Sample records for induces illusory motion

  1. Active Control Does Not Eliminate Motion-Induced Illusory Displacement

    Directory of Open Access Journals (Sweden)

    Ian M. Thornton


    Full Text Available When the sine-wave grating of a Gabor patch drifts to the left or right, the perceived position of the entire object is shifted in the direction of local motion. In the current work we explored whether active control of the physical position of the patch overcomes such motion induced illusory displacement. In Experiment 1 we created a simple computer game and asked participants to continuously guide a Gabor patch along a randomly curving path using a joystick. When the grating inside the Gabor patch was stationary, participants could perform this task without error. When the grating drifted to either left or right, we observed systematic errors consistent with previous reports of motion-induced illusory displacement. In Experiment 2 we created an iPad application where the built-in accelerometer tilt control was used to steer the patch through as series of “gates”. Again, we observed systematic guidance errors that depended on the direction and speed of local motion. In conclusion, we found no evidence that participants could adapt or compensate for illusory displacement given active control of the target.

  2. Haptically Induced Illusory Self-motion and the Influence of Context of Motion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Nordahl, Rolf; Sikström, Erik


    of movement was assessed by means of existing measures of illusory self-motion, namely, reported self-motion illusion per stimulus type, illusion compellingness, intensity and onset time. Finally the participants were also asked to estimate the experienced direction of movement. While the data obtained from...... all measures did not yield significant differences, the experiment did provide interesting indications. If motion is simulated through implicit motion cues, then the perceived context does influence the magnitude of displacement and the direction of movement of self-motion illusions as well as whether...

  3. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  4. Structure-from-motion: dissociating perception, neural persistence, and sensory memory of illusory depth and illusory rotation. (United States)

    Pastukhov, Alexander; Braun, Jochen


    In the structure-from-motion paradigm, physical motion on a screen produces the vivid illusion of an object rotating in depth. Here, we show how to dissociate illusory depth and illusory rotation in a structure-from-motion stimulus using a rotationally asymmetric shape and reversals of physical motion. Reversals of physical motion create a conflict between the original illusory states and the new physical motion: Either illusory depth remains constant and illusory rotation reverses, or illusory rotation stays the same and illusory depth reverses. When physical motion reverses after the interruption in presentation, we find that illusory rotation tends to remain constant for long blank durations (T (blank) ≥ 0.5 s), but illusory depth is stabilized if interruptions are short (T (blank) ≤ 0.1 s). The stability of illusory depth over brief interruptions is consistent with the effect of neural persistence. When this is curtailed using a mask, stability of ambiguous vision (for either illusory depth or illusory rotation) is disrupted. We also examined the selectivity of the neural persistence of illusory depth. We found that it relies on a static representation of an interpolated illusory object, since changes to low-level display properties had little detrimental effect. We discuss our findings with respect to other types of history dependence in multistable displays (sensory stabilization memory, neural fatigue, etc.). Our results suggest that when brief interruptions are used during the presentation of multistable displays, switches in perception are likely to rely on the same neural mechanisms as spontaneous switches, rather than switches due to the initial percept choice at the stimulus onset.

  5. Neural Mechanisms of Illusory Motion: Evidence from ERP Study

    Directory of Open Access Journals (Sweden)

    Xu Y. A. N. Yun


    Full Text Available ERPs were used to examine the neural correlates of illusory motion, by presenting the Rice Wave illusion (CI, its two variants (WI and NI and a real motion video (RM. Results showed that: Firstly, RM elicited a more negative deflection than CI, NI and WI between 200–350ms. Secondly, between 500–600ms, CI elicited a more positive deflection than NI and WI, and RM elicited a more positive deflection than CI, what's more interesting was the sequential enhancement of brain activity with the corresponding motion strength. We inferred that the former component might reflect the successful encoding of the local motion signals in detectors at the lower stage; while the latter one might be involved in the intensive representations of visual input in real/illusory motion perception, this was the whole motion-signal organization in the later stage of motion perception. Finally, between 1185–1450 ms, a significant positive component was found between illusory/real motion tasks than NI (no motion. Overall, we demonstrated that there was a stronger deflection under the corresponding lager motion strength. These results reflected not only the different temporal patterns between illusory and real motion but also extending to their distinguishing working memory representation and storage.

  6. Illusory Speed is Retained in Memory during Invisible Motion

    Directory of Open Access Journals (Sweden)

    Luca Battaglini


    Full Text Available The brain can retain speed information in early visual short-term memory in an astonishingly precise manner. We investigated whether this (early visual memory system is active during the extrapolation of occluded motion and whether it reflects speed misperception due to contrast and size. Experiments 1A and 2A showed that reducing target contrast or increasing its size led to an illusory speed underestimation. Experiments 1B, 2B, and 3 showed that this illusory phenomenon is reflected in the memory of speed during occluded motion, independent of the range of visible speeds, of the length of the visible trajectory or the invisible trajectory, and of the type of task. These results suggest that illusory speed is retained in memory during invisible motion.

  7. Evidence against the temporal subsampling account of illusory motion reversal (United States)

    Kline, Keith A.; Eagleman, David M.


    An illusion of reversed motion may occur sporadically while viewing continuous smooth motion. This has been suggested as evidence of discrete temporal sampling by the visual system in analogy to the sampling that generates the wagon–wheel effect on film. In an alternative theory, the illusion is not the result of discrete sampling but instead of perceptual rivalry between appropriately activated and spuriously activated motion detectors. Results of the current study demonstrate that illusory reversals of two spatially overlapping and orthogonal motions often occur separately, providing evidence against the possibility that illusory motion reversal (IMR) is caused by temporal sampling within a visual region. Further, we find that IMR occurs with non-uniform and non-periodic stimuli—an observation that is not accounted for by the temporal sampling hypothesis. We propose, that a motion aftereffect is superimposed on the moving stimulus, sporadically allowing motion detectors for the reverse direction to dominate perception. PMID:18484852

  8. Primary visual cortex activity along the apparent-motion trace reflects illusory perception.

    Directory of Open Access Journals (Sweden)

    Lars Muckli


    Full Text Available The illusion of apparent motion can be induced when visual stimuli are successively presented at different locations. It has been shown in previous studies that motion-sensitive regions in extrastriate cortex are relevant for the processing of apparent motion, but it is unclear whether primary visual cortex (V1 is also involved in the representation of the illusory motion path. We investigated, in human subjects, apparent-motion-related activity in patches of V1 representing locations along the path of illusory stimulus motion using functional magnetic resonance imaging. Here we show that apparent motion caused a blood-oxygenation-level-dependent response along the V1 representations of the apparent-motion path, including regions that were not directly activated by the apparent-motion-inducing stimuli. This response was unaltered when participants had to perform an attention-demanding task that diverted their attention away from the stimulus. With a bistable motion quartet, we confirmed that the activity was related to the conscious perception of movement. Our data suggest that V1 is part of the network that represents the illusory path of apparent motion. The activation in V1 can be explained either by lateral interactions within V1 or by feedback mechanisms from higher visual areas, especially the motion-sensitive human MT/V5 complex.

  9. Sensory memory of illusory depth in structure-from-motion. (United States)

    Pastukhov, Alexander; Lissner, Anna; Füllekrug, Jana; Braun, Jochen


    When multistable displays (stimuli consistent with two or more equally plausible perceptual interpretations) are presented intermittently, their perceptions are stabilized by sensory memory. Independent memory traces are generated not only for different types of multistable displays (Maier, Wilke, Logothetis, & Leopold, Current Biology 13:1076-1085, 2003), but also for different ambiguous features of binocular rivalry (Pearson & Clifford, Journal of Vision 4:196-202, 2004). In the present study, we examined whether a similar independence of sensory memories is observed in structure-from-motion (SFM), a multistable display with two ambiguous properties. In SFM, a 2-D planar motion creates a vivid impression of a rotating 3-D volume. Both the illusory rotation and illusory depth (i.e., how close parts of an object appear to the observer) of an SFM object are ambiguous. We dissociated the sensory memories of these two ambiguous properties by using an intermittent presentation in combination with a forced-ambiguous-switch paradigm (Pastukhov, Vonau, & Braun, PLoS ONE 7:e37734, 2012). We demonstrated that the illusory depth of SFM generates a sensory memory trace that is independent from that of illusory rotation. Despite this independence, the specificities levels of the sensory memories were identical for illusory depth and illusory rotation. The history effect was weakened by a change in the volumetric property of a shape (whether it was a hollow band or a filled drum volume), but not by changes in color or size. We discuss how these new results constrain models of sensory memory and SFM processing.

  10. Vertical illusory self-motion through haptic stimulation of the feet

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Nilsson, Niels Christian; Turchet, Luca


    Circular and linear self-motion illusions induced through visual and auditory stimuli have been studied rather extensively. While the ability of haptic stimuli to augment such illusions has been investigated, the self-motion illusions which primarily are induced by stimulation of the haptic...... to generate the haptic feedback while the final condition included no haptic feedback. Analysis of self-reports were used to assess the participants' experience of illusory self-motion. The results indicate that such illusions are indeed possible. Significant differences were found between the condition...... modality remain relatively unexplored. In this paper, we present an experiment performed with the intention of investigating whether it is possible to use haptic stimulation of the main supporting areas of the feet to induce vertical illusory self-motion on behalf of unrestrained participants during...

  11. Images of illusory motion in primary visual cortex

    DEFF Research Database (Denmark)

    Larsen, A.; Madsen, Kristoffer Hougaard; Lund, T.E.


    Illusory motion can be generated by successively flashing a stationary visual stimulus in two spatial locations separated by several degrees of visual angle. In appropriate conditions, the apparent motion is indistinguishable from real motion: The observer experiences a luminous object traversing...... a continuous path from one stimulus location to the other through intervening positions where no physical stimuli exist. The phenomenon has been extensively investigated for nearly a century but little is known about its neurophysiological foundation. Here we present images of activations in the primary visual...

  12. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction

    Directory of Open Access Journals (Sweden)

    Eiji Watanabe


    Full Text Available The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.

  13. Endogenous attention and illusory line motion depend on task set. (United States)

    Chica, Ana B; Charras, Pom; Lupiáñez, Juan


    Task set has been shown to determine some important cognitive operations like conscious perception [Rafal, R. D., Ward, R., & Danziger, S. (2006). Selection for action and selection for awareness: Evidence from hemispatial neglect. Brain Research, 1080(1), 2-8], and the exogenous orienting of spatial attention [Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030-1044; Lupiáñez, J., Ruz, M., Funes, M. J., & Milliken, B. (2007). The manifestation of attentional capture: Facilitation or IOR depending on task demands. Psychological Research, 71(1), 77-91]. In the present study we investigate whether endogenous attention would also be task-dependent. We use an illusion of movement, the illusory line motion [Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Research, 33(9), 1219-1240] to explore this question. Our results revealed that endogenously attending to detect the appearance of a target produce different consequences in modulating the illusion of movement than endogenously attending to discriminate one of its features. We suggest that endogenous attention is implemented differently depending on the task at hand, producing different effects on perceptual integration.

  14. Stimulus meanings alter illusory self-motion (vection)--experimental examination of the train illusion. (United States)

    Seno, Takeharu; Fukuda, Haruaki


    Over the last 100 years, numerous studies have examined the effective visual stimulus properties for inducing illusory self-motion (known as vection). This vection is often experienced more strongly in daily life than under controlled experimental conditions. One well-known example of vection in real life is the so-called 'train illusion'. In the present study, we showed that this train illusion can also be generated in the laboratory using virtual computer graphics-based motion stimuli. We also demonstrated that this vection can be modified by altering the meaning of the visual stimuli (i.e., top down effects). Importantly, we show that the semantic meaning of a stimulus can inhibit or facilitate vection, even when there is no physical change to the stimulus.

  15. Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects. (United States)

    Ma, Zheng; Watamaniuk, Scott N J; Heinen, Stephen J


    When small objects move in a scene, we keep them foveated with smooth pursuit eye movements. Although large objects such as people and animals are common, it is nonetheless unknown how we pursue them since they cannot be foveated. It might be that the brain calculates an object's centroid, and then centers the eyes on it during pursuit as a foveation mechanism might. Alternatively, the brain merely matches the velocity by motion integration. We test these alternatives with an illusory motion stimulus that translates at a speed different from its retinal motion. The stimulus was a Gabor array that translated at a fixed velocity, with component Gabors that drifted with motion consistent or inconsistent with the translation. Velocity matching predicts different pursuit behaviors across drift conditions, while centroid matching predicts no difference. We also tested whether pursuit can segregate and ignore irrelevant local drifts when motion and centroid information are consistent by surrounding the Gabors with solid frames. Finally, observers judged the global translational speed of the Gabors to determine whether smooth pursuit and motion perception share mechanisms. We found that consistent Gabor motion enhanced pursuit gain while inconsistent, opposite motion diminished it, drawing the eyes away from the center of the stimulus and supporting a motion-based pursuit drive. Catch-up saccades tended to counter the position offset, directing the eyes opposite to the deviation caused by the pursuit gain change. Surrounding the Gabors with visible frames canceled both the gain increase and the compensatory saccades. Perceived speed was modulated analogous to pursuit gain. The results suggest that smooth pursuit of large stimuli depends on the magnitude of integrated retinal motion information, not its retinal location, and that the position system might be unnecessary for generating smooth velocity to large pursuit targets.

  16. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory (United States)

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan


    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055

  17. Illusory sensation of movement induced by repetitive transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Lundbye-Jensen, Jesper; Grey, Michael James


    Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb movement...... and its associated somatosensory feedback. Afferent and efferent neural signalling was abolished in the arm with ischemic nerve block, and in the leg with spinal nerve block. Movement sensation was assessed following trains of high-frequency repetitive transcranial magnetic stimulation applied over...... primary motor cortex, dorsal premotor cortex, and a control area (posterior parietal cortex). Magnetic stimulation over primary motor cortex and dorsal premotor cortex produced a movement sensation that was significantly greater than stimulation over the control region. Movement sensation after dorsal...

  18. [Intergroup discrimination and illusory correlation induced by social category: minority, majority, and outsider]. (United States)

    Kubota, K


    Two experiments were conducted to examine intergroup discrimination and illusory correlation in majority and minority members and outsiders of a group. In Experiment 1, allegedly based on social attitudes, 64 participants were divided into the three groups, and then completed a point distribution task in a minimal group paradigm. It was found that although both minority and majority members showed ingroup favoritism, outsiders favored neither majority nor minority. In Experiment 2, a continuation of Experiment 1, 45 statements were shown that described majority and minority members in favorable and unfavorable terms. The majority members perceive illusory correlations between the minority group and infrequent, unfavorable characteristics, whereas the minority members did not. The results suggest that for the majority, both distinctiveness-based cognitive bias and ingroup bias had the same effects on perception of illusory correlation, whereas for the minority, the two had opposite effects. The outsiders did not perceive any illusory correlation.

  19. Spontaneous local alpha oscillations predict motion-induced blindness. (United States)

    Händel, Barbara F; Jensen, Ole


    Bistable visual illusions are well suited for exploring the neuronal states of the brain underlying changes in perception. In this study, we investigated oscillatory activity associated with 'motion-induced blindness' (MIB), which denotes the perceptual disappearance of salient target stimuli when a moving pattern is superimposed on them (Bonneh et al., ). We applied an MIB paradigm in which illusory target disappearances would occur independently in the left and right hemifields. Both illusory and real target disappearance were followed by an alpha lateralization with weaker contralateral than ipsilateral alpha activity (~10 Hz). However, only the illusion showed early alpha lateralization in the opposite direction, which preceded the alpha effect present for both conditions and coincided with the estimated onset of the illusion. The duration of the illusory disappearance was further predicted by the magnitude of this early lateralization when considered over subjects. In the gamma band (60-80 Hz), we found an increase in activity contralateral relative to ipsilateral only after a real disappearance. Whereas early alpha activity was predictive of onset and length of the illusory percept, gamma activity showed no modulation in relation to the illusion. Our study demonstrates that the spontaneous changes in visual alpha activity have perceptual consequences. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Vection and visually induced motion sickness: How are they related?

    Directory of Open Access Journals (Sweden)

    Behrang eKeshavarz


    Full Text Available The occurrence of visually induced motion sickness has been frequently linked to the sensation of illusory self-motion (so-called vection, however, the precise nature of this relationship is still not fully understood. To date, it is still a matter of debate whether or not vection is a necessary prerequisite for visually induced motion sickness (VIMS. That is, can there be visually induced motion sickness without any sensation of self-motion? In this paper, we will describe the possible nature of this relationship, review the literature that may speak to this relationship (including theoretical accounts of vection and VIMS, and offer suggestions with respect to operationally defining and reporting these phenomena in future.

  1. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion. (United States)

    Harvie, Daniel S; Smith, Ross T; Hunter, Estin V; Davis, Miles G; Sterling, Michele; Moseley, G Lorimer


    Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can't be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50 o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%-200%-the Motor Offset Visual Illusion (MoOVi)-thus simulating more or less movement than that actually occurring. At 50 o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360 o immersive virtual reality with and without three-dimensional properties, was also investigated. Perception of head movement was dependent on visual-kinaesthetic feedback ( p  = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and

  2. The effects of kinesthetic illusory sensation induced by a visual stimulus on the corticomotor excitability of the leg muscles. (United States)

    Aoyama, T; Kaneko, F; Hayami, T; Shibata, E


    A novel method of visual stimulus, reported by Kaneko et al. [14], induced a vivid kinesthetic illusion and increased the corticomotor excitability of the finger muscles without any overt movement. To explore the effect of this method on the lower limbs, motor evoked potentials (MEP) were recorded from the left tibialis anterior (TA) and soleus muscles using transcranial magnetic stimulation (TMS). A computer screen that showed the moving image of an ankle movement was placed over the subject's leg, and its position was modulated to induce an illusory sensation that the subject's own ankle was moving (illusion condition). TMS was delivered at rest and at two different times during the illusion condition (ankle dorsiflexion phase: illusion-DF; ankle plantarflexion phase: illusion-PF). The MEP amplitude of the TA, which is the agonist muscle for ankle dorsiflexion, was significantly increased during the illusion-DF condition. This indicated that the visual stimulus showing the moving image of an ankle movement could induce a kinesthetic illusion and selectively increase the corticomotor excitability in an agonist muscle for an illusion, as was previously reported for an upper limb. The MEP amplitude of the soleus, which is the agonist muscle for ankle plantarflexion, increased during the illusion-PF condition, but not significantly. Because of the vividness of the illusory sensation was significantly greater during the illusion-DF condition than the illusion-PF condition, we concluded that the vividness of the illusory sensation had a crucial role in increasing corticomotor excitability. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. On the perception of illusory contours. (United States)

    Ramachandran, V S; Ruskin, D; Cobb, S; Rogers-Ramachandran, D; Tyler, C W


    Illusory contours are invoked by the visual system to account for otherwise inexplicable gaps in the image. We report three sets of novel observations on illusory contours. First, when an illusory square is superimposed on a checkerboard pattern there is a considerable enhancement of the contours so long as they are exactly coincident with the borders of the checks. If the checks are misaligned, on the other hand, the illusory contours associated with the pacman edges disappear and a novel percept emerges: the contours of the checks nearest to the illusory square appear enhanced. This result implies that subjective contours are generated by intermediate-level contour interactions rather than the top-down processes of three-dimensional interpretation. Second, we find that steady fixation for as little as 4 sec leads to a complete disappearance of the enhanced illusory contours caused, presumably, by adaptation or "fatigue" of cells that signal these contours. Such adaptation occurred even when the illusory contours were rendered invisible by displaying them on a misaligned checkerboard, suggesting that the adaptation occurs prior to the vetoing of the signal by the checks. Third, we found that illusory contours persist for a surprisingly long time (0.3 sec) after the inducing elements have been switched off. These results suggest that the stimuli we have designed ("enhanced illusory contours") might provide a novel probe for dissecting different stages involved in the processing of illusory contours and for understanding how the visual system combines different types of contours to construct object boundaries.

  4. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion

    Directory of Open Access Journals (Sweden)

    Daniel S. Harvie


    Full Text Available Background Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can’t be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. Method In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%–200%—the Motor Offset Visual Illusion (MoOVi—thus simulating more or less movement than that actually occurring. At 50o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual feedback, the presence of a virtual body reference, and the use of 360o immersive virtual reality with and without three-dimensional properties, was also investigated. Results Perception of head movement was dependent on visual-kinaesthetic feedback (p = 0.001, partial eta squared = 0.17. That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Discussion Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The Mo

  5. Neural correlates of visually induced self-motion illusion in depth. (United States)

    Kovács, Gyula; Raabe, Markus; Greenlee, Mark W


    Optic-flow fields can induce the conscious illusion of self-motion in a stationary observer. Here we used functional magnetic resonance imaging to reveal the differential processing of self- and object-motion in the human brain. Subjects were presented a constantly expanding optic-flow stimulus, composed of disparate red-blue dots, viewed through red-blue glasses to generate a vivid percept of three-dimensional motion. We compared the activity obtained during periods of illusory self-motion with periods of object-motion percept. We found that the right MT+, precuneus, as well as areas located bilaterally along the dorsal part of the intraparietal sulcus and along the left posterior intraparietal sulcus were more active during self-motion perception than during object-motion. Additional signal increases were located in the depth of the left superior frontal sulcus, over the ventral part of the left anterior cingulate, in the depth of the right central sulcus and in the caudate nucleus/putamen. We found no significant deactivations associated with self-motion perception. Our results suggest that the illusory percept of self-motion is correlated with the activation of a network of areas, ranging from motion-specific areas to regions involved in visuo-vestibular integration, visual imagery, decision making, and introspection.

  6. Extrinsic grouping factors in motion-induced blindness (United States)


    We investigated how various grouping factors altered subjective disappearances of the individual targets in the motion-induced blindness display. The latter relies on a moving mask to render highly salient static targets temporarily subjectively invisible. Specifically, we employed two extrinsic grouping factors, the connectedness and the common region, and examined whether their presence would make targets more resilient against the suppression. In addition, we investigated whether the presence of an illusory Kanizsa triangle would affect the suppression of the inducing Pac-Man elements. We quantified the perceptual dynamics using the proportion of the disappearance time (this indicates whether targets became more resilient against the suppression), and the proportion of simultaneous disappearance and reappearance events (characterizes the tendency for the targets to disappear or reappear as a group). We report that a single mask that encompassed all targets (a common region grouping) significantly increased the proportion of simultaneous disappearance and reappearance events, but had no effect on the proportion of the disappearance time. In contrast, a line that connected two targets significantly decreased the total invisibility time, but had no impact on the simultaneity of the disappearance and reappearance events. We found no statistically significant effect of the presence of the illusory Kanizsa triangle on either measure. Finally, we found no interaction either between the common region and the connectedness or between the common region and the presence of the illusory Kanizsa triangle. Our results indicate that extrinsic grouping factors might influence the perception differently than the intrinsic ones and highlight the importance of using several measures to characterize the perceptual dynamics, as various grouping factors might affect it differentially. PMID:29381747

  7. Kinesthetic illusory feeling induced by a finger movement movie effects on corticomotor excitability. (United States)

    Kaneko, F; Yasojima, T; Kizuka, T


    The present study aimed to clarify whether a kinesthetic illusion arises in our experimental condition (visual stimulus) and whether corticomotor excitability changes in parallel with the kinesthetic illusion. The visual stimulus was a movie in which someone else's limb was being moved. The computer screen showing the movie was installed at an appropriate portion of the subject's forearm, so that the performer's hand appeared as if it were the subject's hand (illusion). The experience of kinesthetic illusion under this condition was verified by interview using a visual analog scale. Healthy male subjects participated in this experiment. Transcranial magnetic stimulation was applied to induce motor-evoked potential (MEP) from the first dorsal interosseous and abductor digiti minimi muscle. Each subject was instructed to watch the same computer display shown as in the illusion, with his own stationary hand in full view (non-illusion) and to watch a display of non-biological movement (moving text) (sham) as the control conditions. The present results showed significant facilitation of MEP under the illusion compared with the control conditions for the index finger abducting in the movie, although not for adducting. MEP in the abductor digiti minimi showed no change during either abduction or adduction of the little finger. The present study demonstrated that an illusion of self-motion can be created by a video of a moving abstract index finger, and inputs to the corticomotor pathways during the self-motion illusion facilitated the corticomotor excitability. The excitatory effect of the illusion depended on the movement direction of the index finger.

  8. Parietal cortex mediates conscious perception of illusory gestalt. (United States)

    Zaretskaya, Natalia; Anstis, Stuart; Bartels, Andreas


    Grouping local elements into a holistic percept, also known as spatial binding, is crucial for meaningful perception. Previous studies have shown that neurons in early visual areas V1 and V2 can signal complex grouping-related information, such as illusory contours or object-border ownerships. However, relatively little is known about higher-level processes contributing to these signals and mediating global Gestalt perception. We used a novel bistable motion illusion that induced alternating and mutually exclusive vivid conscious experiences of either dynamic illusory contours forming a global Gestalt or moving ungrouped local elements while the visual stimulation remained the same. fMRI in healthy human volunteers revealed that activity fluctuations in two sites of the parietal cortex, the superior parietal lobe and the anterior intraparietal sulcus (aIPS), correlated specifically with the perception of the grouped illusory Gestalt as opposed to perception of ungrouped local elements. We then disturbed activity at these two sites in the same participants using transcranial magnetic stimulation (TMS). TMS over aIPS led to a selective shortening of the duration of the global Gestalt percept, with no effect on that of local elements. The results suggest that aIPS activity is directly involved in the process of spatial binding during effortless viewing in the healthy brain. Conscious perception of global Gestalt is therefore associated with aIPS function, similar to attention and perceptual selection.

  9. Aftereffect of Adaptation to Illusory Brightness

    Directory of Open Access Journals (Sweden)

    Xinguang Cao


    Full Text Available Several figures are known to induce illusory brightness. We tested whether adaptation to illusory brightness produced an aftereffect in brightness. After viewing a gray square area having illusory brightness (e.g., due to brightness contrast or illusory contours for ten seconds, the illusion-inducing surround vanished. After three seconds, subjects reported whether the square area was seen as brighter than, darker than, or the same brightness as a control gray square area. The luminance of the tested square area was physically unchanged. The results show that when the black surround inducing brightness contrast suddenly became gray (i.e., vanished, the center gray square tended to look darker than a control gray square. Similarly, after viewing a subjective square consisting of black-line terminations, the square area tended to look darker than the control even though the afterimage of the lines could not be seen. These results indicate that induced or illusory brightness causes an aftereffect in brightness regardless of the appearance of negative afterimages of the illusion-inducing components.

  10. The moving rubber hand illusion revisited: comparing movements and visuotactile stimulation to induce illusory ownership. (United States)

    Kalckert, Andreas; Ehrsson, H Henrik


    The rubber hand illusion is a perceptual illusion in which a model hand is experienced as part of one's own body. In the present study we directly compared the classical illusion, based on visuotactile stimulation, with a rubber hand illusion based on active and passive movements. We examined the question of which combinations of sensory and motor cues are the most potent in inducing the illusion by subjective ratings and an objective measure (proprioceptive drift). In particular, we were interested in whether the combination of afferent and efferent signals in active movements results in the same illusion as in the purely passive modes. Our results show that the illusion is equally strong in all three cases. This demonstrates that different combinations of sensory input can lead to a very similar phenomenological experience and indicates that the illusion can be induced by any combination of multisensory information. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion


    Harvie, Daniel S.; Smith, Ross T.; Hunter, Estin V.; Davis, Miles G.; Sterling, Michele; Moseley, G. Lorimer


    Background Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can’t be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothe...

  12. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study. (United States)

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi


    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Illusory movements induced by tendon vibration in right- and left-handed people. (United States)

    Tidoni, Emmanuele; Fusco, Gabriele; Leonardis, Daniele; Frisoli, Antonio; Bergamasco, Massimo; Aglioti, Salvatore Maria


    Frequency-specific vibratory stimulation of peripheral tendons induces an illusion of limb movement that may be useful for restoring proprioceptive information in people with sensorimotor disability. This potential application may be limited by inter- and intra-subject variability in the susceptibility to such an illusion, which may depend on a variety of factors. To explore the influence of stimulation parameters and participants' handedness on the movement illusion, we vibrated the right and left tendon of the biceps brachii in a group of right- and left-handed people with five stimulation frequencies (from 40 to 120 Hz in step of 20 Hz). We found that all participants reported the expected illusion of elbow extension, especially after 40 and 60 Hz. Left-handers exhibited less variability in reporting the illusion compared to right-handers across the different stimulation frequencies. Moreover, the stimulation of the non-dominant arm elicited a more vivid illusion with faster onset relative to the stimulation of the dominant arm, an effect that was independent from participants' handedness. Overall, our data show that stimulation frequency, handedness and arm dominance influence the tendon vibration movement illusion. The results are discussed in reference to their relevance in linking motor awareness, improving current devices for motor ability recovery after brain or spinal damage and developing prosthetics and virtual embodiment systems.

  14. Consistency between Modalities Enhances Visually Induced Self-Motion (Vection

    Directory of Open Access Journals (Sweden)

    Takeharu Seno


    Full Text Available Visually induced illusory self-motion (vection is generally facilitated by consistent information of self-motion from other modalities. We provide three examples that consistent information between vision and other proprioception enhances vection, ie, locomotion, air flow, and sounds. We used an optic flow of expansion or contraction created by positioning 16,000 dots at random inside a simulated cube (length 20 m, and moving the observer's viewpoint to simulate forward or backward self-motion of 16 m/s. First, We measured the strength of forward or backward vection with or without forward locomotion on a treadmill (2 km/h. The results revealed that forward vection was facilitated by the consistent locomotion whereas vections in the other directions were inhibited by the inconsistent locomotion. Second, we found that forward vection intensity increased when the air flow to subjects' faces produced by an electric fan (the wind speed was 6.37 m/s was provided. On the contrary, the air flow did not enhance backward vection. Finally, we demonstrated that sounds which increased in loudness facilitated forward vection and the sounds which ascended (descended in pitch facilitated upward (downward vection.

  15. Perceptual integration of illusory and imagined kinesthetic images. (United States)

    Thyrion, Chloé; Roll, Jean-Pierre


    It is generally agreed that motor imagery involves kinesthetic sensations especially as far as first-person imagery is concerned. It was proposed to determine the extent to which motor imagery and vibration-induced illusory sensations of movement are integrated perceptually. Imagined and illusory hand movements were evoked both separately and in various combinations in 12 volunteers. After each trial, the participants were asked to draw the movement trajectory perceived. In all the subjects, propriomimetic vibration patterns applied to various wrist muscles induced spatially oriented or more complex illusory hand movements such as writing or drawing. Depending on the instructions, the subjects were also able to produce imagined hand movements in various directions and at two different velocities. When straight illusory and imagined movements were evoked simultaneously, all the subjects perceived a single movement trajectory, in which the direction and the velocity of the two ongoing sensations were exactly integrated. This perceptual integration also occurred in the case of more complex movements, such as writing and drawing, giving rise to the perception of original trajectories also combining the features of both motor images. Because these two kinesthetic images, the one intentionally and centrally induced and the other peripherally evoked, activate almost the same neural network including cortical sensory and motor areas, parietal regions, and the cerebellum, these results suggest that common processes may be involved in such a perceptual fusion. The nature of these common processes is discussed, and some fields of research in which these findings could potentially be applied are suggested.

  16. Central Inhibition Ability Modulates Attention-Induced Motion Blindness (United States)

    Milders, Maarten; Hay, Julia; Sahraie, Arash; Niedeggen, Michael


    Impaired motion perception can be induced in normal observers in a rapid serial visual presentation task. Essential for this effect is the presence of motion distractors prior to the motion target, and we proposed that this attention-induced motion blindness results from high-level inhibition produced by the distractors. To investigate this, we…

  17. Motion induced interplay effects for VMAT radiotherapy (United States)

    Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie


    The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin6 breathing motion in the superior–inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD98% and ΔD2%) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD98% and maximum ΔD2% being  ‑16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was

  18. Illusory spreading of watercolor. (United States)

    Devinck, Frédéric; Hardy, Joseph L; Delahunt, Peter B; Spillmann, Lothar; Werner, John S


    The watercolor effect (WCE) is a phenomenon of long-range color assimilation occurring when a dark chromatic contour delineating a figure is flanked on the inside by a brighter chromatic contour; the brighter color spreads into the entire enclosed area. Here, we determined the optimal chromatic parameters and the cone signals supporting the WCE. To that end, we quantified the effect of color assimilation using hue cancellation as a function of hue, colorimetric purity, and cone modulation of inducing contours. When the inner and outer contours had chromaticities that were in opposite directions in color space, a stronger WCE was obtained as compared with other color directions. Additionally, equal colorimetric purity between the outer and inner contours was necessary to obtain a large effect compared with conditions in which the contours differed in colorimetric purity. However, there was no further increase in the magnitude of the effect when the colorimetric purity increased beyond a value corresponding to an equal vector length between the inner and outer contours. Finally, L-M-cone-modulated WCE was perceptually stronger than S-cone-modulated WCE for our conditions. This last result demonstrates that both L-M-cone and S-cone pathways are important for watercolor spreading. Our data suggest that the WCE depends critically upon the particular spatiochromatic arrangement in the display, with the relative chromatic contrast between the inducing contours being particularly important.

  19. Respiratory impact on motion sickness induced by linear motion

    NARCIS (Netherlands)

    Mert, A.; Klöpping-Ketelaars, I.; Bles, W.


    Motion sickness incidence (MSI) for vertical sinusoidal motion reaches a maximum at 0.167 Hz. Normal breathing frequency is close to this frequency. There is some evidence for synchronization of breathing with this stimulus frequency. If this enforced breathing takes place over a larger frequency

  20. Inducing circular vection with tactile stimulation encircling the waist

    NARCIS (Netherlands)

    Tinga, A.M.; Jansen, C.; Smagt, M.J. van der; Nijboer, T.C.W.; Erp, J.B.F. van


    In general, moving sensory stimuli (visual and auditory) can induce illusory sensations of self-motion (i.e. vection) in the direction opposite of the sensory stimulation. The aim of the current study was to examine whether tactile stimulation encircling the waist could induce circular vection

  1. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka


    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  2. Can walking motions improve visually induced rotational self-motion illusions in virtual reality? (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y


    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  3. Illusion and Illusoriness of Color and Coloration

    Directory of Open Access Journals (Sweden)

    Baingio Pinna


    Full Text Available In this work, through a phenomenological analysis, we studied the perception of the chromatic illusion and illusoriness. The necessary condition for an illusion to occur is the discovery of a mismatch/disagreement between the geometrical/physical domain and the phenomenal one. The illusoriness is instead a phenomenal attribute related to a sense of strangeness, deception, singularity, mendacity, and oddity. The main purpose of this work is to study the phenomenology of chromatic illusion vs. illusoriness, which is useful for shedding new light on the no-man’s land between “sensory” and “cognitive” processes that have not been fully explored. Some basic psychological and biological implications for living organisms are deduced.

  4. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Rossi, M.; Marín, Á. G.


    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh s...

  5. Motion-induced blindness and microsaccades: cause and effect

    NARCIS (Netherlands)

    Bonneh, Y.S.; Donner, T.H.; Sagi, D.; Fried, M.; Heeger, D.J.; Arieli, A.


    It has been suggested that subjective disappearance of visual stimuli results from a spontaneous reduction of microsaccade rate causing image stabilization, enhanced adaptation, and a consequent fading. In motion-induced blindness (MIB), salient visual targets disappear intermittently when

  6. Examining Rotational Ground Motion Induced by Tornados (United States)

    Kessler, Elijah; Dunn, Robert


    Ring lasers are well known for their ability to detect rotation and to serve as replacements for mechanical gyroscopes. The sensitivity of large ring lasers to various forms of ground motion is less familiar. Since ring lasers preferentially measure rotational ground motion and a standard seismograph is designed to measure translational and vertical ground motion, each device responds to different aspects of ground movement. Therefore, the two instruments will be used to explore responses to microseisms, earthquake generated shear waves, and in particular tornado generated ground movement. On April 27, 2014 an EF4 tornado devastated Vilonia, AR a small town ~ 21 km from the Hendrix College ring laser. The proximity of the tornado's path to the ring laser interferometer and to a seismograph located in Vilonia provided the opportunity to examine the response of these instruments to tornadic generated ground motion. Our measurements suggest tornadic weather systems can produce both rotational and lateral ground motion. This contention is supported by an after the fact damage survey which found that the tornado flattened a forest in which trees were uprooted and laid down in a pair of converging arcs with the centerline pointed in the direction of the tornado's path.

  7. Mechanical Motion Induced by Spatially Distributed Limit-Cycle Oscillators (United States)

    Sakaguchi, Hidetsugu; Mukae, Yuuki


    Spatially distributed limited-cycle oscillators are seen in various physical and biological systems. In internal organs, mechanical motions are induced by the stimuli of spatially distributed limit-cycle oscillators. We study several mechanical motions by limit-cycle oscillators using simple model equations. One problem is deformation waves of radius oscillation induced by desynchronized limit-cycle oscillators, which is motivated by peristaltic motion of the small intestine. A resonance-like phenomenon is found in the deformation waves, and particles can be transported by the deformation waves. Another is the beating motion of the heart. The expansion and contraction motion is realized by a spatially synchronized limit-cycle oscillation; however, the strong beating disappears by spiral chaos, which is closely related to serious arrhythmia in the heart.

  8. The moral foundations of illusory correlation. (United States)

    Rodríguez-Ferreiro, Javier; Barberia, Itxaso


    Previous research has studied the relationship between political ideology and cognitive biases, such as the tendency of conservatives to form stronger illusory correlations between negative infrequent behaviors and minority groups. We further explored these findings by studying the relation between illusory correlation and moral values. According to the moral foundations theory, liberals and conservatives differ in the relevance they concede to different moral dimensions: Care, Fairness, Loyalty, Authority, and Purity. Whereas liberals consistently endorse the Care and Fairness foundations more than the Loyalty, Authority and Purity foundations, conservatives tend to adhere to the five foundations alike. In the present study, a group of participants took part in a standard illusory correlation task in which they were presented with randomly ordered descriptions of either desirable or undesirable behaviors attributed to individuals belonging to numerically different majority and minority groups. Although the proportion of desirable and undesirable behaviors was the same in the two groups, participants attributed a higher frequency of undesirable behaviors to the minority group, thus showing the expected illusory correlation effect. Moreover, this effect was specifically associated to our participants' scores in the Loyalty subscale of the Moral Foundations Questionnaire. These results emphasize the role of the Loyalty moral foundation in the formation of attitudes towards minorities among conservatives. Our study points out the moral system as a useful fine-grained framework to explore the complex interaction between basic cognitive processes and ideology.

  9. Adaptation to an Illusory Duration: Nothing Like the Real Thing?

    Directory of Open Access Journals (Sweden)

    John Hotchkiss


    Full Text Available Recent work has shown that adapting to a visual or auditory stimulus of a particular duration leads to a repulsive distortion of the perceived duration of a subsequently presented test stimulus. This distortion seems to be modality-specific and manifests itself as an expansion or contraction of perceived duration dependent upon whether the test stimulus is longer or shorter than the adapted duration. It has been shown (Berger et al 2003, Journal of Vision 3, 406–412 that perceived events can be as effective as actual events in inducing improvements in performance. In light of this, we investigated whether an illusory visual duration was capable of inducing a duration after-effect in a visual test stimulus that was actually no different in duration from the adaptor. Pairing a visual stimulus with a concurrent auditory stimulus of subtly longer or shorter duration expands or contracts the duration of the visual stimulus. We mapped out this effect and then chose two auditory durations (one long, one short that produced the maximum distortion in the perceived duration of the visual stimulus. After adapting to this bimodal stimulus, our participants were asked to reproduce a visual duration. Group data showed that participants, on average, reproduced the physical duration of the visual test stimulus accurately; in other words, there was no consistent effect of adaptation to an illusory duration.

  10. Multi-flexible-body dynamics capturing motion-induced stiffness (United States)

    Banerjee, Arun K.; Lemak, Mark E.; Dickens, John M.


    A multi-flexible-body dynamics formulation incorporating a recently developed theory for capturing motion induced stiffness for a arbitrary structure undergoing large rotation and translation accompanied by small vibrations is presented. In essence, the method consists of correcting prematurely linearized dynamical equations for an arbitrary flexible body with generalized active forces due to geometric stiffness corresponding to a system of twelve inertia forces and nine inertia couples distributed over the body. Equations of motion are derived by means of Kane's method. A useful feature of the formulation is its treatment of prescribed motions and interaction forces. Results of simulations of motions of three flexible spacecraft, involving stiffening during spinup motion, dynamic buckling, and a repositioning maneuver, demonstrate the validity and generality of the theory.

  11. Motion-Induced Blindness Using Increments and Decrements of Luminance

    Directory of Open Access Journals (Sweden)

    Stine Wm Wren


    Full Text Available Motion-induced blindness describes the disappearance of stationary elements of a scene when other, perhaps non-overlapping, elements of the scene are in motion. We measured the effects of increment (200.0 cd/m2 and decrement targets (15.0 cd/m2 and masks presented on a grey background (108.0 cd/m2, tapping into putative ON- and OFF-channels, on the rate of target disappearance psychophysically. We presented two-frame motion, which has coherent motion energy, and dynamic Glass patterns and dynamic anti-Glass patterns, which do not have coherent motion energy. Using the method of constant stimuli, participants viewed stimuli of varying durations (3.1 s, 4.6 s, 7.0 s, 11 s, or 16 s in a given trial and then indicated whether or not the targets vanished during that trial. Psychometric function midpoints were used to define absolute threshold mask duration for the disappearance of the target. 95% confidence intervals for threshold disappearance times were estimated using a bootstrap technique for each of the participants across two experiments. Decrement masks were more effective than increment masks with increment targets. Increment targets were easier to mask than decrement targets. Distinct mask pattern types had no effect, suggesting that perceived coherence contributes to the effectiveness of the mask. The ON/OFF dichotomy clearly carries its influence to the level of perceived motion coherence. Further, the asymmetry in the effects of increment and decrement masks on increment and decrement targets might lead one to speculate that they reflect the ‘importance’ of detecting decrements in the environment.

  12. More than a cool illusion? Functional significance of self-motion illusion (circular vection) for perspective switches. (United States)

    Riecke, Bernhard E; Feuereissen, Daniel; Rieser, John J; McNamara, Timothy P


    Self-motion can facilitate perspective switches and "automatic spatial updating" and help reduce disorientation in applications like virtual reality (VR). However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion ("circular vection") can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields ("auditory vection") and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective VR simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  13. More than a Cool Illusion? Functional Significance of Self-Motion Illusion (Circular Vection for Perspective Switches

    Directory of Open Access Journals (Sweden)

    Bernhard E. Riecke


    Full Text Available Self-motion can facilitate perspective switches and automatic spatial updating and help reduce disorientation in applications like Virtual Reality. However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion (circular vection can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously-learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields (auditory vection and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective Virtual Reality simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  14. Motion

    CERN Document Server

    Graybill, George


    Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str

  15. Sex differences in visual performance and postural sway precede sex differences in visually induced motion sickness. (United States)

    Koslucher, Frank; Haaland, Eric; Stoffregen, Thomas A


    Motion sickness is more common among women than among men. Previous research has shown that standing body sway differs between women and men. In addition, research has shown that postural sway differs between individuals who experience visually induced motion sickness and those who do not and that those differences exist before exposure to visual motion stimuli. We asked whether sex differences in postural sway would be related to sex differences in the incidence of visually induced motion sickness. We measured unperturbed standing body sway before participants were exposed to visual motion stimuli that induced motion sickness in some participants. During postural testing, participants performed different visual tasks. Results revealed that postural sway was affected by visual tasks, consistent with the literature. In addition, we found a statistically significant three-way interaction between visual tasks, sex, and (subsequent) motion sickness status. These results suggest that sex differences in motion sickness may be related to sex differences in the control of postural balance.

  16. Pleasant music as a countermeasure against visually induced motion sickness. (United States)

    Keshavarz, Behrang; Hecht, Heiko


    Visually induced motion sickness (VIMS) is a well-known side-effect in virtual environments or simulators. However, effective behavioral countermeasures against VIMS are still sparse. In this study, we tested whether music can reduce the severity of VIMS. Ninety-three volunteers were immersed in an approximately 14-minute-long video taken during a bicycle ride. Participants were randomly assigned to one of four experimental groups, either including relaxing music, neutral music, stressful music, or no music. Sickness scores were collected using the Fast Motion Sickness Scale and the Simulator Sickness Questionnaire. Results showed an overall trend for relaxing music to reduce the severity of VIMS. When factoring in the subjective pleasantness of the music, a significant reduction of VIMS occurred only when the presented music was perceived as pleasant, regardless of the music type. In addition, we found a gender effect with women reporting more sickness than men. We assume that the presentation of pleasant music can be an effective, low-cost, and easy-to-administer method to reduce VIMS. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Observing object motion induces increased generalization and sensitivity. (United States)

    Balas, Benjamin; Sinha, Pawan


    Learning to recognize a new object requires binding together dissimilar images of that object into a common representation. Temporal proximity is a useful computational cue for learning invariant representations. We report experiments that demonstrate two distinct psychophysical effects of temporal association via observed object motion on object perception. First, we use an implicit priming criterion to demonstrate that observation of a dynamic object induces generalization over close temporal neighbors. Second, in contrast to predictions from previous work, we find that shape discrimination between images actually improves following the same training procedure. We suggest that these apparently conflicting sets of results, one demonstrating blurring and the other demonstrating sharpening of the perceived distinction between temporally proximate frames, are consistent with a highly redundant code for object appearance.

  18. Motion

    CERN Document Server

    Rivera, Andrea


    Motion is all around us. Learn how it is used in art, technology, and engineering. Five easy-to-read chapters explain the science behind motion, as well as its real-world applications. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.

  19. Combining Motion-Induced Blindness with Binocular Rivalry

    Directory of Open Access Journals (Sweden)

    K Jaworska


    Full Text Available Motion-induced blindness (MIB and binocular rivalry (BR are examples of multistable phenomena in which our perception varies despite constant retinal input. It has been suggested that both phenomena are related and share a common underlying mechanism. We tried to determine whether experimental manipulations of the target dot and the mask systematically affect MIB and BR in an experimental paradigm that can elicit both phenomena. Eighteen observers fixated the center of a split-screen stereo display that consisted of a distracter mask and a superimposed target dot with different colour (isoluminant Red/Green in corresponding peripheral areas of the left and right eye. Observers reported perceived colour and disappearance of the target dot by pressing and releasing corresponding keys. In a within-subjects design the mask was presented in rivalry or not—with orthogonal drift in the left and right eye or with the same drift in both eyes. In control conditions the mask remained stationary. In addition, the size of the target dot was varied (small, medium, and large. Our results suggest that MIB measured by normalized frequency and duration of target disappearance and BR measured by normalized frequency and duration of colour reversals of the target were both affected by motion in the mask. Surprisingly, binocular rivalry in the mask had only a small effect on BR of the target and virtually no effect on MIB. The overall pattern of normalized MIB and BR measures, however, differed across experimental conditions. In conclusion, the results show some degree of dissociation between MIB and BR. Further analyses will inform whether or not the two phenomena occur independently of each other.

  20. Magnitude, impact, and management of respiration-induced target motion in radiotherapy treatment: A comprehensive review

    Directory of Open Access Journals (Sweden)

    S A Yoganathan


    Full Text Available Tumors in thoracic and upper abdomen regions such as lungs, liver, pancreas, esophagus, and breast move due to respiration. Respiration-induced motion introduces uncertainties in radiotherapy treatments of these sites and is regarded as a significant bottleneck in achieving highly conformal dose distributions. Recent developments in radiation therapy have resulted in (i motion-encompassing, (ii respiratory gating, and (iii tracking methods for adapting the radiation beam aperture to account for the respiration-induced target motion. The purpose of this review is to discuss the magnitude, impact, and management of respiration-induced tumor motion.

  1. Illusory double epenthesis in the [s_V] context among Japanese listeners: an exploratory study. (United States)

    Yamada, Jun


    Previous studies showed that English listeners tend to hear an [s_V] segment with [_] a silent gap as [sCV], where [C] is an epenthetic stop consonant such as [t]. The present study found that Japanese listeners, whose native language disallows [CCV] but allows [CVCV], often perceive [s_V] as [sVCV]. It is suggested that such illusory double-epenthetic percepts are generated via a two-step process, i.e., the vowel of [s_V] triggers an epenthetic consonant before it, and the initial consonant [s] and the newly generated epenthetic consonant [C] sequentially aligned induce a vowel epenthesis [V] between them.

  2. Unidirectional Motion of Vehicle on Sinusoidal Path

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 4. Unidirectional Motion of Vehicle on Sinusoidal Path: Can it Cause Illusory Forward and Backward Motion? Anuj Bhatnagar. Classroom Volume 17 Issue 4 April 2012 pp 387-392 ...

  3. Joule heating and current-induced domain wall motion (United States)

    Curiale, J.; Lemaître, A.; Niazi, T.; Faini, G.; Jeudy, V.


    We investigate numerically and experimentally the Joule heating produced by current pulses and its contribution to current-induced domain wall (DW) motion in a (Ga,Mn)As ferromagnetic semiconductor. Different thermal coupling between tracks and substrates are explored. A direct contact leads to a logarithmic transient temperature rise and a stationary state determined by the substrate thickness. The introduction of a low thermal conducting (Ga,In)As interlayer produces an additional temperature rise whose time variation and magnitude are analyzed. Experimentally, the measured temperature rises present a good agreement with predictions over more than four orders of magnitude in time for values of the heat conductivity and of the heat capacity close to those reported in the literature. The Joule heating is shown to produce non-linearities in the domain wall velocity versus current density characteristics. A correction of Joule heating is proposed and permits the identification of the flow regimes from a comparison of domain-wall dynamics in tracks presenting different pinning characteristics.

  4. Betting on Illusory Patterns: Probability Matching in Habitual Gamblers. (United States)

    Gaissmaier, Wolfgang; Wilke, Andreas; Scheibehenne, Benjamin; McCanney, Paige; Barrett, H Clark


    Why do people gamble? A large body of research suggests that cognitive distortions play an important role in pathological gambling. Many of these distortions are specific cases of a more general misperception of randomness, specifically of an illusory perception of patterns in random sequences. In this article, we provide further evidence for the assumption that gamblers are particularly prone to perceiving illusory patterns. In particular, we compared habitual gamblers to a matched sample of community members with regard to how much they exhibit the choice anomaly 'probability matching'. Probability matching describes the tendency to match response proportions to outcome probabilities when predicting binary outcomes. It leads to a lower expected accuracy than the maximizing strategy of predicting the most likely event on each trial. Previous research has shown that an illusory perception of patterns in random sequences fuels probability matching. So does impulsivity, which is also reported to be higher in gamblers. We therefore hypothesized that gamblers will exhibit more probability matching than non-gamblers, which was confirmed in a controlled laboratory experiment. Additionally, gamblers scored much lower than community members on the cognitive reflection task, which indicates higher impulsivity. This difference could account for the difference in probability matching between the samples. These results suggest that gamblers are more willing to bet impulsively on perceived illusory patterns.

  5. Magnetic field induced motion behavior of gas bubbles in liquid


    Keliang Wang; Pucheng Pei; Yu Pei; Ze Ma; Huachi Xu; Dongfang Chen


    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicula...

  6. The Impact of Motion Induced Interruptions on Cognitive Performance (United States)


    found that even participants presenting with minor physiological effects of motion experienced a decline in multitasking performance. Further, Yu...instance, DRDC Atlantic research lab recently de- veloped an android app for use in training periscope watch officers in the Victoria Class Submarines...Engineers Journal. 102 (2) 65-72. Matsangas, P. (2013). The Effect of Mild Motion Sickness and Sopite Syndrome on Multitasking Cognitive Performance

  7. Enhancement of vortex induced forces and motion through surface roughness control (United States)

    Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX


    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  8. Biological motion distorts size perception (United States)

    Veto, Peter; Einhäuser, Wolfgang; Troje, Nikolaus F.


    Visual illusions explore the limits of sensory processing and provide an ideal testbed to study perception. Size illusions - stimuli whose size is consistently misperceived - do not only result from sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, whether the ecological relevance of biological motion can also distort perceived size. We asked observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light figures do not elicit the same effect. We also show the phenomenon using an indirect paradigm: observers judged the relative size of a disc that followed an inverted PLW larger than a disc following an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings present a novel case of illusory size perception, where ecological importance leads to a distorted perception of size.

  9. Electromagnetically induced transparency of the medium composed of atoms in thermal motion

    International Nuclear Information System (INIS)

    Qiu Tianhui; Yang Guojian


    We investigate electromagnetically induced transparency of a medium composed of N Λ-type three-level atoms in thermal motion with an initial momentum distribution modelled by a Gaussian function. We treat atomic centre-of-mass motion as an independent degree of freedom and study the dependence of susceptibility on the thermal motion characterized by the width and centre of Gaussian momentum distribution. A larger width does not always lead to larger resonant absorption and if the probe and controlling fields copropagate in the degenerate and resonant cases, transparency can be obtained regardless of the thermal motion of the atoms.

