11. Ship Roll Motion Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens


    The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of deciencies in control system designs, which have proven to be far from trivial due to fundamental performance limitations....... This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  12. Method through motion

    DEFF Research Database (Denmark)

    Steijn, Arthur


    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic...... construction as a support to working systematically practice-led research project. The design model is being developed through design laboratories and workshops with students and professionals who provide feedback that lead to incremental improvements. Working with this model construction-as-method reveals...

  13. Perpetual Motion Machine


    D. Tsaousis


    Ever since the first century A.D. there have been relative descriptions of known devices as well as manufactures for the creation of perpetual motion machines. Although physics has led, with two thermodynamic laws, to the opinion that a perpetual motion machine is impossible to be manufactured, inventors of every age and educational level appear to claim that they have invented something «entirely new» or they have improved somebody else’s invention, which «will function henceforth perpetuall...

  14. Leap Motion development essentials

    CERN Document Server

    Spiegelmock, Mischa


    This book is a fast-paced guide with practical examples that aims to help you understand and master the Leap Motion SDK.This book is for developers who are either involved in game development or who are looking to utilize Leap Motion technology in order to create brand new user interaction experiences to distinguish their products from the mass market. You should be comfortable with high-level languages and object-oriented development concepts in order to get the most out of this book.

  15. Hand in motion reveals mind in motion

    Directory of Open Access Journals (Sweden)

    Jonathan eFreeman


    Full Text Available Recently, researchers have measured hand movements en route to choices on a screen to understand the dynamics of a broad range of psychological processes. We review this growing body of research and explain how manual action exposes the real-time unfolding of underlying cognitive processing. We describe how simple hand motions may be used to continuously index participants’ tentative commitments to different choice alternatives during the evolution of a behavioral response. As such, hand-tracking can provide unusually high-fidelity, real-time motor traces of the mind. These motor traces cast novel theoretical and empirical light onto a wide range of phenomena and serve as a potential bridge between far-reaching areas of psychological science—from language, to high-level cognition and learning, to social cognitive processes.

  16. Phase Diagram of Collective Motion of Bacterial Cells in a Shallow Circular Pool

    CERN Document Server

    Wakita, Jun-ichi; Yamamoto, Ken; Katori, Makoto; Yamada, Yasuyuki


    The collective motion of bacterial cells in a shallow circular pool is systematically studied using the bacterial species $Bacillus$ $subtilis$. The ratio of cell length to pool diameter (i.e., the reduced cell length) ranges from 0.06 to 0.43 in our experiments. Bacterial cells in a circular pool show various types of collective motion depending on the cell density in the pool and the reduced cell length. The motion is classified into six types, which we call random motion, turbulent motion, one-way rotational motion, two-way rotational motion, random oscillatory motion, and ordered oscillatory motion. Two critical values of reduced cell lengths are evaluated, at which drastic changes in collective motion are induced. A phase diagram is proposed in which the six phases are arranged.

  17. Serum levels of eleven steroid hormones following motion sickness. (United States)

    Stalla, G K; Doerr, H G; Bidlingmaier, F; Sippel, W G; von Restorff, W


    In order to grade motion sickness objectively, the following 11 adrenal hormones were investigated in subjects with different motion sickness susceptibility: Aldosterone, corticosterone, 11-deoxycorticosterone, progesterone, 17-OH-progesterone, 11-deoxycortisol, cortisol, cortisone, testosterone, androstendione, dehydroepiandrosterone sulfate. Motion sickness was induced by the coriolis effect on a rotary chair. Both severe kinetosis after short rotation time and mild motion sickness after 30 min of rotation occurred together with small hormonal changes. Androstendione and 11-deoxycortisol appear to be sensitive indicators of motion sickness if the rotation time is taken into consideration. A significant increase of all hormones except progesterone, cortisone, testosterone, and dehydroepiandrosterone sulfate was observed when pronounced malaise had come after a long rotation stress (24.6 min). The changes in plasma aldosterone concentration appeared to correlate with time only. The present study demonstrates that hormonal analysis can be helpful in estimating the degree of motion sickness.

  18. Motion of a helical vortex

    CERN Document Server

    Fuentes, Oscar Velasco


    We study the motion of a single helical vortex in an unbounded, inviscid, incompressible fluid. The vortex is an infinite tube whose centerline is a helix and whose cross section is a circle of small radius (compared to the radius of curvature) where the vorticity is uniform and parallel to the centerline. Ever since Joukowsky (1912) deduced that this vortex translates and rotates steadily without change of form, numerous attempts have been made to compute these self-induced velocities. Here we use Hardin's (1982) solution for the velocity field to find new expressions for the vortex's linear and angular velocities. Our results, verified by numerically computing the Helmholtz integral and the Rosenhead-Moore approximation to the Biot-Savart law, are more accurate than previous results over the whole range of values of the vortex pitch and cross-section. We then use the new formulas to study the advection of passive particles near the vortex; we find that the vortex's motion and capacity to transport fluid dep...

  19. Markerless Motion Tracking

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis; Czarowicz, Alex


    This contribution focuses on the Associated Technologies aspect of the ICDVRAT event. Two industry leading markerless motion capture systems are examined that offer advancement in the field of rehabilitation. Residing at each end of the cost continuum, technical differences such as 3D versus 360 ...

  20. A Harmonic Motion Experiment (United States)

    Gluck, P.; Krakower, Zeev


    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  1. Projectile Motion Revisited. (United States)

    Lucie, Pierre


    Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)

  2. MotionsFloorball

    DEFF Research Database (Denmark)

    Vorup, Jacob; Seidelin, Kåre

    Med denne "opskriftsbog" er I nu klar til at begynde med MotionsFloorball. Ingen vellykket middagsret tilbereder som bekendt sig selv - de vigtigste ingredienser til et succesfuldt forløb er vilje og handlingskraft. Tilsættes værktøjerne og vidensdelen fra denne bog, er der dog ikke langt fra tanke...

  3. Nuclear motion is classical

    CERN Document Server

    Frank, Irmgard


    The notion from ab-initio molecular dynamics simulations that nuclear motion is best described by classical Newton dynamics instead of the time-dependent Schr{\\"o}dinger equation is substantiated. In principle a single experiment should bring clarity. Caution is however necessary, as temperature dependent effects must be eliminated when trying to determine the existence of a zero-point energy.

  4. Wiimote Experiments: Circular Motion (United States)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary


    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  5. Markerless Motion Tracking

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis; Czarowicz, Alex


    This contribution focuses on the Associated Technologies aspect of the ICDVRAT event. Two industry leading markerless motion capture systems are examined that offer advancement in the field of rehabilitation. Residing at each end of the cost continuum, technical differences such as 3D versus 360 ...

