WorldWideScience

Sample records for induced plasma spectroscopy

  1. Laser-induced breakdown spectroscopy of tantalum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  2. Laser-induced breakdown spectroscopy of tantalum plasma

    International Nuclear Information System (INIS)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-01-01

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO 2 : N 2 : He), O 2 , N 2 , and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis

  3. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  4. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  5. Application of Laser Induced Plasma Spectroscopy on Breast Cancer Diagnoses

    Science.gov (United States)

    Abd-Alfattah, A.; Eldakrouri, A. A.; Emam, H.; Azzouz, I. M.

    2013-03-01

    Worldwide, millions of breast cancer cases appear each year. It ranked as the first malignant tumors in Egypt. Breast cancer patients are at increased risk of developing malignant melanoma and cancers of the ovary, endometrium, colon, thyroid, and salivary glands because of similar hormonal and genetic factors. Therefore, early diagnosis by a quick and accurate method may have a great affect on healing. In this work, we investigate the feasibility of using LIPS as a simple, technique to diagnose breast cancer by measuring the concentration of trace elements in breast tissues. The accuracy of LIPS measurements was confirmed by carrying out another elemental analysis via atomic absorption spectroscopy (AAS) technique. The results obtained via these two techniques showed that the concentration of Ca, Cu, Fe, Zn and Mn in the malignant tissue cells are significantly enhanced. A voting algorithm was built for instantaneous decision of the diagnostic technique (normal or malignant). This study instigates developing a new diagnostic tool with potential use in vivo.

  6. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  7. Laser-Induced Graphite Plasma Kinetic Spectroscopy under Different Ambient Pressures

    International Nuclear Information System (INIS)

    Chaudhary, K.; Rosalan, S.; Aziz, M. S.; Bohadoran, M.; Ali, J; Bidin, N.; Saktioto; Yupapin, P. P.

    2015-01-01

    The laser induced plasma dynamics of graphite material are investigated by optical emission spectroscopy. Ablation and excitation of the graphite material is performed by using an 1064nm Nd:YAG laser in different ambient pressures. Characteristics of graphite spectra as line intensity variations and signal-to-noise ratio are presented with a main focus on the influence of the ambient pressure on the interaction of laser-induced graphite plasma with an ambient environment. Atomic emission lines are utilized to investigate the dynamical behavior of plasma, such as the excitation temperature and electron density, to describe emission differences under different ambient conditions. The excitation temperature and plasma electron density are the primary factors which contribute to the differences among the atomic carbon emission at different ambient pressures. Reactions between the plasma species and ambient gas, and the total molecular number are the main factors influencing molecular carbon emission. The influence of laser energy on the plasma interaction with environment is also investigated to demonstrate the dynamical behavior of carbon species so that it can be utilized to optimize plasma fluctuations. (paper)

  8. Determination of plasma temperature and electron density in river sediment plasma using calibration-free laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Austria, Elmer S. Jr.; Lamorena-Lim, Rheo B.

    2015-01-01

    Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technique is an approach used to quantitatively measure elemental composition of samples without the use of standard reference materials (SRMs). Due to the unavailability of most SRMs for specific samples, the CF-LIBS approach is steadily becoming more prevalent. CF-LIBS also minimizes interferences from the sample matrix by accounting spectral line intensifies of different elements. The first part of the CF-LIBS algorithm is the calculation of plasma temperature and electron density of the sample while the second part deals with the self-absorption correction and quantitative elemental analysis. In this study, the precursor parameters for the algorithm - plasma temperature and electron density - were measured through the neutral atom and ion line emissions of Fe and Cu in the time window of 0.1 to 10 μs. Plasma from river sediment samples were produced by a 1064 nm nanosecond pulsed Nd:YAG laser at atmospheric pressure. The plasma temperature and electron density were calculated from the Boltzmann plot and Saha-Boltzmann equation methods, respectively. These precursor parameters can be used in calculating the time window wherein the plasma is optically thin at local thermodynamic equilibrium (LTE) and for quantitative multi-elemental analysis. (author)

  9. On-line iron ore slurry monitoring using laser induced plasma spectroscopy

    International Nuclear Information System (INIS)

    Barrette, L.; Turmel, S.; Boivin, J.-A.; Sabsabi, M.; Martinovic, T.I.; Ouellet, G.

    1999-01-01

    In response to the need for a better control [Lb1] of the various additives used in the iron ore pellet making process, Laser-Induced Plasma Spectroscopy (LIPS) has been tested for the on-line monitoring of Si, AI, Ca, Mg, and C. This work shows that factors such as laser beam focusing, particle size, slurry density and mineralogical composition have to be taken into account to meet precision and accuracy requirements. An internal standardization (peak ratio) and an original multivariate calibration technique based on fuzzy logic concepts [Lb2] are [Lb3] used to minimize the effect of these factors. This paper describes the experimental set-up, the effect of influence factors and the results obtained both in the laboratory and in an iron ore plant. (author)

  10. Resonance-enhanced laser-induced plasma spectroscopy: ambient gas effects

    International Nuclear Information System (INIS)

    Lui, S.L.; Cheung, N.H.

    2003-01-01

    When performing laser-induced plasma spectroscopy for elemental analysis, the sensitivity could be significantly enhanced if the plume was resonantly rekindled by a dye laser pulse. The extent of the enhancement was found to depend on the ambient gas. Air, nitrogen, helium, argon and xenon at pressures ranging from vacuum to 1 bar were investigated. In vacuum, the analyte signal was boosted because of reduced cooling, but it soon decayed as the plume freely expanded. By choosing the right ambient gas at the right pressure, the expanding plume could be confined as well as thermally insulated to maximize the analyte signal. For instance, an ambient of 13 mbar xenon yielded a signal-to-noise ratio of 110. That ratio was 53 when the pellet was ablated in air, and decreased further to 5 if the dye laser was tuned off resonance

  11. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    International Nuclear Information System (INIS)

    Nicolas, G.; Mateo, M.P.; Yanez, A.

    2007-01-01

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits

  12. Plasma polarization spectroscopy

    CERN Document Server

    Iwamae, Atsushi

    2008-01-01

    Plasma Polarization Spectroscopy (PPS) is now becoming a standard diagnostic technique for working with laboratory plasmas. This new area needs a comprehensive framework, both experimental and theoretical. This book reviews the historical development of PPS, develops a general theoretical formulation to deal with this phenomenon, along with an overview of relevant cross sections, and reports on laboratory experiments so far performed. It also includes various facets that are interesting from this standpoint, e.g. X-ray lasers and effects of microwave irradiation. It also offers a timely discussion of instrumentation that is quite important in a practical PPS experiment.

  13. Modeling of plasma distortions by laser-induced ablation spectroscopy (LIAS) and implications for the interpretation of LIAS measurements

    Science.gov (United States)

    Tokar, M. Z.; Gierse, N.; Philipps, V.; Samm, U.

    2015-09-01

    For the interpretation of the line radiation observed from laser induced ablation spectroscopy (LIAS) such parameters as the density and temperature of electrons within very compact clouds of atoms and singly charged ions of ablated material have to be known. Compared to the local plasma conditions prior to the laser pulse, these can be strongly changed during LIAS since new electrons are generated by the ionisation of particles ejected from the irradiated target. Because of their transience and spatial inhomogeneity it is technically difficult to measure disturbances induced in the plasma by LIAS. To overcome this uncertainty a numerical model has been elaborated, providing a self-consistent description for the spreading of ablated particles and accompanying modifications in the plasma. The results of calculations for LIAS performed on carbon-containing targets in Ohmic and additionally heated discharges in the tokamak TEXTOR are presented. Due to the increase in the electron density the ‘ionisation per photon’ ratio, S/XB factor, is significantly enhanced compared to unperturbed plasma conditions. The impact of the amount of material ablated and of the plasma conditions before LIAS on the level of the S/XB-enhancement is investigated.

  14. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    Science.gov (United States)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  15. The use of laser-induced shock wave plasma spectroscopy (LISPS) for examining physical characteristics of pharmaceutical products

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmadjid, Syahrun Nur, E-mail: syahrun-madjid@yahoo.com; Lahna, Kurnia, E-mail: kurnialahna@gmail.com [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Aceh (Indonesia); Desiyana, Lydia Septa, E-mail: lydia-septa@yahoo.com [Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Aceh (Indonesia)

    2016-03-11

    An experimental study has been performed to examine the physical characteristics of pharmaceutical products, such as tablet, by employing an emission plasma induced by Nd-YAG laser at a low pressure of Helium gas. The hardness of tablet is one of the parameters that examined during the production process for standard quality of pharmaceutical products. In the Laser-Induced Shock Wave Plasma Spectroscopy (LISPS), the shock wave has a significant role in inducing atomic excitation. It was known that, the speed of the shock wavefront depends on the hardness of the sample, and it correlates with the ionization rate of the ablated atoms. The hardness of the tablet is examined using the intensity ratio between the ion of Mg (II) 275.2 nm and the neutral of Mg (I) 285.2 nm emission lines detected from the laser-induced plasma. It was observed that the ratio changes with respect to the change in the tablet hardness, namely the ratio is higher for the hard tablet. Besides the ratio measurements, we also measured the depth profile of a tablet by focusing 60 shots of irradiation of laser light at a fixed position on the surface of the tablet. It was found that the depth profile varies differently with the hardness of the tablet. These experiment results show that the technique of LISPS can be applied to examine the quality of pharmaceutical products.

  16. The use of laser-induced shock wave plasma spectroscopy (LISPS) for examining physical characteristics of pharmaceutical products

    International Nuclear Information System (INIS)

    Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Desiyana, Lydia Septa

    2016-01-01

    An experimental study has been performed to examine the physical characteristics of pharmaceutical products, such as tablet, by employing an emission plasma induced by Nd-YAG laser at a low pressure of Helium gas. The hardness of tablet is one of the parameters that examined during the production process for standard quality of pharmaceutical products. In the Laser-Induced Shock Wave Plasma Spectroscopy (LISPS), the shock wave has a significant role in inducing atomic excitation. It was known that, the speed of the shock wavefront depends on the hardness of the sample, and it correlates with the ionization rate of the ablated atoms. The hardness of the tablet is examined using the intensity ratio between the ion of Mg (II) 275.2 nm and the neutral of Mg (I) 285.2 nm emission lines detected from the laser-induced plasma. It was observed that the ratio changes with respect to the change in the tablet hardness, namely the ratio is higher for the hard tablet. Besides the ratio measurements, we also measured the depth profile of a tablet by focusing 60 shots of irradiation of laser light at a fixed position on the surface of the tablet. It was found that the depth profile varies differently with the hardness of the tablet. These experiment results show that the technique of LISPS can be applied to examine the quality of pharmaceutical products.

  17. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  18. Optimal conditions for taking spectra of coffee beans plasma spectroscopy induced by laser (LIBS)

    International Nuclear Information System (INIS)

    Diaz Guerrero, A. M.; Flores Reyes; Ponce Cabrera, L. V.

    2016-01-01

    Coffee beans, arabica and robusta, from Mexico (Chiapas and Veracruz), Colombia, Kenya and Sumatra were analyzed by Laser-induced breakdown spectroscopy (LIBS). The time delay and pulse energy were varied in order to find the optimal conditions for taking spectra in coffee beans; finding that the increased visibility of the peaks and the lowest electronic background is observed with 1 s and 450 mJ. Spectra were taken in different regions of grain area to confirm its homogeneous composition. It was found that the intensity of the signal Ca is much higher than that of K in African coffee, lower in the coffee of America, and much lower in the coffee from Asia. (Author)

  19. Use of neutron diffraction and laser-induced plasma spectroscopy in integrated authentication methodologies of copper alloy artefacts

    International Nuclear Information System (INIS)

    Siano, S.; Bartol, L.; Mencaglia, A.A.; Agresti, J.; Miccio, M.

    2009-01-01

    The present study approaches the general problem of the authentication of copper alloy artefacts of art and historical interest using non-invasive analytical techniques. It aims to demonstrate that a suitable combination of time-of-flight neutron diffraction and laser-induced plasma spectroscopy in integrated multidisciplinary authentication methodologies can provide crucial data for discriminating between genuine archaeological objects and modern counterfeits. After introducing the methodology, which is dedicated in particular to copper alloy figurines of ancient style, two representative authentication case studies are discussed. The results of the work provide evidence that the combination of multiphase analysis using TOF-N D and elemental depth profiles provided by Lips makes it possible to solve most of the present authentication problems.

  20. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  1. Synergetic effects of double laser pulses for the formation of mild plasma in water: Toward non-gated underwater laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sakka, Tetsuo [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Institute of Sustainability Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Tamura, Ayaka; Nakajima, Takashi; Fukami, Kazuhiro; Ogata, Yukio H. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2012-05-07

    We experimentally study the dynamics of the plasma induced by the double-laser-pulse irradiation of solid target in water, and find that an appropriate choice of the pulse energies and pulse interval results in the production of an unprecedentedly mild (low-density) plasma, the emission spectra of which are very narrow even without the time-gated detection. The optimum pulse interval and pulse energies are 15-30 {mu}s and about {approx}1 mJ, respectively, where the latter values are much smaller than those typically employed for this kind of study. In order to clarify the mechanism for the formation of mild plasma we examine the role of the first and second laser pulses, and find that the first pulse produces the cavitation bubble without emission (and hence plasma), and the second pulse induces the mild plasma in the cavitation bubble. These findings may present a new phase of underwater laser-induced breakdown spectroscopy.

  2. Measurement of spatially resolved gas-phase plasma temperatures by optical emission and laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Davis, G.P.; Gottscho, R.A.

    1983-01-01

    Knowledge of the energy distributions of particles in glow discharges is crucial to the understanding and modeling of plasma reactors used in microelectronic manufacturing. Reaction rates, available product channels, and transport phenomena all depend upon the partitioning of energy in the discharge. Because of the nonequilibrium nature of glow discharges, however, the distribution of energy among different species and among different degrees of freedom cannot be characterized simply by one temperature. The extent to which different temperatures are needed for each degree of freedom and for each species is not known completely. How plasma operating conditions affect these energy distributions is also an unanswered question. We have investigated the temperatures of radicals, ions, and neutrals in CCl 4 , CCl 4 /N 2 (2%), and N 2 discharges. In the CCl 4 systems, we probed the CCl rotational and vibrational energy distributions by laser-induced fluorescence spectroscopy. The rotational distribution always appeared to be thermal but under identical operating conditions was found to be roughly-equal400 K colder than the vibrational distribution. The rotational temperature at any point in the discharge was strongly dependent upon both applied power and surface temperature. Thermal gradients as large as 10 2 K mm -1 were observed near electrode surfaces but the bulk plasmas were isothermal. When 2% N 2 was added to a CCl 4 discharge, N 2 second positive emission was observed and used to estimate the N 2 rotational temperature. The results suggest that emission from molecular actinometers can be used to measure plasma temperatures, providing such measurements are not made in close proximity to surfaces

  3. Assessment of Laser Induced Ablation Spectroscopy (LIAS) as a method for quantitative in situ surface diagnostic in plasma environments

    International Nuclear Information System (INIS)

    Gierse, Niels Hannes Gustav

    2014-01-01

    In this work Laser Induced Ablation Spectroscopy (LIAS) is investigated as an in situ plasma surface interaction diagnostic for fusion reactors and fusion experiments. In LIAS an intensive laser pulse is used to ablate the material under investigation during plasma operation. Ablation products penetrate into the edge region of the plasma and are excited and ionized. In case of molecules and clusters additionally dissociation occurs. The emitted line radiation is observed by radiometric calibrated spectroscopy. Results from LIAS of W/C/Al/D-mixed layers and amorphous hydrocarbon layers are presented. Using a fast camera system time resolved measurements of the LIAS.process could be performed, allowing investigation of the temporal behavior of excitation, dissociation and ionization processes. For Tungsten, 90% of the LIAS light is observed within 10±3 μs after the laser pulse. In case of carbon within 20±3 μs. Additionally separation in time of LIAS emission and the LIBS emission caused by the laser pulse at the surface within single measurements was demonstrated. This allows the separate analysis of both processes in a coaxial setup which is foreseen for future experiments. The inverse photon efficiency of the Balmer D α -emission from LIAS of a-C:D-layers was found to be [(D)/(XB)] a-C:D LIAS → D D α =71±7. The plasma perturbation due to LIAS was investigated by laser energy density variation when ablating W/C/Al/D.mixed layers. Local plasma perturbation is found to increase with laser energy density. Balmer H γ /H δ - line intensity ratio measurements only show for ohmic discharges and the case of the lowest central density signs of local plasma perturbation in LIAS of graphite samples. A simple analytical model for local plasma perturbation during LIAS is introduced and evaluated. Qualitative agreement between the model and the above reported experimental observations is found; a stronger influence on local conditions is found by tungsten than by

  4. Introduction to Plasma Spectroscopy

    CERN Document Server

    Kunze, H-J

    2009-01-01

    Based on lectures given at the Ruhr-University of Bochum for graduate students and postgraduates starting in plasma physics as well as from low- to high-density hot plasmas, this book introduces basic ideas and fundamental concepts and typical instrumentation from the X-ray to the infrared spectral regions

  5. Laser-induced plasma spectroscopy (LIPS): use of a geological tool in assessing bone mineral content.

    Science.gov (United States)

    Andrássy, László; Gomez, Izabella; Horváth, Ágnes; Gulyás, Katalin; Pethö, Zsófia; Juhász, Balázs; Bhattoa, Harjit Pal; Szekanecz, Zoltan

    2018-02-17

    Bone may be similar to geological formulations in many ways. Therefore, it may be logical to apply laser-based geological techniques in bone research. The mineral and element oxide composition of bioapatite can be estimated by mathematical models. Laser-induced plasma spectrometry (LIPS) has long been used in geology. This method may provide a possibility to determine the composition and concentration of element oxides forming the inorganic part of bones. In this study, we wished to standardize the LIPS technique and use mathematical calculations and models in order to determine CaO distribution and bone homogeneity using bovine shin bone samples. We used polished slices of five bovine shin bones. A portable LIPS instrument using high-power Nd++YAG laser pulses has been developed (OpLab, Budapest). Analysis of CaO distribution was carried out in a 10 × 10 sampling matrix applying 300-μm sampling intervals. We assessed both cortical and trabecular bone areas. Regions of interest (ROI) were determined under microscope. CaO peaks were identified in the 200-500 nm wavelength range. A mathematical formula was used to calculate the element oxide composition (wt%) of inorganic bone. We also applied two accepted mathematical approaches, the Bartlett's test and frequency distribution curve-based analysis, to determine the homogeneity of CaO distribution in bones. We were able to standardize the LIPS technique for bone research. CaO concentrations in the cortical and trabecular regions of B1-5 bones were 33.11 ± 3.99% (range 24.02-40.43%) and 27.60 ± 7.44% (range 3.58-39.51%), respectively. CaO concentrations highly corresponded to those routinely determined by ICP-OES. We were able to graphically demonstrate CaO distribution in both 2D and 3D. We also determined possible interrelations between laser-induced craters and bone structure units, which may reflect the bone structure and may influence the heterogeneity of CaO distributions. By using two different

  6. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Rehan

    2017-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm of a Nd:YAG pulsed laser. Three samples were collected for this purpose. Spectra of textile dyes were acquired using an HR spectrometer (LIBS2000+, Ocean Optics, Inc. having an optical resolution of 0.06 nm in the spectral range of 200 to 720 nm. Toxic metals like Cr, Cu, Fe, Ni, and Zn along with other elements like Al, Mg, Ca, and Na were revealed to exist in the samples. The %-age concentrations of the detected elements were measured by means of standard calibration curve method, intensities of every emission from every species, and calibration-free (CF LIBS approach. Only Sample 3 was found to contain heavy metals like Cr, Cu, and Ni above the prescribed limit. The results using LIBS were found to be in good agreement when compared to outcomes of inductively coupled plasma/atomic emission spectroscopy (ICP/AES.

  7. Atomic hydrogen and diatomic titanium-monoxide molecular spectroscopy in laser-induced plasma

    Science.gov (United States)

    Parigger, Christian G.; Woods, Alexander C.

    2017-03-01

    This article gives a brief review of experimental studies of hydrogen Balmer series emission spectra. Ongoing research aims to evaluate early plasma evolution following optical breakdown in laboratory air. Of interest is as well laser ablation of metallic titanium and characterization of plasma evolution. Emission of titanium monoxide is discussed together with modeling of diatomic spectra to infer temperature. The behavior of titanium particles in plasma draws research interests ranging from the modeling of stellar atmospheres to the enhancement of thin film production via pulsed laser deposition.

  8. A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass

    International Nuclear Information System (INIS)

    Naes, Benjamin E.; Umpierrez, Sayuri; Ryland, Scott; Barnett, Cleon; Almirall, Jose R.

    2008-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), micro X-ray fluorescence spectroscopy (μXRF), and laser induced breakdown spectroscopy (LIBS) are compared in terms of discrimination power for a glass sample set consisting of 41 fragments. Excellent discrimination results (> 99% discrimination) were obtained for each of the methods. In addition, all three analytical methods produced very similar discrimination results in terms of the number of pairs found to be indistinguishable. The small number of indistinguishable pairs that were identified all originated from the same vehicle. The results also show a strong correlation between the data generated from the use of μXRF and LA-ICP-MS, when comparing μXRF strontium intensities to LA-ICP-MS strontium concentrations. A 266 nm laser was utilized for all LIBS analyses, which provided excellent precision (< 10% RSD for all elements and < 10% RSD for all ratios, N = 5). The paper also presents a thorough data analysis review for forensic glass examinations by LIBS and suggests several element ratios that provide accurate discrimination results related to the LIBS system used for this study. Different combinations of 10 ratios were used for discrimination, all of which assisted with eliminating Type I errors (false exclusions) and reducing Type II errors (false inclusions). The results demonstrate that the LIBS experimental setup described, when combined with a comprehensive data analysis protocol, provides comparable discrimination when compared to LA-ICP-MS and μXRF for the application of forensic glass examinations. Given the many advantages that LIBS offers, most notably reduced complexity and reduced cost of the instrumentation, LIBS is a viable alternative to LA-ICP-MS and μXRF for use in the forensic laboratory

  9. Characterizing a multi-MeV e-beam induced plasma through visible spectroscopy and imaging

    Science.gov (United States)

    D'Almeida, Thierry; Ribiere, Maxime; Maisonny, Rémi; Ritter, Sandra; Plouhinec, Damien; Auriel, Gérard

    2016-10-01

    High energy electrons interaction and propagation mechanisms in solid targets have a broad range of applications in high energy density physics. The latter include fast ignition for inertial fusion research, production of ultra-high mechanical stress levels, plasma interactions with e-beam particles in electron diodes, radiative hydrodynamic models...This paper presents the results from recent experiments conducted on the multi-MeV generator ASTERIX operated at CEA-Gramat. This high flux density electron beam was launched from an aluminum cathode onto an aluminum-tantalum target for voltage and current of 2.4 MeV and 55 kA, respectively. A set of optical diagnostics were fielded in all of the experiments, including a UV-visible spectrometers and a fast imaging. The imaging data obtained during the experiment allowed for the ablated species velocity to be determined. based on spectroscopic analysis, the light emission was attributed to aluminum and tantalum excited atoms and ions. The analysis of this time-integrated spectrum based on radiative transfer model clearly unveiled two distinct regions of the plasma over its expansion: a hot core surrounded by a cold vapor. A quantitative analysis of these results is presented.

  10. Spectroscopic analysis of high protein nigella seeds (Kalonji) using laser-induced breakdown spectroscopy and inductively coupled plasma/optical emission spectroscopy

    Science.gov (United States)

    Rehan, Imran; Khan, M. Zubair; Ali, Irfan; Rehan, Kamran; Sultana, Sabiha; Shah, Sher

    2018-03-01

    The spectroscopic analysis of high protein nigella seeds (also called Kalonji) was performed using pulsed nanosecond laser-induced breakdown spectroscopy (LIBS) at 532 nm. The emission spectrum of Kalonji recorded with an LIBS spectrometer exposed the presence of various elements like Al, B, Ba, Ca, Cr, K, P, Mg, Mn, Na, Ni, S, Si, Cu, Fe, Ti, Sn, Sr, and Zn. The plasma parameters (electron temperature and electron density) were estimated using Ca-I spectral lines and their behavior were studied against laser irradiance. The electron temperature and electron density was observed to show an increasing trend in the range of 5802-7849 K, and (1.2-3.9) × 1017 cm- 3, respectively, in the studied irradiance range of (1.2-12.6) × 109 W/cm2. Furthermore, the effect of varying laser energy on the integrated signal intensities was also studied. The quantitative analysis of the detected elements was performed via the calibration curves drawn for all the observed elements through typical samples made in the known concentration in the Kalonji matrix, and by setting the concentration of P as the calibration. The validity of our LIBS findings was verified via comparison of the results with the concentration of every element find in Kalonji using the standard analytical tool like ICP/OES. The results acquired using LIBS and ICP/OES were found in fine harmony. Moreover, limit of detection was measured for toxic metals only.

  11. Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra

    Science.gov (United States)

    López-Claros, M.; Dell'Aglio, M.; Gaudiuso, R.; Santagata, A.; De Giacomo, A.; Fortes, F. J.; Laserna, J. J.

    2017-07-01

    There is a growing interest in the development of sensors use in exploration of the deep ocean. Techniques for the chemical analysis of submerged solids are of special interest, as they show promise for subsea mining applications where a rapid sorting of materials found in the sea bottom would improve efficiency. Laser-Induced Breakdown Spectroscopy (LIBS) has demonstrated potential for this application thanks to its unique capability of providing the atomic composition of submerged solids. Here we present a study on the parameters that affect the spectral response of metallic targets in an oceanic pressure environment. Following laser excitation of the solid, the plasma persistence and the cavitation bubble size are considerably reduced as the hydrostatic pressure increases. These effects are of particular concern in dual pulse excitation as reported here, where a careful choice of the interpulse timing is required. Shadowgraphic images of the plasma demonstrate that cavitation bubbles are formed early after the plasma onset and that the effect of hydrostatic pressure is negligible during the early stage of plasma expansion. Contrarily to what is observed at atmospheric pressure, emission spectra observed at high pressures are characterized by self-absorbed atomic lines on continuum radiation resulting from strong radiative recombination in the electron-rich confined environment. This effect is much less evident with ionic lines due to the much higher energy of the levels involved and ionization energy of ions, as well as to the lower extent of absorption effects occurring in the inner part of the plasma, where ionized species are more abundant. As a result of the smaller shorter-lived cavitation bubble, the LIBS intensity enhancement resulting from dual pulse excitation is reduced when the applied pressure increases.

  12. Analysis of glass and glass melts during the vitrification of fly and bottom ashes by laser-induced plasma spectroscopy. Part II. Process analysis

    Science.gov (United States)

    Panne, U.; Clara, M.; Haisch, C.; Niessner, R.

    1998-12-01

    Laser-induced plasma spectroscopy (LIPS) is employed for in situ and on-line process analysis of major glass constituents during a vitrification process for fly and bottom ashes from waste incineration. The system is based on an Nd:YAG laser for plasma ignition, while the elemental emissions from the plasma are detected time-resolved by an intensified multichannel analyzer. The perpendicular, single axis, imaging optics allow a remote sensing of the composition of the hot glass melt. Taking into account the plasma characteristics for calibration, good agreement between the LIPS analysis and the established reference analysis is achieved for the concentration ratios of SiO 2, Al 2O 3, and CaO. In addition, LIPS is applied to the analysis of aerosols generated by homogeneous nucleation during the heating-up of the investigated fly ashes. A distinctive temperature dependence of the heavy metal concentration of the aerosols is observed.

  13. Modeling of low-temperature plasmas generated using laser-induced breakdown spectroscopy: the ChemCam diagnostic tool on the Mars Science Laboratory Rover

    Science.gov (United States)

    Colgan, James

    2016-05-01

    We report on efforts to model the low-temperature plasmas generated using laser-induced breakdown spectroscopy (LIBS). LIBS is a minimally invasive technique that can quickly and efficiently determine the elemental composition of a target and is employed in an extremely wide range of applications due to its ease of use and fast turnaround. In particular, LIBS is the diagnostic tool used by the ChemCam instrument on the Mars Science Laboratory rover Curiosity. In this talk, we report on the use of the Los Alamos plasma modeling code ATOMIC to simulate LIBS plasmas, which are typically at temperatures of order 1 eV and electron densities of order 10 16 - 17 cm-3. At such conditions, these plasmas are usually in local-thermodynamic equilibrium (LTE) and normally contain neutral and singly ionized species only, which then requires that modeling must use accurate atomic structure data for the element under investigation. Since LIBS devices are often employed in a very wide range of applications, it is therefore desirable to have accurate data for most of the elements in the periodic table, ideally including actinides. Here, we discuss some recent applications of our modeling using ATOMIC that have explored the plasma physics aspects of LIBS generated plasmas, and in particular discuss the modeling of a plasma formed from a basalt sample used as a ChemCam standard1. We also highlight some of the more general atomic physics challenges that are encountered when attempting to model low-temperature plasmas. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396. Work performed in conjunction with D. P. Kilcrease, H. M. Johns, E. J. Judge, J. E. Barefield, R. C. Wiens, S. M. Clegg.

  14. On the determination of plasma electron number density from Stark broadened hydrogen Balmer series lines in Laser-Induced Breakdown Spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, L., E-mail: loren.pard@gmail.com [Istituto di Chimica dei Composti Organometallici del CNR, Area della Ricerca del CNR di Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Legnaioli, S.; Lorenzetti, G.; Palleschi, V. [Istituto di Chimica dei Composti Organometallici del CNR, Area della Ricerca del CNR di Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Gaudiuso, R.; De Giacomo, A. [Dipartimento di Chimica, Università di Bari, Via Orabona 4, 70126 Bari (Italy); Diaz Pace, D.M. [Instituto de Física ‘Arroyo Seco’, Facultad de Ciencias Exactas, Paraje Arroyo Seco, B7000GHG Tandil (Argentina); Anabitarte Garcia, F. [Photonic Engineering Group, Universidad de Cantabria, Edificio I+D+iTelecomunicación, Dpto. TEISA, 39005 Santander (Spain); Holanda Cavalcanti, G. de [Institute of Physics, Universidade Federal Fluminense, UFF, Campus da Praia Vermelha, Av. Gal Milton Tavares de Souza, Gragoatá, 24310 240 Niterói, RJ (Brazil); Parigger, C. [University of Tennessee Space Institute, 411 B. H. Goethert Parkway, Tullahoma, TN 37388-9700 (United States)

    2013-10-01

    In this work, different theories for the determination of the electron density in Laser-Induced Breakdown Spectroscopy (LIBS) utilizing the emission lines belonging to the hydrogen Balmer series have been investigated. The plasmas were generated by a Nd:Yag laser (1064 nm) pulsed irradiation of pure hydrogen gas at a pressure of 2 · 10{sup 4} Pa. H{sub α}, Η{sub β}, Η{sub γ}, Η{sub δ}, and H{sub ε} Balmer lines were recorded at different delay times after the laser pulse. The plasma electron density was evaluated through the measurement of the Stark broadenings and the experimental results were compared with the predictions of three theories (the Standard Theory as developed by Kepple and Griem, the Advanced Generalized Theory by Oks et al., and the method discussed by Gigosos et al.) that are commonly employed for plasma diagnostics and that describe LIBS plasmas at different levels of approximations. A simple formula for pure hydrogen plasma in thermal equilibrium was also proposed to infer plasma electron density using the H{sub α} line. The results obtained showed that at high hydrogen concentration, the H{sub α} line is affected by considerable self-absorption. In this case, it is preferable to use the H{sub β} line for a reliable calculation of the electron density. - Highlights: • We evaluated the electron density in LIPs utilizing the hydrogen Balmer series. • Plasmas were generated by a Nd:Yag laser (1064 nm) on pure hydrogen gas. • We show that at high hydrogen concentration, H{sub b}eta line is preferable than H{sub a}lpha. • We propose a formula to derive the plasma electron density using the H{sub a}lpha line.

  15. Calibration-free quantitative elemental analysis of meteor plasma using reference laser-induced breakdown spectroscopy of meteorite samples

    Science.gov (United States)

    Ferus, Martin; Koukal, Jakub; Lenža, Libor; Srba, Jiří; Kubelík, Petr; Laitl, Vojtěch; Zanozina, Ekaterina M.; Váňa, Pavel; Kaiserová, Tereza; Knížek, Antonín; Rimmer, Paul; Chatzitheodoridis, Elias; Civiš, Svatopluk

    2018-03-01

    Aims: We aim to analyse real-time Perseid and Leonid meteor spectra using a novel calibration-free (CF) method, which is usually applied in the laboratory for laser-induced breakdown spectroscopic (LIBS) chemical analysis. Methods: Reference laser ablation spectra of specimens of chondritic meteorites were measured in situ simultaneously with a high-resolution laboratory echelle spectrograph and a spectral camera for meteor observation. Laboratory data were subsequently evaluated via the CF method and compared with real meteor emission spectra. Additionally, spectral features related to airglow plasma were compared with the spectra of laser-induced breakdown and electric discharge in the air. Results: We show that this method can be applied in the evaluation of meteor spectral data observed in real time. Specifically, CF analysis can be used to determine the chemical composition of meteor plasma, which, in the case of the Perseid and Leonid meteors analysed in this study, corresponds to that of the C-group of chondrites.

  16. Measurements of egg shell plasma parameters using laser-induced ...

    Indian Academy of Sciences (India)

    Atomic emission spectroscopy; laser-induced breakdown spectroscopy, plasma; elec- tron temperature; electron density. PACS Nos 32.30.−r; 32.70.−n; 52.25.−b. 1. Introduction. Laser-induced breakdown spectroscopy (LIBS), a superior elemental analysis method of atomic emission spectroscopy (AES), has evolved rapidly ...

  17. Investigation of excited states populations density of Hall thruster plasma in three dimensions by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Krivoruchko, D. D.; Skrylev, A. V.

    2018-01-01

    The article deals with investigation of the excited states populations distribution of a low-temperature xenon plasma in the thruster with closed electron drift at 300 W operating conditions were investigated by laser-induced fluorescence (LIF) over the 350–1100 nm range. Seven xenon ions (Xe II) transitions were analyzed, while for neutral atoms (Xe I) just three transitions were explored, since the majority of Xe I emission falls into the ultraviolet or infrared part of the spectrum and are difficult to measure. The necessary spontaneous emission probabilities (Einstein coefficients) were calculated. Measurements of the excited state distribution were made for points (volume of about 12 mm3) all over the plane perpendicular to thruster axis in four positions on it (5, 10, 50 and 100 mm). Measured LIF signal intensity have differences for each location of researched point (due to anisotropy of thruster plume), however the structure of states populations distribution persisted at plume and is violated at the thruster exit plane and cathode area. Measured distributions show that for describing plasma of Hall thruster one needs to use a multilevel kinetic model, classic model can be used just for far plume region or for specific electron transitions.

  18. Quantitative analysis of trace lead in tin-base lead-free solder by laser-induced plasma spectroscopy in air at atmospheric pressure.

    Science.gov (United States)

    Chen, Baozhong; Kano, Hidenori; Kuzuya, Mikio

    2008-02-01

    A quantitative analysis of trace lead in tin-base lead-free solder was carried out with laser-induced plasma spectroscopy (LIPS). In order to evaluate the applicability of the technique for rapid in situ analytical purposes, measurements were performed in air at atmospheric pressure, and the emission characteristics of the plasma produced by a Q-switched Nd:YAG laser over a laser energy range of 10 - 90 mJ were investigated using time-resolved spectroscopy. The experimental results showed that the emission intensity of the analysis line (Pb I 405.78 nm) was maximized at a laser energy of around 30 mJ, and a time-resolved measurement of a spectrum with a delay time of 0.4 micros after the laser pulse was effective for reducing the background continuum. Based on the results, lead-free solder certified reference materials were analyzed for trace lead (concentration 174 - 1940 ppm), and a linear calibration curve was obtained with a detection limit of several tens ppm.

  19. Kinetics and spectroscopy of low temperature plasmas

    CERN Document Server

    Loureiro, Jorge

    2016-01-01

    This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...

  20. New ways for the quantification by the laser-induced plasma spectroscopy; Neue Wege zur Quantifizierung mit der laserinduzierten Plasmaspektroskopie (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Maike

    2010-04-27

    Laser Induced Breakdown Spectroscopy (LIBS) is capable of a fast and multielement analysis of various samples types and matrices which makes the method particularly attractive for industrial process analysis. However, for LIBS to become well accepted as an analytical method some issues in calibration and understanding of the underlying transient plasma processes have to be solved. The objective of this work was to identify influential instrumental parameters and plasma conditions in order to improve the overall quantitative performance of LIBS. As the spectral sensitivity and signal-to-noise ratio of the detector represents a decisive element for the application of LIBS in an industrial environment, two detectors, an ICCD and CCD camera, were compared. In combination with a high-resolution echelle spectrograph, the superior or at least equivalent efficiency of the non-intensified CCD was experimentally demonstrated and supported by corresponding plasma simulations. Further investigations of the plasma expansion under different atmospheric conditions revealed that the geometry of observing the expanding plasma influences the sensitivity and reproducibility of the measurements considerably. The diagnostics of self-absorbed spectral lines and their use for calibration purposes were studied with a mirror-based duplication method and a statistical line shape analysis employing linear correlation. The linear correlation approach displayed good performance for identifying the on-set of self absorption in comparison to the duplication method. As matrixmatched reference materials are essential to validate laser ablation methods, two novel preparations of individual calibration standards based on a copper-and polyacrylamide matrix were tested for their applicability to LIBS. (orig.)

  1. Proceedings of the Japan-US workshop on plasma polarization spectroscopy and the international seminar on plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, Takashi; Beiersdorfer, Peter

    1998-06-01

    The international meeting on Plasma Polarization Spectroscopy (PPS) was held in Kyoto during January 26-28, 1998. This Proceedings book includes the papers of the talks given at the meeting. These include: overviews of PPS from the aspects of atomic physics, and of plasma physics; several PPS and MSE (motional Stark effect) experiments on magnetically confined plasmas and a laser-produced plasma; polarized laser-induced fluorescence spectroscopy, several experiments on EBITs (electron beam ion trap) and their theoretical interpretations; polarized profiles of spectral lines, basic formulation of PPS; inelastic and elastic electron collisions leading to polarized atomic states; polarization in recombining plasma; relationship between the collisional polarization relaxation and the line broadening; and characteristics of the plasma produced by very short pulse and high power laser irradiation. The 19 of the presented papers are indexed individually. (J.P.N.)

  2. Characteristics of laser-induced plasma under reduced background pressure with Doppler spectroscopy of excited atomic species near the shockwave front

    Science.gov (United States)

    Dojić, Dejan; Skočić, Miloš; Bukvić, Srdjan

    2018-03-01

    We present measurements of Laser Induced Plasma expansion relying on classical, laterally resolved spectroscopy. Easy observable Doppler splitting of Cu I 324.75 nm spectral line provides measurement of radial expansion velocity in a straightforward way. The measurements are conducted in atmosphere of air, argon and hydrogen at low pressure in the range 20-200 Pa. We found that expansion velocity is linearly decreasing if pressure of surrounding gas increases, with velocity/pressure slope nearly the same for all three gases. Copper atoms have the highest expansion speed in argon ( ∼ 50 km/s) and the smallest speed in air ( ∼ 42 km/s). It is found that expansion velocity increases linearly with irradiance, while intensity of the spectral line is quite insensitive to the laser irradiance.

  3. Laser-induced breakdown spectroscopy and inductively coupled plasma-mass spectrometry for determination of Cr in soils from Brits District, South Africa

    Directory of Open Access Journals (Sweden)

    A. A. Ambushe

    2015-10-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS is an emerging analytical technique, which can be used to perform elemental analysis of any material, irrespective of its physical state. In this study, the LIBS technique has been applied for quantification of total Cr in soil samples collected from polluted areas of Brits, North West Province, South Africa. A Q-switched neodymium-yttrium aluminium garnet (Nd-YAG laser (10 Hz, λ = 1064 nm was employed for generation of a laser-induced plasma on the surface of the soil sample. The atomic emission lines were recorded using an Andor Shamrock SR-303i spectrometer, fitted with an intensified charge-coupled device (ICCD camera. Detailed investigation of experimental parameters such as gate delay time, gate width and laser pulse energy was conducted. Soil samples were dried, finely ground, sieved and thereafter pelletized before LIBS analysis. Calibration curve for the quantification of Cr was constructed using certified reference materials of soils and sediments. The concentrations of Cr in soil samples varied from 111 to 3180 mg/kg. In order to test the validity of the LIBS results, inductively coupled plasma-mass spectrometry (ICP-MS was also employed for determination of Cr. The results obtained using LIBS were found to be in good agreement with those of ICP-MS.DOI: http://dx.doi.org/10.4314/bcse.v29i3.3

  4. Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser

    Science.gov (United States)

    Matsumoto, Ayumu; Ohba, Hironori; Toshimitsu, Masaaki; Akaoka, Katsuaki; Ruas, Alexandre; Sakka, Tetsuo; Wakaida, Ikuo

    2018-04-01

    The decommissioning of the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi Nuclear Power Plant is an essential issue in nuclear R&D. Fiber-optic laser-induced breakdown spectroscopy (Fiber-optic LIBS) could be used for in-situ elemental analysis of the inside of the damaged reactors. To improve the performances under difficult conditions, using a long-pulse laser can be an efficient alternative. In this work, the emission spectra of zirconium metal in air obtained for a normal-pulse laser (6 ns) and a long-pulse laser (100 ns) (wavelength: 1064 nm, pulse energy: 12.5 mJ, spot diameter: 0.35 mm) are compared to investigate the fundamental aspects of fiber-optic LIBS with the long-pulse laser. The spectral features are considerably different: when the long-pulse laser is used, the atomic and molecular emission is remarkably enhanced. The enhancement of the atomic emission at the near infrared (NIR) region would lead to the observation of emission lines with minimum overlapping. To understand the differences in the spectra induced respectively from the normal-pulse laser and the long-pulse laser, photodiode signals, time-resolved spectra, plasma parameters, emission from the ambient air, and emission regions are investigated, showing the particular characteristics of the plasma produced by the long-pulse laser.

  5. Temperature measurement of plasma-assisted flames: comparison between optical emission spectroscopy and 2-color laser induced fluorescence techniques

    KAUST Repository

    Lacoste, Deanna A.

    2015-03-30

    Accurate thermometry of highly reactive environments, such as plasma-assisted combustion, is challenging. With the help of conical laminar premixed methane-air flames, this study compares two thermometry techniques for the temperature determination in a combustion front enhanced by nanosecond repetitively pulsed (NRP) plasma discharges. Based on emission spectroscopic analysis, the results show that the rotational temperature of CH(A) gives a reasonable estimate for the adiabatic flame temperature, only for lean and stoichiometric conditions. The rotational temperature of N2(C) is found to significantly underestimate the flame temperature. The 2-color OH-PLIF technique gives correct values of the flame temperature.

  6. Influence of CO2 pressure on the emission spectra and plasma parameters in underwater laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Goueguel, Christian L; McIntyre, Dustin L; Jain, Jinesh C

    2016-12-01

    Optical emission spectroscopic studies have been carried out to investigate the pressure effect of CO2 on laser-produced underwater plasma. The plasma was generated by focusing 1064 nm, 6 ns pulses from a Nd:YAG laser in a CO2-bearing solution. The temporal evolution of the continuum emission, Sr and Ba lines, and plasma electron density and temperature was characterized under CO2 pressure ranging from 10 to 300 bars. The electron density measurements were made using the Stark broadening of the 455.40 nm Ba II line, while the temperature measurements have been performed by the Saha-Boltzmann method using the Sr I-II lines at 460.73 and 407.77 nm, respectively. It was found that CO2 pressure has little effect on the emission line intensity and signal-to-background ratio. The electron density and the temperature are found to be independent of the CO2 pressure at early times. When time becomes longer, the electron density exhibits an appreciable rise as the CO2 pressure increases, while the temperature is found to be unchanged.