  10. Visual Enhancement of Illusory Phenomenal Accents in Non-Isochronous Auditory Rhythms.

    Directory of Open Access Journals (Sweden)

    Yi-Huang Su

    Full Text Available Musical rhythms encompass temporal patterns that often yield regular metrical accents (e.g., a beat. There have been mixed results regarding perception as a function of metrical saliency, namely, whether sensitivity to a deviant was greater in metrically stronger or weaker positions. Besides, effects of metrical position have not been examined in non-isochronous rhythms, or with respect to multisensory influences. This study was concerned with two main issues: (1 In non-isochronous auditory rhythms with clear metrical accents, how would sensitivity to a deviant be modulated by metrical positions? (2 Would the effects be enhanced by multisensory information? Participants listened to strongly metrical rhythms with or without watching a point-light figure dance to the rhythm in the same meter, and detected a slight loudness increment. Both conditions were presented with or without an auditory interference that served to impair auditory metrical perception. Sensitivity to a deviant was found greater in weak beat than in strong beat positions, consistent with the Predictive Coding hypothesis and the idea of metrically induced illusory phenomenal accents. The visual rhythm of dance hindered auditory detection, but more so when the latter was itself less impaired. This pattern suggested that the visual and auditory rhythms were perceptually integrated to reinforce metrical accentuation, yielding more illusory phenomenal accents and thus lower sensitivity to deviants, in a manner consistent with the principle of inverse effectiveness. Results were discussed in the predictive framework for multisensory rhythms involving observed movements and possible mediation of the motor system.

  11. Vortex-induced vibration (VIV) effects of a drilling riser due to vessel motion (United States)

    Joseph, R. S.; Wang, J.; Ong, M. C.; Jakobsen, J. B.


    A marine riser undergoes oscillatory motion in water due to the vessel motions, known as global dynamic response. This to-and-fro motion of the riser will generate an equivalent flow that can cause Vortex-Induced Vibrations (VIVs), even in the absence of the ocean current. In the present work, full-scale measurement data of a drilling riser operating in the Gulf of Mexico are analysed. The VIV occurrences for the riser are identified from the data and the possible excitation sources are discussed. The oscillatory flow due to vessel motion is compared with the ocean current and its possibility to excite VIV is analysed. The full-scale data analysis provides an insight into the vessel motion-induced VIV of marine risers in the actual field environment.

  12. Reduction of vortex induced forces and motion through surface roughness control (United States)

    Bernitsas, Michael M; Raghavan, Kamaldev


    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  13. Illusory expectations can affect retrieval-monitoring accuracy. (United States)

    McDonough, Ian M; Gallo, David A


    The present study investigated how expectations, even when illusory, can affect the accuracy of memory decisions. Participants studied words presented in large or small font for subsequent memory tests. Replicating prior work, judgments of learning indicated that participants expected to remember large words better than small words, even though memory for these words was equivalent on a standard test of recognition memory and subjective judgments. Critically, we also included tests that instructed participants to selectively search memory for either large or small words, thereby allowing different memorial expectations to contribute to performance. On these tests we found reduced false recognition when searching memory for large words relative to small words, such that the size illusion paradoxically affected accuracy measures (d' scores) in the absence of actual memory differences. Additional evidence for the role of illusory expectations was that (a) the accuracy effect was obtained only when participants searched memory for the aspect of the stimuli corresponding to illusory expectations (size instead of color) and (b) the accuracy effect was eliminated on a forced-choice test that prevented the influence of memorial expectations. These findings demonstrate the critical role of memorial expectations in the retrieval-monitoring process. 2012 APA, all rights reserved

  14. Photophoresis-Light induced motion of particles suspended in gas

    International Nuclear Information System (INIS)

    Jovanovic, Olga


    When irradiated sideways, by visible light, a particle can perform different kinds of motion, (e.g. in direction of irradiation, opposite to irradiation, vertical movement, helicoidally, etc.). This phenomenon is called photophoresis. Photophoresis is based on momentum transfer between the aerosol particle and surrounding gas molecules. Photophoresis strongly depends on the pressure of the surrounding gas. Particles mostly influenced by photophoresis are those of μm size. Two main types of forces describe photophoretic motion: ΔT force: The thermal accommodation coefficient α is constant over the particle surface. As a result of the thermal accommodation, gas molecules on the warm side of a particle leave the surface faster than gas molecules on the cold side. This leads to ΔT force on the particle towards the colder side. Typical motion of the particle will be either away from light irradiation (positive photophoresis), or in direction of light irradiation (negative photophoresis). In the case of negative photophoresis, the back side of the particle, due the nature of light absorption, will be heated more than front side of the particle. Δα force: If the particle is at a constant temperature, which is different from the temperature of the surrounding gas, and the thermal accommodation coefficient α varies over the particle surface, the net momentum between gas molecules and particle will be transferred. In this case, the result will be body fixed Δα force. Depending on the particle surface properties, Δα force can direct the particle in any possible photophoresis could also play important role in planet formation and astrophysics.

  15. Thermally induced micro-motion by inflection in optical potential

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Jákl, Petr; Brzobohatý, Oto; Ryabov, A.; Filip, R.; Zemánek, Pavel


    Roč. 7, MAY (2017), s. 1-8, č. článku 1697. ISSN 2045-2322 R&D Projects: GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : molecular motors * brownian-motion * manipulation * efficiency * tweezers Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 4.259, year: 2016

  16. Vertical motion of particles in vibration-induced granular capillarity

    Directory of Open Access Journals (Sweden)

    Fan Fengxian


    Full Text Available When a narrow tube inserted into a static container filled with particles is subjected to vertical vibration, the particles rise in the tube, much resembling the ascending motion of a liquid column in a capillary tube. To gain insights on the particle dynamics dictating this phenomenon – which we term granular capillarity – we numerically investigate the system using the Discrete Element Method (DEM. We reproduce the dynamical process of the granular capillarity and analyze the vertical motion of the individual particles in the tube, as well as the average vertical velocities of the particles. Our simulations show that the height of the granular column fluctuates in a periodic or period-doubling manner as the tube vibrates, until a steady-state (capillary height is reached. Moreover, our results for the average vertical velocity of the particles in the tube at different radial positions suggest that granular convection is one major factor underlying the particle-based dynamics that lead to the granular capillarity phenomenon.

  17. Oscillatory domain wall velocity of current-induced domain wall motion

    International Nuclear Information System (INIS)

    Kim, W.J.; Seo, S.M.; Lee, T.D.; Lee, K.J.


    We studied the effect of Oersted field (H Oe ) on current-induced domain wall motion (CIDWM) in magnetic nanowires. We found that H Oe generates spin waves. Because of interaction between domain wall (DW) and spin wave, time-dependent wall velocity is oscillatory at the early stage of wall motion. The period of the oscillatory DW motion is in antiphase with the period of out-of-plane (OOP) magnetization oscillation inside the DW. The oscillatory wall velocity is suppressed as the thickness of nanowire decreases because of strong demagnetization field

  18. Motion-induced eddy current thermography for high-speed inspection

    Directory of Open Access Journals (Sweden)

    Jianbo Wu


    Full Text Available This letter proposes a novel motion-induced eddy current based thermography (MIECT for high-speed inspection. In contrast to conventional eddy current thermography (ECT based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday’s law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  19. Motion Cues in Flight Simulation and Simulator Induced Sickness (United States)


    pilot. as a result of such lago and delays. may adopt a control behaviour that leads to pilot-induced oscillatione. Such oecillations may contribute... ypoa estion sadvsa/et~l efcs oeo hc r Thrat befior-sacd aftrdtevimualmato experienceasbe Af aprmroxfeatuel of theysioloisctat symtions shchmeato

  20. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management

    International Nuclear Information System (INIS)

    Chen, Ting; Qin, Songbing; Xu, Xiaoting; Jabbour, Salma K.; Haffty, Bruce G.; Yue, Ning J.


    Purpose/objectives: Lung tumor motion may be impacted by heartbeat in addition to respiration. This study seeks to quantitatively analyze heart-motion-induced tumor motion and to evaluate its impact on lung cancer radiotherapy. Methods/materials: Fluoroscopy images were acquired for 30 lung cancer patients. Tumor, diaphragm, and heart were delineated on selected fluoroscopy frames, and their motion was tracked and converted into temporal signals based on deformable registration propagation. The clinical relevance of heart impact was evaluated using the dose volumetric histogram of the redefined target volumes. Results: Correlation was found between tumor and cardiac motion for 23 patients. The heart-induced motion amplitude ranged from 0.2 to 2.6 mm. The ratio between heart-induced tumor motion and the tumor motion was inversely proportional to the amplitude of overall tumor motion. When the heart motion impact was integrated, there was an average 9% increase in internal target volumes for 17 patients. Dose coverage decrease was observed on redefined planning target volume in simulated SBRT plans. Conclusions: The tumor motion of thoracic cancer patients is influenced by both heart and respiratory motion. The cardiac impact is relatively more significant for tumor with less motion, which may lead to clinically significant uncertainty in radiotherapy for some patients

  1. Elastic image registration via rigid object motion induced deformation (United States)

    Zheng, Xiaofen; Udupa, Jayaram K.; Hirsch, Bruce E.


    In this paper, we estimate the deformations induced on soft tissues by the rigid independent movements of hard objects and create an admixture of rigid and elastic adaptive image registration transformations. By automatically segmenting and independently estimating the movement of rigid objects in 3D images, we can maintain rigidity in bones and hard tissues while appropriately deforming soft tissues. We tested our algorithms on 20 pairs of 3D MRI datasets pertaining to a kinematic study of the flexibility of the ankle complex of normal feet as well as ankles affected by abnormalities in foot architecture and ligament injuries. The results show that elastic image registration via rigid object-induced deformation outperforms purely rigid and purely nonrigid approaches.

  2. The development of equipment for the technical assessment of respiratory motion induced artefacts in MRI

    International Nuclear Information System (INIS)

    Jackson, P.C.; Davies, S.C.; Zananiri, F.V.; Follett, D.H.; Halliwell, M.; Wells, P.N.T.; Bean, J.P.


    A device and technique to study the effects of respiratory motion on the quality of magnetic resonance images is proposed. The construction of the device enables a variety of test objects to be mounted and used in the evaluation of imaging parameters that may be affected by motion. The equipment is constructed of cast acrylic and the movement is actuated and controlled pneumatically thus ensuring that there are no interactions with the magnetic field and radiofrequency detection system to cause further image artefacts. Separate studies have been performed, using ultrasound, to assess the degree and rate of movement of organs owing to respiration in order to derive the motion parameters for the apparatus. Preliminary results indicate that the technique produces motion induced artefacts simulating those which are the result of the effects of respiration. (author)

  3. Respiratory-induced prostate motion: quantification and characterization

    International Nuclear Information System (INIS)

    Malone, Shawn; Crook, Juanita M.; Kendal, Wayne S.; Zanto, Janos S.


    Purpose: The precise localization of the prostate is critical for dose-escalated conformal radiotherapy. This study identifies and characterizes a potential cause of inaccurate prostatic localization--respiratory-induced movement. Methods and Materials: Prostate movement during respiration was measured fluoroscopically using implanted gold fiducial markers. Twenty sequential patients with CT 1 -T 3 N 0 M 0 prostate carcinoma were evaluated prone, immobilized in customized thermoplastic shells. A second 20 patients were evaluated both prone (with and without their thermoplastic shells) and supine (without their shells). Results: When the patients were immobilized prone in thermoplastic shells, the prostate moved synchronously with respiration. In the study the prostate was displaced a mean distance of 3.3 ± 1.8 (SD) mm (range, 1-10.2 mm), with 23% (9/40) of the displacements being 4 mm or greater. The respiratory-associated prostate movement decreased significantly when the thermoplastic shells were removed. Conclusion: Significant prostate movement can be induced by respiration when patients are immobilized in thermoplastic shells. This movement presumably is related to transmitted intraabdominal pressure within the confined space of the shells. Careful attention to the details of immobilization and to the possibility of respiratory-induced prostate movements is important when employing small field margins in prostatic radiotherapy

  4. Illusory Recollection: The Compelling Subjective Remembrance of Things that Never Happened. Insights from the DRM Paradigm

    Directory of Open Access Journals (Sweden)

    Hedwige Dehon


    Full Text Available Illusory recollection is the subjective detailed feeling of remembering that sometimes accompanies false remembering of events that never happened (e.g., high confidence, “Remember” judgements, or even remembrance of precise details supposedly associated with the false event. In this review, typical illusory recollection measures obtained from laboratory studies will be depicted, with a focus on the DRM paradigm (Deese, 1959; Roediger & McDermott, 1995, one of the most largely used procedures to study memory distortion and its associated illusory recollection. The theoretical explanations of illusory recollection will be described and contrasted in light of factors affecting the phenomenon, in order to show their strengths and limits. Although the focus on the origins of illusory recollection is relatively recent, overall, this review suggests that DRM false memories can be an excellent tool to study this phenomenon under controlled conditions and to gain insights on false memories occurring in everyday life.

  5. Stopping power and polarization induced in a plasma by a fast charged particle in circular motion

    Energy Technology Data Exchange (ETDEWEB)

    Villo-Perez, Isidro [Departamento de Electronica, Tecnologia de las Computadoras y Proyectos, Universidad Politecnica de Cartagena, Cartagena (Spain); Arista, Nestor R. [Division Colisiones Atomicas, Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, Bariloche (Argentina); Garcia-Molina, Rafael [Departamento de Fisica, Universidad de Murcia, Murcia (Spain)


    We describe the perturbation induced in a plasma by a charged particle in circular motion, analysing in detail the evolution of the induced charge, the electrostatic potential and the energy loss of the particle. We describe the initial transitory behaviour and the different ways in which convergence to final stationary solutions may be obtained depending on the basic parameters of the problem. The results for the stopping power show a resonant behaviour which may give place to large stopping enhancement values as compared with the case of particles in straight-line motion with the same linear velocity. The results also explain a resonant effect recently obtained for particles in circular motion in magnetized plasmas. (author)

  6. Parametric analysis of a phenomenological model for vortex-induced motions of monocolumn platforms


    ROSETTI, Guilherme F.; GONÇALVES, Rodolfo T.; FUJARRA, André L. C.; NISHIMOTO, Kazuo


    Phenomenological models are an important branch in VIV (Vortex-Induced Vibrations) and in VIM (Vortex-Induced Motions) studies to complement the results achieved via CFD (Computational Fluid Dynamics), as the latter tool is not presently a suitable tool for intense use in engineering analysis, due to high computer power requirements. A phenomenological model for evaluating the VIM on monocolumn platforms is presented and its results are compared with experimental ones. The main objective is t...

  7. Ca2+-induced isotropic motion and phosphatidylcholine flip-flop in phosphatidylcholine-cardiolipin bilayers

    NARCIS (Netherlands)

    Gerritsen, W.J.; Kruijff, B. de; Verkleij, A.J.; Gier, J. de; Deenen, L.L.M. van


    Ca2+ induces a structural change in phosphatidylcholine-cardiolipin bilayers, which is visualised by freeze-fracturing as lipidic particles associated with the bilayer and is detected by 31P-NMR as isotropic motion of the phospholipids. In this structure a rapid transbilayer movement of

  8. The efficacy of airflow and seat vibration on reducing visually induced motion sickness

    NARCIS (Netherlands)

    D’Amour, Sarah; Bos, Jelte E.; Keshavarz, Behrang


    Visually induced motion sickness (VIMS) is a well-known sensation in virtual environments and simulators, typically characterized by a variety of symptoms such as pallor, sweating, dizziness, fatigue, and/or nausea. Numerous methods to reduce VIMS have been previously introduced; however, a reliable

  9. Illusory touch and tactile perception in somatoform dissociators. (United States)

    Brown, Richard J; Brunt, Natalie; Poliakoff, Ellen; Lloyd, Donna M


    The psychological mechanisms of somatoform dissociation (i.e., pseudoneurological symptoms) are poorly understood. This study evaluated recent theoretical predictions regarding the role of tactile perception in the development of somatoform dissociative symptoms. Eighty nonclinical participants scoring either high or low on the Somatoform Dissociation Questionnaire (SDQ-20) completed the Somatic Signal Detection Task (SSDT), a novel perceptual paradigm designed to simulate the occurrence of somatoform symptoms in the laboratory. Prior to the SSDT, participants completed a memory task designed to produce either minimal or maximal activation of tactile representations in memory. The high SDQ-20 group exhibited a more liberal response criterion (c) on the SSDT than the low SDQ-20 group after controlling for negative affectivity, somatosensory amplification and depression. This effect was mainly attributable to an increased number of false alarms (i.e., illusory experiences of touch) in the high SDQ-20 group rather than an increased hit rate. General perceptual ability (i.e., tactile sensitivity) was comparable between the two groups. The memory manipulation had no effect on SSDT performance. Somatoform dissociators appear more likely to experience illusory perceptual events under conditions of sensory ambiguity than nondissociators, despite comparable perceptual abilities more generally. These findings support theories that identify distorted perceptual processing as a feature of somatoform dissociation. The SSDT has potential as a tool for further research in this area. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Stochastic resonance induced by novel random transitions of motion of FitzHugh-Nagumo neuron model

    International Nuclear Information System (INIS)

    Zhang Guangjun; Xu Jianxue


    In contrast to the previous studies which have dealt with stochastic resonance induced by random transitions of system motion between two coexisting limit cycle attractors in the FitzHugh-Nagumo (FHN) neuron model after Hopf bifurcation and which have dealt with the phenomenon of stochastic resonance induced by external noise when the model with periodic input has only one attractor before Hopf bifurcation, in this paper we have focused our attention on stochastic resonance (SR) induced by a novel transition behavior, the transitions of motion of the model among one attractor on the left side of bifurcation point and two attractors on the right side of bifurcation point under the perturbation of noise. The results of research show: since one bifurcation of transition from one to two limit cycle attractors and the other bifurcation of transition from two to one limit cycle attractors occur in turn besides Hopf bifurcation, the novel transitions of motion of the model occur when bifurcation parameter is perturbed by weak internal noise; the bifurcation point of the model may stochastically slightly shift to the left or right when FHN neuron model is perturbed by external Gaussian distributed white noise, and then the novel transitions of system motion also occur under the perturbation of external noise; the novel transitions could induce SR alone, and when the novel transitions of motion of the model and the traditional transitions between two coexisting limit cycle attractors after bifurcation occur in the same process the SR also may occur with complicated behaviors types; the mechanism of SR induced by external noise when FHN neuron model with periodic input has only one attractor before Hopf bifurcation is related to this kind of novel transition mentioned above

  11. Translational Optic Flow Induces Shifts in Direction of Active Forward and Backward Self-Motion

    Directory of Open Access Journals (Sweden)

    Kenzo Sakurai


    Full Text Available Previously, we reported that when observers passively experience real linear oscillatory somatic motion while viewing orthogonal visual optic flow patterns, their perceived motion direction is intermediate to those specified by visual and vestibular information individually (Sakurai et al., 2002, ACV; 2003, ECVP; 2010, VSS; Kubodera et al., 2010, APCV. Here, we extend those studies to active somatic motion, measuring the angular shift in body direction after active body motion while viewing synchronized orthogonal optic flow. Experimental visual stimuli consisted of 1 second of translating leftward (rightward random-dots and 1 second of random noise. Control stimuli consisted of two 1-second intervals of random noise separated by a static interval. Observers viewed the stimulus for 30 seconds through a face-mounted display while actively stepping forward and backward such that their forward body movement was synchronized with the random-dot translational motion. Observers' body direction was measured before and after each trial. Translational optic flow induced shifts in body direction that were opposite to shifts in perceived direction with passive viewing in our previous reports. Observers may have compensated their body motion in response to perceived direction shifts similar to those we reported for passive viewing.

  12. Flow-Induced Mitral Leaflet Motion in Hypertrophic Cardiomyopathy (United States)

    Meschini, Valentina; Mittal, Rajat; Verzicco, Roberto


    Hypertrophic cardiomyopathy (HCM) is considered the cause of sudden cardiac death in developed countries. Clinically it is found to be related to the thickening of the intra-ventricular septum combined with elongated mitral leaflets. During systole the low pressure, induced by the abnormal velocities in the narrowed aortic channel, can attract one or both the mitral leaflets causing the aortic obstruction and sometimes instantaneous death. In this paper a fluid structure interaction model for the flow in the left ventricle with a native mitral valve is employed to investigate the physio-pathology of HCM. The problem is studied using direct numerical simulations of the Navier-Stokes equations with a two-way coupled structural solver based on interaction potential approach for the structure dynamics. Simulations are performed for two different degrees of hypertrophy, and two values of pumping efficiency. The leaflets dynamics and the ventricle deformation resulting from the echocardiography of patients affected by HCM are well captured by the simulations. Moreover, the procedures of leaflets plication and septum myectomy are simulated in order to get insights into the efficiency and reliability of such surgery.

  13. Strategies for reducing intra-fraction motion induced dosimetric effects in proton therapy (United States)

    Zhao, Li

    Intra-fraction respiration motion during radiation delivery presents a major challenge to radiation therapy. There has been a growing effort to characterize and manage internal organ motion in radiation therapy, however very few studies focus on tackling this issue in proton therapy. Current practice for treating lung tumors in proton therapy is still to apply population-based margins to account for internal tumor motion, which can lead to target underdosage and normal tissue overdosage. This thesis explores the intra-fraction motion induced dosimetric effects from both computational treatment planning and experimental studies. Four-dimensional CT scans are used to analyze the patient-specific tumor motion characteristics. A feasible method to design the range compensator by using the maximum intensity projection (MIP) images is proposed. Results demonstrate that this MIP approach ensures adequate tumor coverage throughout the entire respiratory cycle whilst maintaining normal tissue dose under clinical constraints. Based on 4D-CT scans, dose convolution is used for assessing the accuracy of Gaussian probability density function for modeling the patient-specific respiratory motion on dose distribution. Non-negligible dose discrepancy is observed in comparisons of convolved dose distributions, and patient-specific respiration PDF is advocated. In addition, an experimental phantom study primarily focusing on the interplay effect between target motion and the scanning beam motion is implemented in two proton beam delivery systems: double scattering and uniform scanning. Measurement results suggest that dose blurring effect is dominant, and interplay effect is trivial in the uniform scanning system due to dose repainting.

  14. Does chronic idiopathic dizziness reflect an impairment of sensory predictions of self-motion?

    Directory of Open Access Journals (Sweden)

    Joern K Pomper


    Full Text Available Most patients suffering from chronic idiopathic dizziness do not present signs of vestibular dysfunction or organic failures of other kinds. Hence, this kind of dizziness is commonly seen as psychogenic in nature, sharing commonalities with specific phobias, panic disorder and generalized anxiety. A more specific concept put forward by Brandt and Dieterich (1986 states that these patients suffer from dizziness because of an inadequate compensation of self-induced sensory stimulation. According to this hypothesis self-motion-induced reafferent visual stimulation is interpreted as motion in the world since a predictive signal reflecting the consequences of self-motion, needed to compensate the reafferent stimulus, is inadequate. While conceptually intriguing, experimental evidence supporting the idea of an inadequate prediction of the sensory consequences of own movements has as yet been lacking. Here we tested this hypothesis by applying it to the perception of background motion induced by smooth-pursuit eye movements. As a matter of fact, we found the same mildly undercompensating prediction, responsible for the perception of slight illusory world motion („Filehne illusion in the 15 patients tested and their age-matched controls. Likewise, the ability to adapt this prediction to the needs of the visual context was not deteriorated in patients. Finally, we could not find any correlation between measures of the individual severity of dizziness and the ability to predict. In sum, our results do not support the concept of a deviant prediction of self-induced sensory stimulation as cause of chronic idiopathic dizziness.

  15. Detection of cyclic-fold bifurcation in electrostatic MEMS transducers by motion-induced current

    International Nuclear Information System (INIS)

    Park, Sangtak; Abdel-Rahman, Eihab; Khater, Mahmoud; Effa, David; Yavuz, Mustafa


    This paper presents a new detection method of cyclic-fold bifurcations in electrostatic MEMS transducers based on a variant of the harmonic detection of resonance method. The electrostatic transducer is driven by an unbiased harmonic signal at half its natural frequency, ω a   =  1/2  ω o . The response of the transducer consists of static displacement and a series of harmonics at 2  ω a , 4  ω a , and so on. Its motion-induced current is shifted by the excitation frequency, ω a , to appear at 3  ω a , 5  ω a , and higher odd harmonics, providing higher sensitivity to the measurement of harmonic motions. With this method, we successfully detected the variation in the location of the cyclic-fold bifurcation of an encapsulated electrostatic MEMS transducer. We also detected a regime of tapping mode motions subsequent to the bifurcation. (paper)


    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Daisuke; Lau, Erwin T.; Avestruz, Camille; Rudd, Douglas H. [Department of Physics, Yale University, New Haven, CT 06520 (United States); Nelson, Kaylea, E-mail: [Department of Astronomy, Yale University, New Haven, CT 06520 (United States)


    In the hierarchical structure formation model, clusters of galaxies form through a sequence of mergers and continuous mass accretion, which generate significant random gas motions especially in their outskirts where material is actively accreting. Non-thermal pressure provided by the internal gas motions affects the thermodynamic structure of the X-ray emitting intracluster plasma and introduces biases in the physical interpretation of X-ray and Sunyaev-Zeldovich effect observations. However, we know very little about the nature of gas motions in galaxy clusters. The ASTRO-H X-ray mission, scheduled to launch in 2015, will have a calorimeter capable of measuring gas motions in galaxy clusters at the level of ∼< 100 km s{sup –1}. In this work, we predict the level of merger-induced gas motions expected in the ΛCDM model using hydrodynamical simulations of galaxy cluster formation. We show that the gas velocity dispersion is larger in more massive clusters, but exhibits a large scatter. We show that systems with large gas motions are morphologically disturbed, while early forming, relaxed groups show a smaller level of gas motions. By analyzing mock ASTRO-H observations of simulated clusters, we show that such observations can accurately measure the gas velocity dispersion out to the outskirts of nearby relaxed galaxy clusters. ASTRO-H analysis of merging clusters, on the other hand, requires multi-component spectral fitting and enables unique studies of substructures in galaxy clusters by measuring both the peculiar velocities and the velocity dispersion of gas within individual sub-clusters.

  17. Micromagnetic analysis of current-induced domain wall motion in a bilayer nanowire with synthetic antiferromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Takashi, E-mail:; Aono, Tomosuke [Faculty of Engineering, Ibaraki University 4-12-1, Nakanarusawa, Hitachi, Ibaraki, 316-8511 (Japan)


    We demonstrate current-induced domain wall motion in bilayer nanowire with synthetic antiferromagnetic (SAF) coupling by modeling two body problems for motion equations of domain wall. The influence of interlayer exchange coupling and magnetostatic interactions on current-induced domain wall motion in SAF nanowires was also investigated. By assuming the rigid wall model for translational motion, the interlayer exchange coupling and the magnetostatic interaction between walls and domains in SAF nanowires enhances domain wall speed without any spin-orbit-torque. The enhancement of domain wall speed was discussed by energy distribution as a function of wall angle configuration in bilayer nanowires.

  18. Time dilation induced by object motion is based on spatiotopic but not retinotopic positions

    Directory of Open Access Journals (Sweden)

    Ricky K. C. eAu


    Full Text Available Time perception of visual events depends on the visual attributes of the scene. Previous studies reported that motion of object can induce an illusion of lengthened time. In the present study, we asked the question whether such time dilation effect depends on the actual physical motion of the object (spatiotopic coordinate, or its relative motion with respect to the retina (retinotopic coordinate. Observers were presented with a moving stimulus and a static reference stimulus in separate intervals, and judged which interval they perceived as having a longer duration, under conditions with eye fixation (Experiment 1 and with eye movement at same velocity as the moving stimulus (Experiment 2. The data indicated that the perceived duration was longer under object motion, and depended on the actual movement of the object rather than relative retinal motion. These results are in support with the notion that the brain possesses a spatiotopic representation regarding the real world positions of objects in which the perception of time is associated with.

  19. Study on the effects of ion motion on laser-induced plasma wakes

    International Nuclear Information System (INIS)

    Zhou Suyun; Yu Wei; Yuan Xiao; Xu Han; Cao, L. H.; Cai, H. B.; Zhou, C. T.


    A 2D analytical model is presented for the generation of plasma wakes (or bubbles) with an ultra-intense laser pulse by taking into account the response of plasma ions. It is shown that the effect of ion motion becomes significant at the laser intensity exceeding 10 21 W/cm 2 and plasma background density below 10 19 cm −3 . In this regime, ion motion tends to suppress the electrostatic field induced by charge separation and makes the electron acceleration less effective. As a result, the assumption of immobile ions overestimates the efficiency of laser wake-field acceleration of electrons. Based on the analytical model, the dynamics of plasma ions in laser-induced wake field is investigated. It is found that only one bubble appears as the plasmas background density exceeds the resonant density and the deposited laser energy is concentrated into the bubble, resulting in the generation of an ion bunch with extremely high energy density.

  20. Moving in a Moving World: A Review on Vestibular Motion Sickness. (United States)

    Bertolini, Giovanni; Straumann, Dominik


    Motion sickness is a common disturbance occurring in healthy people as a physiological response to exposure to motion stimuli that are unexpected on the basis of previous experience. The motion can be either real, and therefore perceived by the vestibular system, or illusory, as in the case of visual illusion. A multitude of studies has been performed in the last decades, substantiating different nauseogenic stimuli, studying their specific characteristics, proposing unifying theories, and testing possible countermeasures. Several reviews focused on one of these aspects; however, the link between specific nauseogenic stimuli and the unifying theories and models is often not clearly detailed. Readers unfamiliar with the topic, but studying a condition that may involve motion sickness, can therefore have difficulties to understand why a specific stimulus will induce motion sickness. So far, this general audience struggles to take advantage of the solid basis provided by existing theories and models. This review focuses on vestibular-only motion sickness, listing the relevant motion stimuli, clarifying the sensory signals involved, and framing them in the context of the current theories.

  1. Perception of linear horizontal self-motion induced by peripheral vision /linearvection/ - Basic characteristics and visual-vestibular interactions (United States)

    Berthoz, A.; Pavard, B.; Young, L. R.


    The basic characteristics of the sensation of linear horizontal motion have been studied. Objective linear motion was induced by means of a moving cart. Visually induced linear motion perception (linearvection) was obtained by projection of moving images at the periphery of the visual field. Image velocity and luminance thresholds for the appearance of linearvection have been measured and are in the range of those for image motion detection (without sensation of self motion) by the visual system. Latencies of onset are around 1 sec and short term adaptation has been shown. The dynamic range of the visual analyzer as judged by frequency analysis is lower than the vestibular analyzer. Conflicting situations in which visual cues contradict vestibular and other proprioceptive cues show, in the case of linearvection a dominance of vision which supports the idea of an essential although not independent role of vision in self motion perception.

  2. Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid

    International Nuclear Information System (INIS)

    Zhou Leping; Peterson, George P.; Yoda, Minani; Wang Buxuan


    The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.

  3. Chirality induction and protonation-induced molecular motions in helical molecular strands. (United States)

    Kolomiets, Elena; Berl, Volker; Lehn, Jean-Marie


    The long oligopyridinedicarboxamide strand 9, containing 15 heterocyclic rings has been synthesized and its helical structure determined by X-ray crystallography. It was shown that the shorter analogue 6 displays induced circular dichroism and amplification of induced chirality upon dissolution in an optically active solvent, diethyl-L-tartrate. A novel class of helical foldamers was prepared, strands 14-16, based on two oligopyridine carboxamide segments linked through a L-tartaric acid derived spacer. These tartro strands display internal chirality induction as well as chirality amplification. NMR spectroscopy (on 8 and 9) and circular dichroism (on 16) studies show that the oligopyridine carboxamide strands undergo reversible unfolding/folding upon protonation. The protonation-induced unfolding has been confirmed by X-ray crystallographic determination of the molecular structure of the extended protonated heptameric form 8(+). The molecular-scale mechano-chemical motions of the protonation-induced structural switching consist of a change of the length of the molecule, from 6 angstroms (6, coiled form) to 29 angstroms (8(+), uncoiled form) for the heptamer and from 12.5 angstroms (9, coiled form, X-ray structure) to 57 angstroms (9(+), uncoiled form, from modeling) for the pentadecamer. Similar unfolding/folding motional processes take place in the L-tartro strands 15 and 16 upon protonation/deprotonation, with loss of helicity-induced circular dichroism on unfolding as shown for the protonated form 16(+).

  4. Illusory Changes in Body Size Modulate Body Satisfaction in a Way That Is Related to Non-Clinical Eating Disorder Psychopathology (United States)

    Preston, Catherine; Ehrsson, H. Henrik


    Historically, body size overestimation has been linked to abnormal levels of body dissatisfaction found in eating disorders. However, recently this relationship has been called into question. Indeed, despite a link between how we perceive and how we feel about our body seeming intuitive, until now lack of an experimental method to manipulate body size has meant that a causal link, even in healthy participants, has remained elusive. Recent developments in body perception research demonstrate that the perceptual experience of the body can be readily manipulated using multisensory illusions. The current study exploits such illusions to modulate perceived body size in an attempt to influence body satisfaction. Participants were presented with stereoscopic video images of slimmer and wider mannequin bodies viewed through head-mounted displays from first person perspective. Illusory ownership was induced by synchronously stroking the seen mannequin body with the unseen real body. Pre and post-illusion affective and perceptual measures captured changes in perceived body size and body satisfaction. Illusory ownership of a slimmer body resulted in participants perceiving their actual body as slimmer and giving higher ratings of body satisfaction demonstrating a direct link between perceptual and affective body representations. Change in body satisfaction following illusory ownership of a wider body, however, was related to degree of (non-clinical) eating disorder psychopathology, which can be linked to fluctuating body representations found in clinical samples. The results suggest that body perception is linked to body satisfaction and may be of importance for eating disorder symptomology. PMID:24465698

  5. Illusory changes in body size modulate body satisfaction in a way that is related to non-clinical eating disorder psychopathology.

    Directory of Open Access Journals (Sweden)

    Catherine Preston

    Full Text Available Historically, body size overestimation has been linked to abnormal levels of body dissatisfaction found in eating disorders. However, recently this relationship has been called into question. Indeed, despite a link between how we perceive and how we feel about our body seeming intuitive, until now lack of an experimental method to manipulate body size has meant that a causal link, even in healthy participants, has remained elusive. Recent developments in body perception research demonstrate that the perceptual experience of the body can be readily manipulated using multisensory illusions. The current study exploits such illusions to modulate perceived body size in an attempt to influence body satisfaction. Participants were presented with stereoscopic video images of slimmer and wider mannequin bodies viewed through head-mounted displays from first person perspective. Illusory ownership was induced by synchronously stroking the seen mannequin body with the unseen real body. Pre and post-illusion affective and perceptual measures captured changes in perceived body size and body satisfaction. Illusory ownership of a slimmer body resulted in participants perceiving their actual body as slimmer and giving higher ratings of body satisfaction demonstrating a direct link between perceptual and affective body representations. Change in body satisfaction following illusory ownership of a wider body, however, was related to degree of (non-clinical eating disorder psychopathology, which can be linked to fluctuating body representations found in clinical samples. The results suggest that body perception is linked to body satisfaction and may be of importance for eating disorder symptomology.

  6. Quantification of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional computed tomography

    NARCIS (Netherlands)

    Jin, Peng; Hulshof, Maarten C. C. M.; de Jong, Rianne; van Hooft, Jeanin E.; Bel, Arjan; Alderliesten, Tanja


    Respiration-induced tumor motion is an important geometrical uncertainty in esophageal cancer radiation therapy. The aim of this study was to quantify this motion using fiducial markers and four-dimensional computed tomography (4DCT). Twenty esophageal cancer patients underwent endoscopy-guided

  7. Enhancing the smoothness of joint motion induced by functional electrical stimulation using co-activation strategies

    Directory of Open Access Journals (Sweden)

    Ruppel Mirjana


    Full Text Available The motor precision of today’s neuroprosthetic devices that use artificial generation of limb motion using Functional Electrical Stimulation (FES is generally low. We investigate the adoption of natural co-activation strategies as present in antagonistic muscle pairs aiming to improve motor precision produced by FES. In a test in which artificial knee-joint movements were generated, we could improve the smoothness of FES-induced motion by 513% when applying co-activation during the phases in which torque production is switched between muscles – compared to no co-activation. We further demonstrated how the co-activation level influences the joint stiffness in a pendulum test.

  8. Influence of Rigid Body Motions on Rotor Induced Velocities and Aerodynamic Loads of a Floating Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    de Vaal, Jacobus B.; Hansen, Martin Otto Laver; Moan, Torgeir


    This paper discusses the influence of rigid body motions on rotor induced velocities and aerodynamic loads of a floating horizontal axis wind turbine. Analyses are performed with a simplified free wake vortex model specifically aimed at capturing the unsteady and non-uniform inflow typically......, and captures the essential influences of rigid body motions on the rotor loads, induced velocities and wake influence....... experienced by a floating wind turbine. After discussing the simplified model in detail, comparisons are made to a state of the art free wake vortex code, using test cases with prescribed platform motion. It is found that the simplified model compares favourably with a more advanced numerical model...

  9. Respiration Induced Heart Motion and Indications of Gated Delivery for Left-Sided Breast Irradiation

    International Nuclear Information System (INIS)

    Qi, X. Sharon; Hu, Angela; Wang Kai; Newman, Francis; Crosby, Marcus; Hu Bin; White, Julia; Li, X. Allen


    Purpose: To investigate respiration-induced heart motion for left-sided breast irradiation using a four-dimensional computed tomography (4DCT) technique and to determine novel indications to assess heart motion and identify breast patients who may benefit from a gated treatment. Methods and Materials: Images of 4DCT acquired during free breathing for 20 left-sided breast cancer patients, who underwent whole breast irradiation with or without regional nodal irradiation, were analyzed retrospectively. Dose distributions were reconstructed in the phases of 0%, 20%, and 50%. The intrafractional heart displacement was measured in three selected transverse CT slices using D LAD (the distance from left ascending aorta to a fixed line [connecting middle point of sternum and the body] drawn on each slice) and maximum heart depth (MHD, the distance of the forefront of the heart to the line). Linear regression analysis was used to correlate these indices with mean heart dose and heart dose volume at different breathing phases. Results: Respiration-induced heart displacement resulted in observable variations in dose delivered to the heart. During a normal free-breathing cycle, heart-induced motion D LAD and MHD changed up to 9 and 11 mm respectively, resulting in up to 38% and 39% increases of mean doses and V 25.2 for the heart. MHD and D LAD were positively correlated with mean heart dose and heart dose volume. Respiratory-adapted gated treatment may better spare heart and ipsilateral-lung compared with the conventional non-gated plan in a subset of patients with large D LAD or MHD variations. Conclusion: Proposed indices offer novel assessment of heart displacement based on 4DCT images. MHD and D LAD can be used independently or jointly as selection criteria for respiratory gating procedure before treatment planning. Patients with great intrafractional MHD variations or tumor(s) close to the diaphragm may particularly benefit from the gated treatment.

  10. Illusory and veridical mapping of tactile objects in the primary somatosensory and posterior parietal cortex. (United States)

    Bufalari, Ilaria; Di Russo, Francesco; Aglioti, Salvatore Maria


    While several behavioral and neuroscience studies have explored visual, auditory, and cross-modal illusions, information about the phenomenology and neural correlates of somatosensory illusions is meager. By combining psychophysics and somatosensory evoked potentials, we explored in healthy humans the neural correlates of 2 compelling tactuo-proprioceptive illusions, namely Aristotle (1 object touching the contact area between 2 crossed fingers is perceived as 2 lateral objects) and Reverse illusions (2 lateral objects are perceived as 1 between crossed-fingers object). These illusions likely occur because of the tactuo-proprioceptive conflict induced by fingers being crossed in a non-natural posture. We found that different regions in the somatosensory stream exhibit different proneness to the illusions. Early electroencephalographic somatosensory activity (at 20 ms) originating in the primary somatosensory cortex (S1) reflects the phenomenal rather than the physical properties of the stimuli. Notably, later activity (around 200 ms) originating in the posterior parietal cortex is higher when subjects resist the illusions. Thus, while S1 activity is related to illusory perception, PPC acts as a conflict resolver that recodes tactile events from somatotopic to spatiotopic frames of reference and ultimately enables veridical perception. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:

  11. Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership.

    Directory of Open Access Journals (Sweden)

    Shoko Kanaya

    Full Text Available Although visual information seems to affect thermal perception (e.g. red color is associated with heat, previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI wherein an individual feels that a prosthetic (rubber hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.

  12. Illusory movement perception improves motor control for prosthetic hands. (United States)

    Marasco, Paul D; Hebert, Jacqueline S; Sensinger, Jon W; Shell, Courtney E; Schofield, Jonathon S; Thumser, Zachary C; Nataraj, Raviraj; Beckler, Dylan T; Dawson, Michael R; Blustein, Dan H; Gill, Satinder; Mensh, Brett D; Granja-Vazquez, Rafael; Newcomb, Madeline D; Carey, Jason P; Orzell, Beth M


    To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement's progress. This largely nonconscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. We report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Brain activity associated with illusory correlations in animal phobia. (United States)

    Wiemer, Julian; Schulz, Stefan M; Reicherts, Philipp; Glotzbach-Schoon, Evelyn; Andreatta, Marta; Pauli, Paul


    Anxiety disorder patients were repeatedly found to overestimate the association between disorder-relevant stimuli and aversive outcomes despite random contingencies. Such an illusory correlation (IC) might play an important role in the return of fear after extinction learning; yet, little is known about how this cognitive bias emerges in the brain. In a functional magnetic resonance imaging study, 18 female patients with spider phobia and 18 healthy controls were exposed to pictures of spiders, mushrooms and puppies followed randomly by either a painful electrical shock or nothing. In advance, both patients and healthy controls expected more shocks after spider pictures. Importantly, only patients with spider phobia continued to overestimate this association after the experiment. The strength of this IC was predicted by increased outcome aversiveness ratings and primary sensory motor cortex activity in response to the shock after spider pictures. Moreover, increased activation of the left dorsolateral prefrontal cortex (dlPFC) to spider pictures predicted the IC. These results support the theory that phobia-relevant stimuli amplify unpleasantness and sensory motor representations of aversive stimuli, which in turn may promote their overestimation. Hyper-activity in dlPFC possibly reflects a pre-occupation of executive resources with phobia-relevant stimuli, thus complicating the accurate monitoring of objective contingencies and the unlearning of fear. © The Author (2014). Published by Oxford University Press. For Permissions, please email:

  14. Effect of wind turbine surge motion on rotor thrust and induced velocity

    DEFF Research Database (Denmark)

    Vaal, J.B., de; Hansen, Martin Otto Laver; Moan, T.


    velocity on a wind turbine rotor is investigated. Specifically, the performance of blade element momentum theory with a quasisteady wake as well as two widely used engineering dynamic inflow models is evaluated. A moving actuator disc model is used as reference, since the dynamics associated with the wake...... will be inherently included in the solution of the associated fluid dynamic problem. Through analysis of integrated rotor loads, induced velocities and aerodynamic damping, it is concluded that typical surge motions are sufficiently slow to not affect the wake dynamics predicted by engineering models significantly...

  15. Utilizing the energy from induced wind produce by highway vehicle motion

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Tong, C.W.


    A research work has been conducted at the Faculty of mechanical Engineering, Universiti Teknologi Malaysia to utilize energy from airflow induced by moving vehicles along the highway for advertising and signboard lighting. Series of data collections have been made at Km 20 Johor Bahru - Kuala Lumpur Plus Highway. Wind anemometer equipped with data recorder has been placed at the highway divider to measure the wind speed induced by the vehicles moving from Johor Bahru to Kuala Lumpur and vice versa. From the data analysis it has been found that the to and from Kuala Lumpur motion of the vehicles induced a stable and continuous source of airflow (wind) ranges from 2 to 4 m/s. The energy in this induced wind has been estimated and has the potential to be used for the above said purpose. Five design models have been tested in the Faculty of mechanical Engineering Low Speed Wind Tunnel and the twisted vertical blades with circular end covers has proven to be the most efficient and suitable. The optimum sizing of the vertical axis wind turbine has also been determined. The details of the collection of wind induced data and analysis, estimation of energy content, the vertical axis wind turbine models testing and results are presented in this paper. (Author)

  16. Laser filamentation induced air-flow motion in a diffusion cloud chamber. (United States)

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan


    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed.

  17. Modulation of Illusory Auditory Perception by Transcranial Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Giulia Prete


    Full Text Available The aim of the present study was to test whether transcranial electrical stimulation can modulate illusory perception in the auditory domain. In two separate experiments we applied transcranial Direct Current Stimulation (anodal/cathodal tDCS, 2 mA; N = 60 and high-frequency transcranial Random Noise Stimulation (hf-tRNS, 1.5 mA, offset 0; N = 45 on the temporal cortex during the presentation of the stimuli eliciting the Deutsch's illusion. The illusion arises when two sine tones spaced one octave apart (400 and 800 Hz are presented dichotically in alternation, one in the left and the other in the right ear, so that when the right ear receives the high tone, the left ear receives the low tone, and vice versa. The majority of the population perceives one high-pitched tone in one ear alternating with one low-pitched tone in the other ear. The results revealed that neither anodal nor cathodal tDCS applied over the left/right temporal cortex modulated the perception of the illusion, whereas hf-tRNS applied bilaterally on the temporal cortex reduced the number of times the sequence of sounds is perceived as the Deutsch's illusion with respect to the sham control condition. The stimulation time before the beginning of the task (5 or 15 min did not influence the perceptual outcome. In accordance with previous findings, we conclude that hf-tRNS can modulate auditory perception more efficiently than tDCS.

  18. Clinical significance of exercise-induced left ventricular wall motion abnormality occurring at a low heart rate

    Energy Technology Data Exchange (ETDEWEB)

    Kimchi, A.; Rozanski, A.; Fletcher, C.; Maddahi, J.; Swan, H.J.; Berman, D.S.


    We studied the relationship between the heart rate at the time of onset of exercise-induced wall motion abnormality and the severity of coronary artery disease in 89 patients who underwent exercise equilibrium radionuclide ventriculography as part of their evaluation for coronary artery disease. Segmental wall motion was scored with a five-point system (3 = normal; -1 = dyskinesis); a decrease of one score defined the onset of wall motion abnormality. The onset of wall motion abnormality at less than or equal to 70% of maximal predicted heart rate had 100% predictive accuracy for coronary artery disease and higher sensitivity than the onset of ischemic ST segment depression at similar heart rate during exercise: 36% (25 of 69 patients with coronary disease) vs 19% (13 of 69 patients), p = 0.01. Wall motion abnormality occurring at less than or equal to 70% of maximal predicted heart rate was present in 49% of patients (23 of 47) with critical stenosis (greater than or equal to 90% luminal diameter narrowing), and in only 5% of patients (2 of 42) without such severe stenosis, p less than 0.001. The sensitivity of exercise-induced wall motion abnormality occurring at a low heart rate for the presence of severe coronary artery disease was similar to that of a deterioration in wall motion by more than two scores during exercise (49% vs 53%) or an absolute decrease of greater than or equal to 5% in exercise left ventricular ejection fraction (49% vs 45%).

  19. Clinical significance of exercise-induced left ventricular wall motion abnormality occurring at a low heart rate

    International Nuclear Information System (INIS)

    Kimchi, A.; Rozanski, A.; Fletcher, C.; Maddahi, J.; Swan, H.J.; Berman, D.S.


    We studied the relationship between the heart rate at the time of onset of exercise-induced wall motion abnormality and the severity of coronary artery disease in 89 patients who underwent exercise equilibrium radionuclide ventriculography as part of their evaluation for coronary artery disease. Segmental wall motion was scored with a five-point system (3 = normal; -1 = dyskinesis); a decrease of one score defined the onset of wall motion abnormality. The onset of wall motion abnormality at less than or equal to 70% of maximal predicted heart rate had 100% predictive accuracy for coronary artery disease and higher sensitivity than the onset of ischemic ST segment depression at similar heart rate during exercise: 36% (25 of 69 patients with coronary disease) vs 19% (13 of 69 patients), p = 0.01. Wall motion abnormality occurring at less than or equal to 70% of maximal predicted heart rate was present in 49% of patients (23 of 47) with critical stenosis (greater than or equal to 90% luminal diameter narrowing), and in only 5% of patients (2 of 42) without such severe stenosis, p less than 0.001. The sensitivity of exercise-induced wall motion abnormality occurring at a low heart rate for the presence of severe coronary artery disease was similar to that of a deterioration in wall motion by more than two scores during exercise (49% vs 53%) or an absolute decrease of greater than or equal to 5% in exercise left ventricular ejection fraction (49% vs 45%)

  20. Respiration induced fiducial motion tracking in ultrasound using an extended SFA approach (United States)

    Cao, Kunlin; Bednarz, Bryan; Smith, L. S.; Foo, Thomas K. F.; Patwardhan, Kedar A.


    Radiation therapy (RT) plays an essential role in the management of cancers. The precision of the treatment delivery process in chest and abdominal cancers is often impeded by respiration induced tumor positional variations, which are accounted for by using larger therapeutic margins around the tumor volume leading to sub-optimal treatment deliveries and risk to healthy tissue. Real-time tracking of tumor motion during RT will help reduce unnecessary margin area and benefit cancer patients by allowing the treatment volume to closely match the positional variation of the tumor volume over time. In this work, we propose a fast approach which enables transferring the pre-estimated target (e.g. tumor) motion extracted from ultrasound (US) image sequences in training stage (e.g. before RT) to online data in real-time (e.g. acquired during RT). The method is based on extracting feature points of the target object, exploiting low-dimensional description of the feature motion through slow feature analysis, and finding the most similar image frame from training data for estimating current/online object location. The approach is evaluated on two 2D + time and one 3D + time US acquisitions. The locations of six annotated fiducials are used for designing experiments and validating tracking accuracy. The average fiducial distance between expert's annotation and the location extracted from our indexed training frame is 1.9+/-0.5mm. Adding a fast template matching procedure within a small search range reduces the distance to 1.4+/-0.4mm. The tracking time per frame is on the order of millisecond, which is below the frame acquisition time.

  1. An experimental study of a circular cylinder's two-degree-of-freedom motion induced by vortex

    Directory of Open Access Journals (Sweden)

    Shin-Woong Kim


    Full Text Available This paper presents results of an experimental investigation of vortex-induced vibration (VIV of a flexibly mounted and rigid cylinder with two-degrees-of-freedom with respect to varying ratio of in-line natural frequency to cross-flow natural frequency, f∗, at a fixed low mass ratio. Combined in-line and cross-flow motion was observed in a sub-critical Reynolds number range. Three-dimensional displacement meter and tension meter were used to measure dynamic responses of the model. To validate the results and the experiment system, x and y response amplitudes and ratio of oscillation frequency to cross-flow natural frequency were compared with other experimental results. It has been found that the higher harmonics, such as third and more vibration components, can occur on a certain part of steel catenary riser under a condition of dual resonance mode. In the present work, however, due to the limitation of a size of circulating water channel, the whole test of a whole configuration of the riser at an adequate scale for VIV phenomenon was not able to be conducted. Instead, we have modeled a rigid cylinder and assumed that the cylinder is a part of steel catenary riser where the higher harmonic motions could occur. Through the experiment, we have found that even though the cylinder was assumed to be rigid, the occurrence of the higher harmonic motions was observed in a small reduced velocity (Vr range, where the influence of the in-line response is relatively large. The transition of the vortex shedding mode from one to another was examined by using time history of x and y directional displacement over all experimental cases. We also observed the influence of in-line restoring force power spectral density with f∗.

  2. The effects of structural setting on the azimuthal velocities of blast induced ground motion in perlite

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, Susan G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)


    A series of small scale explosive tests were performed during the spring of 1994 at a perlite mine located near Socorro, NM. The tests were designed to investigate the azimuthal or directional relationship between small scale geologic structures such as joints and the propagation of explosively induced ground motion. Three shots were initiated within a single borehole located at ground zero (gz) at depths varying from the deepest at 83 m (272 ft) to the shallowest at 10 m (32 ft). The intermediate shot was initiated at a depth of 63 m (208 ft). An array of three component velocity and acceleration transducers were placed in two concentric rings entirely surrounding the single shot hole at 150 and 300 azimuths as measured from ground zero. Data from the transducers was then used to determine the average propagation velocity of the blast vibration through the rock mass at the various azimuths. The rock mass was mapped to determine the prominent joint orientations (strike and dip) and the average propagation velocities were correlated with this geologic information. The data from these experiments shows that there is a correlation between the orientation of prominent joints and the average velocity of ground motion. It is theorized that this relationship is due to the relative path the ground wave follows when encountering a joint or structure within the rock mass. The more prominent structures allow the wave to follow along their strike thereby forming a sort of channel or path of least resistance and in turn increasing the propagation velocity. Secondary joints or structures may act in concert with more prominent features to form a network of channels along which the wave moves more freely than it may travel against the structure. The amplitudes of the ground motion was also shown to vary azimuthally with the direction of the most prominent structures.