  6. No priming for global motion in crowding. (United States)

    Pavan, Andrea; Gall, Martin G; Manassi, Mauro; Greenlee, Mark W


    There is psychophysical evidence that low-level priming, e.g., from oriented gratings, as well as high-level semantic priming, survives crowding. We investigated priming for global translational motion in crowded and noncrowded conditions. The results indicated that reliable motion priming occurs in the noncrowded condition, but motion priming does not survive crowding. Crowding persisted despite variations in the direction of the flankers with respect to the prime's direction. Motion priming was still absent under crowding when 85% of the flankers moved in the same direction as the prime. Crowding also persisted despite variations in the speed of the flankers relative to the prime even when the flankers' speed was four times slower than the speed of the prime. However, a priming effect was evident when the prime's spatial location was precued and its distance to the flankers increased, suggesting a release from crowding. These results suggest that transient attention induced by precueing the spatial location of the prime may improve subjects' ability to discriminate its direction. Spatial cueing could act to decrease the integration field, thereby diminishing the influence of nearby distracters. In an additional experiment in which we used fewer flankers, we found a priming effect under conditions in which the interelement distance varied between flankers and prime. Overall, the results suggest that motion priming is strongly affected by crowding, but transient attention can partially retrieve such facilitation.

  7. Preliminary results of ground-motion characteristics

    Directory of Open Access Journals (Sweden)

    Francesca Bozzoni


    Full Text Available The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.

  8. Animating with Stop Motion Pro

    CERN Document Server

    Sawicki, Mark


    Animating with Stop Motion Pro is comprehensive, hands-on guide to achieving professional results with Stop Motion Pro 7.0 software. Gone are the days of stop motion guesswork and waiting to see the finalized result of your meticulous, labor intensive animations. With the push of a mouse button and the Stop Motion Pro software, animators have ten times the capability of simple camera stop motion capture. Re-visualize stop motion character movements, graph these movements and composite characters into a flawless animations with the techniques and step by step tutorials featured in Animating wit

  9. The illusory nature of standards

    DEFF Research Database (Denmark)

    Linneberg, Mai Skjøtt


    are unambiguous and apply across cases. Design/methodology/approach – The paper is primarily theoretical and its analysis is based on conceptual content and extent analysis. For the purpose of illustration, the paper draws on the example of organic agricultural standards. Findings – The author shows how illusion...

  10. Generalizing the illusory correlation effect

    NARCIS (Netherlands)

    Spears, R.; van der Pligt, J.; Eiser, J.R.


    We used two experiments to examine the influence of one's own attitude on the perception of group attitudes. In the first experiment, subjects viewed opinion statements, supposedly made by residents of two towns, on the issue of building a local nuclear power station. One town was large and had

  11. The Illusory Dichotomy of Plagiarism (United States)

    Stuhmcke, Anita; Booth, Tracey; Wangmann, Jane


    Plagiarism has been characterised as a "major problem" for universities. While tensions between students and universities are inevitable, the problem with the existing system of plagiarism management and prevention is that it operates to problematise the relationship between the university and the student, rather than address the core…

  12. Generalizing the illusory correlation effect

    NARCIS (Netherlands)

    Spears, R.; van der Pligt, J.; Eiser, J.R.


    We used two experiments to examine the influence of one's own attitude on the perception of group attitudes. In the first experiment, subjects viewed opinion statements, supposedly made by residents of two towns, on the issue of building a local nuclear power station. One town was large and had freq

  13. The Illusory Dichotomy of Plagiarism (United States)

    Stuhmcke, Anita; Booth, Tracey; Wangmann, Jane


    Plagiarism has been characterised as a "major problem" for universities. While tensions between students and universities are inevitable, the problem with the existing system of plagiarism management and prevention is that it operates to problematise the relationship between the university and the student, rather than address the core…

  14. Motion segmentation method for hybrid characteristic on human motion. (United States)

    Lau, Newman; Wong, Ben; Chow, Daniel


    Motion segmentation and analysis are used to improve the process of classification of motion and information gathered on repetitive or periodic characteristic. The classification result is useful for ergonomic and postural safety analysis, since repetitive motion is known to be related to certain musculoskeletal disorders. Past studies mainly focused on motion segmentation on particular motion characteristic with certain prior knowledge on static or periodic property of motion, which narrowed method's applicability. This paper attempts to introduce a method to tackle human joint motion without having prior knowledge. The motion is segmented by a two-pass algorithm. Recursive least square (RLS) is firstly used to estimate possible segments on the input human-motion set. Further, period identification and extra segmentation process are applied to produce meaningful segments. Each of the result segments is modeled by a damped harmonic model, with frequency, amplitude and duration produced as parameters for ergonomic evaluation and other human factor studies such as task safety evaluation and sport analysis. Experiments show that the method can handle periodic, random and mixed characteristics on human motion, which can also be extended to the usage in repetitive motion in workflow and irregular periodic motion like sport movement.

  15. Negotiation in Motion

    DEFF Research Database (Denmark)

    Jensen, Ole B.


    related to interaction, mobility, and transit that focus on notions of the “mobile with,” “negotiation in motion,” “mobile sense making,” and “temporary congregations.” The theoretical approach aims at seeing public transit spaces as sites where cars, pedestrians, mopeds, and bikes on a regular basis...... “negotiate” not only routes in and across the space but also express dynamic flows of interaction in motion. The claim is that what seems like ordinary urban movement patterns are more than this. By moving in the city among buildings, objects, and people, one interacts with the “environment,” making sense...

  16. Audition influences color processing in the sound-induced visual flash illusion. (United States)

    Mishra, Jyoti; Martinez, Antigona; Hillyard, Steven A


    Multisensory interactions can lead to illusory percepts, as exemplified by the sound-induced extra flash illusion (SIFI: Shams, Kamitani, & Shimojo, 2000, 2002). In this illusion, an audio-visual stimulus sequence consisting of two pulsed sounds and a light flash presented within a 100 ms time window generates the visual percept of two flashes. Here, we used colored visual stimuli to investigate whether concurrent auditory stimuli can affect the perceived features of the illusory flash. Zero, one or two pulsed sounds were presented concurrently with either a red or green flash or with two flashes of different colors (red followed by green) in rapid sequence. By querying both the number and color of the participants' visual percepts, we found that the double flash illusion is stimulus specific: i.e., two sounds paired with one red or one green flash generated the percept of two red or two green flashes, respectively. This implies that the illusory second flash is induced at a level of visual processing after perceived color has been encoded. In addition, we found that the presence of two sounds influenced the integration of color information from two successive flashes. In the absence of any sounds, a red and a green flash presented in rapid succession fused to form a single orange percept, but when accompanied by two sounds, this integrated orange percept was perceived to flash twice on a significant proportion of trials. In addition, the number of concurrent auditory stimuli modified the degree to which the successive flashes were integrated to an orange percept vs. maintained as separate red-green percepts. Overall, these findings show that concurrent auditory input can affect both the temporal and featural properties of visual percepts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Motion of Confined Particles

    CERN Document Server

    Miller, David E


    We carry out numerical evaluations of the motion of classical particles in Minkowski Space $\\mathbb{M}^{4}$ which are confined to the inside of a bag. In particular, we analyze the structure of the paths evolving from the breaking of the dilatation symmetry, the conformal symmetry and the combination of both together. The confining forces arise directly from the corresponding nonconserved currents. We demonstrate in our evaluations that these particles under certain initial conditions move toward the interior of the bag.

  18. Weigh - in - motion (WIM)


    Todorović Neven B.; Subotić Marko M.


    The biggest wealth of every country lies in its transportation infrastructure so the protection of negative impacts on infrastructure must be provided. The progress of sensor technology proposes today several types of weigh-in-motion systems, which have been tested for their efficiency, accuracy and cost-effectiveness. Technologies of piezoelectric sensors, bending plates and load cells are used for a number of applications comprising weigh enforcement, traffic data collection, bridge and tol...