  7. Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission

    International Nuclear Information System (INIS)

    Arp, Zane A.; Cremers, David A.; Harris, Ronny D.; Oschwald, David M.; Parker, Gary R.; Wayne, David M.

    2004-01-01

    Laser-induced breakdown spectroscopy (LIBS) is being developed for future use on landers and rovers to Mars. The method also has potential for use on probes to other planets, the Moon, asteroids and comets. Like Mars, Venus is of strong interest because of its proximity to earth, but unlike Mars, conditions at the surface are far more hostile with temperatures in excess of 700 K and pressures on the order of 9.1 MPa (90 atm). These conditions present a significant challenge to spacecraft design and demand that rapid methods of chemical data gathering be implemented. The advantages of LIBS (e.g. stand-off and very rapid analysis) make the method particularly attractive for Venus exploration because of the expected short operational lifetimes (∼2 h) of surface instrumentation. Although the high temperature of Venus should pose no problem to the analytical capabilities of the LIBS spark, the demonstrated strong dependence of laser plasma characteristics on ambient gas pressures below earth atmospheric pressure requires that LIBS measurements be evaluated at the high Venus surface pressures. Here, we present a preliminary investigation of LIBS at 9.1 MPa for application to the analysis of a basalt rock sample. The results suggest the feasibility of the method for a Venus surface probe and that further study is justified

  8. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    Science.gov (United States)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  9. Calibration-free quantitative elemental analysis of meteor plasma using reference laser-induced breakdown spectroscopy of meteorite samples

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Koukal, J.; Lenža, Libor; Srba, J.; Kubelík, Petr; Laitl, V.; Zanozina, Ekaterina M.; Váňa, Pavel; Kaiserová, Tereza; Knížek, Antonín; Rimmer, P.; Chatzitheodoridis, E.; Civiš, Svatopluk

    2017-01-01

    Roč. 2017, DEC 2017 (2017), č. článku 29950. E-ISSN 1432-0746 R&D Projects: GA ČR(CZ) GA14-12010S; GA ČR(CZ) GA18-27653S Grant - others:Akademie věd - GA AV ČR(CZ) R200401521; Akademie věd - GA AV ČR(CZ) R200401721; COST(XE) CM1104; COST(XE) TD1308; RFBR(RU) 16-32-00034 Institutional support: RVO:61388955 Keywords : astrochemistry * spectroscopic techniques * calibration-free LIBS * plasma simulation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.014, year: 2016

  10. Investigation of local thermodynamic equilibrium of laser induced Al2O3–TiC plasma in argon by spatially resolved optical emission spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Alnama

    2016-06-01

    Full Text Available Plasma plume of Al2O3–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  11. Proceedings of the Japan-US workshop on plasma polarization spectroscopy and the fourth international symposium on plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, Takashi; Beiersdorfer, Peter

    2004-07-01

    The international meeting on Plasma Polarization Spectroscopy (PPS) was held at Kyoto University during February 4-6, 2004. This Proceedings book includes the summaries of the talks given in that meeting. Starting with the Overview talk by Csanak, the subjects cover: x-ray polarization experiments on z-pinches (plasma foci), and an x-pinch, a laser-produced plasma in a gas atmosphere, an interpretation of the polarized 1<- 0 x-ray laser line, polarization observation from various laser-produced plasmas including a recombining phase plasma, a report on the on-going project of a laser facility, several polarization observations on magnetically confined plasmas including the Large Helical Device and an ECR plasma, a new laser-induced fluorescence diagnostic method. On atomic physics side given are: various polarization measurements on EBIT, precision spectroscopy on the TEXTOR, user-friendly atomic codes. Instrumentation is also a subject of this book. The 18 of the presented papers are indexed individually. (J.P.N.)

  12. Polarization-resolved laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Zhao, Youbo; Singha, Sima; Liu, Yaoming; Gordon, Robert J

    2009-02-15

    It is shown that plasma polarization measurements can be used to enhance the sensitivity of laser-induced breakdown spectroscopy (LIBS). The polarization of the plasma emission is used to suppress the continuum with only slight attenuation of the discrete atomic and ionic spectra. The method is demonstrated for LIBS detection of copper and carbon samples ablated by pairs of femtosecond laser pulses.

  13. Laser-Induced Breakdown Spectroscopy in Africa

    Directory of Open Access Journals (Sweden)

    M. A. Kasem

    2015-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS, known also as laser-induced plasma spectroscopy (LIPS, is a well-known spectrochemical elemental analysis technique. The field of LIBS has been rapidly matured as a consequence of growing interest in real-time analysis across a broad spectrum of applied sciences and recent development of commercial LIBS analytical systems. In this brief review, we introduce the contributions of the research groups in the African continent in the field of the fundamentals and applications of LIBS. As it will be shown, the fast development of LIBS in Africa during the last decade was mainly due to the broad environmental, industrial, archaeological, and biomedical applications of this technique.

  14. Spectroscopy of laser-produced plasmas

    Indian Academy of Sciences (India)

    It is a well-known fact that laser-induced breakdown spectroscopy (LIBS) has emerged as one of the best analytical techniques for multi-elemental compositional analysis of samples. We report assembling and optimization of LIBS set up using high resolution and broad-range echelle spectrograph coupled to an intensified ...

  15. Plasmon-Induced Plasma Spectroscopy

    Science.gov (United States)

    2016-11-10

    historically under represented group of society. Approved for public release; distribution is unlimited.9 References 1. Russo, R. E.; Mao , X. L...is unlimited.16 (oxygen) during and after the film preparation, prolonging their stability at ambient condition. The results obtained on the QD film...functionalized AuF by drop-casting and allowing drying at ambient condition. This sample preparation sandwiches MB between the AuF and the AuNRs

  16. Comparative study of Nd:YAG laser-induced breakdown spectroscopy and transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy on chromated copper arsenate preservative-treated wood.

    Science.gov (United States)

    Khumaeni, Ali; Lie, Zener Sukra; Niki, Hideaki; Lee, Yong Inn; Kurihara, Kazuyoshi; Wakasugi, Motoomi; Takahashi, Touru; Kagawa, Kiichiro

    2012-03-01

    Taking advantage of the specific characteristics of a transversely excited atmospheric (TEA) CO(2) laser, a sophisticated technique for the analysis of chromated copper arsenate (CCA) in wood samples has been developed. In this study, a CCA-treated wood sample with a dimension of 20 mm × 20 mm and a thickness of 2 mm was attached in contact to a nickel plate (20 mm × 20 mm × 0.15 mm), which functions as a subtarget. When the TEA CO(2) laser was successively irradiated onto the wood surface, a hole with a diameter of approximately 2.5 mm was produced inside the sample and the laser beam was directly impinged onto the metal subtarget. Strong and stable gas plasma with a very large diameter of approximately 10 mm was induced once the laser beam had directly struck the metal subtarget. This gas plasma then interacted with the fine particles of the sample inside the hole and finally the particles were effectively dissociated and excited in the gas plasma region. By using this technique, high precision and sensitive analysis of CCA-treated wood sample was realized. A linear calibration curve of Cr was successfully made using the CCA-treated wood sample. The detection limits of Cr, Cu, and As were estimated to be approximately 1, 2, and 15 mg/kg, respectively. In the case of standard LIBS using the Nd:YAG laser, the analytical intensities fluctuate and the detection limit was much lower at approximately one-tenth that of TEA CO(2) laser. © 2012 Optical Society of America

  17. Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features.

    Science.gov (United States)

    Corsi, Michela; Cristoforetti, Gabriele; Hidalgo, Montserrat; Iriarte, Daniela; Legnaioli, Stefano; Palleschi, Vincenzo; Salvetti, Azenio; Tognoni, Elisabetta

    2005-07-01

    The influence of crater depth on plasma properties and laser-induced breakdown spectroscopy (LIBS) emission has been evaluated. Laser-induced plasmas were generated at the surface and at the bottom of different craters in a copper sample. Plasmas produced at the sample surface and at the bottom of the craters were spatially and temporally resolved. LIBS emission, temperature, and electronic number density of the plasmas were evaluated. It is shown that the confinement effect produced by the craters enhances the LIBS signal from the laser-induced plasmas.

  18. Atomic processes relevant to polarization plasma spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Koike, F.; Sakimoto, K.; Okasaka, R.; Kawasaki, K.; Takiyama, K.; Oda, T.; Kato, T.

    1992-04-01

    When atoms (ions) are excited anisotropically, polarized excited atoms are produced and the radiation emitted by these atoms is polarized. From the standpoint of plasma spectroscopy research, we review the existing data for various atomic processes that are related to the polarization phenomena. These processes are: electron impact excitation, excitation by atomic and ionic collisions, photoexcitation, radiative recombination and bremsstrahlung. Collisional and radiative relaxation processes of atomic polarization follow. Other topics included are: electric-field measurement, self alignment, Lyman doublet intensity ratio, and magnetic-field measurement of the solar prominence. (author)

  19. Multichannel euv spectroscopy of high temperature plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities

  20. Plasma-enhanced antibody immobilization for the development of a capillary-based carcinoembryonic antigen immunosensor using laser-induced fluorescence spectroscopy.

    Science.gov (United States)

    Yu, Qiaoling; Zhan, Xuefang; Liu, Kunping; Lv, Hao; Duan, Yixiang

    2013-05-07

    In this study, antibody immobilization using a microwave-induced H2O/Ar plasma pretreatment was achieved for the first time. Plasma was used to activate the surface of a capillary-based immunosensor by increasing the density of silicon hydroxyls and dangling bonds to ensure better silanization. The capture antibodies were covalently immobilized after the silanized surface reacted with glutaraldehyde and antibodies. A Cy3-labeled detection antibody was used in combination with the antigen captured by the immunosensor to complete the sandwich-type immunoassay, and the signals were measured using a laser-induced fluorescence system. Microwave-induced H2O/Ar plasma pretreatment of the carcinoembryonic antigen (CEA) immunosensor improved the antibody immobilization, and there was an obvious improvement in the linear detection range, i.e., 1 order of magnitude compared with a commercial enzyme-linked immunosorbent assay (ELISA). This novel immobilization method dramatically improved the detection limit (0.5 pmol/L CEA) and sensitivity. Assay validation studies indicated that the correlation coefficient reached 0.9978, and the relative standard deviations were Ar plasma was demonstrated to be a sensitive tool for CEA diagnostics.

  1. Micro-spectrochemical analysis of document paper and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Trejos, Tatiana; Flores, Alejandra; Almirall, Jose R.

    2010-01-01

    Current methods used in document examinations are not suitable to associate or discriminate between sources of paper and gel inks with a high degree of certainty. Nearly non-destructive, laser-based methods using laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to improve the forensic comparisons of gel inks, ballpoint inks and document papers based on similarities in elemental composition. Some of the advantages of these laser-based methods include minimum sample consumption/destruction, high sensitivity, high selectivity and excellent discrimination between samples from different origins. Figures of merit are reported including limits of detection, precision, homogeneity at a micro-scale and linear dynamic range. The variation of the elemental composition in paper was studied within a single sheet, between pages from the same ream, between papers produced by the same plant at different time intervals and between seventeen paper sources produced by ten different plants. The results show that elemental analysis of paper by LIBS and LA-ICP-MS provides excellent discrimination (> 98%) between different sources. Batches manufactured at weekly and monthly intervals in the same mill were also differentiated. The ink of more than 200 black pens was analyzed to determine the variation of the chemical composition of the ink within a single pen, between pens from the same package and between brands of gel inks and ballpoint inks. Homogeneity studies show smaller variation of elemental compositions within a single source than between different sources (i.e. brands and types). It was possible to discriminate between pen markings from different brands and between pen markings from the same brand but different model. Discrimination of ∼ 96-99% was achieved for sets that otherwise would remain inseparable by conventional methods. The results show that elemental analysis, using either LA-ICP-MS or

  2. Micro-spectrochemical analysis of document paper and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trejos, Tatiana, E-mail: trejost@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); International Forensic Research Institute (IFRI), Florida International University, Miami, FL 3319 (United States); Flores, Alejandra, E-mail: aflor017@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); Almirall, Jose R., E-mail: almirall@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); International Forensic Research Institute (IFRI), Florida International University, Miami, FL 3319 (United States)

    2010-11-15

    Current methods used in document examinations are not suitable to associate or discriminate between sources of paper and gel inks with a high degree of certainty. Nearly non-destructive, laser-based methods using laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to improve the forensic comparisons of gel inks, ballpoint inks and document papers based on similarities in elemental composition. Some of the advantages of these laser-based methods include minimum sample consumption/destruction, high sensitivity, high selectivity and excellent discrimination between samples from different origins. Figures of merit are reported including limits of detection, precision, homogeneity at a micro-scale and linear dynamic range. The variation of the elemental composition in paper was studied within a single sheet, between pages from the same ream, between papers produced by the same plant at different time intervals and between seventeen paper sources produced by ten different plants. The results show that elemental analysis of paper by LIBS and LA-ICP-MS provides excellent discrimination (> 98%) between different sources. Batches manufactured at weekly and monthly intervals in the same mill were also differentiated. The ink of more than 200 black pens was analyzed to determine the variation of the chemical composition of the ink within a single pen, between pens from the same package and between brands of gel inks and ballpoint inks. Homogeneity studies show smaller variation of elemental compositions within a single source than between different sources (i.e. brands and types). It was possible to discriminate between pen markings from different brands and between pen markings from the same brand but different model. Discrimination of {approx} 96-99% was achieved for sets that otherwise would remain inseparable by conventional methods. The results show that elemental analysis, using either LA

  3. Plasma generation induced by triboelectrification

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Michelsen, Poul

    2009-01-01

    A gas discharge plasma can be induced by triboelectrification around a sliding contact. The detailed physical mechanism of triboelectrification is unknown, but an empirical classification scheme can be referred to in practice. It is reported that intense ultra-violet emission from a plasma...

  4. Laser induced breakdown spectroscopy in water | Boudjemai ...

    African Journals Online (AJOL)

    Sparks were generated in water by the focused beam of a Q-switched Nd:YAG laser Na and Cu aqueous solutions exhibited fluorescence signal on the decaying edge of plasma emission at their respective characteristic resonance lines. Potential of the laser plasma spectroscopy for in-situ pollution monitoring in natural ...

  5. Inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Winge, R.K.; Fassel, V.A.; Peterson, V.J.; Floyd, M.A.

    1985-01-01

    This atlas of inductively coupled plasma-atomic emission spectroscopy records the spectra of the elements in a way that would reveal the general nature of the spectra, in all their simplicity or complexity; and offers a definitive summary of the most prominent spectral lines of the elements, i.e., those most likely to be useful for the determination of trace and ultratrace concentrations; it provides reliable estimates, based on the recorded experimental spectra, of the powers of detection of the listed prominent lines; and assesses the very important problem of spectral interferences. The atlas is composed of three main sections. Part I is concerned with the historical aspects of compilations of spectral information. Part II is based on 232 wavelength scans of 70 elements. Each of the wavelength scans covers an 80 nm spectral region. These scans allow a rapid comparison of the background and spectral line intensities emitted in the ICP and provide a ready means for identification of the most prominent lines of each element and for estimation of the trace element analytical capabilities of these lines. A listing of 973 prominent lines with associated detection limits is also presented. Part III addresses the problem of spectral interferences. On this topic a detailed collection of coincidence profiles is presented for 281 of the most prominent lines, each with profiles of ten of the most prevalent concomitants superimposed. (Auth.)

  6. Development of microwave-enhanced spark-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Ikeda, Yuji; Moon, Ahsa; Kaneko, Masashi

    2010-01-01

    We propose microwave-enhanced spark-induced breakdown spectroscopy with the same measurement and analysis processes as in laser-induced breakdown spectroscopy, but with a different plasma generation mechanism. The size and lifetime of the plasma generated can contribute to increased measurement accuracy and expand its applicability to industrial measurement, such as an exhaust gas analyzer for automobile engine development and its regulation, which has been hard to operate by laser at an engineering evaluation site. The use of microwaves in this application helps lower the cost, reduce the system size, and increase the ease of operation to make it commercially viable. A microwave frequency of 2.45 GHz was used to enhance the volume and lifetime of the plasma at atmospheric condition even at elevated pressure.

  7. Laser-Induced Breakdown Spectroscopy Infrared Emission From Inorganic and Organic Substances

    National Research Council Canada - National Science Library

    Yang, C.S; Brown, E; Hommerich, U; Trivedi, S. B; Snyder, A. P; Samuels, A. C

    2006-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been established as a powerful method for identifying trace elemental contaminants by analyzing the atomic spectral emission lines that result subsequent to plasmas generated by laser power...

  8. Laser Induced Breakdown Spectroscopy compared with conventional plasma optical emission techniques for the analysis of metals - A review of applications and analytical performance

    Science.gov (United States)

    Bengtson, A.

    2017-08-01

    This review is focused on a comparison of LIBS with the two most common plasma Optical Emission Spectroscopy (OES) techniques for analysis of metals; spark OES and glow discharge (GD) OES. It is shown that these two techniques have only minor differences in analytical performance. An important part of the paper reviews a direct comparison of the analytical figures of merit for bulk analysis of steels using spark and LIBS sources. The comparison was carried out using one instrument with interchangeable sources, eliminating differences related to the optical system and detectors. It was found that the spark provides slightly better analytical figures of merit. The spark analysis is considerably faster, the simple design of the spark stand has enabled complete automation, both properties of great importance in the metallurgical industry for routine analysis. The analysis of non-metallic inclusions (NMI) with spark and LIBS is presented, in the case of the spark this has become known as Pulse Distribution Analysis (PDA). A very significant difference between the techniques is that the electrical spark typically evaporates 100 times more material than a single laser pulse, resulting in complete evaporation of an NMI present in the evaporated metal. The major advantage of LIBS is that it is localised with very good lateral resolution. The major advantages of spark is that it is much faster (can be done simultaneous with the bulk analysis) and easier to quantify. Compositional Depth Profiling (CDP) is compared for GD-OES and LIBS. It is shown that for applications where GD-OES is well suited, e.g. coated metallic sheet, GD-OES still performs slightly better than LIBS. Similar to the case of NMI analysis, the major advantage of LIBS is the great lateral resolution. This allows elemental surface mapping, as well as CDP of very small areas on μm scale. One further advantage of LIBS is that samples of almost any material, shape and size can be analysed, whereas GD-OES has

  9. Compositional Analysis of Drugs by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Beldjilali, S. A.; Axente, E.; Belasri, A.; Baba-Hamed, T.; Hermann, J.

    2017-07-01

    The feasibility of the compositional analysis of drugs by calibration-free laser-induced breakdown spectroscopy (LIBS) was investigated using multivitamin tablets as a sample material. The plasma was produced by a frequencyquadrupled Nd:YAG laser delivering UV pulses with a duration of 5 ns and an energy of 12 mJ, operated at a repetition rate of 10 Hz. The relative fractions of the elements composing the multivitamin drug were determined by comparing the emission spectrum of the laser-produced plume with the spectral radiance computed for a plasma in a local thermodynamic equilibrium. Fair agreement of the measured fractions with those given by the manufacturer was observed for all elements mentioned in the leafl et of the drug. Additional elements such as Ca, Na, Sr, Al, Li, K, and Si were detected and quantifi ed. The present investigations demonstrate that laser-induced breakdown spectroscopy is a viable technique for the quality control of drugs.

  10. Laser-induced breakdown spectroscopy fundamentals and applications

    CERN Document Server

    Noll, Reinhard

    2012-01-01

    This book is a comprehensive source of the fundamentals, process parameters, instrumental components and applications of laser-induced breakdown spectroscopy (LIBS). The effect of multiple pulses on material ablation, plasma dynamics and plasma emission is presented. A heuristic plasma modeling allows to simulate complex experimental plasma spectra. These methods and findings form the basis for a variety of applications to perform quantitative multi-element analysis with LIBS. These application potentials of LIBS have really boosted in the last years ranging from bulk analysis of metallic alloys and non-conducting materials, via spatially resolved analysis and depth profiling covering measuring objects in all physical states: gaseous, liquid and solid. Dedicated chapters present LIBS investigations for these tasks with special emphasis on the methodical and instrumental concepts as well as the optimization strategies for a quantitative analysis. Requirements, concepts, design and characteristic features of LI...

  11. New plasma diagnosis by coherence length spectroscopy

    International Nuclear Information System (INIS)

    Poolyarat, N.; Kim, Y.W.

    2008-01-01

    A new methodology and instrumentation have been developed for diagnosis of dense high temperature plasmas. In a plasma medium, collision processes shorten the optical coherence length at a given emission wavelength. By measuring the coherence length, the rate of collisions a radiating particle experiences can be determined. A map of the collision rates throughout the plasma can speak volumes about the atomic and thermal state of the plasma. Both the time-integrated and time-resolved interference fringes are obtained using emissions due to the transition between 3s 2 3p 5 ( 2 P o 3/2 )4p and 3s 2 3p 5 ( 2 P o 3/2 )7d. We have observed that the coherence length indeed decreases with increasing collision rate, and in addition, as a function of time as a result of cumulative collisions. The coherence length was found to be 4200±800 nm at 50 torr where the collision frequency is 2.14x10 11 s -1 , and 2400±130 nm at 140 torr where the collision frequency is 8.13x10 11 s -1 . We have also discovered that the coherence length varies with the direction of the viewing line of sight into the discharge plasma. The anisotropy results from the non-uniform structure in the discharge current, and this is further investigated by intentionally deforming the tip of the cathode. A photographic examination of both the cathode and the anode disc confirms the non-axis-symmetric structure of the plasma, which leads to the asymmetry in the plasma, in agreement with the angular dependence of the coherence length. (author)

  12. Optical emission spectroscopy of nitrogen species and plasma plume induced by laser ablation combined with pulse modulated radio-frequency discharge

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Lančok, Ján; Tomov, R.; Zelinger, Zdeněk

    2002-01-01

    Roč. 58, - (2002), s. 1513-1521 ISSN 1386-1425 R&D Projects: GA AV ČR IAA1010110 Institutional research plan: CEZ:AV0Z1010914 Keywords : optical emission spectroscopy * laser ablation * carbon nitride films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002

  13. Optical Emission Spectroscopy of High-Power Laser-Induced Dielectric Breakdown in Molecular Gases and Their Mixtures: Investigating Early Stages of Plasma Chemical Action in Planetary Atmospheres

    Czech Academy of Sciences Publication Activity Database

    Cihelka, Jaroslav; Matulková, Irena; Sovová, Kristýna; Kamas, Michal; Kubelík, Petr; Ferus, Martin; Juha, Libor; Civiš, Svatopluk

    2009-01-01

    Roč. 39, 3-4 (2009), s. 227-227 ISSN 0169-6149 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA ČR GA203/06/1278; GA MŠk LA08024 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100523 Keywords : planetary atmosphere * lasers * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.053, year: 2009

  14. Hydrogen leak detection using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Ball, A J; Hohreiter, V; Hahn, D W

    2005-03-01

    Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Halpha emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.

  15. Atomic configuration average simulations for plasma spectroscopy

    International Nuclear Information System (INIS)

    Kilcrease, D.P.; Abdallah, J. Jr.; Keady, J.J.; Clark, R.E.H.

    1993-01-01

    Configuration average atomic physics based on Hartree-Fock methods and an unresolved transition array (UTA) simulation theory are combined to provide a computationally efficient approach for calculating the spectral properties of plasmas involving complex ions. The UTA theory gives an overall representation for the many lines associated with a radiative transition from one configuration to another without calculating the fine structure in full detail. All of the atomic quantities required for synthesis of the spectrum are calculated in the same approximation and used to generate the parameters required for representation of each UTA, the populations of the various atomic states, and the oscillator strengths. We use this method to simulate the transmission of x-rays through an aluminium plasma. (author)

  16. Whispering Gallery Mode Spectroscopy as a Diagnostic for Dusty Plasmas

    International Nuclear Information System (INIS)

    Thieme, G.; Basner, R.; Ehlbeck, J.; Roepcke, J.; Maurer, H.; Kersten, H.; Davies, P. B.

    2008-01-01

    Whispering-gallery-mode spectroscopy is being assessed as a diagnostic method for the characterisation of size and chemical composition of spherical particles levitated in a plasma. With a pulsed laser whispering gallery modes (cavity resonances) are excited in individual microspheres leading to enhanced Raman scattering or fluorescence at characteristic wavelengths. This method can be used to gain specific information from the particle surface and is thus of great interest for the characterisation of layers deposited on microparticles, e.g. in molecular plasmas. We present investigations of different microparticles in air and results from fluorescent particles levitated in an Argon rf plasma.

  17. Near-infrared spectroscopy for burning plasma diagnostic applications.

    Science.gov (United States)

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  18. Electron cyclotron emission spectroscopy on thermonuclear plasmas

    International Nuclear Information System (INIS)

    Tubbing, B.J.D.

    1987-01-01

    Analysis of electron cyclotron emission (ECE) enables one to infer the radial profile of the electron temperature in tokamaks. The Dutch FOM institute for plasma physics has designed, built, installed and operated a grating polychromator for ECE measurements at JET. This thesis deals with a few instrumental aspects of this project and with applications of ECE measurements in tokamak physics studies. Ch. 3 and 4 deal with the wave transport in ECE systems. In Ch. 3 a method is developed to infer the mode conversion, which is a source for transmission losses, in a waveguide component from the antenna pattern of its exit aperture. In Ch. 4 the design and manufacture of the waveguide transition system to the grating polychromator are described. In Ch. 5 a method is reported for calibration of the spectrometers, based on the use of a microwave source which simulates a large area blackbody of very high temperature. The feasibility of the method is tested by applying it to two different ECE systems. In Ch. 6 a study of heat pulse propagation in tokamak plasma's, based on measurement of the electron temperature with the grating polychromator, is presented. 105 refs.; 48 figs.; 8 tabs

  19. LASER-INDUCED BREAKDOWN SPECTROSCOPY AND ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique, which can be used to perform ... environmental pollution by Cr results mainly from mining and smelting activities [2]. The ... mapping of large areas, for example soils around mines, for potential heavy metal pollutants. To the best of our ...

  20. X-ray absorption spectroscopy of photoionised plasmas at Z

    Science.gov (United States)

    Mancini, R. C.

    2011-06-01

    Photoionised plasmas are found in astrophysical environments such as x-ray binaries, active galactic nuclei, and in the accretion disks of compact objects. The Z facility at Sandia National Laboratories is a powerful source of x-rays that enables us to produce and study in the laboratory photoionised plasmas relevant for astrophysics under well characterized conditions. We discuss an experimental and theory/modeling effort in which the intense x-ray flux emitted at the collapse of a z-pinch experiment conducted at Z is employed to produce a neon photoionized plasma. The broad-band x-ray radiation flux from the z-pinch is used to both create the neon photoionised plasma and provide a source of backlighting photons to study the atomic kinetics through K-shell line absorption spectroscopy. The plasma is contained in a cm-scale gas cell located at about 5 cm from the z-pinch, and the filling pressure is carefully monitored all the way to shot time since it determines the particle number density of the plasma. Time-integrated and gated transmission spectra are recorded with a TREX spectrometer equipped with two elliptically-bent crystals and a set of slits to record up to six spatially-resolved spectra per crystal in the same shot. The spectral resolution is approximately 1000. The transmission data shows line absorption transitions in several ionization stages of neon including Be-, Li-, He- and H-like Ne ions. Detailed modeling calculations of the absorption spectra are used to interpret and model the high-resolution transmission spectra recorded in the Z experiments with the goal of extracting the ion population distribution of the plasma. Furthermore, the analysis of the gated data provides a window into the dynamics of the photoionized plasma. The data analysis is performed with the aid of a novel application of genetic algorithms to plasma spectroscopy.

  1. Study of a novel indolin-2-ketone compound Z24 induced hepatotoxicity by NMR-spectroscopy-based metabonomics of rat urine, blood plasma, and liver extracts

    International Nuclear Information System (INIS)

    Wang Quanjun; Jiang Ying; Wu Chunqi; Zhao Jianyu; Yu Shouzhong; Yuan Benli; Yan Xianzhong; Liao Mingyang

    2006-01-01

    Antiangiogenic compound has been believed to be an ideal drug in the current cancer biological therapy, but the angiogenesis inhibitors suffer setback for unknown toxicity now. A novel synthetic indolin-s-ketone small molecular compound, 3Z-3-[( 1 H-pyrrol-2-yl)-methylidene]-1-(1-piperidinylmethyl)-1,3-2H-indol-2-one (Z24) can inhibit angiogenesis in new blood vessels. The hepatotoxicity effects of Z24 oral administration (dosed at 60, 130 and 200 mg/kg) have been investigated in female Wistar rats by using metabonomic analysis of 1 H NMR spectra of urine, plasma and liver extracts, as well as by clinical chemistry analysis, liver histopathology and electron micrographs examination. The 1 H NMR spectra of the biofluids were analyzed visually and via pattern recognition by using principal component analysis. The metabonomic trajectory analysis on the time-related hepatotoxicity of Z24 was carried out based on the 1 H NMR spectra of urine samples, which were collected daily predose and postdose over an 8-day period. Urinary excretion of citrate, lactate, 2-oxo-glutarate and succinate increased following Z24 dosing. Increased plasma levels of lactate, TMAO and lipid were observed, with concomitant decrease in the level of glucose and phosphatidylcholine. Metabolic profiling on aqueous soluble extracts of liver tissues with the high dose level of Z24 showed an increase in lactate and glutamine, together with a decrease in glucose, glycogen and choline. On the other hand, studies on lipid soluble extracts of liver tissues with the high dose level of Z24 showed increased level in lipid triglycerides and decreased level in unsaturated fatty acids and phosphatidylcholine. Moreover, the most notable effect of Z24 on the metabolism was the reduction in the urinary levels of creatinine and TMAO and the increase in acetate, citrate, succinate and 2-oxo-glutamate with time dependence. The results indicate that in rats Z24 inhibits mitochondrial function through altering the

  2. Study of laser-induced breakdown spectroscopy of gases

    Science.gov (United States)

    Hanafi, M.; Omar, M. M.; Gamal, Y. E. E.-D.

    2000-01-01

    A study of the spectral emission in laser-induced breakdown spectroscopy of gases was performed. The measurements were carried out on helium, argon, nitrogen, and air irradiated with ruby laser radiation at a wavelength of 694.3 nm and a pulse width of 40 ns. The study aimed to evaluate the spectral emission characteristics of these gases as well as the parameters of their formed plasmas, namely: electron temperature and electron density. The temporal behaviour of the spectral emission was also analysed for the different observed emission mechanisms (continuum, atomic, and ionic). Moreover, the effect of gas pressure on the spectral emission intensity is reported in this work.

  3. Laser-Induced-Emission Spectroscopy In Hg/Ar Discharge

    Science.gov (United States)

    Maleki, Lutfollah; Blasenheim, Barry J.; Janik, Gary R.

    1992-01-01

    Laser-induced-emission (LIE) spectroscopy used to probe low-pressure mercury/argon discharge to determine influence of mercury atoms in metastable 6(Sup3)P(Sub2) state on emission of light from discharge. LIE used to study all excitation processes affected by metastable population, including possible effects on excitation of atoms, ions, and buffer gas. Technique applied to emissions of other plasmas. Provides data used to make more-accurate models of such emissions, exploited by lighting and laser industries and by laboratories studying discharges. Also useful in making quantitative measurements of relative rates and cross sections of direct and two-step collisional processes involving metastable level.

  4. Evaluation of two-beam spectroscopy as a plasma diagnostic

    International Nuclear Information System (INIS)

    Billard, B.D.

    1980-04-01

    A two-beam spectroscopy (TBS) system is evaluated theoretically and experimentally. This new spectroscopic technique uses correlations between components of emitted light separated by a small difference in angle of propagation. It is thus a non-perturbing plasma diagnostic which is shown to provide local (as opposed to line-of-sight averaged) information about fluctuations in the density of light sources within a plasma - information not obtainable by the usual spectroscopic methods. The present design is an improvement on earlier systems proposed in a thesis by Rostler

  5. Electromagnetically Induced Transparency of Magnetized Plasma

    International Nuclear Information System (INIS)

    Shvets, G.; Wurtele, J.S.

    2002-01-01

    It is well known that electromagnetic radiation with a frequency equal to the cyclotron frequency of plasma electrons is strongly absorbed by magnetized plasma. It is shown here that this absorption does not occur in the presence of a second, properly de tuned, electromagnetic pump pulse. The plasma can thus be made transparent at the cyclotron frequency. The pump is de tuned from the probe by the plasma frequency. Transparency occurs because the currents induced at the cyclotron frequency by sideband of the pump can cancel the currents induced by the probe. This effect is very similar to electromagnetically-induced transparency of atomic vapors. The essential difference is that the plasma considered here is completely classical, and no quantum mechanical effects are invoked to produce the electromagnetically-induced transparency. The plasma system is significantly more complex than the three level quantum system in particular, a non-local interaction, the plasma oscillation, corresponds to one of the levels. Potential applications of the electromagnetically-induced transparency in plasma will be discussed

  6. Polarization spectroscopy on laser-produced plasmas and Z-pinch plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong E. [POSTECH, Kyungbuk (Korea); Baronova, Elena O. [RRC Kurchatov Institute, Nuclear Fusion Institute, Moscow (Russian Federation); Jakubowski, Lech [Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland)

    2002-08-01

    PPS experiments on laser-produced plasmas are reviewed. Polarization is interpreted in terms of the anisotropic velocity distribution of electrons due to non-local transport. The polarization of an x-ray laser, and recent results regarding the recombining plasma are also presented. X-ray polarization spectroscopy experiments on heliumlike ion lines from a vacuum spark and from a plasma focus are presented: in both cases, the resonance line of the heliumlike ions shows polarization in the direction perpendicular to the discharge axis. Two possible interpretations are suggested. (author)

  7. Spectroscopy of laser-produced plasmas: Setting up of high ...

    Indian Academy of Sciences (India)

    It is a well-known fact that laser-induced breakdown spectroscopy (LIBS) has emerged as one of the best analytical techniques for multi-elemental compositional analysis of samples. We report assembling and optimization of LIBS set up using high resolution and broad-range echelle spectrograph coupled to an intensified ...

  8. Positron annihilation induced Auger electron spectroscopy

    Science.gov (United States)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  9. Laser-induced breakdown spectroscopy for quantification of heavy metals in soils and sediments

    CSIR Research Space (South Africa)

    Ambushe, AA

    2010-09-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS) will be used to determine the contents of heavy metals in soils and sediments. LIBS results will be compared with the results obtained by inductively coupled plasma-optical emission spectrometry (ICP...

  10. Quantitative plasma spectroscopy at JET and Extrap-T1

    International Nuclear Information System (INIS)

    Zastrow, K.D.

    1993-01-01

    Studies in quantitative plasma spectroscopy are performed on the Joint European Torus (JET) in Culham, Great-Britain and on the Extrap-T1 reversed-field pinch (RFP) in Stockholm. The model concepts that form the basis of these studies are reviewed. At JET, spectra of He-like nickel are observed with a high-resolution X-ray crystal spectrometer. The experimental line intensity ratios of satellite lines to the resonance line are compared with theoretical data. The agreement is found to be good, with the exception of the excitation of dipole-forbidden lines. The spectrum is also used to derive central ion temperature, central toroidal rotation and nickel concentration based upon a model for the radial emission. The results are compared with those from an independent diagnostic, charge-exchange recombination spectroscopy (CWRS). Theoretically predicted cross section effects on the CXRS data are verified. On Extrap-T1, vacuum ultraviolet (VUV) spectra and visible spectra are analysed. From these, thermodynamic quantities of the plasma are derived, like electron temperature, impurity concentrations and particle fluxes. The oxygen ionization balance is measured and compared to calculations with a collisional-dielectronic model with metastable resolution, both in 0-dimensional time-dependent and transport model calculations. The performance of the RFP discharges investigated in terms of radiative power loss and energy and particle confinement properties. The scaling of the energy confinement time with plasma current, pinch parameter and electron density is found to be dominated by the dynamo activity needed to sustain the RFP configuration. The scaling of the particle confinement time, on the other hand, is dominated by pressure-driven activity associated with the regulation of β

  11. Laser-induced breakdown spectroscopy enhanced by a micro torch.

    Science.gov (United States)

    Liu, L; Huang, X; Li, S; Lu, Yao; Chen, K; Jiang, L; Silvain, J F; Lu, Y F

    2015-06-01

    A commercial butane micron troch was used to enhance plasma optical emissions in laser-induced breakdown spectroscopy (LIBS). Fast imaging and spectroscopic analyses were used to observe plasma evolution in the atmospheric pressure for LIBS without and with using a micro torch. Optical emission intensities and signal-to-noise ratios (SNRs) as functions of delay time were studied. Enhanced optical emission and SNRs were obtained by using a micro torch. The effects of laser pulse energy on the emission intensities and SNRs were studied. The same spectral intensity could be obtained using micro torch with much lower laser pulse energy. The investigation of SNR evolution with delay time at different laser pulse energies showed that the SNR enhancement factor is higher for plasmas generated by lower laser pulse energies than those generated by higher laser energies. The calibration curves of emission line intensities with elemental concentrations showed that detection sensitivities of Mn I 404.136 nm and V I 437.923 nm were improved by around 3 times. The limits of detection for both Mn I 404.136 nm and V I 437.923 nm are reduced from 425 and 42 ppm to 139 and 20 ppm, respectively, after using the micro torch. The LIBS system with micro torch was demonstrated to be cost-effective, compact, and capable of sensitivity improvement, especially for LIBS system operating with low laser pulse energy.

  12. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    Science.gov (United States)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  13. Apparatus, system, and method for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  14. Electric Propulsion Induced Secondary Mass Spectroscopy

    Science.gov (United States)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  15. Assessment of high precision, high accuracy Inductively Coupled Plasma-Optical Emission Spectroscopy to obtain concentration uncertainties less than 0.2% with variable matrix concentrations

    International Nuclear Information System (INIS)

    Rabb, Savelas A.; Olesik, John W.

    2008-01-01

    The ability to obtain high precision, high accuracy measurements in samples with complex matrices using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy (HP-ICP-OES) was investigated. The Common Analyte Internal Standard (CAIS) procedure was incorporated into the High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method to correct for matrix-induced changes in emission intensity ratios. Matrix matching and standard addition approaches to minimize matrix-induced errors when using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy were also assessed. The High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method was tested with synthetic solutions in a variety of matrices, alloy standard reference materials and geological reference materials

  16. Magnetic-flutter-induced pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Hegna, C.C.; Cole, A.J.

    2013-01-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δB ρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δB ρ s induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δB ρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δB ρ /B 0 ) 2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an

  17. Saturation spectroscopy of an optically opaque argon plasma

    Science.gov (United States)

    Eshel, Ben; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    A pure argon (Ar) plasma formed by a capacitively coupled radio-frequency discharge was analyzed using Doppler-free saturation spectroscopy. The expected line shape was a characteristic of sub-Doppler spectra in the presence of velocity-changing collisions, a narrow Lorentzian centered on a Doppler pedestal, but the observed line shapes contain a multi-peak structure, attributed to opacity of the medium. Laser absorption and inter-modulated fluorescence spectroscopy measurements were made to validate opacity as a driving factor of the observed line shapes. Spectral line shapes are further complicated by the spatial dependence of the pump laser, probe laser and of the absorbing medium, as well as the large absorbance of the transition under investigation. A numerical line shape was derived by accounting for the spatial variation of the pump and probe with a saturated line shape obtained from the rate equations for an equivalent two-level system. This simulated line shape shows good qualitative agreement with the trends observed in the data.

  18. Charge exchange recombination spectroscopy as a plasma diagnostic tool

    International Nuclear Information System (INIS)

    Fonck, R.J.

    1984-12-01

    Intensity and line profile measurements of the spectra of light hydrogenic ion which are excited by charge exchange reactions with fast neutral atoms are being widely used as diagnostics for fusion plasma research. This technique, which is referred to as charge exchange recombination spectroscopy, allows measurements of the densities of fully stripped impurity ions and particle transport coefficients with only minor uncertainties arising from atomic processes. The excitation of long wavelength transitions in light ions such as He + , C 5+ , and O 7+ allows relatively easy measurements of ion velocity distributions to determine ion temperatures and plasma rotation velocities. Among its advantages for such measurements are the facts that fiber optic coupling between a remote spectrometer and the immediate reactor environment is possible in many cases. The measurement is localized by the intersection region of a neutral beamline and viewing sightline, and intrinsic ions can be used so that injection of potentially perturbing impurities can be avoided. A particularly challenging application of this technique lies in the diagnosis of alpha particles expected to be produced in the present generation of Q approx. = 1 tokamak experiments

  19. Hardness determination of bio-ceramics using Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Cowpe, J.S.; Moorehead, R.D.; Moser, D.; Astin, J.S.; Karthikeyan, S.; Kilcoyne, S.H.; Crofts, G.; Pilkington, R.D.

    2011-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) was applied to the analysis of bio-ceramic samples. The relationship between sample hardness and LIBS plasma properties was investigated, with comparison to conventional Vickers hardness measurements. The plasma excitation temperature T e was determined using the line-to-continuum ratio for the Si (I) 288.16 nm emission line; we have demonstrated a linear relationship between sample surface hardness and plasma temperature. Results indicate that hardness determination based on measurements of T e offers greater reproducibility than Vickers hardness measurements, under the conditions considered here. The validity of spectroscopic diagnostics based on LTE was confirmed.

  20. X-ray spectroscopy with Z-pinch neon plasmas

    Science.gov (United States)

    Mehlman, G.; Burkhalter, P. G.; Newman, D. A.; Stephanakis, S. J.; Young, F. C.

    1986-07-01

    Spatially resolved soft x ray spectra were collected for neon plasmas produced by imploding hollow annular gas puffs with MA level driving currents. The Z pinched imploded plasmas were studied for different rise-time currents produced with or without the use of a plasma erosion opening switch (PEOS). Selected spectrograms were processed and analyzed to obtain absolute energies for the radiation emitted in the Neon 1X and Ne X discrete transitions as well as for total emission over the spectral range 900-1600 eV. The energy radiated for typical shots with or without the PEOS is compared particularly for the predominant alpha transitions of both ions. Also, line widths for the alpha and beta transitions of both ions are determined. X-ray spectroscopy with established x-ray film calibrations and crystal responses has provided absolute intensities for neon K-shell x-rays from gas-jet implosions. Most (90%) of the line radiation is contained in the He-alpha and L-alpha lines of neon. The use of a PEOS to reduce the current risetime and eliminate prepulse produces spectra with less continuu m background and with lines that are narrower by a factor of two. With the PEOS and 1-MA peak driving current, the total radiated energy from 900 to 1600 eV is 1.2 kJ with about 75% of this emission in line radiation. Without the PEOS and with 1.2 MA peak driving current, the total radiated energy in this energy region increases to 2.5 kJ, but only about 45% is in line radiation.

  1. Near-infrared spectroscopy and plasma homovanillic acid levels in bipolar disorder: a case report

    Directory of Open Access Journals (Sweden)

    Miura I

    2014-03-01

    Full Text Available Itaru Miura,1,2 Soichi Kono,1 Sachie Oshima,1 Keiko Kanno-Nozaki,1 Hirobumi Mashiko,1 Shin-Ichi Niwa,1 Hirooki Yabe11Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; 2Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USAAbstract: Misdiagnosis of bipolar disorder is a serious, but not unusual problem for patients. Nevertheless, there are few biomarkers for distinguishing unipolar and bipolar disorder. Near-infrared spectroscopy (NIRS is a noninvasive and useful method for the measurement of hemoglobin concentration changes in the cortical surface area, which enables the assessment of brain function. We measured NIRS and plasma monoamine metabolite levels in a patient with bipolar disorder. A 22-year-old man was admitted due to major depression. At admission, NIRS findings showed oxygenated hemoglobin reincrease in the posttask period, which is characteristic of schizophrenia. After treatment with paroxetine, he became manic with psychotic symptoms. His plasma level of homovanillic acid just before the manic switch was ten times higher than that just after paroxetine initiation. Treatment with lithium and antipsychotics was successful, and plasma homovanillic acid decreased after treatment. In this case, the NIRS findings may predict a possible risk of a manic switch, which is likely induced by paroxetine. NIRS may be able to help distinguish unipolar and bipolar disorder in clinical settings.Keywords: near-infrared spectroscopy, bipolar disorder, homovanillic acid, diagnosis, biomarker

  2. Atomic data for beam-stimulated plasma spectroscopy in fusion plasmas

    International Nuclear Information System (INIS)

    Marchuk, O.; Biel, W.; Schlummer, T.; Ralchenko, Yu.; Schultz, D. R.