  3. The efficacy of airflow and seat vibration on reducing visually induced motion sickness. (United States)

    D'Amour, Sarah; Bos, Jelte E; Keshavarz, Behrang


    Visually induced motion sickness (VIMS) is a well-known sensation in virtual environments and simulators, typically characterized by a variety of symptoms such as pallor, sweating, dizziness, fatigue, and/or nausea. Numerous methods to reduce VIMS have been previously introduced; however, a reliable countermeasure is still missing. In the present study, the effect of airflow and seat vibration to alleviate VIMS was investigated. Eighty-two participants were randomly assigned to one of four groups (airflow, vibration, combined airflow and vibration, and control) and then exposed to a 15 min long video of a bicycle ride shot from first-person view. VIMS was measured using the Fast Motion Sickness Scale (FMS) and the Simulator Sickness Questionnaire (SSQ). Results showed that the exposure of airflow significantly reduced VIMS, whereas the presence of seat vibration, in contrast, did not have an impact on VIMS. Additionally, we found that females reported higher FMS scores than males, however, this sex difference was not found in the SSQ scores. Our findings demonstrate that airflow can be an effective and easy-to-apply technique to reduce VIMS in virtual environments and simulators, while vibration applied to the seat is not a successful method.

  4. Beating motion of a circular cylinder in vortex-induced vibrations (United States)

    Shen, Linwei; Chan, Eng-Soon; Wei, Yan


    In this paper, beating phenomenon of a circular cylinder in vortex-induced vibration is studied by numerical simulations in a systematic manner. The cylinder mass coefficients of 2 and 10 are considered, and the Reynolds number is 150. Two distinctive frequencies, namely cylinder oscillation and vortex shedding frequencies, are obtained from the harmonic analysis of the cylinder displacement. The result is consistent with that observed in laboratory experiments. It is found that the cylinder oscillation frequency changes with the natural frequency of the cylinder while the reduced velocity is varied. The added-mass coefficient of the cylinder in beating motion is therefore estimated. Meanwhile, the vortex shedding frequency does not change dramatically in the beating situations. In fact, it is very close to 0.2. Accordingly, the lift force coefficient has two main components associated with these two frequencies. Besides, higher harmonics of the cylinder oscillation frequency appear in the spectrum of the lift coefficient. Moreover, the vortex shedding timing is studied in the beating motion by examining the instantaneous flow fields in the wake, and two scenarios of the vortex formation are observed.

  5. Self-motion perception: assessment by real-time computer-generated animations (United States)

    Parker, D. E.; Phillips, J. O.


    We report a new procedure for assessing complex self-motion perception. In three experiments, subjects manipulated a 6 degree-of-freedom magnetic-field tracker which controlled the motion of a virtual avatar so that its motion corresponded to the subjects' perceived self-motion. The real-time animation created by this procedure was stored using a virtual video recorder for subsequent analysis. Combined real and illusory self-motion and vestibulo-ocular reflex eye movements were evoked by cross-coupled angular accelerations produced by roll and pitch head movements during passive yaw rotation in a chair. Contrary to previous reports, illusory self-motion did not correspond to expectations based on semicircular canal stimulation. Illusory pitch head-motion directions were as predicted for only 37% of trials; whereas, slow-phase eye movements were in the predicted direction for 98% of the trials. The real-time computer-generated animations procedure permits use of naive, untrained subjects who lack a vocabulary for reporting motion perception and is applicable to basic self-motion perception studies, evaluation of motion simulators, assessment of balance disorders and so on.

  6. Orientation Preferences and Motion Sickness Induced in a Virtual Reality Environment. (United States)

    Chen, Wei; Chao, Jian-Gang; Zhang, Yan; Wang, Jin-Kun; Chen, Xue-Wen; Tan, Cheng


    Astronauts' orientation preferences tend to correlate with their susceptibility to space motion sickness (SMS). Orientation preferences appear universally, since variable sensory cue priorities are used between individuals. However, SMS susceptibility changes after proper training, while orientation preferences seem to be intrinsic proclivities. The present study was conducted to investigate whether orientation preferences change if susceptibility is reduced after repeated exposure to a virtual reality (VR) stimulus environment that induces SMS. A horizontal supine posture was chosen to create a sensory context similar to weightlessness, and two VR devices were used to produce a highly immersive virtual scene. Subjects were randomly allocated to an experimental group (trained through exposure to a provocative rotating virtual scene) and a control group (untrained). All subjects' orientation preferences were measured twice with the same interval, but the experimental group was trained three times during the interval, while the control group was not. Trained subjects were less susceptible to SMS, with symptom scores reduced by 40%. Compared with untrained subjects, trained subjects' orientation preferences were significantly different between pre- and posttraining assessments. Trained subjects depended less on visual cues, whereas few subjects demonstrated the opposite tendency. Results suggest that visual information may be inefficient and unreliable for body orientation and stabilization in a rotating visual scene, while reprioritizing preferences for different sensory cues was dynamic and asymmetric between individuals. The present findings should facilitate customization of efficient and proper training for astronauts with different sensory prioritization preferences and dynamic characteristics.Chen W, Chao J-G, Zhang Y, Wang J-K, Chen X-W, Tan C. Orientation preferences and motion sickness induced in a virtual reality environment. Aerosp Med Hum Perform. 2017

  7. Paradoxical vocal fold motion in children presenting with exercise induced dyspnea. (United States)

    Hseu, Anne; Sandler, Mykayla; Ericson, Dawn; Ayele, Nohamin; Kawai, Kosuke; Nuss, Roger


    Although dyspnea with exercise in the pediatric population can be multifactorial, the diagnosis of paradoxical vocal fold motion disorder (PVFMD) in this group is not well characterized. The objective of this study is to review the multiple causes of dyspnea with exercise in children, including the prevalence of PVFMD within this study population. A retrospective review was conducted of patients seen at a tertiary pediatric hospital for exercise-induced dyspnea suspected to be related to PVFMD between January 2007 and July 2015. Inclusion criteria included assessment in a specialty exercise clinic and evaluation by a pediatric otolaryngologist and pulmonologist. Pre- and post-exercise pulmonary function tests and laryngoscopic examinations were performed. Data including co-morbidities, presenting symptoms, prior diagnoses and treatments, final diagnoses, prescribed treatments and outcomes were collected and analyzed. 294 patients were evaluated at our institution during the study period. 4 patients were excluded for insufficient data, which left 290 for analysis. 75 were male, 215 female. All patients underwent treadmill testing with monitoring to simulate strenuous exercise. Average patient age was 14.6 years; average BMI was 21.53. The most common sports to elicit symptoms were running and soccer. Patients most frequently complained of stridor or wheezing in addition to dyspnea. Throat tightness was also a common complaint. After evaluation, 86 patients were given the primary diagnosis of exercise-induced PVFMD. 54 patients were diagnosed with physiologic dyspnea and 30 with exercise-induced asthma. Pediatric patients presenting with exercise-induced dyspnea can have multiple etiologies for their symptoms including PVFMD. Other causes of dyspnea with exercise should not be underestimated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Decoding Illusory Self-location from Activity in the Human Hippocampus

    Directory of Open Access Journals (Sweden)

    Arvid eGuterstam


    Full Text Available Decades of research have demonstrated a role for the hippocampus in spatial navigation and episodic and spatial memory. However, empirical evidence linking hippocampal activity to the perceptual experience of being physically located at a particular place in the environment is lacking. In this study, we used a multisensory out-of-body illusion to perceptually ‘teleport’ six healthy participants between two different locations in the scanner room during high-resolution functional magnetic resonance imaging (fMRI. The participants were fitted with MRI-compatible head-mounted displays that changed their first-person visual perspective to that of a pair of cameras placed in one of two corners of the scanner room. To elicit the illusion of being physically located in this position, we delivered synchronous visuo-tactile stimulation in the form of an object moving towards the cameras coupled with touches applied to the participant’s chest. Asynchronous visuo-tactile stimulation did not induce the illusion and served as a control condition. We found that illusory self-location could be successfully decoded from patterns of activity in the hippocampus in all of the participants in the synchronous (P0.05. At the group-level, the decoding accuracy was significantly higher in the synchronous than in the asynchronous condition (P=0.012. These findings associate hippocampal activity with the perceived location of the bodily self in space, which suggests that the human hippocampus is involved not only in spatial navigation and memory but also in the construction of our sense of bodily self-location.

  9. The role of remote closure in the perception of occlusion at junctions and illusory contours. (United States)

    Gillam, Barbara J; Grove, Philip M; Layden, Jessica


    Abstract. Perceived occlusion at T-junctions or illusory contours at implicit T-junctions are often modelled by using edge information without surface context. We explored the effect of closure on perceived occlusion at T-junctions. Two vertical lines separated by a gap each had six abutting horizontal lines on opposite sides forming T-junctions. These lines were either closed or not closed into pairs at the stem ends of the Ts. In experiment 1, closed T-junction stems gave a much stronger sense of occlusion at the vertical lines than unclosed ones, even though closure information was remote from the putative occlusion and local T-junction information remained constant. When the outer two T-junctions were converted to L-junctions, perceived occlusion considerably diminished. The effect of closure on illusory-contour strength for stimuli like those of experiment 1 but with the vertical lines omitted was explored in experiment 2. The two sets of horizontal lines, separated by a gap, were either closed or not closed into pairs at their outer ends. Illusory-contour strength along the vertical alignments was much greater for closed pairs. Line terminations on both sides of the gap enhanced illusory-contour strength, but whether they were collinear or not had little effect.

  10. Cortical oscillatory activity associated with the perception of illusory and real visual contours

    NARCIS (Netherlands)

    Kinsey, K.; Anderson, S.J.; Hadjipapas, A.; Nevado, A.; Hillebrand, A.; Holliday, I.E.


    We used magnetoencephalography (MEG) to examine the nature of oscillatory brain rhythms when passively viewing both illusory and real visual contours. Three stimuli were employed: a Kanizsa triangle; a Kanizsa triangle with a real triangular contour superimposed; and a control figure in which the

  11. Respiratory-induced prostate motion. Characterization and quantification in dynamic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dinkel, Julien; Zamecnik, Patrick; Schlemmer, Heinz-Peter [German Cancer Research Center, Heidelberg (Germany). Dept. of Radiology; Thieke, Christian [German Cancer Research Center, Heidelberg (Germany). Clinical Cooperation Unit Radiation Oncology; University Clinic Heidelberg (Germany). Dept. of Radiation Oncology; Plathow, Christian [German Cancer Research Center, Heidelberg (Germany). Dept. of Radiology; Radiology Baden-Baden (Germany); Pruem, Hermann [German Cancer Research Center, Heidelberg (Germany). Software Development for Integrated Diagnostics and Therapy Group; Huber, Peter E. [German Cancer Research Center, Heidelberg (Germany). Clinical Cooperation Unit Radiation Oncology; Kauczor, Hans-Ulrich [German Cancer Research Center, Heidelberg (Germany). Dept. of Radiology; University Clinic Heidelberg (Germany). Dept. Radiology; Zechmann, Christian M. [German Cancer Research Center, Heidelberg (Germany). Dept. of Radiology; University Clinic Heidelberg (Germany). Dept. of Nuclear Medicine


    To investigate prostate movement during deep breathing and contraction of abdominal musculature by means of dynamic MRI and analyze implications for image-guided radiotherapy of prostate cancer. A total of 43 patients and 8 healthy volunteers were examined with MRI. Images during deep respiration and during contraction of abdominal musculature (via a coughing maneuver) were obtained with dynamic two-dimensional (2D) balanced SSFP; 3 frames/s were obtained over an acquisition time of 15 s. Images were acquired in sagittal orientation to evaluate motion along both the craniocaudal (cc)-axis and anteroposterior (ap)-axis. Prostate motion was quantified semi-automatically using dedicated software tools. Respiratory induced mean cc-axis displacement of the prostate was 2.7 {+-} 1.9 (SD) mm (range, 0.5-10.6 mm) and mean ap-axis displacement 1.8 {+-} 1.0 (SD) mm (range, 0.3-10 mm). In 69% of the subjects, breathing-related prostate movements were found to be negligible (< 3 mm). The prostate displacement for abdominal contraction was significantly higher: mean cc-axis displacement was max. 8.4 {+-} 6.7 (SD) mm (range, 0.6-27 mm); mean anteroposterior movement was 8.3 {+-} 7.7 (SD) mm (range, 0.7-26 mm). Dynamic MRI is an excellent tool for noninvasive real-time imaging of prostate movement. Further investigations regarding possible applications in image-guided radiotherapy, e.g., for individualized planning and in integrated linac/MRI systems, are warranted. (orig.)

  12. Perception of object motion in three-dimensional space induced by cast shadows. (United States)

    Katsuyama, Narumi; Usui, Nobuo; Nose, Izuru; Taira, Masato


    Cast shadows can be salient depth cues in three-dimensional (3D) vision. Using a motion illusion in which a ball is perceived to roll in depth on the bottom or to flow in the front plane depending on the slope of the trajectory of its cast shadow, we investigated cortical mechanisms underlying 3D vision based on cast shadows using fMRI techniques. When modified versions of the original illusion, in which the slope of the shadow trajectory (shadow slope) was changed in 5 steps from the same one as the ball trajectory to the horizontal, were presented to participants, their perceived ball trajectory shifted gradually from rolling on the bottom to floating in the front plane as the change of the shadow slope. This observation suggests that the perception of the ball trajectory in this illusion is strongly affected by the motion of the cast shadow. In the fMRI study, cortical activity during observation of the movies of the illusion was investigated. We found that the bilateral posterior-occipital sulcus (POS) and right ventral precuneus showed activation related to the perception of the ball trajectory induced by the cast shadows in the illusion. Of these areas, it was suggested that the right POS may be involved in the inferring of the ball trajectory by the given spatial relation between the ball and the shadow. Our present results suggest that the posterior portion of the medial parietal cortex may be involved in 3D vision by cast shadows. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Sensory processing during kinesthetic aftereffect following illusory hand movement elicited by tendon vibration. (United States)

    Kito, Tomonori; Hashimoto, Toshihiro; Yoneda, Tsugutake; Katamoto, Shizuo; Naito, Eiichi


    We investigated how the human sensory-motor system elicits a somatosensory aftereffect. Tendon vibration of a limb excites the muscle spindle afferents that contribute to eliciting illusory movements of the limb. After the cessation of vibration, a transient sensation in which the vibrated limb returns towards its original position (kinesthetic aftereffect) is often experienced, even in the absence of the afferent inputs recruited by the vibration. We vibrated the tendon of either the right wrist extensor or flexor muscle that elicited an illusory flexion or extension movement, which was followed by its corresponding extension or flexion aftereffect. First, we psychophysically investigated how the preceding illusory movement affects the aftereffect. Second, we examined the cortico-spinal excitability during the aftereffect to evaluate its changes from the time during the illusion. We measured the amplitude of the motor-evoked potential that is evoked by a single-pulse transcranial magnetic stimulation to the hand section of the contralateral motor cortex (M1). All 19 subjects experienced the aftereffect, and the amount of aftereffect was approximately 70% of the preceding illusion. During the illusion, the cortico-spinal excitability increased more in non-vibrated than in vibrated muscle, so as to reflect the illusory directions. During the aftereffect, the excitability was significantly reduced only in the non-vibrated muscle, with no change in the vibrated muscle, which, in turn, caused an opposite pattern in the unbalanced excitability between the two muscles, and the degree of unbalanced excitability was correlated with the sensation of aftereffect. The kinesthetic aftereffect seems to be elicited by a sensory process that is determined by the preceding illusory movements. Motor-cortical processing of the unbalanced sensory information from the stimulated and non-stimulated muscles may contribute to the elicitation of kinesthetic aftereffect.

  14. Study on Vortex-Induced Motions of A New Type of Deep Draft Multi-Columns FDPSO (United States)

    Gu, Jia-yang; Xie, Yu-lin; Zhao, Yuan; Li, Wen-juan; Tao, Yan-wu; Huang, Xiang-hong


    A numerical simulation and an experimental study on vortex-induced motion (VIM) of a new type of deep draft multi-columns floating drilling production, storage and offloading (FDPSO) are presented in this paper. The main dimension, the special variable cross-section column and the cabin arrangement of the octagonal pontoon are introduced based on the result. The numerical simulation is adapted to study the effects of current incidence angles and reduced velocities on this platform's sway motion response. The 300 m water depth equivalent truncated mooring system is adopted for the model tests. The model tests are carried out to check the reliability of numerical simulation. The results consist of surge, sway and yaw motions, as well as motion trajectories. The maximum sway amplitudes for different types of offshore platform is also studied. The main results show that the peak frequencies of sway motion under different current incidence angles and reduced velocities vary around the natural frequency. The analysis result of flow field indicates that the change of distribution of vortex in vertical presents significant influences on the VIM of platform. The trend of sway amplitude ratio curve of this new type FDPSO differs from the other types of platform. Under 45° current incidence angle, the sway amplitude of this new type of FDPSO is much smaller than those of other types of offshore platform at 4.4 ≤ V r ≤ 8.9. The typical `8' shape trajectory does not appear in the platform's motion trajectories.

  15. Auditory Motion Elicits a Visual Motion Aftereffect. (United States)

    Berger, Christopher C; Ehrsson, H Henrik


    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  16. Flow induced motion and energy harvesting of bluff bodies with different cross sections

    International Nuclear Information System (INIS)

    Ding, Lin; Zhang, Li; Wu, Chunmei; Mao, Xinru; Jiang, Deyi


    Highlights: • Code for FIM and power harvesting of different cross-section cylinders is developed. • VIV appears combined with galloping for PTC-cylinder and quasi-trapezoid cylinder. • Vortex structures of cylinder in VIV and galloping are predicted accurately. • Power can be harnessed over the high-lift TrSL3 regime when Re > 30,000. - Abstract: The flow induced motion (FIM) and energy conversion of cylinders with different cross sections are investigated using two-dimensional unsteady Reynolds-Averaged Navier–Stokes simulations in the Reynolds number range of 10,000 < Re < 130,000. The model for energy harvesting in FIM is established and verified by experimental measurements. For the PTC-cylinder (circular cylinder with passive turbulence control), square cylinder, Q-trapezoid I (quasi-trapezoid cylinder with the long edge as the windward side), and triangular prism, energy can be obviously harvested when Re > 30,000. The initial and upper branches of vortex induced vibration (VIV), transition from VIV to galloping, and galloping branch are clearly observed in the amplitude and frequency responses. The FIM responses of PTC-cylinder and Q-trapezoid I are stronger than the other cylinders. The maximum amplitude of 3.5D is achieved and 16 vortices are captured in one cycle in the fully-developed galloping branch. The optimum regime for energy harvesting is the VIV upper branch. And the PTC-cylinder and Q-trapezoid I have better performance on energy harvesting in FIM than other cylinders. The maximum energy efficiencies of 45.7% and 37.9% are achieved for Q-trapezoid I and PTC-cylinder respectively. Contrarily, the vibration of Q-trapezoid II (quasi-trapezoid cylinder with the short edge as the windward side) displays a quite different character with low amplitude and high frequency, and the vortex pattern is a constant 2S in the test Re range

  17. Cross-modal prediction changes the timing of conscious access during the motion-induced blindness. (United States)

    Chang, Acer Y C; Kanai, Ryota; Seth, Anil K


    Despite accumulating evidence that perceptual predictions influence perceptual content, the relations between these predictions and conscious contents remain unclear, especially for cross-modal predictions. We examined whether predictions of visual events by auditory cues can facilitate conscious access to the visual stimuli. We trained participants to learn associations between auditory cues and colour changes. We then asked whether congruency between auditory cues and target colours would speed access to consciousness. We did this by rendering a visual target subjectively invisible using motion-induced blindness and then gradually changing its colour while presenting congruent or incongruent auditory cues. Results showed that the visual target gained access to consciousness faster in congruent than in incongruent trials; control experiments excluded potentially confounding effects of attention and motor response. The expectation effect was gradually established over blocks suggesting a role for extensive training. Overall, our findings show that predictions learned through cross-modal training can facilitate conscious access to visual stimuli. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Virtual reality body motion induced navigational controllers and their effects on simulator sickness and pathfinding. (United States)

    Aldaba, Cassandra N; White, Paul J; Byagowi, Ahmad; Moussavi, Zahra


    Virtual reality (VR) navigation is usually constrained by plausible simulator sickness (SS) and intuitive user interaction. The paper reports on the use of four different degrees of body motion induced navigational VR controllers, a TiltChair, omni-directional treadmill, a manual wheelchair joystick (VRNChair), and a joystick in relation to a participant's SS occurrence and a controller's intuitive utilization. Twenty young adult participants utilized all controllers to navigate through the same VR task environment in separate sessions. Throughout the sessions, SS occurrence was measured from a severity score by a standard SS questionnaire and from body sway by a center of pressure path length with eyes opened and closed. SS occurrence did not significantly differ among the controllers. However, time spent in VR significantly contributed to SS occurrence; hence, a few breaks to minimize SS should be interjected throughout a VR task. For all task trials, we recorded the participant's travel trajectories to investigate each controller's intuitive utilization from a computed traversed distance. Shorter traversed distances indicated that participants intuitively utilized the TiltChair with a slower speed; while longer traversed distances indicated participants struggled to utilize the omni-directional treadmill with a unnaturalistic stimulation of gait. Therefore, VR navigation should use technologies best suited for the intended age group that minimizes SS, and produces intuitive interactions for the participants.

  19. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    KAUST Repository

    Akosa, Collins Ashu


    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  20. Topological dynamics and current-induced motion in a skyrmion lattice (United States)

    Martinez, J. C.; Jalil, M. B. A.


    We study the Thiele equation for current-induced motion in a skyrmion lattice through two soluble models of the pinning potential. Comprised by a Magnus term, a dissipative term and a pinning force, Thiele’s equation resembles Newton’s law but in virtue of the topological character to the first, it differs significantly from Newtonian mechanics and because the Magnus force is dominant, unlike its mechanical counterpart—the Coriolis force—skyrmion trajectories do not necessarily have mechanical counterparts. This is important if we are to understand skyrmion dynamics and tap into its potential for data-storage technology. We identify a pinning threshold velocity for the one-dimensional pinning potential and for a two-dimensional attractive potential we find a pinning point and the skyrmion trajectories toward that point are spirals whose frequency (compare Kepler’s second law) and amplitude-decay depend only on the Gilbert constant and potential at the pinning point. Other scenarios, e.g. other choices of initial spin velocity, a repulsive potential, etc are also investigated.

  1. The induced motion of a probe coupled to a bath with random resettings (United States)

    Maes, Christian; Thiery, Thimothée


    We consider a probe linearly coupled to the center of mass of a nonequilibrium bath. We study the induced motion on the probe for a model where a resetting mechanism is added to an overdamped bath dynamics with quadratic potentials. The fact that each bath particle is at random times reset to a fixed position is known for optimizing diffusive search strategies, but here stands for the nonequilibrium aspect of the bath. In the large bath scaling limit the probe is governed by an effective Langevin equation. Depending on the value of the parameters, there appear three regimes: (i) an equilibrium-like regime but with a reduced friction and an increased effective temperature; (ii) a regime where the noise felt by the probe is continuous but non-Gaussian and exhibits fat-tails; (iii) a regime with a non-Gaussian noise exhibiting power-law distributed jumps. The model thus represents an exactly solvable case for the origin of nonequilibrium probe dynamics.

  2. Evidences for recent plume-induced subduction, microplates and localized lateral plate motions on Venus (United States)

    Davaille, Anne; Smrekar, Suzanne


    Using laboratory experiments and theoretical modeling, we recently showed that plumes could induce roll-back subduction around large coronae. When a hot plume rises under a brittle and visco-elasto-plastic skin/lithosphere, the latter undergoes a flexural deformation which puts it under tension. Radial cracks and rifting of the skin then develop, sometimes using pre-existing weaknesses. Plume material upwells through the cracks (because it is more buoyant) and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the combined force of its own weight and that of the plume gravity current. However, due to the brittle character of the upper part of the experimental lithosphere, it cannot deform viscously to accomodate the sinking motions. Instead, the plate continues to tear, as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Two types of microplates are also observed. First, the upwelling plume material creates a set of new plates interior to the trench segments. These plates move rapidly and expand through time, but do not subduct.. In a few cases, we also observe additional microplates exterior to the trenches. This happens when the subducting plate contains preexisting heterogeneities (e.g. fractures) and the subducted slab is massive enough for slab pull to become efficient and induce horizontal plate motions. Scalings derived from the experiments suggest that Venus lithosphere is soft enough to undergo such a regime. And indeed, at least two candidates can be identified on Venus, where plume-induced subduction could have operated. (1) Artemis Coronae is the largest (2300 km across) coronae on Venus and is bounded over 270° of

  3. Directed motion of spheres induced by unbiased driving forces in viscous fluids beyond the Stokes' law regime (United States)

    Casado-Pascual, Jesús


    The emergence of directed motion is investigated in a system consisting of a sphere immersed in a viscous fluid and subjected to time-periodic forces of zero average. The directed motion arises from the combined action of a nonlinear drag force and the applied driving forces, in the absence of any periodic substrate potential. Necessary conditions for the existence of such directed motion are obtained and an analytical expression for the average terminal velocity is derived within the adiabatic approximation. Special attention is paid to the case of two mutually perpendicular forces with sinusoidal time dependence, one with twice the period of the other. It is shown that, although neither of these two forces induces directed motion when acting separately, when added together, the resultant force generates directed motion along the direction of the force with the shortest period. The dependence of the average terminal velocity on the system parameters is analyzed numerically and compared with that obtained using the adiabatic approximation. Among other results, it is found that, for appropriate parameter values, the direction of the average terminal velocity can be reversed by varying the forcing strength. Furthermore, certain aspects of the observed phenomenology are explained by means of symmetry arguments.

  4. The use of EEG to measure cerebral changes during computer-based motion-sickness-inducing tasks (United States)

    Strychacz, Christopher; Viirre, Erik; Wing, Shawn


    Motion sickness (MS) is a stressor commonly attributed with causing serious navigational and performance errors. The distinct nature of MS suggests this state may have distinct neural markers distinguishable from other states known to affect performance (e.g., stress, fatigue, sleep deprivation, high workload). This pilot study used new high-resolution electro-encephalograph (EEG) technologies to identify distinct neuronal activation changes that occur during MS. Brain EEG activity was monitored while subjects performed a ball-tracking task and viewed stimuli on a projection screen intended to induce motion sickness/spatial disorientation. Results show the presence of EEG spectral changes in all subjects who developed motion sickness when compared to baseline levels. These changes included: 1) low frequency (1 to 10 Hz) changes that may reflect oculomotor movements rather than intra-cerebral sources; 2) increased spectral power across all frequencies (attributable to increased scalp conductivity related to sweating), 3) local increases of power spectra in the 20-50 Hz range (likely attributable to external muscles on the skull) and; 4) a central posterior (occipital) independent component that shows suppression of a 20 Hz peak in the MS condition when compared to baseline. Further research is necessary to refine neural markers, characterize their origin and physiology, to distinguish between motion sickness and other states and to enable markers to be used for operator state monitoring and the designing of interventions for motion sickness.

  5. Impedance spectroscopy of changes in skin-electrode impedance induced by motion. (United States)

    Cömert, Alper; Hyttinen, Jari


    The motion artifact is an ever-present challenge in the mobile monitoring of surface potentials. Skin-electrode impedance is investigated as an input parameter to detect the motion artifact and to reduce it using various methods. However, the impact of the used impedance measurement frequency on the relationship between measured impedance and the motion artifact and the relationship between the impedance and the motion is not well understood. In this paper, for the first time, we present the simultaneous measurement of impedance at 8 current frequencies during the application of controlled motion to the electrode at monitored electrode mounting force. Three interwoven frequency groupings are used to obtain a spectrum of 24 frequencies between 25 Hz and 1 MHz for ten volunteers. Consequently, the surface potential and one channel of ECG are measured from the electrode subject to controlled motion. The signals are then analyzed in time and frequency domain. The results show that the different frequencies of impedance measurements do not reflect the motion in the same manner. The best correlation between impedance and the applied motion was seen at impedance current frequencies above 17 kHz. For resistance this relationship existed for frequencies above 11 kHz, Reactance did not show good time domain correlation, but had good frequency domain correlation at frequencies higher than 42 kHz. Overall, we found that the impedance signal correlated well with the applied motion; however impedance had lower correlation to actual motion artifact signal. Based on our results, we can conclude that the current frequency used for the impedance measurement has a great effect on the relationship of the measurement to the applied motion and its relationship with the resulting motion artifact. Therefore, when flat textile contact biopotential electrodes are used, frequencies higher than 17 kHz are best suited for impedance measurements intended for the estimation of electrode

  6. A pilot application of a questionnaire to evaluate visually induced motion

    Directory of Open Access Journals (Sweden)

    Angelo G. Solimini


    Full Text Available

    Background: The increasing popularity of tri-dimensional (3D movies has raised public concern and media interest about the safety of projected images for spectators. No specific instrument exists to assess the occurrence of visually induced motion sickness (VIMS symptoms in 3D movie spectators in movie theaters.

    Methods: We developed a questionnaire containing 20 items divided into socio demographics, individual characteristics, movie vision characteristics and VIMS symptoms (during, right after, and at two hours from the viewing of the movie . The questionnaire was self administered to 38 subjects, asking them to report time taken for its completion, comments and eventual difficulties in interpreting items.

    Results: Poor understanding or problems in identifying the correct item choice were noted for 4 questions belonging to the socio demographics section that were simplified in the final version of the questionnaire. Two other questions were merged into one after homogeneity analysis. Most VIMS symptoms were observed during the movie and quickly thereafter. Tired eyes was the symptom most often reported (39.5% of responders followed by headache (18.4%, dizziness (18.4% and nausea (15.8%. Double vision and palpitation were reported with very low frequency (respectively 5.3% and 2.3% and vomit was not reported by any respondent. Homogeneity of symptom items was good (Cronbach alpha= 0.69. Reliability analysis showed satisfactory item-total correlations (alpha coefficient ranging from 0.61 to 0.73.

    Conclusions: The refined survey questionnaire can be applied in future studies to assess the frequency of VIMS symptoms in spectators of 3D movies and to identify the risk factors connected to inter-individual differences in susceptibility and to the characteristics of the movie viewing.

  7. Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires

    KAUST Repository

    Ivanov, Yurii P.


    The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.

  8. Investigating the influence of respiratory motion on the radiation induced bystander effect in modulated radiotherapy (United States)

    Cole, Aidan J.; McGarry, Conor K.; Butterworth, Karl T.; McMahon, Stephen J.; Hounsell, Alan R.; Prise, Kevin M.; O'Sullivan, Joe M.


    Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy and may contribute towards uncertainties in radiotherapy planning. This study investigates the potential radiobiological implications occurring due to tumour motion in areas of geometric miss in lung cancer radiotherapy. A bespoke phantom and motor-driven platform to replicate respiratory motion and study the consequences on tumour cell survival in vitro was constructed. Human non-small-cell lung cancer cell lines H460 and H1299 were irradiated in modulated radiotherapy configurations in the presence and absence of respiratory motion. Clonogenic survival was calculated for irradiated and shielded regions. Direction of motion, replication of dosimetry by multi-leaf collimator (MLC) manipulation and oscillating lead shielding were investigated to confirm differences in cell survival. Respiratory motion was shown to significantly increase survival for out-of-field regions for H460/H1299 cell lines when compared with static irradiation (p < 0.001). Significantly higher survival was found in the in-field region for the H460 cell line (p < 0.030). Oscillating lead shielding also produced these significant differences. Respiratory motion and oscillatory delivery of radiation dose to human tumour cells has a significant impact on in- and out-of-field survival in the presence of non-uniform irradiation in this in vitro set-up. This may have important radiobiological consequences for modulated radiotherapy in lung cancer.

  9. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    KAUST Repository

    Bang, Do


    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  10. Vection is the main contributor to motion sickness induced by visual yaw rotation: Implications for conflict and eye movement theories.

    Directory of Open Access Journals (Sweden)

    Suzanne A E Nooij

    Full Text Available This study investigated the role of vection (i.e., a visually induced sense of self-motion, optokinetic nystagmus (OKN, and inadvertent head movements in visually induced motion sickness (VIMS, evoked by yaw rotation of the visual surround. These three elements have all been proposed as contributing factors in VIMS, as they can be linked to different motion sickness theories. However, a full understanding of the role of each factor is still lacking because independent manipulation has proven difficult in the past. We adopted an integrative approach to the problem by obtaining measures of potentially relevant parameters in four experimental conditions and subsequently combining them in a linear mixed regression model. To that end, participants were exposed to visual yaw rotation in four separate sessions. Using a full factorial design, the OKN was manipulated by a fixation target (present/absent, and vection strength by introducing a conflict in the motion direction of the central and peripheral field of view (present/absent. In all conditions, head movements were minimized as much as possible. Measured parameters included vection strength, vection variability, OKN slow phase velocity, OKN frequency, the number of inadvertent head movements, and inadvertent head tilt. Results show that VIMS increases with vection strength, but that this relation varies among participants (R2 = 0.48. Regression parameters for vection variability, head and eye movement parameters were not significant. These results may seem to be in line with the Sensory Conflict theory on motion sickness, but we argue that a more detailed definition of the exact nature of the conflict is required to fully appreciate the relationship between vection and VIMS.

  11. Schedule and complex motion of shuttle bus induced by periodic inflow of passengers (United States)

    Nagatani, Takashi; Naito, Yuichi


    We have studied the dynamic behavior of a bus in the shuttle bus transportation with a periodic inflow. A bus schedule is closely related to the dynamics. We present the modified circle map model for the dynamics of the shuttle bus. The motion of the shuttle bus depends on the loading parameter and the inflow period. The shuttle bus displays the periodic, quasi-periodic, and chaotic motions with varying both loading parameter and inflow rate.

  12. A flatfile of ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas (United States)

    Rennolet, Steven B.; Moschetti, Morgan P.; Thompson, Eric M.; Yeck, William


    We have produced a uniformly processed database of orientation-independent (RotD50, RotD100) ground motion intensity measurements containing peak horizontal ground motions (accelerations and velocities) and 5-percent-damped pseudospectral accelerations (0.1–10 s) from more than 3,800 M ≥ 3 earthquakes in Oklahoma and Kansas that occurred between January 2009 and December 2016. Ground motion time series were collected from regional, national, and temporary seismic arrays out to 500 km. We relocated the majority of the earthquake hypocenters using a multiple-event relocation algorithm to produce a set of near-uniformly processed hypocentral locations. Ground motion processing followed standard methods, with the primary objective of reducing the effects of noise on the measurements. Regional wave-propagation features and the high seismicity rate required careful selection of signal windows to ensure that we captured the entire ground motion record and that contaminating signals from extraneous earthquakes did not contribute to the database. Processing was carried out with an automated scheme and resulted in a database comprising more than 174,000 records ( We anticipate that these results will be useful for improved understanding of earthquake ground motions and for seismic hazard applications.

  13. DNA motion induced by electrokinetic flow near an Au coated nanopore surface as voltage controlled gate. (United States)

    Sugimoto, Manabu; Kato, Yuta; Ishida, Kentaro; Hyun, Changbae; Li, Jiali; Mitsui, Toshiyuki


    We used fluorescence microscopy to investigate the diffusion and drift motion of λ DNA molecules on an Au-coated membrane surface near nanopores, prior to their translocation through solid-state nanopores. With the capability of controlling electric potential at the Au surface as a gate voltage, Vgate, the motions of DNA molecules, which are presumably generated by electrokinetic flow, vary dramatically near the nanopores in our observations. We carefully investigate these DNA motions with different values of Vgate in order to alter the densities and polarities of the counterions, which are expected to change the flow speed or direction, respectively. Depending on Vgate, our observations have revealed the critical distance from a nanopore for DNA molecules to be attracted or repelled-DNA's anisotropic and unsteady drifting motions and accumulations of DNA molecules near the nanopore entrance. Further finite element method (FEM) numerical simulations indicate that the electrokinetic flow could qualitatively explain these unusual DNA motions near metal-collated gated nanopores. Finally, we demonstrate the possibility of controlling the speed and direction of DNA motion near or through a nanopore, as in the case of recapturing a single DNA molecule multiple times with alternating current voltages on the Vgate.

  14. Interfractional variability of respiration-induced esophageal tumor motion quantified using fiducial markers and four-dimensional cone-beam computed tomography

    NARCIS (Netherlands)

    Jin, Peng; Hulshof, Maarten C. C. M.; van Wieringen, Niek; Bel, Arjan; Alderliesten, Tanja


    To investigate the interfractional variability of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional cone-beam computed tomography (4D-CBCT) and assess if a 4D-CT is sufficient for predicting the motion during the treatment. Twenty-four patients with 63 markers

  15. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Directory of Open Access Journals (Sweden)

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  16. The effect of perceptual load on attention-induced motion blindness: the efficiency of selective inhibition. (United States)

    Hay, Julia L; Milders, Maarten M; Sahraie, Arash; Niedeggen, Michael


    Recent visual marking studies have shown that the carry-over of distractor inhibition can impair the ability of singletons to capture attention if the singleton and distractors share features. The current study extends this finding to first-order motion targets and distractors, clearly separated in time by a visual cue (the letter X). Target motion discrimination was significantly impaired, a result attributed to the carry-over of distractor inhibition. Increasing the difficulty of cue detection increased the motion target impairment, as distractor inhibition is thought to increase under demanding (high load) conditions in order to maximize selection efficiency. The apparent conflict with studies reporting reduced distractor inhibition under high load conditions was resolved by distinguishing between the effects of "cognitive" and "perceptual" load. ((c) 2006 APA, all rights reserved).

  17. A margin model to account for respiration-induced tumour motion and its variability

    International Nuclear Information System (INIS)

    Coolens, Catherine; Webb, Steve; Evans, Phil M; Shirato, H; Nishioka, K


    In order to reduce the sensitivity of radiotherapy treatments to organ motion, compensation methods are being investigated such as gating of treatment delivery, tracking of tumour position, 4D scanning and planning of the treatment, etc. An outstanding problem that would occur with all these methods is the assumption that breathing motion is reproducible throughout the planning and delivery process of treatment. This is obviously not a realistic assumption and is one that will introduce errors. A dynamic internal margin model (DIM) is presented that is designed to follow the tumour trajectory and account for the variability in respiratory motion. The model statistically describes the variation of the breathing cycle over time, i.e. the uncertainty in motion amplitude and phase reproducibility, in a polar coordinate system from which margins can be derived. This allows accounting for an additional gating window parameter for gated treatment delivery as well as minimizing the area of normal tissue irradiated. The model was illustrated with abdominal motion for a patient with liver cancer and tested with internal 3D lung tumour trajectories. The results confirm that the respiratory phases around exhale are most reproducible and have the smallest variation in motion amplitude and phase (approximately 2 mm). More importantly, the margin area covering normal tissue is significantly reduced by using trajectory-specific margins (as opposed to conventional margins) as the angular component is by far the largest contributor to the margin area. The statistical approach to margin calculation, in addition, offers the possibility for advanced online verification and updating of breathing variation as more data become available

  18. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink


    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  19. Bunch motion in the presence of the self-induced voltage due to a reactive impedance with RF off

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikova, E. [European Organization for Nuclear Research, Geneva (Switzerland)


    Analytic self-consistent solutions have been found for the nonlinear Vlasov equation describing different types of behaviour with time of an intense bunch under the influence of voltage induced due to a reactive part of broad band impedance. The problem is solved for the particular type of the initial distribution function in longitudinal phase space which is elliptic and corresponds to parabolic line density. This paper is devoted to the consideration of the effects in the machine with RF off. In this case the induced voltage is changing with time and can significantly affect bunch motion. The same method applied in the case with RF on allows the time dependent effects of potential well distortion to be analysed. Numerical estimations for the CERN SPS show that effect of induced voltage is important for beam manipulations with RF off. Measurements of the change in the rate of debunching with intensity can be used to estimate the value of the reactive impedance. (author)

  20. Hydrodynamic forces and ship motions induced by surges in a navigation lock

    NARCIS (Netherlands)

    Kalkwijk, J.P.T.


    This thesis treats the fluid and ship motion in a navigation lock and their mutual interaction as caused by surges, which occur in the chamber during filling or emptying. The other phenomena, which possibly play a role during these processes are ignored. The considerations of this treatise hold good

  1. Exercise induced effects on muscle function and range of motion in patients with hip osteoarthritis

    DEFF Research Database (Denmark)

    Bieler, Theresa; Siersma, Volkert; Magnusson, S Peter


    BACKGROUND AND PURPOSE: Patients with hip osteoarthritis have impairments in muscle function (muscle strength and power) and hip range of motion (ROM), and it is commonly believed that effective clinical management of osteoarthritis should address these impairments to reduce pain and disability. ...

  2. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy. (United States)

    McMullan, G; Vinothkumar, K R; Henderson, R


    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å(2) for every incident 300 keV e(-)/Å(2). The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e(-)/Å(2) per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.


    Sokhadze, Estate M; Baruth, Joshua M; Sears, Lonnie; Sokhadze, Guela E; El-Baz, Ayman S; Williams, Emily; Klapheke, Robert; Casanova, Manuel F


    Autism spectrum disorders (ASD) and attention deficit/hyperactivity disorder (ADHD) are very common developmental disorders which share some similar symptoms of social, emotional, and attentional deficits. This study is aimed to help understand the differences and similarities of these deficits using analysis of dense-array event-related potentials (ERP) during an illusory figure recognition task. Although ADHD and ASD seem very distinct, they have been shown to share some similarities in their symptoms. Our hypothesis was that children with ASD will show less pronounced differences in ERP responses to target and non-target stimuli as compared to typical children, and to a lesser extent, ADHD. Participants were children with ASD (N=16), ADHD (N=16), and controls (N=16). EEG was collected using a 128 channel EEG system. The task involved the recognition of a specific illusory shape, in this case a square or triangle, created by three or four inducer disks. There were no between group differences in reaction time (RT) to target stimuli, but both ASD and ADHD committed more errors, specifically the ASD group had statistically higher commission error rate than controls. Post-error RT in ASD group was exhibited in a post-error speeding rather than corrective RT slowing typical for the controls. The ASD group also demonstrated an attenuated error-related negativity (ERN) as compared to ADHD and controls. The fronto-central P200, N200, and P300 were enhanced and less differentiated in response to target and non-target figures in the ASD group. The same ERP components were marked by more prolonged latencies in the ADHD group as compared to both ASD and typical controls. The findings are interpreted according to the "minicolumnar" hypothesis proposing existence of neuropathological differences in ASD and ADHD, specifically minicolumnar number/width morphometry spectrum differences. In autism, a model of local hyperconnectivity and long-range hypoconnectivity explains many

  4. Measuring Motion-Induced B0-Fluctuations in the Brain Using Field Probes

    DEFF Research Database (Denmark)

    Andersen, Mads; Hanson, Lars G.; Madsen, Kristoffer Hougaard


    were compared with scanner acquired B0-maps from experiments with breathing and shoulder movements. A realistic simulation of B0-fluctuations caused by breathing was performed, and used for testing different sets of field probe positions. Results: The B0-fluctuations were well reflected in the field......Purpose: Fluctuations of the background magnetic field (B0) due to body and breathing motion can lead to significant artifacts in brain imaging at ultrahigh field. Corrections based on real-time sensing using external field probes show great potential. This study evaluates different aspects...... of field interpolation from these probes into the brain which is implicit in such methods. Measurements and simulations were performed to quantify how well B0-fluctuations in the brain due to body and breathing motion are reflected in external field probe measurements. Methods: Field probe measurements...

  5. Changes in sitting posture induce multiplanar changes in chest wall shape and motion with breathing. (United States)

    Lee, Linda-Joy; Chang, Angela T; Coppieters, Michel W; Hodges, Paul W


    This study examined the effect of sitting posture on regional chest wall shape in three dimensions, chest wall motion (measured with electromagnetic motion analysis system), and relative contributions of the ribcage and abdomen to tidal volume (%RC/V(t)) (measured with inductance plethysmography) in 7 healthy volunteers. In seven seated postures, increased dead space breathing automatically increased V(t) (to 1.5 V(t)) to match volume between conditions and study the effects of posture independent of volume changes. %RC/V(t) (psitting posture alter three-dimensional ribcage configuration and chest wall kinematics during breathing, while maintaining constant respiratory function. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Schedule and complex motion of shuttle bus induced by periodic inflow of passengers

    International Nuclear Information System (INIS)

    Nagatani, Takashi; Naito, Yuichi


    We have studied the dynamic behavior of a bus in the shuttle bus transportation with a periodic inflow. A bus schedule is closely related to the dynamics. We present the modified circle map model for the dynamics of the shuttle bus. The motion of the shuttle bus depends on the loading parameter and the inflow period. The shuttle bus displays the periodic, quasi-periodic, and chaotic motions with varying both loading parameter and inflow rate. -- Highlights: → We studied the dynamic behavior of a bus in the shuttle bus transportation. → We presented the modified circle map model for the bus schedule. → We clarified the dependence of the tour time on both loading parameter and inflow period.

  7. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue.

    Directory of Open Access Journals (Sweden)

    Kurt H Schütte

    Full Text Available Small wireless trunk accelerometers have become a popular approach to unobtrusively quantify human locomotion and provide insights into both gait rehabilitation and sports performance. However, limited evidence exists as to which trunk accelerometry measures are suitable for the purpose of detecting movement compensations while running, and specifically in response to fatigue. The aim of this study was therefore to detect deviations in the dynamic center of mass (CoM motion due to running-induced fatigue using tri-axial trunk accelerometry. Twenty runners aged 18-25 years completed an indoor treadmill running protocol to volitional exhaustion at speeds equivalent to their 3.2 km time trial performance. The following dependent measures were extracted from tri-axial trunk accelerations of 20 running steps before and after the treadmill fatigue protocol: the tri-axial ratio of acceleration root mean square (RMS to the resultant vector RMS, step and stride regularity (autocorrelation procedure, and sample entropy. Running-induced fatigue increased mediolateral and anteroposterior ratios of acceleration RMS (p < .05, decreased the anteroposterior step regularity (p < .05, and increased the anteroposterior sample entropy (p < .05 of trunk accelerometry patterns. Our findings indicate that treadmill running-induced fatigue might reveal itself in a greater contribution of variability in horizontal plane trunk accelerations, with anteroposterior trunk accelerations that are less regular from step-to-step and are less predictable. It appears that trunk accelerometry parameters can be used to detect deviations in dynamic CoM motion induced by treadmill running fatigue, yet it is unknown how robust or generalizable these parameters are to outdoor running environments.

  8. Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness. (United States)

    Solimini, Angelo G


    The increasing popularity of commercial movies showing three dimensional (3D) images has raised concern about possible adverse side effects on viewers. A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views) on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ) was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15) were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie). Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators.

  9. Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness.

    Directory of Open Access Journals (Sweden)

    Angelo G Solimini

    Full Text Available BACKGROUND: The increasing popularity of commercial movies showing three dimensional (3D images has raised concern about possible adverse side effects on viewers. METHODS AND FINDINGS: A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15 were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie. Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. CONCLUSIONS: Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators.

  10. Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish

    Directory of Open Access Journals (Sweden)

    Verónica Pérez-Schuster


    Full Text Available Following moving visual stimuli (conditioning stimuli, CS, many organisms perceive, in the absence of physical stimuli, illusory motion in the opposite direction. This phenomenon is known as the motion aftereffect (MAE. Here, we use MAE as a tool to study the neuronal basis of visual motion perception in zebrafish larvae. Using zebrafish eye movements as an indicator of visual motion perception, we find that larvae perceive MAE. Blocking eye movements using optogenetics during CS presentation did not affect MAE, but tectal ablation significantly weakened it. Using two-photon calcium imaging of behaving GCaMP3 larvae, we find post-stimulation sustained rhythmic activity among direction-selective tectal neurons associated with the perception of MAE. In addition, tectal neurons tuned to the CS direction habituated, but neurons in the retina did not. Finally, a model based on competition between direction-selective neurons reproduced MAE, suggesting a neuronal circuit capable of generating perception of visual motion.

  11. Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging. (United States)

    Zhou, Ruixi; Huang, Wei; Yang, Yang; Chen, Xiao; Weller, Daniel S; Kramer, Christopher M; Kozerke, Sebastian; Salerno, Michael


    Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. In the phantom experiments, images reconstructed with the MC strategy had higher

  12. A robust method for suppressing motion-induced coil sensitivity variations during prospective correction of head motion in fMRI. (United States)

    Faraji-Dana, Zahra; Tam, Fred; Chen, J Jean; Graham, Simon J


    Prospective motion correction is a promising candidate solution to suppress the effects of head motion during fMRI, ideally allowing the imaging plane to remain fixed with respect to the moving head. Residual signal artifacts may remain, however, because head motion in relation to a fixed multi-channel receiver coil (with non-uniform sensitivity maps) can potentially introduce unwanted signal variations comparable to the weak fMRI BOLD signal (~1%-4% at 1.5-3.0T). The present work aimed to investigate the magnitude of these residual artifacts, and characterize the regime over which prospective motion correction benefits from adjusting sensitivity maps to reflect relative positional change between the head and the coil. Numerical simulations were used to inform human fMRI experiments. The simulations indicated that for axial imaging within a commonly used 12-channel head coil, 5° of head rotation in-plane produced artifact signal changes of ~3%. Subsequently, six young adults were imaged with and without overt head motions of approximately this extent, with and without prospective motion correction using the Prospective Acquisition CorrEction (PACE) method, and with and without sensitivity map adjustments. Sensitivity map adjustments combined with PACE strongly protected against the artifacts of interest, as indicated by comparing three metrics of data quality (number of activated voxels, Dice coefficient of activation overlap, temporal standard deviation of baseline fMRI timeseries data) across the different experimental conditions. It is concluded that head motion in relation to a fixed multi-channel coil can adversely affect fMRI with prospective motion correction, and that sensitivity map adjustment can mitigate this effect at 3.0T. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Proton exchange in acid-base complexes induced by reaction coordinates with heavy atom motions

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, Saman, E-mail: [Steacie Institute for Molecular Sciences, National Research Council of Canada, Ontario, K1A 0R6 (Canada); Taghikhani, Mahdi [Department of Chemistry, Sharif Institute of Technology, Tehran (Iran, Islamic Republic of)


    Highlights: Black-Right-Pointing-Pointer Proton exchange in acid-base complexes is studied. Black-Right-Pointing-Pointer The structures, binding energies, and normal mode vibrations are calculated. Black-Right-Pointing-Pointer Transition state structures of proton exchange mechanism are determined. Black-Right-Pointing-Pointer In the complexes studied, the reaction coordinate involves heavy atom rocking. Black-Right-Pointing-Pointer The reaction coordinate is not simply localized in the proton movements. - Abstract: We extend previous work on nitric acid-ammonia and nitric acid-alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid-strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are <400 cm{sup -1}. This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm{sup -1}. Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  14. Proton exchange in acid–base complexes induced by reaction coordinates with heavy atom motions

    International Nuclear Information System (INIS)

    Alavi, Saman; Taghikhani, Mahdi


    Highlights: ► Proton exchange in acid–base complexes is studied. ► The structures, binding energies, and normal mode vibrations are calculated. ► Transition state structures of proton exchange mechanism are determined. ► In the complexes studied, the reaction coordinate involves heavy atom rocking. ► The reaction coordinate is not simply localized in the proton movements. - Abstract: We extend previous work on nitric acid–ammonia and nitric acid–alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid–strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are −1 . This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm −1 . Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  15. Evaluation of adaptation to visually induced motion sickness based on the maximum cross-correlation between pulse transmission time and heart rate

    Directory of Open Access Journals (Sweden)

    Chiba Shigeru


    Full Text Available Abstract Background Computer graphics and virtual reality techniques are useful to develop automatic and effective rehabilitation systems. However, a kind of virtual environment including unstable visual images presented to wide field screen or a head mounted display tends to induce motion sickness. The motion sickness induced in using a rehabilitation system not only inhibits effective training but also may harm patients' health. There are few studies that have objectively evaluated the effects of the repetitive exposures to these stimuli on humans. The purpose of this study is to investigate the adaptation to visually induced motion sickness by physiological data. Methods An experiment was carried out in which the same video image was presented to human subjects three times. We evaluated changes of the intensity of motion sickness they suffered from by a subjective score and the physiological index ρmax, which is defined as the maximum cross-correlation coefficient between heart rate and pulse wave transmission time and is considered to reflect the autonomic nervous activity. Results The results showed adaptation to visually-induced motion sickness by the repetitive presentation of the same image both in the subjective and the objective indices. However, there were some subjects whose intensity of sickness increased. Thus, it was possible to know the part in the video image which related to motion sickness by analyzing changes in ρmax with time. Conclusion The physiological index, ρmax, will be a good index for assessing the adaptation process to visually induced motion sickness and may be useful in checking the safety of rehabilitation systems with new image technologies.