  19. Force and motion

    CERN Document Server

    Robertson, William C


    Intimidated by inertia? Frightened by forces? Mystified by Newton s law of motion? You re not alone and help is at hand. The stop Faking It! Series is perfect for science teachers, home-schoolers, parents wanting to help with homework all of you who need a jargon-free way to learn the background for teaching middle school physical science with confidence. With Bill Roberton as your friendly, able but somewhat irreverent guide, you will discover you CAN come to grips with the basics of force and motion. Combining easy-to-understand explanations with activities using commonly found equipment, this book will lead you through Newton s laws to the physics of space travel. The book is as entertaining as it is informative. Best of all, the author understands the needs of adults who want concrete examples, hands-on activities, clear language, diagrams and yes, a certain amount of empathy. Ideas For Use Newton's laws, and all of the other motion principles presented in this book, do a good job of helping us to underst...

  20. Adaptive motion mapping in pancreatic SBRT patients using Fourier transforms

    CERN Document Server

    Jones, Bernard L; Miften, Moyed


    Recent studies suggest that 4DCT is unable to accurately measure respiratory-induced pancreatic tumor motion. In this work, we assessed the daily motion of pancreatic tumors treated with SBRT, and developed adaptive strategies to predict and account for this motion. The daily motion trajectory of pancreatic tumors during CBCT acquisition was calculated using a model which reconstructs the instantaneous 3D position in each 2D CBCT projection image. We developed a metric (termed "Spectral Coherence," SC) based on the Fourier frequency spectrum of motion in the SI direction, and analyzed the ability of SC to predict motion-based errors and classify patients according to motion characteristics. The amplitude of daily motion exceeded the predictions of pre-treatment 4DCT imaging by an average of 3.0 mm, 2.3 mm, and 3.5 mm in the AP, LR, and SI directions. SC was correlated with daily motion differences and tumor dose coverage. In a simulated adaptive protocol, target margins were adjusted based on SC, resulting in...

  1. Recent developments in motion planning

    NARCIS (Netherlands)

    Overmars, M.H.


    Motion planning is becoming an important topic in many application areas, ranging from robotics to virtual environments and games. In this paper I review some recent results in motion planning, concentrating on the probabilistic roadmap approach that has proven to be very successful for many motion

  2. The effect of retinal illuminance on visual motion priming. (United States)

    Takeuchi, Tatsuto; Tuladhar, Anup; Yoshimoto, Sanae


    The perceived direction of a directionally ambiguous stimulus is influenced by the moving direction of a preceding priming stimulus. Previous studies have shown that a brief priming stimulus induces positive motion priming, in which a subsequent directionally ambiguous stimulus is perceived to move in the same direction as the primer, while a longer priming stimulus induces negative priming, in which the following ambiguous stimulus is perceived to move in the opposite direction of the primer. The purpose of this study was to elucidate the underlying mechanism of motion priming by examining how retinal illuminance and velocity of the primer influences the perception of priming. Subjects judged the perceived direction of 180-deg phase-shifted (thus directionally ambiguous) sine-wave gratings displayed immediately after the offset of a primer stimulus. We found that perception of motion priming was greatly modulated by the retinal illuminance and velocity of the primer. Under low retinal illuminance, positive priming nearly disappeared even when the effective luminance contrast was equated between different conditions. Positive priming was prominent when the velocity of the primer was low, while only negative priming was observed when the velocity was high. These results suggest that the positive motion priming is induced by a higher-order mechanism that tracks prominent features of the visual stimulus, while a directionally selective motion mechanism induces negative motion priming.

  3. Differential effect of visual motion adaption upon visual cortical excitability. (United States)

    Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer


    The objectives of this study were 1) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing.NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency.

  4. EDITORIAL: Nanotechnology in motion Nanotechnology in motion (United States)

    Demming, Anna


    , Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468

  5. Motion and gravity effects in the precision of quantum clocks

    CERN Document Server

    Lindkvist, Joel; Johansson, Göran; Fuentes, Ivette


    We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions.

  6. Human motion simulation predictive dynamics

    CERN Document Server

    Abdel-Malek, Karim


    Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...

  7. Motion analysis report (United States)

    Badler, N. I.


    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  8. Motion dynamics of submersibles (United States)

    Kalske, Seppo


    A literature survey of motion dynamics of subsea vehicles of a general shape was performed. Hydrodynamic tests were carried out with an existing tethered remotely operated vehicle and with its full scale model. The experiments give data of maneuvering capabilities, and of hydrodynamic characteristics of small subsea vehicles. A simulation method was developed on this basis to compute the vehicle trajectory in the time domain as a function of different control commands. The method can be applied to any subsea vehicle controlled by thruster units.

  9. Evaporation in motion

    CERN Document Server

    Machrafi, Hatim; Colinet, Pierre; Dauby, Pierre


    This work presents fluid dynamics videos obtained via numerical (CFD) calculations using ComSol (finite elements method) software, showing the evaporation of HFE7100 (3M company refrigerant) into a nitrogen gas flow along the liquid interface. The overall temperature evolution and liquid motion, which is caused by surface-tension (Marangoni) and buoyancy (Rayleigh) instability mechanisms, are shown as well. Flow behavior in the liquid caused by the aforementioned instability mechanisms can be nicely seen. Finally, these observations are made for three liquid thicknesses in order to appreciate the qualitative influence of confinement.

  10. Electromechanical motion devices

    CERN Document Server

    Krause, Paul C; Pekarek, Steven D


    This text provides a basic treatment of modern electric machine analysis that gives readers the necessary background for comprehending the traditional applications and operating characteristics of electric machines-as well as their emerging applications in modern power systems and electric drives, such as those used in hybrid and electric vehicles. Through the appropriate use of reference frame theory, Electromagnetic Motion Devices, Second Edition introduces readers to field-oriented control of induction machines, constant-torque, and constant-power control of dc, permanent-magnet ac

  11. Robust global motion estimation

    Institute of Scientific and Technical Information of China (English)


    A global motion estimation method based on robust statistics is presented in this paper. By using tracked feature points instead of whole image pixels to estimate parameters the process speeds up. To further speed up the process and avoid numerical instability, an alterative description of the problem is given, and three types of solution to the problem are compared. By using a two step process, the robustness of the estimator is also improved. Automatic initial value selection is an advantage of this method. The proposed approach is illustrated by a set of examples, which shows good results with high speed.

  12. Self versus environment motion in postural control.

    Directory of Open Access Journals (Sweden)

    Kalpana Dokka


    Full Text Available To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results.

  13. Bubble driven quasioscillatory translational motion of catalytic micromotors. (United States)

    Manjare, Manoj; Yang, Bo; Zhao, Y-P


    A new quasioscillatory translational motion has been observed for big Janus catalytic micromotors with a fast CCD camera. Such motional behavior is found to coincide with both the bubble growth and burst processes resulting from the catalytic reaction, and the competition of the two processes generates a net forward motion. Detailed physical models have been proposed to describe the above processes. It is suggested that the bubble growth process imposes a growth force moving the micromotor forward, while the burst process induces an instantaneous local pressure depression pulling the micromotor backward. The theoretic predictions are consistent with the experimental data.