    2013-01-01

    Injection of high energy atoms into a confined plasma volume is an established diagnostic technique in fusion research. This method strongly depends on the quality of atomic data for charge-exchange recombination spectroscopy (CXRS), motional Stark effect (MSE) and beam-emission spectroscopy (BES). We present some examples of atomic data for CXRS and review the current status of collisional data for parabolic states of hydrogen atoms that are used for accurate MSE modeling. It is shown that the collisional data require knowledge of the excitation density matrix including the off-diagonal matrix elements. The new datasets for transitions between parabolic states are used in an extended collisional-radiative model. The ratios between the σ- and π-components and the beam-emission rate coefficients are calculated in a quasi-steady state approximation. Good agreement with the experimental data from JET is found which points out to strong deviations from the statistical distribution for magnetic sublevels

  3. Laser induced breakdown spectroscopy for applications in nuclear industry

    International Nuclear Information System (INIS)

    Suri, B.M.

    2010-01-01

    There are several analytical techniques employing laser spectroscopy - each with its own distinctive potential. Laser Induced Breakdown Spectroscopy (LIBS) is one such technique which is attractive in view of its relative compactness and simplicity (in configuration), remote and online analysis (with no sample handling requirement) and high spatial resolution allowing compositional map or homogeneity analysis. In this technique, a high power pulsed (mostly nanosecond) laser is employed to irradiate the sample causing spark emission, characteristics of the sample composition, which is collected using suitable optics and analysed spectroscopically. Remote and online capability is derived from long distance delivery of laser beams and collection of emitted light by fibres or conventional optics. Since laser can be focused sharply on the target, it can facilitate compositional mapping. Beam Technology Development Group at BARC had initiated work on LIBS of nuclear materials several years ago. Recently the challenge of online monitoring of radioactive waste vitrification plant in a hot cell has been taken up. The theoretical and experimental work done by the group related to instrument development, plasma characterization, quantitative compositional analysis of ternary alloys and uranium vitrified glass samples (comprising more than dozen elements) are described. The future plans for setting up online glass homogeneity monitoring facility are also described. This should fulfill an important demand for optimization of vitrification process. Various other demands of nuclear industry are also reviewed

  4. Discrimination of forensic trace evidence using laser induced breakdown spectroscopy

    Science.gov (United States)

    Bridge, Candice Mae

    Elemental analysis in forensic laboratories can be tedious and many trace evidence items are not analyzed to determine their elemental composition. Presently, scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS) is the primary analytical tool for determining the elemental composition of trace evidence items. However, due to the time it takes to obtain the required vacuum and the limited number of samples that can be analyzed at any one time, SEM-EDS can be impractical for a high volume of evidence items. An alternative instrument that can be used for this type of analysis is laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). While LA-ICP-MS is a very precise and quantitative analytical method that determines elemental composition based on isotopic mass measurements; however, the instrumentation is relatively expensive and therefore is budgetarily prohibitive for many forensic laboratories. It is the purpose of this research to evaluate an inexpensive instrument that can potentially provide rapid elemental analysis for many forensic laboratories. Laser induced breakdown spectroscopy (LIBS) is an analytical method that meets these requirements and offers information about the elemental composition based on ionic, atomic and diatomic molecular emissions.

  5. Remote metal analysis by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Duckworth, A.

    1996-01-01

    This paper describes a new technique by which the composition of irradiated or inaccessible reactor components can be determined remotely. The technique uses very short duration, high energy laser pulses at a wavelength which can be transmitted down an optical fibre to ablate a tiny plasma from the surface of a metal component. Light from the plasma is collected by a second fibre and returned to a spectrometer where it is split into the characteristic emission wavelengths of the elements in the sample. Comparison of the emission line amplitude for a particular element with that of a chosen calibrationline can be used to deduce the concentration of the element in the sample. The technique has been used successfully to differentiate between highly radioactive control rod batches at Sizewell 'A' and Hinkley Point 'A Power Stations. The material analysis accuracy is comparable with that obtained from electron microprobe analysis and other direct spectroscopic methods. However, by analysing the mild steel control rod casing material remotely, difficult sample removal becomes unnecessary and the integrity of the component remains essentially unaltered. In addition, removal of deposits or surface corrosion is incorporated very neatly into the process. These factors make remote laser induced breakdown spectroscopy an ideal tool for material analysis in the nuclear environment. (Author)

  6. Remote metal analysis by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Duckworth, A.

    1996-01-01

    This paper describes a new technique by which the composition of irradiated or inaccessible reactor components can be determined remotely. The technique uses very short duration, high energy laser pulses at a wavelength which can be transmitted down an optical fibre to ablate a tiny plasma from the surface of a metal component. Light from the plasma is collected by a second fibre and returned to a spectrometer where it is split into the characteristic emission wavelengths of the elements in the sample. Comparison of the emission line amplitude for a particular element with that of a chosen calibration line can be used to deduce the concentration of the element in the sample. The technique has been used successfully to differentiate between different highly radioactive control rod batches at Sizewell ''A'' and Hinkley Point ''A'' Power Stations. The material analysis accuracy is comparable with that obtained from electron microphobe analysis and other direct spectroscopic methods. However, by analysing the mild steel control rod casing material remotely, difficult sample removal becomes unneccessary and the integrity of the component remains essentially unaltered. In addition, removal of deposits or surface corrosion is incorporated very neatly into the process. These factors make remote laser induced breakdown spectroscopy an ideal tool for material analysis in the nuclear environment. (UK)

  7. In situ x-ray photoelectron spectroscopy and capacitance voltage characterization of plasma treatments for Al2O3/AlGaN/GaN stacks

    International Nuclear Information System (INIS)

    Qin, Xiaoye; Lucero, Antonio; Azcatl, Angelica; Kim, Jiyoung; Wallace, Robert M.

    2014-01-01

    We investigate the Al 2 O 3 /AlGaN/GaN metal-oxide-semiconductor structure pretreated by O 2 anneals, N 2 remote plasma, and forming gas remote plasma prior to atomic layer deposition of Al 2 O 3 using in situ X-ray photoelectron spectroscopy, low energy electron diffraction, and capacitance- voltage measurements. Plasma pretreatments reduce the Ga-oxide/oxynitride formation and the interface state density, while inducing a threshold voltage instability.

  8. Medical Applications of Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  9. Medical Applications of Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Pathak, A K; Rai, N K; Singh, Ankita; Rai, A K; Rai, Pradeep K; Rai, Pramod K

    2014-01-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail

  10. Laser induced fluorescence spectroscopy for FTU

    International Nuclear Information System (INIS)

    Hughes, T.P.

    1995-07-01

    Laser induced fluorescence spectroscopy (LIFS) is based on the absorption of a short pulse of tuned laser light by a group of atoms and the observation of the resulting fluorescence radiation from the excited state. Because the excitation is resonant it is very efficient, and the fluorescence can be many times brighter than the normal spontaneous emission, so low number densities of the selected atoms can be detected and measured. Good spatial resolution can be achieved by using a narrow laser beam. If the laser is sufficiently monochromatic, and it can be tuned over the absorption line profile of the selected atoms, information can also be obtained about the velocities of the atoms from the Doppler effect which can broaden and shift the line. In this report two topics are examined in detail. The first is the effect of high laser irradiance, which can cause 'power broadening' of the apparent absorption line profile. The second is the effect of the high magnetic field in FTU. Detailed calculations are given for LIFS of neutral iron and molybdenum atoms, including the Zeeman effect, and the implementation of LIFS for these atoms on FTU is discussed

  11. Peculiarities of plasma homeostasis in the patients with rectal cancer according to laser correlation spectroscopy findings

    International Nuclear Information System (INIS)

    Byilenko, O.A.; Bazhora, Yu.Yi.; Sokolov, V.M.; Andronov, D.Yu.

    1997-01-01

    Laser correlation spectroscopy was used to investigate plasma homeostasis in 82 patients with rectal cancer. The spectra of the blood plasma from 21 donors of the transfusion station were used as the control. The blood plasma homeostasis changes reheated with laser correlation spectrometry in the patients with rectal cancer allow to use them for diagnosis of this pathology

  12. A comparative study of the laser induce breakdown spectroscopy in single- and double-pulse laser geometry

    International Nuclear Information System (INIS)

    Sun Duixiong; Su Maogen; Dong Chenzhong; Wen Guanhong; Cao Xiangnian

    2013-01-01

    A time resolved laser induced breakdown spectroscopy technique (LIBS) was used for the investigation of emission signal enhancement on double-pulse LIBS. Two Q-switched Nd:YAG lasers at 1064 nm wavelength have been employed to generate laser-induced plasma on aluminium-based alloys. The plasma emission signals were recorded by spectrometer with ICCD detector. Spectral response calibration was performed by using deuterium and tungsten halogen lamps. Time evolution of the plasma temperature and electron density was investigated in SP and DP experiments. Based on the investigation of plasma parameters, the enhancements of emission line intensities were investigated, and the mechanisms of it were discussed. (author)

  13. Surface-nitriding treatment of steels using microwave-induced nitrogen plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Sato, Shigeo; Arai, Yuuki; Yamashita, Noboru; Kojyo, Atsushi; Kodama, Kenji; Ohtsu, Naofumi; Okamoto, Yukio; Wagatsuma, Kazuaki

    2012-01-01

    A rapid surface-nitriding system using microwave-induced nitrogen plasma at atmospheric pressure was developed for modifying iron and steel surfaces. Since the conventional plasma nitriding technique requires a low-pressure atmosphere in the treatment chamber, the population of excited nitrogen molecules in the plasma is limited. Accordingly, several hours are required for nitriding treatment. By contrast, the developed nitriding system can use atmospheric-pressure plasma through application of the Okamoto cavity for excitation of nitrogen plasma. The high population of excited nitrogen molecules induced by the atmospheric-pressure plasma allowed the formation of a nitriding layer that was several micrometers thick within 1 min and produced an expanded austenite iron phase with a high nitrogen concentration close to the solubility limit on the iron substrate. In addition, the nitriding treatment on high-chromium steel was performed by introducing a reducing gas such as NH 3 and H 2 into the treatment chamber. While the nitriding reaction did not proceed in a simple N 2 atmosphere due to surface oxidation, the surface reduction induced by the NH 3 or H 2 gas promoted the nitriding reaction at the surface. These nitriding phenomena characteristics of the atmospheric-pressure plasma are discussed in this paper based on the effects of the specimen temperature and plasma atmosphere on the thickness, the chemical states, and the nitride compounds of the nitrided layer as investigated by X-ray diffraction, glow-discharge optical emission spectroscopy, and X-ray photoelectron spectroscopy.

  14. Resonant Kα spectroscopy of solid-density aluminum plasmas

    Czech Academy of Sciences Publication Activity Database

    Cho, B.I.; Engelhorn, K.; Vinko, S.M.; Chung, H.-K.; Ciricosta, O.; Rackstraw, D.S.; Falcone, R.W.; Brown, C.R.D.; Burian, Tomáš; Chalupský, Jaromír; Graves, C.; Hájková, Věra; Higginbotham, A.; Juha, Libor; Krzywinski, J.; Lee, H.J.; Messersmidt, M.; Murphy, C.; Ping, Y.; Rohringer, N.; Scherz, A.; Schlotter, W.; Toleikis, S.; Turner, J.J.; Vyšín, Luděk; Wang, T.; Wu, B.; Zastrau, U.; Zhu, D.; Lee, R. W.; Nagler, B.; Wark, J. S.; Heimann, P.A.

    2012-01-01

    Roč. 109, č. 24 (2012), "245003-1"-"245003-6" ISSN 0031-9007 R&D Projects: GA MŠk ED1.1.00/02.0061; GA ČR(CZ) GAP108/11/1312; GA ČR GAP205/11/0571; GA ČR GAP208/10/2302; GA MŠk LA08024; GA MŠk(CZ) ME10046; GA MŠk EE.2.3.20.0087; GA MŠk EE2.3.30.0057 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057; AVČR(CZ) M100101221 Institutional research plan: CEZ:AV0Z10100523 Keywords : Kα spectroscopy * free-electron lasers * solid-density aluminum plasmas Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.943, year: 2012

  15. Optical emission spectroscopy of carbon laser plasma ion source

    Science.gov (United States)

    Balki, Oguzhan; Rahman, Md. Mahmudur; Elsayed-Ali, Hani E.

    2018-04-01

    Carbon laser plasma generated by an Nd:YAG laser (wavelength 1064 nm, pulse width 7 ns, fluence 4-52 J cm-2) is studied by optical emission spectroscopy and ion time-of-flight. Up to C4+ ions are detected with the ion flux strongly dependent on the laser fluence. The increase in ion charge with the laser fluence is accompanied by observation of multicharged ion lines in the optical spectra. The time-integrated electron temperature Te is calculated from the Boltzmann plot using the C II lines at 392.0, 426.7, and 588.9 nm. Te is found to increase from ∼0.83 eV for a laser fluence of 22 J cm-2 to ∼0.90 eV for 40 J cm-2. The electron density ne is obtained from the Stark broadened profiles of the C II line at 392 nm and is found to increase from ∼ 2 . 1 × 1017cm-3 for 4 J cm-2 to ∼ 3 . 5 × 1017cm-3 for 40 J cm-2. Applying an external electric field parallel to the expanding plume shows no effect on the line emission intensities. Deconvolution of ion time-of-flight signal with a shifted Maxwell-Boltzmann distribution for each charge state results in an ion temperature Ti ∼4.7 and ∼6.0 eV for 20 and 36 J cm-2, respectively.

  16. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  17. Compact High Sensitive Laser-Induced Breakdown Spectroscopy Instrument Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser induced breakdown spectroscopy (LIBS) is a versatile tool for in situ substance characterization. Existing LIBS instruments are not compact enough for space...

  18. Classification of soft tissues using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Li, Xiaohui; An, Xiaokang; Fan, Rongwei; Yu, Xin; Chen, Deying

    2017-07-01

    Classification of pork soft tissues, including skin, fat, loin, tenderloin and ham muscles, was achieved using combination of laser-induced breakdown spectroscopy, principal component analysis and k nearest neighbors classification.

  19. Analysis of the absorption layer of CIGS solar cell by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Lee, Seok H; Shim, Hee S; Kim, Chan K; Yoo, Jong H; Russo, Richard E; Jeong, Sungho

    2012-03-01

    Laser induced breakdown spectroscopy (LIBS) was applied for the elemental analysis of the thin copper indium gallium diselenide (CuIn(1-x)Ga(x)Se(2) [CIGS]) absorption layer deposited on Mo-coated soda-lime glass by the co-evaporation technique. The optimal laser and detection parameters for LIBS measurement of the CIGS absorption layer (1.23 μm) were investigated. The calibration results of Ga/In ratio with respect to the concentration ratios measured by x-ray fluorescence and inductively coupled plasma optical emission spectroscopy showed good linearity. © 2012 Optical Society of America

  20. Plasma-cavity ringdown spectroscopy for analytical measurement: Progress and prospectives

    Science.gov (United States)

    Zhang, Sida; Liu, Wei; Zhang, Xiaohe; Duan, Yixiang

    2013-07-01

    Plasma-cavity ringdown spectroscopy is a powerful absorption technique for analytical measurement. It combines the inherent advantages of high sensitivity, absolute measurement, and relative insensitivity to light source intensity fluctuations of the cavity ringdown technique with use of plasma as an atomization/ionization source. In this review, we briefly describe the background and principles of plasma-cavity ringdown spectroscopy(CRDS) technology, the instrumental components, and various applications. The significant developments of the plasma sources, lasers, and cavity optics are illustrated. Analytical applications of plasma-CRDS for elemental detection and isotopic measurement in atomic spectrometry are outlined in this review. Plasma-CRDS is shown to have a promising future for various analytical applications, while some further efforts are still needed in fields such as cavity design, plasma source design, instrumental improvement and integration, as well as potential applications in radical and molecular measurements.

  1. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    Science.gov (United States)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  2. Forensic comparative glass analysis by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Bridge, Candice M.; Powell, Joseph; Steele, Katie L.; Sigman, Michael E.

    2007-01-01

    Glass samples of four types commonly encountered in forensic examinations have been analyzed by laser-induced breakdown spectroscopy (LIBS) for the purpose of discriminating between samples originating from different sources. Some of the glass sets were also examined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Refractive index (RI) measurements were also made on all glass samples and the refractive index data was combined with the LIBS and with the LA-ICP-MS data to enhance discrimination. The glass types examined included float glass taken from front and side automobile windows (examined on the non-float side), automobile headlamp glass, automobile side-mirror glass and brown beverage container glass. The largest overall discrimination was obtained by employing RI data in combination with LA-ICP-MS (98.8% discrimination of 666 pairwise comparisons at 95% confidence), while LIBS in combination with RI provided a somewhat lower discrimination (87.2% discrimination of 1122 pairwise comparisons at 95% confidence). Samples of side-mirror glass were less discriminated by LIBS due to a larger variance in emission intensities, while discrimination of side-mirror glass by LA-ICP-MS remained high

  3. Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn [Virginia Commonwealth Univ., Richmond, VA (United States)

    2016-10-31

    The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.

  4. Towards reconstruction of overlapping fingerprints using plasma spectroscopy

    Science.gov (United States)

    Yang, Jun-Ho; Choi, Soo-Jin; Yoh, Jack J.

    2017-08-01

    Chemical analysis is commonly used in the field of forensic science where the precise discrimination of primary evidence is of significant importance. Laser-Induced Breakdown Spectroscopy (LIBS) exceeds other spectroscopic methods in terms of the time required for pre- and post-sample preparation, the insensitivity to sample phase state be it solid, liquid, or gas, and the detection of two-dimensional spectral mapping from real time point measurements. In this research, fingerprint samples on various surface materials are considered in the chemical detection and reconstruction of fingerprints using the two-dimensional LIBS technique. Strong and distinct intensities of specific wavelengths represent visible ink, natural secretion of sweat, and contaminants from the environment, all of which can be present in latent fingerprints. The particular aim of the work presented here is to enhance the precision of the two-dimensional recreation of the fingerprints present on metal, plastic, and artificially prepared soil surface using LIBS with principal component analysis. By applying a distinct wavelength discrimination for two overlapping fingerprint samples, separation into two non-identical chemical fingerprints was successfully performed.

  5. Elemental chemical analysis of submerged targets by double-pulse laser-induced breakdown spectroscopy.

    Science.gov (United States)

    De Giacomo, A; Dell'Aglio, M; Casavola, A; Colonna, G; De Pascale, O; Capitelli, M

    2006-05-01

    Double-pulse laser-induced plasma spectroscopy (DP-LIPS) is applied to submerged targets to investigate its feasibility for elemental analysis. The role of experimental parameters, such as inter-pulse delay and detection time, has been discussed in terms of the dynamics of the laser-induced bubble produced by the first pulse and its confinement effect on the plasma produced by the second laser pulse. The analytical performance of this technique applied to targets in a water environment are discussed. The elemental analysis of submerged copper alloys by DP-LIPS has been compared with conventional (single-pulse) LIBS in air. Theoretical investigation of the plasma dynamics in water bubbles and open air has been performed.

  6. Emission Spectroscopy of OH Radical in Water-Argon Arc Plasma Jet

    Czech Academy of Sciences Publication Activity Database

    Mašláni, Alan; Sember, Viktor

    2014-01-01

    Roč. 2014, April (2014), "952138"-"952138" ISSN 2314-4920 R&D Projects: GA ČR GAP205/11/2070 Institutional support: RVO:61389021 Keywords : Emission spectroscopy * OH radical * arc plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.538, year: 2014 http://www.hindawi.com/journals/jspec/2014/952138/abs/

  7. Diagnostics of silane and germane radio frequency plasmas by coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    Perry, Joseph W.; Shing, Y. H.; Allevato, C. E.

    1988-01-01

    In situ plasma diagnostics using coherent anti-Stokes Raman spectroscopy have shown different dissociation characteristics for GeH4 and SiH4 in radio frequency (rf) plasma-enhanced chemical vapor deposition of amorphous silicon germanium alloy (a-SiGe:H) thin films. The GeH4 dissociation rate in rf plasmas is a factor of about 3 larger than that of SiH4. Plasma diagnostics have revealed that the hydrogen dilution of the SiH4 and GeH4 mixed plasma plays a critical role in suppressing the gas phase polymerization and enhancing the GeH4 dissociation.

  8. Proceedings of the 3rd US-Japan Workshop on Plasma Polarization Spectroscopy

    International Nuclear Information System (INIS)

    Beiersdorfer, P; Flyimoto, T

    2002-01-01

    The third US-Japan Workshop on Plasma Polarization Spectroscopy was held at the Lawrence Livermore National Laboratory in Livermore, California, on June 18-21, 2001. The talks presented at this workshop are summarized in these proceedings. The papers cover both experimental investigation and applications of plasma polarization spectroscopy as well as the theoretical foundation and formalisms to understand and describe the polarization phenomena. The papers give an overview of the history of plasma polarization spectroscopy, derive the formal aspects of polarization spectroscopy, including the effects of electric and magnetic fields, discuss spectra perturbed by intense microwave fields, charge exchange, and dielectronic recombination, and present calculations of various collisional excitation and ionization cross sections and the modeling of plasma polarization spectroscopy phenomena. Experimental results are given from the WT-3 tokamak, the MST reverse field pinch, the Large Helical Device, the GAMMA 10 mirror machine, the Nevada Terrawatt Facility, the Livermore EBIT-II electron beam ion trap, and beam-foil spectroscopy. In addition, results were presented from studies of several laser-produced plasma experiments and new instrumental techniques were demonstrated

  9. Modeling of defect generation during plasma etching and its impact on electronic device performance—plasma-induced damage

    Science.gov (United States)

    Eriguchi, Koji

    2017-08-01

    The increasing demand for the higher performance of ultra-large-scale integration (ULSI) circuits requires the aggressive shrinkage of device feature sizes in accordance with the scaling law. Plasma processing plays an important role in achieving fine patterns with anisotropic features in metal-oxide-semiconductor field-effect transistors (MOSFETs). This article comprehensively addresses the negative aspects of plasma processing, i.e. plasma process-induced damage, in particular, the defect creation induced by ion bombardment in Si substrates during plasma etching. The ion bombardment damage forms a surface modified region and creates localized defect structures. Modeling and characterization techniques of the ion bombardment damage in Si substrates are overviewed. The thickness of the modified region, i.e. the damaged layer, is modeled by a modified range theory and the density of defects is characterized by photoreflectance spectroscopy (PRS) and the capacitance-voltage technique. The effects of plasma-induced damage (PID) on MOSFET performance are presented. In addition, some of the emerging topics—the enhanced parameter variability in ULSI circuits and recovery of the damage—are discussed as future perspectives.

  10. Detection of contaminants in ore samples using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Gondal, Mohammed A; Hussain, Talib; Ahmed, Zulfiqar; Bakry, Ahmed H

    2007-06-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied for the determination of contaminants present in ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser radiation at 1064 nm wavelength on the ore sample collected from one of the open-pit mines located in Saudi Arabia. The concentrations in this ore sample of different elements of environmental significance like Cu, Cr, Ca, Mg, Zn, Ti, Si, Fe and Al were determined by spectral analysis. Parametric dependence for improvement of LIBS sensitivity was carried out. The LIBS results were compared with the results obtained using other analytical techniques such as the inductively coupled plasma emission spectroscopy (ICP-AES). Limits of detection (LOD) of our LIBS system were also calculated for the elements under investigation.

  11. Laser-induced breakdown spectroscopy measurement of a small fraction of rhenium in bulk tungsten

    Science.gov (United States)

    Nishijima, D.; Ueda, Y.; Doerner, R. P.; Baldwin, M. J.; Ibano, K.

    2018-03-01

    Laser-induced breakdown spectroscopy (LIBS) of bulk rhenium (Re) and tungsten (W)-Re alloy has been performed using a Q-switched Nd:YAG laser (wavelength = 1064 nm, pulse width ∼4-6 ns, laser energy = 115 mJ). It is found that the electron temperature, Te, of laser-induced Re plasma is lower than that of W plasma, and that Te of W-Re plasma is in between Re and W plasmas. This indicates that material properties affect Te in a laser-induced plasma. For analysis of W-3.3%Re alloy, only the strongest visible Re I 488.9 nm line is found to be used because of the strong enough intensity without contamination with W lines. Using the calibration-free LIBS method, the atomic fraction of Re, cRe, is evaluated as a function of the ambient Ar gas pressure, PAr. At PAr analysis), while cRe increases with an increase in PAr at >10 Torr due to spectral overlapping of the Re I 488.9 nm line by an Ar II 488.9 nm line.

  12. Analysis of two colliding laser-produced plasmas by emission spectroscopy and fast photography

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ake, C., E-mail: citlali.sanchez@ccadet.unam.m [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico); Mustri-Trejo, D. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico); Garcia-Fernandez, T. [Universidad Autonoma de la Ciudad de Mexico, Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, Mexico DF, C.P. 09790 (Mexico); Villagran-Muniz, M. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico)

    2010-05-15

    In this work two colliding laser-induced plasmas (LIP) on Cu and C were studied by means of time resolved emission spectroscopy and fast photography. The experiments were performed using two opposing parallel targets of Cu and C in vacuum, ablated with two synchronized ns lasers. The results showed an increased emission intensity from copper ions Cu II (368.65, 490.97, 493.16, 495.37 and 630.10 nm) and Cu III (374.47 and 379.08 nm) due to the ionization that occurs during collisions of Cu and C species. It was found that the optimum delay between pulses, which yields the maximum emission enhancement of Cu ions, depends on the sampling distance. On the other hand, the emission intensity of C lines, C II (426.70 nm), C III (406.99 and 464.74 nm) and C IV (465.83 nm), decreased and the formation of C{sub 2} molecules was observed. A comparison between the temporal evolution of the individual plasmas and their collision performed by combining imaging and the time resolved emission diagnostics, revealed an increase of the electron temperature and electron density and the splitting of the plume into slow and fast components.

  13. Measurement of He neutral temperature in detached plasmas using laser absorption spectroscopy

    Science.gov (United States)

    Aramaki, M.; Tsujihara, T.; Kajita, S.; Tanaka, H.; Ohno, N.

    2018-01-01

    The reduction of the heat load onto plasma-facing components by plasma detachment is an inevitable scheme in future nuclear fusion reactors. Since the control of the plasma and neutral temperatures is a key issue to the detached plasma generation, we have developed a laser absorption spectroscopy system for the metastable helium temperature measurements and used together with a previously developed laser Thomson scattering system for the electron temperature and density measurements. The thermal relaxation process between the neutral and the electron in the detached plasma generated in the linear plasma device, NAGDIS-II was studied. It is shown that the electron temperature gets close to the neutral temperature by increasing the electron density. On the other hand, the pressure dependence of electron and neutral temperatures shows the cooling effect by the neutrals. The possibility of the plasma fluctuation measurement using the fluctuation in the absorption signal is also shown.

  14. Characterisation of a micro-plasma device sensor using electrical measurements and emission spectroscopy

    International Nuclear Information System (INIS)

    Mariotti, D.

    2002-04-01

    This thesis reports on research undertaken on the characterisation of a micro-plasma device to be used for gas analysis by mean of plasma emission spectroscopy. The work covers aspects related to the micro-plasma electrical and optical emission parameters, and their importance for the utilisation of the micro-plasma device in gas analysis. Experimental results have been used to analyse the fundamental micro-plasma processes and to develop a model, which could provide additional information. This dissertation contains a general literature review of topics related to plasma physics, plasma emission spectroscopy, gas analysis (chemical analysis and artificial olfaction) and other micro-plasma applications. Experimental work focuses on two main areas: electrical measurements and emission measurements. Firstly, electrical measurements are taken and interpretations are given. Where necessary, new theoretical treatments are suggested in order to describe better the physical phenomena. Plasma emission has been considered under different working conditions. This allowed the characterisation of the micro-plasma emission and also a better understanding of the micro-plasma processes. On the basis of the experimental data obtained and other assumptions a model has been developed. A computer simulation based on this model provided additional useful information on the micro- plasma behaviour. The first fundamental implication of this new research is the peculiar behaviour of the micro-plasma. This micro-plasma exhibited deviations from Paschen law and strong dependency on cathode material, which contributed to the formation of a low current stable regime. These results have been followed by physical interpretations and theoretical descriptions. The second implication is the establishment of the boundaries and of the influencing parameters for plasma emission spectroscopy as an analytical tool in this particular micro-plasma. From the applied perspective this study has shown that

  15. [Study of self-absorption effect on laser-induced metal plasma].

    Science.gov (United States)

    Chen, Jin-Zhong; Ma, Rui-Ling; Wang, Jing; Li, Xu; Su, Hong-Xin

    2014-09-01

    In order to reduce the effect of the spectral line self-absorption on the analysis result in the laser induced plasma and enhance the qualities of spectrum, the spectral information was recorded by the spectral analysis system consisting of a modular multifunctional grating spectrometer and a CCD detector etc., and the electron temperature and electron density of the plasma were measured with the spectroscopic methods. A plane mirror device was used to constraint the laser plasma, and a reasonable explanation was got through comparing the linear evolution under different experimental conditions and measuring the temperature, electronic density and sample evaporation. The result shows that when an appropriate plane mirror device was used to constraint the laser plasma, the axial temperature of the plasma increased and the radial distribution of the plasma becomes uniform; the electron density increased dramatically; however, obviously sample evaporation decreased, which may be the reasons for being able to effectively reduce the level of self-absorption spectral lines. Therefore, the plane mirror device could reduce the self-absorption effect in the laser-induced plasma. This makes it possible to choose a sensitive line that acts as analysis line in the quantitative analysis of the major elements. In other words, this promotes the measurement precision in the laser-induced break-down spectroscopy.

  16. Plasma diagnostics in the CECI device through visible spectroscopy

    International Nuclear Information System (INIS)

    Ueda, M.; Kayama, M.E.; Aso, Y.

    1991-11-01

    In this paper we discuss the application of a visible spectrometer which was used to diagnose a plasma produced in an RFP device, called CECI. A Jobin Yvon, HR-640 S spectrometer with a photomultiplier detector was used to measure the Doppler broadening of lines emitted by the plasma, and allowed to measure the ion temperatures of the order of 2-3 eV. The electron temperature of 40-50 eV was determined by the method of He I line intensity ratio. The spectroscopically determined ion temperature is in better accordance with the 10 eV electron temperature obtained with an electrostatic probe. The line emissions of He II, H I, C II and O II were compared with signals from other diagnostics, and their correlations indicated the presence of MHD instabilities in the plasma. (author)

  17. Laser-induced breakdown spectroscopy: A versatile tool for ...

    Indian Academy of Sciences (India)

    Laser-induced breakdown spectroscopy (LIBS) is an emerging technique for simultaneous multi-elemental analysis of solids, liquids and gases with minute or no sample preparation and thus revolutionized the area of on-line analysis technologies. The foundation for LIBS is a solid state, short-pulsed laser that is focused on ...

  18. Laser-induced breakdown spectroscopy: A versatile tool for ...

    Indian Academy of Sciences (India)

    journal of. March 2008 physics pp. 553–563. Laser-induced breakdown spectroscopy: A versatile tool for monitoring traces in materials. SHIWANI PANDHIJA and A K .... Hg is hazardous in comparison to other heavy metals and hence its uptake by the roots and foliage of the plants is ultimately dangerous for human health.

  19. Laser-Induced Breakdown Spectroscopy and Chlorophyll a Flourescence Transients

    DEFF Research Database (Denmark)

    Frydenvang, Jens

    of a sufficient quality; something that remains a problem for many in-situ methods. In my PhD, I present my work with two such in-situ methods, Laser-Induced Breakdown Spectroscopy (LIBS) and OJIP transients, the rising part of chlorophyll a fluorescence transients from dark-adapted leaves....

  20. Application of laser-induced breakdown spectroscopy in carbon ...

    Indian Academy of Sciences (India)

    2014-07-18

    Jul 18, 2014 ... Therefore, technologies concomitant to physical storage of CO2 such as reliable measurement, monitoring, and verification (MMV) techniques are needed to ensure that the integrity of the storage site is maintained. We propose the use of laser-induced breakdown spectroscopy (LIBS) analytical technique ...

  1. Laser-induced breakdown spectroscopy and inductively coupled ...

    African Journals Online (AJOL)

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique, which can be used to perform elemental analysis of any material, irrespective of its physical state. In this study, the LIBS technique has been applied for quantification of total Cr in soil samples collected from polluted areas of Brits, North ...

  2. Application of laser-induced breakdown spectroscopy in carbon

    Indian Academy of Sciences (India)

    2014-07-18

    Jul 18, 2014 ... We propose the use of laser-induced breakdown spectroscopy (LIBS) analytical technique to detect carbon dioxide leaks to aid in the successful application of CCS. LIBS has a real-time monitoring capability and can be reliably used for the elemental and isotopic analysis of solid, liquid, and gas samples.

  3. Analysis of organic pollutant degradation in pulsed plasma by coherent anti-Stokes Raman spectroscopy

    International Nuclear Information System (INIS)

    Bratescu, Maria Antoneta; Hieda, Junko; Umemura, Tomonari; Saito, Nagahiro; Takai, Osamu

    2011-01-01

    The degradation of p-benzoquinone (p-BQ) in water was investigated by the coherent anti-Stokes Raman spectroscopy (CARS) method, in which the change of the anti-Stokes signal intensity corresponding to the vibrational transitions of the molecule is monitored during and after solution plasma processing (SPP). In the beginning of SPP treatment, the CARS signal intensity of the ring vibrational molecular transitions at 1233 and 1660 cm -1 increases under the influence of the electric field of the plasma, depending on the delay time between the plasma pulse and the laser firing pulse. At the same time, the plasma contributes to the degradation of p-BQ molecules by generating hydrogen and hydroxyl radicals, which decompose p-BQ into different carboxylic acids. After SPP, the CARS signal intensity of the vibrational bands of p-BQ ceased and the degradation of p-BQ was confirmed by UV-visible absorption spectroscopy and liquid chromatography analysis.

  4. Vacuum ultraviolet spectroscopy study of excimer-laser-generated plasmas

    Science.gov (United States)

    Mehlman, G.; Chrisey, D. B.; Burkhalter, P. G.; Horwitz, J. S.; Newman, D. A.

    1993-07-01

    The dispersed emission in the vacuum ultraviolet (VUV) (1200-3000 Å) from the plasma generated by the interaction of a KrF excimer laser with an Al and a YBa2Cu3O7 target has been measured. Emission spectra were collected as a function of distance above the target surface and as a function of laser fluence. The qualitative features of the plasmas from the two different targets were similar. The character of the emission spectra changed from a pseudocontinuous emission at the target surface to discrete emission from singly, doubly ionized species as well as neutrals at distances greater than ˜1.5 mm. The spatial variation indicated two regions: a high-density sheath along the target where the core emission is close to blackbody; and beyond, a plasma with large opacity emitting a UV spectrum of intensity decreasing fast with distance. Estimates of the plasma temperature and density were between 2 and 4 eV and ˜1018/cm3, respectively.

  5. Stability of Atmospheric-Pressure Plasma Induced Changes on Polycarbonate Surfaces

    Science.gov (United States)

    Sharma, Rajesh; Holcomb, Edward; Trigwell, Steve

    2006-01-01

    Polycarbonate films are subjected to plasma treatment in a number of applications such as improving adhesion between polycarbonate and silicon alloy in protective and optical coatings. The changes in surface chemistry due to plasma treatment have tendency to revert back. Thus stability of the plasma induced changes on polymer surfaces over desired time period is very important. The objective of this study was to examine the effect of ageing on atmospheric pressure helium-plasma treated polycarbonate (PC) sample as a function of treatment time. The ageing effects were studied over a period of 10 days. The samples were plasma treated for 0.5, 2, 5 and 10 minutes. Contact angle measurements were made to study surface energy changes. Modification of surface chemical structure was examined using, X-ray Photoelectron Spectroscopy (XPS). Contact angle measurements on untreated and plasma treated surfaces were made immediately, 24, 48, 72 and 96 hrs after treatment. Contact angle decreased from 93 deg for untreated sample to 30 deg for sample plasma treated for 10 minutes. After 10 days the contact angles for the 10 minute plasma treated sample increased to 67 deg, but it never reverted back to that of untreated surface. Similarly the O/C ratio increased from 0.136 for untreated sample to 0.321 for 10 minute plasma treated sample indication increase in surface energy.

  6. Induction plasma-sprayed photocatalytically active titania coatings and their characterisation by micro-Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Burlacov, I.; Jirkovský, Jaromír; Muller, M.; Heimann, R. B.

    2006-01-01

    Roč. 201, 1-2 (2006), s. 255-264 ISSN 0257-8972 Grant - others:European Communities(XE) EVKI-2002-30025 Institutional research plan: CEZ:AV0Z40400503 Source of funding: R - rámcový projekt EK Keywords : titania (anatase) coatings * induction plasma spraying * suspension plasma spraying * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 1.559, year: 2006

  7. Development of a gated optical multichannel analyser for laser-plasma spectroscopy

    OpenAIRE

    Corcoran, Richard

    1990-01-01

    An Optical Multichannel Analyser (OMA) has been developed for the detection of radiation from laser-produced plasmas (LPPs). The system is based on a gated image - intensified photodiode array (PDA) Software for the control of, and data acquisition from, the OMA system has been developed. A high resolution (10ns) delay generator was also designed and constructed to permit timeresolved. optical spectroscopy. The system has been tested and operated with a laser plasma source m...

  8. Time-resolved tunable diode laser absorption spectroscopy of pulsed plasma

    Czech Academy of Sciences Publication Activity Database

    Adámek, Petr; Olejníček, Jiří; Čada, Martin; Kment, Š.; Hubička, Zdeněk

    2013-01-01

    Roč. 38, č. 14 (2013), s. 2428-2430 ISSN 0146-9592 R&D Projects: GA MŠk LH12045; GA ČR(CZ) GAP205/11/0386; GA MŠk LD12002; GA MŠk LH12043 Institutional support: RVO:68378271 Keywords : diode lasers * plasma diagnostics * absorption spectroscopy * time resolved Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.179, year: 2013

  9. Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants

    International Nuclear Information System (INIS)

    Perni, Stefano; Shama, Gilbert; Hobman, J. L.; Lund, P. A.; Kershaw, C. J.; Hidalgo-Arroyo, G. A.; Penn, C. W.; Deng, X. T.; Walsh, J. L.; Kong, M. G.

    2007-01-01

    Mechanisms of plasma-induced microbial inactivation have commonly been studied with physicochemical techniques. In this letter, Escherichia coli K-12 and its ΔrecA, ΔrpoS, and ΔsoxS mutants are employed to discriminate effects of UV photons, OH radicals, and reactive oxygen species produced in atmospheric discharges. This microbiological approach exploits the fact that these E. coli mutants are defective in their resistance against various external stresses. By interplaying bacterial inactivation kinetics with optical emission spectroscopy, oxygen atoms are identified as a major contributor in plasma inactivation with minor contributions from UV photons, OH radicals, singlet oxygen metastables, and nitric oxide

  10. Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants

    Science.gov (United States)

    Perni, Stefano; Shama, Gilbert; Hobman, J. L.; Lund, P. A.; Kershaw, C. J.; Hidalgo-Arroyo, G. A.; Penn, C. W.; Deng, X. T.; Walsh, J. L.; Kong, M. G.

    2007-02-01

    Mechanisms of plasma-induced microbial inactivation have commonly been studied with physicochemical techniques. In this letter, Escherichia coli K-12 and its ΔrecA, ΔrpoS, and ΔsoxS mutants are employed to discriminate effects of UV photons, OH radicals, and reactive oxygen species produced in atmospheric discharges. This microbiological approach exploits the fact that these E. coli mutants are defective in their resistance against various external stresses. By interplaying bacterial inactivation kinetics with optical emission spectroscopy, oxygen atoms are identified as a major contributor in plasma inactivation with minor contributions from UV photons, OH radicals, singlet oxygen metastables, and nitric oxide.

  11. Review of x-ray spectroscopy from laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.

    1987-09-01

    Recent progress in x-ray spectroscopy from laser plasmas is reviewed. Advances in the use of K-shell spectra as a diagnostic tool is discussed. Much activity in understanding complex spectra especially from Ne I and Ni I isoelectronic series have been made. Much of the progress has been due to observation of amplification from Δn = O transitions from these configurations. The spectroscopy will be discussed and examples of spectra of the amplified lines will be shown. Finally, recent work on using x-ray spectroscopy to diagnose high density implosions will be discussed. 33 refs

  12. Study of plasma-induced graft polymerization of stearyl methacrylate on cotton fabric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongqiang [Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); “Textile Fiber Materials and Processing Technology” Local Joint National Engineering Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Zhang, Yan; Zou, Chao [Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Shao, Jianzhong, E-mail: jshao@zstu.edu.cn [Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); “Textile Fiber Materials and Processing Technology” Local Joint National Engineering Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-12-01

    Graphical abstract: - Highlights: • The plasma induced graft polymerization on the cotton fabric substrates. • Coating film on fibers changed fabric hydrophobicity and stability. • Effect of the plasma process time on grafting ratio was investigated. • The cotton grafted SMA exhibited an excellent heat resistance. - Abstract: A simple and facile method to prepare the cotton fabric with hydrophobicity was described in the present work. In the one-step process, the cotton fabric pre-impregnated with the monomer solution of stearyl methacrylate (SMA) was placed in the plasma chamber and followed by glow discharge of the Helium low temperature plasma. The cotton fabrics before and after the plasma treatment were characterized by field emission scanning electron microscopy (FESEM), infrared spectroscopic analysis (FTIR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA), respectively. The wettability of the cotton fabrics was evaluated by contact angle measurement. Fabric Hand Values and mechanical properties were also measured in the experiment. The results showed that polymer films could be coated on the cotton fibers through the plasma induced grafting polymerization of SMA. The modified cotton fabrics exhibited an extraordinary hydrophobicity with a contact angle of 149° for a 5 μL water droplet and excellent thermal stability. The relative hand value and mechanical breaking strength of the cotton fabrics declined slightly after graft polymerization of SMA by the plasma.

  13. Study of plasma-induced graft polymerization of stearyl methacrylate on cotton fabric substrates

    International Nuclear Information System (INIS)

    Li, Yongqiang; Zhang, Yan; Zou, Chao; Shao, Jianzhong

    2015-01-01

    Graphical abstract: - Highlights: • The plasma induced graft polymerization on the cotton fabric substrates. • Coating film on fibers changed fabric hydrophobicity and stability. • Effect of the plasma process time on grafting ratio was investigated. • The cotton grafted SMA exhibited an excellent heat resistance. - Abstract: A simple and facile method to prepare the cotton fabric with hydrophobicity was described in the present work. In the one-step process, the cotton fabric pre-impregnated with the monomer solution of stearyl methacrylate (SMA) was placed in the plasma chamber and followed by glow discharge of the Helium low temperature plasma. The cotton fabrics before and after the plasma treatment were characterized by field emission scanning electron microscopy (FESEM), infrared spectroscopic analysis (FTIR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA), respectively. The wettability of the cotton fabrics was evaluated by contact angle measurement. Fabric Hand Values and mechanical properties were also measured in the experiment. The results showed that polymer films could be coated on the cotton fibers through the plasma induced grafting polymerization of SMA. The modified cotton fabrics exhibited an extraordinary hydrophobicity with a contact angle of 149° for a 5 μL water droplet and excellent thermal stability. The relative hand value and mechanical breaking strength of the cotton fabrics declined slightly after graft polymerization of SMA by the plasma.