  16. Early radiation-induced changes evaluated by intravoxel incoherent motion in the major salivary glands. (United States)

    Marzi, Simona; Forina, Chiara; Marucci, Laura; Giovinazzo, Giuseppe; Giordano, Carolina; Piludu, Francesca; Landoni, Valeria; Spriano, Giuseppe; Vidiri, Antonello


    To investigate the potential of intravoxel incoherent motion (IVIM) MRI for early evaluation of irradiated major salivary glands. Thirty-four patients with head-neck cancer were included in a prospective study. All patients underwent three serial IVIM-MRI: before, half-way through, and at the end of radiotherapy (RT). Apparent diffusion coefficient (ADC), ADClow derived in the low b-value range, perfusion fraction f, and pure diffusion coefficient D were estimated. Pretreatment values and early changes of diffusion parameters were correlated with parotid mean dose (Dmean ) and volume reduction after RT. Changes in diffusion parameters over time were all significant (P salivary glands can be noninvasively evaluated by IVIM-MRI. Perfusion-related coefficients in conjunction with dosimetric information increase our capability to predict the change in parotid volume and hence, if further validated, guide treatment strategy in RT. © 2014 Wiley Periodicals, Inc.

  17. Theoretical Solution and Applications of Ocean Bottom Pressure Induced by Seismic Seafloor Motion (United States)

    An, Chao; Cai, Chen; Zheng, Yong; Meng, Lingsen; Liu, Philip


    Seismic signals captured by ocean bottom pressure sensors, which are designed to record tsunami waves, are largely ignored. In this paper, we derive a simple theoretical solution of the ocean bottom pressure as a function of prescribed seafloor motion. All the assumptions are clearly stated and analyzed. The solution is checked by comparing the seafloor displacement and pressure from three M7+ earthquakes, recorded by ocean bottom seismometers and pressure gauges located off the Japanese coast. We then show two applications. First, using the seafloor displacement data recorded by an ocean bottom seismometer, the pressure amplitude recorded by the associated pressure gauge is corrected, and vice versa. Second, pressure recordings from Deep Ocean Assessment and Reporting of Tsunamis during the 2011 Tohoku earthquake are converted to seafloor displacements, which are then utilized to estimate the earthquake focal mechanism. Thus, we demonstrate that seismic signals recorded by pressure sensors have great potential for fast estimate of earthquake source parameters.

  18. The influence of thermal activation and the intrinsic temperature dependence of the spin torque effect in current-induced domain wall motion

    International Nuclear Information System (INIS)

    Dagras, P; Klaeui, M; Laufenberg, M; Bedau, D; Vila, L; Faini, G; Vaz, C A F; Bland, J A C; Ruediger, U


    An experimental study of domain wall motion in Ni 80 Fe 20 ring structures induced by current pulses as well as conventional magnetic fields is presented. Using constrictions we demonstrate that current-induced domain wall motion can be used to displace walls into parts of the structure where no pulsed currents are flowing. Measurements at variable temperatures between 2 and 300 K show that the fields necessary for wall motion decrease with increasing temperature, which can be explained by thermal activation. For the current-induced case we find, depending on the geometry and temperature range, that the current densities necessary for displacement can increase or decrease with rising temperature. This indicates that, in addition to thermal excitations, an intrinsic temperature dependence of the efficiency of the spin torque effect is present and leads to an increase in the critical current density with increasing temperature

  19. Rectified motion in an asymmetrically structured channel due to induced-charge electrokinetic and thermo-kinetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Hideyuki, E-mail: [Frontier Research Center, Canon Inc. 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan and Department of Mechanical Systems Engineering, Shinshu University 4-17-1 Wakasato, Nagano 380-8553 (Japan)


    It would be advantageous to move fluid by the gradient of random thermal noises that are omnipresent in the natural world. To achieve this motion, we propose a rectifier that uses a thermal noise along with induced-charge electroosmosis and electrophoresis (ICEO and ICEP) around a metal post cylinder in an asymmetrically structured channel and numerically examine its rectification performance. By the boundary element method combined with the thin double layer approximation, we find that rectified motion occurs in the asymmetrically structured channel due to ICEO and ICEP. Further, by thermodynamical and equivalent circuit methods, we discuss a thermal voltage that drives a rectifier consisting of a fluidic channel of an electrolyte and an impedance as a noise source. Our calculations show that fluid can be moved in the asymmetrically structured channel by the fluctuation of electric fields due to a thermal noise only when there is a temperature difference. In addition, our simple noise argument provides a different perspective for the thermo-kinetic phenomena (around a metal post) which was predicted based on the electrolyte Seebeck effect in our previous paper [H. Sugioka, “Nonlinear thermokinetic phenomena due to the Seebeck effect,” Langmuir 30, 8621 (2014)].

  20. Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Cabalin, L.M.; Gonzalez, A.; Ruiz, J.; Laserna, J.J.


    Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s -1 . Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.

  1. Illusory Intelligences? (United States)

    White, John


    Howard Gardner's theory of Multiple Intelligences has had a huge influence on school education. But its credentials lack justification, as the first section of this paper shows via a detailed philosophical analysis of how the intelligences are identified. If we want to make sense of the theory, we need to turn from a philosophical to a historical…

  2. Spatial attention facilitates selection of illusory objects: evidence from event-related brain potentials. (United States)

    Martínez, Antígona; Teder-Salejarvi, Wolfgang; Hillyard, Steven A


    The relationship between spatial attention and object-based attention has long been debated. On the basis of behavioral evidence it has been hypothesized that these two forms of attention share a common mechanism, such that directing spatial attention to one part of an object facilitates the selection of the entire object. In a previous study (Martinez, A., Teder-Salejarvi, W., Vazquez, M., Molholm, S., Foxe, J.J., Javitt, D.C., Di Russo, F., Worden, M.S., Hillyard, S.A., 2006. "Objects are highlighted by spatial attention." J. Cogn. Neurosci. 18(2): 298-310) we used recordings of event-related potentials (ERPs) during a paradigm modeled after that of Egly et al. (Egly, R., Driver, J., Rafal, D.R., 1994. Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. J. Exp. Psychol. Gen. 123(2) 161-77) to investigate this relationship. As reported in numerous studies of spatial attention, we found the typical pattern of enhanced neural activity in visual cortex elicited by attended stimuli. Unattended stimuli belonging to the same object as the attended stimuli elicited a very similar spatiotemporal pattern of enhanced neural activity that was localized to lateral occipital cortex (LOC). This similarity was taken as evidence that spatial- and object-selective attention share, at least in part, a common neural mechanism. In the present study we further investigate this relationship by examining whether this spread of spatial attention within attended objects can be guided by objects defined by illusory contours. Subjects viewed a display consisting of two illusory rectangular objects and directed attention to continuous sequences of stimuli (brief onsets) at one end of one of the objects. Stimuli occurring at irrelevant locations but belonging to the same attended object elicited larger posterior N1 amplitudes than that elicited by unattended objects forming part of a different object. This object-selective N1 enhancement

  3. An analysis of respiratory induced kidney motion on four-dimensional computed tomography and its implications for stereotactic kidney radiotherapy

    International Nuclear Information System (INIS)

    Siva, Shankar; Pham, Daniel; Gill, Suki; Bressel, Mathias; Dang, Kim; Devereux, Thomas; Kron, Tomas; Foroudi, Farshad


    Stereotactic ablative body radiotherapy (SABR) is an emerging treatment modality for primary renal cell carcinoma. To account for respiratory-induced target motion, an internal target volume (ITV) concept is often used in treatment planning of SABR. The purpose of this study is to assess patterns of kidney motion and investigate potential surrogates of kidney displacement with the view of ITV verification during treatment. Datasets from 71 consecutive patients with free breathing four-dimensional computed tomography (4DCT) planning scans were included in this study. The displacement of the left and right hemi-diaphragm, liver dome and abdominal wall were measured and tested for correlation with the displacement of the both kidneys and patient breathing frequency. Nine patients were excluded due to severe banding artifact. Of 62 evaluable patients, the median age was 68 years, with 41 male patients and 21 female patients. The mean (range) of the maximum, minimum and average breathing frequency throughout the 4DCTs were 20.1 (11–38), 15.1 (9–24) and 17.3 (9–27.5) breaths per minute, respectively. The mean (interquartile range) displacement of the left and right kidneys was 0.74 cm (0.45-0.98 cm) and 0.75 cm (0.49-0.97) respectively. The amplitude of liver-dome motion was correlated with right kidney displacement (r=0.52, p<0.001), but not with left kidney displacement (p=0.796). There was a statistically significant correlation between the magnitude of right kidney displacement and that of abdominal displacement (r=0.36, p=0.004), but not the left kidney (r=0.24, p=0.056). Hemi-diaphragm displacements were correlated with kidney displacements respectively, with a weaker correlation for the left kidney/left diaphragm (r=0.45, [95% CI 0.22 to 0.63], p=<0.001) than for the right kidney/right diaphragm (r=0.57, [95% CI 0.37 to 0.72], p=<0.001). For the majority of patients, maximal left and right kidney displacement is subcentimeter in magnitude. The magnitude of

  4. The interaction between liquid motion and mass transfer induced by single rising bubble via PIV/LIE

    International Nuclear Information System (INIS)

    Yoshimoto, Kenjo; Yamamoto, Manabu; Sone, Daiji; Saito, Takayuki


    Deep understanding of gas-liquid two phase flows is essential for safe operation and high efficiency of nuclear reactors, chemical reactors and so on. In this study, we focus on the process of mass transfer induced by a single rising bubble. The mass transfer process of a zigzag ascending single bubble is investigated via LIF (Laser Induced Fluorescence) and PIV (Particle Image Velocimetry). From these results, we discuss the relationship between the mass transfer and the surrounding liquid motion of the single bubble. We examined single CO 2 -bubbles of 2-3 mm in equivalent diameter, which shows zigzagging motion in rest water. To directly visualize the dynamic mass transfer of CO 2 from the bubble surface to the surrounding liquid, HPTS (8-hydroxypyrene-1, 3, 6-trisulfonic acid) was used as a fluorescent substance for LIF. From LIF results, it was observed that the CO 2 -rich regions were spread by advective flow in the rest water as horseshoe-like vortices. From LIF results combined with the PIV results, it was observed that the horseshoe-like vortices were transported by the fast upward flow (buoyancy driven flow). Especially, in the case of a larger-diameter bubble with large shape oscillations, the high turbulence intensity (in a strict sense, fluctuation intensity of the liquid-phase velocity) was observed. The CO 2 -rich regions spread over a wide range by the strong flow. As a result, it is considered that the high turbulence intensity which was caused by the shape oscillations enhances the mass transportation from the bubble to the surrounding liquid. (author)

  5. Laser-Induced Motion of a Nanofluid in a Micro-Channel

    Directory of Open Access Journals (Sweden)

    Tran X. Phuoc


    Full Text Available Since a photon carries both energy and momentum, when it interacts with a particle, photon-particle energy and momentum transfer occur, resulting in mechanical forces acting on the particle. In this paper we report our theoretical study on the use of a laser beam to manipulate and control the flow of nanofluids in a micro-channel. We calculate the velocity induced by a laser beam for TiO2, Fe2O3, Al2O3 MgO, and SiO2 nanoparticles with water as the base fluid. The particle diameter is 50 nm and the laser beam is a 4 W continuous beam of 6 mm diameter and 532 nm wavelength. The results indicate that, as the particle moves, a significant volume of the surrounding water (up to about 8 particle diameters away from the particle surface is disturbed and dragged along with the moving particle. The results also show the effect of the particle refractive index on the particle velocity and the induced volume flow rate. The velocity and the volume flowrate induced by the TiO2 nanoparticle (refractive index n = 2.82 are about 0.552 mm/s and 9.86 fL, respectively, while those induced by SiO2 (n = 1.46 are only about 7.569 μm/s and 0.135, respectively.

  6. Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Liu, H. Helen; Balter, Peter; Tutt, Teresa; Choi, Bum; Zhang, Joy; Wang, Catherine; Chi, Melinda; Luo Dershan; Pan Tinsu; Hunjan, Sandeep; Starkschall, George; Rosen, Isaac; Prado, Karl; Liao Zhongxing; Chang, Joe; Komaki, Ritsuko; Cox, James D.; Mohan, Radhe; Dong Lei


    Purpose: To assess three-dimensional tumor motion caused by respiration and internal target volume (ITV) for radiotherapy of lung cancer. Methods and Materials: Respiration-induced tumor motion was analyzed for 166 tumors from 152 lung cancer patients, 57.2% of whom had Stage III or IV non-small-cell lung cancer. All patients underwent four-dimensional computed tomography (4DCT) during normal breathing before treatment. The expiratory phase of 4DCT images was used as the reference set to delineate gross tumor volume (GTV). Gross tumor volumes on other respiratory phases and resulting ITVs were determined using rigid-body registration of 4DCT images. The association of GTV motion with various clinical and anatomic factors was analyzed statistically. Results: The proportions of tumors that moved >0.5 cm along the superior-inferior (SI), lateral, and anterior-posterior (AP) axes during normal breathing were 39.2%, 1.8%, and 5.4%, respectively. For 95% of the tumors, the magnitude of motion was less than 1.34 cm, 0.40 cm, and 0.59 cm along the SI, lateral, and AP directions. The principal component of tumor motion was in the SI direction, with only 10.8% of tumors moving >1.0 cm. The tumor motion was found to be associated with diaphragm motion, the SI tumor location in the lung, size of the GTV, and disease T stage. Conclusions: Lung tumor motion is primarily driven by diaphragm motion. The motion of locally advanced lung tumors is unlikely to exceed 1.0 cm during quiet normal breathing except for small lesions located in the lower half of the lung

  7. Selecting ground-motion models developed for induced seismicity in geothermal areas (United States)

    Edwards, Benjamin; Douglas, John


    We present a case study of the ranking and weighting of ground-motion prediction equations (GMPEs) for seismic hazard assessment of enhanced geothermal systems (EGSs). The study region is Cooper Basin (Australia), where a hot-fractured-rock project was established in 2002. We test the applicability of 36 GMPEs based on stochastic simulations previously proposed for use at EGSs. Each GMPE has a set of corresponding model parameters describing stress drop, regional and local (near-surface) attenuation. To select suitable GMPEs for Cooper Basin from the full set, we applied two methods. In the first, seismograms recorded on the local monitoring network were spectrally analysed to determine characteristic stress and attenuation parameters. In a second approach, residual analysis using the log-likelihood (LLH) method was used to directly compare recorded and predicted short-period response spectral accelerations. The resulting ranking was consistent with the models selected based on spectral analysis, with the advantage that a transparent weighting approach was available using the LLH method. Region-specific estimates of variability were computed, with significantly lower values observed compared to previous studies of small earthquakes. This was consistent with the limited range of stress drops and attenuation observed from the spectral analysis.

  8. Analysis of ground motion due to moving surface loads induced by high-speed trains


    Galvín, Pedro; Domínguez Abascal, José


    A three-dimensional time domain boundary element (BE) approach for the analysis of soil vibrations induced by high-speed moving loads is presented in this paper. An attenuation law is included in the formulation. By doing so, internal material damping can be taken into account. The characteristics of the BE model required for the study of travelling load problems are analysed. Thus, mesh size, type of elements, internal damping representation and the complete numerical approach are validated....

  9. Illusory Facets of Sport: The Case of the Duke University Basketball Team

    Directory of Open Access Journals (Sweden)

    Muniowski Łukasz


    Full Text Available In the society of the spectacle, illusion is an omnipresent phenomenon. It is used to distract the masses from issues crucial to their existence and to support a system of oppression. However, there is also a “lighter” side of illusion: it creates celebrities and helps sell products (films, music albums, sneakers, etc.. While the connotation is that spectacle uses illusion in order to present the ordinary or negative as extraordinary and positive (e.g., promiscuous athletes talking about family values, it is also possible for a reverse illusory process to take place, resulting in the regular being presented as irregular (e.g., a physical player presented as “aggressive”, such as Kermit Washington. Unlike the deliberate use of illusion by the architects of the spectacle, this reverse process happens spontaneously.

  10. Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii-Moriya interaction (United States)

    Ono, Teruo

    Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions start to play an important role in modern magnetism due to their extraordinary stability which can be hailed as future memory devices. Recently, novel type of antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction (DMI), has been uncovered and found to influence on the formation of topological defects. Exploring how the DMI affects the dynamics of topological defects is therefore an important task. Here we investigate the dynamics of the magnetic domain wall (DW) under a DMI by developing a time-of-flight measurement scheme which allows us to measure the DW velocity for magnetic fields up to 0.3T. For a weak DMI, the trend of DW velocity follows the Walker's model which predicts that the velocity of DW increases with field up to a threshold (Walker field) and decreases abruptly. On the other hand, for a strong DMI, velocity breakdown is completely suppressed and the DW keeps its maximum velocity even far above the Walker field. Such a distinct trend of the DW velocity, which has never been predicted, can be explained in terms of magnetic soliton, of which topology can be protected by the DMI. Importantly, such a soliton-like DW motion is only observed in two dimensional systems, implying that the vertical Bloch lines (VBLs) creating inside of the magnetic domain-wall play a crucial role. This work was partly supported by JSPS KAKENHI Grant Numbers 15H05702, 26870300, 26870304, 26103002, 25.4251, Collaborative Research Program of the Institute for Chemical Research, Kyoto University, and R & D Project for ICT Key Technology of MEXT from the Japan Society for the Promotion of Science (JSPS).

  11. Prompt muon-induced fission: A probe for nuclear friction in large-amplitude collective motion

    International Nuclear Information System (INIS)

    Oberacker, V.E.; Umar, A.S.; Wells, J.C.; Strayer, M.R.; Maruhn, J.A.; Reinhard, P.G.


    Excited muonic atoms in the actinide region may induce prompt fission by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. The authors solve the time dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point

  12. Effect of motion-induced PET-CT misalignment on cardiac function and myocardial blood flow measured using dynamic 15O-water PET

    DEFF Research Database (Denmark)

    Lubberink, Mark; Ebrahimi, M; Harms, Hans

    Aim: Motion-induced PET-CT misalignment artifacts are common in myocardial blood flow (MBF) measurements with 82Rb and 13N-ammonia. For 15O-water, MBF is based on the clearance rate rather than uptake of the tracer. The clearance rate is determined by the shape of the time-activity curve, not its...

  13. Respiration-induced motion of the kidneys in whole abdominal radiotherapy: implications for treatment planning and late toxicity

    International Nuclear Information System (INIS)

    Ahmad, N.R.; Huq, M.S.; Corn, B.W.


    Purpose: Whole abdominal radiotherapy (WAR) has potential utility in the management of several malignancies. The limited radiation tolerance of the kidneys is an important consideration in the design of WAR fields. Although renal blocking is standard for WAR, few guidelines exist in the literature to factor respiration-induced kidney motion into the design of these blocks. Methods: Radiographs were obtained to measure kidney excursion under forced respiratory conditions in eight patients (14 visualized kidneys). Intravenous contrast was administered and AP films were obtained at maximum inspiration and expiration. Renal excursion was measured relative to a horizontal reference line at the bottom of the L3 vertebral body. The kidney position on the actual treatment simulation film was also determined using this technique. Treatment isodose distributions through the kidneys were obtained for a sample patient using phantom measurements and two blocking schemes: AP/PA and PA only. These provided quantification of the actual dose received by the kidney in a typical WAR treatment. Results: In the worst case scenario, the left kidney block required an additional 10 mm above and 15 mm below the renal silhouette on the simulation film in order to account for all phases of respiration. The corresponding values for the right kidney were 2 mm and 19 mm, respectively. The dose received by the kidney under the center of the block was 20% of prescribed using AP/PA blocks and 50% of prescribed using PA blocks only. However, portions of 'blocked' kidney received up to 90% of the prescribed dose with either technique. Conclusions: Although kidney motion under forced respiratory conditions is not representative of typical treatment conditions, the data highlight the possibility of renal movement during treatment. This is particularly important in light of the significant dose (20 to 50%) delivered to the kidney under the center of the kidney block in typical treatments. Given the

  14. Greater eccentric exercise-induced muscle damage by large versus small range of motion with the same end-point (United States)

    Fochi, AG; Damas, F; Berton, R; Alvarez, I; Miquelini, M; Salvini, TF


    Several factors can affect the magnitude of eccentric exercise (ECC)-induced muscle damage, but little is known regarding the effect of the range of motion (ROM) in ECC-induced muscle damage. The purpose of this study was to investigate whether elbow flexor ECC with 120° of ROM (from 60° of elbow flexion until elbow full extension - 180° [120ROM]) induces a greater magnitude of muscle damage compared with a protocol with 60° of ROM (120-180° of elbow flexion [60ROM]). Twelve healthy young men (age: 22 ± 3.1 years; height: 1.75 ± 0.05 m; body mass: 75.6 ± 13.6 kg) performed the ECC with 120ROM and 60ROM using different arms in a random order separated by 2 weeks and were tested before and 24, 48, 72 and 96 h after ECC for maximal voluntary isometric contraction torque (MVC-ISO), ROM and muscle soreness. The 120ROM protocol showed greater changes and effect sizes (ES) for MVC-ISO (-35%, ES: 1.97), ROM (-11.5°, ES: 1.27) and muscle soreness (19 mm, ES: 1.18) compared with the 60ROM protocol (-23%, ES: 0.93; -12%, ES: 0.56; 17°, ES: 0.63; 8 mm, ES: 1.07, respectively). In conclusion, ECC of the elbow flexors with 120° of ROM promotes a greater magnitude of muscle damage compared with a protocol with 60° of ROM, even when both protocols are performed at long muscle lengths. PMID:27601784

  15. Application of the EEMD method for distinction and suppression of motion-induced noise in grounded electrical source airborne TEM system (United States)

    Liu, Fubo; Li, Jutao; Liu, Lihua; Huang, Ling; Fang, Guangyou


    Airborne electromagnetic (AEM) detection is an important method for obtaining subsurface conductivity distribution. However, the response of observation system includes not only the underground media response but also a variety of noise components. The motion-induced noise is one of the main noise sources of the airborne electromagnetic data, which has a low frequency, large amplitude, non-periodic and other characteristics. In this paper, we will introduce the principle of the ensemble empirical mode decomposition (EEMD) method and use it for decomposing electromagnetic signal of grounded electrical source airborne transient electromagnetic system. The EEMD method will decompose the electromagnetic signal into multi-stage intrinsic mode function (IMF) components and distinguish the IMF component containing the motion-induced noise. Then we can get the noise-free signal by reconstructing remaining IMF components and residual component. We use the EEMD method for the theoretical signal correction and compared with the cubic spline method, the correction result indicates that the EEMD method can fit the motion-induced noise more accurately with a higher signal-to-noise ratio. To verify the effect of the application of the EEMD method, we went to Weifang city, Shandong province, East China, for the concealed fault investigation. The correction result of the time series shows that the EEMD method can suppress the motion-induced noise more effectively than the cubic spline method. Compared with the uncorrected data and the corrected data using the cubic spline method, the result shows that the fake anomaly can be nearly avoided and a more clear geological structure can be obtained through the corrected data with EEMD method. The results also prove that the EEMD method is a practical as well as effective method for the motion-induced noise suppression.

  16. Stress-induced microcracking and cooperative motion of cold dusty plasma liquids. (United States)

    Yang, Chi; I, Lin


    We investigate the microresponse of the quasi-two-dimensional dusty plasma liquid around freezing to the shear force from a laser beam through the center of the liquid cluster. It is found that the cold liquid can be viewed as a patchwork of crystalline ordered domains (CODs) which are solidlike but can be cracked and rearranged by weak thermal agitation and external stress, through COD rotations and drifting. Under weak external stress comparable to thermal agitation, the laser zone is not the preferred region mastering cracking initiation. CODs in the laser zone can either break locally, or sustain and propagate the stress to remote regions for cracking, in the form of intermittent bursts. The COD rotation and drifting induced by the persistent torques and momentum from the stress causes the formation of the center shear band with a higher longitudinal speed. Increasing stress can enhance cracking initiation around the shear zone and then spread to other remote regions. It deteriorates the local structural order and causes strong shear banding dominated by longitudinal cooperative hopping.

  17. Images of paraffin monolayer crystals with perfect contrast: minimization of beam-induced specimen motion (United States)

    Glaeser, R.M.; McMullan, G.; Faruqi, A.R.; Henderson, R.


    Quantitative analysis of electron microscope images of organic and biological two-dimensional crystals has previously shown that the absolute contrast reached only a fraction of that expected theoretically from the electron diffraction amplitudes. The accepted explanation for this is that irradiation of the specimen causes beam-induced charging or movement, which in turn causes blurring of the image due to image or specimen movement. In this paper, we used three different approaches to try to overcome this image-blurring problem for monolayer crystals of paraffin. Our first approach was to use an extreme form of spotscan imaging, in which a single image was assembled on film by the successive illumination of up to 50,000 spots each of diameter around 7nm. The second approach was to use the Medipix II detector with its zero-noise readout to assemble a time-sliced series of images of the same area in which each frame from a movie with up to 400 frames had an exposure of only 500 electrons. In the third approach, we simply used a much thicker carbon support film to increase the physical strength and conductivity of the support. Surprisingly, the first two methods involving dose fractionation respectively in space or time produced only partial improvements in contrast whereas the third approach produced many virtually perfect images, in which the absolute contrast predicted from the electron diffraction amplitudes was observed in the images. We conclude that it is possible to obtain consistently almost perfect images of beam-sensitive specimens if they are attached to an appropriately strong and conductive support, but great care is needed in practice and the problem of how best to image ice-embedded biological structures in the absence of a strong, conductive support film requires more work. PMID:21185452

  18. Interpretation of deformed ionograms induced by vertical ground motion of seismic Rayleigh waves and infrasound in the thermosphere

    Directory of Open Access Journals (Sweden)

    T. Maruyama


    Full Text Available The vertical ground motion of seismic surface waves launches acoustic waves into the atmosphere and induces ionospheric disturbances. Disturbances due to Rayleigh waves near the short-period Airy phase appear as wavy fluctuations in the virtual height of an ionogram and have a multiple-cusp signature (MCS when the fluctuation amplitude is increased. An extremely developed MCS was observed at Kazan, Russia, after the 2010 M 8.8 Chile earthquake. The ionogram exhibited steep satellite traces for which the virtual heights increased rapidly with frequency starting near the top of cusps and continuing for 0.1–0.2 MHz. This complicated ionogram was analyzed by applying a ray tracing technique to the radio wave propagation in the ionosphere that was perturbed by acoustic waves. Acoustic wavefronts were inclined by the effects of finite Rayleigh wave velocity and sound speed in the thermosphere. The satellite echo traces were reproduced by oblique returns from the inclined wavefronts, in addition to the nearly vertical returns that are responsible for the main trace.

  19. Alpha band oscillations correlate with illusory self-location induced by virtual reality. (United States)

    Lenggenhager, Bigna; Halje, Pär; Blanke, Olaf


    Neuroscience of the self has focused on high-level mechanisms related to language, memory or imagery of the self. However, recent evidence suggests that low-level mechanisms such as multisensory and sensorimotor integration may play a fundamental role in self-related processing. Here we used virtual reality technology and visuo-tactile conflict to study such low-level mechanisms and manipulate where participants experienced their self to be localized (self-location). Frequency analysis and electrical neuroimaging of co-recorded high-resolution electroencephalography revealed body-specific alpha band power modulations in bilateral sensorimotor cortices. Furthermore, alpha power in the medial prefrontal cortex (mPFC) was correlated with the degree of experimentally manipulated self-location. We argue that these alpha oscillations in sensorimotor cortex and mPFC reflect self-location as manipulated through multisensory conflict. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Motion characterization scheme to minimize motion artifacts in intravital microscopy (United States)

    Lee, Sungon; Courties, Gabriel; Nahrendorf, Matthias; Weissleder, Ralph; Vinegoni, Claudio


    Respiratory- and cardiac-induced motion artifacts pose a major challenge for in vivo optical imaging, limiting the temporal and spatial imaging resolution in fluorescence laser scanning microscopy. Here, we present an imaging platform developed for in vivo characterization of physiologically induced axial motion. The motion characterization system can be straightforwardly implemented on any conventional laser scanning microscope and can be used to evaluate the effectiveness of different motion stabilization schemes. This method is particularly useful to improve the design of novel tissue stabilizers and to facilitate stabilizer positioning in real time, therefore facilitating optimal tissue immobilization and minimizing motion induced artifacts.

  1. Investigation of respiration induced intra- and inter-fractional tumour motion using a standard Cone Beam CT

    DEFF Research Database (Denmark)

    Gottlieb, Karina Lindberg; Hansen, Christian R; Hansen, Olfred


    To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum.......To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum....

  2. Optic flow induced self-tilt perception

    NARCIS (Netherlands)

    Bos, J.E.


    Roll optic flow induces illusory self-tilt in humans. As far as the mechanism underlying this visual-vestibular interaction is understood, larger angles of self-tilt are predicted than observed. It is hypothesized that the discrepancy can be explained by idiotropic (i.e., referring to a personal

  3. Real-time correction of rigid body motion-induced phase errors for diffusion-weighted steady-state free precession imaging. (United States)

    O'Halloran, Rafael; Aksoy, Murat; Aboussouan, Eric; Peterson, Eric; Van, Anh; Bammer, Roland


    Diffusion contrast in diffusion-weighted steady-state free precession magnetic resonance imaging (MRI) is generated through the constructive addition of signal from many coherence pathways. Motion-induced phase causes destructive interference which results in loss of signal magnitude and diffusion contrast. In this work, a three-dimensional (3D) navigator-based real-time correction of the rigid body motion-induced phase errors is developed for diffusion-weighted steady-state free precession MRI. The efficacy of the real-time prospective correction method in preserving phase coherence of the steady state is tested in 3D phantom experiments and 3D scans of healthy human subjects. In nearly all experiments, the signal magnitude in images obtained with proposed prospective correction was higher than the signal magnitude in images obtained with no correction. In the human subjects, the mean magnitude signal in the data was up to 30% higher with prospective motion correction than without. Prospective correction never resulted in a decrease in mean signal magnitude in either the data or in the images. The proposed prospective motion correction method is shown to preserve the phase coherence of the steady state in diffusion-weighted steady-state free precession MRI, thus mitigating signal magnitude losses that would confound the desired diffusion contrast. © 2014 Wiley Periodicals, Inc.

  4. Illusory hand ownership in a patient with personal neglect for the upper limb, but no somatoparaphenia. (United States)

    Ronchi, Roberta; Heydrich, Lukas; Serino, Andrea; Blanke, Olaf


    The symptoms of patients with left personal neglect are characterized by inattention towards contralesional (left) body parts while at the same time explicitly ascertaining ownership for the neglected hemibody. It is currently unknown if personal neglect is associated with more subtle or implicit disturbances of own body perception and body ownership as measured with the rubber hand illusion. In this study, we report data from a patient with a right hemispheric lesion and personal neglect, without associated somatosensory deficits. We administered to the patient (and to 12 age-matched controls) the rubber hand illusion paradigm to the right and left hands, to elicit illusory ownership for a fake hand, before and after recovery from personal neglect for the left arm. In a first session, run when the patient showed personal neglect affecting the left arm, he experienced a significantly enhanced subjective illusion of embodiment for the left fake hand as compared to the right hand (as assessed through a standard questionnaire). After recovery from personal neglect for the left arm (second session), the results of the left and right rubber hand illusion experiments were comparable, with no modulation of hand ownership. We argue that personal neglect may consist not only in an inattentional disorder, but also in a deficit of multisensory body representation characterized by a high sensitivity to experimental manipulations of subjective aspects of body ownership. © 2017 The British Psychological Society.

  5. Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model. (United States)

    Bhatti, M M; Zeeshan, A; Ellahi, R


    In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Compensation of Wave-Induced Motion and Force Phenomena for Ship-Based High Performance Robotic and Human Amplifying Systems

    Energy Technology Data Exchange (ETDEWEB)

    Love, LJL


    The decrease in manpower and increase in material handling needs on many Naval vessels provides the motivation to explore the modeling and control of Naval robotic and robotic assistive devices. This report addresses the design, modeling, control and analysis of position and force controlled robotic systems operating on the deck of a moving ship. First we provide background information that quantifies the motion of the ship, both in terms of frequency and amplitude. We then formulate the motion of the ship in terms of homogeneous transforms. This transformation provides a link between the motion of the ship and the base of a manipulator. We model the kinematics of a manipulator as a serial extension of the ship motion. We then show how to use these transforms to formulate the kinetic and potential energy of a general, multi-degree of freedom manipulator moving on a ship. As a demonstration, we consider two examples: a one degree-of-freedom system experiencing three sea states operating in a plane to verify the methodology and a 3 degree of freedom system experiencing all six degrees of ship motion to illustrate the ease of computation and complexity of the solution. The first series of simulations explore the impact wave motion has on tracking performance of a position controlled robot. We provide a preliminary comparison between conventional linear control and Repetitive Learning Control (RLC) and show how fixed time delay RLC breaks down due to the varying nature wave disturbance frequency. Next, we explore the impact wave motion disturbances have on Human Amplification Technology (HAT). We begin with a description of the traditional HAT control methodology. Simulations show that the motion of the base of the robot, due to ship motion, generates disturbances forces reflected to the operator that significantly degrade the positioning accuracy and resolution at higher sea states. As with position-controlled manipulators, augmenting the control with a Repetitive

  7. Contour adaptation reduces the spreading of edge induced colors. (United States)

    Coia, Andrew J; Crognale, Michael A


    Brief exposure to flickering achromatic outlines of an area causes a reduction in the brightness contrast of the surface inside the area. This contour adaptation to achromatic contours does not reduce surface contrast when the surface is chromatic (the saturation or colorimetric purity of the surface is maintained). In addition to reducing the brightness of physical luminance contrast, contour adaptation also reduces (or even reverses) the illusory brightness contrast seen in the Craik-O'Brien-Cornsweet illusion, in which two physically identical grey areas appear different brightness because of a sharp luminance edge separating them. Chromatic color spreading illusions also occur with chromatic inducing edges, and an unanswered question is whether contour adaptation can reduce the perceived contrast of illusory color spreading from edges, even though it cannot reduce the perceived contrast of physical surface color. The current studies use a color spreading illusion known as the watercolor effect in order to test whether illusory color spreading is affected by contour adaptation. The general findings of physical achromatic contrast being reduced and chromatic contrast being robust to contour adaptation were replicated. However, both illusory brightness and color were reduced by contour adaptation, even when the illusion edges only differed in chromatic contrast with each other and the background. Additional studies adapting to chromatic contours showed opposite effects on illusory color contrast than achromatic adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. P1-17: Pseudo-Haptics Using Motion-in-Depth Stimulus and Second-Order Motion Stimulus

    Directory of Open Access Journals (Sweden)

    Shuichi Sato


    Full Text Available Modification of motion of the computer cursor during the manipulation by the observer evokes illusory haptic sensation (Lecuyer et al., 2004 ACM SIGCHI '04 239–246. This study investigates the pseudo-haptics using motion-in-depth and second-order motion. A stereoscopic display and a PHANTOM were used in the first experiment. A subject was asked to move a visual target at a constant speed in horizontal, vertical, or front-back direction. During the manipulation, the speed was reduced to 50% for 500 msec. The haptic sensation was measured using the magnitude estimation method. The result indicates that perceived haptic sensation from motion-in-depth was about 30% of that from horizontal or vertical motion. A 2D display and the PHANTOM were used in the second experiment. The motion cue was second order—in each frame, dots in a square patch reverses in contrast (i.e., all black dots become white and all white dots become black. The patch was moved in a horizontal direction. The result indicates that perceived haptic sensation from second-order motion was about 90% of that from first-order motion.

  9. Current induced domain wall motion and tilting in Pt/Co/Ta structures with perpendicular magnetic anisotropy in the presence of the Dyzaloshinskii–Moriya interaction (United States)

    Yun, Jijun; Li, Dong; Cui, Baoshan; Guo, Xiaobin; Wu, Kai; Zhang, Xu; Wang, Yupei; Mao, Jian; Zuo, Yalu; Xi, Li


    Current induced domain wall motion (CIDWM) was studied in Pt/Co/Ta structures with perpendicular magnetic anisotropy and the Dyzaloshinskii–Moriya interaction (DMI) by the spin-orbit torque (SOT). We measured the strength of DMI and SOT efficiency in Pt/Co/Ta with the variation of the thickness of Ta using a current induced hysteresis loop shift method. The results indicate that the DMI stabilizes a chiral Néel-type domain wall (DW), and the DW motion can be driven by the enhanced large SOT generated from Pt and Ta with opposite signs of spin Hall angle in Pt/Co/Ta stacks. The CIDWM velocity, which is 104 times larger than the field driven DW velocity, obeys a creep law, and reaches around tens of meters per second with current density of ~106 A cm‑2. We also found that the Joule heating accompanied with current also accelerates the DW motion. Meanwhile, a domain wall tilting was observed, which increases with current density increasing. These results can be explained by the spin Hall effect generated from both heavy metals Pt and Ta, inherent DMI, and the current accompanying Joule heating effect. Our results could provide some new designing prospects to move multiple DWs by SOT for achieving racetrack memories.

  10. Aeroelastic impact of above-rated wave-induced structural motions on the near-wake stability of a floating offshore wind turbine rotor (United States)

    Rodriguez, Steven; Jaworski, Justin


    The impact of above-rated wave-induced motions on the stability of floating offshore wind turbine near-wakes is studied numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is strongly coupled to a finite element solver for kinematically nonlinear blade deformations. A synthetic time series of relatively high-amplitude/high-frequency representative of above-rated conditions of the NREL 5MW referece wind turbine is imposed on the rotor structure. To evaluate the impact of these above-rated conditions, a linear stability analysis is first performed on the near wake generated by a fixed-tower wind turbine configuration at above-rated inflow conditions. The platform motion is then introduced via synthetic time series, and a stability analysis is performed on the wake generated by the floating offshore wind turbine at the same above-rated inflow conditions. The stability trends (disturbance modes versus the divergence rate of vortex structures) of the two analyses are compared to identify the impact that above-rated wave-induced structural motions have on the stability of the floating offshore wind turbine wake.

  11. Local vertical motions and kinetic temperature from AE-C as evidence for aurora-induced gravity waves (United States)

    Spencer, N. W.; Theis, R. F.; Wharton, L. E.; Carignan, G. R.


    In situ measurements of local vertical neutral particle motions have been made using the Neutral Atmosphere Temperature Instrument (NATE) on Atmosphere Explorer-C from observations of the direction of flow of neutral particles into the antechamber of the sensor (mass spectrometer). Values ranging from a few to more than 80 meters per second have been observed. The data show vertical motions greater than a few meters per second to be present most of the time, the magnitude being a function of many factors including magnetic activity, location, and magnetic storm history. In a specific case, it is concluded that the observed vertical motions and kinetic temperature are evidence of a travelling disturbance originating as a gravity wave in the auroral zone.

  12. Motion sickness

    NARCIS (Netherlands)

    Bles, Willem; Bos, Jelte E.; Kruit, Hans


    The number of recently published papers on motion sickness may convey the impression that motion sickness is far from being understood. The current review focusses on a concept which tends to unify the different manifestations and theories of motion sickness. The paper highlights the relations

  13. Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway

    NARCIS (Netherlands)

    Lubeck, A.J.A.; Bos, J.E.; Stins, J.F.


    Abstract Objective It is generally assumed that motion in motion images is responsible for increased postural sway as well as for visually induced motion sickness (VIMS). However, this has not yet been tested. To that end, we studied postural sway and VIMS induced by motion and still images. Method

  14. Molecular dynamics simulations of protein-tyrosine phosphatase 1B. I. Ligand-induced changes in the protein motions

    DEFF Research Database (Denmark)

    Peters, Günther H. J.; Frimurer, T.M.; Andersen, J.N.


    molecular dynamics simulations of PTP1B and PTP1B complexed with a high-affinity peptide DADEpYL, where pY stands for phosphorylated tyrosine. The peptide sequence is derived from the epidermal growth factor receptor (EGFR(988-993)). Simulations were performed in water for 1 ns, and the concerted motions...

  15. Deterministic prediction of waves and wave induced vessel motions : Future telling by using nautical radar as a remote wave sensor

    NARCIS (Netherlands)

    Naaijen, P.


    With many operations at sea carried out by ships or or other
    floating vessels, risks are involved because of the waves and
    resulting motions of the ships. Examples are the landing of helicopters on ships, transferring crew from a ship to a wind turbine, or working on the deck of an anchor

  16. Assessment of exposure to MRI motion-induced fields based on the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. (United States)

    Zilberti, Luca; Bottauscio, Oriano; Chiampi, Mario


    The goal of this study was to conduct an exposure assessment for workers moving through the stray stationary field of common MRI scanners, performed according to the recent International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines, which aim at avoiding annoying sensory effects. The analysis was performed through numerical simulations, using a high-resolution anatomical model that moved along realistic trajectories in proximity to a tubular and open MRI scanner. Both dosimetric indexes indicated by ICNIRP (maximum variation of the magnetic flux density vector and exposure index for the motion-induced electric field) were computed for three statures of the human model. A total of 51 exposure situations were analyzed. None of them exceeded the limit for the maximum variation of the magnetic flux density, whereas some critical cases were found when computing the induced electric field. In the latter case, the exposure indexes computed via Fourier transform and through an equivalent filter result to be consistent. The results suggest the adoption of some simple precautionary rules, useful when sensory effects experienced by an operator could reflect upon the patient's safety. Moreover, some open issues regarding the quantification of motion-induced fields are highlighted, putting in evidence the need for clarification at standardization level. Magn Reson Med 76:1291-1300, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Motion-Correlated Flow Distortion and Wave-Induced Biases in Air-Sea Flux Measurements From Ships (United States)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.


    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we use eddy covariance momentum flux measurements obtained onboard RRS James Clark Ross as part of the Waves, Aerosol and Gas Exchange Study (WAGES), a programme of near-continuous measurements using the autonomous AutoFlux system (Yelland et al., 2009). Measurements were made in 2013 in locations throughout the North and South Atlantic, the Southern Ocean and the Arctic Ocean, at latitudes ranging from 62°S to 75°N. We show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source. Yelland, M., Pascal, R., Taylor, P. and Moat, B.: AutoFlux: an autonomous system for the direct measurement of the air-sea fluxes of CO2, heat and momentum. J. Operation. Oceanogr., 15-23, doi:10.1080/1755876X.2009.11020105, 2009.

  18. High-frequency oscillatory response to illusory contour in typically developing boys and boys with autism spectrum disorders. (United States)

    Stroganova, Tatiana A; Orekhova, Elena V; Prokofyev, Andrey O; Tsetlin, Marina M; Gratchev, Vitaliy V; Morozov, Alexey A; Obukhov, Yuriy V


    Illusory contour (IC) perception, a fruitful model for studying the automatic contextual integration of local image features, can be used to investigate the putative impairment of such integration in children with autism spectrum disorders (ASD). We used the illusory Kanizsa square to test how the phase-locked (PL) gamma and beta electroencephalogram (EEG) responses of typically developing (TD) children aged 3-7 years and those with ASD were modulated by the presence of IC in the image. The PL beta and gamma activity strongly differentiated between IC and control figures in both groups of children (IC effect). However, the timing, topography, and direction of the IC effect differed in TD and ASD children. Between 40 msec and 120 msec after stimulus onset, both groups demonstrated lower power of gamma oscillations at occipital areas in response to IC than in response to the control figure. In TD children, this relative gamma suppression was followed by relatively higher parieto-occipital gamma and beta responses to IC within 120-270 msec after stimulus onset. This second stage of IC processing was absent in children with ASD. Instead, their response to IC was characterized by protracted (40-270 msec) relative reduction of gamma and beta oscillations at occipital areas. We hypothesize that children with ASD rely more heavily on lower-order processing in the primary visual areas and have atypical later stage related to higher-order processes of contour integration. Copyright © 2011 Elsevier Srl. All rights reserved.

  19. Research on the effects of in-line oscillatory flow on the vortex-induced motions of a deep draft semi-submersible in currents (United States)

    Wu, Fan; Xiao, Long-fei; Liu, Ming-yue; Tian, Xin-liang


    A Deep Draft Semi-submersible (DDS) under certain flow conditions could be subjected to Vortex-Induced Motions (VIM), which significantly influences the loads on and life fatigue of the moorings and the risers. To investigate the VIM of a DDS with four rectangular section columns in waves coupled with a uniform current, a numerical study using the computational fluid dynamics (CFD) method was conducted. The issues of the VIM of multi-column floaters can be conveniently converted to the issues of oscillating cylinders in fluid cross flows. This paper looks into the CFD numerical simulation of infinite cylinders having rectangular sections in a two-dimensional sinusoidal timedependent flow field coupled with a uniform current. The resulted hydrodynamic forces and motion responses in different oscillatory flows plus currents both aligned in the same direction for the incidence of 135° of the DDS relative to the flow are compared with the ones in current only cases. The results show that the VIM response of this geometric arrangement of a DDS with four rectangular columns in a current combined with oscillatory flows is more evident than that in the current only case. The oscillatory flows and waves have the significant influence on the VIM response, forces and trajectory, in-plane motions of the DDS.

  20. Investigation of the motion of a viscous fluid in the vitreous cavity induced by eye rotations and implications for drug delivery

    International Nuclear Information System (INIS)

    Bonfiglio, Andrea; Repetto, Rodolfo; Stocchino, Alessandro; Siggers, Jennifer H


    Intravitreal drug delivery is a commonly used treatment for several retinal diseases. The objective of this research is to characterize and quantify the role of the vitreous humor motion, induced by saccadic movements, on drug transport processes in the vitreous chamber. A Perspex model of the human vitreous chamber was created, and filled with a purely viscous fluid, representing eyes with a liquefied vitreous humor or those containing viscous tamponade fluids. Periodic movements were applied to the model and the resulting three-dimensional (3D) flow fields were measured. Drug delivery within the vitreous chamber was investigated by calculating particle trajectories using integration over time of the experimental velocity fields. The motion of the vitreous humor generated by saccadic eye movements is intrinsically 3D. Advective mass transport largely overcomes molecular diffusive transport and is significantly anisotropic, leading to a much faster drug dispersion than in the case of stationary vitreous humor. Disregarding the effects of vitreous humor motion due to eye movements when predicting the efficiency of drug delivery treatments leads to significant underestimation of the drug transport coefficients, and this, in turn, will lead to significantly erroneous predictions of the concentration levels on the retina. (paper)

  1. Analysis on Flow Induced Motion of Cylinders with Different Cross Sections and the Potential Capacity of Energy Transference from the Flow

    Directory of Open Access Journals (Sweden)

    Jijian Lian


    Full Text Available The energy in flow induced motion (FIM was harnessed in recent years. In this study, the energy transfer ratio was derived to estimate the energy transference from the flow to the FIM. Then the FIM characteristics and energy transference of cylinders with different cross sections were experimentally investigated. The main findings are listed as follows. (a Circular cylinders and diamond prisms both present a self-limited motion. The maximum amplitude ratio of circular cylinder is around 1~1.2 which is higher than that of diamond prism (0.4~0.5. (b Triangle prisms and right square prisms present a self-unlimited motion. For triangle prism, amplitude ratio increases over 1.8; for right square prisms, amplitude ratio reaches 1.2. (c The maximum transfer ratios of circular cylinder and triangle prism are 80% and 57%, respectively, which are much higher than those of other prisms, indicating that circular cylinder and triangle prism have better performances in energy transference. (d The transfer ratio is strongly dependent on the damping and mass; higher damping or mass will promote a higher transfer ratio. (e Beyond the critical transfer ratios, amplitude variation coefficients are around 10%~30% resulting in a better performance in stationarity.

  2. Application of parametric equations of motion to study the laser induced multiphoton dissociation of H2+ in intense laser field. (United States)

    Kalita, Dhruba J; Rao, Akshay; Rajvanshi, Ishir; Gupta, Ashish K


    We have applied parametric equations of motion (PEM) to study photodissociation dynamics of H(2)(+). The resonances are extracted using smooth exterior scaling method. This is the first application of PEM to non-Hermitian Hamiltonian that includes resonances and the continuum. Here, we have studied how the different resonance states behave with respect to the change in field amplitude. The advantage of this method is that one can easily trace the different states that are changing as the field parameter changes.

  3. Photo-induced morphological winding and unwinding motion of nanoscrolls composed of niobate nanosheets with a polyfluoroalkyl azobenzene derivative (United States)

    Nabetani, Yu; Takamura, Hazuki; Uchikoshi, Akino; Hassan, Syed Zahid; Shimada, Tetsuya; Takagi, Shinsuke; Tachibana, Hiroshi; Masui, Dai; Tong, Zhiwei; Inoue, Haruo


    Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials.Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials. Electronic supplementary information (ESI) available: Fig. S1. Photo-isomerization reaction of nanoscrolls. See DOI: 10.1039/c6nr02177h

  4. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part II, modeling.

    Directory of Open Access Journals (Sweden)

    Mathieu Bottier


    Full Text Available Mucociliary clearance is one of the major lines of defense of the human respiratory system. The mucus layer coating the airways is constantly moved along and out of the lung by the activity of motile cilia, expelling at the same time particles trapped in it. The efficiency of the cilia motion can experimentally be assessed by measuring the velocity of micro-beads traveling through the fluid surrounding the cilia. Here we present a mathematical model of the fluid flow and of the micro-beads motion. The coordinated movement of the ciliated edge is represented as a continuous envelope imposing a periodic moving velocity boundary condition on the surrounding fluid. Vanishing velocity and vanishing shear stress boundary conditions are applied to the fluid at a finite distance above the ciliated edge. The flow field is expanded in powers of the amplitude of the individual cilium movement. It is found that the continuous component of the horizontal velocity at the ciliated edge generates a 2D fluid velocity field with a parabolic profile in the vertical direction, in agreement with the experimental measurements. Conversely, we show than this model can be used to extract microscopic properties of the cilia motion by extrapolating the micro-bead velocity measurement at the ciliated edge. Finally, we derive from these measurements a scalar index providing a direct assessment of the cilia beating efficiency. This index can easily be measured in patients without any modification of the current clinical procedures.

  5. SU-E-J-268: Is It Necessary to Account for Organs at Risk Respiratory Induced Motion Effects in Radiotherapy Planning with Tumor Tracking?

    International Nuclear Information System (INIS)

    Gilles, M; Boussion, N; Visvikis, D; Fayad, H; Pradier, O


    Purpose: The objective of this study was to evaluate the necessity to account for the organs at risk (OARs) respiratory induced motion in addition to the tumor displacement when planning a radiotherapy treatment that accounts for tumor motion. Methods: For 18 lung cancer patients, conformational radiotherapy treatment plans were generated using 3 different CT volumes: the two extreme respiratory phases corresponding to either the full inspiration (plan 1) or expiration (plan 3), as well as a manually deformed phase consisting in full inspiration combined with the full expiration tumor location (plan 2) simulating a tumor tracking plan without addressing OARs motion. Treatment plans were initially created on plan 1 and then transferred to plan 2 and 3 which represent respectively the tumor displacement only and the whole anatomic variations due to breathing. The dose coverage and the dose delivered to the OARs were compared using conformational indexes and generalized equivalent uniform dose. Results: The worst conformational indexes were obtained for plans with all anatomic deformations (Table 1) with an underestimation of the 95% isodose spreading on healthy tissue compared to plans considering the tumor displacement only. Furthermore, mean doses to the OARs when accounting for all the anatomic changes were always higher than those associated with the tumor displacement only: the mean difference between these two plans was 1±1.37 Gy (maximum of 3.8 Gy) for the heart and 1.4±1.42 Gy (maximum of 4.1 Gy) for the lung in which the tumor was located (Figure 1). Conclusion: OARs deformations due to breathing motion should be included in the treatment planning in order to avoid unnecessary OARs dose and/or allow for a tumor dose escalation. This is even more important for treatments like stereotactic radiation therapy which necessitates a high precision ballistic and dose control

  6. NAK WP-cave project: Thermally induced convective motion in groundwater in the near field of the WP-cave after filling and closure

    International Nuclear Information System (INIS)

    Hopkirk, R.J.


    The thermal convective motion induced in groundwater due to the decay heat generated by the high-level waste in the WP-Cave has been studied by means of coupled thermo-hydraulic numerical models. The WPC concept is proposed as an alternative to the KBS-3 repository concept for construction in crystalline rock. However, in the absence of specific site fissure data, the rock mass has been modelled as a quasi-porous medium. The repository was assumed to be filled 40 years after unloading of the spent fuel. For a further 100 years the whole repository is cooled, before being backfilled and sealed off. Maximum waste temperatures and the fluid fluxes crossing the backfilled bentonite diffusion barrier were monitored to 3000 years after fuel unloading. At the same time, the effects of the hydraulic cage and of a highly permeable rock zone beneath the central storage volume on the induced fluid flows have been assessed. (orig.)