  14. Localized motion in random matrix decomposition of complex financial systems (United States)

    Jiang, Xiong-Fei; Zheng, Bo; Ren, Fei; Qiu, Tian


    With the random matrix theory, we decompose the multi-dimensional time series of complex financial systems into a set of orthogonal eigenmode functions, which are classified into the market mode, sector mode, and random mode. In particular, the localized motion generated by the business sectors, plays an important role in financial systems. Both the business sectors and their impact on the stock market are identified from the localized motion. We clarify that the localized motion induces different characteristics of the time correlations for the stock-market index and individual stocks. With a variation of a two-factor model, we reproduce the return-volatility correlations of the eigenmodes.

  15. Stochastic Blind Motion Deblurring

    KAUST Repository

    Xiao, Lei


    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.

  16. Fast and Simple Motion Tracking Unit with Motion Estimation

    Institute of Scientific and Technical Information of China (English)

    Hyeon-cheol YANG; Yoon-sup KIM; Seong-soo LEE; Sang-keun OH; Sung-hwa KIM; Doo-won CHOI


    Surveillance system using active tracking camera has no distance limitation of surveillance range compared to supersonic or sound sensors. However, complex motion tracking algorithm requires huge amount of computation, and it often requires expensive DSPs or embedded processors. This paper proposes a novel motion tracking unit based on different image for fast and simple motion tracking. It uses configuration factor to avoid noise and inaccuracy. It reduces the required computation significantly, so as to be implemented on Field Programmable Gate Array(FPGAs) instead of expensive Digital Signal Processing(DSPs). It also performs calculation for motion estimation in video compression, so it can be easily combined with surveillance system with video recording functionality based on video compression. The proposed motion tracking system implemented on Xilinx Vertex-4 FPGA can process 48 frames per second, and operating frequency of motion tracking unit is 100 MHz.

  17. Role of orientation reference selection in motion sickness (United States)

    Peterka, Robert J.; Black, F. Owen


    The overall objective of this proposal is to understand the relationship between human orientation control and motion sickness susceptibility. Three areas related to orientation control will be investigated. These three areas are (1) reflexes associated with the control of eye movements and posture, (2) the perception of body rotation and position with respect to gravity, and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. We refer to this process as sensory selection. This proposal will attempt to quantify subjects' sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms. Measurements of reflexes, motion perception, sensory selection abilities, and motion sickness susceptibility will concentrate on pitch and roll motions since these seem most relevant to the space motion sickness problem. Vestibulo-ocular (VOR) and oculomotor reflexes will be measured using a unique two-axis rotation device developed in our laboratory over the last seven years. Posture control reflexes will be measured using a movable posture platform capable of independently altering proprioceptive and visual orientation cues. Motion perception will be quantified using closed loop feedback technique developed by Zacharias and Young (Exp Brain Res, 1981). This technique requires a subject to null out motions induced by the experimenter while being exposed to various confounding sensory orientation cues. A subject's sensory selection abilities will be measured by the magnitude and timing of his reactions to changes in sensory environments. Motion sickness

  18. Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions. (United States)

    Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly


    The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Disrupted integration of sensory stimuli with information about the movement of the body as a mechanism explaining LSD-induced experience. (United States)

    Juszczak, Grzegorz R


    LSD (lysergic acid diethylamide) is a model psychedelic drug used to study mechanism underlying the effects induced by hallucinogens. However, despite advanced knowledge about molecular mechanism responsible for the effects induced by LSD and other related substances acting at serotonergic 5-HT2a receptors, we still do not understand how these drugs trigger specific sensory experiences. LSD-induced experience is characterised by perception of movement in the environment and by presence of various bodily sensations such as floating in space, merging into surroundings and movement out of the physical body (the out-of-body experience). It means that a large part of the experience induced by the LSD can be simplified to the illusory movement that can be attributed to the self or to external objects. The phenomenology of the LSD-induced experience has been combined with the fact that serotonergic neurons provide all major parts of the brain with information about the level of tonic motor activity, occurrence of external stimuli and the execution of orienting responses. Therefore, it has been proposed that LSD-induced stimulation of 5-HT2a receptors disrupts the integration of the sensory stimuli with information about the movement of the body leading to perception of illusory movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Measurement of the rotational motion induced by the Amatrice earthquake (24/08/2016), Italy, with a portable Ixblue sensor at the Low Noise Underground Laboratory (LSBB), Rustrel, France (United States)

    Sèbe, Olivier; Guattari, Frédéric; Judenherc, Sébastien; Decitre, Jean-Baptiste; Lajaunie, Myriam; Lallemand, Charly; Gaffet, Stéphane; Boyer, Daniel; Cavaillou, Alain; Hardy, Rémi; Bigueur, Alexandre; Schindele, François


    During 2 month, from the 14 July 2016 until the 15 September 2016, the iXblue company installed in the gallery of the LSBB (Low Noise underground Laboratory, Rustrel, France), a prototype of a new portable rotational sensor (blueSeis), composed of 3 single component IFOG loops allowing to measure the vertical rotational ground motion. The purpose of this experiment was to demonstrate the ability of this new sensor to record seismic rotational signal on field condition. To this end, the LSBB underground permanent seismic network has been completed by 9 additional temporary broad band stations. Thank to this dense small-aperture seismic network, the vertical rotation motion has been estimated based on array finite difference approximation of the spatial derivatives of the local ground motion. During the night of the 24 August 2016, a magnitude 6.2 earthquake severely hit the region of Amatrice, Central Italy, at 3h36 local time. Located at less than 650 km away for the LSBB, the event was clearly recorded by the IFOG sensors and all broad band seismometers with a high signal to noise ratio. The comparison of the array derived rotation on the frequency band [0.02 - 0.33]Hz, with direct observation done by IFOG sensors demonstrates the capacity of this new portable IFOG sensor to measure rotational motion with an amplitude lower than 0.5x10-7 rads-1.

  1. An intracranial event-related potential study on transformational apparent motion. Does its neural processing differ from real motion? (United States)

    Bertrand, Josie-Anne; Lassonde, Maryse; Robert, Manon; Nguyen, Dang Khoa; Bertone, Armando; Doucet, Marie-Ève; Bouthillier, Alain; Lepore, Franco


    How the brain processes visual stimuli has been extensively studied using scalp surface electrodes and magnetic resonance imaging. Using these and other methods, complex gratings have been shown to activate the ventral visual stream, whereas moving stimuli preferentially activate the dorsal stream. In the current study, a first experiment assessed brain activations evoked by complex gratings using intracranial electroencephalography in 10 epileptic patients implanted with subdural electrodes. These stimuli of intermediate levels of complexity were presented in such a way that transformational apparent motion (TAM) was perceived. Responses from both the ventral and the dorsal pathways were obtained. The response characteristics of visual area 4 and the fusiform cortex were of similar amplitudes, suggesting that both ventral areas are recruited for the processing of complex gratings. On the other hand, TAM-induced responses of dorsal pathway areas were relatively noisier and of lower amplitudes, suggesting that TAM does not activate motion-specific structures to the same extent as does real motion. To test this hypothesis, we examined the activity evoked by TAM in comparison to the one produced by real motion in a patient implanted with the same subdural electrodes. Findings demonstrated that neural response to real motion was much stronger than that evoked by TAM, in both the primary visual cortex (V1) and other motion-sensitive areas within the dorsal pathway. These results support the conclusion that apparent motion, even if perceptually similar to real motion, is not processed in a similar manner.