  14. Methods for measurement of heterogeneous materials with laser-induced breakdown spectroscopy (LIBS)

    OpenAIRE

    Effenberger, Andrew Jay

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is an analytical tool that can be used in a wide range of applications. By focusing a laser pulse onto a small area, material is ionized and heated to 10,000 to 20,000 K. As the plasma cools, atoms emit light. The light contains atomic information about the sample and is analyzed by a spectrometer. In this work, a fundamental study will examine the relationship between ablation and LIBS enhancement in dual-pulse LIBS. Also, an application of LIBS to...

  15. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy

    DEFF Research Database (Denmark)

    Rapin, W.; Bousquet, B.; Lasue, J.

    2017-01-01

    roughness. Here, we present a series of laboratory experiments that reproduce the effect observed on Mars and explore possible causes. We show that the hydrogen peak intensity increases significantly with increasing exposure of the target surface to the LIBS plasma, and that these variations are specific......On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target...

  16. Determination of Rare Earth Elements in Geological Samples Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Jain, Jinesh C; Goueguel, Christian L; McIntyre, Dustin L; Singh, Jagdish P

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used to detect rare earth elements (REEs) in natural geological samples. Low and high intensity emission lines of Ce, La, Nd, Y, Pr, Sm, Eu, Gd, and Dy were identified in the spectra recorded from the samples to claim the presence of these REEs. Multivariate analysis was executed by developing partial least squares regression (PLS-R) models for the quantification of Ce, La, and Nd. Analysis of unknown samples indicated that the prediction results of these samples were found comparable to those obtained by inductively coupled plasma mass spectrometry analysis. Data support that LIBS has potential to quantify REEs in geological minerals/ores.

  17. MEASUREMENT OF THE RESISTIVE WALL MODE STABILITY IN A ROTATING PLASMA USING ACTIVE MHD SPECTROSCOPY

    International Nuclear Information System (INIS)

    CHU, M.S; JACKSON, G.L; LA HAYE, R.J; SCOVILLE, J.T; STRAIT, E.J

    2003-01-01

    The stability of the resistive-wall mode (RWM) in DIII-D plasmas above the conventional pressure limit, where toroidal plasma rotation in the order of a few percent of the Alfven velocity is sufficient to stabilize the n=1 RWM, has been probed using the technique of active MHD spectroscopy at frequencies of a few Hertz. The measured frequency spectrum of the plasma response to externally applied rotating resonant magnetic fields is well described by a single mode approach and provides an absolute measurement of the damping rate and the natural mode rotation frequency of the stable RWM

  18. Laser Plasma Plume Kinetic Spectroscopy of the Nitrogen and Carbon Species

    Czech Academy of Sciences Publication Activity Database

    Zelinger, Zdeněk; Novotný, Michal; Bulíř, Jiří; Lančok, Ján; Kubát, Pavel; Jelínek, Miroslav

    2003-01-01

    Roč. 43, - (2003), s. 426-432 ISSN 0863-1042 R&D Projects: GA AV ČR IAA1010110 Institutional research plan: CEZ:AV0Z4040901 Keywords : laser ablation * laser plasma * emission spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.863, year: 2003

  19. A rate-equation model for polarized laser-induced fluorescence to measure electric field in glow discharge He plasmas

    International Nuclear Information System (INIS)

    Takiyama, K.; Watanabe, M.; Oda, T.

    1998-01-01

    Possibility of applying polarized laser-induced fluorescence (LIF) spectroscopy for measuring the electric field in a plasma with a large collisional depolarization has been investigated. A rate equation model including the depolarization process was employed to analyze the time evolution of LIF polarization components. The polarized LIF pulse shapes observed in the sheath of a He glow discharge plasma were successfully reproduced, and the electric field distribution was obtained with high accuracy. (author)

  20. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  1. Doppler spectroscopy and D-alpha emission diagnostics for the C-2 FRC plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Deepak K.; Paganini, E.; Bonelli, L.; Deng, B. H.; Gornostaeva, O.; Hayashi, R.; Knapp, K.; McKenzie, M.; Pousa-Hijos, R.; Primavera, S.; Schroeder, J.; Tuszewski, M. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Balvis, A.; Giammanco, F.; Marsili, P. [Department of Physics, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2010-10-15

    Two Doppler spectroscopy diagnostics with complementary capabilities are developed to measure the ion temperatures and velocities of FRC plasmas in the C-2 device. First, the multichord ion doppler diagnostic can simultaneously measure 15 chords of the plasma using an image intensified camera. Second, a single-chord fast-response ion Doppler diagnostic provides much higher faster time response by using a 16-channel photo-multiplier tube array. To study the neutral density of deuterium under different wall and plasma conditions, a highly sensitive eight-channel D-alpha diagnostic has been developed and calibrated for absolute radiance measurements. These spectroscopic diagnostics capabilities, combined with other plasma diagnostics, are helping to understand and improve the field reversed configuration plasmas in the C-2 device.

  2. Laser-induced gas plasma machining

    Energy Technology Data Exchange (ETDEWEB)

    Elhadj, Selim; Bass, Isaac Louis; Guss, Gabriel Mark; Matthews, Manyalibo J.

    2017-10-17

    Techniques for removing material from a substrate are provided. A laser beam is focused at a distance from the surface to be treated. A gas is provided at the focus point. The gas is dissociated using the laser energy to generate gas plasma. The substrate is then brought in contact with the gas plasma to enable material removal.

  3. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wattieaux, G., E-mail: gaetan.wattieaux@laplace.univ-tlse.fr; Yousfi, M.; Merbahi, N.

    2013-11-01

    This work deals with absorption and mainly emission spectrometry of a microwave induced surfatron plasma jet launched in ambient air and using an Argon flow carrier gas. The Ar flow rate varies between 1 and 3 L/min and the microwave power between 40 and 60 W. The analysis of the various spectra has led to the determination of the ozone and atomic oxygen concentrations, ultraviolet (UV) irradiance separating UVA, UVB and UVC, gas temperature, plasma electron density and excitation temperature. Most of these diagnostics are spatially resolved along the plasma jet axis. It is shown more particularly that rotational temperature obtained from OH(A-X) spectra ranges between 800 K to 1000 K while the apparent temperature of the plasma jet remains lower than about 325 K which is compatible with biocide treatment without significant thermal effect. The electron density reaches 1.2 × 10{sup 14} cm{sup −3}, the excitation temperature is about 4000 K, the UVC radiation represents only 5% of the UV radiations emitted by the device, the ozone concentration is found to reach 88 ± 27 ppm in the downstream part of the plasma jet at a distance of 30 mm away from the quartz tube outlet of the surfatron and the atomic oxygen concentration lies between 10 and 80 ppm up to a distance of 20 mm away from the quartz tube outlet. Ozone is identified as the main germicidal active species produced by the device since its concentration is in accordance with bacteria inactivation durations usually reported using such plasma devices. Human health hazard assessment is carried out all along this study since simple solutions are reminded to respect safety standards for exposures to ozone and microwave leakage. In this study, an air extraction unit is used and a Faraday cage is set around the quartz tube of the surfatron and the plasma jet. These solutions should be adopted by users of microwave induced plasma in open air conditions because according to the literature, this is not often the

  4. Laser-induced plasmas as an analytical source for quantitative analysis of gaseous and aerosol systems: Fundamentals of plasma-particle interactions

    Science.gov (United States)

    Diwakar, Prasoon K.

    2009-11-01

    Laser-induced Breakdown Spectroscopy (LIBS) is a relatively new analytical diagnostic technique which has gained serious attention in recent past due to its simplicity, robustness, and portability and multi-element analysis capabilities. LIBS has been used successfully for analysis of elements in different media including solids, liquids and gases. Since 1963, when the first breakdown study was reported, to 1983, when the first LIBS experiments were reported, the technique has come a long way, but the majority of fundamental understanding of the processes that occur has taken place in last few years, which has propelled LIBS in the direction of being a well established analytical technique. This study, which mostly focuses on LIBS involving aerosols, has been able to unravel some of the mysteries and provide knowledge that will be valuable to LIBS community as a whole. LIBS processes can be broken down to three basic steps, namely, plasma formation, analyte introduction, and plasma-analyte interactions. In this study, these three steps have been investigated in laser-induced plasma, focusing mainly on the plasma-particle interactions. Understanding plasma-particle interactions and the fundamental processes involved is important in advancing laser-induced breakdown spectroscopy as a reliable and accurate analytical technique. Critical understanding of plasma-particle interactions includes study of the plasma evolution, analyte atomization, and the particle dissociation and diffusion. In this dissertation, temporal and spatial studies have been done to understand the fundamentals of the LIBS processes including the breakdown of gases by the laser pulse, plasma inception mechanisms, plasma evolution, analyte introduction and plasma-particle interactions and their influence on LIBS signal. Spectral measurements were performed in a laser-induced plasma and the results reveal localized perturbations in the plasma properties in the vicinity of the analyte species, for

  5. Applications of laser-induced gratings to spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, E.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  6. Data array acquisition and joint processing in local plasma spectroscopy

    International Nuclear Information System (INIS)

    Ekimov, K.; Luizova, L.; Soloviev, A.; Khakhaev, A.

    2005-01-01

    The setup and software for optical emission spectroscopy with spatial and temporal resolutions were developed. The automated installation includes LabView compatible instrument interfaces. The algorithm of joint data processing is based on principal component method and allows the increase in stability of results of the radial transform and the instrument distortion elimination in the presence of noises. The system is applied to diagnostics of the arc discharge in mercury vapors with the addition of thallium. The distributions of ground state and excited mercury atoms, excited thallium atoms and electron density over the arc cross section have been measured on the basis of analysis of spectral line shapes. The Saha balance between electron and high lying excited states densities was checked. An unexpected broadening of some thallium spectral lines was found out

  7. Laser-induced breakdown spectroscopy for Wendelstein 7-X stellarator limiter tile analysis

    Science.gov (United States)

    Li, Cong; Gierse, Niels; Oelmann, Jannis; Brezinsek, Sebastijan; Rasinski, Marcin; Dhard, Chandra Prakash; Pedersen, Thomas Sunn; König, Ralf; Liang, Yunfeng; Ding, Hongbin; Linsmeier, Christian; W7-X Team3, the

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a well-established elemental composition analysis method as well as one of the most promising candidates for in situ first wall diagnosis of fusion devices. In this work, limiter graphite tiles, which were exposed in the initial operational phase (OP1.1) of the Wendelstein 7-X stellarator to He and H plasma, are analyzed ex situ by LIBS employing a picosecond pulsed laser for the first time and compared with post mortem analysis techniques. Depth profiles of each element and 2D profile of the ratio of H and C atoms on the surface are investigated. Both H content and retention depth on the deposition dominated zone are higher than on the erosion dominated zone due to the formation of C-H co-deposition layer. The results from LIBS are in agreement with those from the cross-sectional scanning electron microscopic image and electron dispersive x-ray spectroscopy.

  8. Study by optical spectroscopy of the interaction between a hydrogen multi-polar plasma and a gallium arsenide surface

    International Nuclear Information System (INIS)

    Ferdinand, Robin

    1990-01-01

    The objective of this research thesis has been to understand which are the involved species during the deoxidation-passivation stage of the processing of gallium arsenide platelets used in semiconductor industry. The author describes problems related to the presence of oxides, and highlights the benefit of using a hydrogen multi-polar plasma to softly remove surface oxides. The experimental set-up is notably characterised by the role of magnetic confinement and its influence on plasma. A theoretical model is then developed for a better understanding of chemical and physical-chemical reactions occurring in the hydrogen plasma. Based on the use of the Boltzmann equation, the model calculates the electron energy distribution function, and allows the follow-up of species present in the plasma with respect to available and accessible parameters (pressure, discharge current, discharge voltage). A spectroscopic study of the hydrogen plasma is then reported, and the numerical model is validated by interpreting line shapes of the hydrogen Balmer series. A second experimental approach, based on electrostatic probes, is implemented, and the Laframboise theory is applied to this technique and allows electronic and ionic densities, and electron temperature to be determined. Experimental and numerical results are compared. All this leads to the study of the interaction of plasma with a sample, with a first step of study of a mixture plasma containing 85 per cent of hydrogen and 15 per cent of arsine, in order to get a general knowledge of emissions related to the presence of AsH 3 . Finally, interaction studies are performed by using laser-induced fluorescence and conventional space-resolved optical spectroscopy

  9. Correlations between gaseous and liquid phase chemistries induced by cold atmospheric plasmas in a physiological buffer.

    Science.gov (United States)

    Girard, Fanny; Peret, Mathieu; Dumont, Natacha; Badets, Vasilica; Blanc, Sylvie; Gazeli, Kristaq; Noël, Cédric; Belmonte, Thierry; Marlin, Laurent; Cambus, Jean-Pierre; Simon, Guillaume; Sojic, Neso; Held, Bernard; Arbault, Stéphane; Clément, Franck

    2018-03-21

    The understanding of plasma-liquid interactions is of major importance, not only in physical chemistry, chemical engineering and polymer science, but in biomedicine as well as to better control the biological processes induced on/in biological samples by Cold Atmospheric Plasmas (CAPs). Moreover, plasma-air interactions have to be particularly considered since these CAPs propagate in the ambient air. Herein, we developed a helium-based CAP setup equipped with a shielding-gas device, which allows the control of plasma-air interactions. Thanks to this device, we obtained specific diffuse CAPs, with the ability to propagate along several centimetres in the ambient air at atmospheric pressure. Optical Emission Spectroscopy (OES) measurements were performed on these CAPs during their interaction with a liquid medium (phosphate-buffered saline PBS 10 mM, pH 7.4) giving valuable information about the induced chemistry as a function of the shielding gas composition (variable O2/(O2 + N2) ratio). Several excited species were detected including N2+(First Negative System, FNS), N2(Second Positive System, SPS) and HO˙ radical. The ratios between nitrogen/oxygen excited species strongly depend on the O2/(O2 + N2) ratio. The liquid chemistry developed after CAP treatment was investigated by combining electrochemical and UV-visible absorption spectroscopy methods. We detected and quantified stable oxygen and nitrogen species (H2O2, NO2-, NO3-) along with Reactive Nitrogen Species (RNS) such as the peroxynitrite anion ONOO-. It appears that the RNS/ROS (Reactive Oxygen Species) ratio in the treated liquid depends also on the shielding gas composition. Eventually, the composition of the surrounding environment of CAPs seems to be crucial for the induced plasma chemistry and consequently, for the liquid chemistry. All these results demonstrate clearly that for physical, chemical and biomedical applications, which are usually achieved in ambient air environments, it is necessary to

  10. Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion

    International Nuclear Information System (INIS)

    Cristoforetti, G.; De Giacomo, A.; Dell'Aglio, M.; Legnaioli, S.; Tognoni, E.; Palleschi, V.; Omenetto, N.

    2010-01-01

    In the Laser-Induced Breakdown Spectroscopy (LIBS) technique, the existence of Local Thermodynamic Equilibrium (LTE) is the essential requisite for meaningful application of theoretical Boltzmann-Maxwell and Saha-Eggert expressions that relate fundamental plasma parameters and concentration of analyte species. The most popular criterion reported in the literature dealing with plasma diagnostics, and usually invoked as a proof of the existence of LTE in the plasma, is the McWhirter criterion [R.W.P. McWhirter, in: Eds. R.H. Huddlestone, S.L. Leonard, Plasma Diagnostic Techniques, Academic Press, New York, 1965, pp. 201-264]. However, as pointed out in several papers, this criterion is known to be a necessary but not a sufficient condition to insure LTE. The considerations reported here are meant to briefly review the theoretical analysis underlying the concept of thermodynamic equilibrium and the derivation of the McWhirter criterion, and to critically discuss its application to a transient and non-homogeneous plasma, like that created by a laser pulse on solid targets. Specific examples are given of theoretical expressions involving relaxation times and diffusion coefficients, as well as a discussion of different experimental approaches involving space and time-resolved measurements that could be used to complement a positive result of the calculation of the minimum electron number density required for LTE using the McWhirter formula. It is argued that these approaches will allow a more complete assessment of the existence of LTE and therefore permit a better quantitative result. It is suggested that the mere use of the McWhirter criterion to assess the existence of LTE in laser-induced plasmas should be discontinued.

  11. Detection and evaluation of uranium in different minerals by gamma spectrometry and laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sergani, F.M.; Khedr, M.A.; Harith, M.A. [National Inst. of Laser Enhanced Sciences (NILES), Cairo Univ. (Egypt); El Mongy, S.A. [National Center for Nuclear Safety, Atomic Energy Authority, Nasr City, Cairo (Egypt)

    2004-07-01

    Analysis, detection and evaluation of source nuclear materials (e.g. uranium) in different minerals by sensitive techniques are a vital objective for uranium exploration, nuclear materials extraction, processing and verification. In this work, uranium in different geological formations was determined using gamma spectrometry and laser induced breakdown spectroscopy (LIBS). The investigated samples were collected from different regions distributed all over Egypt. The samples were then prepared for non-destructive analysis. A hyper pure germanium detector was used to measure the emitted gamma rays of uranium and its daughters in the samples. The concentrations of uranium in ppm ({mu}g/g) in the investigated samples are given and discussed in this work. The highest uranium concentration (4354.9 ppm) was found in uranophane samples of Gattar rocks. In Laser induced breakdown spectroscopy (LIBS) technique, plasma was formed by irradiating the rock surface with focused Q-switched Nd:Yag laser pulses of 7 ns pulse duration at the fundamental wavelength (1064 nm). Atoms and ions originating from the rock surface are excited and ionized in the laser produced hot plasma ({proportional_to}10 000 K). The plasma emission spectral line is characteristic of the elements present in the plasma and allows identification of the uranium in the uranophane mineral. The strong atomic line at 424.2 nm is used for the qualitative identification of uranium. It can be mentioned that the elevated levels of uranium in some of the investigated uranophane samples are of great economic feasibility to be extracted. (orig.)

  12. Experimental study of radiative energy transport in dense plasmas by emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Dozieres, Maylis

    2016-01-01

    This PhD work is an experimental study, based on emission and absorption spectroscopy of hot and dense nanosecond laser-produced plasmas. Atomic physics in such plasmas is a complex subject and of great interest especially in the fields of astrophysics or inertial confinement fusion. On the atomic physics point of view, this means determining parameters such as the average ionization or opacity in plasmas at given electronic temperature and density. Atomic physics codes then need of experimental data to improve themselves and be validated so that they can be predictive for a wide range of plasmas. With this work we focus on plasmas whose electronic temperature varies from 10 eV to more than a hundred and whose density range goes from 10 -5 ato10 -2 g/cm 3 . In this thesis, there are two types of spectroscopic data presented which are both useful and necessary to the development of atomic physics codes because they are both characteristic of the state of the studied plasma: 1) some absorption spectra from Cu, Ni and Al plasmas close to local thermodynamic equilibrium; 2) some emission spectra from non local thermodynamic equilibrium plasmas of C, Al and Cu. This work highlights the different experimental techniques and various comparisons with atomic physics codes and hydrodynamics codes. (author) [fr

  13. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-01-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities (∼∼ 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs

  14. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez, A.M.; Ortiz, M.; Campos, J.

    1995-09-01

    Absolute transition probabilities for lines of Cr II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. The plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. The light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 to 4100 A. The spectral resolution of the system was 0.2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sb alloys. To avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000K), electron densities (approx 10 ''16 cm''-3) and self-absorption coefficients have been obtained

  15. Emission spectroscopy of argon ferrocene mixture jet in a low pressure plasma reactor

    International Nuclear Information System (INIS)

    Tiwari, N.; Tak, A.K.; Chakravarthy, Y.; Shukla, A.; Meher, K.C.; Ghorui, S.; Thiyagarajan, T.K.

    2015-01-01

    Emission spectroscopy is employed to measure the plasma temperature and species identification in a reactor used for studying homogenous nucleation and growth of iron nano particle. Reactor employs segmented non transferred plasma torch mounted on water cooled cylindrical chamber. The plasma jet passes through graphite nozzle and expands in low pressure reactor. Ferrocene is fed into the nozzle where it mixes with Argon plasma jet. A high resolution spectrograph (SHAMROCK 303i, resolution 0.06 nm) has been used to record the spectra over a wide range. Identification of different emission lines has been done using NIST database. Lines from (700 to 860nm) were considered for calculation of temperature. Spectra were recorded for different axial location, pressure and power. Temperature was calculated using Maxwell Boltzman plot method. Variation in temperature with pressure and location is presented and possible reasons for different behaviour are explored. (author)

  16. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  17. Angle of Observation Influence on Emission Signal from Spatially Confined Laser-Induced Plasmas.

    Science.gov (United States)

    Weiss, Jiri; Cabalín, Luisa Maria; Laserna, J Javier

    2017-01-01

    The present work focuses on the influence of the angle of observation on the emission signal from copper plasmas. Plasma plumes have been generated inside a home-made chamber consisting of two parallel glass windows spaced by 2.5 mm. This chamber allows observing plasma plumes from different collection angles throughout their perimeter, spanning from 20° to 80° with respect to the surface of the Cu target. In order to minimize the observed volume of the plasma, measurements were made from the closest distance possible through a metallic hollow tube. Single-pulse and collinear double-pulse excitation schemes with a Nd:YAG laser (1064 nm, 5 ns) have been investigated. The results have shown that the selection of the best angle to collect light from the plasma is related to the excitation mode. On the other hand, the shot-to-shot signal variability has been found to depend on the shape of plasma plumes. In single-pulse excitation, a good correlation between the observed laser-induced breakdown spectroscopy (LIBS) emission (from spatially confined plumes) and their integrated signal of plasma image has been ascertained. However, this fact was less evident in double-pulse LIBS, which could be due to a different mechanism involved in the ablation process.

  18. Exploring the temporally resolved electron density evolution in extreme ultra-violet induced plasmas

    International Nuclear Information System (INIS)

    Van der Horst, R M; Beckers, J; Nijdam, S; Kroesen, G M W

    2014-01-01

    We measured the electron density in an extreme ultra-violet (EUV) induced plasma. This is achieved in a low-pressure argon plasma by using a method called microwave cavity resonance spectroscopy. The measured electron density just after the EUV pulse is 2.6 × 10 16  m −3 . This is in good agreement with a theoretical prediction from photo-ionization, which yields a density of 4.5 × 10 16  m −3 . After the EUV pulse the density slightly increases due to electron impact ionization. The plasma (i.e. electron density) decays in tens of microseconds. (fast track communication)

  19. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria

    Science.gov (United States)

    Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.

    2018-01-01

    In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in

  20. Laser-induced breakdown spectroscopy theory and applications

    CERN Document Server

    Perini, Umberto

    2014-01-01

    This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS), a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.

  1. fabrics induced by cold plasma treatments

    Indian Academy of Sciences (India)

    Abstract. Some selective cold plasma processing modify specific surface properties of textile polymeric materials such as their dyeability, wettability and hydrorepellence. To correlate the sample surface changes with the acquired surface properties allows one to obtain information on the chemical and physical processing ...

  2. Self-consistent modeling of plasma density control using self-excited electron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, R.P. [Siemens AG, Munich (Germany); Klick, M.; Rehak, W. [Adolf-Slaby Inst., Berlin (Germany)

    1998-12-31

    Plasma processing, such as the structuring of wafer surfaces or the deposition of thin films, plays a pivotal role in the manufacturing of VLSI microelectronics and other semiconductors. Increasing wafer diameters and decreasing device dimensions put an ever-growing demand on the stability of the process conditions. Closed loop feed-back control is thought to ensure this stability, even in the presence of run-to-run variations in the chamber state, or similar drifts in the external process parameters. Traditional plasma diagnostics either provides very indirect plasma information, or causes intolerable disturbances of the process itself. Recently, however, a novel method was proposed which allows to characterize an RF plasma in a strictly passive way. This method, termed Self-Excited Electron Resonance Spectroscopy or SEERS, is based on the excitation of global oscillations in the plasma body due to nonlinearities in the sheath. In this work, the authors study the behavior of an inductively coupled, high density plasma reactor (ICP/HDP) under the action of a SEERS-based closed loop control. The approach employs a period-averaged plasma simulator which allows to predict, for any input power P, the secular evolution of the charge distribution in the plasma bulk, and the spatially resolved capacitance of the boundary sheath. Note that the control scheme is realizable, in the sense that it makes use only of that plasma information which is physically available. The results show that already a simple--even only proportional--SEERS-based feedback control can considerably increase the long time stability of industrial plasma processes.

  3. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    El Sherbini, A.M.; El Sherbini, Th.M.; Hegazy, H.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In quantitative Laser Induced Breakdown Spectroscopy (LIBS) measurements it is essential to account for the effect of self-absorption on the emission lines intensity. In order to quantify this effect, in this paper we propose a simple method for evaluating the ratio between the actual measured line intensity and the intensity expected in absence of self-absorption and, if necessary, correcting the effect of self-absorption on line intensity. The method, based on a homogeneous plasma model, is applicable when the plasma electron density is known and in particular to lines whose Stark broadening parameter is available

  4. Spatial and temporal dependence of interspark interactions in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Scaffidi, Jon; Pearman, William; Lawrence, Marion; Carter, J Chance; Colston, Bill W; Angel, S Michael

    2004-09-20

    A femtosecond air spark has recently been combined with a nanosecond ablative pulse in order to map the spatial and temporal interactions of the two plasmas in femtosecond-nanosecond orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS). Good spatial and temporal correlation was found for reduced atomic emission from atmospheric species (nitrogen and oxygen) and increased atomic emission from ablated species (copper and aluminum) in the femtosecond-nanosecond plasma, suggesting a potential role for atmospheric pressure or nitrogen/oxygen concentration reduction following air spark formation in generating atomic emission enhancements in dual-pulse LIBS.

  5. The development of a distributed computing environment for the design and modeling of plasma spectroscopy experiments

    International Nuclear Information System (INIS)

    Nash, J.K.; Eme, W.G.; Lee, R.W.; Salter, J.M.

    1994-10-01

    The design and analysis of plasma spectroscopy experiments can be significantly complicated by relatively routine computational tasks arising from the massive amount of data encountered in the experimental design and analysis stages of the work. Difficulties in obtaining, computing, manipulating and visualizing the information represent not simply an issue of convenience -- they have a very real limiting effect on the final quality of the data and on the potential for arriving at meaningful conclusions regarding an experiment. We describe ongoing work in developing a portable UNIX environment shell with the goal of simplifying and enabling these activities for the plasma-modeling community. Applications to the construction of atomic kinetics models and to the analysis of x-ray transmission spectroscopy will be shown

  6. The Spectral Emission Characteristics of Laser Induced Plasma on Tea Samples

    International Nuclear Information System (INIS)

    Zheng Peichao; Shi Minjie; Wang Jinmei; Liu Hongdi

    2015-01-01

    Laser induced breakdown spectroscopy (LIBS) provides a useful technique for food security as well as determining nutrition contents. In this paper, optical emission studies of laser induced plasma on commercial tea samples were carried out. The spectral intensities of Mg, Mn, Ca, Al, C and CN vibration bands varying with laser energy and the detection delay time of an intensified charge coupled device were studied. In addition, the relative concentrations of six microelements, i.e., Mg, Mn, Ca, Al, Na and K, were analyzed semi-quantitatively as well as H, for four kinds of tea samples. Moreover, the plasma parameters were explored, including electron temperature and electron number density. The electron temperature and electron number density were around 11000 K and 10 17 cm −3 , respectively. The results show that it is reasonable to consider the LIBS technique as a new method for analyzing the compositions of tea leaf samples. (paper)

  7. Quality assurance in the elemental analysis of foods by inductively coupled plasma spectroscopy

    Science.gov (United States)

    Wolnik, Karen A.; Fricke, Fred L.; Gaston, Cynthia M.

    The U.S. Food and Drug Administration, Department of Agriculture, and Environmental Protection Agency are conducting a joint study of elemental background levels in raw agricultural crops. More than three thousand samples have been analysed for 12 elements by inductively coupled plasma-optical emission spectroscopy (ICP). A quality assurance program has been designed to assure the accuracy and reliability of these analyses. The development and rationale for this program are described and illustrated by analytical results.

  8. Space-resolved vacuum ultra-violet spectroscopy on T.F.R. Tokamak plasmas

    International Nuclear Information System (INIS)

    1978-01-01

    Results are reported of space-resolved vacuum-ultraviolet spectroscopy (between 100 A and 2000A) on T.F.R. Tokamak plasmas and examples are given of profiles for both heavy and light impurity ions. The experimental method and the associated uncertainties and problems are stressed. The great importance of numerical calculations in the interpretation of the impurity profiles is pointed out. (author)

  9. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  10. Extreme ultraviolet-induced photoionized plasmas

    Science.gov (United States)

    Bartnik, Andrzej; Wachulak, Przemyslaw; Fiedorowicz, Henryk; Fok, Tomasz; Jarocki, Roman; Szczurek, Miroslaw

    2014-05-01

    In this work photoionized plasmas were created by irradiation of He or Ne gases with a focused extreme ultraviolet (EUV) beam from one of two laser-plasma sources employing Nd:YAG laser systems. The first of them was a 10 Hz laser-plasma EUV source, based on a double-stream gas-puff target, irradiated with a 3 ns per 0.8 J laser pulse. EUV radiation in this case was focused using a gold-plated grazing incidence ellipsoidal collector. The second source was based on a 10 ns per 10 J per 10 Hz laser system. In this case EUV radiation was focused using a gold-plated grazing incidence multifoil collector. Gases were injected into the interaction region, perpendicularly to an optical axis of the irradiation system, using an auxiliary gas puff valve. Spectral measurements in the EUV range were performed. In all cases the most intense emission lines were assigned to singly charged ions. The other emission lines belong to atoms or doubly charged ions.

  11. Laboratory feasibility study of fusion vessel inner wall chemical analysis by Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Fantoni, Roberta; Maddaluno, Giorgio

    2012-01-01

    Graphical abstract: Laser-Induced-Breakdown-Spectroscopy was used for the determination of the atomic composition of multilayered samples simulating the tiles of plasma facing components in the next generation fusion machines. Highlights: ► Description and characterization of an LIBS set-up for diagnostics in fusion machines. ► Identification of atomic composition of multilayered tiles simulating plasma facing components. ► Qualitative applicability of the Calibration Free method for quantitative analysis. ► Feasibility of large scale application in the processes of control during the tiles fabrication. ► Feasibility of erosion monitoring during operation of fusion machines. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is nowadays a well established tool for qualitative, semi-quantitative and quantitative analyses of surfaces, with micro-destructive characteristics and capabilities for stratigraphy. LIBS is an appealing technique compared with many other types of elemental analysis thanks to the set up versatility facilitating non-invasive and remote analyses, as well as suitability to diagnostics in harsh environments. In this work, LIBS capabilities were used for the determination of the atomic composition of multilayered samples simulating the tiles of plasma facing components in the next generation fusion machines such as ITER. A new experimental setup was designed and realized in order to optimize the characteristics of an LIBS system working at low pressure and remotely, as it should be for an in situ system to be applied in monitoring the erosion and redeposition phenomena occurring on the inner walls of a fusion device. The effects of time delay and laser fluence on LIBS sensitivity at reduced pressure were examined, looking for operational conditions suitable to analytical applications. The quantitative analysis of some atomic species in the superficial layer has been carried out using a Calibration Free (CF) approach in the time

  12. Spectral Characterization of Laser Induced Plasma from Titanium Dioxide

    International Nuclear Information System (INIS)

    Dann, V J; Mathew, M V; Nampoori, V P N; Vallabhan, C P G; Nandakumaran, V M; Radhakrishnan, P

    2007-01-01

    Optical emission from TiO 2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity

  13. Coherent structures induced by dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Zhang, Xin; Li, Huaxing; Choi, Kwing So; Song, Longfei

    2017-11-01

    The structures of a flow field induced by a plasma actuator were investigated experimentally in quiescent air using high-speed Particle Image Velocimetry (PIV) technology. The motivation behind was to figure out the flow control mechanism of the plasma technique. A symmetrical Dielectric Barrier Discharge (DBD) plasma actuator was mounted on the suction side of the SC (2)-0714 supercritical airfoil. The results demonstrated that the plasma jet had some coherent structures in the separated shear layer and these structures were linked to a dominant frequency of f0 = 39 Hz when the peak-to-peak voltage of plasma actuator was 9.8 kV. The high speed PIV measurement of the induced airflow suggested that the plasma actuator could excite the flow instabilities which lead to production of the roll-up vortex. Analysis of transient results indicated that the roll-up vortices had the process of formation, movement, merging and breakdown. This could promote the entrainment effect of plasma actuator between the outside airflow and boundary layer flow, which is very important for flow control applications.

  14. Laser-Induced Fluorescence for Sheath Characterization in Low-Density Argon Plasmas

    Science.gov (United States)

    Englesbe, Alexander C.; Sawlani, Kapil U.; Foster, John E.

    2013-09-01

    Laser-induced fluorescence (LIF) spectroscopy has become a standard non-intrusive diagnostic technique for determining the energies and concentrations of ion and neutral species in plasmas. A limitation of this technique, however, is the small signal-to-noise ratio incurred when interrogating relatively low-density plasmas. This problem is exacerbated when examining regions such as the sheath at an electrode immersed in the plasma. If ion energetics within the sheath are of interest, then in principle thicker sheaths are desirable in that for a given laser spot size, the potential structure can be inferred with high resolution. We present a methodology for accomplishing LIF in the sheath of a low-temperature argon plasma with an electron density of the order 107 -108 cm-3. This diagnostic is being developed for the purpose of studying the effect of secondary electron emission on sheath potential behavior in low-density plasmas. The plasma in this study is produced in a multipole ring-cusp ion source. A tunable diode laser excites the Ar II transition at 668.61 nm, which fluoresces at 442.72 nm. The LIF measurements of the ion density are corroborated with electrostatic probes at fixed locations, and the ion velocity distribution within the sheath is determined. Work supported by AFOSR Grant No. FA9550-09-1-0695.

  15. Atomic and ionic density measurement by laser absorption spectroscopy of magnetized or non-magnetized plasmas

    International Nuclear Information System (INIS)

    Le Gourrierec, P.

    1989-11-01

    Laser absorption spectroscopy is an appreciated diagnostic in plasma physics to measure atomic and ionic densities. We used it here more specifically on metallic plasmas. Firstly, a uranium plasma was created in a hollow cathode. 17 levels of U.I and U.II (12 for U.I and 5 for U.II) are measured by this method. The results are compared with the calculated levels of two models (collisional-radiative and LTE). Secondly, the theory of absorption in presence of a magnetic field is recalled and checked. Then, low-density magnetized plasma produced on our ERIC experiment (acronym for Experiment of Resonance Ionic Cyclotron), have been diagnosed successfully. The use of this technique on a low density plasma has not yet been published to our knowledge. The transverse temperature and the density of a metastable atomic level of a barium plasma has been derived. The evolution of a metastable ionic level of this element is studied in terms of two source parameters (furnace temperature and injected hyperfrequency power) [fr

  16. Passive MHD Spectroscopy for Enabling Magnetic Reconstructions on Spherical Tokamak Plasmas at General Fusion Inc

    Science.gov (United States)

    O'Shea, Peter; Laberge, Michel; Mossman, Alex; Reynolds, Meritt

    2017-10-01

    Magnetic reconstructions on lab based plasma injectors at General Fusion relies heavily on edge magnetic (``Bdot'') probes. On plasma experiments built for field compression (PCS) tests, the number and locations of Bdot probes is limited by mechanical constraints. Additional information about the q profiles near the core in our Spector plasmas is obtained using passive MHD spectroscopy. The coaxial helicity injection (CHI) formation process naturally generates hollow current profiles and reversed shear early in each discharge. Central Ohmic heating naturally peaks the current profiles as our plasmas evolve in time, simultaneously reducing the core safety factor, q(0), and reverse shear. As the central, non-monotonic q-profile crosses rational flux surfaces, we observe transient magnetic reconnection events (MRE's) due to the double tearing mode. Modal analysis allows us to infer the q surfaces involved in each burst. The parametric dependence of the timing of MRE's allows us to estimate the continuous time evolution of the core q profile. Combining core MHD spectroscopy with edge magnetic probe measurements greatly enhances our certainty of the overall q profile.

  17. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  18. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Science.gov (United States)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  19. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  20. Selective Surface Sintering Using a Laser-Induced Breakdown Spectroscopy System

    Directory of Open Access Journals (Sweden)

    H. Jull

    2017-01-01

    Full Text Available Titanium metal injection molding allows creation of complex metal parts that are lightweight and biocompatible with reduced cost in comparison with machining titanium. Laser-induced breakdown spectroscopy (LIBS can be used to create plasma on the surface of a sample to analyze its elemental composition. Repetitive ablation on the same site has been shown to create differences from the original sample. This study investigates the potential of LIBS for selective surface sintering of injection-molded titanium metal. The temperature created throughout the LIBS process on the surface of the injection-molded titanium is high enough to fuse together the titanium particles. Using the ratio of the Ti II 282.81 nm and the C I 247.86 nm lines, the effectiveness of repetitive plasma formation to produce sintering can be monitored during the process. Energy-dispersive X-ray spectroscopy on the ablation craters confirms sintering through the reduction in carbon from 20.29 Wt.% to 2.13 Wt.%. Scanning electron microscope images confirm sintering. A conventional LIBS system, with a fixed distance, investigated laser parameters on injection-molded and injection-sintered titanium. To prove the feasibility of using this technique on a production line, a second LIBS system, with an autofocus and 3-axis translation stage, successfully sintered a sample with a nonplanar surface.

  1. Spectroscopy of strontium Rydberg states using electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Mauger, S; Millen, J; Jones, M P A

    2007-01-01

    We report on the all-optical detection of Rydberg states in an effusive atomic beam of strontium atoms using electromagnetically induced transparency (EIT). Using narrow-linewidth CW lasers we obtain an EIT linewidth of 5 MHz. To illustrate the high spectroscopic resolution offered by this method, we have measured isotope shifts of the 5s18d 1 D 2 and 5s19s 1 S 0 Rydberg states. This technique could be applied to high-resolution, non-destructive measurements of ultra-cold Rydberg gases and plasmas. (fast track communication)

  2. Measurements of egg shell plasma parameters using laser-induced ...

    Indian Academy of Sciences (India)

    using laser-induced breakdown spectroscopy. WENFENG LUO1,∗, XIAOXIA ZHAO2, SHUYUAN LV1 and. HAIYAN ZHU1. 1School of Electronic Engineering, Xi'an University of Posts and Telecommunications,. Xi'an, Shaanxi 710121, China. 2School of Physics and Mechanical and Electronic Engineering, Xi'an University,.

  3. [Classification of results of studying blood plasma with laser correlation spectroscopy based on semiotics of preclinical and clinical states].

    Science.gov (United States)

    Ternovoĭ, K S; Kryzhanovskiĭ, G N; Musiĭchuk, Iu I; Noskin, L A; Klopov, N V; Noskin, V A; Starodub, N F

    1998-01-01

    The usage of laser correlation spectroscopy for verification of preclinical and clinical states is substantiated. Developed "semiotic" classifier for solving the problems of preclinical and clinical states is presented. The substantiation of biological algorithms as well as the mathematical support and software for the proposed classifier for the data of laser correlation spectroscopy of blood plasma are presented.

  4. Optical emission and mass spectroscopy of plasma processes in reactive DC pulsed magnetron sputtering of aluminium oxide

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Bulíř, Jiří; Pokorný, Petr; Bočan, Jiří; Fitl, Přemysl; Lančok, Ján; Musil, Jindřich

    2010-01-01

    Roč. 12, č. 3 (2010), 697-700 ISSN 1454-4164 R&D Projects: GA AV ČR IAA100100718; GA AV ČR KAN400100653; GA ČR GP202/09/P324 Institutional research plan: CEZ:AV0Z10100522 Keywords : reactive magnetron sputtering * alumina * plasma spectroscopy * mass spectroscopy * optical emission spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.412, year: 2010

  5. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    Science.gov (United States)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  6. Investigation of plasma etch induced damage in compound semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Shul, R.J.; Lovejoy, M.L.; Hetherington, D.L.; Rieger, D.J.; Vawter, G.A.; Klem, J.F. [Sandia National Labs., Albuquerque, NM (United States); Melloch, M.R. [Purdue Univ., Lafayette, IN (United States). School of Electrical Engineering

    1993-11-01

    We have investigated the electrical performance of mesa-isolated GaAs pn-junction diodes to determine the plasma-induced damage effects from reactive ion and reactive ion beam etching. A variety of plasma chemistries (SiCl{sub 4}, BCl{sub 3}, BCl{sub 3}/Cl{sub 2}, and Cl{sub 2}) and ion energies ranging from 100 to 400 eV were studied. We have observed that many of the RIE BCl{sub 3}/Cl{sub 2} plasmas and RIBE Cl{sub 2} plasmas yield diodes with low reverse-bias currents that are comparable to the electrical characteristics of wet-chemical-etched devices. The reverse-bias leakage currents are independent of surface morphology and sidewall profiles.

  7. A Laser Induced Breakdown Spectroscopy application based on Local Thermodynamic Equilibrium assumption for the elemental analysis of alexandrite gemstone and copper-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari (Italy); Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Dell' Aglio, M. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Gaudiuso, R., E-mail: rosalba.gaudiuso@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Santagata, A. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Potenza, Via S. Loja, Zona Ind., 85050 Tito Scalo (PZ) (Italy); Senesi, G.S. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Rossi, M.; Ghiara, M.R. [Department of Earth Sciences, University of Naples ' Federico II' , Via Mezzocannone 8, 80134 Naples (Italy); Capitelli, F. [Institute of Crystallography - CNR, Via Salaria Km 29.300, 00015 Monterotondo (Roma) (Italy); De Pascale, O. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy)

    2012-04-04

    Graphical abstract: Self-calibrated analytical techniques based on the approximation of Local Thermodynamic Equilibrium (LTE) have been employed for the analysis of gemstones and copper-based alloys by LIBS (Laser Induced Breakdown Spectroscopy), with a special focus on LTE conditions in laser induced plasmas. Highlights: Black-Right-Pointing-Pointer Discussion of Local Thermodynamic Equilibrium (LTE) condition in laser-induced plasmas. Black-Right-Pointing-Pointer LIBS enables elemental analysis with self-calibrated LTE-based methods. Black-Right-Pointing-Pointer Be detection in alexandrite gemstone is made possible by LIBS. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is an appealing technique to study laser-induced plasmas (LIPs), both from the basic diagnostics point of view and for analytical applications. LIPs are complex dynamic systems, expanding at supersonic velocities and undergoing a transition between different plasma regimes. If the Local Thermodynamic Equilibrium (LTE) condition is valid for such plasmas, several analytical methods can be employed and fast quantitative analyses can be performed on a variety of samples. In the present paper, a discussion about LTE is carried out and an innovative application to the analysis of the alexandrite gemstone is presented. In addition, a study about the influence of plasma parameters on the performance of LTE-based methods is reported for bronze and brass targets.

  8. A Laser Induced Breakdown Spectroscopy application based on Local Thermodynamic Equilibrium assumption for the elemental analysis of alexandrite gemstone and copper-based alloys

    International Nuclear Information System (INIS)

    De Giacomo, A.; Dell’Aglio, M.; Gaudiuso, R.; Santagata, A.; Senesi, G.S.; Rossi, M.; Ghiara, M.R.; Capitelli, F.; De Pascale, O.