  7. Identifying natural and anthropogenically-induced geohazards from satellite ground motion and geospatial data: Stoke-on-Trent, UK (United States)

    Jordan, Hannah; Cigna, Francesca; Bateson, Luke


    Determining the location and nature of hazardous ground motion resulting from natural and anthropogenic processes such as landslides, tectonic movement and mining is essential for hazard mitigation and sustainable resource use. Ground motion estimates from satellite ERS-1/2 persistent scatterer interferometry (PSI) were combined with geospatial data to identify areas of observed geohazards in Stoke-on-Trent, UK. This investigation was performed within the framework of the EC FP7-SPACE PanGeo project which aimed to provide free and open access to geohazard information for 52 urban areas across Europe. Geohazards identified within the city of Stoke-on-Trent and neighbouring rural areas are presented here alongside an examination of the PanGeo methodology. A total of 14 areas experiencing ground instability caused by natural and anthropogenic processes have been defined, covering 122.35 km2. These are attributed to a range of geohazards, including landslides, ground dissolution, made ground and mining activities. The dominant geohazard (by area) is ground movement caused by post-mining groundwater recharge and mining-related subsidence (93.19% of total geohazard area), followed by landsliding (5.81%). Observed ground motions along the satellite line-of-sight reach maxima of +35.23 mm/yr and -22.57 mm/yr. A combination of uplift, subsidence and downslope movement is displayed. 'Construction sites' and 'continuous urban fabric' (European Urban Atlas land use types) form the land uses most affected (by area) by ground motion and 'discontinuous very low density urban fabric' the least. Areas of 'continuous urban fabric' also show the highest average velocity towards the satellite (5.08 mm/yr) and the highest PS densities (1262.92 points/km2) along with one of the lowest standard deviations. Rural land uses tend to result in lower PS densities and higher standard deviations, a consequence of fewer suitable reflectors in these regions. PSI is also limited in its ability to

  8. Illusory conjunctions in visual short-term memory: Individual differences in corpus callosum connectivity and splitting attention between the two hemifields. (United States)

    Qin, Shuo; Ray, Nicholas R; Ramakrishnan, Nithya; Nashiro, Kaoru; O'Connell, Margaret A; Basak, Chandramallika


    Overloading the capacity of visual attention can result in mistakenly combining the various features of an object, that is, illusory conjunctions. We hypothesize that if the two hemispheres separately process visual information by splitting attention, connectivity of corpus callosum-a brain structure integrating the two hemispheres-would predict the degree of illusory conjunctions. In the current study, we assessed two types of illusory conjunctions using a memory-scanning paradigm; the features were either presented across the two opposite hemifields or within the same hemifield. Four objects, each with two visual features, were briefly presented together followed by a probe-recognition and a confidence rating for the recognition accuracy. MRI scans were also obtained. Results indicated that successful recollection during probe recognition was better for across hemifields conjunctions compared to within hemifield conjunctions, lending support to the bilateral advantage of the two hemispheres in visual short-term memory. Age-related differences regarding the underlying mechanisms of the bilateral advantage indicated greater reliance on recollection-based processing in young and on familiarity-based processing in old. Moreover, the integrity of the posterior corpus callosum was more predictive of opposite hemifield illusory conjunctions compared to within hemifield illusory conjunctions, even after controlling for age. That is, individuals with lesser posterior corpus callosum connectivity had better recognition for objects when their features were recombined from the opposite hemifields than from the same hemifield. This study is the first to investigate the role of the corpus callosum in splitting attention between versus within hemifields. © 2016 Society for Psychophysiological Research.

  9. Objective motion sensor assessment highly correlated with scores of global levodopa-induced dyskinesia in Parkinson's disease. (United States)

    Mera, Thomas O; Burack, Michelle A; Giuffrida, Joseph P


    Chronic use of medication for treating Parkinson's disease (PD) can give rise to peak-dose dyskinesia. Adjustments in medication often sacrifice control of motor symptoms, and thus balancing this trade-off poses a significant challenge for disease management. To determine whether a wrist-worn motion sensor unit could be used to ascertain global dyskinesia severity over a levodopa dose cycle and to develop a severity scoring algorithm highly correlated with clinician ratings. Fifteen individuals with PD were instrumented with a wrist-worn motion sensor unit, and data were collected with arms in resting and extended positions once every hour for three hours after taking a levodopa dose. Two neurologists blinded to treatment status viewed subject videos and rated global and upper extremity dyskinesia severity based on the modified Abnormal Involuntary Movement Scale (mAIMS). Linear regression models were developed using kinematic features extracted from motion sensor data and extremity, global, or combined (average of extremity and global) mAIMS scores. Dyskinesia occurring during a levodopa dose cycle was successfully measured using a wrist-worn sensor. The logarithm of the power spectrum area between 0.3-3 Hz and the combined clinician scores resulted in the best model performance, with a correlation coefficient between clinician and model scores of 0.81 and root mean square error of 0.55, both averaged across the arms resting and extended postures. One sensor unit worn on either hand can effectively predict global dyskinesia severity during the arms resting or extended positions.

  10. Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy (United States)

    Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia


    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  11. Saccade-induced image motion cannot account for post-saccadic enhancement of visual processing in primate MST. (United States)

    Cloherty, Shaun L; Crowder, Nathan A; Mustari, Michael J; Ibbotson, Michael R


    Primates use saccadic eye movements to make gaze changes. In many visual areas, including the dorsal medial superior temporal area (MSTd) of macaques, neural responses to visual stimuli are reduced during saccades but enhanced afterwards. How does this enhancement arise-from an internal mechanism associated with saccade generation or through visual mechanisms activated by the saccade sweeping the image of the visual scene across the retina? Spontaneous activity in MSTd is elevated even after saccades made in darkness, suggesting a central mechanism for post-saccadic enhancement. However, based on the timing of this effect, it may arise from a different mechanism than occurs in normal vision. Like neural responses in MSTd, initial ocular following eye speed is enhanced after saccades, with evidence suggesting both internal and visually mediated mechanisms. Here we recorded from visual neurons in MSTd and measured responses to motion stimuli presented soon after saccades and soon after simulated saccades-saccade-like displacements of the background image during fixation. We found that neural responses in MSTd were enhanced when preceded by real saccades but not when preceded by simulated saccades. Furthermore, we also observed enhancement following real saccades made across a blank screen that generated no motion signal within the recorded neurons' receptive fields. We conclude that in MSTd the mechanism leading to post-saccadic enhancement has internal origins.

  12. Gas-Induced Rectified Motion of a Solid Object in a Liquid-Filled Housing during Vibration: Analysis and Experiments (United States)

    Torczynski, J. R.; O'Hern, T. J.; Clausen, J. R.; Koehler, T. P.


    The motion of a solid object (a piston) that fits closely within a housing filled with viscous liquid is studied. If a small amount of gas is introduced and the system is subjected to axial vibration, then the piston exhibits rectified motion when the drag on the piston depends on its position within the housing. An idealized system, in which the piston is suspended freely between two springs and the gas is replaced with two compressible bellows, is analyzed theoretically and studied experimentally. For a given vibration amplitude or frequency, the piston either remains near its original position (``up'') or moves to a different position (``down''), where its spring suspension is compressed. Analytical and experimental regime maps of the amplitudes and frequencies at which the piston is up or down are in good agreement. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  13. Saccade-induced image motion cannot account for post-saccadic enhancement of visual processing in primate MST

    Directory of Open Access Journals (Sweden)

    Shaun L Cloherty


    Full Text Available Primates use saccadic eye movements to make gaze changes. In many visual areas, including the dorsal medial superior temporal area (MSTd of macaques, neural responses to visual stimuli are reduced during saccades but enhanced afterwards. How does this enhancement arise – from an internal mechanism associated with saccade generation or through visual mechanisms activated by the saccade sweeping the image of the visual scene across the retina? Spontaneous activity in MSTd is elevated even after saccades made in darkness, suggesting a central mechanism for post-saccadic enhancement. However, based on the timing of this effect, it may arise from a different mechanism than occurs in normal vision. Like neural responses in MSTd, initial ocular following eye speed is enhanced after saccades, with evidence suggesting both internal and visually mediated mechanisms. Here we recorded from visual neurons in MSTd and measured responses to motion stimuli presented soon after saccades and soon after simulated saccades – saccade-like displacements of the background image during fixation. We found that neural responses in MSTd were enhanced when preceded by real saccades but not when preceded by simulated saccades. Furthermore, we also observed enhancement following real saccades made across a blank screen that generated no motion signal within the recorded neurons’ receptive fields. We conclude that in MSTd the mechanism leading to post-saccadic enhancement has internal origins.

  14. Hyperventilation in a motion sickness desensitization program

    NARCIS (Netherlands)

    Mert, A.; Bles, W.; Nooij, S.A.E.


    Introduction: In motion sickness desensitization programs, the motion sickness provocative stimulus is often a forward bending of the trunk on a rotating chair, inducing Coriolis effects. Since respiratory relaxation techniques are applied successfully in these courses, we investigated whether these

  15. Passive motion reduces vestibular balance and perceptual responses. (United States)

    Fitzpatrick, Richard C; Watson, Shaun R D


    With the hypothesis that vestibular sensitivity is regulated to deal with a range of environmental motion conditions, we explored the effects of passive whole-body motion on vestibular perceptual and balance responses. In 10 subjects, vestibular responses were measured before and after a period of imposed passive motion. Vestibulospinal balance reflexes during standing evoked by galvanic vestibular stimulation (GVS) were measured as shear reaction forces. Perceptual tests measured thresholds for detecting angular motion, perceptions of suprathreshold rotation and perceptions of GVS-evoked illusory rotation. The imposed conditioning motion was 10 min of stochastic yaw rotation (0.5-2.5 Hz ≤ 300 deg s(-2) ) with subjects seated. This conditioning markedly reduced reflexive and perceptual responses. The medium latency galvanic reflex (300-350 ms) was halved in amplitude (48%; P = 0.011) but the short latency response was unaffected. Thresholds for detecting imposed rotation more than doubled (248%; P vestibular sensations of rotation evoked by GVS (mean 113 deg for 10 s at 1 mA) by 44% (P vestibular sensory autoregulation exists and that this probably involves central and peripheral mechanisms, possibly through vestibular efferent regulation. We propose that failure of these regulatory mechanisms at different levels could lead to disorders of movement perception and balance control during standing. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  16. Color Difference Threshold of Chromostereopsis Induced by Flat Display Emission

    Directory of Open Access Journals (Sweden)

    Maris eOzolinsh


    Full Text Available The study of chromostereopsis has gained attention in the backdrop of the use of computer displays in daily life. In this context, we analyze the illusory depth sense using planar color images presented on a computer screen. We determine the color difference threshold required to induce an illusory sense of depth psychometrically using a constant stimuli paradigm. Isoluminant stimuli are presented on a computer screen, which stimuli are aligned along the blue-red line in the computer display CIE xyY color chart. Stereo disparity is generated by increasing the color difference between the central and surrounding areas of the stimuli with both areas consisting of random dots on a black background. The observed altering of illusory dept sense, thus also stereo disparity is validated using the center-of-gravity model. The induced illusory sense of the depth effect undergoes color reversal upon varying the binocular lateral eye pupil covering conditions (lateral or medial. Analysis of the retinal image point spread function for the display red and blue pixel radiation validates the altering of chromostereopsis retinal disparity achieved by increasing the color difference, and also the chromostereopsis color reversal caused by varying the eye pupil covering conditions.

  17. Shipborne Wind Measurement and Motion-induced Error Correction of a Coherent Doppler Lidar over the Yellow Sea in 2014 (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi; Song, Xiaoquan; Yin, Jiaping


    Shipborne wind observations by a coherent Doppler lidar (CDL) have been conducted to study the structure of the marine atmospheric boundary layer (MABL) during the 2014 Yellow Sea campaign. This paper evaluates uncertainties associated with the ship motion and presents the correction methodology regarding lidar velocity measurement based on modified 4-Doppler beam swing (DBS) solution. The errors of calibrated measurement, both for the anchored and the cruising shipborne observations, are comparable to those of ground-based measurements. The comparison between the lidar and radiosonde results in a bias of -0.23 ms-1 and a standard deviation of 0.87 ms-1 for the wind speed measurement, and 2.48, 8.84° for the wind direction. The biases of horizontal wind speed and random errors of vertical velocity are also estimated using the error propagation theory and frequency spectrum analysis, respectively. The results show that the biases are mainly related to the measuring error of the ship velocity and lidar pointing error, and the random errors are mainly determined by the signal-to-noise ratio (SNR) of the lidar backscattering spectrum signal. It allows for the retrieval of vertical wind, based on one measurement, with random error below 0.15 ms-1 for an appropriate SNR threshold and bias below 0.02 ms-1. The combination of the CDL attitude correction system and the accurate motion correction process has the potential of continuous long-term high temporal and spatial resolution measurement for the MABL thermodynamic and turbulence process.

  18. Experimental study on vortex-induced motions of a semi-submersible with square columns and pontoons at different draft conditions and current incidences

    Directory of Open Access Journals (Sweden)

    Mingyue Liu


    Full Text Available The Vortex-induced Motions (VIM phenomenon of semi-submersibles is relevant for the fatigue life of moorings and risers. Model tests regarding the VIM behavior of a semi-submersible with four square columns were conducted in order to investigate the effects of the current incidence and the aspect ratio of the immerged column. The experimental results show that the largest transverse amplitudes are around 70% of the column width at 30° and 45° incidences in a range of reduced velocities from 5 to 8 when the aspect ratio of the immerged column is 1.90. The largest yaw motion occurs at 0° incidence with the peak value around 4.5°. Similar characteristics of the VIM response are observed for the semi-submersible with aspect ratios of 1.90 and 1.73. When the aspect ratio decreases 50% to 0.87, 30% decrease in the peak transverse amplitudes can be seen.

  19. Higher order equations of motion

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.


    The possibility that the motion of elementary particles be described by higher order differential equations induced by supersymmetry in higher dimensional space-time is discussed. The specific example of six dimensions writing the corresponding Lagrangian and equations of motion, is presented. (author) [pt

  20. Effect of motion-induced PET-CT misalignment on cardiac function and myocardial blood flow measured using dynamic 15O-water PET

    DEFF Research Database (Denmark)

    Lubberink, Mark; Ebrahimi, M; Harms, Hans

    Aim: Motion-induced PET-CT misalignment artifacts are common in myocardial blood flow (MBF) measurements with 82Rb and 13N-ammonia. For 15O-water, MBF is based on the clearance rate rather than uptake of the tracer. The clearance rate is determined by the shape of the time-activity curve, not its......-CT misalignment on MBF, transmural MBF (MBFt), perfusable tissue fraction (PTF), cardiac output (CO), stroke volume (SV) and left-ventricular ejection fraction (LVEF) based on dynamic 15O-water scans. Methods: 10 patients underwent 6 min PET scans after injection of 400 MBq 15O-water at rest and during adenosine...

  1. A Common Framework for the Analysis of Complex Motion? Standstill and Capture Illusions

    Directory of Open Access Journals (Sweden)

    Max Reinhard Dürsteler


    Full Text Available A series of illusions was created by presenting stimuli, which consisted of two overlapping surfaces each defined by textures of independent visual features (i.e. modulation of luminance, color, depth, etc.. When presented concurrently with a stationary 2-D luminance texture, observers often fail to perceive the motion of an overlapping stereoscopically defined depth-texture. This illusory motion standstill arises due to a failure to represent two independent surfaces (one for luminance and one for depth textures and motion transparency (the ability to perceive motion of both surfaces simultaneously. Instead the stimulus is represented as a single non-transparent surface taking on the stationary nature of the luminance-defined texture. By contrast, if it is the 2D-luminance defined texture that is in motion, observers often perceive the stationary depth texture as also moving. In this latter case, the failure to represent the motion transparency of the two textures gives rise to illusionary motion capture. Our past work demonstrated that the illusions of motion standstill and motion capture can occur for depth-textures that are rotating, or expanding / contracting, or else spiraling. Here I extend these findings to include stereo-shearing. More importantly, it is the motion (or lack thereof of the luminance texture that determines how the motion of the depth will be perceived. This observation is strongly in favor of a single pathway for complex motion that operates on luminance-defines texture motion signals only. In addition, these complex motion illusions arise with chromatically-defined textures with smooth, transitions between their colors. This suggests that in respect to color motion perception the complex motions’ pathway is only able to accurately process signals from isoluminant colored textures with sharp transitions between colors, and/or moving at high speeds, which is conceivable if it relies on inputs from a hypothetical dual

  2. The sound-induced phosphene illusion. (United States)

    Bolognini, Nadia; Convento, Silvia; Fusaro, Martina; Vallar, Giuseppe


    Crossmodal illusions clearly show how perception, rather than being a modular and self-contained function, can be dramatically altered by interactions between senses. Here, we provide evidence for a novel crossmodal "physiological" illusion, showing that sounds can boost visual cortical responses in such a way to give rise to a striking illusory visual percept. In healthy participants, a single-pulse transcranial magnetic stimulation (sTMS) delivered to the occipital cortex evoked a visual percept, i.e., a phosphene. When sTMS is accompanied by two auditory beeps, the second beep induces in neurologically unimpaired participants the perception of an illusory second phosphene, namely the sound-induced phosphene illusion. This perceptual "fission" of a single phosphene, due to multiple beeps, is not matched by a "fusion" of double phosphenes due to a single beep, and it is characterized by an early auditory modulation of the TMS-induced visual responses (~80 ms). Multiple beeps also induce an illusory feeling of multiple TMS pulses on the participants' scalp, consistent with an audio-tactile fission illusion. In conclusion, an auditory stimulation may bring about a phenomenological change in the conscious visual experience produced by the transcranial stimulation of the occipital cortex, which reveals crossmodal binding mechanisms within early stages of visual processing.

  3. Computer models to support investigations of surface subsidence and associated ground motion induced by underground coal gasification (United States)

    Trent, B. C.; Langland, R. T.


    Surface subsidence induced by underground coal gasification at Hoe Creek, Wyoming, and Centralia, Washington were compared. Calculations with the STEALTH explicit finite difference code match equivalent, implicit finite element method solutions for the removal of underground material. Effects of removing roof material, varying elastic constants, investigating thermal shrinkage, and burning multiple coal seams are studied. A coupled, finite difference continuum rigid block caving code is used to model underground opening behavior. The two methods, numerical and empirical, are most effective when used together.

  4. Spinal fusion limits upper body range of motion during gait without inducing compensatory mechanisms in adolescent idiopathic scoliosis patients. (United States)

    Holewijn, R M; Kingma, I; de Kleuver, M; Schimmel, J J P; Keijsers, N L W


    Previous studies show a limited alteration of gait at normal walking speed after spinal fusion surgery for adolescent idiopathic scoliosis (AIS), despite the presumed essential role of spinal mobility during gait. This study analyses how spinal fusion affects gait at more challenging walking speeds. More specifically, we investigated whether thoracic-pelvic rotations are reduced to a larger extent at higher gait speeds and whether compensatory mechanisms above and below the stiffened spine are present. 18 AIS patients underwent gait analysis at increasing walking speeds (0.45 to 2.22m/s) before and after spinal fusion. The range of motion (ROM) of the upper (thorax, thoracic-pelvic and pelvis) and lower body (hip, knee and ankle) was determined in all three planes. Spatiotemporal parameters of interest were stride length and cadence. Spinal fusion diminished transverse plane thoracic-pelvic ROM and this difference was more explicit at higher walking speeds. Transversal pelvis ROM was also decreased but this effect was not affected by speed. Lower body ROM, step length and cadence remained unaffected. Despite the reduction of upper body ROM after spine surgery during high speed gait, no altered spatiotemporal parameters or increased compensatory ROM above or below the fusion (i.e. in the shoulder girdle or lower extremities) was identified. Thus, it remains unclear how patients can cope so well with such major surgery. Future studies should focus on analyzing the kinematics of individual spinal levels above and below the fusion during gait to investigate possible compensatory mechanisms within the spine. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cortical representation of illusory body perception in healthy persons and amputees: implications for the understanding and treatment of phantom limb pain


    Milde, Christopher


    A disturbed body perception is characteristic for various neurological and mental disorders and becomes particularly evident in phantom phenomena after limb amputation. Body illusions, such as mirror visual feedback (MVF) illusions, have been shown to be efficient in treating chronic pain and to be further related to a reversal of cortical reorganization. The present thesis aimed at identifying the neural circuitry of illusory body perception in healthy subjects and unilateral upper-limb ampu...

  6. Using scanning near-field microscopy to study photo-induced mass motions in azobenzene containing thin films (United States)

    Vu, A. D.; Fabbri, F.; Desboeufs, N.; Boilot, J.-P.; Gacoin, T.; Lahlil, K.; Lassailly, Y.; Martinelli, L.; Peretti, J.


    Scanning near-field optical microscopy (SNOM) is used to study the photo-induced deformation of layered structures containing azobenzene derivatives. This approach is particularly relevant since it allows detecting in real-time, with the same probe the surface topography and the optical field distribution at the nanoscale. The correlation between the local light pattern and the ongoing photo-induced deformation in azobenzene-containing thin films is directly evidenced for different light polarization configurations. This unveils several fundamental photodeformation mechanisms, depending not only on the light field properties, but also on the nature of the material. Controlling the projected electromagnetic field distribution allows inscription of various patterns with a resolution at the diffraction limit, i.e. of a few hundreds of nm. Surface relief patterns with characteristic sizes beyond the diffraction limit can also be produced by using the nearfield probe to locally control the photo-mechanical process. Finally, the photo-mechanical properties of azo-materials are exploited to optically patterned metal/dielectric hybrid structures. Gratings are inscribed this way on thin gold films. The characteristic features (enhancement and localization) of the surface plasmons supported by these noble metal structures are studied by near-field optical microscopy.

  7. Motion parallax in immersive cylindrical display systems (United States)

    Filliard, N.; Reymond, G.; Kemeny, A.; Berthoz, A.


    Motion parallax is a crucial visual cue produced by translations of the observer for the perception of depth and selfmotion. Therefore, tracking the observer viewpoint has become inevitable in immersive virtual (VR) reality systems (cylindrical screens, CAVE, head mounted displays) used e.g. in automotive industry (style reviews, architecture design, ergonomics studies) or in scientific studies of visual perception. The perception of a stable and rigid world requires that this visual cue be coherent with other extra-retinal (e.g. vestibular, kinesthetic) cues signaling ego-motion. Although world stability is never questioned in real world, rendering head coupled viewpoint in VR can lead to the perception of an illusory perception of unstable environments, unless a non-unity scale factor is applied on recorded head movements. Besides, cylindrical screens are usually used with static observers due to image distortions when rendering image for viewpoints different from a sweet spot. We developed a technique to compensate in real-time these non-linear visual distortions, in an industrial VR setup, based on a cylindrical screen projection system. Additionally, to evaluate the amount of discrepancies tolerated without perceptual distortions between visual and extraretinal cues, a "motion parallax gain" between the velocity of the observer's head and that of the virtual camera was introduced in this system. The influence of this artificial gain was measured on the gait stability of free-standing participants. Results indicate that, below unity, gains significantly alter postural control. Conversely, the influence of higher gains remains limited, suggesting a certain tolerance of observers to these conditions. Parallax gain amplification is therefore proposed as a possible solution to provide a wider exploration of space to users of immersive virtual reality systems.

  8. Effects of Auditory Information on Self-Motion Perception during Simultaneous Presentation of Visual Shearing Motion


    Shigehito eTanahashi; Kaoru eAshihara; Hiroyasu eUjike


    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or...

  9. fMRI evidence for the role of recollection in suppressing misattribution errors: the illusory truth effect. (United States)

    Mitchell, Jason P; Dodson, Chad S; Schacter, Daniel L


    Misattribution refers to the act of attributing a memory or idea to an incorrect source, such as successfully remembering a bit of information but linking it to an inappropriate person or time [Jacoby, L. L., Kelley, C., Brown, J., & Jasechko, J. (1989). Becoming famous overnight: Limits on the ability to avoid unconscious influences of the past. Journal of Personality and Social Psychology, 56, 326-338; Schacter, D. L. (1999). The seven sins of memory: Insights from psychology and cognitive neuroscience. American Psychologist, 54, 182-203; Schacter, D. L. (2001). The seven sins of memory: How the mind forgets and remembers. Boston: Houghton Mifflin]. Cognitive studies have suggested that misattribution errors may occur in the absence of recollection for the details of an initial encounter with a stimulus, but little is known about the neural basis of this memory phenomenon. Here we used functional magnetic resonance imaging (fMRI) to examine the hypothesized role of recollection in counteracting the illusory truth effect, a misattribution error whereby perceivers systematically overrate the truth of previously presented information. Imaging was conducted during the encoding and subsequent judgment of unfamiliar statements that were presented as true or false. Event-related fMRI analyses were conditionalized as a function of subsequent performance. Results demonstrated that encoding activation in regions previously associated with successful recollection--including the hippocampus and the ventrolateral prefrontal cortex (PFC)--correlated with the successful avoidance of misattribution errors, providing initial neuroimaging support for earlier cognitive accounts of misattribution.

  10. Effects of Lateral Heterogeneity and Power Law Rheology on Glacially Induced Surface Motion and Gravity Rate of Change (United States)

    Wu, P.; Wang, H.; van der Wal, W.


    Modern geodetic measurements from GPS, satellite altimetry, tide-gauges, Satellite Laser Ranging (SLR) and space-borne gravimetry (such as GRACE) have been used to monitor global change. Since these measurements contain contributions from glacial isostatic adjustment (GIA) and other tectonic processes, they must be modeled and removed in order to observe current climate change. In the past, most GIA models assumed that the earth is laterally homogeneous and the rheology is linear. The aim of this paper is to investigate the effects of lateral heterogeneity and Power-Law rheology on GIA induced land uplift rate, horizontal velocities, relative sealevels, J-dot and the secular gravity rate of change in the southern part of Hudson Bay, which is detected by the GRACE mission. Here, GIA is modeled with a spherical, self-gravitating, compressible viscoelastic, laterally heterogeneous earth using the Finite-Element Method. The effect of gravitationally self-consistent sea levels in realistic oceans is also included. Lateral variations in mantle viscosities and lithospheric thickness are inferred from the seismic tomography model S20A using well known scaling relationships. Power-Law rheologies in the whole mantle or in combination with linear rheologies in the upper or lower mantle are also investigated. Both ICE-5G and ICE-4G deglaciation models are used to investigate their effect on the pattern of rebound. Preliminary results show that both lateral heterogeneity and power-law rheology have strong effects on the direction and magnitude of horizontal velocities. The effects of lateral heterogeneity and power-law rheology are also large enough to be detected in land uplift rate, relative sealevels, J-dot and gravity rate of change. Their implication on observing the effects of global warming will also be discussed.

  11. Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact (United States)

    Hirabayashi, Masatoshi; Schwartz, Stephen R.; Yu, Yang; Davis, Alex B.; Chesley, Steven R.; Fahnestock, Eugene G.; Michel, Patrick; Richardson, Derek C.; Naidu, Shantanu P.; Scheeres, Daniel J.; Cheng, Andrew F.; Rivkin, Andrew S.; Benner, Lance A. M.


    Binary near-Earth asteroid (65803) Didymos is the target of the proposed NASA Double Asteroid Redirection Test (DART), part of the Asteroid Impact & Deflection Assessment (AIDA) mission concept. In this mission, the DART spacecraft is planned to impact the secondary body of Didymos, perturbing mutual dynamics of the system. The primary body is currently rotating at a spin period close to the spin barrier of asteroids, and materials ejected from the secondary due to the DART impact are likely to reach the primary. These conditions may cause the primary to reshape, due to landslides or internal deformation, changing the permanent gravity field. Here, we propose that if shape deformation of the primary occurs, the mutual orbit of the system would be perturbed due to a change in the gravity field. We use a numerical simulation technique based on the full two-body problem to investigate the shape effect on the mutual dynamics in Didymos after the DART impact. The results show that under constant volume, shape deformation induces strong perturbation in the mutual motion. We find that the deformation process always causes the orbital period of the system to become shorter. If surface layers with a thickness greater than ∼0.4 m on the poles of the primary move down to the equatorial region due to the DART impact, a change in the orbital period of the system and in the spin period of the primary will be detected by ground-based measurement.

  12. Motion direction discrimination training reduces perceived motion repulsion. (United States)

    Jia, Ke; Li, Sheng


    Participants often exaggerate the perceived angular separation between two simultaneously presented motion stimuli, which is referred to as motion repulsion. The overestimation helps participants differentiate between the two superimposed motion directions, yet it causes the impairment of direction perception. Since direction perception can be refined through perceptual training, we here attempted to investigate whether the training of a direction discrimination task changes the amount of motion repulsion. Our results showed a direction-specific learning effect, which was accompanied by a reduced amount of motion repulsion both for the trained and the untrained directions. The reduction of the motion repulsion disappeared when the participants were trained on a luminance discrimination task (control experiment 1) or a speed discrimination task (control experiment 2), ruling out any possible interpretation in terms of adaptation or training-induced attentional bias. Furthermore, training with a direction discrimination task along a direction 150° away from both directions in the transparent stimulus (control experiment 3) also had little effect on the amount of motion repulsion, ruling out the contribution of task learning. The changed motion repulsion observed in the main experiment was consistent with the prediction of the recurrent model of perceptual learning. Therefore, our findings demonstrate that training in direction discrimination can benefit the precise direction perception of the transparent stimulus and provide new evidence for the recurrent model of perceptual learning.

  13. Superluminal motion (review) (United States)

    Malykin, G. B.; Romanets, E. A.


    Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.

  14. Motion sickness on tilting trains. (United States)

    Cohen, Bernard; Dai, Mingjia; Ogorodnikov, Dmitri; Laurens, Jean; Raphan, Theodore; Müller, Philippe; Athanasios, Alexiou; Edmaier, Jürgen; Grossenbacher, Thomas; Stadtmüller, Klaus; Brugger, Ueli; Hauser, Gerald; Straumann, Dominik


    Trains that tilt on curves can go faster, but passengers complain of motion sickness. We studied the control signals and tilts to determine why this occurs and how to maintain speed while eliminating motion sickness. Accelerometers and gyros monitored train and passenger yaw and roll, and a survey evaluated motion sickness. The experimental train had 3 control configurations: an untilted mode, a reactive mode that detected curves from sensors on the front wheel set, and a predictive mode that determined curves from the train's position on the tracks. No motion sickness was induced in the untilted mode, but the train ran 21% slower than when it tilted 8° in either the reactive or predictive modes (113 vs. 137 km/h). Roll velocities rose and fell faster in the predictive than the reactive mode when entering and leaving turns (0.4 vs. 0.8 s for a 4°/s roll tilt, P<0.001). Concurrently, motion sickness was greater (P<0.001) in the reactive mode. We conclude that the slower rise in roll velocity during yaw rotations on entering and leaving curves had induced the motion sickness. Adequate synchronization of roll tilt with yaw velocity on curves will reduce motion sickness and improve passenger comfort on tilting trains.

  15. Importance of human right inferior frontoparietal network connected by inferior branch of superior longitudinal fasciculus tract in corporeal awareness of kinesthetic illusory movement. (United States)

    Amemiya, Kaoru; Naito, Eiichi


    It is generally believed that the human right cerebral hemisphere plays a dominant role in corporeal awareness, which is highly associated with conscious experience of the physical self. Prompted by our previous findings, we examined whether the right frontoparietal activations often observed when people experience kinesthetic illusory limb movement are supported by a large-scale brain network connected by a specific branch of the superior longitudinal fasciculus fiber tracts (SLF I, II, and III). We scanned brain activity with functional magnetic resonance imaging (MRI) while nineteen blindfolded healthy volunteers experienced illusory movement of the right stationary hand elicited by tendon vibration, which was replicated after the scanning. We also scanned brain activity when they executed and imagined right hand movement, and identified the active brain regions during illusion, execution, and imagery in relation to the SLF fiber tracts. We found that illusion predominantly activated the right inferior frontoparietal regions connected by SLF III, which were not substantially recruited during execution and imagery. Among these regions, activities in the right inferior parietal cortices and inferior frontal cortices showed right-side dominance and correlated well with the amount of illusion (kinesthetic illusory awareness) experienced by the participants. The results illustrated the predominant involvement of the right inferior frontoparietal network connected by SLF III when people recognize postural changes of their limb. We assume that the network bears a series of functions, specifically, monitoring the current status of the musculoskeletal system, and building-up and updating our postural model (body schema), which could be a basis for the conscious experience of the physical self. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Direction-Specific Impairments in Cervical Range of Motion in Women with Chronic Neck Pain: Influence of Head Posture and Gravitationally Induced Torque. (United States)

    Rudolfsson, Thomas; Björklund, Martin; Svedmark, Åsa; Srinivasan, Divya; Djupsjöbacka, Mats


    Cervical range of motion (ROM) is commonly assessed in clinical practice and research. In a previous study we decomposed active cervical sagittal ROM into contributions from lower and upper levels of the cervical spine and found level- and direction-specific impairments in women with chronic non-specific neck pain. The present study aimed to validate these results and investigate if the specific impairments can be explained by the neutral posture (defining zero flexion/extension) or a movement strategy to avoid large gravitationally induced torques on the cervical spine. Kinematics of the head and thorax was assessed in sitting during maximal sagittal cervical flexion/extension (high torque condition) and maximal protraction (low torque condition) in 120 women with chronic non-specific neck pain and 40 controls. We derived the lower and upper cervical angles, and the head centre of mass (HCM), from a 3-segment kinematic model. Neutral head posture was assessed using a standardized procedure. Previous findings of level- and direction-specific impairments in neck pain were confirmed. Neutral head posture was equal between groups and did not explain the direction-specific impairments. The relative magnitude of group difference in HCM migration did not differ between high and low torques conditions, lending no support for our hypothesis that impairments in sagittal ROM are due to torque avoidance behaviour. The direction- and level-specific impairments in cervical sagittal ROM can be generalised to the population of women with non-specific neck pain. Further research is necessary to clarify if torque avoidance behaviour can explain the impairments.

  17. Direction-Specific Impairments in Cervical Range of Motion in Women with Chronic Neck Pain: Influence of Head Posture and Gravitationally Induced Torque.

    Directory of Open Access Journals (Sweden)

    Thomas Rudolfsson

    Full Text Available Cervical range of motion (ROM is commonly assessed in clinical practice and research. In a previous study we decomposed active cervical sagittal ROM into contributions from lower and upper levels of the cervical spine and found level- and direction-specific impairments in women with chronic non-specific neck pain. The present study aimed to validate these results and investigate if the specific impairments can be explained by the neutral posture (defining zero flexion/extension or a movement strategy to avoid large gravitationally induced torques on the cervical spine.Kinematics of the head and thorax was assessed in sitting during maximal sagittal cervical flexion/extension (high torque condition and maximal protraction (low torque condition in 120 women with chronic non-specific neck pain and 40 controls. We derived the lower and upper cervical angles, and the head centre of mass (HCM, from a 3-segment kinematic model. Neutral head posture was assessed using a standardized procedure.Previous findings of level- and direction-specific impairments in neck pain were confirmed. Neutral head posture was equal between groups and did not explain the direction-specific impairments. The relative magnitude of group difference in HCM migration did not differ between high and low torques conditions, lending no support for our hypothesis that impairments in sagittal ROM are due to torque avoidance behaviour.The direction- and level-specific impairments in cervical sagittal ROM can be generalised to the population of women with non-specific neck pain. Further research is necessary to clarify if torque avoidance behaviour can explain the impairments.

  18. P3-19: Failure to Extract Velocity Information from Contours Induces the Footsteps Illusion

    Directory of Open Access Journals (Sweden)

    Tsubasa Tano


    Full Text Available When a black or white rectangle drifts horizontally across a background of black and white vertical stripes, the rectangle appears to stop and start as it crosses each stripe (the footsteps illusion; Anstis, 2001 Perception 30 785–794. Although previous studies indicate that confusion between contrast and velocity signals in the motion detectors or the spatial pattern of the background contribute to the footsteps illusion (e.g., Sunaga et al., 2008 Perception 37 902–914, it remains unclear which factor is critical. We hypothesize that the contour of the rectangle is significant to the footsteps illusion. A subjective experiment is conducted using modified rectangles, the contour of which were emphasized by adding contour lines, filling random dots inside, or putting illusory contour inducers on the four corners. Two kinds of rectangles were presented above and below central fixation simultaneously and the background strips were scrolled from right to left, or vice versa. Participants were asked which rectangle was perceived to drift more smoothly. The results demonstrate that the footsteps illusion is reduced when the rectangle's contour is emphasized. Placing random dots inside the rectangle yielded a weaker illusion than the rectangle that was surrounded by lines. These results suggest that humans perceive the velocity of moving objects (or background based on the extracted contours which are constructed by integrating low spatial frequency information.

  19. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise. (United States)

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan


    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Adapted physical activity programme and self-perception in obese adolescents with intellectual disability: between morphological awareness and positive illusory bias. (United States)

    Salaun, Laureline; Reynes, Eric; Berthouze-Aranda, Sophie E


    In adolescent with intellectual disability, the management of obesity is a crucial issue, yet also quite complex because of their particular perception of themselves. This study investigated the relationship between self-perception variables and morphological variables and their changes after a 9-month Adapted Physical Activity (APA) programme. Twenty-three adolescents with intellectual disability responded to an adapted questionnaire, including the PSI-VSF-ID and a nine-drawing body silhouette scale. Anthropometric and body composition indicators were measured before and after the APA programme. The main predictor of the adolescents' self-perceptions was the inclination towards positive illusory bias before the intervention; obesity awareness ranked second. Morphological measurements did not contribute in the same way to self-perceptions in the initial and final data. This study confirms the interest of weight management programmes for adolescents with intellectual disability and points to the need to take positive illusory bias more fully into account in the study of self-perception. © 2013 John Wiley & Sons Ltd.

  1. Ground motion input in seismic evaluation studies

    International Nuclear Information System (INIS)

    Sewell, R.T.; Wu, S.C.


    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  2. Motion control report

    CERN Document Server


    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  3. S3-3: Misbinding of Color and Motion in Human V2 Revealed by Color-Contingent Motion Adaptation

    Directory of Open Access Journals (Sweden)

    Fang Fang


    Full Text Available Wu, Kanai, & Shimojo (2004 Nature 429 262 described a compelling illusion demonstrating a steady-state misbinding of color and motion. Here, we took advantage of the illusion and performed psychophysical and fMRI adaptation experiments to explore the neural mechanism of color-motion misbinding. The stimulus subtended 20 deg by 14 deg of visual angle and contained two sheets of random dots, one sheet moving up and the other moving down. On the upward-moving sheet, dots in the right-end area (4 deg by 14 deg were red, and the rest of the dots were green. On the downward-moving sheet, dots in the right-end area were green, and the rest of the dots were red. When subjects fixated at the center of the stimulus, they bound the color and motion of the dots in the right-end area erroneously–the red dots appeared to move downwards and the green dots appeared to move upwards. In the psychophysical experiment, we measured the color-contingent motion aftereffect in the right-end area after adaptation to the illusory stimulus. A significant aftereffect was observed as if subjects had adapted to the perceived binding of color and motion, rather than the physical binding. For example, after adaptation, stationary red dots appeared to move upwards, and stationary green dots appeared to move downwards. In the fMRI experiment, we measured direction-selective motion adaptation effects in V1, V2, V3, V4, V3A/B, and V5. Relative to other cortical areas, V2 showed a much stronger adaptation effect to the perceived motion direction (rather than the physical direction for both the red and green dots. Significantly, the fMRI adaptation effect in V2 correlated with the color-contingent motion aftereffect across twelve subjects. This study provides the first human evidence that color and motion could be misbound at a very early stage of visual processing.

  4. Dizziness and Motion Sickness (United States)

    ... You Dizziness and Motion Sickness Dizziness and Motion Sickness Patient Health Information News media interested in covering the latest ... medications Remember: Most cases of dizziness and motion sickness are ... Health Home Copyright © 2018 American Academy of Otolaryngology–Head ...

  5. Adaptive motion of animals and machines

    National Research Council Canada - National Science Library

    Kimura, Hiroshi


    ... single function in a control system and mechanism. That is, adaptation in motion is induced at every level from the central nervous system to the musculoskeletal system. Thus, we organized the International Symposium on Adaptive Motion in Animals and Machines (AMAM) for scientists and engineers concerned with adaptation on various levels to be broug...

  6. Rock mass response to strong ground motion generated by mining induced seismic events and blasting observed at the surface of the excavations in deep level gold mines in South Africa (United States)

    Milev, Alexander; Durrheim, Ray; Ogasawara, Hiroshi


    The strong ground motion generated by mining induced seismic events was studied to characterize the rock mass response and to estimate the site effect on the surface of the underground excavations. A stand-alone instruments, especially designed for recording strong ground motions, were installed underground at a number of deep level gold mines in South Africa. The instruments were recording data at the surface of the stope hangingwalls. A maximum value of 3 m/s was measured. Therefore data were compared to the data recorded in the solid rock by the mine seismic networks to determine the site response. The site response was defined as the ratio of the peak ground velocity measured at the surface of the excavations to the peak ground velocity inferred from the mine seismic data measured in the solid rocks. The site response measured at all mines studied was found to be 9 ± 3 times larger on average. A number of simulated rockbursts were conducted underground in order to estimate the rock mass response when subjected to extreme ground motion and derive the attenuation factors in near field. The rockbursts were simulated by means of large blasts detonated in solid rock close to the sidewall of a tunnel. The numerical models used in the design of the simulated rockbursts were calibrated by small blasts taking place at each experimental site. A dense array of shock type accelerometers was installed along the blasting wall to monitor the attenuation of the strong ground motion as a function of the distance from the source. The attenuation of the ground motion was found to be proportional to the distance from the source following R^-1.1 & R^-1.7 for compact rock and R^-3.1 & R^-3.4 for more fractured rock close to the surface of the tunnel. In addition the ground motion was compared to the quasi-static deformations taking place around the underground excavations. The quasi-static deformations were measured by means of strain, tilt and closure. A good correspondence

  7. Music can elicit a visual motion aftereffect. (United States)

    Hedger, Stephen C; Nusbaum, Howard C; Lescop, Olivier; Wallisch, Pascal; Hoeckner, Berthold


    Motion aftereffects (MAEs) are thought to result from the adaptation of both subcortical and cortical systems involved in the processing of visual motion. Recently, it has been reported that the implied motion of static images in combination with linguistic descriptions of motion is sufficient to elicit an MAE, although neither factor alone is thought to directly activate visual motion areas in the brain. Given that the monotonic change of musical pitch is widely recognized in music as a metaphor for vertical motion, we investigated whether prolonged exposure to ascending or descending musical scales can also produce a visual motion aftereffect. After listening to ascending or descending musical scales, participants made decisions about the direction of visual motion in random-dot kinematogram stimuli. Metaphoric motion in the musical stimuli did affect the visual direction judgments, in that repeated exposure to rising or falling musical scales shifted participants' sensitivity to visual motion in the opposite direction. The finding that music can induce an MAE suggests that the subjective interpretation of monotonic pitch change as motion may have a perceptual foundation.

  8. Separating spin torque and heating effects in current-induced domain wall motion probed by high-resolution transmission electron microscopy

    DEFF Research Database (Denmark)

    Junginger, F.; Klaeui, M.; Backes, D.


    Observations of domain wall motion and transformations due to injected current pulses in permalloy zigzag structures using off-axis electron holography and Lorentz microscopy are reported. Heating on membranes leads to thermally activated random behavior at low current densities and by backcoatin...

  9. Effects of Auditory Information on Self-Motion Perception during Simultaneous Presentation of Visual Shearing Motion

    Directory of Open Access Journals (Sweden)

    Shigehito eTanahashi


    Full Text Available Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis. We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information.

  10. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion (United States)

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu


    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  11. Motion in radiotherapy

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia


    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPE...

  12. Transient cardio-respiratory responses to visually induced tilt illusions (United States)

    Wood, S. J.; Ramsdell, C. D.; Mullen, T. J.; Oman, C. M.; Harm, D. L.; Paloski, W. H.


    Although the orthostatic cardio-respiratory response is primarily mediated by the baroreflex, studies have shown that vestibular cues also contribute in both humans and animals. We have demonstrated a visually mediated response to illusory tilt in some human subjects. Blood pressure, heart and respiration rate, and lung volume were monitored in 16 supine human subjects during two types of visual stimulation, and compared with responses to real passive whole body tilt from supine to head 80 degrees upright. Visual tilt stimuli consisted of either a static scene from an overhead mirror or constant velocity scene motion along different body axes generated by an ultra-wide dome projection system. Visual vertical cues were initially aligned with the longitudinal body axis. Subjective tilt and self-motion were reported verbally. Although significant changes in cardio-respiratory parameters to illusory tilts could not be demonstrated for the entire group, several subjects showed significant transient decreases in mean blood pressure resembling their initial response to passive head-up tilt. Changes in pulse pressure and a slight elevation in heart rate were noted. These transient responses are consistent with the hypothesis that visual-vestibular input contributes to the initial cardiovascular adjustment to a change in posture in humans. On average the static scene elicited perceived tilt without rotation. Dome scene pitch and yaw elicited perceived tilt and rotation, and dome roll motion elicited perceived rotation without tilt. A significant correlation between the magnitude of physiological and subjective reports could not be demonstrated.

  13. Human limb-specific and non-limb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. (United States)

    Naito, Eiichi; Nakashima, Tokuro; Kito, Tomonori; Aramaki, Yu; Okada, Tomohisa; Sadato, Norihiro


    Sensing movements of the upper and lower extremities is important in controlling whole-body movements. We have shown that kinesthetic illusory hand movements activate motor areas and right-sided fronto-parietal cortices. We investigated whether illusions for the upper and lower extremities, i.e. right or left hand or foot, activate the somatotopical sections of motor areas, and if an illusion for each limb engages the right-sided cortices. We scanned the brain activity of 19 blindfolded right-handed participants using functional magnetic resonance imaging (fMRI) while they experienced an illusion for each limb elicited by vibrating its tendon at 110 Hz (ILLUSION). As a control, we applied identical stimuli to the skin over a nearby bone, which does not elicit illusions (VIBRATION). The illusory movement (ILLUSION vs. VIBRATION) of each immobile limb activated limb-specific sections of the contralateral motor cortex (along with somatosensory area 3a), dorsal premotor cortex (PMD), supplementary motor area (SMA), cingulate motor area (CMA), and the ipsilateral cerebellum, which normally participate in execution of movements of the corresponding limb. We found complex non-limb-specific representations in rostral parts of the bilateral SMA and CMA, and illusions for all limbs consistently engaged concentrated regions in right-sided fronto-parietal cortices and basal ganglia. This study demonstrated complete sets of brain representations related to kinesthetic processing of single-joint movements of the four human extremities. The kinesthetic function of motor areas suggests their importance in somatic perception of limb movement, and the non-limb-specific representations indicate high-order kinesthetic processing related to human somatic perception of one's own body.

  14. p-n Junction Dynamics Induced in a Graphene Channel by Ferroelectric-Domain Motion in the Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kurchak, Anatolii I. [National Academy of Sciences of Ukraine (NASU), Kiev (Ukraine); Eliseev, Eugene A. [National Academy of Sciences of Ukraine (NASU), Kiev (Ukraine); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strikha, Maksym V. [National Academy of Sciences of Ukraine (NASU), Kiev (Ukraine); Taras Shevchenko Kyiv National Univ., Kyiv (Ukraine); Morozovska, Anna N. [National Academy of Sciences of Ukraine (NASU), Kiev (Ukraine)


    The p - n junction dynamics induced in a graphene channel by stripe-domain nucleation, motion, and reversal in a ferroelectric substrate is explored using a self-consistent approach based on Landau-Ginzburg-Devonshire phenomenology combined with classical electrostatics. Relatively low gate voltages are required to induce the hysteresis of ferroelectric polarization and graphene charge in response to the periodic gate voltage. Pronounced nonlinear hysteresis of graphene conductance with a wide memory window corresponds to high amplitudes of gate voltage. Also, we reveal the extrinsic size effect in the dependence of the graphene-channel conductivity on its length. We predict that the top-gate–dielectric-layer–graphene-channel–ferroelectric-substrate nanostructure considered here can be a promising candidate for the fabrication of the next generation of modulators and rectifiers based on the graphene p - n junctions.

  15. The effects of the CORE programme on pain at rest, movement-induced and secondary pain, active range of motion, and proprioception in female office workers with chronic low back pain: a randomized controlled trial. (United States)

    Kim, Tae Hoon; Kim, Eun-Hye; Cho, Hwi-young


    To investigate the effects of the CORE programme on pain at rest, movement-induced pain, secondary pain, active range of motion, and proprioception deficits in female office workers with chronic low back pain. Randomized controlled trial. Rehabilitation clinics. A total of 53 participants with chronic low back pain were randomized into the CORE group and the control group. CORE group participants underwent the 30-minute CORE programme, five times per week, for eight weeks, with additional use of hot-packs and transcutaneous electrical nerve stimulation, while the control group used only hot-packs and transcutaneous electrical nerve stimulation. Participants were evaluated pretest, posttest, and two months after the intervention period to measure resting and movement-induced pain, pressure pain as secondary pain, active range of pain-free motion, and trunk proprioception. Pain intensity at rest (35.6 ±5.9 mm) and during movement (39.4 ±9.1 mm) was significantly decreased in the CORE group following intervention compared with the control group. There were significant improvements in pressure pain thresholds (quadratus lumborum: 2.2 ±0.7 kg/cm(2); sacroiliac joint: 2.0 ±0.7 kg/cm(2)), active range of motion (flexion: 30.8 ±14.3°; extension: 6.6 ±2.5°), and proprioception (20° flexion: 4.3 ±2.4°; 10° extension: 3.1 ±2.0°) in the CORE group following intervention (all p proprioception in female office workers with chronic low back pain. © The Author(s) 2014.

  16. Environmental effects and building damage induced by the vertical component of ground motion during the August 24, 2016 Amatrice (Central Italy) earthquake (United States)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon


    On August 24, 2016 an Mw 6.0 earthquake struck central Italy resulting in 299 fatalities, 388 injuries and about 3000 homeless. The provided focal mechanisms demonstrated a NW-SE striking seismic normal fault which is consistent with the spatial distribution of the coseismic surface ruptures observed along the western slope of Mt Vettore. Based on our field reconnaissance in the affected area immediately after the earthquake, extensive secondary environmental effects including landslides, rockfalls and ground cracks were also observed. Most landslides were generated within the Amatrice intermontane basin, which, instead of a flat surface, comprises isolated flat hills and ridges with relatively high and steep slopes extending several meters above the low-lying part of the basin consisting of Quaternary deposits and with several villages founded at their top. Landslides generated along the steep slopes of Amatrice, Accumoli and Pescara del Tronto flat hills were due to topographical amplification of the earthquake motion derived from accelerometric recordings analysis along with the action of the vertical component of the ground motion and the already established instability conditions resulting from river incision and erosion at the base of the hills. Strong evidences of the effect of the vertical ground motion in reinforced concrete (RC) buildings are the symmetrical buckling of reinforcement, compression damage and crushing at midheight and in other parts of columns, undamaged windows and unbroken glass panels as well as partial collapse of the buildings that usually occur along the vertical axis within the plan of the building. On the contrary, high flexible structures such as castle and bell towers in Arcuata del Tronto and Amatrice respectively were not affected by the vertical ground motion. During the action of the vertical component of the ground motion in Amatrice affected area, stationary waves were formed vertically in the observed structures resulting

  17. Perception of the dynamic visual vertical during sinusoidal linear motion. (United States)

    Pomante, A; Selen, L P J; Medendorp, W P


    disambiguation of linear acceleration and spatial orientation. We discuss the dynamics of these illusory percepts in terms of a dynamic Bayesian model that combines uncertainty in the vestibular signals with priors based on the natural statistics of head motion. Copyright © 2017 the American Physiological Society.

  18. Objects in Motion (United States)

    Damonte, Kathleen


    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  19. Contrast configuration influences grouping in apparent motion. (United States)

    Ma-Wyatt, Anna; Clifford, Colin W G; Wenderoth, Peter


    We investigated whether the same principles that influence grouping in static displays also influence grouping in apparent motion. Using the Ternus display, we found that the proportion of group motion reports was influenced by changes in contrast configuration. Subjects made judgments of completion of these same configurations in a static display. Generally, contrast configurations that induced a high proportion of group motion responses were judged as more 'complete' in static displays. Using a stereo display, we then tested whether stereo information and T-junction information were critical for this increase in group motion. Perceived grouping was consistently higher for same contrast polarity configurations than for opposite contrast polarity configurations, regardless of the presence of stereo information or explicit T-junctions. Thus, while grouping in static and moving displays showed a similar dependence on contrast configuration, motion grouping showed little dependence on stereo or T-junction information.