  2. The influence of sleep deprivation and oscillating motion on sleepiness, motion sickness, and cognitive and motor performance. (United States)

    Kaplan, Janna; Ventura, Joel; Bakshi, Avijit; Pierobon, Alberto; Lackner, James R; DiZio, Paul


    Our goal was to determine how sleep deprivation, nauseogenic motion, and a combination of motion and sleep deprivation affect cognitive vigilance, visual-spatial perception, motor learning and retention, and balance. We exposed four groups of subjects to different combinations of normal 8h sleep or 4h sleep for two nights combined with testing under stationary conditions or during 0.28Hz horizontal linear oscillation. On the two days following controlled sleep, all subjects underwent four test sessions per day that included evaluations of fatigue, motion sickness, vigilance, perceptual discrimination, perceptual learning, motor performance and learning, and balance. Sleep loss and exposure to linear oscillation had additive or multiplicative relationships to sleepiness, motion sickness severity, decreases in vigilance and in perceptual discrimination and learning. Sleep loss also decelerated the rate of adaptation to motion sickness over repeated sessions. Sleep loss degraded the capacity to compensate for novel robotically induced perturbations of reaching movements but did not adversely affect adaptive recovery of accurate reaching. Overall, tasks requiring substantial attention to cognitive and motor demands were degraded more than tasks that were more automatic. Our findings indicate that predicting performance needs to take into account in addition to sleep loss, the attentional demands and novelty of tasks, the motion environment in which individuals will be performing and their prior susceptibility to motion sickness during exposure to provocative motion stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Weigh - in - motion (WIM

    Directory of Open Access Journals (Sweden)

    Todorović Neven B.


    Full Text Available The biggest wealth of every country lies in its transportation infrastructure so the protection of negative impacts on infrastructure must be provided. The progress of sensor technology proposes today several types of weigh-in-motion systems, which have been tested for their efficiency, accuracy and cost-effectiveness. Technologies of piezoelectric sensors, bending plates and load cells are used for a number of applications comprising weigh enforcement, traffic data collection, bridge and toll control systems and so on. Advantages of using WIM technology are various and its benefits affects all road users (transport companies, public, public transport authorities. Potential of WIM application has been recognized in the leading EU countries, so the existence of the numerous WIM projects.

  4. Cosmology as geodesic motion

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Paul K [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Wohlfarth, Mattias N R [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)


    For gravity coupled to N scalar fields, with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N + 1)-dimensional 'augmented' target space of Lorentzian signature (1, N), timelike if V > 0, null if V = 0 and spacelike if V < 0. Accelerating cosmologies correspond to timelike geodesics that lie within an 'acceleration subcone' of the 'lightcone'. Non-flat (k = {+-}1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension N + 2, of signature (1, N + 1) for k = -1 and signature (2, N) for k = +1. This formalism is illustrated by cosmological solutions of models with an exponential potential, which are comprehensively analysed; the late-time behaviour for other potentials of current interest is deduced by comparison.

  5. Cosmology as Geodesic Motion

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.


    For gravity coupled to N scalar fields with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N+1)-dimensional `extended target space' of Lorentzian signature (1,N), timelike if V>0 and spacelike if V<0. Accelerating cosmologies correspond to timelike geodesics that lie within an `acceleration subcone' of the `lightcone'. Non-flat (k=-1,+1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension N+2, of signature (1,N+1) for k=-1 and signature (2,N) for k=+1. We illustrate these results for various potentials of current interest, including exponential and inverse power potentials.

  6. Multivariate respiratory motion prediction (United States)

    Dürichen, R.; Wissel, T.; Ernst, F.; Schlaefer, A.; Schweikard, A.


    In extracranial robotic radiotherapy, tumour motion is compensated by tracking external and internal surrogates. To compensate system specific time delays, time series prediction of the external optical surrogates is used. We investigate whether the prediction accuracy can be increased by expanding the current clinical setup by an accelerometer, a strain belt and a flow sensor. Four previously published prediction algorithms are adapted to multivariate inputs—normalized least mean squares (nLMS), wavelet-based least mean squares (wLMS), support vector regression (SVR) and relevance vector machines (RVM)—and evaluated for three different prediction horizons. The measurement involves 18 subjects and consists of two phases, focusing on long term trends (M1) and breathing artefacts (M2). To select the most relevant and least redundant sensors, a sequential forward selection (SFS) method is proposed. Using a multivariate setting, the results show that the clinically used nLMS algorithm is susceptible to large outliers. In the case of irregular breathing (M2), the mean root mean square error (RMSE) of a univariate nLMS algorithm is 0.66 mm and can be decreased to 0.46 mm by a multivariate RVM model (best algorithm on average). To investigate the full potential of this approach, the optimal sensor combination was also estimated on the complete test set. The results indicate that a further decrease in RMSE is possible for RVM (to 0.42 mm). This motivates further research about sensor selection methods. Besides the optical surrogates, the sensors most frequently selected by the algorithms are the accelerometer and the strain belt. These sensors could be easily integrated in the current clinical setup and would allow a more precise motion compensation.

  7. Method of manufacturing a motion simulator, and a motion simulator

    NARCIS (Netherlands)

    Beukers, A.; Van Baten, T.; Advani, S.K.


    A method of manufacturing a motion simulator, which motion simulator has a deck and a number of deck-supporting legs (2) that are pivotally connected with the deck in first pivot points (4), the legs being actively and continuously length-adjustable, such that the deck is capable of describing a mot

  8. Reduction of motion artifacts in electrocardiogram monitoring using an optical sensor. (United States)

    Liu, Yan; Pecht, Michael G


    The effectiveness of electrocardiogram (ECG) monitors can be significantly impaired by motion artifacts, which can trigger false alarms, cause misdiagnoses, and lead to inappropriate treatment decisions. Skin stretch associated with patient motion is the most significant source of motion artifacts in current ECG monitoring. In this study, motion artifacts are adaptively filtered by using skin strain as the reference variable, measured noninvasively using an optical sensor incorporated into an ECG electrode. The results demonstrate that this new device and method can significantly reduce motion induced ECG artifacts in continuous ambulatory ECG monitoring.

  9. Motion of a rigid prolate spheroid in a sound wave field. (United States)

    Zhou, Hongkun; Hong, Lianjin


    The motions of a rigid and unconstrained prolate spheroid subjected to plane sound waves are computed using preliminary analytic derivation and numerical approach. The acoustically induced motions are found comprising torsional motion as well as translational motion in the case of acoustic oblique incidence and present great relevance to the sound wavelength, body geometry, and density. The relationship between the motions and acoustic particle velocity is obtained through finite element simulation in terms of sound wavelengths much longer than the overall size of the prolate spheroid. The results are relevant to the design of inertial acoustic particle velocity sensors based on prolate spheroids.

  10. Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers. (United States)

    Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T


    Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.

  11. Estimation of Ship Motions Using Closed-Form Expressions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Mansour, A.E.; Olsen, Anders Smærup


    A semi-analytical approach is used to derive frequency response functions for the wave-induced motions for monohull ships. The results are given as closed-form expressions and the required input information for the procedure is restricted to the main dimensions: Length, breadth, draught, block co...... coefficient together with speed and heading. The formulas make it simple to obtain quick estimates of the wave-induced motions and accelerations in the conceptual design phase and to perform a sensitivity study of the variation with main dimensions and operational profile....