    2012-01-01

    Graphical abstract: Self-calibrated analytical techniques based on the approximation of Local Thermodynamic Equilibrium (LTE) have been employed for the analysis of gemstones and copper-based alloys by LIBS (Laser Induced Breakdown Spectroscopy), with a special focus on LTE conditions in laser induced plasmas. Highlights: ► Discussion of Local Thermodynamic Equilibrium (LTE) condition in laser-induced plasmas. ► LIBS enables elemental analysis with self-calibrated LTE-based methods. ► Be detection in alexandrite gemstone is made possible by LIBS. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is an appealing technique to study laser-induced plasmas (LIPs), both from the basic diagnostics point of view and for analytical applications. LIPs are complex dynamic systems, expanding at supersonic velocities and undergoing a transition between different plasma regimes. If the Local Thermodynamic Equilibrium (LTE) condition is valid for such plasmas, several analytical methods can be employed and fast quantitative analyses can be performed on a variety of samples. In the present paper, a discussion about LTE is carried out and an innovative application to the analysis of the alexandrite gemstone is presented. In addition, a study about the influence of plasma parameters on the performance of LTE-based methods is reported for bronze and brass targets.

  9. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  10. Calibration-Free Laser-Induced Breakdown Spectroscopy: State of the art

    Science.gov (United States)

    Tognoni, E.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.

    2010-01-01

    The aim of this paper is offering a critical review of Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS), the approach of multi-elemental quantitative analysis of LIBS spectra, based on the measurement of line intensities and plasma properties (plasma electron density and temperature) and on the assumption of a Boltzmann population of excited levels, which does not require the use of calibration curves or matrix-matched standards. The first part of this review focuses on the applications of the CF-LIBS method. Quantitative results reported in the literature, obtained in the analysis of various materials and in a wide range of experimental conditions, are summarized, with a special emphasis on the departure from nominal composition values. The second part is a discussion of the simplifying assumptions which lie at the basis of the CF-LIBS algorithm (stoichiometric ablation and complete atomization, thermal equilibrium, homogeneous plasma, thin radiation, detection of all elements). The inspection of the literature suggests that the CF-LIBS method is more accurate in analyzing metallic alloys rather than dielectrics. However, the full exploitation of the method seems to be still far to come, especially for the lack of a complete characterization of the effects of experimental constraints. However, some general directions can be suggested to help the analyst in designing LIBS measurements in a way which is more suited for CF-LIBS analysis.

  11. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection.

    Science.gov (United States)

    Jinno, Masafumi; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu

    2016-09-01

    This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Comparison of Electron Spin Resonance Spectroscopy and Inductively-Coupled Plasma Optical Emission Spectroscopy for Biodistribution Analysis of Iron-Oxide Nanoparticles

    OpenAIRE

    Chertok, Beata; Cole, Adam J.; David, Allan E.; Yang, Victor C.

    2010-01-01

    Magnetic nanoparticles (MNP) have been widely studied for use in targeted drug delivery. Analysis of MNP biodistribution is essential to evaluating the success of targeting strategies and the potential for off-target toxicity. This work compared the applicability of inductively-coupled plasma optical emission spectroscopy (ICP-OES) and electron spin resonance (ESR) spectroscopy in assessing MNP biodistribution. Biodistribution was evaluated in 9L-glioma bearing rats administered with MNP (12-...

  13. Plasma erosion rate diagnostics using laser-induced fluorescence

    Science.gov (United States)

    Gaeta, C. J.; Turley, R. S.; Matossian, J. N.; Beattie, J. R.; Williamson, W. S.

    1992-01-01

    An optical technique for measuring the sputtering rate of a molybdenum surface immersed in a xenon plasma has been developed and demonstrated. This approach, which may be useful in real-time wear diagnostics for ion thrusters, relies on laser-induced fluorescence to determine the density of sputtered molybdenum atoms.

  14. Real-time imaging, spectroscopy, and structural investigation of cathodic plasma electrolytic oxidation of molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs; Tadić, Nenad; Šišović, Nikola M.; Vasilić, Rastko [Faculty of Physics, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-06-21

    In this paper, the results of the investigation of cathodic plasma electrolytic oxidation (CPEO) of molybdenum at 160 V in a mixed solution of borax, water, and ethylene glycol are presented. Real-time imaging and optical emission spectroscopy were used for the characterization of the CPEO. During the process, vapor envelope is formed around the cathode and strong electric field within the envelope caused the generation of plasma discharges. The spectral line shape analysis of hydrogen Balmer line H{sub β} (486.13 nm) shows that plasma discharges are characterized by the electron number density of about 1.4 × 10{sup 21 }m{sup −3}. The electron temperature of 15 000 K was estimated by measuring molybdenum atomic lines intensity. Surface morphology, chemical, and phase composition of coatings formed by CPEO were characterized by scanning electron microscopy with energy dispersive x-ray spectroscopy and x-ray diffraction. The elemental components of CPEO coatings are Mo and O and the predominant crystalline form is MoO{sub 3}.

  15. Plasma Spectroscopy CubeSat: A Demonstration of On-Orbit Electric Propulsion System Diagnostics

    Science.gov (United States)

    Hudson, J.; Lemmer, K.

    New sensing assets are needed to characterize and assess electric propulsion systems in the space environment. Recent research has shown that visible and near-infrared spectral measurements of electric propulsion plasma plume emissions can be used to determine electron temperature, density, and propellant type. From these measurements, analysts can assess thruster health and diagnose causes of anomalous behavior. Propellant signature detection can also be used to identify thruster type. Spectral measurements taken by ground-based instruments are limited by transmission losses through the atmosphere and by the viewing angles and availability of telescopes. A new CubeSat-based optical emission spectroscopy (OES) system is proposed to perform electric propulsion system diagnostics from a low-cost, space-based platform. The Plasma-Spectroscopy (P-Spec) CubeSat is currently in development for a first flight test. P-Spec’s OES payload will collect inter-satellite spectral measurements of the plasma plume from a hollow cathode with xenon propellant over a range of distances up to 1 km. An overview of the spacecraft design and mission plan are presented, and the use of OES spectral measurements for thruster health diagnostics and Space Situational Awareness applications are discussed.

  16. In situ deuterium inventory measurements of a-C:D layers on tungsten in TEXTOR by laser induced ablation spectroscopy

    International Nuclear Information System (INIS)

    Gierse, N; Brezinsek, S; Coenen, J W; Huber, A; Laengner, M; Möller, S; Nonhoff, M; Philipps, V; Pospieszczyk, A; Schweer, B; Sergienko, G; Xiao, Q; Zlobinski, M; Samm, U; Giesen, T F

    2014-01-01

    Laser induced ablation spectroscopy (LIAS) is a diagnostic to provide temporally and spatially resolved in situ measurements of tritium retention and material migration in order to characterize the status of the first wall in future fusion devices. In LIAS, a ns-laser pulse ablates the first nanometres of the first wall plasma-facing components into the plasma edge. The resulting line radiation by plasma excitation is observed by spectroscopy. In the case of the full ionizing plasma and with knowledge of appropriate photon efficiencies for the corresponding line emission the amount of ablated material can be measured in situ. We present the photon efficiency for the deuterium Balmer α-line resulting from ablation in TEXTOR by performing LIAS on amorphous hydrocarbon (a-C:D) layers deposited on tungsten substrate of thicknesses between 0.1 and 1.1 μm. An experimental inverse photon efficiency of [(D/(XB))] D α (EXP) a-C:D→ LIAS D =75.9±23.4 was determined. This value is a factor 5 larger than predicted values from the ADAS database for atomic injection of deuterium under TEXTOR plasma edge conditions and about twice as high, assuming normal wall recycling and release of molecular deuterium and break-up of D 2 via the molecular ion which is usually observed at the high temperature tokamak edge (T e  > 30 eV). (paper)

  17. Geographical analysis of “conflict minerals” utilizing laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Hark, Richard R.; Remus, Jeremiah J.; East, Lucille J.; Harmon, Russell S.; Wise, Michael A.; Tansi, Benjamin M.; Shughrue, Katrina M.; Dunsin, Kehinde S.; Liu, Chunyi

    2012-01-01

    Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different geographic sources for a mineral because the LIBS plasma emission spectrum provides information on the chemical composition (i.e. geochemical fingerprint) of a geomaterial. An application of this approach with potentially significant commercial and political importance is the spectral fingerprinting of “conflict minerals” such as columbite–tantalite (“coltan”). Following a successful pilot study of a columbite–tantalite suite from North America, a more geographically diverse set of 57 samples from 37 locations around the world was analyzed using a commercially available LIBS system. The LIBS spectra were analyzed using advanced multivariate statistical signal processing techniques. Partial least squares discriminant analysis (PLSDA) resulted in a correct place-level geographic classification at success rates above 90%. The possible role of rare-earth elements (REEs) as a factor contributing to the high levels of sample discrimination was explored. These results provide additional evidence that LIBS has the potential to be utilized in the field as a real-time screening tool to discriminate between columbite–tantalite ores of different provenance. - Highlights: ► Analysis of columbite–tantalite using laser-induced breakdown spectroscopy (LIBS) ► Chemometric analysis (PLSDA) affords 90–100% correct sample classification. ► Possible role of rare-earth elements in the high level of sample discrimination

  18. Geographical analysis of 'conflict minerals' utilizing laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hark, Richard R., E-mail: hark@juniata.edu [Department of Chemistry, Juniata College, Huntingdon, PA 16652 (United States); Remus, Jeremiah J. [Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699 (United States); East, Lucille J. [Applied Spectra, Inc., Fremont, CA 94538 (United States); Harmon, Russell S. [Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695 (United States); Wise, Michael A. [Department of Mineral Sciences, Smithsonian Institution, Washington, DC 20013 (United States); Tansi, Benjamin M.; Shughrue, Katrina M. [Department of Chemistry, Juniata College, Huntingdon, PA 16652 (United States); Dunsin, Kehinde S. [Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699 (United States); Liu, Chunyi [Applied Spectra, Inc., Fremont, CA 94538 (United States)

    2012-08-15

    Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different geographic sources for a mineral because the LIBS plasma emission spectrum provides information on the chemical composition (i.e. geochemical fingerprint) of a geomaterial. An application of this approach with potentially significant commercial and political importance is the spectral fingerprinting of 'conflict minerals' such as columbite-tantalite ('coltan'). Following a successful pilot study of a columbite-tantalite suite from North America, a more geographically diverse set of 57 samples from 37 locations around the world was analyzed using a commercially available LIBS system. The LIBS spectra were analyzed using advanced multivariate statistical signal processing techniques. Partial least squares discriminant analysis (PLSDA) resulted in a correct place-level geographic classification at success rates above 90%. The possible role of rare-earth elements (REEs) as a factor contributing to the high levels of sample discrimination was explored. These results provide additional evidence that LIBS has the potential to be utilized in the field as a real-time screening tool to discriminate between columbite-tantalite ores of different provenance. - Highlights: Black-Right-Pointing-Pointer Analysis of columbite-tantalite using laser-induced breakdown spectroscopy (LIBS) Black-Right-Pointing-Pointer Chemometric analysis (PLSDA) affords 90-100% correct sample classification. Black-Right-Pointing-Pointer Possible role of rare-earth elements in the high level of sample discrimination.

  19. Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle's Mapping and Quantification in Organ Tissue

    Science.gov (United States)

    Sancey, Lucie; Motto-Ros, Vincent; Kotb, Shady; Wang, Xiaochun; Lux, François; Panczer, Gérard; Yu, Jin; Tillement, Olivier

    2014-01-01

    Emission spectroscopy of laser-induced plasma was applied to elemental analysis of biological samples. Laser-induced breakdown spectroscopy (LIBS) performed on thin sections of rodent tissues: kidneys and tumor, allows the detection of inorganic elements such as (i) Na, Ca, Cu, Mg, P, and Fe, naturally present in the body and (ii) Si and Gd, detected after the injection of gadolinium-based nanoparticles. The animals were euthanized 1 to 24 hr after intravenous injection of particles. A two-dimensional scan of the sample, performed using a motorized micrometric 3D-stage, allowed the infrared laser beam exploring the surface with a lateral resolution less than 100 μm. Quantitative chemical images of Gd element inside the organ were obtained with sub-mM sensitivity. LIBS offers a simple and robust method to study the distribution of inorganic materials without any specific labeling. Moreover, the compatibility of the setup with standard optical microscopy emphasizes its potential to provide multiple images of the same biological tissue with different types of response: elemental, molecular, or cellular. PMID:24962015

  20. Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan; Li, Yuandong; Li, Ying [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China); Wang, Yangfan; Wang, Shi; Bao, Zhenmin [Life Science College, Ocean University of China, Qingdao 266003 (China); Zheng, Ronger, E-mail: rzheng@ouc.edu.cn [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China)

    2015-08-01

    The seashell has been studied as a proxy for the marine researches since it is the biomineralization product recording the growth development and the ocean ecosystem evolution. In this work a hybrid of Laser Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy was introduced to the composition analysis of seashell (scallop, bivalve, Zhikong). Without any sample treatment, the compositional distribution of the shell was obtained using LIBS for the element detection and Raman for the molecule recognition respectively. The elements Ca, K, Li, Mg, Mn and Sr were recognized by LIBS; the molecule carotene and carbonate were identified with Raman. It was found that the LIBS detection result was more related to the shell growth than the detection result of Raman. The obtained result suggested the shell growth might be developing in both horizontal and vertical directions. It was indicated that the LIBS–Raman combination could be an alternative way for the shell researches. - Highlights: • A LIBS–Raman hybrid system was developed. • A seashell has been analyzed for the elementary and molecular distribution with a system. • The shell growth development was studied on the surface and in the depth.

  1. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    Science.gov (United States)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

  2. Variations of helicon wave induced radial plasma transport in different experimental conditions

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-08-01

    Variations of the helicon wave induced radial plasma transport are presented in dependence on values of the plasma radius, magnetostatic field, plasma density, frequency of the helicon wave and on the ion charge. 22 refs., 14 figs

  3. Carbon determination in carbon-manganese steels under atmospheric conditions by Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Labutin, Timur A; Zaytsev, Sergey M; Popov, Andrey M; Zorov, Nikita B

    2014-09-22

    The most sensitive lines of carbon, used nowadays for its determination in steels by laser-induced-breakdown spectroscopy (LIBS), are at vacuum UV and, thereby, LIBS potential is significantly reduced. We suggested the use of the C I 833.51 nm line for carbon determination in low-alloy steels (c(C)~0.186-1.33 wt.%) in air. Double-pulse LIBS with the collinear scheme was performed for maximal enhancement of a carbon emission signal without substantial complication of experimental setup. Since this line is strongly broadened in laser plasma, it overlapped with the closest iron lines greatly. We implemented a PCR method for the construction of a multivariate calibration model under spectral interferences. The model provided a RMSECV = 0.045 wt.%. The predicted carbon content in the rail templet was in an agreement with the reference value obtained by a combustion analyzer within the relative error of 6%.

  4. Procedure for Matrix Effect Reduction in Metal Analysis Using Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Al-Eshaikh, M. A.

    2017-09-01

    A procedure for matrix effect reduction is proposed to enhance the precision of quantitative analysis of metal alloys using laser-induced breakdown spectroscopy (LIBS). This procedure is based on a number of successive steps in order to correct the signal fluctuations caused by plasma interaction and the matrix effect. The first step is the selection of optimum parameter settings of the detection system, such as laser power, delay time, and focal distance. The second step is the estimation of the absolute or relative values of impurities on the basis of the internal standard calibration. The third step is the analysis of the metal basis of the alloy used as an internal standard, which requires spectrum averaging, whole integral spectrum normalization, and self-absorption correction. Three sets of metal-based alloys (aluminum, steel, and copper) are used in this investigation as reference standards for calibration and validation. Successive improvements of the quality of calibration curves are observed during the proposed procedure.

  5. Multi-elemental mapping of a speleothem using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Q.L.; Motto-Ros, V. [Universite de Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM F-69622, Lyon (France); Lei, W.Q. [Universite de Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM F-69622, Lyon (France); State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China); Boueri, M. [Universite de Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM F-69622, Lyon (France); Zheng, L.J.; Zeng, H.P. [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China); Bar-Matthews, M.; Ayalon, A. [Geological Survey of Israel, 30 Malkhei Israel St., Jerusalem (Israel); Panczer, G. [Universite de Lyon, Universite Lyon 1, Villeurbanne, CNRS UMR 5620, LPCML F-69622, Lyon (France); Yu, J., E-mail: jin.yu@lasim.univ-lyon1.f [Universite de Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM F-69622, Lyon (France)

    2010-08-15

    Speleothems represent an important record of the paleoclimate, and more generally past environmental changes thanks to their laminar structure which is related to variations in rainfall and vegetation throughout the seasons and to their elemental as well as structural compositions which are sensitive to climatic and environmental conditions during their growth. Studies of their composition, especially those with spatial resolution, reveal rich information for paleoclimatology. In this paper, we demonstrate that laser-induced breakdown spectroscopy (LIBS) provides a suitable tool for elemental analysis and especially for 2-dimensional elemental mapping of speleothems. Main, minor, as well as trace elements can be analyzed with this technique. The temporal evolution of the induced plasma is first studied in order to determine a suitable detection window for emission spectrum recording following the impact of the laser pulse on the sample. The matrix effect is then evaluated with a scan on the sample surface by measuring the electron density and the temperature of the plasmas at different positions of the analyzed surface. Concentration mapping is performed for minor and trace elements such as Na, Mg, Al, Si, K, Fe and Sr, by measuring relative variations of line emission intensities from these elements. Finally, correlations in concentration among detected elements are determined. Groups of correlated elements can be attributed to different mineralogical phases.

  6. Dual pulse laser induced breakdown spectroscopy on Cu concentration in CuSO4 solution with liquid jet

    Science.gov (United States)

    Zhang, Yawei; Gao, Xun; Zhu, Hongbo; Han, Jinliang

    2017-10-01

    Laser induced breakdown spectroscopy (LIBS) is a promising technique, analyzing spectrum of plasma, to detect elements of solid, liquid or gaseous samples. It has many advantages, including in-situ and online detection, remote analysis, non-preparation of samples, and simultaneously multi-elements detection. Aiming at detecting detrimental elements in the polluted river and water, in this paper, collinear dual-pulse (DP) Laser-induced breakdown spectroscopy (LIBS) with liquid jet was employed to analyze emission spectrum of Cu element in the CuSO4 solution. We investigated the effect of laser pulse energies ratio and time delay between two lasers on signal intensity, which were simply given by theoretical model in laser-induced plasma for explaining various behaviors of emission spectrum. It was inferred that the maximum signal enhancement of DP-LIBS experiment was roughly 4.5 times greater than that of SP case. The limit of detection (LOD) of Cu using DP-LIBS was approximately 15 times lower than that of SP-LIBS. Results of this research indicate that collinear DP-LIBS is an effective approach to improve the plasma emission intensity and reduce the value of LOD, the application of which can be considered into the environmental problem of the water pollution.

  7. Changes in the biomechanical properties of a single cell induced by nonthermal atmospheric pressure micro-dielectric barrier discharge plasma.

    Science.gov (United States)

    Choi, Hyeongwon; Choi, Eun Ha; Kim, Kyung Sook

    2017-10-01

    Mechanical properties of a single cell are closely related to the fate and functions of the cell. Changes in mechanical properties may cause diseases or cell apoptosis. Selective cytotoxic effects of nonthermal atmospheric pressure micro-dielectric barrier discharge (DBD) plasma have been demonstrated on cancer cells. In this work, changes in the mechanical properties of a single cell induced by nonthermal atmospheric pressure micro-DBD plasma were investigated using atomic force microscopy (AFM). Two cervical cancer cell lines (HeLa and SiHa) and normal human fibroblast cells (HFBs) were exposed to micro-DBD plasma for various exposure times. The elasticity of a single cell was determined by force-distance curve measurement using AFM. Young's modulus was decreased by plasma treatment for all cells. The Young's modulus of plasma-treated HeLa cells was decreased by 75% compared to nontreated HeLa cells. In SiHa cells and HFBs, elasticity was decreased slightly. Chemical changes induced by the plasma treatment, which were observed by Raman spectroscopy, were also significant in HeLa cells compared to SiHa cells and HFBs. These results suggested that the molecular changes induced by micro-DBD plasma were related to cell mechanical changes. © 2017 Wiley Periodicals, Inc.

  8. Analysis of fresco by laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Caneve, L., E-mail: luisa.caneve@enea.i [ENEA, CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Diamanti, A. [Universita ' Tor Vergata' , Dipartimento di Scienze e Tecnologie Chimiche, via della Ricerca Scientifica 1, 00133 Roma (Italy); Grimaldi, F. [ENEA, CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Palleschi, G. [Universita ' Tor Vergata' , Dipartimento di Scienze e Tecnologie Chimiche, via della Ricerca Scientifica 1, 00133 Roma (Italy); Spizzichino, V. [ENEA, CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Valentini, F. [Universita ' Tor Vergata' , Dipartimento di Scienze e Tecnologie Chimiche, via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2010-08-15

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  9. Analysis of fresco by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Caneve, L.; Diamanti, A.; Grimaldi, F.; Palleschi, G.; Spizzichino, V.; Valentini, F.

    2010-01-01

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  10. Detection of early caries by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  11. Fast differentiation of SIRS and sepsis from blood plasma of ICU patients using Raman spectroscopy.

    Science.gov (United States)

    Neugebauer, Ute; Trenkmann, Sabine; Bocklitz, Thomas; Schmerler, Diana; Kiehntopf, Michael; Popp, Jürgen

    2014-04-01

    Currently, there is no biomarker that can reliable distinguish between infectious and non-infectious systemic inflammatory response syndrome (SIRS). However, such a biomarker would be of utmost importance for early identification and stratification of patients at risk to initiate timely and appropriate antibiotic treatment. Within this proof of principle study, the high potential of Raman spectroscopy for the fast differentiation of non-infectious SIRS and sepsis is demonstrated. Blood plasma collected from 70 patients from the intensive care unit (31 patients with sepsis and 39 patients classified with SIRS without infection) was analyzed by means of Raman spectroscopy. A PCA-LDA based classification model was trained with Raman spectra from test samples and yielded for sepsis a sensitivity of 1.0 and specificity of 0.82. These results have been confirmed with an independent dataset (prediction accuracy 80%). Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Plasma extraction by centrifugo-pneumatically induced gating of flow

    International Nuclear Information System (INIS)

    Burger, Robert; Ducrée, Jens; Reis, Nuno; Da Fonseca, João Garcia

    2013-01-01

    We present a novel valving mechanism to implement plasma extraction from whole blood on a centrifugal microfluidic ‘lab-on-a-disc’ platform. The new scheme is based on pressure-induced deflection of a liquid membrane which gates the centrifugally driven flow through a microfluidic structure. Compared to conventional concepts such as capillary burst valves, siphons or sacrificial materials, the valving structure presented here is represented by a compact, small-footprint design which obviates the need for (local) surface functionalization or hybrid materials integration, thus significantly reducing the complexity (and hence cost) of manufacture. As a pilot study of this new centrifugal flow control element, we demonstrate here the efficient separation of metered plasma from whole blood. While the flow is stopped, blood is separated into plasma and its cellular constituents by centrifugally induced sedimentation. After completion, the flow resumes by elevating the spinning frequency, providing up to 80% of the original plasma content to an overflow chamber within a short, 2 min interval. The amount of residual cells in the plasma amounts to less than 20 cells μl −1 . (paper)

  13. Plasma plume induced during laser welding of Magnesium alloys

    International Nuclear Information System (INIS)

    Hoffman, J.; Szymanski, Z.; Azharonok, V.

    2005-01-01

    assuming a certain realistic radial temperature distribution and calculating the corresponding synthetic line profile, which, subsequently, is compared to the experimental one. It has been assumed that the radial temperature profile is either Gaussian or triangular, since they are close to the solution of the time-dependent heat transfer equation with a Gaussian source. Owing to relatively high electron density, N e >10 22 m -3 , it can be assumed that a laser-induced plasma is in a state of local thermal equilibrium (LTE). The boundary temperature of 3 kK is assumed. The plasma diameter is 1.0-2.0 mm depending on the distance from the surface. The profile of the spectral line P λ is given by the Voigt function resulting from the convolution of a Gaussian (Doppler effect) and Lorenzian (Stark effect) profile. The synthetic line profiles are calculated for each plasma radius and added along the plasma diameter to get the total profiles. The maximum temperature is varied until the total synthetic profiles fit well the experimental ones and full widths of both profiles are the same. (author)

  14. Real-time qualitative study of forsterite crystal - Melt lithium distribution by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Lebedev, V. F.; Makarchuk, P. S.; Stepanov, D. N.

    2017-11-01

    A factor of lithium distribution between single-crystal forsterite (Cr,Li:Mg2SiO4) and its melt are studied by laser-induced breakdown spectroscopy. Lithium content in the crystalline phase is found to achieve a saturation at relatively low Li concentration in the melt (about 0.02%wt.). An algorithm and software are developed for real-time analysis of the studied spectra of lithium trace amounts at wide variation of the plasma radiation intensity. The analyzed plasma spectra processing method is based on the calculation of lithium emission part in the total emission of the target plasma for each recorded spectrum followed by the error estimation for the series of measurements in the normal distribution approximation.

  15. Study of nanosecond laser-produced plasmas in atmosphere by spatially resolved optical emission spectroscopy

    International Nuclear Information System (INIS)

    Wei, Wenfu; Wu, Jian; Li, Xingwen; Jia, Shenli; Qiu, Aici

    2013-01-01

    We investigate the evolution of the species from both the target and the air, and the plasma parameter distribution of the nanosecond laser-produced plasmas in atmospheric air. The technique used is spatially resolved optical emission spectroscopy. It is argued that the N II from the air, which is distributed over a wider region than the target species in the early stages of the discharge, is primarily formed by the shock wave. The ionized species have a larger expansion velocity than the excited atoms in the first ∼100 ns, providing direct evidence for space-charge effects. The electron density decreases with the distance from the target surface in the early stages of the discharge, and both the electron density and the excited temperature variation in the axial direction are found to become insignificant at later stages

  16. Degree of dissociation measured by FTIR absorption spectroscopy applied to VHF silane plasmas

    International Nuclear Information System (INIS)

    Sansonnens, L.; Howling, A.A.; Hollenstein, C.

    1997-10-01

    In situ Fourier transform infrared (FTIR) absorption spectroscopy has been used to determine the fractional depletion of silane in a radio-frequency (rf) glow discharge. The technique used a simple single pass arrangement and was implemented in a large area industrial reactor for deposition of amorphous silicon. Measurements were made on silane plasmas for a range of excitation frequencies. It was observed that at constant plasma power, the fractional depletion increased from 35% at 13.56 MHz to 70% at 70 MHz. With a simple model based on the density continuity equations in the gas phase, it was shown that this increase is due to a higher dissociation rate and is largely responsible for the observed increase in the deposition rate with the frequency. (author) 5 figs., 30 refs

  17. The emission spectroscopy for evaluation of concentration of the metal vapor concentration in tokamak plasma

    International Nuclear Information System (INIS)

    Sarakovskis, A.; Gromuls, I.; Tale, I.

    2004-01-01

    Full text: Evaluation of the absolute concentration of the impurity metal vapors in plasma using emission spectroscopy requires development of the principles and procedure of in situ calibration of equipment. Several approaches can be used for calibration of the equipment. In the case the emission rate of single metal atom under ionizing conditions is known, the calibration of the spectroscopic equipment reduces to the calibration in radiometric units (irradiance). For unknown emission rate the routine calibration procedure involves use of the set of etalons of material under investigation with known concentration of impurity metal. For evaluation of impurity concentration in plasma it is necessary to develop a corresponding plasma source having certain plasma parameters - temperature and concentration of electrons and metal vapors in concentration, which can be measured independent procedure. Present report deals with problems of estimation of Ga impurity concentration in ISSTOK ( Portugal) tokamak plasma using decay data of atom emission lines. Emission spectra of Ga atoms show that collisions with hydrogen electrons and ions results in ionization of Ga followed by multi step radiative recombination. The main emission lines corresponds to the capture of electron to the 4s 2 5p (639 nm), transition 4s 2 5p - 4s 2 5s (1,211 μm ); and transition to the ground state 4s 2 5s - 4s 2 4p (403 nm). Some of the excited state lifetimes obtained from decay kinetics are reported. Analysis of emission line intensity ratios together with lifetime data will allow elaborate the procedure for evaluation of Ga impurity concentration in the tokamak plasma

  18. Measurement of titanium in hip-replacement patients by inductively coupled plasma optical emission spectroscopy.

    Science.gov (United States)

    Harrington, Chris F; McKibbin, Craig; Rahanu, Monika; Langton, David; Taylor, Andrew

    2017-05-01

    Background Patients with metal-on-metal hip replacements require testing for cobalt and chromium. There may also be a need to test for titanium, which is used in the construction of the femoral stem in total hip replacements. It is not possible to use quadrupole inductively coupled plasma mass spectrometry due to interferences. Methods Titanium was measured using inductively coupled plasma optical emission spectroscopy using the emission line at 336.1 nm and Y (internal standard) at 371.0 nm. Internal quality control materials were prepared for blood and serum and concentrations assigned using a sector field-inductively coupled plasma mass spectrometer. A candidate whole blood certified reference material was also evaluated. Results The method had detection and quantitation limits of 0.6 and 1.9 µg/L, respectively. The respective bias (%) and measurement uncertainty ( U) (k = 2) were 3.3% and 2.0 µg/L (serum) and - 1.0% and 1.4 µg/L (whole blood). The respective repeatability and intermediate precision (%) were 5.1% and 10.9% (serum) and 2.4% and 8.6% (whole blood). The concentration of titanium was determined in patients' samples, serum (median = 2.4 µg/L, n = 897) and whole blood (median = 2.4 µg/L, n = 189). Serum is recommended for monitoring titanium in patients, since the concentration is higher than in whole blood and the matrix less problematic. In hip fluid samples, the concentrations were much higher (mean 58.5 µg/L, median 5.1 µg/L, n = 83). Conclusions A method based on inductively coupled plasma optical emission spectroscopy was developed and validated for measuring titanium in clinical samples.

  19. Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results.

    Science.gov (United States)

    Gaudiuso, Rosalba; Dell'Aglio, Marcella; De Pascale, Olga; Senesi, Giorgio S; De Giacomo, Alessandro

    2010-01-01

    Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS), namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds.

  20. Conduction spectroscopy of a proximity induced superconducting topological insulator

    Science.gov (United States)

    Stehno, M. P.; Hendrickx, N. W.; Snelder, M.; Scholten, T.; Huang, Y. K.; Golden, M. S.; Brinkman, A.

    2017-09-01

    The combination of superconductivity and the helical spin-momentum locking at the surface state of a topological insulator (TI) has been predicted to give rise to p-wave superconductivity and Majorana bound states. The superconductivity can be induced by the proximity effect of a s-wave superconductor (S) into the TI. To probe the superconducting correlations inside the TI, dI/dV spectroscopy has been performed across such S-TI interfaces. Both the alloyed Bi1.5Sb0.5Te1.7Se1.3 and the stoichiometric BiSbTeSe2 have been used as three-dimensional TI. In the case of Bi1.5Sb0.5Te1.7Se1.3, the presence of disorder induced electron-electron interactions can give rise to an additional zero-bias resistance peak. For the stoichiometric BiSbTeSe2 with less disorder, tunnel barriers were employed in order to enhance the signal from the interface. The general observations in the spectra of a large variety of samples are conductance dips at the induced gap voltage, combined with an increased sub-gap conductance, consistent with p-wave predictions. The induced gap voltage is typically smaller than the gap of the Nb superconducting electrode, especially in the presence of an intentional tunnel barrier. Additional uncovered spectroscopic features are oscillations that are linearly spaced in energy, as well as a possible second order parameter component.

  1. Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements

    International Nuclear Information System (INIS)

    Childres, Isaac; Tian, Jifa; Chen, Yong P; Jauregui, Luis A

    2011-01-01

    In this paper, we report a study of graphene and graphene field effect devices after their exposure to a series of short pulses of oxygen plasma. Our data from Raman spectroscopy, back-gated field-effect and magnetotransport measurements are presented. The intensity ratio between Raman 'D' and 'G' peaks, I D /I G (commonly used to characterize disorder in graphene), is observed to initially increase almost linearly with the number (N e ) of plasma-etching pulses, but later decreases at higher N e values. We also discuss the implications of our data for extracting graphene crystalline domain sizes from I D /I G . At the highest N e value measured, the '2D' peak is found to be nearly suppressed while the 'D' peak is still prominent. Electronic transport measurements in plasma-etched graphene show an up-shifting of the Dirac point, indicating hole doping. We also characterize mobility, quantum Hall states, weak localization and various scattering lengths in a moderately etched sample. Our findings are valuable for understanding the effects of plasma etching on graphene and the physics of disordered graphene through artificially generated defects.

  2. Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer.

    Science.gov (United States)

    Feng, Shangyuan; Lin, Duo; Lin, Juqiang; Li, Buhong; Huang, Zufang; Chen, Guannan; Zhang, Wei; Wang, Lan; Pan, Jianji; Chen, Rong; Zeng, Haishan

    2013-07-21

    Based on blood plasma surface-enhanced Raman spectroscopy (SERS) analysis, a simple and label-free blood test for non-invasive cervical cancer detection is presented in this paper. SERS measurements were performed on blood plasma samples from 60 cervical cancer patients and 50 healthy volunteers. Both the empirical approach and multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were employed to analyze and differentiate the obtained blood plasma SERS spectra. The empirical diagnostic algorithm based on the integration area of the SERS spectral bands (1310-1430 and 1560-1700 cm(-1)) achieved a diagnostic sensitivity of 70% and 83.3%, and a specificity of 76% and 78%, respectively, whereas the diagnostic algorithms based on PCA-LDA yielded a better diagnostic sensitivity of 96.7% and a specificity of 92% for separating cancerous samples from normal samples. This exploratory work demonstrates that a silver nanoparticle based SERS plasma analysis technique in conjunction with PCA-LDA has potential for improving cervical cancer detection and screening.

  3. Time-resolved spectroscopy of nonequilibrium ionization in laser-produced plasmas

    International Nuclear Information System (INIS)

    Marjoribanks, R.S.

    1988-01-01

    The highly transient ionization characteristic of laser-produced plasmas at high energy densities has been investigated experimentally, using x-ray spectroscopy with time resolution of less than 20 ps. Spectroscopic diagnostics of plasma density and temperature were used, including line ratios, line profile broadening and continuum emission, to characterize the plasma conditions without relying immediately on ionization modeling. The experimentally measured plasma parameters were used as independent variables, driving an ionization code, as a test of ionization modeling, divorced from hydrodynamic calculations. Several state-of-the-art streak spectrographs, each recording a fiducial of the laser peak along with the time-resolved spectrum, characterized the laser heating of thin signature layers of different atomic numbers imbedded in plastic targets. A novel design of crystal spectrograph, with a conically curved crystal, was developed. Coupled with a streak camera, it provided high resolution (λ/ΔΛ > 1000) and a collection efficiency roughly 20-50 times that of planar crystal spectrographs, affording improved spectra for quantitative reduction and greater sensitivity for the diagnosis of weak emitters. Experimental results were compared to hydrocode and ionization code simulations, with poor agreement. The conclusions question the appropriateness of describing electron velocity distributions by a temperature parameter during the time of laser illumination and emphasis the importance of characterizing the distribution more generally

  4. Laser induced fluorescence in a pulsed argon plasma

    International Nuclear Information System (INIS)

    Scime, Earl; Biloiu, Costel; Compton, Christopher; Doss, Forrest; Venture, Daniel; Heard, John; Choueiri, Edgar; Spektor, Rostislav

    2005-01-01

    A time-resolved laser induced fluorescence (LIF) technique for pulsed argon plasmas is described. A low power, tunable diode laser pumps a three level Ar II transition sequence at a wavelength of 668.6138 nm. With a standard LIF system designed for steady-state plasmas (e.g., 4 kHz optical chopper, 20 kHz band-width detector, and a lock-in amplifier), we demonstrate that the evolution of the ion velocity distribution can be resolved with a time resolution of 1 ms through a combination of time-series averaging and post-acquisition digital signal processing

  5. Atomic data of Ti II from laser produced Ti plasmas by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Refaie, A.I.; Farrag, A.A.; El Sharkawy, H.; El Sherbini, T.M.

    2005-06-01

    In the present study, the emission spectrum of titanium produced from laser induced plasma has been measured at different distances from the target. The Titanium target is irradiated by using the high power Q-switched Nd:YAG laser (λ=1064 nm) that generates energy 750 mJ/pulse of duration rate 6 ns and repetition rate 10 Hz in vacuum and at different distances. The variation of the distance from the target affects the measured plasma parameters, i.e. the electron density, the ion temperature and the velocity distribution. The electron density increases with the increase of the distance from the target. At a distance 0.6 mm from the target it decreases to 2.28·10 16 cm -3 . The temperature increases with the distance from the get until a distance of 1 mm, after that it decreases. It is found that the plasma velocity increases with the distance then it decreases again. Then, Energy levels and transition probabilities for 3d 2 4p →(3d 2 4s + 3d 3 ) lines have been determined by measurement of emission line intensities from an optically thin laser produced plasma of Ti II in vacuum. Calculations with intermediate coupling using Hartree-Fock wave functions have been carried out in order to place the experimental data on an absolute scale and also to evaluate the lifetimes. The plasma parameters in different regions of the plasma plume have been measured and used to obtain further transition probabilities. (author)

  6. [Detection of metal ions in water solution by laser induced breakdown spectroscopy].

    Science.gov (United States)

    Wu, Jiang-lai; Fu, Yuan-xia; Li, Ying; Lu, Yuan; Cui, Zhi-feng; Zheng, Rong-er

    2008-09-01

    Environmental concerns about the hazardous heavy metals in seawaters have been greatly increased in these years. To evaluate the potential application of laser induced breakdown spectroscopy (LIBS) to on-line toxic metals pollution monitoring in ocean, some experimental investigations with LIBS technique to detect metal ions in CuSO4 and Pb(NO3)2 water solutions have been carried out in our laboratory. A Q-switched Nd:YAG laser operating at 532 nm with pulse width of 10 ns and repetition frequency of 10 Hz was utilized to generate plasma on a flowing liquid surface. The ensuing plasma emission was coupled by a quartz lens to a double grating monochromator and recorded with a PMT in conjunction with a computer controlled boxcar integrator. The temporal characteristic of the laser induced plasma and the power dependence of LIBS signal were investigated. The operation condition was improved with the optimal ablation pulse energy and the delay time for LIBS signal detection. The ablation location was varied to achieve better LIBS signal. The optimized ablation location for lead was found to be different from that for copper due to the breakdown of the ambient air. The detection limit of metal ion in water solution under the optimized operation conditions was found to be 31 ppm for copper and 50 ppm for lead. The experimental results proved that the flexibility of LIBS has the potential to be applied to the detection of toxic metals in seawaters, but the limits of detection for each element should be improved further to make a practical application of LIBS in this field.

  7. Exploring the Effect of Sample Properties on Spark-Induced Breakdown Spectroscopy

    OpenAIRE

    Marino, Michael J; Dieffenbach, Payson; Krause, Liesl A; Diwakar, Prasoon; Hassanein, Ahmed

    2015-01-01

    Optical emission spectroscopy techniques such as laser-induced breakdown spectroscopy (LIBS) and spark-induced breakdown spectroscopy (SIBS) provide portable and robust methods for elemental detection in real-time. Laser-produced emissions are then used for quantitative and qualitative analysis of a sample material with applications in explosives detection. For both techniques, the main obstacles have always been signal intensity, accuracy, and sensitivity of detection. The main advantage of ...

  8. Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Gondal, M A; Hussain, T

    2007-01-15

    Laser-induced breakdown spectroscopy (LIBS) system was developed for determination of toxic metals in wastewater collected from local paint manufacturing plant. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064nm on the solid residue from wastewater collected from paint industry. The concentration of different elements of environmental significance like, lead, copper, chromium, calcium, sulphur, magnesium, zinc, titanium, strontium, nickel, silicone, iron, aluminum, barium, sodium, potassium and zirconium, in paint wastewater were 6, 3, 4, 301, 72, 200, 20, 42, 4, 1, 35, 120, 133, 119, 173, 28 and 12mg kg(-1), respectively. The evaluation of potential and capabilities of LIBS as a rapid tool for paint industry effluent characterization is discussed in detail. Optimal experimental conditions were evaluated for improving the sensitivity of our LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively coupled plasma emission spectroscopy (ICP). The relative accuracy of our LIBS system for various elements as compared with ICP method is in the range of 0.03-0.6 at 2.5% error confidence. Limits of detection (LOD) of our LIBS system were also estimated for the above mentioned elements.

  9. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    Science.gov (United States)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  10. V.U.V. plasma spectroscopy diagnostic of electron cyclotron resonance multicharged ion sources

    International Nuclear Information System (INIS)

    Berreby, R.

    1997-12-01

    To characterize the multicharged ions within the plasma of an E.C.R. ion source, the V.U.V. spectroscopy is used as a non invasive diagnostic of excited matter. In E.C.R.I. S. (electron cyclotron resonance ion source) electrons are heated and magnetically confined within the mirror machine to overcome the successive ionization potentials of the desired elements. As the electrons bounce inside the magnetic configuration in their gyration movement, they interact with the microwaves injected into the source at the resonance frequency. To enhance the performances in high charge states and extracted currents delivered by E.C.R.I.S., the fundamental parameters of the plasma created in these machines must be known. The goal of spectroscopic diagnostics in the V.U.V. range installed on the sources is to determine electron density and temperature on one hand, and the ionic densities and confinement time on the other hand. We used microchannel plates as detector on a 3 meter grazing incidence spectrometer equipped with a 600 lines/mm holographic grating. The calibration of the whole grating with detector was performed by two different methods. These are the branching ratio and charge exchange methods. Identification of lines emitted by a plasma, which gather the whole charge states of ions is necessary to make an exhaustive study of the plasma state. And finally, the determination of plasma parameters like electron density and temperature and ion densities and confinement times that uses theoretical models were the aim of this work. (author)

  11. Plasma surface reflectance spectroscopy for non-invasive and continuous monitoring of extracellular component of blood

    Science.gov (United States)

    Sakota, Daisuke; Takatani, Setsuo

    2012-04-01

    To achieve the quantitative optical non-invasive diagnosis of blood during extracorporeal circulation therapies, the instrumental technique to extract extracellular spectra from whole blood was developed. In the circuit, the continuous blood flow was generated by a centrifugal blood pump. The oxygen saturation was maintained 100% by an oxygenator. The developed glass optical flow cell was attached to the outlet tubing of the oxygenator. The halogen lamp including the light from 400 to 900 nm wavelength was used for the light source. The light was guided into an optical fiber. The light emitted by the fiber was collimated and emitted to the flow cell flat surface at the incident angle of 45 degrees. The light just reflected on the boundary between inner surface of the flow cell and plasma at 45 degrees was detected by the detection fiber. The detected light was analyzed by a spectral photometer. The obtained spectrum from 400 to 600nm wavelength was not changed with respect to the hematocrit. In contrast, the signal in the spectral range was changed when the plasma free hemoglobin increased. By using two spectral range, 505+/-5 nm and 542.5+/-2.5 nm, the differential spectrum was correlated with the free hemoglobin at R2=0.99. On the other hand, as for the hematocrit, the differential spectrum was not correlated at R2=0.01. Finally, the plasma free hemoglobin was quantified with the accuracy of 22+/-19mg/dL. The result shows that the developed plasma surface reflectance spectroscopy (PSRS) can extract the plasma spectrum from flowing whole blood.

  12. Defect generation in electronic devices under plasma exposure: Plasma-induced damage

    Science.gov (United States)

    Eriguchi, Koji

    2017-06-01

    The increasing demand for higher performance of ULSI circuits requires aggressive shrinkage of device feature sizes in accordance with Moore’s law. Plasma processing plays an important role in achieving fine patterns with anisotropic features in metal-oxide-semiconductor field-effect transistors (MOSFETs). This article comprehensively addresses the negative aspect of plasma processing — plasma-induced damage (PID). PID naturally not only modifies the surface morphology of materials but also degrades the performance and reliability of MOSFETs as a result of defect generation in the materials. Three key mechanisms of PID, i.e., physical, electrical, and photon-irradiation interactions, are overviewed in terms of modeling, characterization techniques, and experimental evidence reported so far. In addition, some of the emerging topics — control of parameter variability in ULSI circuits caused by PID and recovery of PID — are discussed as future perspectives.