  20. Joint Encoding of Object Motion and Motion Direction in the Salamander Retina. (United States)

    Kühn, Norma Krystyna; Gollisch, Tim


    The processing of motion in visual scenes is important for detecting and tracking moving objects as well as for monitoring self-motion through the induced optic flow. Specialized neural circuits have been identified in the vertebrate retina for detecting motion direction or for distinguishing between object motion and self-motion, although little is known about how information about these distinct features of visual motion is combined. The salamander retina, which is a widely used model system for analyzing retinal function, contains object-motion-sensitive (OMS) ganglion cells, which strongly respond to local motion signals but are suppressed by global image motion. Yet, direction-selective (DS) ganglion cells have been conspicuously absent from characterizations of the salamander retina, despite their ubiquity in other model systems. We here show that the retina of axolotl salamanders contains at least two distinct classes of DS ganglion cells. For one of these classes, the cells display a strong preference for local over global motion in addition to their direction selectivity (OMS-DS cells) and thereby combine sensitivity to two distinct motion features. The OMS-DS cells are further distinct from standard (non-OMS) DS cells by their smaller receptive fields and different organization of preferred motion directions. Our results suggest that the two classes of DS cells specialize to encode motion direction of local and global motion stimuli, respectively, even for complex composite motion scenes. Furthermore, although the salamander DS cells are OFF-type, there is a strong analogy to the systems of ON and ON-OFF DS cells in the mammalian retina. The retina contains specialized cells for motion processing. Among the retinal ganglion cells, which form the output neurons of the retina, some are known to report the direction of a moving stimulus (direction-selective cells), and others distinguish the motion of an object from a moving background. But little is known

  1. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen


    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  2. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  3. Curves from Motion, Motion from Curves (United States)


    tautochrone and brachistochrone properties. To Descartes, however, the rectification of curves such as the spiral (3) and the cycloid (4) was suspect - they...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012017 TITLE: Curves from Motion, Motion from Curves DISTRIBUTION...Approved for public release, distribution unlimited This paper is part of the following report: TITLE: International Conference on Curves and Surfaces [4th

  4. Structural motion engineering

    CERN Document Server

    Connor, Jerome


    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  5. The importance of synchrony and temporal order of visual and tactile input for illusory limb ownership experiences - an FMRI study applying virtual reality.

    Directory of Open Access Journals (Sweden)

    Robin Bekrater-Bodmann

    Full Text Available In the so-called rubber hand illusion, synchronous visuotactile stimulation of a visible rubber hand together with one's own hidden hand elicits ownership experiences for the artificial limb. Recently, advanced virtual reality setups were developed to induce a virtual hand illusion (VHI. Here, we present functional imaging data from a sample of 25 healthy participants using a new device to induce the VHI in the environment of a magnetic resonance imaging (MRI system. In order to evaluate the neuronal robustness of the illusion, we varied the degree of synchrony between visual and tactile events in five steps: in two conditions, the tactile stimulation was applied prior to visual stimulation (asynchrony of -300 ms or -600 ms, whereas in another two conditions, the tactile stimulation was applied after visual stimulation (asynchrony of +300 ms or +600 ms. In the fifth condition, tactile and visual stimulation was applied synchronously. On a subjective level, the VHI was successfully induced by synchronous visuotactile stimulation. Asynchronies between visual and tactile input of ±300 ms did not significantly diminish the vividness of illusion, whereas asynchronies of ±600 ms did. The temporal order of visual and tactile stimulation had no effect on VHI vividness. Conjunction analyses of functional MRI data across all conditions revealed significant activation in bilateral ventral premotor cortex (PMv. Further characteristic activation patterns included bilateral activity in the motion-sensitive medial superior temporal area as well as in the bilateral Rolandic operculum, suggesting their involvement in the processing of bodily awareness through the integration of visual and tactile events. A comparison of the VHI-inducing conditions with asynchronous control conditions of ±600 ms yielded significant PMv activity only contralateral to the stimulation site. These results underline the temporal limits of the induction of limb ownership related to

  6. Assessing Motion Induced Interruptions Using a Motion Platform (United States)


    The Sharpened Romberg Test is a modification of the original test to account for vestibular and cerebellar impairment (Lanska & Goetz, 2000). The...proprioception or balance abilities. Hereditary factors range from autosomal dominant sensory ataxic neuropathy to Biemond Syndrome (Khasnis, 2003). The used or associated with the data. You will not be qualified to participate if you have had medical issues such as vestibular , balance, vertigo

  7. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus


    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  8. Motion and relativity

    CERN Document Server

    Infeld, Leopold


    Motion and Relativity focuses on the methodologies, solutions, and approaches involved in the study of motion and relativity, including the general relativity theory, gravitation, and approximation.The publication first offers information on notation and gravitational interaction and the general theory of motion. Discussions focus on the notation of the general relativity theory, field values on the world-lines, general statement of the physical problem, Newton's theory of gravitation, and forms for the equation of motion of the second kind. The text then takes a look at the approximation meth

  9. Using intravoxel incoherent motion MR imaging to study the renal pathophysiological process of contrast-induced acute kidney injury in rats: Comparison with conventional DWI and arterial spin labelling

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Long; Zhang, Bin [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Southern Medical University, Graduate College, Guangzhou (China); Chen, Wen-bo; Liang, Chang-hong; Zhang, Shui-xing [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Chan, Kannie W.Y.; Li, Yu-guo; Liu, Guan-shu [The Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Baltimore, MD (United States)


    To investigate the potential of intravoxel incoherent motion (IVIM) to assess the renal pathophysiological process in contrast-induced acute kidney injury (CIAKI). Twenty-seven rats were induced with CIAKI model, six rats were imaged longitudinally at 24 h prior to and 30 min, 12, 24, 48, 72 and 96 h after administration; three rats were randomly chosen from the rest for serum creatinine and histological studies. D, f, D* and ADC were calculated from IVIM, and renal blood flow (RBF) was obtained from arterial spin labelling (ASL). A progressive reduction in D and ADC was observed in cortex (CO) by 3.07 and 8.62 % at 30 min, and by 25.77 and 28.16 % at 48 h, respectively. A similar change in outer medulla (OM) and inner medulla (IM) was observed at a later time point (12-72 h). D values were strongly correlated with ADC (r = 0.885). As perfusion measurement, a significant decrease was shown for f in 12-48 h and an increase in 72-96 h. A slightly different trend was found for D*, which was decreased by 26.02, 21.78 and 10.19 % in CO, OM and IM, respectively, at 30 min. f and D* were strongly correlated with RBF in the cortex (r = 0.768, r = 0.67), but not in the medulla. IVIM is an effective imaging tool for monitoring progress in renal pathophysiology undergoing CIAKI. (orig.)

  10. Temporal logic motion planning

    CSIR Research Space (South Africa)

    Seotsanyana, M


    Full Text Available In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain...

  11. Motion control systems

    CERN Document Server

    Sabanovic, Asif


    "Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...

  12. Motion sickness in migraine sufferers. (United States)

    Marcus, Dawn A; Furman, Joseph M; Balaban, Carey D


    Motion sickness commonly occurs after exposure to actual motion, such as car or amusement park rides, or virtual motion, such as panoramic movies. Motion sickness symptoms may be disabling, significantly limiting business, travel and leisure activities. Motion sickness occurs in approximately 50% of migraine sufferers. Understanding motion sickness in migraine patients may improve understanding of the physiology of both conditions. Recent literature suggests important relationships between the trigeminal system and vestibular nuclei that may have implications for both motion sickness and migraine. Studies demonstrating an important relationship between serotonin receptors and motion sickness susceptibility in both rodents and humans suggest possible new motion sickness prevention therapies.

  13. An Observer-Based Controller with a LMI-Based Filter against Wind-Induced Motion for High-Rise Buildings

    Directory of Open Access Journals (Sweden)

    Chao-Jun Chen


    Full Text Available Active mass damper (AMD control system is proposed for high-rise buildings to resist a strong wind. However, negative influence of noise in sensors impedes the application of AMD systems in practice. To reduce the adverse influence of noise on AMD systems, a Kalman filter and a linear matrix inequality- (LMI- based filter are designed. Firstly, a ten-year return period fluctuating wind load is simulated by mixed autoregressive-moving average (MARMA method, and its reliability is tested by wind speed power spectrum and correlation analysis. Secondly, a designed state observer with different filters uses wind-induced acceleration responses of a high-rise building as the feedback signal that includes noise to calculate control force in this paper. Finally, these methods are applied to a numerical example of a high-rise building and an experiment of a single span four-storey steel frame. Both numerical and experimental results are presented to verify that both Kalman filter and LMI-based filter can effectively suppress noise, but only the latter can guarantee the stability of AMD parameters.

  14. Ambiguity in Tactile Apparent Motion Perception.

    Directory of Open Access Journals (Sweden)

    Emanuela Liaci

    Full Text Available In von Schiller's Stroboscopic Alternative Motion (SAM stimulus two visually presented diagonal dot pairs, located on the corners of an imaginary rectangle, alternate with each other and induce either horizontal, vertical or, rarely, rotational motion percepts. SAM motion perception can be described by a psychometric function of the dot aspect ratio ("AR", i.e. the relation between vertical and horizontal dot distances. Further, with equal horizontal and vertical dot distances (AR = 1 perception is biased towards vertical motion. In a series of five experiments, we presented tactile SAM versions and studied the role of AR and of different reference frames for the perception of tactile apparent motion.We presented tactile SAM stimuli and varied the ARs, while participants reported the perceived motion directions. Pairs of vibration stimulators were attached to the participants' forearms and stimulator distances were varied within and between forearms. We compared straight and rotated forearm conditions with each other in order to disentangle the roles of exogenous and endogenous reference frames.Increasing the tactile SAM's AR biased perception towards vertical motion, but the effect was weak compared to the visual modality. We found no horizontal disambiguation, even for very small tactile ARs. A forearm rotation by 90° kept the vertical bias, even though it was now coupled with small ARs. A 45° rotation condition with crossed forearms, however, evoked a strong horizontal motion bias.Existing approaches to explain the visual SAM bias fail to explain the current tactile results. Particularly puzzling is the strong horizontal bias in the crossed-forearm conditions. In the case of tactile apparent motion, there seem to be no fixed priority rule for perceptual disambiguation. Rather the weighting of available evidence seems to depend on the degree of stimulus ambiguity, the current situation and on the perceptual strategy of the individual

  15. Biological Motion Cues Trigger Reflexive Attentional Orienting (United States)

    Shi, Jinfu; Weng, Xuchu; He, Sheng; Jiang, Yi


    The human visual system is extremely sensitive to biological signals around us. In the current study, we demonstrate that biological motion walking direction can induce robust reflexive attentional orienting. Following a brief presentation of a central point-light walker walking towards either the left or right direction, observers' performance…

  16. Stroboscopic Goggles for Reduction of Motion Sickness (United States)

    Reschke, M. F.; Somers, Jeffrey T.


    A device built around a pair of electronic shutters has been demonstrated to be effective as a prototype of stroboscopic goggles or eyeglasses for preventing or reducing motion sickness. The momentary opening of the shutters helps to suppress a phenomenon that is known in the art as retinal slip and is described more fully below. While a number of different environmental factors can induce motion sickness, a common factor associated with every known motion environment is sensory confusion or sensory mismatch. Motion sickness is a product of misinformation arriving at a central point in the nervous system from the senses from which one determines one s spatial orientation. When information from the eyes, ears, joints, and pressure receptors are all in agreement as to one s orientation, there is no motion sickness. When one or more sensory input(s) to the brain is not expected, or conflicts with what is anticipated, the end product is motion sickness. Normally, an observer s eye moves, compensating for the anticipated effect of motion, in such a manner that the image of an object moving relatively to an observer is held stationary on the retina. In almost every known environment that induces motion sickness, a change in the gain (in the signal-processing sense of gain ) of the vestibular system causes the motion of the eye to fail to hold images stationary on the retina, and the resulting motion of the images is termed retinal slip. The present concept of stroboscopic goggles or eyeglasses (see figure) is based on the proposition that prevention of retinal slip, and hence, the prevention of sensory mismatch, can be expected to reduce the tendency toward motion sickness. A device according to this concept helps to prevent retinal slip by providing snapshots of the visual environment through electronic shutters that are brief enough that each snapshot freezes the image on each retina. The exposure time for each snapshot is less than 5 ms. In the event that a higher

  17. Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact (United States)

    Hirabayashi, M.; Schwartz, S. R.; Yu, Y.; Davis, A. B.; Chesley, S. R.; Fahnestock, E.; Michel, P.; Richardson, D. C.; Naidu, S.; Scheeres, D. J.; Cheng, A. F.; Rivkin, A.; Benner, L.


    (65803) Didymos is a binary near-Earth asteroid that consists of a top-shaped primary body rotating at a spin period of 2.26 hr and a secondary body orbiting around it at an orbital period of 11.92 hr. This asteroid is the target of the proposed NASA Double Asteroid Redirection Test (DART), which is part of the Asteroid Impact & Deflection Assessment (AIDA) mission concept. The goal of DART is to impact the secondary with the spacecraft and measure the momentum transfer by observing the perturbation of the orbital period of the system after the impact. Achieving this goal requires careful accounting for physical uncertainties that prevent accurate measurement of the momentum transfer. Here, we examine a scenario that might affect the momentum transfer measurement and a possible solution to avoiding issues due to this scenario. The primary's spin period is close to the spin barrier of rubble-pile asteroids, i.e., 2.3 hr. Also, some particles ejected from the secondary due to the DART impact may reach the primary and induce landslides or internal deformation of the primary, changing the gravity field. We have developed a numerical simulation technique for investigating how the mutual orbit of the system varies due to symmetric shape deformation of the primary along its spin axis after the DART impact. We find that if the deformation process occurs, the orbital period can change significantly, depending on the magnitude of the shape deformation. The mission currently plans a nearly head-on collision of the DART impactor with the secondary, making the orbital period of the system shorter. Our simulations show that since the deformation process always causes the primary to become more oblate, it shortens the orbital period as well. We also propose precise measurement of the primary's spin state to determine the deformation of the primary. This relies on the fact that any deformation process changes the spin state of the primary consistent with angular momentum

  18. Ground motion and its effects in accelerator design

    International Nuclear Information System (INIS)

    Fischer, G.E.


    The effects of ground motion on accelerator design are discussed. The limitations on performance are discussed for various categories of motion. For example, effects due to ground settlement, tides, seismic disturbances and man-induced disturbances are included in this discussion. 42 figs., 7 tabs

  19. Fractional Brownian motion of director fluctuations in nematic ordering

    DEFF Research Database (Denmark)

    Zhang, Z.; Mouritsen, Ole G.; Otnes, K.


    to determine the Hurst exponent H. Theory and experiment are in good agreement. A value of H congruent-to 1 was found for the nematic phase, characterizing fractional Brownian motion, whereas H congruent-to 0.5, reflecting ordinary Brownian motion, applies in the isotropic phase. Field-induced crossover from...

  20. Fast Optimal Motion Planning (United States)

    National Aeronautics and Space Administration — Computationally-efficient, fast and real-time, and provably-optimal motion planner for systems with highly nonlinear dynamics that can be extended for cooperative...

  1. Motion Sickness: First Aid (United States)

    ... com. Accessed July 29, 2017. Priesol AJ. Motion sickness. Accessed July 29, 2017. Brunette GW, et al. CDC Health Information for International Travel 2018. New York, N. ...

  2. Toying with Motion. (United States)

    Galus, Pamela J.


    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  3. Motion of a Pendulum

    Directory of Open Access Journals (Sweden)

    Jared Wynn


    Full Text Available The objective of this project is to derive and solve the equation of motion for a pendulum swinging at small angles in one dimension. The pendulum may be either a simple pendulum like a ball hanging from a string or a physical pendulum like a pendulum on a clock. For simplicity, we only considered small rotational angles so that the equation of motion becomes a harmonic oscillator.

  4. Effect of respiratory motion on internal radiation dosimetry

    NARCIS (Netherlands)

    Xie, Tianwu; Zaidi, Habib


    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences

  5. Pharmacological and neurophysiological aspects of space/motion sickness (United States)

    Lucot, James B.; Crampton, George H.


    A motorized motion testing device modeled after a Ferris wheel was constructed to perform motion sickness tests on cats. Details of the testing are presented, and some of the topics covered include the following: xylazine-induced emesis; analysis of the constituents of the cerebrospinal fluid (CSF) during motion sickness; evaluation of serotonin-1A (5-HT sub 1A) agonists; other 5HT receptors; antimuscarinic mechanisms; and antihistaminergic mechanisms. The ability of the following drugs to reduce motion sickness in the cats was examined: amphetamines, adenosinergic drugs, opioid antagonists, peptides, cannabinoids, cognitive enhancers (nootropics), dextromethorphan/sigma ligands, scopolamine, and diphenhydramine.

  6. Neurohumoral mechanism of space motion sickness (United States)

    Grigoriev, A. I.; Egorov, A. D.; Nichiporuk, I. A.

    This paper reviews existing hypotheses concerning the mechanisms of adaptation of the vestibular apparatus and related somatosensory systems to microgravity with reference to the flight data. Having in view theoretical concepts and experimental data accumulated in space flights, a conceptual model of the development of a functional system responsible for the termination of vestibular dysfunction and space motion sickness manifestations is presented. It is also shown that changes in the hormonal status during motion sickness induced by vestibular stimulation give evidence that endocrine regulation of certain functions can be involved in adaptive responses.

  7. Investigation of wire motion in superconducting magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Tsuchiya, K.; Devred, A.


    The large Lorentz forces occuring during the excitation of superconducting magnets can provoke sudden motions of wire, which eventually release enough energy to trigger a quench. These wire motions are accompanied by two electromagnetic effects: an induced emf along the moved wire, and a local change in flux caused by the minute dislocation of current. Both effects cause spikes in the coil voltage. Voltage data recorded during the excitation of a superconducting quadrupole magnet which early exhibit such events are here reported. Interpretations of the voltage spikes in terms of energy release are also presented, leading to insights on the spectrum of the disturbances which occur in real magnets. 15 refs

  8. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.


    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  9. Motion sickness, stress and the endocannabinoid system.

    Directory of Open Access Journals (Sweden)

    Alexander Choukèr

    Full Text Available BACKGROUND: A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation. METHODOLOGY/PRINCIPAL FINDINGS: We studied the activity of the ECS in human volunteers (n = 21 during parabolic flight maneuvers (PFs. During PFs, microgravity conditions (<10(-2 g are generated for approximately 22 s which results in a profound kinetic stimulus. Blood endocannabinoids (anandamide and 2-arachidonoylglycerol, 2-AG were measured from blood samples taken in-flight before start of the parabolic maneuvers, after 10, 20, and 30 parabolas, in-flight after termination of PFs and 24 h later. Volunteers who developed acute motion sickness (n = 7 showed significantly higher stress scores but lower endocannabinoid levels during PFs. After 20 parabolas, blood anandamide levels had dropped significantly in volunteers with motion sickness (from 0.39+/-0.40 to 0.22+/-0.25 ng/ml but increased in participants without the condition (from 0.43+/-0.23 to 0.60+/-0.38 ng/ml resulting in significantly higher anandamide levels in participants without motion sickness (p = 0.02. 2-AG levels in individuals with motion sickness were low and almost unchanged throughout the experiment but showed a robust increase in participants without motion sickness. Cannabinoid-receptor 1 (CB1 but not cannabinoid-receptor 2 (CB2 mRNA expression in leucocytes 4 h after the experiment was significantly lower in volunteers with motion sickness than in participants without N&V. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that stress and motion sickness in humans are associated with impaired endocannabinoid

  10. Measuring Behavior using Motion Capture

    NARCIS (Netherlands)

    Fikkert, F.W.; van der Kooij, Herman; Ruttkay, Z.M.; van Welbergen, H.; Spink, A.J.; Ballintijn, M.R.; Bogers, N.D.; Grieco, F; Loijens, L.W.S.; Noldus, L.P.J.J.; Smit, G; Zimmerman, P.H.


    Motion capture systems, using optical, magnetic or mechanical sensors are now widely used to record human motion. Motion capture provides us with precise measurements of human motion at a very high recording frequency and accuracy, resulting in a massive amount of movement data on several joints of

  11. Vection Modulates Emotional Valence of Autobiographical Episodic Memories (United States)

    Seno, Takeharu; Kawabe, Takahiro; Ito, Hiroyuki; Sunaga, Shoji


    We examined whether illusory self-motion perception ("vection") induced by viewing upward and downward grating motion stimuli can alter the emotional valence of recollected autobiographical episodic memories. We found that participants recollected positive episodes more often while perceiving upward vection. However, when we tested a small moving…

  12. Ground motion predictions

    International Nuclear Information System (INIS)

    Loux, P.C.


    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  13. Motion sickness amelioration induced by prism spectacles

    NARCIS (Netherlands)

    Vente, P. Eric M; Bos, Jelte E.; De Wit, Gert


    A side effect of the prescription of prism glasses according to the principle of Utermohlen to improve mechanical reading skills of certain types of learning disabled children was the alleviation of car sickness. Besides a decrease in reported symptoms after prescription of these glasses, the effect

  14. Motion sickness amelioration induced by prism spectacles

    NARCIS (Netherlands)

    Vente, P.E.M.; Bos, J.E.; Wit, G. de


    A side effect of the prescription of prism glasses according to the principle of Utermöhlen to improve mechanical reading skills of certain types of learning disabled children, was the alleviation of car sickness. Besides a decrease in reported symptoms after prescription of these glasses, the

  15. Leap Motion development essentials

    CERN Document Server

    Spiegelmock, Mischa


    This book is a fast-paced guide with practical examples that aims to help you understand and master the Leap Motion SDK.This book is for developers who are either involved in game development or who are looking to utilize Leap Motion technology in order to create brand new user interaction experiences to distinguish their products from the mass market. You should be comfortable with high-level languages and object-oriented development concepts in order to get the most out of this book.

  16. Ship Roll Motion Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens


    The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of deciencies in control system designs, which have proven to be far from trivial due to fundamental performance limitations....... This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  17. Rotational Motion of Axisymmetric Marangoni Swimmers (United States)

    Rothstein, Jonathan; Uvanovic, Nick


    A series of experiments will be presented investigating the motion of millimeter-sized particles on the surface of water. The particles were partially coated with ethanol and carefully placed on a water interface in a series of Petri dishes with different diameters. High speed particle motion was driven by strong surface tension gradients as the ethanol slowly diffuses from the particles into the water resulting in a Marangoni flow. The velocity and acceleration of the particles where measured. In addition to straight line motion, the presence of the bounding walls of the circular Petri dish was found to induce an asymmetric, rotational motion of the axisymmetric Marangoni swimmers. The rotation rate and radius of curvature was found to be a function of the size of the Petri dish and the curvature of the air-water interface near the edge of the dish. For large Petri dishes or small particles, rotation motion was observed far from the bounding walls. In these cases, the symmetry break appears to be the result of the onset of votex shedding. Finally, multiple spherical particles were observed to undergo assembly driven by capillary forces followed by explosive disassembly.

  18. Metal ion coupled protein folding and allosteric motions (United States)

    Wang, Wei


    Many proteins need the help of cofactors for their successful folding and functioning. Metal ions, i.e., Zn2+, Ca2+, and Mg2+ etc., are typical biological cofactors. Binding of metal ions can reshape the energy landscapes of proteins, thereby modifying the folding and allosteric motions. For example, such binding may make the intrinsically disordered proteins have funneled energy landscapes, consequently, ensures their spontaneous folding. In addition, the binding may activate certain biological processes by inducing related conformational changes of regulation proteins. However, how the local interactions involving the metal ion binding can induce the global conformational motions of proteins remains elusive. Investigating such question requires multiple models with different details, including quantum mechanics, atomistic models, and coarse grained models. In our recent work, we have been developing such multiscale methods which can reasonably model the metal ion binding induced charge transfer, protonation/deprotonation, and large conformational motions of proteins. With such multiscale model, we elucidated the zinc-binding induced folding mechanism of classical zinc finger and the calcium-binding induced dynamic symmetry breaking in the allosteric motions of calmodulin. In addition, we studied the coupling of folding, calcium binding and allosteric motions of calmodulin domains. In this talk, I will introduce the above progresses on the metal ion coupled protein folding and allosteric motions. We thank the finacial support from NSFC and the 973 project.

  19. A world in motion

    Energy Technology Data Exchange (ETDEWEB)

    Boynton, J.A. [SAE, Warrendale, PA (United States)


    A World in Motion is a physical science curriculum supplement for grades four, five, and six which responds to the need to promote and teach sound science and mathematics concepts. Using the A World in Motion kits, teachers work in partnership with practicing engineer or scientists volunteers to provide students with fun, exciting, and relevant hands-on science and math experiences. During the A World in Motion experience, students work together in {open_quotes}Engineering Design Teams{close_quotes} exploring physics concepts through a series of activities. Each student is assigned a role as either a facilities engineer, development engineer, test engineer, or project engineer and is given responsibilities paralleling those of engineers in industry. The program culminates in a {open_quotes}Design Review{close_quotes} where students can communicate their results, demonstrate their designs, and receive recognition for their efforts. They are given a chance to take on responsibility and build self-esteem. Since January 1991, over 12,000 volunteers engineers have been involved with the program, with a distribution of 20,000 A World in Motion kit throughout the U.S. and Canada.

  20. MotionsFloorball

    DEFF Research Database (Denmark)

    Vorup, Jacob; Seidelin, Kåre

    Med denne "opskriftsbog" er I nu klar til at begynde med MotionsFloorball. Ingen vellykket middagsret tilbereder som bekendt sig selv - de vigtigste ingredienser til et succesfuldt forløb er vilje og handlingskraft. Tilsættes værktøjerne og vidensdelen fra denne bog, er der dog ikke langt fra tanke...

  1. A Harmonic Motion Experiment (United States)

    Gluck, P.; Krakower, Zeev


    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  2. Algebraic Description of Motion (United States)

    Davidon, William C.


    An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)

  3. Preliminary results of ground-motion characteristics

    Directory of Open Access Journals (Sweden)

    Francesca Bozzoni


    Full Text Available The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.

  4. The Illusory Dichotomy of Plagiarism (United States)

    Stuhmcke, Anita; Booth, Tracey; Wangmann, Jane


    Plagiarism has been characterised as a "major problem" for universities. While tensions between students and universities are inevitable, the problem with the existing system of plagiarism management and prevention is that it operates to problematise the relationship between the university and the student, rather than address the core…

  5. The illusory nature of standards

    DEFF Research Database (Denmark)

    Linneberg, Mai Skjøtt


    Purpose – The purpose of this paper is to investigate the implications of the paradoxical situation in which standard setters are placed when standardising human practice. Contrary to standards, human practices are ambiguous, heterogeneous, and highly context dependent; in contrast, standards...

  6. Ground motion effects

    International Nuclear Information System (INIS)

    Blume, J.A.


    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  7. Motion of the esophagus due to cardiac motion.

    Directory of Open Access Journals (Sweden)

    Jacob Palmer

    Full Text Available When imaging studies (e.g. CT are used to quantify morphological changes in an anatomical structure, it is necessary to understand the extent and source of motion which can give imaging artifacts (e.g. blurring or local distortion. The objective of this study was to assess the magnitude of esophageal motion due to cardiac motion. We used retrospective electrocardiogram-gated contrast-enhanced computed tomography angiography images for this study. The anatomic region from the carina to the bottom of the heart was taken at deep-inspiration breath hold with the patients' arms raised above their shoulders, in a position similar to that used for radiation therapy. The esophagus was delineated on the diastolic phase of cardiac motion, and deformable registration was used to sequentially deform the images in nearest-neighbor phases among the 10 cardiac phases, starting from the diastolic phase. Using the 10 deformation fields generated from the deformable registration, the magnitude of the extreme displacements was then calculated for each voxel, and the mean and maximum displacement was calculated for each computed tomography slice for each patient. The average maximum esophageal displacement due to cardiac motion for all patients was 5.8 mm (standard deviation: 1.6 mm, maximum: 10.0 mm in the transverse direction. For 21 of 26 patients, the largest esophageal motion was found in the inferior region of the heart; for the other patients, esophageal motion was approximately independent of superior-inferior position. The esophagus motion was larger at cardiac phases where the electrocardiogram R-wave occurs. In conclusion, the magnitude of esophageal motion near the heart due to cardiac motion is similar to that due to other sources of motion, including respiratory motion and intra-fraction motion. A larger cardiac motion will result into larger esophagus motion in a cardiac cycle.

  8. Force and motion

    CERN Document Server

    Robertson, William C


    Intimidated by inertia? Frightened by forces? Mystified by Newton s law of motion? You re not alone and help is at hand. The stop Faking It! Series is perfect for science teachers, home-schoolers, parents wanting to help with homework all of you who need a jargon-free way to learn the background for teaching middle school physical science with confidence. With Bill Roberton as your friendly, able but somewhat irreverent guide, you will discover you CAN come to grips with the basics of force and motion. Combining easy-to-understand explanations with activities using commonly found equipment, this book will lead you through Newton s laws to the physics of space travel. The book is as entertaining as it is informative. Best of all, the author understands the needs of adults who want concrete examples, hands-on activities, clear language, diagrams and yes, a certain amount of empathy. Ideas For Use Newton's laws, and all of the other motion principles presented in this book, do a good job of helping us to underst...

  9. Rolling motion in moving droplets

    Indian Academy of Sciences (India)

    Abstract. Drops moving on a substrate under the action of gravity display both rolling and sliding motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively studied. We are interested in intermediate shapes. We quantify the contribution of rolling motion ...

  10. Statistics of bicycle rider motion

    NARCIS (Netherlands)

    Moore, J.K.; Hubbard, M.; Schwab, A.L.; Kooijman, J.D.G.; Peterson, D.L.


    An overview of bicycle and rider kinematic motions from a series of experimental treadmill tests is presented. The full kinematics of bicycles and riders were measured with an active motion capture system. Motion across speeds are compared graphically with box and whiskers plots. Trends and ranges

  11. EDITORIAL: Nanotechnology in motion Nanotechnology in motion (United States)

    Demming, Anna


    , Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468

  12. Self versus environment motion in postural control.

    Directory of Open Access Journals (Sweden)

    Kalpana Dokka


    Full Text Available To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results.

  13. Human motion simulation predictive dynamics

    CERN Document Server

    Abdel-Malek, Karim


    Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...

  14. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion (United States)

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo


    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  15. Localized motion in random matrix decomposition of complex financial systems (United States)

    Jiang, Xiong-Fei; Zheng, Bo; Ren, Fei; Qiu, Tian


    With the random matrix theory, we decompose the multi-dimensional time series of complex financial systems into a set of orthogonal eigenmode functions, which are classified into the market mode, sector mode, and random mode. In particular, the localized motion generated by the business sectors, plays an important role in financial systems. Both the business sectors and their impact on the stock market are identified from the localized motion. We clarify that the localized motion induces different characteristics of the time correlations for the stock-market index and individual stocks. With a variation of a two-factor model, we reproduce the return-volatility correlations of the eigenmodes.

  16. WORKSHOP: Stable particle motion

    International Nuclear Information System (INIS)

    Ruggiero, Alessandro G.


    Full text: Particle beam stability is crucial to any accelerator or collider, particularly big ones, such as Brookhaven's RHIC heavy ion collider and the larger SSC and LHC proton collider schemes. A workshop on the Stability of Particle Motion in Storage Rings held at Brookhaven in October dealt with the important issue of determining the short- and long-term stability of single particle motion in hadron storage rings and colliders, and explored new methods for ensuring it. In the quest for realistic environments, the imperfections of superconducting magnets and the effects of field modulation and noise were taken into account. The workshop was divided into three study groups: Short-Term Stability in storage rings, including chromatic and geometric effects and correction strategies; Long-Term Stability, including modulation and random noise effects and slow varying effects; and Methods for determining the stability of particle motion. The first two were run in parallel, but the third was attended by everyone. Each group considered analytical, computational and experimental methods, reviewing work done so far, comparing results and approaches and underlining outstanding issues. By resolving conflicts, it was possible to identify problems of common interest. The workshop reaffirmed the validity of methods proposed several years ago. Major breakthroughs have been in the rapid improvement of computer capacity and speed, in the development of more sophisticated mathematical packages, and in the introduction of more powerful analytic approaches. In a typical storage ring, a particle may be required to circulate for about a billion revolutions. While ten years ago it was only possible to predict accurately stability over about a thousand revolutions, it is now possible to predict over as many as one million turns. If this trend continues, in ten years it could become feasible to predict particle stability over the entire storage period. About ninety participants

  17. Method through motion

    DEFF Research Database (Denmark)

    Steijn, Arthur


    context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design and studies of motion graphics in spatial contexts. The focus of this paper is the role of model...... construction as a support to working systematically practice-led research project. The design model is being developed through design laboratories and workshops with students and professionals who provide feedback that lead to incremental improvements. Working with this model construction-as-method reveals...

  18. Electromechanical motion devices

    CERN Document Server

    Krause, Paul C; Pekarek, Steven D


    This text provides a basic treatment of modern electric machine analysis that gives readers the necessary background for comprehending the traditional applications and operating characteristics of electric machines-as well as their emerging applications in modern power systems and electric drives, such as those used in hybrid and electric vehicles. Through the appropriate use of reference frame theory, Electromagnetic Motion Devices, Second Edition introduces readers to field-oriented control of induction machines, constant-torque, and constant-power control of dc, permanent-magnet ac

  19. Iterative motion compensation approach for ultrasonic thermal imaging (United States)

    Fleming, Ioana; Hager, Gregory; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad


    As thermal imaging attempts to estimate very small tissue motion (on the order of tens of microns), it can be negatively influenced by signal decorrelation. Patient's breathing and cardiac cycle generate shifts in the RF signal patterns. Other sources of movement could be found outside the patient's body, like transducer slippage or small vibrations due to environment factors like electronic noise. Here, we build upon a robust displacement estimation method for ultrasound elastography and we investigate an iterative motion compensation algorithm, which can detect and remove non-heat induced tissue motion at every step of the ablation procedure. The validation experiments are performed on laboratory induced ablation lesions in ex-vivo tissue. The ultrasound probe is either held by the operator's hand or supported by a robotic arm. We demonstrate the ability to detect and remove non-heat induced tissue motion in both settings. We show that removing extraneous motion helps unmask the effects of heating. Our strain estimation curves closely mirror the temperature changes within the tissue. While previous results in the area of motion compensation were reported for experiments lasting less than 10 seconds, our algorithm was tested on experiments that lasted close to 20 minutes.

  20. Near-Field Ground Motion Modal versus Wave Propagation Analysis

    Directory of Open Access Journals (Sweden)

    Artur Cichowicz


    Full Text Available The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.

  1. Decision-level adaptation in motion perception. (United States)

    Mather, George; Sharman, Rebecca J


    Prolonged exposure to visual stimuli causes a bias in observers' responses to subsequent stimuli. Such adaptation-induced biases are usually explained in terms of changes in the relative activity of sensory neurons in the visual system which respond selectively to the properties of visual stimuli. However, the bias could also be due to a shift in the observer's criterion for selecting one response rather than the alternative; adaptation at the decision level of processing rather than the sensory level. We investigated whether adaptation to implied motion is best attributed to sensory-level or decision-level bias. Three experiments sought to isolate decision factors by changing the nature of the participants' task while keeping the sensory stimulus unchanged. Results showed that adaptation-induced bias in reported stimulus direction only occurred when the participants' task involved a directional judgement, and disappeared when adaptation was measured using a non-directional task (reporting where motion was present in the display, regardless of its direction). We conclude that adaptation to implied motion is due to decision-level bias, and that a propensity towards such biases may be widespread in sensory decision-making.

  2. Encoding of yaw in the presence of distractor motion: studies in a fly motion sensitive neuron. (United States)

    Roy, Suva; Sinha, Shiva R; de Ruyter van Steveninck, Rob


    Motion estimation is crucial for aerial animals such as the fly, which perform fast and complex maneuvers while flying through a 3-D environment. Motion-sensitive neurons in the lobula plate, a part of the visual brain, of the fly have been studied extensively for their specialized role in motion encoding. However, the visual stimuli used in such studies are typically highly simplified, often move in restricted ways, and do not represent the complexities of optic flow generated during actual flight. Here, we use combined rotations about different axes to study how H1, a wide-field motion-sensitive neuron, encodes preferred yaw motion in the presence of stimuli not aligned with its preferred direction. Our approach is an extension of "white noise" methods, providing a framework that is readily adaptable to quantitative studies into the coding of mixed dynamic stimuli in other systems. We find that the presence of a roll or pitch ("distractor") stimulus reduces information transmitted by H1 about yaw, with the amount of this reduction depending on the variance of the distractor. Spike generation is influenced by features of both yaw and the distractor, where the degree of influence is determined by their relative strengths. Certain distractor features may induce bidirectional responses, which are indicative of an imbalance between global excitation and inhibition resulting from complex optic flow. Further, the response is shaped by the dynamics of the combined stimulus. Our results provide intuition for plausible strategies involved in efficient coding of preferred motion from complex stimuli having multiple motion components. Copyright © 2015 the authors 0270-6474/15/356481-14$15.00/0.

  3. Stochastic Blind Motion Deblurring

    KAUST Repository

    Xiao, Lei


    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.

  4. Empirical ground motion prediction

    Directory of Open Access Journals (Sweden)

    R. J. Archuleta


    Full Text Available New methods of site-specific ground motion prediction in the time and frequency domains are presented. A large earthquake is simulated as a composite (linear combination of observed small earthquakes (subevents assuming Aki-Brune functional models of the source time functions (spectra. Source models incorporate basic scaling relations between source and spectral parameters. Ground motion predictions are consistent with the entire observed seismic spectrum from the lowest to the highest frequencies. These methods are designed to use all the available empirical Green’s functions (or any subset of observations at a site. Thus a prediction is not biased by a single record, and different possible source-receiver paths are taken into account. Directivity is accounted for by adjusting the apparent source duration at each site. Our time-series prediction algorithm is based on determination of a non-uniform distribution of rupture times of subevents. By introducing a specific rupture velocity we avoid the major problem of deficiency of predictions around the main event's corner frequency. A novel notion of partial coherence allows us to sum subevents' amplitude spectra directly without using any information on their rupture times and phase histories. Predictions by this spectral method are not Jependent on details of rupture nucleation and propagation, location of asperities and other predominantly phase-affecting factors, responsible for uncertainties in time-domain simulations.

  5. Perceptually Uniform Motion Space. (United States)

    Birkeland, Asmund; Turkay, Cagatay; Viola, Ivan


    Flow data is often visualized by animated particles inserted into a flow field. The velocity of a particle on the screen is typically linearly scaled by the velocities in the data. However, the perception of velocity magnitude in animated particles is not necessarily linear. We present a study on how different parameters affect relative motion perception. We have investigated the impact of four parameters. The parameters consist of speed multiplier, direction, contrast type and the global velocity scale. In addition, we investigated if multiple motion cues, and point distribution, affect the speed estimation. Several studies were executed to investigate the impact of each parameter. In the initial results, we noticed trends in scale and multiplier. Using the trends for the significant parameters, we designed a compensation model, which adjusts the particle speed to compensate for the effect of the parameters. We then performed a second study to investigate the performance of the compensation model. From the second study we detected a constant estimation error, which we adjusted for in the last study. In addition, we connect our work to established theories in psychophysics by comparing our model to a model based on Stevens' Power Law.

  6. The influence of sleep deprivation and oscillating motion on sleepiness, motion sickness, and cognitive and motor performance. (United States)

    Kaplan, Janna; Ventura, Joel; Bakshi, Avijit; Pierobon, Alberto; Lackner, James R; DiZio, Paul


    Our goal was to determine how sleep deprivation, nauseogenic motion, and a combination of motion and sleep deprivation affect cognitive vigilance, visual-spatial perception, motor learning and retention, and balance. We exposed four groups of subjects to different combinations of normal 8h sleep or 4h sleep for two nights combined with testing under stationary conditions or during 0.28Hz horizontal linear oscillation. On the two days following controlled sleep, all subjects underwent four test sessions per day that included evaluations of fatigue, motion sickness, vigilance, perceptual discrimination, perceptual learning, motor performance and learning, and balance. Sleep loss and exposure to linear oscillation had additive or multiplicative relationships to sleepiness, motion sickness severity, decreases in vigilance and in perceptual discrimination and learning. Sleep loss also decelerated the rate of adaptation to motion sickness over repeated sessions. Sleep loss degraded the capacity to compensate for novel robotically induced perturbations of reaching movements but did not adversely affect adaptive recovery of accurate reaching. Overall, tasks requiring substantial attention to cognitive and motor demands were degraded more than tasks that were more automatic. Our findings indicate that predicting performance needs to take into account in addition to sleep loss, the attentional demands and novelty of tasks, the motion environment in which individuals will be performing and their prior susceptibility to motion sickness during exposure to provocative motion stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The tactile motion aftereffect suggests an intensive code for speed in neurons sensitive to both speed and direction of motion (United States)

    Birznieks, I.; Vickery, R. M.; Holcombe, A. O.; Seizova-Cajic, T.


    Neurophysiological studies in primates have found that direction-sensitive neurons in the primary somatosensory cortex (SI) generally increase their response rate with increasing speed of object motion across the skin and show little evidence of speed tuning. We employed psychophysics to determine whether human perception of motion direction could be explained by features of such neurons and whether evidence can be found for a speed-tuned process. After adaptation to motion across the skin, a subsequently presented dynamic test stimulus yields an impression of motion in the opposite direction. We measured the strength of this tactile motion aftereffect (tMAE) induced with different combinations of adapting and test speeds. Distal-to-proximal or proximal-to-distal adapting motion was applied to participants' index fingers using a tactile array, after which participants reported the perceived direction of a bidirectional test stimulus. An intensive code for speed, like that observed in SI neurons, predicts greater adaptation (and a stronger tMAE) the faster the adapting speed, regardless of the test speed. In contrast, speed tuning of direction-sensitive neurons predicts the greatest tMAE when the adapting and test stimuli have matching speeds. We found that the strength of the tMAE increased monotonically with adapting speed, regardless of the test speed, showing no evidence of speed tuning. Our data are consistent with neurophysiological findings that suggest an intensive code for speed along the motion processing pathways comprising neurons sensitive both to speed and direction of motion. PMID:26823511

  8. Cohesive motion in one-dimensional flocking

    International Nuclear Information System (INIS)

    Dossetti, V


    A one-dimensional rule-based model for flocking, which combines velocity alignment and long-range centering interactions, is presented and studied. The induced cohesion in the collective motion of the self-propelled agents leads to unique group behavior that contrasts with previous studies. Our results show that the largest cluster of particles, in the condensed states, develops a mean velocity slower than the preferred one in the absence of noise. For strong noise, the system also develops a non-vanishing mean velocity, alternating its direction of motion stochastically. This allows us to address the directional switching phenomenon. The effects of different sources of stochasticity on the system are also discussed. (paper)

  9. The Perception of Depicted Motion

    Directory of Open Access Journals (Sweden)

    Livio Dobrez


    Full Text Available Everyone knows that you can read a galloping horse in a still image as galloping. This paper asks how it is that we perceive motion in pictures. It considers perception of real motion in point-light experiments and the perception of motion in stills via the work of various psychologists, in the course of which it raises theoretical questions about the nature of visual perception. It then offers a detailed examination of knowledge regarding neural substrates for both real and depicted motion perception. Finally, it combines psychological and neurophysiological perspectives with phenomenologically-oriented observation of pictures, discussing both frontoparallel motion and motion in depth (in particular the phenomenon of “looming” in terms of two kinds of depictions, the “narrative” and the “performative”. Examples are drawn from all kinds of pictures, but focus is on world rock art, whose time depth is especially amenable to the universalist approach adopted by the paper.

  10. Peculiarities of motion at low velocities. Motion in space and motion in time

    International Nuclear Information System (INIS)

    Zheludev, I.S.


    Motion referred to certain space coordinate x and described by space-time relationships of the special theory of relativity, is interpreted as a motion in space. The concept of motion referred to the certain moment of time t, is introduced and called as a motion in time. Space-time relationships for the latter case are followed from the transformations x→t, t→x, v→α (α=1/v, mod(αsub(t))=mod(vsub(s))), c→αsub(max)=1/c 0 , mod(c)=mod(αsub(max)). The invariable characteristic of inertial motion in time is determined by a given equation. The peculiar features of motion in time are found at low velocities (α→αsub(max)). The combined approach is based on both limiting quantities c and αsub(max). If the space coordinate x is measured through motion in space and time t through motion in time (parity frame-reference), all inertial movements have the same velocity, velocity of self-divergence v 0 = √cc 0 . There is no distortion of spatial and temporal scales when the motion is described in the parity frame-reference. The use of different intervals characterizing invariable quantities of inertial motion in space and times makes it possible to understand some problems of cosmological expansion of non-interacting galaxies (Hubble's law v = HR and, the ''low of limited distances'', v = R/t characterizing linear dimension of Universe etc.). (Auth.)

  11. Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers. (United States)

    Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T


    Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.

  12. Disrupted integration of sensory stimuli with information about the movement of the body as a mechanism explaining LSD-induced experience. (United States)

    Juszczak, Grzegorz R


    LSD (lysergic acid diethylamide) is a model psychedelic drug used to study mechanism underlying the effects induced by hallucinogens. However, despite advanced knowledge about molecular mechanism responsible for the effects induced by LSD and other related substances acting at serotonergic 5-HT 2a receptors, we still do not understand how these drugs trigger specific sensory experiences. LSD-induced experience is characterised by perception of movement in the environment and by presence of various bodily sensations such as floating in space, merging into surroundings and movement out of the physical body (the out-of-body experience). It means that a large part of the experience induced by the LSD can be simplified to the illusory movement that can be attributed to the self or to external objects. The phenomenology of the LSD-induced experience has been combined with the fact that serotonergic neurons provide all major parts of the brain with information about the level of tonic motor activity, occurrence of external stimuli and the execution of orienting responses. Therefore, it has been proposed that LSD-induced stimulation of 5-HT 2a receptors disrupts the integration of the sensory stimuli with information about the movement of the body leading to perception of illusory movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Multisensory integration of speech sounds with letters vs. visual speech: only visual speech induces the mismatch negativity. (United States)

    Stekelenburg, Jeroen J; Keetels, Mirjam; Vroomen, Jean


    Numerous studies have demonstrated that the vision of lip movements can alter the perception of auditory speech syllables (McGurk effect). While there is ample evidence for integration of text and auditory speech, there are only a few studies on the orthographic equivalent of the McGurk effect. Here, we examined whether written text, like visual speech, can induce an illusory change in the perception of speech sounds on both the behavioural and neural levels. In a sound categorization task, we found that both text and visual speech changed the identity of speech sounds from an /aba/-/ada/ continuum, but the size of this audiovisual effect was considerably smaller for text than visual speech. To examine at which level in the information processing hierarchy these multisensory interactions occur, we recorded electroencephalography in an audiovisual mismatch negativity (MMN, a component of the event-related potential reflecting preattentive auditory change detection) paradigm in which deviant text or visual speech was used to induce an illusory change in a sequence of ambiguous sounds halfway between /aba/ and /ada/. We found that only deviant visual speech induced an MMN, but not deviant text, which induced a late P3-like positive potential. These results demonstrate that text has much weaker effects on sound processing than visual speech does, possibly because text has different biological roots than visual speech. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Prehospital Cervical Spine Motion: Immobilization Versus Spine Motion Restriction. (United States)

    Swartz, Erik E; Tucker, W Steven; Nowak, Matthew; Roberto, Jason; Hollingworth, Amy; Decoster, Laura C; Trimarco, Thomas W; Mihalik, Jason P


    This study aims to evaluate the efficacy of two different spinal immobilization techniques on cervical spine movement in a simulated prehospital ground transport setting. A counterbalanced crossover design was used to evaluate two different spinal immobilization techniques in a standardized environment. Twenty healthy male volunteers (age = 20.9 ± 2.2 yr) underwent ambulance transport from a simulated scene to a simulated emergency department setting in two separate conditions: utilizing traditional spinal immobilization (TSI) and spinal motion restriction (SMR). During both transport scenarios, participants underwent the same simulated scenario. The main outcome measures were cervical spine motion (cumulative integrated motion and peak range of motion), vital signs (heart rate, blood pressure, oxygen saturation), and self-reported pain. Vital signs and pain were collected at six consistent points throughout each scenario. Participants experienced greater transverse plane cumulative integrated motion during TSI compared to SMR (F 1,57 = 4.05; P = 0.049), and greater transverse peak range of motion during participant loading/unloading in TSI condition compared to SMR (F 1,57 = 17.32; P TSI compared to 25% of participants during SMR (χ 2 = 1.29; P = 0.453). Spinal motion restriction controlled cervical motion at least as well as traditional spinal immobilization in a simulated prehospital ground transport setting. Given these results, along with well-documented potential complications of TSI in the literature, SMR is supported as an alternative to TSI. Future research should involve a true patient population.

  15. 41 CFR 60-30.8 - Motions; disposition of motions. (United States)


    ... a supporting memorandum. Within 10 days after a written motion is served, or such other time period... writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may require that they be reduced to writing and filed and served on all parties in the same manner as a formal...

  16. Visual motion influences the contingent auditory motion aftereffect

    NARCIS (Netherlands)

    Vroomen, J.; de Gelder, B.


    In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa).

  17. Effects of self-motion on auditory scene analysis. (United States)

    Kondo, Hirohito M; Pressnitzer, Daniel; Toshima, Iwaki; Kashino, Makio


    Auditory scene analysis requires the listener to parse the incoming flow of acoustic information into perceptual "streams," such as sentences from a single talker in the midst of background noise. Behavioral and neural data show that the formation of streams is not instantaneous; rather, streaming builds up over time and can be reset by sudden changes in the acoustics of the scene. Here, we investigated the effect of changes induced by voluntary head motion on streaming. We used a telepresence robot in a virtual reality setup to disentangle all potential consequences of head motion: changes in acoustic cues at the ears, changes in apparent source location, and changes in motor or attentional processes. The results showed that self-motion influenced streaming in at least two ways. Right after the onset of movement, self-motion always induced some resetting of perceptual organization to one stream, even when the acoustic scene itself had not changed. Then, after the motion, the prevalent organization was rapidly biased by the binaural cues discovered through motion. Auditory scene analysis thus appears to be a dynamic process that is affected by the active sensing of the environment.

  18. Periodic Boundary Motion in Thermal Turbulence

    International Nuclear Information System (INIS)

    Zhang, Jun; Libchaber, Albert


    A free-floating plate is introduced in a Benard convection cell with an open surface. It partially covers the cell and distorts the local heat flux, inducing a coherent flow that in turn moves the plate. Remarkably, the plate can be driven to a periodic motion even under the action of a turbulent fluid. The period of the oscillation depends on the coverage ratio, and on the Rayleigh number of the convective system. The plate oscillatory behavior observed in this experiment may be related to a geological model, in which continents drift in a quasiperiodic fashion. (c) 2000 The American Physical Society

  19. Rolling motion in moving droplets

    Indian Academy of Sciences (India)


    Feb 19, 2015 ... Drops moving on a substrate under the action of gravity display both rolling and sliding motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively studied. We are interested in intermediate shapes. We quantify the contribution of rolling ...

  20. Algorithmic Issues in Modeling Motion

    DEFF Research Database (Denmark)

    Agarwal, P. K; Guibas, L. J; Edelsbrunner, H.


    This article is a survey of research areas in which motion plays a pivotal role. The aim of the article is to review current approaches to modeling motion together with related data structures and algorithms, and to summarize the challenges that lie ahead in producing a more unified theory...

  1. Rigid Motion and Adapted Frames (United States)

    Lyle, Stephen N.

    The aim here is to describe the rigid motion of a continuous medium in special and general relativity. Section 7.1 defines a rigid rod in special relativity, and Sect. 7.2 shows the link with the space coordinates of a certain kind of accelerating frame in flat spacetimes. Section 7.3 then sets up a notation for describing the arbitrary smooth motion of a continuous medium in general curved spacetimes, defining the proper metric of such a medium. Section 7.4 singles out rigid motions and shows that the rod in Sect. 7.1 undergoes rigid motion in the more generally defined sense. Section 7.5 defines a rate of strain tensor for a continuous medium in general relativity and reformulates the rigidity criterion. Section 7.6 aims to classify all possible rigid motions in special relativity, reemphasizing the link with semi-Euclidean frames adapted to accelerating observers in special relativity. Then, Sects. 7.7 and 7.8 describe rigid motion without rotation and rigid rotation, respectively. Along the way we introduce the notion of Fermi-Walker transport and discuss its relevance for rigid motions. Section 7.9 brings together all the above themes in an account of a recent generalization of the notion of uniform acceleration, thereby characterizing a wide class of rigid motions.

  2. Motion signals bias localization judgments (United States)

    Eagleman, David M.; Sejnowski, Terrence J.