  12. Approximations of fractional Brownian motion

    CERN Document Server

    Li, Yuqiang; 10.3150/10-BEJ319


    Approximations of fractional Brownian motion using Poisson processes whose parameter sets have the same dimensions as the approximated processes have been studied in the literature. In this paper, a special approximation to the one-parameter fractional Brownian motion is constructed using a two-parameter Poisson process. The proof involves the tightness and identification of finite-dimensional distributions.

  13. Recent developments in motion planning

    NARCIS (Netherlands)

    Overmars, M.H.


    Motion planning is becoming an important topic in many application areas, ranging from robotics to virtual environments and games. In this paper I review some recent results in motion planning, concentrating on the probabilistic roadmap approach that has proven to be very successful for many

  14. Algorithmic Issues in Modeling Motion

    DEFF Research Database (Denmark)

    Agarwal, P. K; Guibas, L. J; Edelsbrunner, H.


    This article is a survey of research areas in which motion plays a pivotal role. The aim of the article is to review current approaches to modeling motion together with related data structures and algorithms, and to summarize the challenges that lie ahead in producing a more unified theory...

  15. Motion-corrected Fourier ptychography

    CERN Document Server

    Bian, Liheng; Guo, Kaikai; Suo, Jinli; Yang, Changhuei; Chen, Feng; Dai, Qionghai


    Fourier ptychography (FP) is a recently proposed computational imaging technique for high space-bandwidth product imaging. In real setups such as endoscope and transmission electron microscope, the common sample motion largely degrades the FP reconstruction and limits its practicability. In this paper, we propose a novel FP reconstruction method to efficiently correct for unknown sample motion. Specifically, we adaptively update the sample's Fourier spectrum from low spatial-frequency regions towards high spatial-frequency ones, with an additional motion recovery and phase-offset compensation procedure for each sub-spectrum. Benefiting from the phase retrieval redundancy theory, the required large overlap between adjacent sub-spectra offers an accurate guide for successful motion recovery. Experimental results on both simulated data and real captured data show that the proposed method can correct for unknown sample motion with its standard deviation being up to 10% of the field-of-view scale. We have released...

  16. Brownian Motion Theory and Experiment

    CERN Document Server

    Basu, K; Basu, Kasturi; Baishya, Kopinjol


    Brownian motion is the perpetual irregular motion exhibited by small particles immersed in a fluid. Such random motion of the particles is produced by statistical fluctuations in the collisions they suffer with the molecules of the surrounding fluid. Brownian motion of particles in a fluid (like milk particles in water) can be observed under a microscope. Here we describe a simple experimental set-up to observe Brownian motion and a method of determining the diffusion coefficient of the Brownian particles, based on a theory due to Smoluchowski. While looking through the microscope we focus attention on a fixed small volume, and record the number of particles that are trapped in that volume, at regular intervals of time. This gives us a time-series data, which is enough to determine the diffusion coefficient of the particles to a good degree of accuracy.

  17. Entropic forces in Brownian motion

    CERN Document Server

    Roos, Nico


    The interest in the concept of entropic forces has risen considerably since E. Verlinde proposed to interpret the force in Newton s second law and Gravity as entropic forces. Brownian motion, the motion of a small particle (pollen) driven by random impulses from the surrounding molecules, may be the first example of a stochastic process in which such forces are expected to emerge. In this note it is shown that at least two types of entropic motion can be identified in the case of 3D Brownian motion (or random walk). This yields simple derivations of known results of Brownian motion, Hook s law and, applying an external (nonradial) force, Curie s law and the Langevin-Debye equation.

  18. Thermocapillary motion on lubricant-impregnated surfaces (United States)

    Bjelobrk, Nada; Girard, Henri-Louis; Bengaluru Subramanyam, Srinivas; Kwon, Hyuk-Min; Quéré, David; Varanasi, Kripa K.


    We show that thermocapillary-induced droplet motion is markedly enhanced when using lubricant-impregnated surfaces as compared to solid substrates. These surfaces provide weak pinning, which makes them ideal for droplet transportation and specifically for water transportation. Using a lubricant with viscosity comparable to that of water and temperature gradients as low as 2 K/mm, we observe that drops can propel at 6.5 mm/s, that is, at least 5 times quicker than reported on conventional substrates. Also in contrast with solids, the liquid nature of the different interfaces makes it possible to predict quantitatively the thermocapillary Marangoni force (and velocity) responsible for the propulsion.

  19. Hydrogen motion in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Lavrov, E.V. [Technische Universitaet Dresden, 01062 Dresden (Germany)], E-mail:; Boerrnert, F.; Weber, J. [Technische Universitaet Dresden, 01062 Dresden (Germany)


    The motion of hydrogen in a variety of complexes in ZnO is studied by stress-induced dichroism. The defects investigated are Cu-H and Cu-H{sub 2}, the Zn vacancy passivated by two hydrogen atoms, and a complex resulting in an IR absorption line at 3326cm{sup -1}. The hydrogen movement in these complexes is related to the hydrogen diffusion in ZnO. In addition a new microscopic model for the 3326 cm{sup -1}line is proposed.

  20. A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion (United States)

    Yao, Lin; Meng, Jianjun; Sheng, Xinjun; Zhang, Dingguo; Zhu, Xiangyang


    Objective. Lack of efficient calibration and task guidance in motor imagery (MI) based brain-computer interface (BCI) would result in the failure of communication or control, especially in patients, such as a stroke with motor impairment and intact sensation, locked-in state amyotrophic lateral sclerosis, in which the sources of data for calibration may worsen the subsequent decoding. In addition, enhancing the proprioceptive experience in MI might improve the BCI performance. Approach. In this work, we propose a new calibrating and task guidance methodology to further improve the MI BCI, exploiting the afferent nerve system through tendon vibration stimulation to induce a sensation with kinesthesia illusion. A total of 30 subjects’ experiments were carried out, and randomly divided into a control group (control-group) and calibration and task guidance group (CTG-group). Main results. Online experiments have shown that MI could be decoded by classifier calibrated solely using sensation data, with 8 of the 15 subjects in the CTG-Group above 80%, 3 above 95% and all above 65%. Offline chronological cross-validation analysis shows that it has reached a comparable performance with the traditional calibration method (F(1,14)=0.14,P=0.7176). In addition, the discrimination accuracy of MI in the CTG-Group is significantly 12.17% higher on average than that in the control-group (unpaired-T test, P = 0.0086), and illusory sensation indicates no significant difference (unpaired-T test, p = 0.3412). The finding of the existed similarity of the discriminative brain patterns and grand averaged ERD/ERS between imagined movement (actively induced) and illusory movement (passively evoked) also validates the proposed calibration and task guidance framework. Significance. The cognitive complexity of the illusory sensation task is much lower and more objective than that of MI. In addition, subjects’ kinesthetic experience mentally simulated during the MI task might be enhanced by

  1. Characterisation of walking loads by 3D inertial motion tracking (United States)

    Van Nimmen, K.; Lombaert, G.; Jonkers, I.; De Roeck, G.; Van den Broeck, P.