  13. Detection of boron in simulated corrosion products by using a laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Song, K.; Yeon, J-W.; Jung, S-H.; Hwang, J.; Jung, E-C.

    2010-01-01

    In nuclear power plants, many methods for detection of coolant leakage have been developed and employed for the safe operation. However, these methods have many limitations for analyzing and dealing with the corrosion products due to the high radioactivity. LIBS (Laser-induced breakdown spectroscopy) offer a remote and on-site elemental analysis including the boron in the corrosion products with no sample preparation. In this study, we investigated the feasibility of detecting boron and analyzing an elemental composition of boron-containing iron oxides with the LIBS, in order to develop a coolant leakage detection system. First, we prepared five different boron-containing iron oxides and the element ratios were determined by using ICP-AES (inductive coupled plasma-atomic emission spectrometer). After this, the laser induced emission spectra of these iron oxides were obtained by using a 266 nm Nd:YAG laser. The B/Fe ratios of the oxides were determined by comparing the intensities of the B emission peak at 249.844 nm with those of the Fe peak at 250.217 nm as an internal reference. It was confirmed that the B contents in the oxides could be analyzed over 0.1 wt% by the laser induced breakdown spectroscopic technique. (author)

  14. Validating Laser-Induced Birefringence Theory with Plasma Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cecilia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cornell Univ., Ithaca, NY (United States)

    2015-09-02

    Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variations of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.

  15. Laser Induced Fluorescence Diagnostic for the Plasma Couette Experiment

    Science.gov (United States)

    Katz, Noam; Skiff, Fred; Collins, Cami; Weisberg, Dave; Wallace, John; Clark, Mike; Garot, Kristine; Forest, Cary

    2010-11-01

    The Plasma Couette Experiment (PCX) at U. Wisconsin-Madison consists of a rotating high-beta plasma and is well-suited to the study of flow-driven, astrophysically-relevant plasma phenomena. PCX confinement relies on alternating rings of 1kG permanent magnets and the rotation is driven by electrode rings, interspersed between the magnets, which provide an azimuthal ExB. I will discuss the development of a laser-induced fluorescence diagnostic (LIF) to characterize the ion distribution function of argon plasmas in PCX. The LIF system--which will be scanned radially--will be used to calibrate internal Mach probes, as well as to measure the time-resolved velocity profile, ion temperature and density non-perturbatively. These diagnostics will be applied to study the magneto-rotational instability in a plasma, as well as the buoyancy instability thought to be involved in producing the solar magnetic field. This work is supported by NSF and DOE.

  16. On the improvement of signal repeatability in laser-induced air plasmas

    Science.gov (United States)

    Zhang, Shuai; Sheta, Sahar; Hou, Zong-Yu; Wang, Zhe

    2018-04-01

    The relatively low repeatability of laser-induced breakdown spectroscopy (LIBS) severely hinders its wide commercialization. In the present work, we investigate the optimization of LIBS system for repeatability improvement for both signal generation (plasma evolution) and signal collection. Timeintegrated spectra and images were obtained under different laser energies and focal lengths to investigate the optimum configuration for stable plasmas and repeatable signals. Using our experimental setup, the optimum conditions were found to be a laser energy of 250 mJ and a focus length of 100 mm. A stable and homogeneous plasma with the largest hot core area in the optimum condition yielded the most stable LIBS signal. Time-resolved images showed that the rebounding processes through the air plasma evolution caused the relative standard deviation (RSD) to increase with laser energies of > 250 mJ. In addition, the emission collection was improved by using a concave spherical mirror. The line intensities doubled as their RSDs decreased by approximately 25%. When the signal generation and collection were optimized simultaneously, the pulse-to-pulse RSDs were reduced to approximately 3% for O(I), N(I), and H(I) lines, which are better than the RSDs reported for solid samples and showed great potential for LIBS quantitative analysis by gasifying the solid or liquid samples.

  17. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in the Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.

  18. Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2016-01-28

    During the last few years, laser-induced breakdown spectroscopy (LIBS) has evolved significantly in the molecular sensing area through the optical monitoring of emissions from organic plasmas. Large efforts have been made to study the formation pathways of diatomic radicals as well as their connections with the bonding framework of molecular solids. Together with the structural and chemical-physical properties of molecules, laser ablation parameters seem to be closely tied to the observed spectral signatures. This research focuses on evaluating the impact of laser pulse duration on the production of diatomic species that populate plasmas of organic materials. Differences in relative intensities of spectral signatures from the plasmas of several organic molecules induced in femtosecond (fs) and nanosecond (ns) ablation regimes have been studied. Beyond the abundance and origin of diatomic radicals that seed the plasma, findings reveal the crucial role of the ablation regime in the breakage pattern of the molecule. The laser pulse duration dictates the fragments and atoms resulting from the vaporized molecules, promoting some formation routes at the expense of other paths. The larger amount of fragments formed by fs pulses advocates a direct release of native bonds and a subsequent seeding of the plasma with diatomic species. In contrast, in the ns ablation regime, the atomic recombinations and single displacement processes dominate the contribution to diatomic radicals, as long as atomization of molecules prevails over their progressive decomposition. Consequently, fs-LIBS better reflects correlations between strengths of emissions from diatomic species and molecular structure as compared to ns-LIBS. These new results entail a further step towards the specificity in the analysis of molecular solids by fs-LIBS.

  19. Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy for the noninvasive analysis of transparent samples and gemstones.

    Science.gov (United States)

    Koral, C; Dell'Aglio, M; Gaudiuso, R; Alrifai, R; Torelli, M; De Giacomo, A

    2018-05-15

    In this paper, Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy is applied to transparent samples and gemstones with the aim to overcome the laser induced damage on the sample. We propose to deposit a layer of AuNPs on the sample surface by drying a colloidal solution before ablating the sample with a 532 nm pulsed laser beam. This procedure ensures that the most significant fraction of the beam, being in resonance with the AuNP surface plasmon, is mainly absorbed by the NP layer, which in turn results the breakdown to be induced on NPs rather than on the sample itself. The fast explosion of the NPs and the plasma induction allow the ablation and the transfer in the plasma phase of the portion of sample surface where the NPs were placed. The employed AuNPs are prepared in milliQ water without the use of any chemical stabilizers by Pulsed Laser Ablation in Liquids (PLAL), in order to obtain a strict control of composition and impurities, and to limit possible spectral interferences (except from Au emission lines). Therefore with this technique it is possible to obtain, together with the emission signal of Au (coming from atomized NPs), the emission spectrum of the sample, by limiting or avoiding the direct interaction of the laser pulse with the sample itself. This approach is extremely useful for the elemental analysis by laser ablation of high refractive index samples, where the laser pulse on an untreated surface can otherwise penetrate inside the sample, generate breakdown events below the superficial layer, and consequently cause cracks and other damage. The results obtained with NELIBS on high refractive index samples like glasses, tourmaline, aquamarine and ruby are very promising, and demonstrate the potentiality of this approach for precious gemstones analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Determination of plasma ion velocity distribution via charge-exchange recombination spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fonck, R.J.; Darrow, D.S.; Jaehnig, K.P.

    1983-12-01

    Spectroscopy of line radiation from plasma impurity ions excited by charge-exchange recombination reactions with energetic neutral beam atoms is rapidly becoming recognized as a powerful technique for measuring ion temperature, bulk plasma motion, impurity transport, and more exotic phenomena such as fast alpha particle distributions. In particular, this diagnostic offers the capability of obtaining space- and time-resolved ion temperature and toroidal plasma rotation profiles with relatively simple optical systems. Cascade-corrected excitation rate coefficients for use in both fully stripped impurity density studies and ion temperature measurements have been calculated to the principal ..delta..n = 1 transitions of He+, C/sup 5 +/, and O/sup 7 +/ with neutral beam energies of 5 to 100 keV/amu. A fiber optically coupled spectrometer system has been used on PDX to measure visible He/sup +/ radiation excited by charge exchange. Central ion temperatures up to 2.4 keV and toroidal rotation speeds up to 1.5 x 10/sup 7/ cm/s were observed in diverted discharges with P/sub INJ/ less than or equal to 3.0 MW.

  1. Element-specific determination of chlorine in gases by Laser-Induced-Breakdown-Spectroscopy (LIBS).

    Science.gov (United States)

    Haisch, C; Niessner, R; Matveev, O I; Panne, U; Omenetto, N

    1996-08-01

    An experimental set-up for the detection of elemental chlorine in chlorinated hydrocarbons (CHCs) is described based on a miniaturized system, which could be used for on-line monitoring of chlorinated compounds. With an optimized time-resolved detection chlorine from CHCs like CCl(4) can be determined by Laser-Induced-Breakdown-Spectroscopy (LIBS) with microg/g-detection limits in the gas phase. The application of a miniaturized Nd : YAG laser resulted only in a minor loss in performance, hence it could be used for designing a rugged and small on-line sensor. In addition, preliminary results for the detection of chlorine via the formation of CuCl in the plasma formed by focussing the laser on a copper surface are reported. Utilizing the luminescence of the CuCl D-system at 440 nm, a tenfold improvement in the detection limits was obtained. It appears that the formation of "ad hoc" selected, small molecules in a laser plasma could be a promising alternative for the selective and sensitive analysis of gaseous chlorinated and other species.

  2. Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ji-hyun [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Lenth, Christoph; Salb, Christian [Photonic Sensor Technology, Laser-Laboratorium Goettingen e.V., Hans-Adolf-Krebs-Weg 1 D-37077 Goettingen (Germany); Ko, Eun-Joung; Kim, Kyoung-Woong [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Park, Kihong, E-mail: kpark@gist.ac.k [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of)

    2009-10-15

    A double pulse-laser induced breakdown spectroscopy (DP-LIBS) was used to determine arsenic (As) concentration in 16 soil samples collected from 5 different mine tailing sites in Korea. We showed that the use of double pulse laser led to enhancements of signal intensity (by 13% on average) and signal-to-noise ratio of As emission lines (by 165% on average) with smaller relative standard deviation compared to single pulse laser approach. We believe this occurred because the second laser pulse in the rarefied atmosphere produced by the first pulse led to the increase of plasma temperature and populations of exited levels. An internal standardization method using a Fe emission line provided a better correlation and sensitivity between As concentration and the DP-LIBS signal than any other elements used. The Fe was known as one of the major components in current soil samples, and its concentration varied not substantially. The As concentration determined by the DP-LIBS was compared with that obtained by atomic absorption spectrometry (AAS) to evaluate the current LIBS system. They are correlated with a correlation coefficient of 0.94. The As concentration by the DP-LIBS was underestimated in the high concentration range (>1000 mg-As/kg). The loss of sensitivity that occurred at high concentrations could be explained by self-absorption in the generated plasma.

  3. Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils

    Science.gov (United States)

    Santos, Dario, Jr.; Nunes, Lidiane C.; Trevizan, Lilian C.; Godoi, Quienly; Leme, Flavio O.; Braga, Jez Willian B.; Krug, Francisco José

    2009-10-01

    Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (LIBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, λ = 1064 nm) and the emission signals were collimated by lenses into an optical fiber coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils.

  4. Geometrical effects in data collection and processing for calibration-free laser-induced breakdown spectroscopy

    Science.gov (United States)

    Shabanov, S. V.; Gornushkin, I. B.

    2018-01-01

    Data processing in the calibration-free laser-induced breakdown spectroscopy (LIBS) is usually based on the solution of the radiative transfer equation along a particular line of sight through a plasma plume. The LIBS data processing is generalized to the case when the spectral data are collected from large portions of the plume. It is shown that by adjusting the optical depth and width of the lines the spectra obtained by collecting light from an entire spherical homogeneous plasma plume can be least-square fitted to a spectrum obtained by collecting the radiation just along a plume diameter with a relative error of 10-11 or smaller (for the optical depth not exceeding 0.3) so that a mismatch of geometries of data processing and data collection cannot be detected by fitting. Despite the existence of such a perfect least-square fit, the errors in the line optical depth and width found by a data processing with an inappropriate geometry can be large. It is shown with analytic and numerical examples that the corresponding relative errors in the found elemental number densities and concentrations may be as high as 50% and 20%, respectively. Safe for a few found exceptions, these errors are impossible to eliminate from LIBS data processing unless a proper solution of the radiative transfer equation corresponding to the ray tracing in the spectral data collection is used.

  5. Range extension in laser-induced breakdown spectroscopy using femtosecond-nanosecond dual-beam laser system

    Science.gov (United States)

    Chu, Wei; Zeng, Bin; Li, Ziting; Yao, Jinping; Xie, Hongqiang; Li, Guihua; Wang, Zhanshan; Cheng, Ya

    2017-06-01

    We extend the detection range of laser-induced breakdown spectroscopy by combining high-intensity femtosecond laser pulses with high-energy nanosecond CO2 laser pulses. The femtosecond laser pulses ionize the molecules and generate filament in air. The free electrons generated in the self-confined plasma channel by the femtosecond laser serve as the seed electrons which cause efficient avalanche ionization in the nanosecond CO2 laser field. We show that the detection distance has been extended by three times with the assistance of femtosecond laser filamentation.

  6. Laser induced spectroscopy breakdown (LIBS) application to heavy metal detection in soils; Applicazioni della tecnica Laser induced breakdown spectroscopy (LIBS) alla determinazione dei metalli pesanti nei suoli

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R.; Fantoni, R.; Palucci, A.; Ribezzo, S.; Colao, F. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Div. Fisica Applicata; Capitelli, F. [Bari, Univ., Bari (Italy). Dipt. di Biologia e Chimica Agroforestale ed Ambientale

    2000-07-01

    LIBS (Laser induced breakdown spectroscopy) is a new spectroscopic technique suitable to the use in the analysis of samples of environmental interest, such as soils and rocks, and of industrial interest, such as alloys. Results dealing with the application of the technique to heterogeneous soil samples certified by Ispra Joint Research Centre in the contest of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) with an agronomical interest are presented in this report. In the LIBS technique, a high power laser beam is focused onto the sample in order to generate a small volume of plasma at its surface. Emissions from single atomic species are collected by a lens system coupled to an optical fiber bundle, dispersed on a monochromator and analyzed by an iCCD. the identification and the assignment of emission lines relevant to single atomic species allows to determine the sample elemental composition and, after calibration against reference samples, to perform quantitative analysis for a large number of species. This technique requires no sample pre-treatment, a part from eventually compacting powders by mechanical press. This is a considerable advantage with respect to traditional spectroscopic techniques, such as the ICP (Inductively Coupled Plasma) which needs sample mineralization by acid attack. Measurements performed on soil samples by means of the LIBS technique at ENEA Frascati were compared with the results obtained by ICP, which is considered a traditional technique for this kind of analysis. Results showed a general overestimation of the LIBS values with respect to the ICP ones, probably due to differences in lytologic matrix between the analyzed samples and the standard. The phenomenon is usually referred to the matrix effect, which is held responsible for the deviation from linearity between single element concentration and its row intensity. The effect is due to local plasma density variations and limit the correlation between the plasma elemental composition

  7. Analysis of bakery products by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Bilge, Gonca; Boyacı, İsmail Hakkı; Eseller, Kemal Efe; Tamer, Uğur; Çakır, Serhat

    2015-08-15

    In this study, we focused on the detection of Na in bakery products by using laser-induced breakdown spectroscopy (LIBS) as a quick and simple method. LIBS experiments were performed to examine the Na at 589 nm to quantify NaCl. A series of standard bread sample pellets containing various concentrations of NaCl (0.025-3.5%) were used to construct the calibration curves and to determine the detection limits of the measurements. Calibration graphs were drawn to indicate functions of NaCl and Na concentrations, which showed good linearity in the range of 0.025-3.5% NaCl and 0.01-1.4% Na concentrations with correlation coefficients (R(2)) values greater than 0.98 and 0.96. The obtained detection limits for NaCl and Na were 175 and 69 ppm, respectively. Performed experimental studies showed that LIBS is a convenient method for commercial bakery products to quantify NaCl concentrations as a rapid and in situ technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Analysis of human nails by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Hosseinimakarem, Zahra; Tavassoli, Seyed Hassan

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to analyze human fingernails using nanosecond laser pulses. Measurements on 45 nail samples are carried out and 14 key species are identified. The elements detected with the present system are: Al, C, Ca, Fe, H, K, Mg, N, Na, O, Si, Sr, Ti as well as CN molecule. Sixty three emission lines have been identified in the spectrum that are dominated by calcium lines. A discriminant function analysis is used to discriminate among different genders and age groups. This analysis demonstrates efficient discrimination among these groups. The mean concentration of each element is compared between different groups. Correlation between concentrations of elements in fingernails is calculated. A strong correlation is found between sodium and potassium while calcium and magnesium levels are inversely correlated. A case report on high levels of sodium and potassium in patients with hyperthyroidism is presented. It is shown that LIBS could be a promising technique for the analysis of nails and therefore identification of health problems.

  9. Laser-induced breakdown spectroscopy for polymer identification.

    Science.gov (United States)

    Grégoire, Sylvain; Boudinet, Marjorie; Pelascini, Frédéric; Surma, Fabrice; Detalle, Vincent; Holl, Yves

    2011-07-01

    This study aims at differentiating several organic materials, particularly polymers, by laser induced breakdown spectroscopy. The goal is to apply this technique to the fields of polymer recycling and cultural heritage conservation. We worked with some usual polymers families: polyethylene (PE), polypropylene (PP), polyoxymethylene, (POM), poly(vinyl chloride), polytetrafluoroethylene, polyoxyethylene (POE), and polyamide for the aliphatic ones, and poly(butylene terephthalate), acrylonitrile-butadiene-styrene, polystyrene, and polycarbonate for the aromatic ones. The fourth harmonic of a Nd:YAG laser (266 nm) in ambient air at atmospheric pressure was used. A careful analysis of the C(2) Swan system (0,0) band in polymers containing no C-C (POM), few C-C (POE), or aromatic C-C linkages led us to the conclusion that the C(2) signal might be native, i.e., the result of direct ablation from the sample. With use of these results, aliphatic and aromatic polymers could be differentiated. Further data treatments, such as properly chosen line ratios, principal component analysis, and partial least squares regression, were evaluated. It was shown that many polymers could be separated, including PE and PP, despite their similar chemical structures.

  10. Portable LED-induced autofluorescence spectroscopy for oral cancer diagnosis

    Science.gov (United States)

    Yan, Yung-Jhe; Huang, Ting-Wei; Cheng, Nai-Lun; Hsieh, Yao-Fang; Tsai, Ming-Hsui; Chiou, Jin-Chern; Duann, Jeng-Ren; Lin, Yung-Jiun; Yang, Chin-Siang; Ou-Yang, Mang

    2017-04-01

    Oral cancer is a serious and growing problem in many developing and developed countries. To improve the cancer screening procedure, we developed a portable light-emitting-diode (LED)-induced autofluorescence (LIAF) imager that contains two wavelength LED excitation light sources and multiple filters to capture ex vivo oral tissue autofluorescence images. Compared with conventional means of oral cancer diagnosis, the LIAF imager is a handier, faster, and more highly reliable solution. The compact design with a tiny probe allows clinicians to easily observe autofluorescence images of hidden areas located in concave deep oral cavities. The ex vivo trials conducted in Taiwan present the design and prototype of the portable LIAF imager used for analyzing 31 patients with 221 measurement points. Using the normalized factor of normal tissues under the excitation source with 365 nm of the central wavelength and without the bandpass filter, the results revealed that the sensitivity was larger than 84%, the specificity was not smaller than over 76%, the accuracy was about 80%, and the area under curve of the receiver operating characteristic (ROC) was achieved at about 87%, respectively. The fact shows the LIAF spectroscopy has the possibilities of ex vivo diagnosis and noninvasive examinations for oral cancer.

  11. Pre-concentration of Cr, Mn, Fe and Co of water sea and analysis by plasma emission spectroscopy - DCP

    International Nuclear Information System (INIS)

    Ferreira, E.M.M.

    1985-01-01

    Studies of separation and pre-concentration methods of chromium, manganese, iron and cobalt from seawater, that allow use control methods of 5 1 Cr, 5 4 Mn, 5 5 , 5 9 Fe, 5 8 , 5 9 Co with a better sensibility and the determination of this elements by atomic absorption spectroscopy or plasma emission spectroscopy are described. This methods of seawater analysis will use near the region of Angra I reactor. (author)

  12. Testing a laser-induced breakdown spectroscopy technique on the Arctic sediments

    Science.gov (United States)

    Han, D.; Nam, S. I.

    2017-12-01

    Physical and geochemical investigations coupled with the Laser-induced Breakdown Spectroscopy (LIBS) were performed on three surface sediment cores (ARA03B/24BOX, ARA02B/01(A)MUC, ARA02B/02MUC and ARA02B/03(A)MUC) recovered from the western Arctic Ocean (Chukchi Sea) during IBRV ARON expeditions in 2012. The LIBS technique was applied to carry out elemental chemical analysis of the Arctic sediments and compared with that measured by ITRAX X-ray fuorescence (XRF) core scanning. LIBS and XRF have shown similar elemental composition within each sediment core. In this study, mineral composition (XRD), grain size distribution and organic carbon content as well as elemental composition (LIBS) were all considered to understand paleoenvironmental changes (ocean circulation, sea-ice drift, iceberg discharge, and etc.) recorded in the Arctic Holocene sediment. Quantitative LIBS analysis shows a gradually varying distribution of the elements along the sampled core and clear separation between the cores. The cores are geochemically characterized by elevated Mn profile. The gradient of mineral composition and grain sizes among the cores shows regional distribution and variation in sedimentary condition due to geological distance between East Siberian and North America. The present study reveals that a LIBS technique can be employed for in-situ sediment analyses for the Arctic Ocean. Furthermore, LIBS does not require costly equipment, trained operators, and complicated sample pre-treatment processes compared to Atomic absorption spectroscopy (AAS) and inductively coupled plasma emission spectroscopy (ICP), and also known to show relatively high levels of sensitivity, precision, and distinction than XRF analysis, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and electron probe X-ray microanalysis (EPMA).

  13. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    International Nuclear Information System (INIS)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm −1 and 3272 cm −1 , respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm −1 . The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity

  14. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    Science.gov (United States)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm-1 and 3272 cm-1, respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm-1. The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity.

  15. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  16. Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways.

    Science.gov (United States)

    Shirshin, Evgeny; Cherkasova, Olga; Tikhonova, Tatiana; Berlovskaya, Elena; Priezzhev, Alexander; Fadeev, Victor

    2015-05-01

    We present the results of a native fluorescence spectroscopy study of blood plasma of rats with experimental diabetes. It was shown that the fluorescence emission band shape at 320 nm excitation is the most indicative of hyperglycemia in the blood plasma samples. We provide the interpretation of this fact based on the changes in reduced nicotinamide adenine dinucleotide phosphate concentration due to glucose-related metabolic pathways and protein fluorescent cross-linking formation following nonenzymatic glycation.

  17. ELM-Induced Plasma Wall Interactions in DIII-D

    International Nuclear Information System (INIS)

    Rudakov, D.L.; Boedo, J.A.; Yu, J.H.; Brooks, N.H.; Fenstermacher, M.E.; Groth, M.; Hollmann, E.M.; Lasnier, C.J.; McLean, A.G.; Moyer, R.A.; Stangeby, P.C.; Tynan, G.R.; Wampler, W.R.; Watkins, J.G.; West, W.P.; Wong, C.C.; Zeng, L.; Bastasz, R.J.; Buchenauer, D.; Whaley, J.

    2008-01-01

    Intense transient fluxes of particles and heat to the main chamber components induced by edge localized modes (ELMs) are of serious concern for ITER. In DIII-D, plasma interaction with the outboard chamber wall is studied using Langmuir probes and optical diagnostics including a fast framing camera. Camera data shows that ELMs feature helical filamentary structures localized at the low field side of the plasma and aligned with the local magnetic field. During the nonlinear phase of an ELM, multiple filaments are ejected from the plasma edge and propagate towards the outboard wall with velocities of 0.5-0.7 km/s. When reaching the wall, filaments result in 'hot spots'--regions of local intense plasma-material interaction (PMI) where the peak incident particle and heat fluxes are up to 2 orders of magnitude higher than those between ELMs. This interaction pattern has a complicated geometry and is neither toroidally nor poloidally symmetric. In low density/collisionality H-mode discharges, PMI at the outboard wall is almost entirely due to ELMs. In high density/collisionality discharges, contributions of ELMs and inter-ELM periods to PMI at the wall are comparable. A Midplane Material Evaluation Station (MiMES) has been recently installed in order to conduct in situ measurements of erosion/redeposition at the outboard chamber wall, including those caused by ELMs

  18. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  19. Qualitative analysis of teeth and evaluation of amalgam elements penetration into dental matrix using laser induced breakdown spectroscopy.

    Science.gov (United States)

    Gazmeh, Meisam; Bahreini, Maryam; Tavassoli, Seyed Hassan; Asnaashari, Mohammad

    2015-01-01

    In this study, laser induced breakdown spectroscopy (LIBS) is used for qualitative analysis of healthy and carious teeth. The technique of laser ablation is receiving increasing attention for applications in dentistry, specifically for the treatment of teeth such as drilling of micro-holes and plaque removal. A quality-switched (Q-switched) Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) laser operating at wavelength of 1064 nm, pulse energy of 90 mJ/pulse, repetition rate of 2Hz and pulse duration of 6 ns was used in this analysis. In the process of ablation a luminous micro-plasma is normally generated which may be exploited for on-line elemental analysis via laser induced breakdown spectroscopy technique. We propose laser induced breakdown spectroscopy as a rapid, in situ and easy method for monitoring drilling process. The results of elemental analysis show the presence of some trace elements in teeth including P, Ca, Mg, Zn, K, Sr, C, Na, H, O and the permeability of some amalgam (teeth filling materials) elements including Hg, Ag, Cu and Sn into dental matrix. This study addresses the ability of LIBS in elemental analysis of teeth and its feasibility in acute identification of healthy and carious teeth during drilling process for future clinical applications.

  20. Method validation in plasma source optical emission spectroscopy (ICP-OES) - From samples to results

    International Nuclear Information System (INIS)

    Pilon, Fabien; Vielle, Karine; Birolleau, Jean-Claude; Vigneau, Olivier; Labet, Alexandre; Arnal, Nadege; Adam, Christelle; Camilleri, Virginie; Amiel, Jeanine; Granier, Guy; Faure, Joel; Arnaud, Regine; Beres, Andre; Blanchard, Jean-Marc; Boyer-Deslys, Valerie; Broudic, Veronique; Marques, Caroline; Augeray, Celine; Bellefleur, Alexandre; Bienvenu, Philippe; Delteil, Nicole; Boulet, Beatrice; Bourgarit, David; Brennetot, Rene; Fichet, Pascal; Celier, Magali; Chevillotte, Rene; Klelifa, Aline; Fuchs, Gilbert; Le Coq, Gilles; Mermet, Jean-Michel

    2017-01-01

    Even though ICP-OES (Inductively Coupled Plasma - Optical Emission Spectroscopy) is now a routine analysis technique, requirements for measuring processes impose a complete control and mastering of the operating process and of the associated quality management system. The aim of this (collective) book is to guide the analyst during all the measurement validation procedure and to help him to guarantee the mastering of its different steps: administrative and physical management of samples in the laboratory, preparation and treatment of the samples before measuring, qualification and monitoring of the apparatus, instrument setting and calibration strategy, exploitation of results in terms of accuracy, reliability, data covariance (with the practical determination of the accuracy profile). The most recent terminology is used in the book, and numerous examples and illustrations are given in order to a better understanding and to help the elaboration of method validation documents

  1. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration

    International Nuclear Information System (INIS)

    Benedetti, P.A.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In this paper, the effect of laser pulse energy on double-pulse laser induced breakdown spectroscopy signal is studied. In particular, the energy of the first pulse has been changed, while the second pulse energy is held fixed. A systematic study of the laser induced breakdown spectroscopy signal dependence on the interpulse delay is performed, and the results are compared with the ones obtained with a single laser pulse of energy corresponding to the sum of the two pulses. At the same time, the crater formed at the target surface is studied by video-confocal microscopy, and the variation in crater dimensions is correlated to the enhancement of the laser induced breakdown spectroscopy signal. The results obtained are consistent with the interpretation of the double-pulse laser induced breakdown spectroscopy signal enhancement in terms of the changes in ambient gas pressure produced by the shock wave induced by the first laser pulse

  2. Multivariate methods for analysis of environmental reference materials using laser-induced breakdown spectroscopy

    Directory of Open Access Journals (Sweden)

    Shikha Awasthi

    2017-06-01

    Full Text Available Analysis of emission from laser-induced plasma has a unique capability for quantifying the major and minor elements present in any type of samples under optimal analysis conditions. Chemometric techniques are very effective and reliable tools for quantification of multiple components in complex matrices. The feasibility of laser-induced breakdown spectroscopy (LIBS in combination with multivariate analysis was investigated for the analysis of environmental reference materials (RMs. In the present work, different (Certified/Standard Reference Materials of soil and plant origin were analyzed using LIBS and the presence of Al, Ca, Mg, Fe, K, Mn and Si were identified in the LIBS spectra of these materials. Multivariate statistical methods (Partial Least Square Regression and Partial Least Square Discriminant Analysis were employed for quantitative analysis of the constituent elements using the LIBS spectral data. Calibration models were used to predict the concentrations of the different elements of test samples and subsequently, the concentrations were compared with certified concentrations to check the authenticity of models. The non-destructive analytical method namely Instrumental Neutron Activation Analysis (INAA using high flux reactor neutrons and high resolution gamma-ray spectrometry was also used for intercomparison of results of two RMs by LIBS.

  3. Femtosecond laser-induced breakdown spectroscopy: Elemental imaging of thin films with high spatial resolution

    Science.gov (United States)

    Ahamer, Christoph M.; Riepl, Kevin M.; Huber, Norbert; Pedarnig, Johannes D.

    2017-10-01

    We investigate femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for the spectrochemical imaging of thin films with high spatial resolution. Chemical images are obtained by recording LIBS spectra at each site of 2D raster-scans across the samples employing one fs-laser pulse per site. The diffraction images of the Echelle spectrometer are binned to reduce the read-out time of the intensified CCD detector and to increase the stability of the emission signals against peak drifts in the echellograms. For copper thin films on glass the intensities of Cu I emission lines and the size of ablation craters vary non-monotonously with the film thickness hCu = 5-500 nm. The emission efficiency, defined as the Cu I line intensity per ablated volume, strongly decreases for films thicker than the optical penetration depth. The Na I line intensity from glass increases exponentially with decreasing Cu film thickness. For yttrium barium copper oxide (YBCO) thin films on MgO various atomic and molecular emission lines of the laser-induced plasma are measured (film thickness hYBCO = 200-1000 nm). The obtained element (Y, Ba, Cu, Mg) and molecular (Y-O) fs-LIBS images match the structure of the micro-patterned YBCO films very well. The achieved lateral resolution δr = 6 μm is among the best values reported for spectrochemical LIBS imaging.

  4. Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Gottfried, Jennifer L

    2013-02-01

    Laser-induced breakdown spectroscopy is a promising approach for explosive residue detection, but several limitations to its widespread use remain. One issue is that the emission spectra of the residues are dependent on the substrate composition because some of the substrate is usually entrained in the laser-induced plasma and the laser-material interaction can be significantly affected by the substrate type. Here, we have demonstrated that despite the strong spectral variation in cyclotrimethylenetrinitramine (RDX) residues applied to various metal substrates, classification of the RDX residue independent of substrate type is feasible. Several approaches to improving the chemometric models based on partial least squares discriminant analysis (PLS-DA) have been described: classifying the RDX residue spectra together in one class independent of substrate, using selected emission intensities and ratios to increase the true positive rate (TPR) and decrease the false positive rate (FPR), and fusing the results from two PLS-DA models generated using the full broadband spectra and selected intensities and ratios. The combination of these approaches resulted in a TPR of 97.5% and a FPR of 1.0% for RDX classification on metal substrates.

  5. Multivariate Analysis of Laser-Induced Breakdown Spectroscopy for Discrimination between Explosives and Plastics

    International Nuclear Information System (INIS)

    Wang Qian-Qian; Liu Kai; Zhao Hua

    2012-01-01

    A method to distinguish explosives from plastics using laser-induced breakdown spectroscopy is discussed. A model for classification with cross-validation theory is built based on the partial least-square discriminant analysis method. Seven types of plastics and one explosive are used as samples to test the model. The experimental results demonstrate that laser-induced breakdown spectroscopy has the capacity to discriminate explosives from plastics combined with chemometrics methods. The results could be useful for prospective research of laser-induced breakdown spectroscopy on the differentiation of explosives and other materials. (fundamental areas of phenomenology(including applications))

  6. Detection of plasma stability on DIII-D, using the experimentally extracted plasma transfer function based on 3D MHD spectroscopy

    Science.gov (United States)

    Wang, Zhirui; Logan, Nikolas; Park, Jongkyu; Menard, Jonathan; Nazikian, Raffi; Munaretto, Stefano; Liu, Yueqiang; Hanson, Jeremy

    2017-10-01

    Three-dimensional (3D) magnetohydrodynamic (MHD) spectroscopy is successfully applied to extract the plasma transfer function from DIII-D experiments. The method uses upper and lower internal coils to perform scans of frequency and poloidal mode spectrum, and measure the corresponding n =1 plasma response on 3D magnetic sensors. The transfer function is extracted, based on Padé approximation, by fitting the measured signals on different sensors simultaneously. The experimental transfer function not only points out the multi-mode plasma response but also shows the number of dominant modes and the contribution of each mode to the plasma response. The extracted damping rate of the least stable mode can be a new index indicating plasma stability quantitatively. This method has the potential to optimize ELM suppression and monitor the plasma stability in future fusion reactors. Results and analysis of 3D MHD spectroscopy experiments will be presented. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698, DE-AC02-09CH11466 and DE-FG02-04ER54761.

  7. Feasibility of Trace Alcohol Congener Detection and Identification Using Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Zhang Jialiang; Wang Shangmin; Zhao Lixian; Liu Liying; Wang Dezhen

    2014-01-01

    In this paper, a feasible scheme is reported for the detection and identification of trace alcohol congeners that have identical elemental composition using laser-induced breakdown spectroscopy (LIBS). In the scheme, an intensive pulsed laser is used to break down trace alcohol samples and the optical emission spectra of the induced plasma are collected for the detection and identification of alcohol molecules. In order to prepare trace alcohol samples, pure ethanol or methanol is bubbled by argon carrier gas and then mixed into matrix gases. The key issue for the scheme is to constitute indices from the LIBS data of the alcohol samples. Two indices are found to be suitable for alcohol detection and identification. One is the emission intensity ratio (denoted as H/C) of the hydrogen line (653.3 nm) to the carbon line (247.9 nm) for identification and the other is the ratio of the carbon line (as C/Ar) or the hydrogen line (as H/Ar) to the argon lines (866.7 nm) for quantitative detection. The calibration experiment result shows that the index H/C is specific for alcohol congeners while almost being independent of alcohol concentration. In detail, the H/C keeps a specific constant of 34 and 23 respectively for ethanol and methanol. In the meanwhile, the C/Ar and H/Ar indices respond almost linearly to the alcohol concentration below 1300 ppm, and are therefore competent for concentration measurement. With the indices, trace alcohol concentration measurement achieves a limit of 140 ppm using a laser pulse energy of 300 mJ. (plasma technology)

  8. X-ray spectroscopic characterization of laser produced hot dense plasmas; Caracterisation par spectroscopie X de plasmas chauds et denses crees par lasers de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Kontogiannopoulos, N

    2007-12-15

    In this work we performed experiments of emission and absorption spectroscopy of laser produced plasmas, to provide well characterized spectral data which permit to benchmark atomic physics codes. More precisely, we produced xenon and krypton plasmas in NLTE (non local thermodynamic equilibrium) conditions and studied their emission spectra. In a second experiment, we characterized the absorption spectra of zinc sulfide and aluminium plasmas in LTE (local thermodynamic equilibrium) conditions.The first two chapters give an outline of the theory involved in the study of the emission and absorption plasma spectroscopy. Chapter 1 describes the different atomic processes occurring in a plasma. The LTE and the NLTE statistics ruling the equilibrium of the atomic processes are presented. Then, we give a brief description of the different codes of plasma atomic physics used in the analysis of our experimental data, namely HULLAC, SCO and TRANSPEC/AVERROES. In Chapter 2 the macroscopic theory of the radiation transport through a plasma is given. We describe also the self-similar model of Basko and the view factor approach, which permits us to calculate the heating conditions of the absorption foils achieved in the interior of the spherical gold cavity. Chapter 3 gives a description of the instruments used for realizing the two experiments, as well as the technical characteristics of the LULI2000 laser facility used to perform the experiments. Chapter 4 presents the experiment realized to characterize the emission spectra of the xenon and krypton plasmas in NLTE, as well the analysis of the experimental data with TRANSPEC/AVERROES. Finally, the experiment for measuring the absorption spectrum of the ZnS plasma mixture and the analysis of the experimental data with the code SCO are given in Chapter 5.

  9. Optogalvanic spectroscopy

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1983-01-01

    Laser induced optogalvanic spectroscopy in a hollow cathode-produced plasma has been used to resolve the isotopic structure of some absorption lines in uranium. We have shown that the optogalvanic signal associated with any isotope can be related to the concentration of that isotope in a multi-isotopic sample. From the results we have obtained, optogalvanic spectroscopy of sputtered samples appears to be an interesting approach to the isotopic analysis of both natural and enriched uranium and could easily be applied to the analysis of other fissile elements, such as the plutonium isotopes

  10. Detection of uranium using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Chinni, Rosemarie C; Cremers, David A; Radziemski, Leon J; Bostian, Melissa; Navarro-Northrup, Claudia

    2009-11-01

    The goal of this work is a detailed study of uranium detection by laser-induced breakdown spectroscopy (LIBS) for application to activities associated with environmental surveillance and detecting weapons of mass destruction (WMD). The study was used to assist development of LIBS instruments for standoff detection of bulk radiological and nuclear materials and these materials distributed as contaminants on surfaces. Uranium spectra were analyzed under a variety of different conditions at room pressure, reduced pressures, and in an argon atmosphere. All spectra displayed a high apparent background due to the high density of uranium lines. Time decay curves of selected uranium lines were monitored and compared to other elements in an attempt to maximize detection capabilities for each species in the complicated uranium spectrum. A survey of the LIBS uranium spectra was conducted and relative emission line strengths were determined over the range of 260 to 800 nm. These spectra provide a guide for selection of the strongest LIBS analytical lines for uranium detection in different spectral regions. A detection limit for uranium in soil of 0.26% w/w was obtained at close range and 0.5% w/w was achieved at a distance of 30 m. Surface detection limits were substrate dependent and ranged from 13 to 150 microg/cm2. Double-pulse experiments (both collinear and orthogonal arrangements) were shown to enhance the uranium signal in some cases. Based on the results of this work, a short critique is given of the applicability of LIBS for the detection of uranium residues on surfaces for environmental monitoring and WMD surveillance.

  11. Cold plasma interactions with plants: Morphing and movements of Venus flytrap and Mimosa pudica induced by argon plasma jet.

    Science.gov (United States)

    Volkov, Alexander G; Xu, Kunning G; Kolobov, Vladimir I

    2017-12-01

    Low temperature (cold) plasma finds an increasing number of applications in biology, medicine and agriculture. In this paper, we report a new effect of plasma induced morphing and movements of Venus flytrap and Mimosa pudica. We have experimentally observed plasma activation of sensitive plant movements and morphing structures in these plants similar to stimulation of their mechanosensors in vivo. Application of an atmospheric pressure argon plasma jet to the inside or outside of a lobe, midrib, or cilia in Dionaea muscipula Ellis induces trap closing. Treatment of Mimosa pudica by plasma induces movements of pinnules and petioles similar to the effects of mechanical stimulation. We have conducted control experiments and simulations to illustrate that gas flow and UV radiation associated with plasma are not the primary reasons for the observed effects. Reactive oxygen and nitrogen species (RONS) produced by cold plasma in atmospheric air appear to be the primary reason of plasma-induced activation of phytoactuators in plants. Some of these RONS are known to be signaling molecules, which control plants' developmental processes. Understanding these mechanisms could promote plasma-based technology for plant developmental control and future use for plant protection from pathogens. Our work offers new insight into mechanisms which trigger plant morphing and movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Peng, Yi; Gislum, René

    and texture was tested and compared with near infrared spectroscopy (NIRS) technique and traditional laboratory analysis. Calibration models were developed on 50 topsoil samples. For all properties except silt, higher predictive ability of LIBS than NIRS models was obtained. Successful calibrations indicate......Soil organic carbon (SOC) and texture have a practical value for agronomy and the environment. Thus, alternative techniques to supplement or substitute for the expensive conventional analysis of soil are developed. Here the feasibility of laser-induced breakdown spectroscopy (LIBS) to determine SOC...

  13. Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Gislum, René; Hermansen, Cecilie

    2017-01-01

    Soil organic carbon (SOC) and particle size fractions have a practical value for agronomy and the environment. Thus, alternative techniques to replace the expensive conventional analyses of soil are needed. Visible near-infrared reflectance spectroscopy (viseNIRS) has already shown potential...... for becoming an alternative method for soil analysis since it is faster and cheaper than conventional methods. Laser-induced breakdown spectroscopy (LIBS) is another cost-effective technique with potential for rapid analysis of elements present in the soil. In this study, the feasibility of using LIBS...

  14. Fast, deep record length, time-resolved visible spectroscopy of plasmas using fiber grids

    Science.gov (United States)

    Brockington, Samuel; Case, Andrew; Cruz, Edward; Witherspoon, F. Douglas; Horton, Robert; Klauser, Ruth; Hwang, D. Q.

    2016-10-01

    HyperV Technologies is developing a fiber-coupled, deep-record-length, low-light camera head for performing high time resolution spectroscopy on visible emission from plasma events. New solid-state Silicon Photo-Multiplier (SiPM) chips are capable of single photon event detection and high speed data acquisition. By coupling the output of a spectrometer to an imaging fiber bundle connected to a bank of amplified SiPMs, time-resolved spectroscopic imagers of 100 to 1,000 pixels can be constructed. Target pixel performance is 10 Megaframes/sec with record lengths of up to 256,000 frames yielding 25.6 milliseconds of record at10 Megasamples/sec resolution. Pixel resolutions of 8 to 12 bits are pos- sible. Pixel pitch can be refined by using grids of 100 μm to 1000 μm diameter fibers. A prototype 32-pixel spectroscopic imager employing this technique was constructed and successfully tested at the University of California at Davis Compact Toroid Injection Experiment (CTIX) as a full demonstration of the concept. Experimental results will be dis-cussed, along with future plans for the Phase 2 project, and potential applications to plasma experiments . Work supported by USDOE SBIR Grant DE-SC0013801.

  15. Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy

    Science.gov (United States)

    Xiong, Qing; Nikiforov, Anton Yu; González, Manuel Á.; Leys, Christophe; Pei Lu, Xin

    2013-02-01

    The characteristics of plasma temperatures (gas temperature and electron excitation temperature) and electron density in a pulsed-dc excited atmospheric helium plasma jet are studied by relative and absolute optical emission spectroscopy (OES). High-resolution OES is performed for the helium and hydrogen lines for the determination of electron density through the Stark broadening mechanism. A superposition fitting method composed of two component profiles corresponding to two different electron densities is developed to fit the investigated lines. Electron densities of the orders of magnitude of 1021 and 1020 m-3 are characterized for the center and edge regions in the jet discharge when the applied voltage is higher than 13.0 kV. The atomic state distribution function (ASDF) of helium demonstrates that the discharge deviates from the Boltzmann-Saha equilibrium state, especially for the helium lower levels, which are significantly overpopulated. Local electron excitation temperatures T13 and Tspec corresponding to the lower and upper parts of the helium ASDF are defined and found to range from 1.2 eV to 1.4 eV and 0.2 eV to 0.3 eV, respectively. A comparative analysis shows that the Saha balance is valid in the discharge for helium atoms at high excited states.