    In the flash-lag illusion, a moving object aligned with a flash is perceived to be offset in the direction of motion following the flash. In the “flash-drag” illusion, a flash is mislocalized in the direction of nearby motion. In the “flash-jump” illusion, a transient change in the appearance of a moving object (e.g., color) is mislocalized in the direction of subsequent motion. Finally, in the Frohlich illusion, the starting position of a suddenly appearing moving object is mislocalized in the direction of the subsequent motion. We demonstrate, in a series of experiments, a unified explanation for all these illusions: Perceptual localization is influenced by motion signals collected over ∼80 ms after a query is triggered. These demonstrations rule out “latency difference” and asynchronous feature binding models, in which objects appear in their real positions but misaligned in time. Instead, the illusions explored here are best understood as biases in localization caused by motion signals. We suggest that motion biasing exists because it allows the visual system to account for neural processing delays by retrospectively “pushing” an object closer to its true physical location, and we propose directions for exploring the neural mechanisms underlying the dynamic updating of location by the activity of motion-sensitive neurons. PMID:17461687

  3. Isynchronous motion in classical mechanics

    International Nuclear Information System (INIS)

    Osypowski, E.; Olsson, M.G.


    Those oscillatory motions for which the period is independent of the total energy are investigated. There is only one corresponding symmetric potential, the quadratic potential of the simple harmonic motion but infinite classes of asymmetric potentials must be considered. Geometric and analytic requirements of isochronism are discussed and several specific examples are given

  4. Motion simulator with exchangeable unit

    NARCIS (Netherlands)

    Mulder, J.A.; Beukers, A.; Baarspul, M.; Van Tooren, M.J.; De Winter, S.E.E.


    A motion simulator provided with a movable housing, preferably carried by a number of length-adjustable legs, in which housing projection means are arranged for visual information supply, while in the housing a control environment of a motion apparatus to be simulated is situated, the control

  5. Commercially available video motion detectors

    Energy Technology Data Exchange (ETDEWEB)


    A market survey of commercially available video motion detection systems was conducted by the Intrusion Detection Systems Technology Division of Sandia Laboratories. The information obtained from this survey is summarized in this report. The cutoff date for this information is May 1978. A list of commercially available video motion detection systems is appended.

  6. Commercially available video motion detectors

    International Nuclear Information System (INIS)


    A market survey of commercially available video motion detection systems was conducted by the Intrusion Detection Systems Technology Division of Sandia Laboratories. The information obtained from this survey is summarized in this report. The cutoff date for this information is May 1978. A list of commercially available video motion detection systems is appended

  7. Feedback Synthesizes Neural Codes for Motion. (United States)

    Clarke, Stephen E; Maler, Leonard


    In senses as diverse as vision, hearing, touch, and the electrosense, sensory neurons receive bottom-up input from the environment, as well as top-down input from feedback loops involving higher brain regions [1-4]. Through connectivity with local inhibitory interneurons, these feedback loops can exert both positive and negative control over fundamental aspects of neural coding, including bursting [5, 6] and synchronous population activity [7, 8]. Here we show that a prominent midbrain feedback loop synthesizes a neural code for motion reversal in the hindbrain electrosensory ON- and OFF-type pyramidal cells. This top-down mechanism generates an accurate bidirectional encoding of object position, despite the inability of the electrosensory afferents to generate a consistent bottom-up representation [9, 10]. The net positive activity of this midbrain feedback is additionally regulated through a hindbrain feedback loop, which reduces stimulus-induced bursting and also dampens the ON and OFF cell responses to interfering sensory input [11]. We demonstrate that synthesis of motion representations and cancellation of distracting signals are mediated simultaneously by feedback, satisfying an accepted definition of spatial attention [12]. The balance of excitatory and inhibitory feedback establishes a "focal" distance for optimized neural coding, whose connection to a classic motion-tracking behavior provides new insight into the computational roles of feedback and active dendrites in spatial localization [13, 14]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Soliton trains in motion

    International Nuclear Information System (INIS)

    Hause, A.; Mitschke, F.


    Two solitons in an optical fiber can form pairs in which the double-humped shape is maintained even when the pair is shifted in frequency by the Raman effect. We show here analytically that this is possible even when the two solitons have unequal power. We discuss the forces that cause relative motion of the two solitons, and determine a condition for balance, i.e., for a pair to maintain their separation while the phase keeps evolving. At a specific parameter point we find a solution in which even the phase profile of the pulse pair is maintained. We then discuss that this special point exists also for multipeak structures, or soliton trains. These trains can move as an entity due to Raman shifting. The results are tested by numerical simulation. A comparison to literature reveals that both the rotating phase pair and the constant phase soliton pair apparently have been seen before by others in numerical simulations. Our treatment provides the general framework.

  9. Measurement of shoulder motion fraction and motion ratio

    International Nuclear Information System (INIS)

    Kang, Yeong Han


    This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR (computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was 15 .deg., 19 .deg., 22 .deg. to the cephald for the parallel scapular spine, and the tilting of torso was external oblique 40 .deg., 36 .deg., 22 .deg. for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age (20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, 90 .deg. and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. While the arm elevation was 90 .deg., the shoulder motion fraction was 1.22 (M), 1.70 (W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84 and left was 1.57, 1.32. In right dominant arm (78%), 90 .deg. and Full motion fraction was 1.58, 1.43, in left (22%) 1.82, 1.94. In generation 20, 90 .deg. and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28,60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. The criteria of motion fraction was useful reference for clinical diagnosis the shoulder instability

  10. Measurement of shoulder motion fraction and motion ratio

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeong Han [Daegu Catholic University Hospital, Daegu (Korea, Republic of)


    This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR (computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was 15 .deg., 19 .deg., 22 .deg. to the cephald for the parallel scapular spine, and the tilting of torso was external oblique 40 .deg., 36 .deg., 22 .deg. for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age (20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, 90 .deg. and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. While the arm elevation was 90 .deg., the shoulder motion fraction was 1.22 (M), 1.70 (W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84 and left was 1.57, 1.32. In right dominant arm (78%), 90 .deg. and Full motion fraction was 1.58, 1.43, in left (22%) 1.82, 1.94. In generation 20, 90 .deg. and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28,60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. The criteria of motion fraction was useful reference for clinical diagnosis the shoulder instability.

  11. Marker-Free Human Motion Capture

    DEFF Research Database (Denmark)

    Grest, Daniel

    Human Motion Capture is a widely used technique to obtain motion data for animation of virtual characters. Commercial optical motion capture systems are marker-based. This book is about marker-free motion capture and its possibilities to acquire motion from a single viewing direction. The focus...

  12. Motion perception in motion : how we perceive object motion during smooth pursuit eye movements

    NARCIS (Netherlands)

    Souman, J.L.


    Eye movements change the retinal image motion of objects in the visual field. When we make an eye movement, the image of a stationary object will move across the retinae, while the retinal image of an object that we follow with the eyes is approximately stationary. To enable us to perceive motion in

  13. Muon motion in titanium hydride (United States)

    Kempton, J. R.; Petzinger, K. G.; Kossler, W. J.; Schone, H. E.; Hitti, B. S.; Stronach, C. E.; Adu, N.; Lankford, W. F.; Reilly, J. J.; Seymour, E. F. W.


    Motional narrowing of the transverse-field muon spin rotation signal was observed in gamma-TiH(x) for x = 1.83, 1.97, and 1.99. An analysis of the data for TiH1.99 near room temperature indicates that the mechanism responsible for the motion of the muon out of the octahedral site is thermally activated diffusion with an attempt frequency comparable to the optical vibrations of the lattice. Monte Carlo calculations to simulate the effect of muon and proton motion upon the muon field-correlation time were used to interpret the motional narrowing in TiH1.97 near 500 K. The interpretation is dependent upon whether the Bloembergen, Purcell, and Pound (BPP) theory or an independent spin-pair relaxation model is used to obtain the vacancy jump rate from proton NMR T1 measurements. Use of BPP theory shows that the field-correction time can be obtained if the rate of motion of the muon with respect to the rate of the motion for the protons is decreased. An independent spin-pair relaxation model indicates that the field-correlation time can be obtained if the rate of motion for the nearest-neighbor protons is decreased.

  14. Open architecture CMM motion controller (United States)

    Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John


    Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.

  15. Motion Compensation on DCT Domain

    Directory of Open Access Journals (Sweden)

    K. J. Ray Liu


    Full Text Available Alternative fully DCT-based video codec architectures have been proposed in the past to address the shortcomings of the conventional hybrid motion compensated DCT video codec structures traditionally chosen as the basis of implementation of standard-compliant codecs. However, no prior effort has been made to ensure interoperability of these two drastically different architectures so that fully DCT-based video codecs are fully compatible with the existing video coding standards. In this paper, we establish the criteria for matching conventional codecs with fully DCT-based codecs. We find that the key to this interoperability lies in the heart of the implementation of motion compensation modules performed in the spatial and transform domains at both the encoder and the decoder. Specifically, if the spatial-domain motion compensation is compatiable with the transform-domain motion compensation, then the states in both the coder and the decoder will keep track of each other even after a long series of P-frames. Otherwise, the states will diverge in proportion to the number of P-frames between two I-frames. This sets an important criterion for the development of any DCT-based motion compensation schemes. We also discuss and develop some DCT-based motion compensation schemes as important building blocks of fully DCT-based codecs. For the case of subpixel motion compensation, DCT-based approaches allow more accurate interpolation without any increase in computation. Furthermore, a scare number of DCT coefficients after quantization significantly decreases the number of calculations required for motion compensation. Coupled with the DCT-based motion estimation algorithms, it is possible to realize fully DCT-based codecs to overcome the disadvantages of conventional hybrid codecs.

  16. What motion is: William Neile and the laws of motion. (United States)

    Kemeny, Max


    In 1668-1669 William Neile and John Wallis engaged in a protracted correspondence regarding the nature of motion. Neile was unhappy with the laws of motion that had been established by the Royal Society in three papers published in 1668, deeming them not explanations of motion at all, but mere descriptions. Neile insisted that science could not be informative without a discussion of causes, meaning that Wallis's purely kinematic account of collision could not be complete. Wallis, however, did not consider Neile's objections to his work to be serious. Rather than engage in a discussion of the proper place of natural philosophy in science, Wallis decided to show how Neile's preferred treatment of motion lead to absurd conclusions. This dispute is offered as a case study of dispute resolution within the early Royal Society.

  17. Site response zones and short-period earthquake ground motion ...

    Indian Academy of Sciences (India)

    A deterministic seismic hazard analysis was conducted to address the effect of local soil conditions on earthquake-induced strong ground motion in the Las Vegas Basin, Nevada (US). Using a large geological and geotechnical database, two response units were defined: a fine-grained unit, predominantly clay; and a ...

  18. Muon zero point motion and the hyperfine field in nickel

    International Nuclear Information System (INIS)

    Elzain, M.E.


    It is argued that the effect of zero point motion of muons in Ni is to induce local vibrations of the neighbouring Ni atoms. This local vibration reduces the Hubbard correlation and hence decreases the net spin per atom. This acts back to reduce the hyperfine field at the muon site. (author)

  19. From fractional Brownian motion to multifractional and multistable motion (United States)

    Falconer, Kenneth


    Fractional Brownian motion, introduced by Benoit Mandelbrot and John Van Ness in 1968, has had a major impact on stochastic processes and their applications. We survey a few of the many developments that have stemmed from their ideas. In particular we discuss the local structure of fractional and multifractional Brownian, stable and multistable processes, emphasising the `diagonal' construction of such processes. In all this, the ubiquity and centrality of fractional Brownian motion is striking.

  20. Adaptive Motion Compensation in Radiotherapy

    CERN Document Server

    Murphy, Martin J


    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  1. Motion management in gastrointestinal cancers. (United States)

    Abbas, Hassan; Chang, Bryan; Chen, Zhe Jay


    The presence of tumor and organ motions complicates the planning and delivery of radiotherapy for gastrointestinal cancers. Without proper accounting of the movements, target volume could be under-dosed and the nearby normal critical organs could be over-dosed. This situation is further exacerbated by the close proximity of abdominal tumors to many normal organs at risk (OARs). A number of strategies have been developed to deal with tumor and organ motions in radiotherapy. This article presents a review of the techniques used in the evaluation, quantification, and management of tumor and organ motions for radiotherapy of gastrointestinal cancers.

  2. A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion (United States)

    Yao, Lin; Meng, Jianjun; Sheng, Xinjun; Zhang, Dingguo; Zhu, Xiangyang


    Objective. Lack of efficient calibration and task guidance in motor imagery (MI) based brain-computer interface (BCI) would result in the failure of communication or control, especially in patients, such as a stroke with motor impairment and intact sensation, locked-in state amyotrophic lateral sclerosis, in which the sources of data for calibration may worsen the subsequent decoding. In addition, enhancing the proprioceptive experience in MI might improve the BCI performance. Approach. In this work, we propose a new calibrating and task guidance methodology to further improve the MI BCI, exploiting the afferent nerve system through tendon vibration stimulation to induce a sensation with kinesthesia illusion. A total of 30 subjects’ experiments were carried out, and randomly divided into a control group (control-group) and calibration and task guidance group (CTG-group). Main results. Online experiments have shown that MI could be decoded by classifier calibrated solely using sensation data, with 8 of the 15 subjects in the CTG-Group above 80%, 3 above 95% and all above 65%. Offline chronological cross-validation analysis shows that it has reached a comparable performance with the traditional calibration method (F(1,14)=0.14,P=0.7176). In addition, the discrimination accuracy of MI in the CTG-Group is significantly 12.17% higher on average than that in the control-group (unpaired-T test, P = 0.0086), and illusory sensation indicates no significant difference (unpaired-T test, p = 0.3412). The finding of the existed similarity of the discriminative brain patterns and grand averaged ERD/ERS between imagined movement (actively induced) and illusory movement (passively evoked) also validates the proposed calibration and task guidance framework. Significance. The cognitive complexity of the illusory sensation task is much lower and more objective than that of MI. In addition, subjects’ kinesthetic experience mentally simulated during the MI task might be enhanced by

  3. Using needle orientation sensing as surrogate signal for respiratory motion estimation in percutaneous interventions

    NARCIS (Netherlands)

    Abayazid, Momen; Kato, Takahisa; Silverman, Stuart G.; Hata, Nobuhiko

    Purpose To develop and evaluate an approach to estimate the respiratory-induced motion of lesions in the chest and abdomen. Materials and methods The proposed approach uses the motion of an initial reference needle inserted into a moving organ to estimate the lesion (target) displacement that is

  4. The effect of spinal manipulative therapy on spinal range of motion

    DEFF Research Database (Denmark)

    Millan, Mario; Leboeuf-Yde, Charlotte; Budgell, Brian


    Spinal manipulative therapy (SMT) has been shown to have an effect on spine-related pain, both clinically and in experimentally induced pain. However, it is unclear if it has an immediate noticeable biomechanical effect on spinal motion that can be measured in terms of an increased range of motion...

  5. Weigh-in-Motion Stations (United States)

    Department of Homeland Security — The data included in the GIS Traffic Stations Version database have been assimilated from station description files provided by FHWA for Weigh-in-Motion (WIM), and...

  6. Generalized quantal equation of motion

    International Nuclear Information System (INIS)

    Morsy, M.W.; Embaby, M.


    In the present paper, an attempt is made for establishing a generalized equation of motion for quantal objects, in which intrinsic self adjointness is naturally built in, independently of any prescribed representation. This is accomplished by adopting Hamilton's principle of least action, after incorporating, properly, the quantal features and employing the generalized calculus of variations, without being restricted to fixed end points representation. It turns out that our proposed equation of motion is an intrinsically self-adjoint Euler-Lagrange's differential equation that ensures extremization of the quantal action as required by Hamilton's principle. Time dependence is introduced and the corresponding equation of motion is derived, in which intrinsic self adjointness is also achieved. Reducibility of the proposed equation of motion to the conventional Schroedinger equation is examined. The corresponding continuity equation is established, and both of the probability density and the probability current density are identified. (author)

  7. Dance notations and robot motion

    CERN Document Server

    Abe, Naoko


    How and why to write a movement? Who is the writer? Who is the reader? They may be choreographers working with dancers. They may be roboticists programming robots. They may be artists designing cartoons in computer animation. In all such fields the purpose is to express an intention about a dance, a specific motion or an action to perform, in terms of intelligible sequences of elementary movements, as a music score that would be devoted to motion representation. Unfortunately there is no universal language to write a motion. Motion languages live together in a Babel tower populated by biomechanists, dance notators, neuroscientists, computer scientists, choreographers, roboticists. Each community handles its own concepts and speaks its own language. The book accounts for this diversity. Its origin is a unique workshop held at LAAS-CNRS in Toulouse in 2014. Worldwide representatives of various communities met there. Their challenge was to reach a mutual understanding allowing a choreographer to access robotics ...

  8. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I


    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  9. Spatial design and control of graphene flake motion (United States)

    Ghorbanfekr-Kalashami, H.; Peeters, F. M.; Novoselov, K. S.; Neek-Amal, M.


    The force between a sharp scanning probe tip and a surface can drive a graphene flake over crystalline substrates. The recent design of particular patterns of structural defects on a graphene surface allows us to propose an alternative approach for controlling the motion of a graphene flake over a graphene substrate. The thermally induced motion of a graphene flake is controlled by engineering topological defects in the substrate. Such defect regions lead to an inhomogeneous energy landscape and are energetically unfavorable for the motion of the flake, and will invert and scatter graphene flakes when they are moving toward the defect line. Engineering the distribution of these energy barriers results in a controllable trajectory for the thermal motion of the flake without using any external force. We predict superlubricity of the graphene flake for motion along and between particular defect lines. This Rapid Communication provides insights into the frictional forces of interfaces and opens a route to the engineering of the stochastic motion of a graphene flake over any crystalline substrate.

  10. Passive infrared motion sensing technology

    International Nuclear Information System (INIS)

    Doctor, A.P.


    In the last 10 years passive IR based (8--12 microns) motion sensing has matured to become the dominant method of volumetric space protection and surveillance. These systems currently cost less than $25 to produce and yet use traditionally expensive IR optics, filters, sensors and electronic circuitry. This IR application is quite interesting in that the volumes of systems produced and the costs and performance level required prove that there is potential for large scale commercial applications of IR technology. This paper will develop the basis and principles of operation of a staring motion sensor system using a technical approach. A model for the motion of the target is developed and compared to the background. The IR power difference between the target and the background as well as the optical requirements are determined from basic principles and used to determine the performance of the system. Low cost reflective and refractive IR optics and bandpass IR filters are discussed. The pyroelectric IR detector commonly used is fully discussed and characterized. Various schemes for ''false alarms'' have been developed and are also explained. This technology is also used in passive IR based motion sensors for other applications such as lighting control. These applications are also discussed. In addition the paper will discuss new developments in IR surveillance technology such as the use of linear motion sensing arrays. This presentation can be considered a ''primer'' on the art of Passive IR Motion Sensing as applied to Surveillance Technology

  11. Neuronal mechanisms for detection of motion in the field of view. (United States)

    Galletti, Claudio; Fattori, Patrizia


    The visual system cannot rely only upon information from the retina to perceive object motion because identical retinal stimulations can be evoked by the movement of objects in the field of view as well as by the movements of retinal images self-evoked by eye movements. We clearly distinguish the two situations, perceiving object motion in the first case and stationarity in the second. The present work deals with the neuronal mechanisms that are likely involved in the detection of real motion. In monkeys, cells that are able to distinguish real from self-induced motion (real-motion cells) are distributed in several cortical areas of the dorsal visual stream. We suggest that the activity of these cells is responsible for motion perception, and hypothesize that these cells are the elements of a cortical network representing an internal map of a stable visual world. Supporting this view are the facts that: (i) the same cortical regions in humans are activated in brain imaging studies during perception of object motion; and (ii) lesions of these same regions produce selective impairments in motion detection, so that patients interpret any retinal image motion as object motion, even when they result from her/his eye movements. Among the areas of the dorsal visual stream rich in real-motion cells, V3A and V6, likely involved in the fast form and motion analyses needed for visual guidance of action, could use real-motion signals to orient the animal's attention towards moving objects, and/or to help grasping them. Areas MT/V5, MST and 7a, known to be involved in the control of pursuit eye movements and in the analysis of visual signals evoked by slow ocular movements, could use real-motion signals to give a proper evaluation of motion during pursuits.

  12. A comparison of tumor motion characteristics between early stage and locally advanced stage lung cancers

    International Nuclear Information System (INIS)

    Yu, Z. Henry; Lin, Steven H.; Balter, Peter; Zhang Lifei; Dong Lei


    Purpose: With the increasing use of conformal radiation therapy methods for non-small cell lung cancer (NSCLC), it is necessary to accurately determine respiratory-induced tumor motion. The purpose of this study is to analyze and compare the motion characteristics of early and locally advanced stage NSCLC tumors in a large population and correlate tumor motion with position, volume, and diaphragm motion. Methods and materials: A total of 191 (94 early stage, 97 locally advanced) non-small cell lung tumors were analyzed for this study. Each patient received a four-dimensional CT scan prior to receiving radiation treatment. A soft-tissue-based rigid registration algorithm was used to track the tumor motion. Tumor volumes were determined based on the gross tumor volume delineated by physicians in the end of expiration phase. Tumor motion characteristics were correlated with their standardized tumor locations, lobe location, and clinical staging. Diaphragm motion was calculated by subtracting the diaphragm location between the expiration and the inspiration phases. Results: Median, max, and 95th percentile of tumor motion for early stage tumors were 5.9 mm, 31.0 mm, and 20.0 mm, which were 1.2 mm, 12 mm, and 7 mm more than those in locally advanced NSCLC, respectively. The range of motion at 95th percentile is more than 50% larger in early stage lung cancer group than in the locally advanced lung cancer group. Early stage tumors in the lower lobe showed the largest motion with a median motion of 9.2 mm, while upper/mid-lobe tumors exhibited a median motion of 3.3 mm. Tumor volumes were not correlated with motion. Conclusion: The range of tumor motion differs depending on tumor location and staging of NSCLC. Early stage tumors are more mobile than locally advanced stage NSCLC. These factors should be considered for general motion management strategies when 4D simulation is not performed on individual basis.

  13. Coupled motions direct electrons along human microsomal P450 Chains.

    Directory of Open Access Journals (Sweden)

    Christopher R Pudney


    Full Text Available Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear. Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR to all microsomal cytochrome P450s (CYPs. Our hypothesis is that tight coupling of motion with enzyme chemistry can signal "ready and waiting" states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening, whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron transfer between flavin cofactors by adopting closed states and signals "ready and waiting" conformations to partner CYP enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional electron transfer from NADPH→FAD→FMN→heme, thereby facilitating all microsomal P450-catalysed reactions. Motions critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of motion to enzyme chemistry to give vectorial electron

  14. A novel CT acquisition and analysis technique for breathing motion modeling

    International Nuclear Information System (INIS)

    Low, Daniel A; White, Benjamin M; Lee, Percy P; Thomas, David H; Gaudio, Sergio; Jani, Shyam S; Wu, Xiao; Lamb, James M


    To report on a novel technique for providing artifact-free quantitative four-dimensional computed tomography (4DCT) image datasets for breathing motion modeling. Commercial clinical 4DCT methods have difficulty managing irregular breathing. The resulting images contain motion-induced artifacts that can distort structures and inaccurately characterize breathing motion. We have developed a novel scanning and analysis method for motion-correlated CT that utilizes standard repeated fast helical acquisitions, a simultaneous breathing surrogate measurement, deformable image registration, and a published breathing motion model. The motion model differs from the CT-measured motion by an average of 0.65 mm, indicating the precision of the motion model. The integral of the divergence of one of the motion model parameters is predicted to be a constant 1.11 and is found in this case to be 1.09, indicating the accuracy of the motion model. The proposed technique shows promise for providing motion-artifact free images at user-selected breathing phases, accurate Hounsfield units, and noise characteristics similar to non-4D CT techniques, at a patient dose similar to or less than current 4DCT techniques. (fast track communication)

  15. Designing a compact MRI motion phantom

    Directory of Open Access Journals (Sweden)

    Schmiedel Max


    Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.

  16. Breast Support Garments are Ineffective at Reducing Breast Motion During an Aqua Aerobics Jumping Exercise


    Mills, Chris; Ayres, Bessie; Scurr, Joanna


    The buoyant forces of water during aquatic exercise may provide a form of ‘natural’ breast support and help to minimise breast motion and alleviate exercise induced breast pain. Six larger-breasted females performed standing vertical land and water-based jumps, whilst wearing three breast support conditions. Underwater video cameras recorded the motion of the trunk and right breast. Trunk and relative breast kinematics were calculated as well as exercised induced breast pain scores. Key resul...

  17. On a PCA-based lung motion model. (United States)

    Li, Ruijiang; Lewis, John H; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A; Jiang, Steve B


    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  18. Dynamic visual attention: motion direction versus motion magnitude (United States)

    Bur, A.; Wurtz, P.; Müri, R. M.; Hügli, H.


    Defined as an attentive process in the context of visual sequences, dynamic visual attention refers to the selection of the most informative parts of video sequence. This paper investigates the contribution of motion in dynamic visual attention, and specifically compares computer models designed with the motion component expressed either as the speed magnitude or as the speed vector. Several computer models, including static features (color, intensity and orientation) and motion features (magnitude and vector) are considered. Qualitative and quantitative evaluations are performed by comparing the computer model output with human saliency maps obtained experimentally from eye movement recordings. The model suitability is evaluated in various situations (synthetic and real sequences, acquired with fixed and moving camera perspective), showing advantages and inconveniences of each method as well as preferred domain of application.

  19. Steady motions exhibited by Duffing's equation

    International Nuclear Information System (INIS)

    Ueda, Yoshisuke


    Various types of steady states take place in the system exhibited by Duffing's equation. Among them harmonic, higher harmonic and subharmonic motions are popularly known. Then ultrasubharmonic motions of different orders are fairly known. However chaotic motions are scarcely known. By using analog and digital computers, this report makes a survey of the whole aspect of steady motions exhibited by Duffing's equation. (author)

  20. 12 CFR 747.23 - Motions. (United States)


    ... written motions except as otherwise directed by the administrative law judge. Written memorandum, briefs... Procedure § 747.23 Motions. (a) In writing. (1) Except as otherwise provided herein, an application or request for an order or ruling must be made by written motion. (2) All written motions must state with...

  1. 7 CFR 1.327 - Motions. (United States)


    ... be in writing. The ALJ may require that oral motions be reduced to writing. (c) The ALJ may require written motions to be accompanied by supporting memorandums. (d) Within 15 days after a written motion is...) The ALJ may not grant a written motion prior to expiration of the time for filing responses thereto...

  2. Particle motion in fluidised beds

    International Nuclear Information System (INIS)

    Stein, M.G.


    Gas fluidised beds are important components in many process industries, e.g. coal combustors and granulators, but not much is known about the movement of the solids. Positron Emission Particle Tracking (PEPT) enables the movement of a single, radioactive tracer particle to be followed rapidly and faithfully. Experiments were carried out in columns sized between 70 and 240mm. diameter, operating in the bubbling regime at ambient process conditions using particles of group B and D (Geldart Classification). Particle motion was tracked and the data applied to models for particle movement at the gas distributor as well as close to other surfaces and to models for particle circulation in beds of cohesive particles. In the light of these data, models for particle and bubble interaction, particle circulation, segregation, attrition, erosion, heat transfer and fluidised bed scale-up rules were reassessed. Particle motion is directly caused by bubble motion, and their velocities were found to be equal for particles travelling in a bubble. PEPT enables particle circulation to be measured, giving a more accurate correlation for future predictions. Particle motion follows the scale-up rules based on similarities of the bubble motion in the bed. A new group of parameters was identified controlling the amount of attrition in fluidised beds and a new model to predict attrition is proposed. (author)

  3. Motion Learning Based on Bayesian Program Learning

    Directory of Open Access Journals (Sweden)

    Cheng Meng-Zhen


    Full Text Available The concept of virtual human has been highly anticipated since the 1980s. By using computer technology, Human motion simulation could generate authentic visual effect, which could cheat human eyes visually. Bayesian Program Learning train one or few motion data, generate new motion data by decomposing and combining. And the generated motion will be more realistic and natural than the traditional one.In this paper, Motion learning based on Bayesian program learning allows us to quickly generate new motion data, reduce workload, improve work efficiency, reduce the cost of motion capture, and improve the reusability of data.

  4. 4D modeling and estimation of respiratory motion for radiation therapy

    CERN Document Server

    Lorenz, Cristian


    Respiratory motion causes an important uncertainty in radiotherapy planning of the thorax and upper abdomen. The main objective of radiation therapy is to eradicate or shrink tumor cells without damaging the surrounding tissue by delivering a high radiation dose to the tumor region and a dose as low as possible to healthy organ tissues. Meeting this demand remains a challenge especially in case of lung tumors due to breathing-induced tumor and organ motion where motion amplitudes can measure up to several centimeters. Therefore, modeling of respiratory motion has become increasingly important in radiation therapy. With 4D imaging techniques spatiotemporal image sequences can be acquired to investigate dynamic processes in the patient’s body. Furthermore, image registration enables the estimation of the breathing-induced motion and the description of the temporal change in position and shape of the structures of interest by establishing the correspondence between images acquired at different phases of the br...

  5. Discontinuity Preserving Image Registration through Motion Segmentation: A Primal-Dual Approach

    Directory of Open Access Journals (Sweden)

    Silja Kiriyanthan


    Full Text Available Image registration is a powerful tool in medical image analysis and facilitates the clinical routine in several aspects. There are many well established elastic registration methods, but none of them can so far preserve discontinuities in the displacement field. These discontinuities appear in particular at organ boundaries during the breathing induced organ motion. In this paper, we exploit the fact that motion segmentation could play a guiding role during discontinuity preserving registration. The motion segmentation is embedded in a continuous cut framework guaranteeing convexity for motion segmentation. Furthermore we show that a primal-dual method can be used to estimate a solution to this challenging variational problem. Experimental results are presented for MR images with apparent breathing induced sliding motion of the liver along the abdominal wall.

  6. Motion Streaks Do Not Influence the Perceived Position of Stationary Flashed Objects

    Directory of Open Access Journals (Sweden)

    Andrea Pavan


    Full Text Available In the present study, we investigated whether motion streaks, produced by fast moving dots Geisler 1999, distort the positional map of stationary flashed objects producing the well-known motion-induced position shift illusion (MIPS. The illusion relies on motion-processing mechanisms that induce local distortions in the positional map of the stimulus which is derived by shape-processing mechanisms. To measure the MIPS, two horizontally offset Gaussian blobs, placed above and below a central fixation point, were flashed over two fields of dots moving in opposite directions. Subjects judged the position of the top Gaussian blob relative to the bottom one. The results showed that neither fast (motion streaks nor slow moving dots influenced the perceived spatial position of the stationary flashed objects, suggesting that background motion does not interact with the shape-processing mechanisms involved in MIPS.

  7. Compensation for incoherent ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Shigeru, Takeda; Hiroshi, Matsumoto; Masakazu, Yoshioka; Yasunori, Takeuchi; Kikuo, Kudo [KEK, High Energy Alccelerator Research Organization (Japan); Tsuneya, Tsubokawa [National Astronomical Observatory, Mizusawa Astrogeodynamics Observatory (Japan); Mitsuaki, Nozaki; Kiyotomo, Kawagoe [Kobe Univ. (Japan). Dept. of Physics


    The power spectrum density and coherence function for ground motions are studied for the construction of the next generation electron-positron linear collider. It should provide a center of mass energy between 500 GeV-1 TeV with luminosity as high as 10{sup 33} to 10{sup 34} cm{sup -2} sec{sup -1}. Since the linear collider has a relatively slow repetition rate, large number of particles and small sizes of the beam should be generated and preserved in the machine to obtain the required high luminosity. One of the most critical parameters is the extremely small vertical beam size at the interaction point, thus a proper alignment system for the focusing and accelerating elements of the machine is necessary to achieve the luminosity. We describe recent observed incoherent ground motions and an alignment system to compensate the distortion by the ground motions. (authors)

  8. Theoretical motions of hydrofoil systems (United States)

    Imlay, Frederick H


    Results are presented of an investigation that has been undertaken to develop theoretical methods of treating the motions of hydrofoil systems and to determine some of the important parameters. Variations of parameters include three distributions of area between the hydrofoils, two rates of change of downwash angle with angle of attack, three depths of immersion, two dihedral angles, two rates of change of lift with immersion, three longitudinal hydrofoil spacings, two radii of gyration in pitching, and various horizontal and vertical locations of the center of gravity. Graphs are presented to show locations of the center of gravity for stable motion, values of the stability roots, and motions following the sudden application of a vertical force or a pitching moment to the hydrofoil system for numerous sets of values of the parameters.

  9. Motion sensor technologies in education

    Directory of Open Access Journals (Sweden)

    T. Bratitsis


    Full Text Available This paper attempts to raise a discussion regarding motion sensor technologies, mainly seen as peripherals of contemporary video game consoles, by examining their exploitation within educational context. An overview of the existing literature is presented, while attempting to categorize the educational approaches which involve motion sensor technologies, in two parts. The first one concerns the education of people with special needs. The utilization of motion sensor technologies, incorporated by game consoles, in the education of such people is examined. The second one refers to various educational approaches in regular education, under which not so many research approaches, but many teaching ideas can be found. The aim of the paper is to serve as a reference point for every individual/group, willing to explore the Sensor-Based Games Based Learning (SBGBL research area, by providing a complete and structured literature review.

  10. Methods for Structure from Motion

    DEFF Research Database (Denmark)

    Aanæs, Henrik


    .g. within entertainment, reverse engineering and architecture. This thesis is a study within this area of structure from motion. The result of the work, which this thesis represents is the development of new methods for addressing some of the problems within the field. Mainly in robustifying......Structure from motion, the problem of estimating 3D structure from 2D images hereof, is one of the most popular and well studied problems within computer vision. In part because it is academically interesting, but also because it holds a wealth of commercially very interesting prospects, e...... the factorization approach, relaxing the rigidity constrains, and in considering alternative ways of solving the surface estimation problem. In Danish: Structure from motion problematikken beskæftiger sig med at estimere 3D struktur fra 2D afbildninger heraf. Denne problemstilling er en af de mest populære og...

  11. Robot Motion and Control 2011

    CERN Document Server


    Robot Motion Control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: • Design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors. • New control algorithms for industrial robots, nonholonomic systems and legged robots. • Different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others. • Multiagent systems consisting of mobile and flying robots with their applications The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists...

  12. Visualization system of swirl motion

    International Nuclear Information System (INIS)

    Nakayama, K.; Umeda, K.; Ichikawa, T.; Nagano, T.; Sakata, H.


    The instrumentation of a system composed of an experimental device and numerical analysis is presented to visualize flow and identify swirling motion. Experiment is performed with transparent material and PIV (Particle Image Velocimetry) instrumentation, by which velocity vector field is obtained. This vector field is then analyzed numerically by 'swirling flow analysis', which estimates its velocity gradient tensor and the corresponding eigenvalue (swirling function). Since an instantaneous flow field in steady/unsteady states is captured by PIV, the flow field is analyzed, and existence of vortices or swirling motions and their locations are identified in spite of their size. In addition, intensity of swirling is evaluated. The analysis enables swirling motion to emerge, even though it is hidden in uniform flow and velocity filed does not indicate any swirling. This visualization system can be applied to investigate condition to control flow or design flow. (authors)

  13. Change my body, change my mind: the effects of illusory ownership of an out group hand on implicit attitudes towards that outgroup.

    Directory of Open Access Journals (Sweden)

    Harry eFarmer


    Full Text Available The effect of multisensory-induced changes on body-ownership and self-awareness using bodily illusions has been well established. More recently, experimental manipulation of bodily illusions have been combined with social cognition tasks to investigate whether changes in body-ownership can in turn change the way we perceive others. For example, experiencing ownership over a dark-skin rubber hand reduces implicit bias against dark-skin groups. Several studies have also shown that processing of skin colour and facial features play an important role in judgements of racial typicality and racial categorization independently and in an additive manner. The present study aimed at examining whether using multisensory stimulation to induce feelings of body ownership over a dark-skin rubber hand would lead to an increase in positive attitudes towards black faces. We here show, that the induced ownership of a body-part of different skin colour affected the participants’ implicit attitudes when processing facial features, in addition to the processing of skin colour as shown previously. Furthermore, when the levels of pre-existing attitudes towards black people were taken into account, the effect of the rubber hand illusion on the post-stimulation implicit attitudes was only significant for those participants who had a negative initial attitude towards black people, with no significant effects found for those who had positive initial attitudes towards black people. Taken together, our findings corroborate the hypothesis that the representation of the self and its relation to others, as given to us by body-related multisensory processing, is critical in maintaining but also in changing social attitudes.

  14. Motions of elastic solids in fluids under vibration

    DEFF Research Database (Denmark)

    Sorokin, V. S.; Blekhman, I. I.; Thomsen, Jon Juel


    Motion of a rigid or deformable solid in a viscous incompressible fluid and corresponding fluid–solid interactions are considered. Different cases of applying high frequency vibrations to the solid or to the surrounding fluid are treated. Simple formulas for the mean velocity of the solid...... are derived, under the assumption that the regime of the fluid flow induced by its motion is turbulent and the fluid resistance force is nonlinearly dependent on its velocity. It is shown that vibrations of a fluid’s volume slow down the motion of a submerged solid. This effect is much pronounced in the case...... of a deformable solid (i.e., gas bubble) exposed to near-resonant excitation. The results are relevant to the theory of gravitational enrichment of raw materials, and also contribute to the theory of controlled locomotion of a body with an internal oscillator in continuous deformable (solid or fluid) media....

  15. Self-sustained motion of a train of haptotactic microcapsules. (United States)

    Bhattacharya, Amitabh; Usta, O Berk; Yashin, Victor V; Balazs, Anna C


    Using theory and simulation, we design a "train" of N microcapsules that undergoes self-sustained, directed motion along an adhesive surface in solution. The motion is initiated by the release of nanoparticles from a single "signaling" capsule at one end of the train. The released nanoparticles can bind to the underlying surface and thereby induce an adhesion gradient on the substrate. Through the combined effects of the self-imposed adhesion gradient and hydrodynamic interactions, the N microcapsules autonomously move in single file toward the region of greatest adhesion. At late times, this train reaches a steady-state velocity U, which decreases with train length as N(-1/2). We calculate the maximum length for which the train maintains this cooperative, autonomous motion.

  16. Measurements of ground motion and magnet vibrations at the APS

    International Nuclear Information System (INIS)

    Shiltsev, V.


    This article presents results of ground motion and magnet vibrations measurements at the Advanced Photon Source. The experiments were done over a wide, frequency range (0-05-100 Hz) with the use of SM-3KV-type seismic probes from the Budker Institute of Nuclear Physics (Russia). Spectral power densities of vertical and horizontal motions of the APS hall floor and quadrupoles on regular supports were obtained. Also investigated were magnet vibrations induced by designed cooling water flow and spectral characteristics of spatial correlation of the quadrupole vibrations at different sectors of the ring. The influence of personnel activity in the hall and traffic under the ring on the slow motion of storage ring elements were observed. Amplitudes of vibrations at the APS are compared with results of seismic measurements at some other accelerators

  17. Measurements of ground motion and magnets vibrations at the APS

    International Nuclear Information System (INIS)

    Shil'tsev, V.D.


    This article presents results of ground motion and magnets vibrations measurements at the Advanced Photon Source. The experiments were done over wide frequency range 0.05-100 Hz with use of SM-3KV type seismic probes from Budker Institute of Nuclear Physics (Russia). Spectral power densities of vertical and horizontal motions of the APS hall floor and quadrupoles on regular supports were obtained. There were also investigated magnets vibrations induced by designed cooling water flow and spectral characteristics of spatial correlation of the quads vibration at different sectors of the ring. Influence of personnel activity in the hall and traffic under the ring on slow motion of storage ring elements were observed. Amplitudes of vibrations at the APS are compared with results of seismic measurements at some other accelerators. 9 refs.; 10 figs.; 1 tab

  18. Development of motion capture system using alternating magnetic field (United States)

    Kumagai, Masaaki; Akamatsu, Kazuyoshi


    Motion capture systems are widely used for virtual reality, motion acquisition for medical researches, for humanoid robots, for video games, etc. Several types of them have been developed and used for applications considering their advantages and restrictions. Another type of motion capture system that uses alternating magnetic field is proposed in this paper. The system uses a field exciting coil that covers measuring area and a pickup coil attached to target. First, six alternating fields are generated simultaneously in measuring area, and signals are induced on pickup coils according to attitude and position of it. These signals are processed to extract amplitude of exciting components, and state of the pickup coil is calculated from those components. It can detect attitude and displacement of target with high resolution and fast response speed. The principles of detection and brief experimental results are described.

  19. Alpha motion based on a motion detector, but not on the Müller-Lyer illusion (United States)

    Suzuki, Masahiro


    This study examined the mechanism of alpha motion, the apparent motion of the Müller-Lyer figure's shaft that occurs when the arrowheads and arrow tails are alternately presented. The following facts were found: (a) reduced exposure duration decreased the amount of alpha motion, and this phenomenon was not explainable by the amount of the Müller-Lyer illusion; (b) the motion aftereffect occurred after adaptation to alpha motion; (c) occurrence of alpha motion became difficult when the temporal frequency increased, and this characteristic of alpha motion was similar to the characteristic of a motion detector that motion detection became difficult when the temporal frequency increased from the optimal frequency. These findings indicated that alpha motion occurs on the basis of a motion detector but not on the Müller-Lyer illusion, and that the mechanism of alpha motion is the same as that of general motion perception.

  20. Mental imagery of gravitational motion. (United States)

    Gravano, Silvio; Zago, Myrka; Lacquaniti, Francesco


    There is considerable evidence that gravitational acceleration is taken into account in the interaction with falling targets through an internal model of Earth gravity. Here we asked whether this internal model is accessed also when target motion is imagined rather than real. In the main experiments, naïve participants grasped an imaginary ball, threw it against the ceiling, and caught it on rebound. In different blocks of trials, they had to imagine that the ball moved under terrestrial gravity (1g condition) or under microgravity (0g) as during a space flight. We measured the speed and timing of the throwing and catching actions, and plotted ball flight duration versus throwing speed. Best-fitting duration-speed curves estimate the laws of ball motion implicit in the participant's performance. Surprisingly, we found duration-speed curves compatible with 0g for both the imaginary 0g condition and the imaginary 1g condition, despite the familiarity with Earth gravity effects and the added realism of performing the throwing and catching actions. In a control experiment, naïve participants were asked to throw the imaginary ball vertically upwards at different heights, without hitting the ceiling, and to catch it on its way down. All participants overestimated ball flight durations relative to the durations predicted by the effects of Earth gravity. Overall, the results indicate that mental imagery of motion does not have access to the internal model of Earth gravity, but resorts to a simulation of visual motion. Because visual processing of accelerating/decelerating motion is poor, visual imagery of motion at constant speed or slowly varying speed appears to be the preferred mode to perform the tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Motion Verbs in Learner Corpora

    Directory of Open Access Journals (Sweden)

    M. Pınar BABANOĞLU


    Full Text Available Motions verbs differ across languages in respect of spatial relations and syntactic/semantic conceptualization. Languages have two typological groups for motion events: (a verb-framed languages in which the main verb expresses the core information of the path of movement, and the manner information is expressed in a subordinate structure (e.g. a gerundive and (b satellite-framed languages where the main verb expresses information about manner of movement and a subordinate satellite element (e.g., a verb particle to the verb conveys the path of movement (Talmy, 1985; Chen & Guo, 2009. In this corpus-based study, two learner corpora from two different native languages as Turkish as a verb-framed language and German as satellite-framed language are investigated in terms of motion verbs in English like move, fly, walk, go via frequency and statistical analysis for corpora comparison. The purpose of the study is to find out whether there is a statistical difference in the use of motion verbs by Turkish (as a verb-framed L1 and German (as a satellite-framed L1 learners in due of cross-linguistic difference between Turkish and German which may be a factor that influence learners essay writing in English (as a satellite-framed L2 in the use of motion verbs. Results indicated that German learners of English use especially manner of motion verbs in English statistically more frequent and lexically more diverse in their essays than Turkish learners of English.

  2. Large prostate motion produced by anal contraction

    International Nuclear Information System (INIS)

    Onishi, Hiroshi; Kuriyama, Kengo; Komiyama, Takafumi; Marino, Kan; Araya, Masayuki; Saito, Ryo; Aoki, Shinichi; Maehata, Yoshiyasu; Tominaga, Licht; Sano, Naoki; Oguri, Mitsuhiko; Onohara, Kojiro; Watanabe, Iori; Koshiishi, Tsuyota; Ogawa, Kazuhiko; Araki, Tsutomu


    Background and purpose: The aim of this study was to define the effects of voluntary anal contraction on prostate motion in an experimental setting. Materials and methods: Thirty-eight patients (median age, 76 years) with prostate cancer underwent thin-slice computed tomography (CT) in the vicinity of the prostate before and after active anal contraction. Three-dimensional displacement of the pelvis and prostate was measured. Results: Mean (±standard deviation, SD) overall displacement of the prostate due to anal contraction was 0.3 ± 1.4 mm to the right, 9.3 ± 7.8 mm to the anterior, and 5 ± 4 mm to the cranial direction. Mean displacement of the pelvis was 0.5 ± 1.8 mm to the right, 4.1 ± 7.1 mm to the anterior, and 1 ± 3 mm to the cranial direction. Mean displacement of the prostate relative to the pelvis was 0.1 ± 1.1 mm to the left, 5.2 ± 3.3 mm to the anterior, and 4 ± 4 mm to the cranial direction. Conclusions: Voluntary anal contraction within an experimental setting induces large prostate and bone motion, mainly in the anterior and cranial directions. The frequency and magnitude of actual anal contractions during radiotherapy for prostate cancer need to be determined.

  3. Algebraic motion of vertically displacing plasmas (United States)

    Pfefferlé, D.; Bhattacharjee, A.


    The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.

  4. Roll motion stimuli : sensory conflict, perceptual weighting and motion sickness

    NARCIS (Netherlands)

    Graaf, B. de; Bles, W.; Bos, J.E.


    In an experiment with seventeen subjects interactions of visual roll motion stimuli and vestibular body tilt stimuli were examined in determining the subjective vertical. Interindi-vidual differences in weighting the visual information were observed, but in general visual and vestibular responses

  5. Quantitative assessment of human motion using video motion analysis (United States)

    Probe, John D.


    In the study of the dynamics and kinematics of the human body a wide variety of technologies has been developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development, coupled with recent advances in video technology, have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System (APAS) to develop data on shirtsleeved and space-suited human performance in order to plan efficient on-orbit intravehicular and extravehicular activities. APAS is a fully integrated system of hardware and software for biomechanics and the analysis of human performance and generalized motion measurement. Major components of the complete system include the video system, the AT compatible computer, and the proprietary software.

  6. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar


    model being correct is computed through a likelihood function for each model.  The study presented a simple technique to introduce additional models into the system using deterministic acceleration which basically defines the dynamics of the system.  Therefore, based on this value more motion models can...

  7. Biological Motion Perception in Autism

    Directory of Open Access Journals (Sweden)

    J Cusack


    Full Text Available Typically developing adults can readily recognize human actions, even when conveyed to them via point-like markers placed on the body of the actor (Johansson, 1973. Previous research has suggested that children affected by autism spectrum disorder (ASD are not equally sensitive to this type of visual information (Blake et al, 2003, but it remains unknown why ASD would impact the ability to perceive biological motion. We present evidence which looks at how adolescents and adults with autism are affected by specific factors which are important in biological motion perception, such as (eg, inter-agent synchronicity, upright/inverted, etc.

  8. String Motion in Fivebrane Geometry


    Khuri, Ramzi R.; La, HoSeong


    The classical motion of a test string in the transverse space of two types of heterotic fivebrane sources is fully analyzed, for arbitrary instanton scale size. The singular case is treated as a special case and does not arise in the continuous limit of zero instanton size. We find that the orbits are either circular or open, which is a solitonic analogy with the motion of an electron around a magnetic monopole, although the system we consider is quantitatively different. We emphasize that at...

  9. Motion of rectangular prismatic bodies

    International Nuclear Information System (INIS)

    Poreh, M.; Wray, R.N.


    Rectangular prismatic bodies can assume either a translatory or an auto-rotating mode of motion during free motion in the atmosphere. The translatory mode is stable only when the dimensionless moment of inertia of the bodies is large, however, large perturbations will always start auto-rotation. The characteristics of the auto-rotational mode are shown to depend primarily on the aspect ratio of the bodies which determines the dimensionless rotational speed and the lift coefficient. Both the average drag and lift-coefficients of auto-rotating bodies are estimated, but it is shown that secondary effects make it impossible to determine their exact trajectories in atmospheric flows

  10. Methods to detect, characterize, and remove motion artifact in resting state fMRI (United States)

    Power, Jonathan D; Mitra, Anish; Laumann, Timothy O; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E


    Head motion systematically alters correlations in resting state functional connectivity fMRI (RSFC). In this report we examine impact of motion on signal intensity and RSFC correlations. We find that motion-induced signal changes (1) are often complex and variable waveforms, (2) are often shared across nearly all brain voxels, and (3) often persist more than 10 seconds after motion ceases. These signal changes, both during and after motion, increase observed RSFC correlations in a distance-dependent manner. Motion-related signal changes are not removed by a variety of motion-based regressors, but are effectively reduced by global signal regression. We link several measures of data quality to motion, changes in signal intensity, and changes in RSFC correlations. We demonstrate that improvements in data quality measures during processing may represent cosmetic improvements rather than true correction of the data. We demonstrate a within-subject, censoring-based artifact removal strategy based on volume censoring that reduces group differences due to motion to chance levels. We note conditions under which group-level regressions do and do not correct motion-related effects. PMID:23994314

  11. Optical motion control of maglev graphite. (United States)

    Kobayashi, Masayuki; Abe, Jiro


    Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.

  12. Sensory conflict in motion sickness: An observer theory approach (United States)

    Oman, Charles M.


    Motion sickness is the general term describing a group of common nausea syndromes originally attributed to motion-induced cerebral ischemia, stimulation of abdominal organ afferent, or overstimulation of the vestibular organs of the inner ear. Sea-, car-, and airsicknesses are the most commonly experienced examples. However, the discovery of other variants such as Cinerama-, flight simulator-, spectacle-, and space sickness in which the physical motion of the head and body is normal or absent has led to a succession of sensory conflict theories which offer a more comprehensive etiologic perspective. Implicit in the conflict theory is the hypothesis that neutral and/or humoral signals originate in regions of the brain subversing spatial orientation, and that these signals somehow traverse to other centers mediating sickness symptoms. Unfortunately, the present understanding of the neurophysiological basis of motion sickness is far from complete. No sensory conflict neuron or process has yet been physiologically identified. To what extent can the existing theory be reconciled with current knowledge of the physiology and pharmacology of nausea and vomiting. The stimuli which causes sickness, synthesizes a contemporary Observer Theory view of the Sensory Conflict hypothesis are reviewed, and a revised model for the dynamic coupling between the putative conflict signals and nausea magnitude estimates is presented. The use of quantitative models for sensory conflict offers a possible new approach to improving the design of visual and motion systems for flight simulators and other virtual environment display systems.

  13. Faraday's Law and Seawater Motion (United States)

    De Luca, R.


    Using Faraday's law, one can illustrate how an electromotive force generator, directly utilizing seawater motion, works. The conceptual device proposed is rather simple in its components and can be built in any high school or college laboratory. The description of the way in which the device generates an electromotive force can be instructive not…

  14. Estimation of Motion Vector Fields

    DEFF Research Database (Denmark)

    Larsen, Rasmus


    This paper presents an approach to the estimation of 2-D motion vector fields from time varying image sequences. We use a piecewise smooth model based on coupled vector/binary Markov random fields. We find the maximum a posteriori solution by simulated annealing. The algorithm generate sample...

  15. Storyboard dalam Pembuatan Motion Graphic

    Directory of Open Access Journals (Sweden)

    Satrya Mahardhika


    Full Text Available Motion graphics is one category in the animation that makes animation with lots of design elements in each component. Motion graphics needs long process including preproduction, production, and postproduction. Preproduction has an important role so that the next stage may provide guidance or instructions for the production process or the animation process. Preproduction includes research, making the story, script, screenplay, character, environment design and storyboards. The storyboard will be determined through camera angles, blocking, sets, and many supporting roles involved in a scene. Storyboard is also useful as a production reference in recording or taping each scene in sequence or as an efficient priority. The example used is an ad creation using motion graphic animation storyboard which has an important role as a blueprint for every scene and giving instructions to make the transition movement, layout, blocking, and defining camera movement that everything should be done periodically in animation production. Planning before making the animation or motion graphic will make the job more organized, presentable, and more efficient in the process.  