    The present contribution analyses the walking behaviour of pedestrians in situ by 3D inertial motion tracking. The technique is first tested in laboratory experiments with simultaneous registration of the ground reaction forces. The registered motion of the pedestrian allows for the identification of stride-to-stride variations, which is usually disregarded in the simulation of walking forces. Subsequently, motion tracking is used to register the walking behaviour of (groups of) pedestrians during in situ measurements on a footbridge. The calibrated numerical model of the structure and the information gathered using the motion tracking system enables detailed simulation of the step-by-step pedestrian induced vibrations. Accounting for the in situ identified walking variability of the test-subjects leads to a significantly improved agreement between the measured and the simulated structural response.

  2. A motion planner for nonholonomic mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Laumond, J.P.; Jacobs, P.E.; Taiex, M. (LAA/CNRS, Toulouse (France)); Murray, R.M. (California Inst. of Technology, Pasadena, CA (United States). Dept. of Mechanical Engineering)


    This paper considers the problems of motion planning for a car-like robot (i.e., a mobile robot with a nonholonomic constraint whose turning radius is lower-bounded). The authors present a fast and exact planner for their mobile robot model, based upon recursive subdivision of a collision-free path generated by a lower-level geometric planner that ignores the motion constraints. The resultant trajectory is optimized to give a path that is of near-minimal length in its homotopy class. Their claims of high speed are supported by experimental results for implementations that assume a robot moving amid polygonal obstacles. The completeness and the complexity of the algorithm are proven using an appropriate metric in the configuration space R[sup 2] [times] S[sup 1] of the robot. This metric is defined by using the length of the shortest paths in the absence of obstacles as the distance between two configurations. The authors prove that the new induced topology and the classical one are the same. Although the authors concentrate upon the car-like robot, the generalization of these techniques leads to new theoretical issues involving sub-Riemannian geometry and to practical results for nonholonomic motion planning.

  3. Several methods of smoothing motion capture data (United States)

    Qi, Jingjing; Miao, Zhenjiang; Wang, Zhifei; Zhang, Shujun


    Human motion capture and editing technologies are widely used in computer animation production. We can acquire original motion data by human motion capture system, and then process it by motion editing system. However, noise embed in original motion data maybe introduced by extracting the target, three-dimensional reconstruction process, optimizing algorithm and devices itself in human motion capture system. The motion data must be modified before used to make videos, otherwise the animation figures will be jerky and their behavior is unnatural. Therefore, motion smoothing is essential. In this paper, we compare and summarize three methods of smoothing original motion capture data.

  4. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar


    model being correct is computed through a likelihood function for each model.  The study presented a simple technique to introduce additional models into the system using deterministic acceleration which basically defines the dynamics of the system.  Therefore, based on this value more motion models can...... be employed to increase the coverage.  Finally, the combined estimate is obtained using posteriori probabilities from different filter models.   The implemented approach provides an adaptive scheme for selecting various number of motion models.  Motion model description is important as it defines the kind...

  5. Greenland ice sheet motion insensitive to exceptional meltwater forcing. (United States)

    Tedstone, Andrew J; Nienow, Peter W; Sole, Andrew J; Mair, Douglas W F; Cowton, Thomas R; Bartholomew, Ian D; King, Matt A


    Changes to the dynamics of the Greenland ice sheet can be forced by various mechanisms including surface-melt-induced ice acceleration and oceanic forcing of marine-terminating glaciers. We use observations of ice motion to examine the surface melt-induced dynamic response of a land-terminating outlet glacier in southwest Greenland to the exceptional melting observed in 2012. During summer, meltwater generated on the Greenland ice sheet surface accesses the ice sheet bed, lubricating basal motion and resulting in periods of faster ice flow. However, the net impact of varying meltwater volumes upon seasonal and annual ice flow, and thus sea level rise, remains unclear. We show that two extreme melt events (98.6% of the Greenland ice sheet surface experienced melting on July 12, the most significant melt event since 1889, and 79.2% on July 29) and summer ice sheet runoff ~3.9 σ above the 1958-2011 mean resulted in enhanced summer ice motion relative to the average melt year of 2009. However, despite record summer melting, subsequent reduced winter ice motion resulted in 6% less net annual ice motion in 2012 than in 2009. Our findings suggest that surface melt-induced acceleration of land-terminating regions of the ice sheet will remain insignificant even under extreme melting scenarios.

  6. Greenland ice sheet motion insensitive to exceptional meltwater forcing (United States)

    Tedstone, Andrew J.; Nienow, Peter W.; Sole, Andrew J.; Mair, Douglas W. F.; Cowton, Thomas R.; Bartholomew, Ian D.; King, Matt A.


    Changes to the dynamics of the Greenland ice sheet can be forced by various mechanisms including surface-melt–induced ice acceleration and oceanic forcing of marine-terminating glaciers. We use observations of ice motion to examine the surface melt–induced dynamic response of a land-terminating outlet glacier in southwest Greenland to the exceptional melting observed in 2012. During summer, meltwater generated on the Greenland ice sheet surface accesses the ice sheet bed, lubricating basal motion and resulting in periods of faster ice flow. However, the net impact of varying meltwater volumes upon seasonal and annual ice flow, and thus sea level rise, remains unclear. We show that two extreme melt events (98.6% of the Greenland ice sheet surface experienced melting on July 12, the most significant melt event since 1889, and 79.2% on July 29) and summer ice sheet runoff ∼3.9σ above the 1958–2011 mean resulted in enhanced summer ice motion relative to the average melt year of 2009. However, despite record summer melting, subsequent reduced winter ice motion resulted in 6% less net annual ice motion in 2012 than in 2009. Our findings suggest that surface melt–induced acceleration of land-terminating regions of the ice sheet will remain insignificant even under extreme melting scenarios. PMID:24248343

  7. Marker-Free Human Motion Capture

    DEFF Research Database (Denmark)

    Grest, Daniel

    Human Motion Capture is a widely used technique to obtain motion data for animation of virtual characters. Commercial optical motion capture systems are marker-based. This book is about marker-free motion capture and its possibilities to acquire motion from a single viewing direction. The focus...

  8. Muon motion in titanium hydride (United States)

    Kempton, J. R.; Petzinger, K. G.; Kossler, W. J.; Schone, H. E.; Hitti, B. S.; Stronach, C. E.; Adu, N.; Lankford, W. F.; Reilly, J. J.; Seymour, E. F. W.


    Motional narrowing of the transverse-field muon spin rotation signal was observed in gamma-TiH(x) for x = 1.83, 1.97, and 1.99. An analysis of the data for TiH1.99 near room temperature indicates that the mechanism responsible for the motion of the muon out of the octahedral site is thermally activated diffusion with an attempt frequency comparable to the optical vibrations of the lattice. Monte Carlo calculations to simulate the effect of muon and proton motion upon the muon field-correlation time were used to interpret the motional narrowing in TiH1.97 near 500 K. The interpretation is dependent upon whether the Bloembergen, Purcell, and Pound (BPP) theory or an independent spin-pair relaxation model is used to obtain the vacancy jump rate from proton NMR T1 measurements. Use of BPP theory shows that the field-correction time can be obtained if the rate of motion of the muon with respect to the rate of the motion for the protons is decreased. An independent spin-pair relaxation model indicates that the field-correlation time can be obtained if the rate of motion for the nearest-neighbor protons is decreased.