  16. Environmental samples analysis by Atomic Absorption Spectrophotometry and Inductively Coupled Plasma-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    Popescu, I.V.; Iordan, M.; Stihi, C.; Bancuta, A.; Busuioc, G.; Dima, G.; Ciupina, V.; Belc, M.; Vlaicu, Gh.; Marian, R.

    2002-01-01

    Biological samples are interesting from many aspects of environmental monitoring. By analyzing tree leaves conclusions can be drown regarding the metal loading in the growth medium. So that, starting from assumption that the pollution factors from environmental medium can modify the normal concentration of elements, we decided to control the presence of toxic elements and the deviation from normal state of elements in leaves of different trees from areas situated at different distances of pollution source. The aim of this work is to determine the elemental composition of tree leaves using Atomic Absorption Spectrophotometry (AAS) method and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) method. Using AAS spectrophotometer SHIMADZU we identified and determined the concentration of: Cd, Co, Cu, Zn, Mn, Cr, Fe, Se, Pb with an instrumental error less than 1% for most of the elements analyzed. The same samples were analyzed by ICP-OES spectrometer, BAIRD ICP2070-Sequential Plasma spectrometer. We identified and determined in leaves of different trees the concentration of Mg, Ca, and Sr with a precision less than 6%. (authors)

  17. Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air

    Science.gov (United States)

    Wang, Jinmei; Zheng, Peichao; Liu, Hongdi; Fang, Liang

    2016-11-01

    An experimental setup of laser-induced graphite plasma was built and the spectral characteristics and properties of graphite plasma were studied. From the temporal behavior of graphite plasma, the duration of CN partials (B2 Σ+ → X2 Σ+) emission was two times longer than that of atomic carbon, and all intensities reached the maximum during the early stage from 0.2 μs to 0.8 μs. The electron temperature decreased from 11807 K to 8755 K, the vibration temperature decreased from 8973 K to 6472 K, and the rotational temperature decreased from 7288 K to 4491 K with the delay time, respectively. The effect of the laser energy was also studied, and it was found that the thresholds and spectral characteristics of CN molecular and C atomic spectroscopy presented great differences. At lower laser energies, the electron excited temperature, the electron density, the vibrational temperature and rotational temperature of CN partials increased rapidly. At higher laser energies, the increasing of electron excited temperature and electron density slow down, and the vibrational temperature and rotational temperature even trend to saturation due to plasma shielding and dissociation of CN molecules. The relationship among the three kinds of temperatures was Telec>Tvib>Trot at the same time. The electron density of the graphite plasma was in the order of 1017 cm-3 and 1018 cm-3. supported by National Natural Science Foundation of China (No. 61205149), Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry, Science Research Funds of Chongqing Municipal Education Commission (KJ1500436), Scientific and Technological Talents Training Project of Chongqing (CSTC2013kjrc-qnrc40002), Key Project of Foundation and Advanced Technology Research Project of Chongqing (CSTC2015jcyjB0358), Visiting Scholarship of State Key Laboratory of Power Transmission Equipment & System Security and New Technology (2007DA10512714409)

  18. Gastric explosion induced by argon plasma coagulation and prevention strategies.

    Science.gov (United States)

    Freiman, John Saul; Hampe, Toni

    2014-12-01

    We describe the occurrence of an iatrogenic explosion induced by argon plasma coagulation in a 70-year-old man undergoing gastroscopy. Combustible gases in the stomach may have been released by bacterial overgrowth as a result of partial gastric outlet obstruction (caused by a gastric tumor) and reduced acidity (from proton pump inhibitor therapy). We propose a stepwise process during upper endoscopy to prevent this devastating complication, comprising aspiration, preinsufflation with CO2, and then coagulation. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Nanoparticle detection in aqueous solutions using Raman and Laser Induced Breakdown Spectroscopy

    NARCIS (Netherlands)

    Sovago, M.; Buis, E.-J.; Sandtke, M.

    2013-01-01

    We show the chemical identification and quantification of the concentration and size of nanoparticle (NP) dispersions in aqueous solutions by using a combination of Raman Spectroscopy and Laser Induced Breakdown Spectroscopy (LIBS). The two spectroscopic techniques are applied to demonstrate the NP

  20. X-Ray photoelectron spectroscopy analysis of plasma-polymer interactions for development of low-damage plasma processing of soft materials

    International Nuclear Information System (INIS)

    Setsuhara, Yuichi; Cho, Ken; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2010-01-01

    Plasma-polymer interactions have been investigated using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS) of polyethyleneterephthalate (PET) films, which have been exposed to argon plasmas driven by low-inductance antenna modules as a parameter of ion energy. The AFM images indicated that the argon plasma exposure exhibited a significant change in surface roughness. The XPS analyses suggested that the degradation of chemical bonding structure and/or bond scission of PET could be effectively suppressed in the plasma exposures with ion energies below 6 eV. However, significant degradations of O = C-O bond, C-O bond and phenyl group were observed with increasing ion energy above 6 eV.

  1. Use of emission spectroscopy as a tool for optimization of plasma hearth operation for hazardous waste thermal treatment

    International Nuclear Information System (INIS)

    Monts, D.L.; Bauman, L.E.; Lengel, R.K.; Wang, W.; Lin, J.; Cook, R.L.; Shepard, W.S.

    1994-01-01

    Thermal processing of mixed wastes by plasma hearth vitrification requires optimization of and continuous monitoring of plasma hearth operation. A series of investigations utilizing emission spectroscopy has been initiated to characterize the plasma of a 96 kW plasma hearth in order to determine optimum conditions for monitoring and hence controlling plasma hearth performance. The plasma hearth test stand is based upon a 96 kW, transferred arc plasma torch. The torch is mounted in a vacuum vessel through an electrically operated XYZ Gimbal mount. The peak operating power depends on the gas used for the plasma. The operational limits for DC voltage are 180 V to 550 V; and the current is operated at a constant value, selectable in the range from 72 to 200 amps. The plasma arc length can be varied from 2.5 cm to 25 cm, and is dependent on the supply voltage and the process gas used. The arc current and voltage, gas pressure, cooling water flow, and cooling water temperature are monitored and stored by a PC-based data acquisition system. Five optical ports are available for making optical diagnostic measurements

  2. The Spectral Emission Characteristics of Laser Induced Plasma on Tea Samples

    Science.gov (United States)

    Zheng, Peichao; Shi, Minjie; Wang, Jinmei; Liu, Hongdi

    2015-08-01

    Laser induced breakdown spectroscopy (LIBS) provides a useful technique for food security as well as determining nutrition contents. In this paper, optical emission studies of laser induced plasma on commercial tea samples were carried out. The spectral intensities of Mg, Mn, Ca, Al, C and CN vibration bands varying with laser energy and the detection delay time of an intensified charge coupled device were studied. In addition, the relative concentrations of six microelements, i.e., Mg, Mn, Ca, Al, Na and K, were analyzed semi-quantitatively as well as H, for four kinds of tea samples. Moreover, the plasma parameters were explored, including electron temperature and electron number density. The electron temperature and electron number density were around 11000 K and 1017 cm-3, respectively. The results show that it is reasonable to consider the LIBS technique as a new method for analyzing the compositions of tea leaf samples. supported by National Natural Science Foundation of China (No. 61205149), the Scientific and Technological Talents Training Project of Chongqing, China (No. CSTC2013kjrc-qnrc40002), the Scientific and Technological Project of Nan'an District (2011) and the Visiting Scholarship of State Key Laboratory of Power Transmission Equipment & System Security and New Technology at Chongqing University, China (No. 2007DA10512714409)

  3. Plasma-induced field emission study of carbon nanotube cathode

    Directory of Open Access Journals (Sweden)

    Yi Shen

    2011-10-01

    Full Text Available An investigation on the plasma-induced field emission (PFE properties of a large area carbon nanotube (CNT cathode on a 2 MeV linear induction accelerator injector is presented. Experimental results show that the cathode is able to emit intense electron beams. Intense electron beams of 14.9–127.8  A/cm^{2} are obtained from the cathode. The CNT cathode desorbs gases from the CNTs during the PFE process. The fast cathode plasma expansion affects the diode perveance. The amount of outgassing is estimated to be 0.06–0.49  Pa·L, and the ratio of outgassing and electron are roughly calculated to be within the range of 170–350 atoms per electron. The effect of the outgassing is analyzed, and the outgassing mass spectrum of the CNT cathode has been studied during the PFE. There is a significant desorption of CO_{2}, N_{2}(CO, and H_{2} gases, which plays an important role during the PFE process. All the experiments demonstrate that the outgassing plays an important role in the formation of the cathode plasma. Moreover, the characteristic turn-on time of the CNT cathode was measured to be 39 ns.

  4. Laser-induced plasma spectrometry: truly a surface analytical tool

    International Nuclear Information System (INIS)

    Vadillo, Jose M.; Laserna, J.

    2004-01-01

    For a long period, analytical applications of laser induced plasma spectrometry (LIPS) have been mainly restricted to overall and quantitative determination of elemental composition in bulk, solid samples. However, introduction of new compact and reliable solid state lasers and technological development in multidimensional intensified detectors have made possible the seeking of new analytical niches for LIPS where its analytical advantages (direct sampling from any material irrespective of its conductive status without sample preparation and with sensitivity adequate for many elements in different matrices) could be fully exploited. In this sense, the field of surface analysis could take advantage from the cited advantages taking into account in addition, the capability of LIPS for spot analysis, line scan, depth-profiling, area analysis and compositional mapping with a single instrument in air at atmospheric pressure. This review paper outlines the fundamental principles of laser-induced plasma emission relevant to sample surface studies, discusses the experimental parameters governing the spatial (lateral and in-depth) resolution in LIPS analysis and presents the applications concerning surface examination

  5. Kr II laser-induced fluorescence for measuring plasma acceleration.

    Science.gov (United States)

    Hargus, W A; Azarnia, G M; Nakles, M R

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d(4)D(7/2) to the 5p(4)P(5/2)(∘) state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d(4)D(7/2)-5p(4)P(5/2)(∘) transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  6. Characterizing Hohlraum Plasma Conditions at the National Ignition Facility (NIF) Using X-ray Spectroscopy

    Science.gov (United States)

    Barrios, Maria Alejandra

    2015-11-01

    Improved hohlraums will have a significant impact on increasing the likelihood of indirect drive ignition at the NIF. In indirect-drive Inertial Confinement Fusion (ICF), a high-Z hohlraum converts laser power into a tailored x-ray flux that drives the implosion of a spherical capsule filled with D-T fuel. The x-radiation drive to capsule coupling sets the velocity, adiabat, and symmetry of the implosion. Previous experiments in gas-filled hohlraums determined that the laser-hohlraum energy coupling is 20-25% less than modeled, therefore identifying energy loss mechanisms that reduce the efficacy of the hohlraum drive is central to improving implosion performance. Characterizing the plasma conditions, particularly the plasma electron temperature (Te) , is critical to understanding mechanism that affect the energy coupling such as the laser plasma interactions (LPI), hohlraum x-ray conversion efficiency, and dynamic drive symmetry. The first Te measurements inside a NIF hohlraum, presented here, were achieved using K-shell X-ray spectroscopy of an Mn-Co tracer dot. The dot is deposited on a thin-walled CH capsule, centered on the hohlraum symmetry axis below the laser entrance hole (LEH) of a bottom-truncated hohlraum. The hohlraum x-ray drive ablates the dot and causes it to flow upward, towards the LEH, entering the hot laser deposition region. An absolutely calibrated streaked spectrometer with a line of sight into the LEH records the temporal history of the Mn and Co X-ray emission. The measured (interstage) Lyα/ Heα line ratios for Co and Mn and the Mn-Heα/Co-Heα isoelectronic line ratio are used to infer the local plasma Te from the atomic physics code SCRAM. Time resovled x-ray images perpendicular to the hohlraum axis record the dot expansion and trajectory into the LEH region. The temporal evolution of the measured Te and dot trajectory are compared with simulations from radiation-hydrodynamic codes. This work was performed under the auspices of the U

  7. Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Taira, Takuya; Zhang, Xiao Bo; Yan, Jun Jie; Liu, Ji Ping; Watanabe, Hiroaki; Kurose, Ryoichi

    2013-01-01

    In order to simulate coal combustion and develop optimal and stable boiler control systems in real power plants, it is imperative to obtain the detailed information in coal combustion processes as well as to measure species contents in fly ash, which should be controlled and analyzed for enhancing boiler efficiency and reducing environmental pollution. The fly ash consists of oxides (SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, and so on), unburned carbon, and other minor elements. Recently laser-induced breakdown spectroscopy (LIBS) technique has been applied to coal combustion and other industrial fields because of the fast response, high sensitivity, real-time and non-contact features. In these applications it is important to measure controlling factors without any sample preparation to maintain the real-time measurement feature. The relation between particle content and particle diameter is also one of the vital researches, because compositions of particles are dependent on their diameter. In this study, we have detected the contents of size-segregated particles using LIBS. Particles were classified by an Anderson cascade impactor and their contents were measured using the output of 1064 nm YAG laser, a spectrograph and an ICCD camera. The plasma conditions such as plasma temperature are dependent on the size of particles and these effects must be corrected to obtain quantitative information. The plasma temperature was corrected by the emission intensity ratio from the same atom. Using this correction method, the contents of particles can be measured quantitatively in fixed experimental parameters. This method was applied to coal and fly ash from a coal-fired burner to measure unburned carbon and other contents according to the particle diameter. The acquired results demonstrate that the LIBS technique is applicable to measure size-segregated particle contents in real time and this method is useful for the analysis of coal combustion and its control because of its

  8. In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Ismaël, Amina; Bousquet, Bruno; Michel-Le Pierrès, Karine; Travaillé, Grégoire; Canioni, Lionel; Roy, Stéphane

    2011-05-01

    Time-saving, low-cost analyses of soil contamination are required to ensure fast and efficient pollution removal and remedial operations. In this work, laser-induced breakdown spectroscopy (LIBS) has been successfully applied to in situ analyses of polluted soils, providing direct semi-quantitative information about the extent of pollution. A field campaign has been carried out in Brittany (France) on a site presenting high levels of heavy metal concentrations. Results on iron as a major component as well as on lead and copper as minor components are reported. Soil samples were dried and prepared as pressed pellets to minimize the effects of moisture and density on the results. LIBS analyses were performed with a Nd:YAG laser operating at 1064 nm, 60 mJ per 10 ns pulse, at a repetition rate of 10 Hz with a diameter of 500 μm on the sample surface. Good correlations were obtained between the LIBS signals and the values of concentrations deduced from inductively coupled plasma atomic emission spectroscopy (ICP-AES). This result proves that LIBS is an efficient method for optimizing sampling operations. Indeed, "LIBS maps" were established directly on-site, providing valuable assistance in optimizing the selection of the most relevant samples for future expensive and time-consuming laboratory analysis and avoiding useless analyses of very similar samples. Finally, it is emphasized that in situ LIBS is not described here as an alternative quantitative analytical method to the usual laboratory measurements but simply as an efficient time-saving tool to optimize sampling operations and to drastically reduce the number of soil samples to be analyzed, thus reducing costs. The detection limits of 200 ppm for lead and 80 ppm for copper reported here are compatible with the thresholds of toxicity; thus, this in situ LIBS campaign was fully validated for these two elements. Consequently, further experiments are planned to extend this study to other chemical elements and other

  9. Velocity gradient induced line splitting in x-ray emission accompanying plasma-wall interaction

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Michal; Renner, Oldřich; Liska, R.

    2013-01-01

    Roč. 125, Aug (2013), s. 38-44 ISSN 0022-4073 R&D Projects: GA ČR GAP205/10/0814; GA ČR GAP205/11/0571 Institutional support: RVO:68378271 Keywords : laser-produced plasmas * x-ray spectroscopy * plasma-wall interaction * spectral line profiles * Doppler shift * ion velocity gradients Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.288, year: 2013

  10. Characterization of laser-induced plasmas of nucleobases: Uracil and thymine

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quintas, I., E-mail: ilopez@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Oujja, M.; Sanz, M.; Benitez-Cañete, A. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Hutchison, C. [Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Nalda, R. de; Martin, M. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Ganeev, R.A. [Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Voronezh State University, Voronezh 394006 (Russian Federation); Marangos, J.P. [Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Castillejo, M. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2014-05-01

    In this work, nanosecond laser ablation plasmas generated at 266 and 1064 nm of the two pyrimidine nucleobases uracil and thymine were characterized using time-of-flight mass spectrometry, optical emission spectroscopy and temporally resolved third harmonic generation of a probe laser. This multiple technique approach provides insight into the role played by the irradiation wavelength on the composition and dynamics of plasma species and on the differences between the laser plasmas of the two nucleobases.

  11. Hydrogen isotope detection in metal matrix using double-pulse laser-induced breakdown-spectroscopy

    Science.gov (United States)

    Fantoni, Roberta; Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Maddaluno, Giorgio; Gasior, Pawel; Kubkowska, Monika

    2017-03-01

    The amount of hydrogen isotopes retained in plasma facing components (PFCs) and the determination of their surface layer composition are among the most critical issues for the next generation fusion device, ITER, under construction in Cadarache (France). Laser Induced Breakdown Spectroscopy (LIBS) is currently under evaluation as a technique suitable for quantitative, in situ, non-invasive measurements of these quantities. In order to detect traces of contaminant in metallic samples and improve its limit of detection (LOD), the Double Pulse LIBS (DP-LIBS) variant can be used instead of the standard Single Pulse LIBS (SP-LIBS), as it has been proven by several authors that DP-LIBS can considerably raise the analytical performances of the technique. In this work Mo samples coated with a 1.5-1.8 μm thick W-Al mixed layer, contaminated with co-deposited deuterium (D) were measured by SP- and DP-LIBS under vacuum (p 5 × 10- 5 mbar), with an experimental set-up simulating conditions that can be found in a real fusion device between plasma discharges. A partial Calibration Free procedure (pCF) was applied to the LIBS data in order to retrieve the relative concentration of W and Al in the mixed layer. The amount of deuterium was then inferred by using tungsten as internal standard, accounting for the intensity ratio between the Dα line and nearby W I lines. The results are in satisfactory agreement with those obtained from preliminary Ion Beam Analysis measurements performed immediately after the specimen's realization.

  12. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands

    Science.gov (United States)

    Trautner, Stefan; Jasik, Juraj; Parigger, Christian G.; Pedarnig, Johannes D.; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925 nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1 wt% feasible.

  13. Analytical capability of the plasma induced by IR TEA CO2 laser pulses on copper based alloys

    Directory of Open Access Journals (Sweden)

    Momčilović Miloš

    2015-01-01

    Full Text Available The applicability of nanosecond infrared (IR transversely excited atmospheric (TEA CO2 laser, operating at 10.6 μm and 100 ns pulse length (initial spike, induced plasma under reduced air pressure for spectrochemical analysis of bronze and brass samples was investigated. The plasma consisted of two clearly distinguished and spatially separated regions and expanded to a distance of about 10 mm from the surface. Elemental composition of the samples was determined using a time-integrated space-resolved laser-induced plasma spectroscopy (TISR-LIPS technique. Sharp and well resolved spectral lines mostly atomic, and negligibly low background emission, were obtained from a plasma region 7 mm from the target surface. Good signal to background and signal to noise ratios were obtained. Estimated detection limits for trace elements Mg, Fe, Al and Ca were in the order of 10 ppm in bronze and around 50 ppm in brass. Damage on the investigated samples induced by TEA CO2 laser radiation was negligible. [Projekat Ministarstva nauke Republike Srbije, br. 172019

  14. Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal

    International Nuclear Information System (INIS)

    Zhang Dacheng; Ma Xinwen; Wang Shulong; Zhu Xiaolong

    2015-01-01

    Laser-induced breakdown spectroscopy (LIBS) is regarded as a suitable method for the remote analysis of materials in any phase, even in an environment with high radiation levels. In the present work we used the third harmonic pulse of a Nd:YAG laser for ablation of uranium metal and measured the plasma emission with a fiber-optic spectrometer. The LIBS spectra of uranium metal and their features in different ambient gases (i.e., argon, neon, oxygen, and nitrogen) at atmospheric pressure were studied. Strong continuum spectrum and several hundreds of emission lines from UI and UII were observed. It is found that the continuum spectrum observed in uranium not only comes from bremsstrahlung emission but is also due to the complex spectrum of uranium. The influence of ambient gas and the gas flow rate for ablation of uranium metal was investigated. The experimental results indicate that the intensity of the uranium lines was enhanced in argon and nitrogen. However, the intensity of uranium lines was decreased in oxygen due to the generation of UO and other oxides. The results also showed that the highest intensity of uranium lines were obtained in argon gas with a gas flow rate above 2.5 L/min. The enhanced mechanism in ambient gas and the influence of the gas flow rate were analyzed in this work. (paper)

  15. Rapid Analysis of Ash Composition Using Laser-Induced Breakdown Spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Tyler L. Westover

    2013-01-01

    Inorganic compounds are known to be problematic in the thermochemical conversion of biomass to syngas and ultimately hydrocarbon fuels. The elements Si, K, Ca, Na, S, P, Cl, Mg, Fe, and Al are particularly problematic and are known to influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. Substantial quantities of inorganic species can be entrained in the bark of trees during harvest operations. Herbaceous feedstocks often have even greater quantities of inorganic constituents, which can account for as much as one-fifth of the total dry matter. Current methodologies to measure the concentrations of these elements, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS) are expensive in time and reagents. This study demonstrates that a new methodology employing laser-induced breakdown spectroscopy (LIBS) can rapidly and accurately analyze the inorganic constituents in a wide range of biomass materials, including both woody and herbaceous examples. This technique requires little or no sample preparation, does not consume any reagents, and the analytical data is available immediately. In addition to comparing LIBS data with the results from ICP-OES methods, this work also includes discussions of sample preparation techniques, calibration curves for interpreting LIBS spectra, minimum detection limits, and the use of internal standards and standard reference materials.

  16. Study of radiation induced changes of phosphorus metabolism in mice by (31)P NMR spectroscopy.

    Science.gov (United States)

    Sersa, Igor; Kranjc, Simona; Sersa, Gregor; Nemec-Svete, Alenka; Lozar, Bojan; Sepe, Ana; Vidmar, Jernej; Sentjurc, Marjeta

    2010-09-01

    The aim of this study was to examine whether (31)P NMR can efficiently detect X-ray radiation induced changes of energy metabolism in mice. Exposure to ionizing radiation causes changes in energy supply that are associated with the tissue damage because of oxidative stress and uncoupled oxidative phosphorylation. This has as a consequence decreased phosphocreatine to adenosine triphosphate ratio (Pcr/ATP) as well as increased creatine kinase (CK) and liver enzymes (transaminases AST and ALT) levels in serum. In this study, experimental mice that received 7 Gy of X-ray radiation and a control group were studied by (31)P NMR spectroscopy and biochemically by measuring CK and liver enzyme levels in plasma. Mice (irradiated and control) were measured at regular time intervals for the next three weeks after the exposure to radiation. A significant change in the Pcr/ATP ratio, determined from corresponding peaks of (31)P NMR spectra, was observed in the 7 Gy group 2 days or more after the irradiation, while no significant change in the Pcr/ATP ratio, was observed in the control group. This result was supported by parallel measurements of CK levels that were highly increased immediately after the irradiation which correlates with the observed decrease of the Pcr/ATP ratio and with it associated drop of muscle energy supply. The (31)P NMR measurements of the Pcr/ATP ratio can in principle serve as an instantaneous and noninvasive index for assessment of the received dose of irradiation.

  17. Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Loebe, Klaus; Uhl, Arnold; Lucht, Hartmut

    2003-10-20

    A laser microscope system for the microanalytical characterization of complex materials is described. The universal measuring principle of laser-induced breakdown spectroscopy (LIBS) in combination with echelle optics permits a fast simultaneous multielement analysis with a possible spatial resolution below 10 pm. The developed system features completely UV-transparent optics for the laser-microscope coupling and the emission beam path and enables parallel signal detection within the wavelength range of 200-800 nm with a spectral resolution of a few picometers. Investigations of glass defects and tool steels were performed. The characterization of a glass defect in a tumbler by a micro-LIBS line scan, with use of a 266-nm diode-pumped Nd:YAG laser for excitation, is possible by simple comparison of plasma spectra of the defect and the surrounding area. Variations in the main elemental composition as well as impurities by trace elements are detected at the same time. Through measurement of the calibration samples with the known concentration of the corresponding element, a correlation between the intensity of spectral lines and the element concentration was also achieved. The change of elemental composition at the transient stellite solder of tool steels has been determined by an area scan. The two-dimensional pictures show abrupt changes of the element distribution along the solder edge and allow fundamental researches of dynamic modifications (e.g., diffusion) in steel.

  18. K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections

    Science.gov (United States)

    Pain, J.-C.; Gilleron, F.; Comet, M.; Gilles, D.

    2017-03-01

    The broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,…) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy. The approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates and the relativistic fine structure of Lyman lines is included by diagonalizing the Hamiltonian matrix associated to quantum states having the same principal quantum number n. The SCO-RCG code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satellite lines (such as Li-like 1snℓn'ℓ' - 1s2nℓ, Be-like, etc.). Atomic structure calculations have reached levels of accuracy which require evaluation of Breit interaction and many-electron quantum electro-dynamics (QED) contributions. Although much work was done for QED effects (self-energy and vacuum polarization) in hydrogenic atoms, the case of an arbitrary number of electrons is more complicated. Since exact analytic solutions do not exist, a number of heuristic methods have been used to approximate the screening of additional electrons in the self-energy part. We compare different ways of including such effects in atomic-structure codes (Slater-Condon, Multi-Configuration Dirac-Fock, etc.).

  19. Diagnostics of reactive pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam Mass spectrometry

    Science.gov (United States)

    Cunge, Gilles

    2011-10-01

    Pulsed plasmas are promising for etching applications in the microelectronic industry. However, many new phenomena are involved when a high density discharge is pulsed. To better understand these processes it is necessary to probe the radicals' kinetics with a microsecond resolution. We have developed several diagnostics to reach this goal including broad band absorption spectroscopy with UV LEDs to detect small polyatomic radicals and with a deuterium VUV source to detect larger closed shell molecules and the modulated mass spectrometry to monitor atomic species. We will discuss the impact of the plasma pulsing frequency and duty cycle on the radical densities in Cl2 based plasmas, and the consequences on plasma processes. Work done in collaboration with Paul Bodart, Melisa Brihoum, Maxime Darnon, Erwin Pargon, Olivier Joubert, and Nader Sadeghi, CNRS/LTM.

  20. Dynamic analysis of reactive oxygen nitrogen species in plasma-activated culture medium by UV absorption spectroscopy

    Science.gov (United States)

    Brubaker, Timothy R.; Ishikawa, Kenji; Takeda, Keigo; Oh, Jun-Seok; Kondo, Hiroki; Hashizume, Hiroshi; Tanaka, Hiromasa; Knecht, Sean D.; Bilén, Sven G.; Hori, Masaru

    2017-12-01

    The liquid-phase chemical kinetics of a cell culture basal medium during treatment by an argon-fed, non-equilibrium atmospheric-pressure plasma source were investigated using real-time ultraviolet absorption spectroscopy and colorimetric assays. Depth- and time-resolved NO2- and NO3- concentrations were strongly inhomogeneous and primarily driven by convection during and after plasma-liquid interactions. H2O2 concentrations determined from deconvolved optical depth spectra were found to compensate for the optical depth spectra of excluded reactive species and changes in dissolved gas content. Plasma-activated media remained weakly basic due to NaHCO3 buffering, preventing the H+-catalyzed decomposition of NO2- seen in acidic plasma-activated water. An initial increase in pH may indicate CO2 sparging. Furthermore, the pH-dependency of UV optical depth spectra illustrated the need for pH compensation in the fitting of optical depth data.

  1. Characterization of He/CH{sub 4} Dc glow discharge plasmas by optical emission spectroscopy, mass spectrometry and actinometry

    Energy Technology Data Exchange (ETDEWEB)

    Cal, E. de la; Tafalla, D.; Tabares, F. L.

    1993-07-01

    The gas-phase kinetics responsible for the formation of some electronically excited radicals (CH) and atoms (H, He; Ar) in glow discharge plasmas of He- methane admixtures has been investigated under several conditions of gas composition and discharge current at a total initial pressure of 0.01 torr. Actinometry has been used to characterize the microscopic plasma parameters and, in combination with mass spectrometry and optical emission spectroscopy, to establish the formation mechanism of excited species. Very good correlation between CH emission intensity and carbon deposition rate has been found under all conditions. The effective cracking Kinetic constant for methane molecules depends on plasma conditions, its value ranging from = 1 to 5x10 cm3 s{sup 1} as plasma current is increased, in good agreement with the expected value according to the actinometric results. A simplified kinetic mode, accounting for all the observations reported in this work, is proposed. (Author) 28 refs.

  2. Characterization of He/CH4 DC glow discharge plasmas by optical emission spectroscopy, mass spectrometry and actinometry

    International Nuclear Information System (INIS)

    De la Cal, E.; Tafalla, D.; Tabares, F.L.

    1993-01-01

    The gas-phase kinetics responsible for the formation of some electronically excited radicals (CH) and atoms (H,He;Ar) in glow discharge plasmas of He-methane admixtures has been investigated under several conditions of gas composition and discharge current at a total initial pressure of 0.01 torr. Actinometry has been used to characterize the microscopic plasma parameters and, in combination with mass spectrometry and optical emission spectroscopy, to establish the formation mechanism of excited species. Very good correlation between CH emission intensity and carbon deposition rate has been found under all conditions. The effective cracking Kinetic constant for methane molecular depends on plasma conditions, its value ranging from ∼ 1 to 5x10''-10 cm''3 s''-1 as plasma current is increased, in good agreement with the expected value according to the actinometric results. (Author)

  3. Characterization of He/CH4 Dc glow discharge plasmas by optical emission spectroscopy, mass spectrometry and actinometry

    International Nuclear Information System (INIS)

    Cal, E. de la; Tafalla, D.; Tabares, F. L.

    1993-01-01

    The gas-phase kinetics responsible for the formation of some electronically excited radicals (CH) and atoms (H, He; Ar) in glow discharge plasmas of He- methane admixtures has been investigated under several conditions of gas composition and discharge current at a total initial pressure of 0.01 torr. Actinometry has been used to characterize the microscopic plasma parameters and, in combination with mass spectrometry and optical emission spectroscopy, to establish the formation mechanism of excited species. Very good correlation between CH emission intensity and carbon deposition rate has been found under all conditions. The effective cracking Kinetic constant for methane molecules depends on plasma conditions, its value ranging from = 1 to 5x10 cm3 s 1 as plasma current is increased, in good agreement with the expected value according to the actinometric results. A simplified kinetic mode, accounting for all the observations reported in this work, is proposed. (Author) 28 refs

  4. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable...... routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely...... to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope Then...

  5. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  6. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy; Probabilidades de transicion de algunos niveles de Cr II, Na II y Sb I medediante espectroscopia de plasma producidos por laser

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-07-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities ({approx}{approx} 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs.

  7. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  8. Recognition of spectral identifier from green coffee beans of arabica and robusta varieties using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Anggraeni, Karina; Nasution, Aulia; Suyanto, Hery

    2016-11-01

    Coffee is one of the world's commodity that is cultivated in more than 50 countries. Production of coffee in Indonesia is positioned of fourth rank in the world, after Brazil, Vietnam, and Colombia. There are two varieties of coffee grown in Indonesia, i.e. the arabica and robusta. The chemical compositions between arabica and robusta are different each other. A trained coffee tester can distinguish these differences from its taste, but it is very subjective. Laser-Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique based on the analysis of micro-plasma induced on the surface sample after being shot with a laser pulse. In this study, elemental spectra acquired using Laser-Induced Breakdown Spectroscopy (LIBS) technique were analysed to differentate between green coffee beans of arabica and robusta, which are collected from plantations in Malang, Bondowoso, Prigen, and Pasuruan. Results show that optimum conditions for acquiring spectra from green coffee beans using LIBS are at 120 mJ of laser energy and 1,0 μs of delay time. Green coffee beans of arabica and robusta contain some elements such as Ca, W, Sr, Mg, Be, Na, H, N, K, Rb, and O. Discriminant analysis method was then applied to distinguish the green beans of arabica and robusta coffee. Element identifiers of green coffee beans are Ca, W, Mg, Be, Na, and Sr. The abundant element in green coffee beans is Calcium (Ca), and depth-profile testing shows that Ca is homogeneous inside the beans.

  9. Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Lee, Dong-Hyoung; Han, Sol-Chan; Kim, Tae-Hyeong; Yun, Jong-Il

    2011-12-15

    We have applied a dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) to sensitively detect concentrations of boron and lithium in aqueous solution. Sequential laser pulses from two separate Q-switched Nd:YAG lasers at 532 nm wavelength have been employed to generate laser-induced plasma on a water jet. For achieving sensitive elemental detection, the optimal timing between two laser pulses was investigated. The optimum time delay between two laser pulses for the B atomic emission lines was found to be less than 3 μs and approximately 10 μs for the Li atomic emission line. Under these optimized conditions, the detection limit was attained in the range of 0.8 ppm for boron and 0.8 ppb for lithium. In particular, the sensitivity for detecting boron by excitation of laminar liquid jet was found to be excellent by nearly 2 orders of magnitude compared with 80 ppm reported in the literature. These sensitivities of laser-induced breakdown spectroscopy are very practical for the online elemental analysis of boric acid and lithium hydroxide serving as neutron absorber and pH controller in the primary coolant water of pressurized water reactors, respectively.

  10. Exploring the Underlying Biophysics of Eukaryotic Plasma Membrane Asymmetry by Sum-Frequency Vibrational Spectroscopy

    Science.gov (United States)

    Conboy, John

    2010-03-01

    A central issue in molecular biology is the movement of lipids across the cellular membrane. The translocation of lipids is involved in cell apoptosis, the viral infection of living cells, the functioning of antibiotics, antiseptics and drugs, and the regulation and growth of cells. There have been a number of studies attempting to find the putative proteins responsive for lipid transbilayer movement in eukaryotic cells. This has led to a large number of theories about the mechanism of transbilayer movement of lipids in cellular systems and the physical process by which lipid compositional asymmetry in the plasma membrane of eukaryotic cells is maintained. Using methods of classical surface chemistry coupled with nonlinear optical methods, we have developed a novel analytical approach, using sum-frequency vibrational spectroscopy (SFVS), to selectively probe lipid compositional asymmetry in a planar supported lipid bilayer. This new method allows for the detection of lipid flip-flop kinetics and compositional asymmetry without the need for a fluorescent or spin-labeled lipid species. The effect of lipid composition, headgroup and fatty acid chemical structure, on the rate and thermodynamics of lipid transbilayer migration and the electrostatic induction of lipid asymmetry will be discussed.

  11. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.

    Science.gov (United States)

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, Stanislav; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-04-01

    A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

  12. X-ray imaging crystal spectroscopy for use in plasma transport research

    Science.gov (United States)

    Reinke, M. L.; Podpaly, Y. A.; Bitter, M.; Hutchinson, I. H.; Rice, J. E.; Delgado-Aparicio, L.; Gao, C.; Greenwald, M.; Hill, K.; Howard, N. T.; Hubbard, A.; Hughes, J. W.; Pablant, N.; White, A. E.; Wolfe, S. M.

    2012-11-01

    This research describes advancements in the spectral analysis and error propagation techniques associated with x-ray imaging crystal spectroscopy (XICS) that have enabled this diagnostic to be used to accurately constrain particle, momentum, and heat transport studies in a tokamak for the first time. Doppler tomography techniques have been extended to include propagation of statistical uncertainty due to photon noise, the effect of non-uniform instrumental broadening as well as flux surface variations in impurity density. These methods have been deployed as a suite of modeling and analysis tools, written in interactive data language (IDL) and designed for general use on tokamaks. Its application to the Alcator C-Mod XICS is discussed, along with novel spectral and spatial calibration techniques. Example ion temperature and radial electric field profiles from recent I-mode plasmas are shown, and the impact of poloidally asymmetric impurity density and natural line broadening is discussed in the context of the planned ITER x-ray crystal spectrometer.

  13. Improved Fast, Deep Record Length, Time-Resolved Visible Spectroscopy of Plasmas Using Fiber Grids

    Science.gov (United States)

    Brockington, S.; Case, A.; Cruz, E.; Williams, A.; Witherspoon, F. D.; Horton, R.; Klauser, R.; Hwang, D.

    2017-10-01

    HyperV Technologies is developing a fiber-coupled, deep record-length, low-light camera head for performing high time resolution spectroscopy on visible emission from plasma events. By coupling the output of a spectrometer to an imaging fiber bundle connected to a bank of amplified silicon photomultipliers, time-resolved spectroscopic imagers of 100 to 1,000 pixels can be constructed. A second generation prototype 32-pixel spectroscopic imager employing this technique was constructed and successfully tested at the University of California at Davis Compact Toroid Injection Experiment (CTIX). Pixel performance of 10 Megaframes/sec with record lengths of up to 256,000 frames ( 25.6 milliseconds) were achieved. Pixel resolution was 12 bits. Pixel pitch can be refined by using grids of 100 μm to 1000 μm diameter fibers. Experimental results will be discussed, along with future plans for this diagnostic. Work supported by USDOE SBIR Grant DE-SC0013801.

  14. Oxygen diluted hexamethyldisiloxane plasmas investigated by means of in situ infrared absorption spectroscopy and mass spectrometry

    Science.gov (United States)

    Magni, D.; Deschenaux, Ch; Hollenstein, Ch; Creatore, A.; Fayet, P.

    2001-01-01

    The gas phase species produced in rf plasmas of hexamethyldisiloxane (HMDSO), Si2O(CH3)6, diluted with oxygen, have been investigated. The complementarity of Fourier transform infrared absorption spectroscopy and mass spectrometry allows the determination of the most abundant neutral components present in the discharge. The measurements reveal that methyl groups (CH3), abundantly formed by the dissociation of the HMDSO molecule, are the precursor for the most abundant species which stem from two kinds of reaction. The first kind of reaction is combustion of CH3 by oxygen-producing formaldehyde (COH2), formic acid (CO2H2), carbon monoxide (CO), carbon dioxide (CO2) and water. It is shown that high mass carbonated radicals, such as SixOyCzHt, first diffuse to the surface and then the carbon is removed by oxygen etching to form CO2. The second is hydrocarbon chemistry promoted by CH3, producing mainly hydrogen (H2), methane (CH4) and acetylene (C2H2).

  15. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  16. Optical emission spectroscopy of OH lines in N2 and Ar plasma during the treatments of cotton fabric

    Science.gov (United States)

    Skoro, Nikola; Puac, Nevena; Spasic, Kosta; Malovic, Gordana; Gorjanc, Marija; Petrovic, Zoran Lj

    2016-09-01

    Low pressure non-equilibrium plasmas are proven to be irreplaceable tool in material processing. Among other fields their applications in treatments of textiles are still diversifying, but the main role of plasma is activation of the surface of treated sample. After, or during, the treatments these surfaces can be covered with different materials or species (such as microcapsules) that enhance properties of the fabric. In order to investigate mechanisms how active species from plasma interact with the cotton surface, we studied both plasma and surface properties. Bleached cotton samples were treated in low-pressure nitrogen and argon plasma in a chamber with parallel-plate electrodes. The effect of the plasma treatment on the cotton samples was investigated with the colorimetric measurements on dyes absorption by a spectrophotometer. Optical emission spectroscopy was performed by using spectrometer with a sensitive CCD camera. We have recorded the evolution of the maximum of the intensity of OH and N2 second positive band lines. Measurement were done with and without samples in the chamber and comparison between the lines intensity was made. The parameters for optimal plasma treatment conditions were determined. Research supported by the MESTD, projects III41011 and ON171037.

  17. Calibration-free laser-induced breakdown spectroscopy for ...

    Indian Academy of Sciences (India)

    LIBS) for quantitative analysis of materials, illustrated by CF-LIBS applied to a brass sample of known composition, is presented in this paper. The LIBS plasma is produced by a 355 nm pulsed Nd:YAG laser with a pulse duration of 6 ns focussed ...

  18. Laser-induced breakdown spectroscopy of dental lesions: diagnostic and therapeutic monitoring tool

    Science.gov (United States)

    Borisova, Ekaterina; Uzunov, Tzonko; Penev, Dimitar; Genova, Tsanislava; Avramov, Latchezar

    2016-01-01

    The carious decay develops a tiny area of demineralization on the enamel, which could be detected by element analytic techniques such as laser-induced breakdown spectroscopy (LIBS). That demineralization can quickly turn into a large lesion inside the tooth, it is often discovered too late to prevent the kind of decay that leads to cavities. The same optical LIBS detection approach could be used for monitoring of the caries removal using laser ablation or drilling techniques. For LIBS measurements we applied LIBS 2500Plus (Ocean Optics Inc., Dunedin, USA) system, which consists of seven spectrometric channels, covering spectral region from 200 to 980 nm, which optical resolution 0,05 nm, the spectrometers are connected with sample fiber bundle for 7-channels spectral system to the chamber for solid and liquid samples, Q-switched Nd:YAG laser, at 1 064 nm, with energy per pulse - 40 mJ, which is applied to induce plasma in the samples. LIBS spectra were obtained after single shot of the laser in the region of pathology. Samples investigated by LIBS are extracted teeth from patients, with periodontal problems on different stage of carious lesions, and their LIBS spectra are compared with the LIBS signals obtained from normal enamel and dentine tissues to receive complete picture of the carious lesion development. The major line of our investigations is related to the development of a methodology for real-time optical feedback control during selective ablation of tooth tissues using LIBS. Tooth structures, with and without pathological changes, are compared and their LIBS element analysis is used to differentiate major changes, which occur during tooth carious process and growth.

  19. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

    Science.gov (United States)

    Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N

    2018-01-01

    A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

  20. Laser-induced breakdown spectroscopy for in situ qualitative and quantitative analysis of mineral ores

    Energy Technology Data Exchange (ETDEWEB)

    Pořízka, P. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61669 Brno (Czech Republic); Demidov, A. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61669 Brno (Czech Republic); Keivanian, J. [Institute for Mining, Technical University Clausthal, Erzstraße 18, 38678 Clausthal-Zellerfeld (Germany); Gornushkin, I. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Panne, U. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Chemistry Department, Humboldt Univerisät zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin (Germany); Riedel, J., E-mail: jens.riedel@bam.de [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany)

    2014-11-01

    In this work, the potential of laser-induced breakdown spectroscopy (LIBS) for discrimination and analysis of geological materials was examined. The research was focused on classification of mineral ores using their LIBS spectra prior to quantitative determination of copper. Quantitative analysis is not a trivial task in LIBS measurement because intensities of emission lines in laser-induced plasmas (LIP) are strongly affected by the sample matrix (matrix effect). To circumvent this effect, typically matrix-matched standards are used to obtain matrix-dependent calibration curves. If the sample set consists of a mixture of different matrices, even in this approach, the corresponding matrix has to be known prior to the downstream data analysis. For this categorization, the multielemental character of LIBS spectra can be of help. In this contribution, a principal component analysis (PCA) was employed on the measured data set to discriminate individual rocks as individual matrices against each other according to their overall elemental composition. Twenty-seven igneous rock samples were analyzed in the form of fine dust, classified and subsequently quantitatively analyzed. Two different LIBS setups in two laboratories were used to prove the reproducibility of classification and quantification. A superposition of partial calibration plots constructed from the individual clustered data displayed a large improvement in precision and accuracy compared to the calibration plot constructed from all ore samples. The classification of mineral samples with complex matrices can thus be recommended prior to LIBS system calibration and quantitative analysis. - Highlights: • Twenty seven igneous rocks were measured on different LIBS systems. • Principal component analysis (PCA) was employed for classification. • The necessity of the classification of the rock (ore) samples prior to the quantification analysis is stressed. • Classification based on the whole LIP spectra and

  1. Laser induced spectroscopy breakdown (LIBS) application to heavy metal detection in soils

    International Nuclear Information System (INIS)

    Barbini, R.; Fantoni, R.; Palucci, A.; Ribezzo, S.; Colao, F.; Capitelli, F.