  16. Procedure to describe clavicular motion. (United States)

    Gutierrez Delgado, Guivey; De Beule, Matthieu; Ortega Cardentey, Dolgis R; Segers, Patrick; Iznaga Benítez, Arsenio M; Rodríguez Moliner, Tania; Verhegghe, Benedict; Palmans, Tanneke; Van Hoof, Tom; Van Tongel, Alexander


    For many years, researchers have attempted to describe shoulder motions by using different mathematical methods. The aim of this study was to describe a procedure to quantify clavicular motion. The procedure proposed for the kinematic analysis consists of 4 main processes: 3 transcortical pins in the clavicle, motion capture, obtaining 3-dimensional bone models, and data processing. Clavicular motion by abduction (30° to 150°) and flexion (55° to 165°) were characterized by an increment of retraction of 27° to 33°, elevation of 25° to 28°, and posterior rotation of 14° to 15°, respectively. In circumduction, clavicular movement described an ellipse, which was reflected by retraction and elevation. Kinematic analysis shows that the articular surfaces move by simultaneously rolling and sliding on the convex surface of the sternum for the 3 movements of abduction, flexion, and circumduction. The use of 3 body landmarks in the clavicle and the direct measurement of bone allowed description of the osteokinematic and arthrokinematic movement of the clavicle. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Quantum equations from Brownian motions

    International Nuclear Information System (INIS)

    Rajput, B.S.


    Classical Schrodinger and Dirac equations have been derived from Brownian motions of a particle, it has been shown that the classical Schrodinger equation can be transformed to usual Schrodinger Quantum equation on applying Heisenberg uncertainty principle between position and momentum while Dirac Quantum equation follows it's classical counter part on applying Heisenberg uncertainly principle between energy and time without applying any analytical continuation. (author)

  18. Pendulum Motion and Differential Equations (United States)

    Reid, Thomas F.; King, Stephen C.


    A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…

  19. Molecular motion in restricted geometries

    Indian Academy of Sciences (India)

    Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...

  20. Detecting and estimating head motion in brain PET acquisitions using raw time-of-flight PET data. (United States)

    Schleyer, P J; Dunn, J T; Reeves, S; Brownings, S; Marsden, P K; Thielemans, K


    Head motion during brain PET imaging is not uncommon and can negatively affect image quality. Motion correction techniques typically either use hardware to prospectively measure head motion, or they divide the acquisition into short fixed-frames and then align and combine these to produce a motion free image. The aim of this work was to retrospectively detect when motion occurred in PET data without the use of motion detection hardware, and then align the frames defined by these motion occurrences. We describe two methods that use either principal component analysis or the motion induced spatial displacements over time to detect motion in raw time-of-flight PET data. The points in time of motion then define the temporal boundaries of frames which are reconstructed without attenuation correction, aligned and combined. Phantom and [18F]-Fallypride patient acquisitions were used to validate and evaluate these approaches, which were compared with motion estimation using 60 s fixed-frames. Both methods identified all motion occurrences in phantom data, and unlike the fixed-frame approach did not exhibit intra-frame motion. With patient acquisitions, images corrected with the motion detection methods increased the average image sharpness by the same amount as the fixed-frame approach, but reduced the number of reconstructions and registrations by a factor of 3.4 on average. Detecting head motion in raw PET data alone is possible, allowing retrospective motion estimation of any listmode brain PET acquisition without additional hardware, subsequently decreasing data processing and potentially reducing intra-frame motion.

  1. Addressing Head Motion Dependencies for Small-World Topologies in Functional Connectomics

    Directory of Open Access Journals (Sweden)

    Chao-Gan eYan


    Full Text Available Graph theoretical explorations of functional interactions within the human connectome, are rapidly advancing our understanding of brain architecture. In particular, global and regional topological parameters are increasingly being employed to quantify and characterize inter-individual differences in human brain function. Head motion remains a significant concern in the accurate determination of resting-state fMRI based assessments of the connectome, including those based on graph theoretical analysis (e.g., motion can increase local efficiency, while decreasing global efficiency and small-worldness. This study provides a comprehensive examination of motion correction strategies on the relationship between motion and commonly used topological parameters. At the individual-level, we evaluated different models of head motion regression and scrubbing, as well as the potential benefits of using partial correlation (estimated via graphical lasso instead of full correlation. At the group-level, we investigated the utility of regression of motion and mean intrinsic functional connectivity before topological parameters calculation and/or after. Consistent with prior findings, none of the explicit motion-correction approaches at individual-level were able to remove motion relationships for topological parameters. Global signal regression (GSR emerged as an effective means of mitigating relationships between motion and topological parameters; though at the risk of altering the connectivity structure and topological hub distributions when higher densities graphs are employed (e.g., > 6%. Group-level analysis correction for motion was once again found to be a crucial step. Finally, similar to recent work, we found a constellation of findings suggestive of the possibility that some of the motion-relationships detected may reflect neural or trait signatures of motion, rather than simply motion-induced artifact.

  2. A standing posture is associated with increased susceptibility to the sound-induced flash illusion in fall-prone older adults. (United States)

    Stapleton, John; Setti, Annalisa; Doheny, Emer P; Kenny, Rose Anne; Newell, Fiona N


    Recent research has provided evidence suggesting a link between inefficient processing of multisensory information and incidence of falling in older adults. Specifically, Setti et al. (Exp Brain Res 209:375-384, 2011) reported that older adults with a history of falling were more susceptible than their healthy, age-matched counterparts to the sound-induced flash illusion. Here, we investigated whether balance control in fall-prone older adults was directly associated with multisensory integration by testing susceptibility to the illusion under two postural conditions: sitting and standing. Whilst standing, fall-prone older adults had a greater body sway than the age-matched healthy older adults and their body sway increased when presented with the audio-visual illusory but not the audio-visual congruent conditions. We also found an increase in susceptibility to the sound-induced flash illusion during standing relative to sitting for fall-prone older adults only. Importantly, no performance differences were found across groups in either the unisensory or non-illusory multisensory conditions across the two postures. These results suggest an important link between multisensory integration and balance control in older adults and have important implications for understanding why some older adults are prone to falling.

  3. The effect of high-frequency ground motion on the MAPLE-X10 reactor

    International Nuclear Information System (INIS)

    Bhan, S.; Dunbar, S.


    The effect of high-frequency ground motion on structures and equipment in nuclear reactors is examined by subjecting simple linear models to selected recorded ground motions which exhibit low and high frequencies. Computed damage measures indicate that high-frequency short-duration ground motion, such as that observed in eastern North America, have a minimal effect on structures with low natural frequencies. Response spectra of high-frequency ground motion indicate that higher forces are induced in structures with high natural frequencies as compared to those induced by low-frequency ground motion. However, reported observations of earthquake damage in eastern North America suggest that high-frequency ground motion causes little of no damage to structures. This may be due to the energy absorption capability of structures. It is concluded that the response spectrum representative of ground motion observed in eastern North America may give an over-conservative measure of the response of structures with high natural frequencies, since it does not account for the typically observed short duration of high-frequency ground motion and for the energy absorption capability of structures. Detailed nonlinear analysis of specific structures with high natural frequencies should be performed to better predict the actual response. Recommendations for a nonlinear analysis of typical structures with high natural frequencies are made

  4. Bodily motion fluctuation improves reaching success rate in a neurophysical agent via geometric-stochastic resonance. (United States)

    Yonekura, Shogo; Kuniyoshi, Yasuo


    Organisms generate a variety of noise types, including neural noise, sensory noise, and noise resulting from fluctuations associated with movement. Sensory and neural noises are known to induce stochastic resonance (SR), which improves information transfer to the subjects control systems, including the brain. As a consequence, sensory and neural noise provide behavioral benefits, such as stabilization of posture and enhancement of feeding efficiency. In contrast, the benefits of fluctuations in the movements of a biological system remain largely unclear. Here, we describe a novel type of noise-induced order (NIO) that is realized by actively exploiting the motion fluctuations of an embodied system. In particular, we describe the theoretical analysis of a feedback-controlled embodied agent system that has a geometric end-effector. Furthermore, through several numerical simulations we demonstrate that the ratio of successful reaches to goal positions and capture of moving targets are improved by the exploitation of motion fluctuations. We report that reaching success rate improvement (RSRI) is based on the interaction of the geometric size of an end-effector, the agents motion fluctuations, and the desired motion frequency. Therefore, RSRI is a geometrically induced SR-like phenomenon. We also report an interesting result obtained through numerical simulations indicating that the agents neural and motion noise must be optimized to match the prey's motion noise in order to maximize the capture rate. Our study provides a new understanding of body motion fluctuations, as they were found to be the active noise sources for a behavioral NIO.

  5. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.


    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer\\'s disease are associated with protein misfolding and aggregation. Similarly, RNA folding velocity may regulate the plasmid copy number, and RNA folding kinetics can regulate gene expression at the translational level. Knowledge of the stability, folding, kinetics and detailed mechanics of the folding process may help provide insight into how proteins and RNAs fold. In this paper, we present an overview of our work with a computational method we have adapted from robotic motion planning to study molecular motions. We have validated against experimental data and have demonstrated that our method can capture biological results such as stochastic folding pathways, population kinetics of various conformations, and relative folding rates. Thus, our method provides both a detailed view (e.g., individual pathways) and a global view (e.g., population kinetics, relative folding rates, and reaction coordinates) of energy landscapes of both proteins and RNAs. We have validated these techniques by showing that we observe the same relative folding rates as shown in experiments for structurally similar protein molecules that exhibit different folding behaviors. Our analysis has also been able to predict the same relative gene expression rate for wild-type MS2 phage RNA and three of its mutants.

  6. Deficient Biological Motion Perception in Schizophrenia: Results from a Motion Noise Paradigm

    Directory of Open Access Journals (Sweden)

    Jejoong eKim


    Full Text Available Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing. Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n=21 and healthy controls (n=22 in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task. Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients. Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation.

  7. Visual motion responses in the posterior cingulate sulcus: a comparison to V5/MT and MST. (United States)

    Fischer, Elvira; Bülthoff, Heinrich H; Logothetis, Nikos K; Bartels, Andreas


    Motion processing regions apart from V5+/MT+ are still relatively poorly understood. Here, we used functional magnetic resonance imaging to perform a detailed functional analysis of the recently described cingulate sulcus visual area (CSv) in the dorsal posterior cingulate cortex. We used distinct types of visual motion stimuli to compare CSv with V5/MT and MST, including a visual pursuit paradigm. Both V5/MT and MST preferred 3D flow over 2D planar motion, responded less yet substantially to random motion, had a strong preference for contralateral versus ipsilateral stimulation, and responded nearly equally to contralateral and to full-field stimuli. In contrast, CSv had a pronounced preference to 2D planar motion over 3D flow, did not respond to random motion, had a weak and nonsignificant lateralization that was significantly smaller than that of MST, and strongly preferred full-field over contralateral stimuli. In addition, CSv had a better capability to integrate eye movements with retinal motion compared with V5/MT and MST. CSv thus differs from V5+/MT+ by its unique preference to full-field, coherent, and planar motion cues. These results place CSv in a good position to process visual cues related to self-induced motion, in particular those associated to eye or lateral head movements.

  8. Dosimetric Evaluation of Individualized Adaptive Motion Margins for Abdominal and Thoracic Tumors

    DEFF Research Database (Denmark)

    Poulsen, Per Rugaard; Cho, Byungchul; Keall, Paul

    the former ignores motion correlation along different axes the latter tends to overestimate the dosimetric consequences of random motion. The purpose of this study was to propose and investigate an individualized adaptive margin approach that accounts for motion correlation while still considering......, the smallest Dmin was 71%. The mean PTV volume was 7.6 cm3 for adaptive margins (4.3 mm, 1.6 mm, 1.0 mm margins) and 8.2 cm3 for standard margins (1.8 mm, 3.4 mm, 2.4 mm margins). Conclusions: A strategy for individualized adaptive margins that accounts for motion correlation was proposed. Compared to standard...... motion axes, while σ is the SD of random motion-induced errors along the tumor motion axes. The applied value for σ was the largest of the population-based random motion and the individually CBCT estimated random motion. The individual value for σ was largest (and therefore used for margin calculation...

  9. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P


    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  10. Mechanism of Macroscopic Motion of Oleate Helical Assemblies : Cooperative Deprotonation of Carboxyl Groups Triggered by Photoisomerization of Azobenzene Derivatives


    Kageyama, Yoshiyuki; Ikegami, Tomonori; Kurokome, Yuta; Takeda, Sadamu


    Macroscopic and spatially ordered motions of self-assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter-scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in co-operation with azobenzene photoisomerization ca...

  11. Wheelchair control by head motion

    Directory of Open Access Journals (Sweden)

    Pajkanović Aleksandar


    Full Text Available Electric wheelchairs are designed to aid paraplegics. Unfortunately, these can not be used by persons with higher degree of impairment, such as quadriplegics, i.e. persons that, due to age or illness, can not move any of the body parts, except of the head. Medical devices designed to help them are very complicated, rare and expensive. In this paper a microcontroller system that enables standard electric wheelchair control by head motion is presented. The system comprises electronic and mechanic components. A novel head motion recognition technique based on accelerometer data processing is designed. The wheelchair joystick is controlled by the system’s mechanical actuator. The system can be used with several different types of standard electric wheelchairs. It is tested and verified through an experiment performed within this paper.

  12. Motion sensor evaluation using simulation

    International Nuclear Information System (INIS)

    Schmutz, J.D.; McNerney, G.M.; Workhoven, R.M.


    Thorough evaluation testing of interior motion sensors requires repeated testing under a variety of environmental conditions. Although the sensors are intended primarily for interior installations, many of the buildings where protection may be required are warehouses or bunkers without environmental control. In evaluating sensors for such installations, it becomes important to collect data not only on coverage or sensitivity at room temperature but also at environmental extremes. This paper describes a system Sandia National Laboratories at Albuquerque (SNLA) has designed and built to provide repeatability in environmental testing. The system has been dubbed Sandia Intruder Motion Simulator (SIMS). This system is used to acquire much of the data now collected on sensors in the laboratory and a duplicate system has been delivered to the Belvoir R and D Center so that the laboratory can now run similar tests. 11 figures

  13. Homothetic motions in general relativity

    International Nuclear Information System (INIS)

    McIntosh, C.B.G.


    Properties of homothetic or self-similar motions in general relativity are examined with particular reference to vacuum and perfect-fluid space-times. The role of the homothetic bivector with components Hsub((a;b)) formed from the homothetic vector H is discussed in some detail. It is proved that a vacuum space-time only admits a nontrivial homothetic motion if the homothetic vector field is non-null and is not hypersurface orthogonal. As a subcase of a more general result it is shown that a perfect-fluid space-time cannot admit a non-trivial homothetic vector which is orthogonal to the fluid velocity 4-vector. (author)

  14. ITRF2014 plate motion model (United States)

    Altamimi, Zuheir; Métivier, Laurent; Rebischung, Paul; Rouby, Hélène; Collilieux, Xavier


    For various geodetic and geophysical applications, users need to have access to a plate motion model (PMM) that is consistent with the ITRF2014 frame. This paper describes the approach used for determining a PMM from the horizontal velocities of a subset of the ITRF2014 sites away from plate boundaries, Glacial Isostatic Adjustment regions and other deforming zones. In theory it would be necessary to include in the inversion model a translational motion vector (called in this paper origin rate bias, ORB) that would represent the relative motion between the ITRF2014 origin (long-term averaged centre of mass of the Earth as sensed by SLR) and the centre of tectonic plate motion. We show that in practice, the magnitude of the estimated ORB is strongly dependent on the selection of ITRF2014 sites used for the PMM adjustment. Its Z-component can in particular range between 0 and more than 1 mm yr-1 depending on the station network used, preventing any geophysical interpretation of the estimated value. Relying on rigorous statistical criteria, the site selection finally adopted for the ITRF2014-PMM adjustment leads to a relatively small ORB (0.30 ± 0.18 mm yr-1 in the Z-component), which is statistically insignificant at the 2-sigma level, but also according to an F-ratio test. Therefore we opted for an ITRF2014-PMM without estimating the ORB, which in turn accommodates geodetic applications that require access to the ITRF2014 frame through pure plate rotation poles.

  15. Male Spine Motion During Coitus (United States)

    Sidorkewicz, Natalie


    Study Design. Repeated measures design. Objective. To describe male spine movement and posture characteristics during coitus and compare these characteristics across 5 common coital positions. Summary of Background Data. Exacerbation of pain during coitus due to coital movements and positions is a prevalent issue reported by low back pain patients. A biomechanical analysis of spine movements and postures during coitus has never been conducted. Methods. Ten healthy males and females engaged in coitus in the following preselected positions and variations: QUADRUPED, MISSIONARY, and SIDELYING. An optoelectronic motion capture system was used to measure 3-dimensional lumbar spine angles that were normalized to upright standing. To determine whether each coital position had distinct spine kinematic profiles, separate univariate general linear models, followed by Tukey's honestly significant difference post hoc analysis were used. The presentation of coital positions was randomized. Results. Both variations of QUADRUPED, mQUAD1 and mQUAD2, were found to have a significantly higher cycle speed than mSIDE (P = 0.043 and P = 0.034, respectively), mMISS1 (P = 0.003 and P = 0.002, respectively), and mMISS2 (P = 0.001 and P spine movement varied depending on the coital position; however, across all positions, the majority of the range of motion used was in flexion. Based on range of motion, the least-to-most recommended positions for a male flexion-intolerant patient are mSIDE, mMISS2, mQUAD2, mMISS1, and mQUAD1. Conclusion. Initial recommendations—which include specific coital positions to avoid, movement strategies, and role of the partner—were developed for male patients whose low back pain is exacerbated by specific motions and postures. Level of Evidence: N/A PMID:25208042

  16. Dynamical Systems and Motion Vision. (United States)


    TASK Artificial Inteligence Laboratory AREA I WORK UNIT NUMBERS 545 Technology Square . Cambridge, MA 02139 C\\ II. CONTROLLING OFFICE NAME ANO0 ADDRESS...INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I.Memo No. 1037 April, 1988 Dynamical Systems and Motion Vision Joachim Heel Abstract: In this... Artificial Intelligence L3 Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory’s [1 Artificial Intelligence Research is

  17. p-adic Brownian motion (United States)

    Zelenov, E. I.


    We define p-adic Brownian motion (Wiener process) and study its properties. We construct a presentation of the trajectories of this process by their series expansions with respect to van der Put's basis and show that they are nowhere differentiable functions satisfying the p-adic Lipschitz condition of order 1. We define the p-adic Wiener measure on the space of continuous functions and study its properties.

  18. Extremes of multifractional Brownian motion


    Bai, Long


    Let $B_{H}(t), t\\geq [0,T], T\\in(0,\\infty)$ be the standard Multifractional Brownian Motion(mBm), in this contribution we are concerned with the exact asymptotics of \\begin{eqnarray*} \\mathbb{P}\\left\\{\\sup_{t\\in[0,T]}B_{H}(t)>u\\right\\} \\end{eqnarray*} as $u\\rightarrow\\infty$. Mainly depended on the structures of $H(t)$, the results under several important cases are investigated.

  19. Electronic Textiles for Motion Analysis


    Edmison, Joshua Nathaniel


    The union of electronics and textiles to form electronic textiles (e-textiles) provides a promising substrate upon which motion analysis applications can be developed and implemented. Familiarity with clothing allows sensors and computational elements to be naturally integrated into garments such that wearability and usability is preserved. The dynamics of the human body and the wide variety of sensor and processing choices render the typical prototype-based design methodology prohibitively d...

  20. Understanding motion of twin boundary - a key to magnetic shape memory effect

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg


    Roč. 50, č. 11 (2014), s. 2505807 ISSN 0018-9464 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : magnetic field-induced strain * magnetic field-induced twin boundary motion * magnetoelasticity * magnetomechanical effects * martensitic transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  1. Demonstrating the potential for dynamic auditory stimulation to contribute to motion sickness.

    Directory of Open Access Journals (Sweden)

    Behrang Keshavarz

    Full Text Available Auditory cues can create the illusion of self-motion (vection in the absence of visual or physical stimulation. The present study aimed to determine whether auditory cues alone can also elicit motion sickness and how auditory cues contribute to motion sickness when added to visual motion stimuli. Twenty participants were seated in front of a curved projection display and were exposed to a virtual scene that constantly rotated around the participant's vertical axis. The virtual scene contained either visual-only, auditory-only, or a combination of corresponding visual and auditory cues. All participants performed all three conditions in a counterbalanced order. Participants tilted their heads alternately towards the right or left shoulder in all conditions during stimulus exposure in order to create pseudo-Coriolis effects and to maximize the likelihood for motion sickness. Measurements of motion sickness (onset, severity, vection (latency, strength, duration, and postural steadiness (center of pressure were recorded. Results showed that adding auditory cues to the visual stimuli did not, on average, affect motion sickness and postural steadiness, but it did reduce vection onset times and increased vection strength compared to pure visual or pure auditory stimulation. Eighteen of the 20 participants reported at least slight motion sickness in the two conditions including visual stimuli. More interestingly, six participants also reported slight motion sickness during pure auditory stimulation and two of the six participants stopped the pure auditory test session due to motion sickness. The present study is the first to demonstrate that motion sickness may be caused by pure auditory stimulation, which we refer to as "auditorily induced motion sickness".

  2. Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion (United States)

    Sisniega, A.; Stayman, J. W.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.


    Cone-beam CT (CBCT) for musculoskeletal imaging would benefit from a method to reduce the effects of involuntary patient motion. In particular, the continuing improvement in spatial resolution of CBCT may enable tasks such as quantitative assessment of bone microarchitecture (0.1 mm-0.2 mm detail size), where even subtle, sub-mm motion blur might be detrimental. We propose a purely image based motion compensation method that requires no fiducials, tracking hardware or prior images. A statistical optimization algorithm (CMA-ES) is used to estimate a motion trajectory that optimizes an objective function consisting of an image sharpness criterion augmented by a regularization term that encourages smooth motion trajectories. The objective function is evaluated using a volume of interest (VOI, e.g. a single bone and surrounding area) where the motion can be assumed to be rigid. More complex motions can be addressed by using multiple VOIs. Gradient variance was found to be a suitable sharpness metric for this application. The performance of the compensation algorithm was evaluated in simulated and experimental CBCT data, and in a clinical dataset. Motion-induced artifacts and blurring were significantly reduced across a broad range of motion amplitudes, from 0.5 mm to 10 mm. Structure similarity index (SSIM) against a static volume was used in the simulation studies to quantify the performance of the motion compensation. In studies with translational motion, the SSIM improved from 0.86 before compensation to 0.97 after compensation for 0.5 mm motion, from 0.8 to 0.94 for 2 mm motion and from 0.52 to 0.87 for 10 mm motion (~70% increase). Similar reduction of artifacts was observed in a benchtop experiment with controlled translational motion of an anthropomorphic hand phantom, where SSIM (against a reconstruction of a static phantom) improved from 0.3 to 0.8 for 10 mm motion. Application to a clinical dataset of a lower extremity showed dramatic reduction

  3. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy ...

  4. Visualization of Kepler's Laws of Planetary Motion (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong


    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  5. Rotational Motion Control of a Spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.


    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...

  6. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.


    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...

  7. A Psycho-logic of Motion. (United States)

    Ogborn, Jon; Bliss, Joan


    Offers a theory of how commonsense reasoning about motion may develop. Takes as fundamental the basic categories: action, object, space, cause, time, and movement. Suggests that very primitive elements could combine to provide schemes of motion recognizable in psychological accounts of infancy and generate prototypes of and rules for motion. (DK)

  8. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Abstract. Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characteri- zed by its energy being contained in a narrow frequency band. This paper deve- lops measures to quantify the frequency content of the ground motion using the.

  9. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.


    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...

  10. Sunspots and Their Simple Harmonic Motion (United States)

    Ribeiro, C. I.


    In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.

  11. 32 CFR 150.23 - Motions. (United States)


    ... 32 National Defense 1 2010-07-01 2010-07-01 false Motions. 150.23 Section 150.23 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE REGULATIONS PERTAINING TO MILITARY JUSTICE COURTS OF CRIMINAL APPEALS RULES OF PRACTICE AND PROCEDURE § 150.23 Motions. (a) Content. All motions, unless made...

  12. Empirical recurrence rates for ground motion signals on planetary surfaces (United States)

    Lorenz, Ralph D.; Panning, Mark


    We determine the recurrence rates of ground motion events as a function of sensed velocity amplitude at several terrestrial locations, and make a first interplanetary comparison with measurements on the Moon, Mars, Venus and Titan. This empirical approach gives an intuitive order-of-magnitude guide to the observed ground motion (including both tectonic and ocean- and atmosphere-forced signals) of these locations as a guide to instrument expectations on future missions, without invoking interior models and specific sources: for example a Venera-14 observation of possible ground motion indicates a microseismic environment mid-way between noisy and quiet terrestrial locations. Quiet terrestrial regions see a peak velocity amplitude in mm/s roughly equal to 0.3*N(-0.7), where N is the number of "events" (half-hour intervals in which a given peak ground motion is exceeded) observed per year. The Apollo data show endogenous seismic signals for a given recurrence rate that are typically about 10,000 times smaller in amplitude than a quiet site on Earth, although local thermally-induced moonquakes are much more common. Viking data masked for low-wind periods appear comparable with a quiet terrestrial site, whereas a Venera observation of microseisms suggests ground motion more similar to a more active terrestrial location. Recurrence rate plots from in-situ measurements provide a context for seismic instrumentation on future planetary missions, e.g. to guide formulation of data compression schemes. While even small geophones can discriminate terrestrial activity rates, observations with guidance accelerometers are typically too insensitive to provide meaningful constraints (i.e. a non-zero number of "events") on actual ground motion observations unless operated for very long periods.

  13. Molecular motion and structure in plastics

    International Nuclear Information System (INIS)

    Doolan, K.R.; Baxter, M.


    Full text: When molten thermoplastics solidify, the polymeric chains form a completely amorphous structure or a mixture of crystalline and amorphous regions. Measurement of Nuclear Magnetic Resonance (NMR) relaxation times provides information about the configuration and molecular motion of polymeric chains in solid plastics. We are currently measuring the NMR relaxation times T 1 , T 2 , T 2 and T 1p as a function of temperature using a Bruker High Power pulsed NMR Spectrometer for several different classes of thermoplastics containing varying concentrations of inorganic filler materials. We present data here for T 1 , and T 2 obtained for polyethylenes, polypropylenes, polystyrenes and acrylics in the temperature range 100 K to 450 K. At temperatures below 320 K, all of the polyethylenes and polypropylenes and some of the polystyrenes and acrylics produced NMR signals after a single radio frequency (RF) pulse with rapidly and slowly decaying components corresponding to the rigid and flexible regions within the plastic. From these results we have estimated using Mathematica the amount of crystallinity within the polyethylenes and polypropylenes. For the impact modified polystyrenes and acrylics studied we have estimated the amounts of elastomeric phases present. We find that the initial rapid decay signal produced by polyethylenes and polypropylenes is Gaussian while the long tail is Lorentzian. All of the signal components from the polystyrenes and the acrylics were fitted using Lorentzian functions indicating their structures are highly amorphous. Addition of CaCO 3 filler to polypropylene resins appears to reduce the crystallinity of the material. We also present data for the activation energy of the molecular motion inducing longitudinal relaxation, from T 1 measurements

  14. Émotions au travail, travail des émotions


    Fortino, Sabine; Jeantet, Aurélie; Tcholakova, Albena


    Le travail, qui occupe une place centrale dans nos sociétés, sollicite sans cesse les émotions. Au cœur des rapports sociaux et des conflits, il engendre tout à la fois violence ou solidarité, suscitant des sentiments d’injustice, de colère, d’envie, de haine, mais aussi de satisfaction et de plaisir. Dans le cadre de leurs activités professionnelles quotidiennes, le travail mobilise les individus dans leur « entier », corps et âme, les incitant à s’appuyer sur des savoir-faire techniques mai...

  15. The Axiom and Laws of Motion

    CERN Document Server

    Harokopos, E


    The law of inertia and the law of interaction are derived from the axiom of motion, an expression relating the time rate of change of the kinetic energy of a particle to its velocity and time rate of change of momentum. These laws of motion are shown to (i) treat uniform circular orbits as effects of inertia, (ii) encompass Newton’s Laws of Motion and (iii) have a special link to Leibniz’s Laws of Motion. I also discuss some metaphysical issues arising from the axiom and laws of motion regarding the ontology of space-time.

  16. WE-AB-303-05: Breathing Motion of Liver Segments From Fiducial Tracking During Robotic Radiosurgery and Comparison with 4D-CT-Derived Fiducial Motion

    International Nuclear Information System (INIS)

    Sutherland, J; Pantarotto, J; Nair, V; Cook, G; Plourde, M; Vandervoort, E


    Purpose: To quantify respiratory-induced motion of liver segments using the positions of implanted fiducials during robotic radiosurgery. This study also compared fiducial motion derived from four-dimensional computed tomography (4D-CT) maximum intensity projections (MIP) with motion derived from imaging during treatment. Methods: Forty-two consecutive liver patients treated with liver ablative radiotherapy were accrued to an ethics approved retrospective study. The liver segment in which each fiducial resided was identified. Fiducial positions throughout each treatment fraction were determined using orthogonal kilovoltage images. Any data due to patient repositioning or motion was removed. Mean fiducial positions were calculated. Fiducial positions beyond two standard deviations of the mean were discarded and remaining positions were fit to a line segment using least squares minimization (LSM). For eight patients, fiducial motion was derived from 4D-CT MIPs by calculating the CT number weighted mean position of the fiducial on each slice and fitting a line segment to these points using LSM. Treatment derived fiducial trajectories were corrected for patient rotation and compared to MIP derived trajectories. Results: The mean total magnitude of fiducial motion across all liver segments in left-right, anteroposterior, and superoinferior (SI) directions were 3.0 ± 0.2 mm, 9.3 ± 0.4 mm, and 20.5 ± 0.5 mm, respectively. Differences in per-segment mean fiducial motion were found with SI motion ranging from 12.6 ± 0.8 mm to 22.6 ± 0.9 mm for segments 3 and 8, respectively. Large, varied differences between treatment and MIP derived motion at simulation were found with the mean difference for SI motion being 2.6 mm (10.8 mm standard deviation). Conclusion: The magnitude of liver fiducial motion was found to differ by liver segment. MIP derived liver fiducial motion differed from motion observed during treatment, implying that 4D-CTs may not accurately capture the

  17. What Is Being Done to Control Motion Sickness? (United States)

    Hall, Y. D.


    AFT (Autogenic Feedback Training) involves practicing a series of mental exercises to speed up or slow down the control of autonomic activity. This produces a reduced tendency for autonomic activity levels to diverge from baseline (at rest) under stressful motion-sickness-inducing conditions. Subjects conditions. Subjects engaged in applying AFT exercises are required to closely monitor their own bodily sensations during motion-sickness-eliciting tests. These tests include the Coriolis Sickness Susceptibility Index (CSSI), which consists of sitting a subject into a rotating chair that moves at various speeds while a visual background turns at differing speeds and directions, and the Vertical Acceleration Rotation Device (VARD) test, which involves the placing of a subject in a drum that moves in an upward and downward motion until he or she is sick, while simultaneously monitoring the subject's vital signs. These tests provide investigators with evidence of slight changes in autonomic activities such as increases in heart rate, skin temperature, and sweat. All of these symptoms occur in subjects that experience bodily weakness or discomfort with the onset of motion sickness.

  18. Interfacial dislocation motion and interactions in single-crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Raabe, D. [Max Planck Inst. fur Eisenforshung. Dusseldorf (Germany); Roters, F. [Max Planck Inst. fur Eisenforshung. Dusseldorf (Germany); Arsenlis, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The early stage of high-temperature low-stress creep in single-crystal superalloys is characterized by the rapid development of interfacial dislocation networks. Although interfacial motion and dynamic recovery of these dislocation networks have long been expected to control the subsequent creep behavior, direct observation and hence in-depth understanding of such processes has not been achieved. Incorporating recent developments of discrete dislocation dynamics models, we simulate interfacial dislocation motion in the channel structures of single-crystal superalloys, and investigate how interfacial dislocation motion and dynamic recovery are affected by interfacial dislocation interactions and lattice misfit. Different types of dislocation interactions are considered: self, collinear, coplanar, Lomer junction, glissile junction, and Hirth junction. The simulation results show that strong dynamic recovery occurs due to the short-range reactions of collinear annihilation and Lomer junction formation. The misfit stress is found to induce and accelerate dynamic recovery of interfacial dislocation networks involving self-interaction and Hirth junction formation, but slow down the steady interfacial motion of coplanar and glissile junction forming dislocation networks. The insights gained from these simulations on high-temperature low-stress creep of single-crystal superalloys are also discussed.

  19. Thought Speed, Mood, and the Experience of Mental Motion. (United States)

    Pronin, Emily; Jacobs, Elana


    This article presents a theoretical account relating thought speed to mood and psychological experience. Thought sequences that occur at a fast speed generally induce more positive affect than do those that occur slowly. Thought speed constitutes one aspect of mental motion. Another aspect involves thought variability, or the degree to which thoughts in a sequence either vary widely from or revolve closely around a theme. Thought sequences possessing more motion (occurring fast and varying widely) generally produce more positive affect than do sequences possessing little motion (occurring slowly and repetitively). When speed and variability oppose each other, such that one is low and the other is high, predictable psychological states also emerge. For example, whereas slow, repetitive thinking can prompt dejection, fast, repetitive thinking can prompt anxiety. This distinction is related to the fact that fast thinking involves greater actual and felt energy than slow thinking does. Effects of mental motion occur independent of the specific content of thought. Their consequences for mood and energy hold psychotherapeutic relevance. © 2008 Association for Psychological Science.

  20. Flapping motion and force generation in a viscoelastic fluid (United States)

    Normand, Thibaud; Lauga, Eric


    In a variety of biological situations, swimming cells have to move through complex fluids. Similarly, mucociliary clearance involves the transport of polymeric fluids by beating cilia. Here, we consider the extent to which complex fluids could be exploited for force generation on small scales. We consider a prototypical reciprocal motion (i.e., identical under time-reversal symmetry): the periodic flapping of a tethered semi-infinite plane. In the Newtonian limit, such motion cannot be used for force generation according to Purcell’s scallop theorem. In a polymeric fluid (Oldroyd-B, and its generalization), we show that this is not the case and calculate explicitly the forces on the flapper for small-amplitude sinusoidal motion. Three setups are considered: a flapper near a wall, a flapper in a wedge, and a two-dimensional scalloplike flapper. In all cases, we show that at quadratic order in the oscillation amplitude, the tethered flapping motion induces net forces, but no average flow. Our results demonstrate therefore that the scallop theorem is not valid in polymeric fluids. The reciprocal component of the movement of biological appendages such as cilia can thus generate nontrivial forces in polymeric fluid such as mucus, and normal-stress differences can be exploited as a pure viscoelastic force generation and propulsion method.

  1. Motion perception during tilt and translation after space flight (United States)

    Clément, Gilles; Wood, Scott J.


    Preliminary results of an ongoing study examining the effects of space flight on astronauts' motion perception induced by independent tilt and translation motions are presented. This experiment used a sled and a variable radius centrifuge that translated the subjects forward-backward or laterally, and simultaneously tilted them in pitch or roll, respectively. Tests were performed on the ground prior to and immediately after landing. The astronauts were asked to report about their perceived motion in response to different combinations of body tilt and translation in darkness. Their ability to manually control their own orientation was also evaluated using a joystick with which they nulled out the perceived tilt while the sled and centrifuge were in motion. Preliminary results confirm that the magnitude of perceived tilt increased during static tilt in roll after space flight. A deterioration in the crewmember to control tilt using non-visual inertial cues was also observed post-flight. However, the use of a tactile prosthesis indicating the direction of down on the subject's trunk improved manual control performance both before and after space flight.

  2. Motion corrected photoacoustic difference imaging of fluorescent contrast agents (United States)

    Märk, Julia; Wagener, Asja; Pönick, Sarah; Grötzinger, Carsten; Zhang, Edward; Laufer, Jan


    In fluorophores, such as exogenous dyes and genetically expressed proteins, the excited state lifetime can be modulated using pump-probe excitation at wavelengths corresponding to the absorption and fluorescence spectra. Simultaneous pump-probe pulses induce stimulated emission (SE) which, in turn, modulates the thermalized energy, and hence the photoacoustic (PA) signal amplitude. For time-delayed pulses, by contrast, SE is suppressed. Since this is not observed in endogenous chromophores, the location of the fluorophore can be determined by subtracting images acquired using simultaneous and time-delayed pump-probe excitation. This simple experimental approach exploits a fluorophorespecific contrast mechanism, and has the potential to enable deep-tissue molecular imaging at fluences below the MPE. In this study, some of the challenges to its in vivo implementation are addressed. First, the PA signal amplitude generated in fluorophores in vivo is often much smaller than that in blood. Second, tissue motion can give rise to artifacts that correspond to endogenous chromophores in the difference image. This would not allow the unambiguous detection of fluorophores. A method to suppress motion artifacts based on fast switching between simultaneous and time-delayed pump-probe excitation was developed. This enables the acquisition of PA signals using the two excitation modes with minimal time delay (20 ms), thus minimizing the effects of tissue motion. The feasibility of this method is demonstrated by visualizing a fluorophore (Atto680) in tissue phantoms, which were moved during the image acquisition to mimic tissue motion.

  3. Developmental Approach for Behavior Learning Using Primitive Motion Skills. (United States)

    Dawood, Farhan; Loo, Chu Kiong


    Imitation learning through self-exploration is essential in developing sensorimotor skills. Most developmental theories emphasize that social interactions, especially understanding of observed actions, could be first achieved through imitation, yet the discussion on the origin of primitive imitative abilities is often neglected, referring instead to the possibility of its innateness. This paper presents a developmental model of imitation learning based on the hypothesis that humanoid robot acquires imitative abilities as induced by sensorimotor associative learning through self-exploration. In designing such learning system, several key issues will be addressed: automatic segmentation of the observed actions into motion primitives using raw images acquired from the camera without requiring any kinematic model; incremental learning of spatio-temporal motion sequences to dynamically generates a topological structure in a self-stabilizing manner; organization of the learned data for easy and efficient retrieval using a dynamic associative memory; and utilizing segmented motion primitives to generate complex behavior by the combining these motion primitives. In our experiment, the self-posture is acquired through observing the image of its own body posture while performing the action in front of a mirror through body babbling. The complete architecture was evaluated by simulation and real robot experiments performed on DARwIn-OP humanoid robot.

  4. Sensing Movement: Microsensors for Body Motion Measurement

    Directory of Open Access Journals (Sweden)

    Hansong Zeng


    Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.

  5. Motion Analysis Based on Invertible Rapid Transform

    Directory of Open Access Journals (Sweden)

    J. Turan


    Full Text Available This paper presents the results of a study on the use of invertible rapid transform (IRT for the motion estimation in a sequence of images. Motion estimation algorithms based on the analysis of the matrix of states (produced in the IRT calculation are described. The new method was used experimentally to estimate crowd and traffic motion from the image data sequences captured at railway stations and at high ways in large cities. The motion vectors may be used to devise a polar plot (showing velocity magnitude and direction for moving objects where the dominant motion tendency can be seen. The experimental results of comparison of the new motion estimation methods with other well known block matching methods (full search, 2D-log, method based on conventional (cross correlation (CC function or phase correlation (PC function for application of crowd motion estimation are also presented.

  6. Structure-specific selection of earthquake ground motions for the reliable design and assessment of structures

    DEFF Research Database (Denmark)

    Katsanos, E. I.; Sextos, A. G.


    A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Code-compatible suites of seismic motions are provided being, at the same time, prequalified through a multi-criterion approach to induce...... was subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δsv–sc) and the conventional one (δconv), that is commonly used for earthquake records selection and scaling. The findings from numerous linear response history analyses reveal the superiority...

  7. Simple method for adaptive filtering of motion artifacts in E-textile wearable ECG sensors. (United States)

    Alkhidir, Tamador; Sluzek, Andrzej; Yapici, Murat Kaya


    In this paper, we have developed a simple method for adaptive out-filtering of the motion artifact from the electrocardiogram (ECG) obtained by using conductive textile electrodes. The textile electrodes were placed on the left and the right wrist to measure ECG through lead-1 configuration. The motion artifact was induced by simple hand movements. The reference signal for adaptive filtering was obtained by placing additional electrodes at one hand to capture the motion of the hand. The adaptive filtering was compared to independent component analysis (ICA) algorithm. The signal-to-noise ratio (SNR) for the adaptive filtering approach was higher than independent component analysis in most cases.

  8. A head motion estimation algorithm for motion artifact correction in dental CT imaging (United States)

    Hernandez, Daniel; Elsayed Eldib, Mohamed; Hegazy, Mohamed A. A.; Hye Cho, Myung; Cho, Min Hyoung; Lee, Soo Yeol


    A small head motion of the patient can compromise the image quality in a dental CT, in which a slow cone-beam scan is adopted. We introduce a retrospective head motion estimation method by which we can estimate the motion waveform from the projection images without employing any external motion monitoring devices. We compute the cross-correlation between every two successive projection images, which results in a sinusoid-like displacement curve over the projection view when there is no patient motion. However, the displacement curve deviates from the sinusoid-like form when patient motion occurs. We develop a method to estimate the motion waveform with a single parameter derived from the displacement curve with aid of image entropy minimization. To verify the motion estimation method, we use a lab-built micro-CT that can emulate major head motions during dental CT scans, such as tilting and nodding, in a controlled way. We find that the estimated motion waveform conforms well to the actual motion waveform. To further verify the motion estimation method, we correct the motion artifacts with the estimated motion waveform. After motion artifact correction, the corrected images look almost identical to the reference images, with structural similarity index values greater than 0.81 in the phantom and rat imaging studies.

  9. SU-E-J-29: Audiovisual Biofeedback Improves Tumor Motion Consistency for Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D; Pollock, S; Makhija, K; Keall, P [The University of Sydney, Camperdown, NSW (Australia); Greer, P [The University of Newcastle, Newcastle, NSW (Australia); Calvary Mater Newcastle Hospital, Newcastle, NSW (Australia); Arm, J; Hunter, P [Calvary Mater Newcastle Hospital, Newcastle, NSW (Australia); Kim, T [The University of Sydney, Camperdown, NSW (Australia); University of Virginia Health System, Charlottesville, VA (United States)


    Purpose: To investigate whether the breathing-guidance system: audiovisual (AV) biofeedback improves tumor motion consistency for lung cancer patients. This will minimize respiratory-induced tumor motion variations across cancer imaging and radiotherapy procedues. This is the first study to investigate the impact of respiratory guidance on tumor motion. Methods: Tumor motion consistency was investigated with five lung cancer patients (age: 55 to 64), who underwent a training session to get familiarized with AV biofeedback, followed by two MRI sessions across different dates (pre and mid treatment). During the training session in a CT room, two patient specific breathing patterns were obtained before (Breathing-Pattern-1) and after (Breathing-Pattern-2) training with AV biofeedback. In each MRI session, four MRI scans were performed to obtain 2D coronal and sagittal image datasets in free breathing (FB), and with AV biofeedback utilizing Breathing-Pattern-2. Image pixel values of 2D images after the normalization of 2D images per dataset and Gaussian filter per image were used to extract tumor motion using image pixel values. The tumor motion consistency of the superior-inferior (SI) direction was evaluated in terms of an average tumor motion range and period. Results: Audiovisual biofeedback improved tumor motion consistency by 60% (p value = 0.019) from 1.0±0.6 mm (FB) to 0.4±0.4 mm (AV) in SI motion range, and by 86% (p value < 0.001) from 0.7±0.6 s (FB) to 0.1±0.2 s (AV) in period. Conclusion: This study demonstrated that audiovisual biofeedback improves both breathing pattern and tumor motion consistency for lung cancer patients. These results suggest that AV biofeedback has the potential for facilitating reproducible tumor motion towards achieving more accurate medical imaging and radiation therapy procedures.

  10. Vestibular system and neural correlates of motion sickness (United States)

    Miller, Alan D.


    Initial studies re-examine the role of certain central nervous system structures in the production of vestibular-induced vomiting and vomiting in general. All experiments were conducted using cats. Since these studies demonstrated that the essential role of various central structures in vestibular-induced vomiting is only poorly understood, efforts were re-directed to study the control of the effector muscles (diaphragm and abdominal muscles) that produce the pressure changes responsible for vomiting, with the goal of determining how this control mechanism is engaged during motion sickness. Experiments were conducted to localize the motoneurons that innervate the individual abdominal muscles and the portion of the diaphragm that surrounds the esophagus. A central question regarding respiratory muscle control during vomiting is whether these muscles are activated via the same brain stem pre-motor neurons that provide descending respiratory drive and/or by other descending input(s). In other experiments, the use of a combination of pitch and roll motions to produce motion sickness in unrestrained cats was evaluated. This stimulus combination can produce vomiting in only the most susceptible cats and is thus not as provacative a stimulus for cats as vertical linear acceleration.

  11. Detect ground motion effects on the trajectory at ATF2

    CERN Document Server

    Rénier, Yves; Garcia, Rogelio


    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the Beam Delivery System (BDS) of the next linear colliders (ILC and CLIC) as well as to define and to test the tunning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. The magnet displacements induced by ground motion are large enough for CLIC to perturb the beam stability above requirements. It is planned to measure the displacement of the magnets and implement a feed-forward correcting the effects on the beam trajectory with correctors (dipoles). This article studies the possibility to detect ground motion effects on the beam trajectory at ATF2. Characteristics of the ground motion at ATF2 are presented, the effects of the magnet displacements on the beam trajectory are simulated and an algorithm predicting the induced trajectory fluctuations is evaluated. After the estimated...

  12. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures. (United States)

    Kilby, Melissa C; Molenaar, Peter C M; Slobounov, Semyon M; Newell, Karl M


    The experiment was setup to investigate the control of human quiet standing through the manipulation of augmented visual information feedback of selective properties of the motion of two primary variables in postural control: center of pressure (COP) and center of mass (COM). Five properties of feedback information were contrasted to a no feedback dual-task (watching a movie) control condition to determine the impact of visual real-time feedback on the coordination of the joint motions in postural control in both static and dynamic one-leg standing postures. The feedback information included 2D COP or COM position and macro variables derived from the COP and COM motions, namely virtual time-to-contact (VTC) and the COP-COM coupling. The findings in the static condition showed that the VTC and COP-COM coupling feedback conditions decreased postural motion more than the 2D COP or COM positional information. These variables also induced larger sway amplitudes in the dynamic condition showing a more progressive search strategy in exploring the stability limits. Canonical correlation analysis (CCA) found that COP-COM coupling contributed less than the other feedback variables to the redundancy of the system reflected in the common variance between joint motions and properties of sway motion. The COP-COM coupling had the lowest weighting of the motion properties to redundancy under the feedback conditions but overall the qualitative pattern of the joint motion structures was preserved within the respective static and dynamic balance conditions.

  13. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections. (United States)

    Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas


    Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.

  14. Effective Preprocessing Procedures Virtually Eliminate Distance-Dependent Motion Artifacts in Resting State FMRI

    Directory of Open Access Journals (Sweden)

    Hang Joon Jo


    Full Text Available Artifactual sources of resting-state (RS FMRI can originate from head motion, physiology, and hardware. Of these sources, motion has received considerable attention and was found to induce corrupting effects by differentially biasing correlations between regions depending on their distance. Numerous corrective approaches have relied on the identification and censoring of high-motion time points and the use of the brain-wide average time series as a nuisance regressor to which the data are orthogonalized (Global Signal Regression, GSReg. We replicate the previously reported head-motion bias on correlation coefficients and then show that while motion can be the source of artifact in correlations, the distance-dependent bias is exacerbated by GSReg. Put differently, correlation estimates obtained after GSReg are more susceptible to the presence of motion and by extension to the levels of censoring. More generally, the effect of motion on correlation estimates depends on the preprocessing steps leading to the correlation estimate, with certain approaches performing markedly worse than others. For this purpose, we consider various models for RS FMRI preprocessing and show that the local white matter regressor (WMeLOCAL, a subset of ANATICOR, results in minimal sensitivity to motion and reduces by extension the dependence of correlation results on censoring.

  15. Nonlinear seismic behavior of a CANDU containment building subjected to near-field ground motions

    International Nuclear Information System (INIS)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon


    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. Near-fault ground motions are the ground motions that occur near an earthquake fault. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. In this study, nonlinear dynamic time-history analyses were performed to investigate the seismic behavior of a CANDU containment structure subjected to various earthquake ground motions including the near-field ground motions

  16. Brownian motion of tethered nanowires. (United States)

    Ota, Sadao; Li, Tongcang; Li, Yimin; Ye, Ziliang; Labno, Anna; Yin, Xiaobo; Alam, Mohammad-Reza; Zhang, Xiang


    Brownian motion of slender particles near a boundary is ubiquitous in biological systems and in nanomaterial assembly, but the complex hydrodynamic interaction in those systems is still poorly understood. Here, we report experimental and computational studies of the Brownian motion of silicon nanowires tethered on a substrate. An optical interference method enabled direct observation of microscopic rotations of the slender bodies in three dimensions with high angular and temporal resolutions. This quantitative observation revealed anisotropic and angle-dependent hydrodynamic wall effects: rotational diffusivity in inclined and azimuth directions follows different power laws as a function of the length, ∼ L(-2.5) and ∼ L(-3), respectively, and is more hindered for smaller inclined angles. In parallel, we developed an implicit simulation technique that takes the complex wire-wall hydrodynamic interactions into account efficiently, the result of which agreed well with the experimentally observed angle-dependent diffusion. The demonstrated techniques provide a platform for studying the microrheology of soft condensed matters, such as colloidal and biological systems near interfaces, and exploring the optimal self-assembly conditions of nanostructures.

  17. Brownian Motion in Minkowski Space

    Directory of Open Access Journals (Sweden)

    Paul O'Hara


    Full Text Available We construct a model of Brownian motion in Minkowski space. There are two aspects of the problem. The first is to define a sequence of stopping times associated with the Brownian “kicks” or impulses. The second is to define the dynamics of the particle along geodesics in between the Brownian kicks. When these two aspects are taken together, the Central Limit Theorem (CLT leads to temperature dependent four dimensional distributions defined on Minkowski space, for distances and 4-velocities. In particular, our processes are characterized by two independent time variables defined with respect to the laboratory frame: a discrete one corresponding to the stopping times when the impulses take place and a continuous one corresponding to the geodesic motion in-between impulses. The subsequent distributions are solutions of a (covariant pseudo-diffusion equation which involves derivatives with respect to both time variables, rather than solutions of the telegraph equation which has a single time variable. This approach simplifies some of the known problems in this context.

  18. Random motion and Brownian rotation

    International Nuclear Information System (INIS)

    Wyllie, G.


    The course is centred on the Brownian motion - the random movement of molecules arising from thermal fluctuations of the surrounding medium - and starts with the classical theory of A. Einstein, M.v. Smoluchowski and P. Langevin. The first part of this article is quite elementary, and several of the questions raised in it have been instructively treated in a much more sophisticated way in recent reviews by Pomeau and Resibois and by Fox. This simple material may nevertheless be helpful to some readers whose main interest lies in approaching the work on Brownian rotation reviewed in the latter part of the present article. The simplest, and most brutally idealised, problem in our field of interest is that of the random walk in one dimension of space. Its solution leads on, through the diffusivity-mobility relation of Einstein, to Langevin's treatment of the Brownian motion. The application of these ideas to the movement of a molecule in a medium of similar molecules is clearly unrealistic, and much energy has been devoted to finding a suitable generalisation. We shall discuss in particular ideas due to Green, Zwanzig and Mori. (orig./WL)

  19. Reading Emotion From Mouse Cursor Motions: Affective Computing Approach. (United States)

    Yamauchi, Takashi; Xiao, Kunchen


    Affective computing research has advanced emotion recognition systems using facial expressions, voices, gaits, and physiological signals, yet these methods are often impractical. This study integrates mouse cursor motion analysis into affective computing and investigates the idea that movements of the computer cursor can provide information about emotion of the computer user. We extracted 16-26 trajectory features during a choice-reaching task and examined the link between emotion and cursor motions. Participants were induced for positive or negative emotions by music, film clips, or emotional pictures, and they indicated their emotions with questionnaires. Our 10-fold cross-validation analysis shows that statistical models formed from "known" participants (training data) could predict nearly 10%-20% of the variance of positive affect and attentiveness ratings of "unknown" participants, suggesting that cursor movement patterns such as the area under curve and direction change help infer emotions of computer users. © 2017 Cognitive Science Society, Inc.

  20. Picasso's migraine: Illusory cubist splitting or illusion? (United States)

    Haan, Joost; Ferrari, Michel D


    It is widely believed that Pablo Picasso suffered from migraine. The main cause for this is our suggestion made 10 years ago that some of Picasso's paintings resemble migraine auras. Here we critically look back at our own hypothesis. We conclude that, although the idea is still fascinating, there is no proof of Picasso suffering from migraine with aura.