  9. Analytical Analysis of Motion Separability

    Directory of Open Access Journals (Sweden)

    Marjan Hadian Jazi


    Full Text Available Motion segmentation is an important task in computer vision and several practical approaches have already been developed. A common approach to motion segmentation is to use the optical flow and formulate the segmentation problem using a linear approximation of the brightness constancy constraints. Although there are numerous solutions to solve this problem and their accuracies and reliabilities have been studied, the exact definition of the segmentation problem, its theoretical feasibility and the conditions for successful motion segmentation are yet to be derived. This paper presents a simplified theoretical framework for the prediction of feasibility, of segmentation of a two-dimensional linear equation system. A statistical definition of a separable motion (structure is presented and a relatively straightforward criterion for predicting the separability of two different motions in this framework is derived. The applicability of the proposed criterion for prediction of the existence of multiple motions in practice is examined using both synthetic and real image sequences. The prescribed separability criterion is useful in designing computer vision applications as it is solely based on the amount of relative motion and the scale of measurement noise.

  10. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar


    The paper presents a simulation study to track a maneuvering target using a selective approach in choosing Interacting Multiple Models (IMM) algorithm to provide a wider coverage to track such targets.  Initially, there are two motion models in the system to track a target.  Probability of each...... model being correct is computed through a likelihood function for each model.  The study presented a simple technique to introduce additional models into the system using deterministic acceleration which basically defines the dynamics of the system.  Therefore, based on this value more motion models can...... be employed to increase the coverage.  Finally, the combined estimate is obtained using posteriori probabilities from different filter models.   The implemented approach provides an adaptive scheme for selecting various number of motion models.  Motion model description is important as it defines the kind...

  11. From fractional Brownian motion to multifractional and multistable motion (United States)

    Falconer, Kenneth


    Fractional Brownian motion, introduced by Benoit Mandelbrot and John Van Ness in 1968, has had a major impact on stochastic processes and their applications. We survey a few of the many developments that have stemmed from their ideas. In particular we discuss the local structure of fractional and multifractional Brownian, stable and multistable processes, emphasising the `diagonal' construction of such processes. In all this, the ubiquity and centrality of fractional Brownian motion is striking.

  12. Adaptive Motion Compensation in Radiotherapy

    CERN Document Server

    Murphy, Martin J


    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  13. Video-Based Motion Analysis (United States)

    French, Paul; Peterson, Joel; Arrighi, Julie


    Video-based motion analysis has recently become very popular in introductory physics classes. This paper outlines general recommendations regarding equipment and software; videography issues such as scaling, shutter speed, lighting, background, and camera distance; as well as other methodological aspects. Also described are the measurement and modeling of the gravitational, drag, and Magnus forces on 1) a spherical projectile undergoing one-dimensional motion and 2) a spinning spherical projectile undergoing motion within a plane. Measurement and correction methods are devised for four common, major sources of error: parallax, lens distortion, discretization, and improper scaling.

  14. Sparse MRI for motion correction

    CERN Document Server

    Yang, Zai; Xie, Lihua


    MR image sparsity/compressibility has been widely exploited for imaging acceleration with the development of compressed sensing. A sparsity-based approach to rigid-body motion correction is presented for the first time in this paper. A motion is sought after such that the compensated MR image is maximally sparse/compressible among the infinite candidates. Iterative algorithms are proposed that jointly estimate the motion and the image content. The proposed method has a lot of merits, such as no need of additional data and loose requirement for the sampling sequence. Promising results are presented to demonstrate its performance.

  15. Dynamics of Electrowetting Droplet Motion in Digital Microfluidics Systems: From Dynamic Saturation to Device Physics


    Weiwei Cui; Menglun Zhang; Xuexin Duan; Wei Pang; Daihua Zhang; Hao Zhang


    A quantitative description of the dynamics of droplet motion has been a long-standing concern in electrowetting research. Although many static and dynamic models focusing on droplet motion induced by electrowetting-on-dielectric (EWOD) already exist, some dynamic features do not fit these models well, especially the dynamic saturation phenomenon. In this paper, a dynamic saturation model of droplet motion on the single-plate EWOD device is presented. The phenomenon that droplet velocity is l...

  16. Dorsal stream vulnerability in preterm infants – A longitudinal EEG study of visual motion perception


    Zotcheva, Ekaterina


    High-density electroencephalogram (EEG) was used to longitudinally investigate evoked and induced brain electrical activity as a function of visual motion in full-term and preterm infants at 4-5 and 12 months of age. The infants were presented with two visual motion paradigms, optic flow and looming. The optic flow experiment simulated structured forwards and reversed optic flow and random visual motion, while the looming experiment simulated a looming object approaching on a direct collision...

  17. Ongoing glacial-isostatic adjustment and present-day motion of tectonic plates



    The effect of glacial-isostatic adjustment (GIA) on the motion of tectonic plates is usually neglected. Employing a recently developed numerical approach, we examine the effect of glacial loading on the motion of the Earth’s main tectonic plates where we consider an elastic lithosphere of laterally variable strength and the plates losely connected by low viscous zones. Aim of the paper is to show the physical processes which controls the GIA induced horizontal motion and to assess the impact ...

  18. On transcending the impasse of respiratory motion correction applications in routine clinical imaging - a consideration of a fully automated data driven motion control framework. (United States)

    Kesner, Adam L; Schleyer, Paul J; Büther, Florian; Walter, Martin A; Schäfers, Klaus P; Koo, Phillip J


    Positron emission tomography (PET) is increasingly used for the detection, characterization, and follow-up of tumors located in the thorax. However, patient respiratory motion presents a unique limitation that hinders the application of high-resolution PET technology for this type of imaging. Efforts to transcend this limitation have been underway for more than a decade, yet PET remains for practical considerations a modality vulnerable to motion-induced image degradation. Respiratory motion control is not employed in routine clinical operations. In this article, we take an opportunity to highlight some of the recent advancements in data-driven motion control strategies and how they may form an underpinning for what we are presenting as a fully automated data-driven motion control framework. This framework represents an alternative direction for future endeavors in motion control and can conceptually connect individual focused studies with a strategy for addressing big picture challenges and goals.

  19. Self-motion perception compresses time experienced in return travel. (United States)

    Seno, Takeharu; Ito, Hiroyuki; Shoji, Sunaga


    It is often anecdotally reported that time experienced in return travel (back to the start point) seems shorter than time spent in outward travel (travel to a new destination). Here, we report the first experimental results showing that return travel time is experienced as shorter than the actual time. This discrepancy is induced by the existence of self-motion perception.

  20. Greenland ice sheet motion insensitive to exceptional meltwater forcing


    Tedstone, Andrew J.; P. W. Nienow; A. J. Sole; D. W. F. Mair; Cowton, Tom; I. D. Bartholomew; King, M. A.


    Changes to the dynamics of the Greenland ice sheet can be forced by various mechanisms including surface-melt-induced ice acceleration and oceanic forcing of marine-terminating glaciers. We use observations of ice motion to examine the surface melt-induced dynamic response of a land-terminating outlet glacier in south-west Greenland to the exceptional melting observed in 2012. During summer, meltwater generated on the Greenland Ice Sheet (GrIS) surface accesses the ice sheet bed, lubricating ...