    2000-01-01

    LIBS (Laser induced breakdown spectroscopy) is a new spectroscopic technique suitable to the use in the analysis of samples of environmental interest, such as soils and rocks, and of industrial interest, such as alloys. Results dealing with the application of the technique to heterogeneous soil samples certified by Ispra Joint Research Centre in the contest of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) with an agronomical interest are presented in this report. In the LIBS technique, a high power laser beam is focused onto the sample in order to generate a small volume of plasma at its surface. Emissions from single atomic species are collected by a lens system coupled to an optical fiber bundle, dispersed on a monochromator and analyzed by an iCCD. the identification and the assignment of emission lines relevant to single atomic species allows to determine the sample elemental composition and, after calibration against reference samples, to perform quantitative analysis for a large number of species. This technique requires no sample pre-treatment, a part from eventually compacting powders by mechanical press. This is a considerable advantage with respect to traditional spectroscopic techniques, such as the ICP (Inductively Coupled Plasma) which needs sample mineralization by acid attack. Measurements performed on soil samples by means of the LIBS technique at ENEA Frascati were compared with the results obtained by ICP, which is considered a traditional technique for this kind of analysis. Results showed a general overestimation of the LIBS values with respect to the ICP ones, probably due to differences in lytologic matrix between the analyzed samples and the standard. The phenomenon is usually referred to the matrix effect, which is held responsible for the deviation from linearity between single element concentration and its row intensity. The effect is due to local plasma density variations and limit the correlation between the plasma elemental composition

  2. Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.

    2017-09-01

    Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.

  3. Spectroscopy stepping stones

    International Nuclear Information System (INIS)

    Hammer, M.R.; Sturman, B.T.

    2003-01-01

    Determining the elemental composition of samples has long been a basic task of analytical science. Some very powerful and convenient approaches are based on the wavelength-specific absorption or emission of light by gas-phase atoms. Techniques briefly described as examples of analytical atomic spectrometry include atomic emission and absorption spectroscopy, inductively coupled plasma emission and mass spectroscopy and laser induced breakdown spectrometry

  4. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings

    OpenAIRE

    Cheng, Chung-Chieh; Wright, E. M.; Moloney, J. V.

    2000-01-01

    We present a model that elucidates the physics underlying the generation of an electromagnetic pulse from a femtosecond laser induced plasma channel. The radiation pressure force from the laser pulse spatially separates the ionized electrons from the heavier ions and the induced dipole moment subsequently oscillates at the plasma frequency and radiates an electromagnetic pulse.

  5. Induced magnetic-field effects in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Cohen, R.H.; Rognlien, T.D.

    1995-01-01

    In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday's law. We previously determined that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here we calculate the electron density including both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. We calculate the potential required to establish a constant electron density, and compare with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest

  6. Construction and surface/interface behavior of bio-functional surface layer by microwave-excited Ar/H2O plasma-induced polyethylene glycol polymerization

    Science.gov (United States)

    Shao, Z.; Ogino, A.; Nagatsu, M.

    2017-07-01

    Ar/H2O microwave-excited surface-wave plasma-induced grafting-polymerization and crosslinking technique was presented to construct a bio-functional surface layer. Optical emission spectroscopy was used to diagnose Ar/H2O plasma. The surface/interface behavior especially the aging effect of hydroxyl groups over the grafted PEG spacer layer was investigated by measuring water contact angle and X-ray photoelectron spectroscopy. The results demonstrate that the addition of water vapor into Ar plasma can optimize the concentration of hydroxyl functional groups on surface; grafted PEG spacer layer can provide a long-term hydrophilicity of PU films, and alleviate the aging effect of hydroxyl functional groups.

  7. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... Full Length Research Paper. Determination of lactic acid bacteria in Kaşar cheese and identification by Fourier transform infrared (FTIR) spectroscopy. İlkay Turhan1* and Zübeyde Öner2. 1Department of Nutrition and Dietetic, School of Health Sciences, T.C.Istanbul Arel University, 34537 Buyukcekmece /.

  8. Photoluminescence and Terahertz Emission from Femtosecond Laser-Induced Plasma Channels

    Science.gov (United States)

    Hoyer, W.; Knorr, A.; Moloney, J. V.; Wright, E. M.; Kira, M.; Koch, S. W.

    2005-03-01

    Luminescence as a mechanism for terahertz emission from femtosecond laser-induced plasmas is studied. By using a fully microscopic theory, Coulomb scattering between electrons and ions is shown to lead to luminescence even for a spatially homogeneous plasma. The spectral features introduced by the rod geometry of laser-induced plasma channels in air are discussed on the basis of a generalized mode-function analysis.

  9. Inductively coupled plasma-atomic emission spectroscopy glovebox assembly system at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-01-01

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ''cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  10. Inductively coupled plasma -- Atomic emission spectroscopy glove box assembly system at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-12-17

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ``cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation

  11. Study on Laser Induced Plasma Produced in Liquid

    International Nuclear Information System (INIS)

    Tsuda, N.; Yamada, J.

    2003-01-01

    When an intense laser light is focused in liquid, a hot plasma is produced at the focal spot. The breakdown threshold and the transmittance of sodium choroids solution are observed using excimer laser or YAG laser. The breakdown threshold decreases with increasing NaCl concentration. Threshold intensity of plasma produced by YAG laser is lower than excimer laser. The behavior of plasma development is observed by a streak camera. The plasma produced by a YAG laser develops only backward. However, the plasma produced by excimer laser develops not only backward but also forward same as the plasma development in high-pressure gases

  12. Transcutaneous monitoring of steroid-induced osteoporosis with Raman spectroscopy

    Science.gov (United States)

    Maher, Jason R.; Inzana, Jason; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2012-01-01

    Although glucocorticoids are among the most frequently prescribed anti-inflammatory agents used in the treatment of rheumatoid arthritis, extended exposure to this steroid hormone is the leading cause of iatrogenic osteoporosis. Recently, Raman spectroscopy has been utilized to exploit biochemical differences between osteoporotic and normal bones in order to predict fracture risk. In this presentation, we report the results of ongoing research in our laboratory towards the clinical translation of this technique. We will discuss strategies for the transcutaneous acquisition of spectra from the tibiae of mice that are of sufficient quality to generate accurate predictions of fracture risk.

  13. Intensity ratios of H lines: departures from the ideal conditions in the range of laser-induced breakdown spectroscopy experiments.

    Science.gov (United States)

    Cruzado, A; Di Rocco, H O

    2007-10-01

    In the present paper we analyze the behavior of H line intensity ratios with electron density and electron temperature in intermediate-density plasmas. We analyze the influence on the line intensity ratios of (1) the departures from local thermodynamic equilibrium (LTE) of the level population ratios, (2) the plasma opacity, and (3) the lowering of the ionization potential. We look, particularly, at the lines H(alpha), H(beta), H(gamma), and H(delta) and the energy levels involved in the corresponding atomic transitions for their use as diagnostics in laser-induced breakdown spectroscopy (LIBS) experiments. One important conclusion is that, for typical values of the plasma dimension and the electron temperature taking place in LIBS, i.e., L = 1 mm and T(e) = 10 000 K, respectively, the intensity ratios H(beta)/H(alpha), H(gamma)/H(alpha), and H(delta)/H(alpha) depart from the ideal values by less than 10% in the interval 0.65 x 10(14) part/cm(3) gas of pure Hydrogen. For Higher densities, the departures from ideal conditions increase very quickly due to opacity effects.

  14. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H3+ -dominated plasma

    International Nuclear Information System (INIS)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-01-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H 3 + -dominated plasma at temperatures in the range 77–200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H 3 + on a relative population of para-H 2 in a source H 2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H 3 + ions with electrons in the afterglow plasma and for the design of sources of H 3 + ions in a specific nuclear spin state. (paper)

  15. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H_3^+ -dominated plasma

    Science.gov (United States)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-04-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H_3^+ -dominated plasma at temperatures in the range 77-200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H_3^+ on a relative population of para-H2 in a source H2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H_3^+ ions with electrons in the afterglow plasma and for the design of sources of H_3^+ ions in a specific nuclear spin state.

  16. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perring, Loic; Basic-Dvorzak, Marija [Department of Quality and Safety Assurance, Nestle Research Centre, P.O. Box 44, Vers chez-les-Blanc, 1000, Lausanne (Switzerland)

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99{+-}5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. (orig.)

  17. Copper Determination in Gunshot Residue by Cyclic Voltammetric and Inductive Coupled Plasma-Optical Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mohd Hashim Nurul’Afiqah Hashimah

    2016-01-01

    Full Text Available Analysis of gunshot residue (GSR is a crucial evidences for a forensic analyst in the fastest way. GSR analysis insists a suitable method provides a relatively simple, rapid and precise information on the spot at the crime scene. Therefore, the analysis of Cu(II in GSR using cyclic voltammetry (CV on screen printed carbon electrode (SPCE is a better choice compared to previous alternative methods such as Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES those required a long time for analysis. SPCE is specially designed to handle with microvolumes of sample such as GSR sample. It gives advantages for identification of copper in GSR on-site preliminary test to prevent the sample loss on the process to be analyzed in the laboratory. SPCE was swabbed directly on the shooter’s arm immediately after firing and acetate buffer was dropped on SPCE before CV analysis. For ICP-OES analysis, cotton that had been soaked in 0.5 M nitric acid was swabbed on the shooter’s arm immediately after firing and kept in a tightly closed sampling tube. Gold coated SPCE that had been through nanoparticles modification exhibits excellent performance on voltammograms. The calibration was linear from 1 to 50 ppm of copper, the limit of detection for copper was 0.3 ppm and a relative standard deviation was 6.1 %. The method was successfully applied to the determination of copper in GSR. The Cu determination on SPCE was compared and validated by ICP-OES method with 94 % accuracy.

  18. A portable blood plasma clot micro-elastometry device based on resonant acoustic spectroscopy.

    Science.gov (United States)

    Krebs, C R; Li, Ling; Wolberg, Alisa S; Oldenburg, Amy L

    2015-07-01

    Abnormal blood clot stiffness is an important indicator of coagulation disorders arising from a variety of cardiovascular diseases and drug treatments. Here, we present a portable instrument for elastometry of microliter volume blood samples based upon the principle of resonant acoustic spectroscopy, where a sample of well-defined dimensions exhibits a fundamental longitudinal resonance mode proportional to the square root of the Young's modulus. In contrast to commercial thromboelastography, the resonant acoustic method offers improved repeatability and accuracy due to the high signal-to-noise ratio of the resonant vibration. We review the measurement principles and the design of a magnetically actuated microbead force transducer applying between 23 pN and 6.7 nN, providing a wide dynamic range of elastic moduli (3 Pa-27 kPa) appropriate for measurement of clot elastic modulus (CEM). An automated and portable device, the CEMport, is introduced and implemented using a 2 nm resolution displacement sensor with demonstrated accuracy and precision of 3% and 2%, respectively, of CEM in biogels. Importantly, the small strains (<0.13%) and low strain rates (<1/s) employed by the CEMport maintain a linear stress-to-strain relationship which provides a perturbative measurement of the Young's modulus. Measurements of blood plasma CEM versus heparin concentration show that CEMport is sensitive to heparin levels below 0.050 U/ml, which suggests future applications in sensing heparin levels of post-surgical cardiopulmonary bypass patients. The portability, high accuracy, and high precision of this device enable new clinical and animal studies for associating CEM with blood coagulation disorders, potentially leading to improved diagnostics and therapeutic monitoring.

  19. Silver jewelry microanalysis with dual-pulse laser-induced breakdown spectroscopy: 266 + 1064 nm wavelength combination.

    Science.gov (United States)

    Mo, Junyu; Chen, Yuqi; Li, Runhua

    2014-11-01

    Orthogonal dual-wavelength dual-pulse laser-induced breakdown spectroscopy (ODWDP-LIBS) with 266+1064  nm wavelength combination was applied to realize silver jewelry microanalysis with enhanced sensitivity and minimal sample ablation. In this technique, the 266 nm laser with low pulse energy was selected as ablation laser and the time-delayed 1064 nm laser with moderate pulse energy was selected as reheating laser to enhance plasma emission. Significant signal enhancement was achieved under the excitation of the reheating laser without increasing mass ablation which was only determined by the ablation laser. Internal standard method was applied to realize quantitative analysis of copper impurity in silver jewelry samples. The calibration curve was built, and the limit of detection of copper in silver matrix was determined to be 37.4 ppm when the crater diameter was controlled at 6.5 μm. This technique is especially useful for microanalysis of precious samples due to the property of less sample ablation in comparison with single-pulse laser-induced breakdown spectroscopy (SP-LIBS) under the same analytical sensitivity.

  20. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    Science.gov (United States)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  1. Label-Free Optical Detection of Acute Myocardial Infarction Based on Blood Plasma Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    Chen, Y. X.; Chen, M. W.; Lin, J. Y.; Lai, W. Q.; Huang, W.; Chen, H. Y.; Weng, G. X.

    2016-11-01

    This study is intended to explore the potential of silver (Ag) nanoparticle-based plasma surface-enhanced Raman spectroscopy (SERS) for providing a rapid and simple "Yes/No" assessment to detect acute myocardial infarction (AMI). A simple, rapid, and accurate method of diagnosing AMI is critical to reduce mortality and improve prognosis. Techniques such as electrocardiography examination and use of cardiac troponins have not yet met the current clinical need. Therefore, alternative approaches need to be developed. Plasma samples from 32 patients with AMI and 32 healthy control (Clt) subjects were assessed. Multivariate statistical techniques, including principal component (PC) analysis and linear discriminant analysis (PCA-LDA), were employed to develop a diagnostic algorithm for differentiating between patients with AMI and Clt subjects. Furthermore, the receiver operating characteristic was tested to evaluate the performance of the PCA-LDA algorithm for AMI detection. Each plasma sample was mixed with an equal volume of Ag colloidal solution, and the SERS measurement of each plasma sample was performed. The plasma SERS spectrum showed much stronger and sharper peaks compared with the normal Raman spectrum. Tentative assignments of Raman spectroscopy bands showed specific biomolecular (e.g., proteins, adenosine, adenine, and uric acid) changes. PC analysis and LDA were employed to discriminate patients with AMI from Clt subjects, yielding a sensitivity of 87.5% and a specificity of 93.8%. The findings of this study suggest that plasma SERS has a great potential for improving AMI in the future, and this will certainly reduce the difficulty, time to draw blood, and patients' pain to a great extent.

  2. High repetition rate laser induced fluorescence applied to Surfatron Induced Plasmas

    Science.gov (United States)

    van der Mullen, J. J. A. M.; Palomares, J. M.; Carbone, E. A. D.; Graef, W.; Hübner, S.

    2012-05-01

    The reaction kinetics in the excitation space of Ar and the conversion space of Ar-molecule mixtures are explored using a combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable Surfatron Induced Plasma set-up. Applying the method of Saturation Time Resolved Laser Induced Fluorescence (SaTiRe-LIF), we could trace excitation and conversion channels and determine rates of electron and heavy particle excitation kinetics. The time resolved density disturbances observed in the Ar excitation space, which are initiated by the laser, reveal the excitation channels and corresponding rates; responses of the molecular radiation in Ar-molecule mixtures corresponds to the presence of conversion processes induced by heavy particle excitation kinetics.

  3. Calibration approach for extremely variable laser induced plasmas and a strategy to reduce the matrix effect in general

    Science.gov (United States)

    Lazic, V.; De Ninno, A.

    2017-11-01

    The laser induced plasma spectroscopy was applied on particles attached on substrate represented by a silica wafer covered with a thin oil film. The substrate itself weakly interacts with a ns Nd:YAG laser (1064 nm) while presence of particles strongly enhances the plasma emission, here detected by a compact spectrometer array. Variations of the sample mass from one laser spot to another exceed one order of magnitude, as estimated by on-line photography and the initial image calibration for different sample loadings. Consequently, the spectral lines from particles show extreme intensity fluctuations from one sampling point to another, between the detection threshold and the detector's saturation in some cases. In such conditions the common calibration approach based on the averaged spectra, also when considering ratios of the element lines i.e. concentrations, produces errors too large for measuring the sample compositions. On the other hand, intensities of an analytical and the reference line from single shot spectra are linearly correlated. The corresponding slope depends on the concentration ratio and it is weakly sensitive to fluctuations of the plasma temperature inside the data set. A use of the slopes for constructing the calibration graphs significantly reduces the error bars but it does not eliminate the point scattering caused by the matrix effect, which is also responsible for large differences in the average plasma temperatures among the samples. Well aligned calibration points were obtained after identifying the couples of transitions less sensitive to variations of the plasma temperature, and this was achieved by simple theoretical simulations. Such selection of the analytical lines minimizes the matrix effect, and together with the chosen calibration approach, allows to measure the relative element concentrations even in highly unstable laser induced plasmas.

  4. Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z.; Stewart, Arthur J.; Gwinn, Kimberley D.; Waller, John C.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by inductively coupled plasma (ICP) mass spectrometry (MS). Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni, and Zn) were measured by both techniques at concentrations great enough for a reliable comparison. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typically achieved using ICP MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.

  5. Can the provenance of the conflict minerals columbite and tantalite be ascertained by laser-induced breakdown spectroscopy?

    Science.gov (United States)

    Harmon, Russell S; Shughrue, Katrina M; Remus, Jeremiah J; Wise, Michael A; East, Lucille J; Hark, Richard R

    2011-07-01

    Conflict minerals is a term applied to ores mined in conditions of armed conflict and human rights abuse. Niobium and tantalum are two rare metals whose primary natural occurrence is in the complex oxide minerals columbite and tantalite, the ore of which is commonly referred to as coltan. The illicit export of coltan ore from the Democratic Republic of the Congo is thought to be responsible for financing the ongoing civil conflicts in this region. Determining the chemical composition of an ore is one of the means of ascertaining its provenance. Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different geographic sources for a mineral because the LIBS plasma emission spectrum provides the complete chemical composition (i.e., "chemical fingerprint") of any material in real time. To test this idea for columbite-tantalite, three sample sets were analyzed. Partial least squares discriminant analysis (PLSDA) allows correct sample-level geographic discrimination at a success rate exceeding 90%.

  6. Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements.

    Science.gov (United States)

    Laserna, J J; Reyes, R Fernández; González, R; Tobaria, L; Lucena, P

    2009-06-08

    We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.

  7. On-line determination of nanometric and sub-micrometric particle physicochemical characteristics using spectral imaging-aided Laser-Induced Breakdown Spectroscopy coupled with a Scanning Mobility Particle Sizer

    Science.gov (United States)

    Amodeo, Tanguy; Dutouquet, Christophe; Le Bihan, Olivier; Attoui, Michel; Frejafon, Emeric

    2009-10-01

    Laser-Induced Breakdown Spectroscopy has been employed to detect sodium chloride and metallic particles with sizes ranging from 40 nm up to 1 µm produced by two different particle generators. The Laser-Induced Breakdown Spectroscopy technique combined with a Scanning Mobility Particle Sizer was evaluated as a potential candidate for workplace surveillance in industries producing nanoparticle-based materials. Though research is still currently under way to secure nanoparticle production processes, the risk of accidental release is not to be neglected. Consequently, there is an urgent need for the manufacturers to have at their command a tool enabling leak detection in-situ and in real time so as to protect workers from potential exposure. In this context, experiments dedicated to laser-induced plasma particle interaction were performed. To begin with, spectral images of the laser-induced plasma vaporizing particles were recorded to visualize the spatio-temporal evolution of the atomized matter and to infer the best recording parameters for Laser-Induced Breakdown Spectroscopy analytical purposes, taking into account our experimental set-up specificity. Then, on this basis, time-resolved spectroscopic measurements were performed to make a first assumption of the Laser-Induced Breakdown Spectroscopy potentialities. Particle size dependency on the LIBS signal was examined. Repeatability and limits of detection were assessed and discussed. All the experiments carried out with low particle concentrations point out the high time delays corresponding to the Laser-Induced Breakdown Spectroscopy signal emergence. Plasma temperature temporal evolution was found to be a key parameter to explain this peculiarity inherent to laser/plasma/particle interaction.

  8. Surface ion implantation induced by laser-generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Giuffrida, L.; Torrisi, L.; Gammino, S.; Wolowski, J.; Ullschmied, Jiří

    2010-01-01

    Roč. 165, 6-10 (2010), s. 534-542 ISSN 1042-0150. [International Workshop on Pulsed Plasma Laser Ablation (PPLA)/4./. Monte Pieta, Messina, 18.06.2009-20.06.2009] Institutional support: RVO:61389021 Keywords : laser ablation * laser plasma * ion implantation * RBS analysis Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.660, year: 2010

  9. High-Density Plasma-Induced Etch Damage of GaN

    International Nuclear Information System (INIS)

    Baca, A.G.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-01-01

    Anisotropic, smooth etching of the group-III nitrides has been reported at relatively high rates in high-density plasma etch systems. However, such etch results are often obtained under high de-bias and/or high plasma flux conditions where plasma induced damage can be significant. Despite the fact that the group-III nitrides have higher bonding energies than more conventional III-V compounds, plasma-induced etch damage is still a concern. Attempts to minimize such damage by reducing the ion energy or increasing the chemical activity in the plasma often result in a loss of etch rate or anisotropy which significantly limits critical dimensions and reduces the utility of the process for device applications requiring vertical etch profiles. It is therefore necessary to develop plasma etch processes which couple anisotropy for critical dimension and sidewall profile control and high etch rates with low-damage for optimum device performance. In this study we report changes in sheet resistance and contact resistance for n- and p-type GaN samples exposed to an Ar inductively coupled plasma (ICP). In general, plasma-induced damage was more sensitive to ion bombardment energies as compared to plasma flux. In addition, p-GaN was typically more sensitive to plasma-induced damage as compared to n-GaN

  10. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium

    International Nuclear Information System (INIS)

    Senesi, G.S.; Dell'Aglio, M.; Gaudiuso, R.; De Giacomo, A.; Zaccone, C.; De Pascale, O.; Miano, T.M.; Capitelli, M.

    2009-01-01

    Soil is unanimously considered as one of the most important sink of heavy metals released by human activities. Heavy metal analysis of natural and polluted soils is generally conducted by the use of atomic absorption spectroscopy (AAS) or inductively coupled plasma optical emission spectroscopy (ICP-OES) on adequately obtained soil extracts. Although in recent years the emergent technique of laser-induced breakdown spectroscopy (LIBS) has been applied widely and with increasing success for the qualitative and quantitative analyses of a number of heavy metals in soil matrices with relevant simplification of the conventional methodologies, the technique still requires further confirmation before it can be applied fully successfully in soil analyses. The main objective of this work was to demonstrate that new developments in LIBS technique are able to provide reliable qualitative and quantitative analytical evaluation of several heavy metals in soils, with special focus on the element chromium (Cr), and with reference to the concentrations measured by conventional ICP spectroscopy. The preliminary qualitative LIBS analysis of five soil samples and one sewage sludge sample has allowed the detection of a number of elements including Al, Ca, Cr, Cu, Fe, Mg, Mn, Pb, Si, Ti, V and Zn. Of these, a quantitative analysis was also possible for the elements Cr, Cu, Pb, V and Zn based on the obtained linearity of the calibration curves constructed for each heavy metal, i.e., the proportionality between the intensity of the LIBS emission peaks and the concentration of each heavy metal in the sample measured by ICP. In particular, a triplet of emission lines for Cr could be used for its quantitative measurement. The consistency of experiments made on various samples was supported by the same characteristics of the laser-induced plasma (LIP), i.e., the typical linear distribution confirming the existence of local thermodynamic equilibrium (LTE) condition, and similar excitation

  11. A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rehse, Steven J.; Jeyasingham, Narmatha; Diedrich, Jonathan; Palchaudhuri, Sunil

    2009-05-01

    Nanosecond single-pulse laser-induced breakdown spectroscopy (LIBS) has been used to discriminate between two different genera of Gram-negative bacteria and between several strains of the Escherichia coli bacterium based on the relative concentration of trace inorganic elements in the bacteria. Of particular importance in all such studies to date has been the role of divalent cations, specifically Ca2+ and Mg2+, which are present in the membranes of Gram-negative bacteria and act to aggregate the highly polar lipopolysaccharide molecules. We have demonstrated that the source of emission from Ca and Mg atoms observed in LIBS plasmas from bacteria is at least partially located at the outer membrane by intentionally altering membrane biochemistry and correlating these changes with the observed changes in the LIBS spectra. The definitive assignment of some fraction of the LIBS emission to the outer membrane composition establishes a potential serological, or surface-antigen, basis for the laser-based identification. E. coli and Pseudomonas aeruginosa were cultured in three nutrient media: trypticase soy agar as a control, a MacConkey agar with a 0.01% concentration of bile salts including sodium deoxycholate, and a trypticase soy agar with a 0.4% deoxycholate concentration. The higher concentration of deoxycholate is known to disrupt bacterial outer membrane integrity and was expected to induce changes in the observed LIBS spectra. Altered LIBS emission was observed for bacteria cultured in this 0.4% medium and laser ablated in an all-argon environment. These spectra evidenced a reduced calcium emission and in the case of one species, a reduced magnesium emission. Culturing on the lower (0.01%) concentration of bile salts altered the LIBS spectra for both the P. aeruginosa and two strains of E. coli in a highly reproducible way, although not nearly as significantly as culturing in the higher concentration of deoxycholate did. This was possibly due to the accumulation

  12. Free energy in plasmas under wave-induced diffusion

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1993-05-01

    When waves propagate through a bounded plasma, the wave may be amplified or damped at the expense of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma diffusion in velocity and configuration space. In the absence of collisions, the rearrangement of the plasma conserves entropy, as large-grain structures are mixed and fine-grain structures emerge. The maximum extractable energy by waves so diffusing the plasma is a quantity of fundamental interest; it can be defined, but it is difficult to calculate. Through the consideration of specific examples, certain strategies for maximizing energy extraction are identified

  13. UV–vis spectroscopy study of plasma-activated water: Dependence of the chemical composition on plasma exposure time and treatment distance

    Science.gov (United States)

    Oh, Jun-Seok; Szili, Endre J.; Ogawa, Kotaro; Short, Robert D.; Ito, Masafumi; Furuta, Hiroshi; Hatta, Akimitsu

    2018-01-01

    Plasma-activated water (PAW) is receiving much attention in biomedical applications because of its reported potent bactericidal properties. Reactive oxygen and nitrogen species (RONS) that are generated in water upon plasma exposure are thought to be the key components in PAW that destroy bacterial and cancer cells. In addition to developing applications for PAW, it is also necessary to better understand the RONS chemistry in PAW in order to tailor PAW to achieve a specific biological response. With this in mind, we previously developed a UV–vis spectroscopy method using an automated curve fitting routine to quantify the changes in H2O2, NO2 ‑, NO3 ‑ (the major long-lived RONS in PAW), and O2 concentrations. A major advantage of UV–vis is that it can take multiple measurements during plasma activation. We used the UV–vis procedure to accurately quantify the changes in the concentrations of these RONS and O2 in PAW. However, we have not yet provided an in-depth commentary of how we perform the curve fitting procedure or its implications. Therefore, in this study, we provide greater detail of how we use the curve fitting routine to derive the RONS and O2 concentrations in PAW. PAW was generated by treatment with a helium plasma jet. In addition, we employ UV–vis to study how the plasma jet exposure time and treatment distance affect the RONS chemistry and amount of O2 dissolved in PAW. We show that the plasma jet exposure time principally affects the total RONS concentration, but not the relative ratios of RONS, whereas the treatment distance affects both the total RONS concentration and the relative RONS concentrations.

  14. Cross-sectional study of kidney stones by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Singh, V K; Rai, A K; Rai, P K; Jindal, P K

    2009-09-01

    We performed laser-induced breakdown spectroscopy (LIBS) for the in situ quantitative estimation of elemental constituents distributed in different parts of kidney stones obtained directly from patients by surgery. We did this by focusing the laser light directly on the center, shell, and surface of the stones to find the spatial distribution of the elements inside the stone. The elements detected in the stones were calcium, magnesium, manganese, copper, iron, zinc, strontium, sodium, potassium, carbon, hydrogen, nitrogen, oxygen, phosphorus, sulfur, and chlorine (Cl), etc. We optimized the LIBS signals by varying the laser energy from 10 mJ to 40 mJ to obtain the best signal-to-background and signal-to-noise ratios. We estimated the quantities of different elements in the stones by drawing calibration curves, plotting graphs of the analyte signal versus the absolute concentration of the elements in standard samples. The detection limits of the calibration curves were discussed. The concentrations of the different elements were found to be widely different in different stones found in different age groups of patients. It was observed that stones containing higher amounts of copper also possessed higher amounts of zinc. In general, the concentrations of trace elements present in the kidney stones decreased as we moved from center to shell and surface. Our results also revealed that the concentrations of elements present in the stones increased with the age of the patients. The results obtained from the calibration curves were compared with results from inductively coupled plasma mass spectrometry (ICP-MS). We also used the intensity ratios of different elemental lines to find the spatial distribution of different elements inside the kidney stones.

  15. [The auto-focusing remote laser-induced breakdown spectroscopy system].

    Science.gov (United States)

    Han, Zhen-yu; Pan, Cong-yuan; An, Ning; Du, Xue-wei; Yu, Yun-si; Du, Liang-liang; Wang, Sheng-bo; Wang, Qiu-ping

    2015-02-01

    The present paper presents an auto-focus laser-induced breakdown spectroscopy (LIBS) remote measuring system. This system contains a Schwarzschild telescope, which consists of a convex mirror and a concave mirror. The two spherical mirrors are coaxially placed. The convex mirror is mounted on a motorized linear translation stage. With this motorized linear translation stage, the convex mirror can move along the optical axis to change the spacing between the convex mirror and the concave mirror. Therefore the focal length can be adjusted to focus the laser on samples at different distances and collect the plasma spectra. The advantages of the telescope system include, firstly, the light path of laser focusing and spectra signal collection is the same, which make it easier for mounting and collimation; secondly, the light path of the telescope uses total reflection type, which is fit for the detection in ultra-violate region; finally, the telescope consists of only two spherical mirrors which are relatively easier to manufacture. Within the translation range of the motorized linear translation stage, the focal length of the telescope in this paper can be adjusted from 1.5 to 3.6 m. The diameter of the focusing spot varies from 0.5 to 1.0 mm. Utilizing this telescope system, LIBS experiments were conducted using copper sample. And the characteristic lines of Cu element (Cu I 223.01 nm, Cu I 224.43 nm) obtained are used for the auto focusing. By investigating the relation of the area of spectral lines covered and the spacing between the mirrors, the optimal laser focusing location was obtained. The LIBS experiment results show that the system functions well, fulfilling the demand of remote ablation of sample and LIBS spectral measuring, and the telescope is able to auto-focus the laser on samples at different position to perform remote LIBS experiment.

  16. Quantitative Soil Carbon Analysis with in Situ Laser-Induced Breakdown Spectroscopy by Multivariate Analysis

    Science.gov (United States)

    Harris, R. D.; Clegg, S. M.; Barefield, J. E.; Fessenden-Rahn, J. E.; Wiens, R. C.; Ebinger, M. H.

    2007-12-01

    The Earth's oceans, forests, agricultural lands and other natural areas absorb about half of the carbon dioxide emitted from anthropogenic sources. Terrestrial carbon sequestration strategies are immediately available to bridge the gap between current terrestrial sequestration capacity and high-capacity geologic sequestration projects available in 10 to 20 years. Terrestrial carbon sequestration strategies consist of implementing land management practices aimed at decreasing CO2 emitted into the atmosphere and developing advanced measurement tools to inventory and monitor carbon processes in soils and biota. Laser-Induced Breakdown Spectroscopy (LIBS) is one of the analytical tools used to determine the total soil carbon in samples within the Big Sky and Southwest Carbon Sequestration Regional Partnerships. LIBS involves focusing a Nd:YAG laser operating at 1064nm onto the surface of the sample. The laser ablates material from the surface, generating an expanding plasma containing electronically excited ions, atoms, and small molecules. As these electronically excited species relax back to the ground state, they emit light at wavelengths characteristic of the species present in the sample. Some of this emission is directed into one of three dispersive spectrometers. The experiments discussed in this paper were completed with a person portable LIBS instrument designed and built at Los Alamos National Laboratory that uses a Kigre Laser (25mJ/pulse) and an Ocean Optics HR2000 dispersive spectrometer. This instrument was used to probe samples collected from Illinois (no-till loam), Michigan (no-till clay), and North Dakota (reduced-till sand). A new multivariate analysis technique was employed to extract concentrations to 0.5%C with significantly greater statistical accuracy than conventional univariate techniques. These MVA techniques appear to completely compensate for these matrix effects because the analysis identifies the correlations between the spectra

  17. Wavelength dependence of laser induced breakdown spectroscopy (LIBS) on questioned document investigation.

    Science.gov (United States)

    Elsherbiny, Nany; Aied Nassef, O

    2015-07-01

    The fast and nearly non-destructive criteria of laser induced breakdown spectroscopy (LIBS) technique has been exploited for forensic purposes, specifically, document investigation. The dependence of the optical emission spectra of different black gel ink samples on the excitation laser wavelength, namely the visible wavelength at λ=532 nm and the IR wavelength at λ=1064 nm, was studied. The inks of thirty black gel-ink pens comprising ten brands were analyzed to determine the variation of the chemical composition of ink and to discriminate among them with minimum mass removal and minimum damage to the document's paper. Under the adopted experimental conditions, the ability of the visible LIBS to differentiate among the different ink samples was successful compared to IR LIBS at the same laser pulse energy (~25 mJ/pulse, laser fluence is ~1400J·cm(-2) for visible laser and ~1100J·cm(-2) for IR laser) which could be attributed to the IR absorption effects by the black ink. However, the visible LIBS produces deeper crater with respect to that produced by IR LIBS. Applying IR LIBS with higher pulse energy of ~87mJ (laser fluence is ~4100J·cm(-2)), identification and differentiation of the adopted samples was performed with producing a larger-diameter but superficial crater. The plasma parameters are discussed at the adopted experimental conditions. The results support the potential of LIBS technique using both the visible and IR lasers to be commercially developed for forensic document examination. Copyright © 2015 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Laser-Induced Breakdown Spectroscopy Technique in Identification of Ancient Ceramics Bodies and Glazes

    Science.gov (United States)

    Elsayed, Khaled; Imam, Hisham; Madkour, Fatma; Meheina, Galila; Gamal, Yosr

    2011-06-01

    In this paper we report a study on Laser Induced Breakdown Spectroscopy (LIBS) as a promising non-destructive technique for the identification of the colored glazes, and clay's bodies of Fatimid ceramics ancient artifacts. The scientific examination of ceramics may be helpful in unraveling the history of ancient shards, particularly as the process of its production such as firing condition and temperatures. The analysis of pottery, ceramic bodies and glazed coatings is required in order to structure the conservation or restoration of a piece. Revealing the technical skills of ancient potters has been one of the most important issues for gaining a deep insight of bygone culture and also it is required in order to structure the conservation or restoration of a piece of art. LIBS measurements were carried out by focusing a Nd-YAG laser at 1064 nm with pulse width of 10 ns and 50 mJ pulse energy on the surface of the sample by a 100-mm focal length lens. The plasma emission was collected by telescopic system and transferred through a fiber to Echelle spectrometer attached to an ICCD camera. The focal spot diameter is found to be in the range of 100-150 μm. which is small enough to consider this technique as a non-destructive technique. LIBS technique clarified that each piece of archaeological objects has its own finger print. X-ray diffraction (XRD) analysis was carried out on these archaeological ceramic body samples to study raw materials such as clays, which allowed the investigation of the crystal structure and showed the changes in its structure through firing process. This provided information on the ceramic characteristic and composition of the ceramic bodies.

  19. Rapid Analysis of Inorganic Species in Herbaceous Materials Using Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Emerson, Rachel M.

    2015-01-01

    Abstract Inorganic compounds in biomass, often referred to as ash, are known to be problematic in the thermochemical conversion of biomass to bio-oil or syngas and, ultimately, hydrocarbon fuels because they negatively influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. The most common ash-analysis methods, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS), require considerable time and expensive reagents. Laser-induced breakdown spectroscopy (LIBS) is emerging as a technique for rapid analysis of the inorganic constituents in a wide range of biomass materials. This study compares analytical results using LIBS data to results obtained from three separate ICP-OES/MS methods for 12 samples, including six standard reference materials. Analyzed elements include aluminum, calcium, iron, magnesium, manganese, phosphorus, potassium, sodium, and silicon, and results show that concentrations can be measured with an uncertainty of approximately 100 parts per million using univariate calibration models and relatively few calibration samples. These results indicate that the accuracy of LIBS is comparable to that of ICP-OES methods and indicate that some acid-digestion methods for ICP-OES may not be reliable for Na and Al. These results also demonstrate that germanium can be used as an internal standard to improve the reliability and accuracy of measuring many elements of interest, and that LIBS can be used for rapid determination of total ash in biomass samples. Key benefits of LIBS include little sample preparation, no reagent consumption, and the generation of meaningful analytical data instantaneously. PMID:26733765

  20. Effects of coupling efficiency on atomic spectrometry with a microwave-induced plasma

    International Nuclear Information System (INIS)

    Burns, B.A.

    1987-01-01

    The atmospheric-pressure, microwave-induced argon plasma from a TM 010 mode cavity is made nearly 100% efficient by matching the impedance of the generator to the impedance of the load. The impedance match is achieved by increasing the size of the coupling probe and by varying cavity permittivity and microwave probe position to lower the reflected power to nearly zero watts. The efficient microwave plasma is capable of operating with as little as 5 watts of power, producing plasma plumes of 16 cm in length when operated at 100 watts, reflecting almost no measurable power, and generating virtually no cavity heat. With plasma power known for all operating conditions, experiments were performed to help create a model for the efficient operation of the cavity at all input powers. This model was used to correlate the plasma electron density with plasma power for a further fundamental understanding of the microwave-induced plasma. The model for the efficient microwave plasma is related to the changes in cavity E-field intensity with changes in plasma electron production. The model describes the flow of power from the generator to the plasma and allows correlation of observed phenomena, i.e., plasma electron density and analyte emission intensity, with plasma power

  1. Proceedings of the eighth international colloquium on ultraviolet and x-ray spectroscopy of astrophysical and laboratory plasmas (IAU colloquium 86)

    International Nuclear Information System (INIS)

    1984-01-01

    This volume represents the Proceedings of the Eighth International Colloquium on Ultraviolet and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas. The aim of this series of colloquia has been to bring together workers in the fields of astrophysical spectroscopy, laboratory spectroscopy and atomic physics in order to exchange ideas and results on problems which are common to these different disciplines. In addition to the presented papers there was a poster paper session

  2. Proceedings of the eighth international colloquium on ultraviolet and x-ray spectroscopy of astrophysical and laboratory plasmas (IAU colloquium 86)

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This volume represents the Proceedings of the Eighth International Colloquium on Ultraviolet and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas. The aim of this series of colloquia has been to bring together workers in the fields of astrophysical spectroscopy, laboratory spectroscopy and atomic physics in order to exchange ideas and results on problems which are common to these different disciplines. In addition to the presented papers there was a poster paper session. (WRF)

  3. Solenoid for Laser Induced Plasma Experiments at Janus

    Science.gov (United States)

    Klein, Sallee; Leferve, Heath; Kemp, Gregory; Mariscal, Derek; Rasmus, Alex; Williams, Jackson; Gillespie, Robb; Manuel, Mario; Kuranz, Carolyn; Keiter, Paul; Drake, R.

    2017-10-01

    Creating invariant magnetic fields for experiments involving laser induced plasmas is particularly challenging due to the high voltages at which the solenoid must be pulsed. Creating a solenoid resilient enough to survive through large numbers of voltage discharges, enabling it to endure a campaign lasting several weeks, is exceptionally difficult. Here we present a solenoid that is robust through 40 μs pulses at a 13 kV potential. This solenoid is a vast improvement over our previously fielded designs in peak magnetic field capabilities and robustness. Designed to be operated at small-scale laser facilities, the solenoid housing allows for versatility of experimental set-ups among diagnostic and target positions. Within the perpendicular field axis at the center there is 300 degrees of clearance which can be easily modified to meet the needs of a specific experiment, as well as an f/3 cone for transmitted or backscattered light. After initial design efforts, these solenoids are relatively inexpensive to manufacture.

  4. Enhanced acceleration of injected electrons in a laser-beat-wave-induced plasma channel.

    Science.gov (United States)

    Tochitsky, S Ya; Narang, R; Filip, C V; Musumeci, P; Clayton, C E; Yoder, R B; Marsh, K A; Rosenzweig, J B; Pellegrini, C; Joshi, C

    2004-03-05

    Enhanced energy gain of externally injected electrons by a approximately 3 cm long, high-gradient relativistic plasma wave (RPW) is demonstrated. Using a CO2 laser beat wave of duration longer than the ion motion time across the laser spot size, a laser self-guiding process is initiated in a plasma channel. Guiding compensates for ionization-induced defocusing (IID) creating a longer plasma, which extends the interaction length between electrons and the RPW. In contrast to a maximum energy gain of 10 MeV when IID is dominant, the electrons gain up to 38 MeV energy in a laser-beat-wave-induced plasma channel.

  5. Analysis of laser-induced breakdown spectroscopy spectra: The case for extreme value statistics

    International Nuclear Information System (INIS)

    Michel, Anna P.M.; Chave, Alan D.

    2007-01-01

    In most instances, laser-induced breakdown spectroscopy (LIBS) spectra are obtained through analog accumulation of multiple shots in the spectrometer CCD. The average acquired in the CCD at a given wavelength is assumed to be a good representation of the population mean, which in turn is implicitly regarded to be the best estimator for the central value of the distribution of the spectrum at the same wavelength. Multiple analog accumulated spectra are taken and then in turn averaged wavelength-by-wavelength to represent the final spectrum. In this paper, the statistics of single-shot and analog accumulated LIBS spectra of both solids and liquids were examined to evaluate whether the spectrum averaging approach is statistically defensible. At a given wavelength, LIBS spectra are typically drawn from a Frechet extreme value distribution, and hence the mean of an ensemble of LIBS spectra is not necessarily an optimal summary statistic. Under circumstances that are broadly general, the sample mean for LIBS data is statistically inconsistent and the central limit theorem does not apply. This result appears to be due to very high shot-to-shot plasma variability in which a very small number of spectra are high in intensity while the majority are very weak, yielding the extreme value form of the distribution. The extreme value behavior persists when individual shots are analog accumulated. An optimal estimator in a well-defined sense for the spectral average at a given wavelength follows from the maximum likelihood method for the extreme value distribution. Example spectra taken with both an Echelle and a Czerny-Turner spectrometer are processed with this scheme to create smooth, high signal-to-noise summary spectra. Plasma imaging was used in an attempt to visually understand the observed variability and to validate the use of extreme value statistics. The data processing approach presented in this paper is statistically reliable and should be used for accurate

  6. Time-Resolved Quantum Cascade Laser Absorption Spectroscopy of Pulsed Plasma Assisted Chemical Vapor Deposition Processes Containing BCl3

    Science.gov (United States)

    Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen

    2011-08-01

    In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.

  7. Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation

    Science.gov (United States)

    Xiang, HE; Chong, LIU; Yachun, ZHANG; Jianping, CHEN; Yudong, CHEN; Xiaojun, ZENG; Bingyan, CHEN; Jiaxin, PANG; Yibing, WANG

    2018-02-01

    The capacitively coupled radio frequency (CCRF) plasma has been widely used in various fields. In some cases, it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma. In this paper, a glass vacuum chamber and a pair of plate electrodes were designed and fabricated, using 13.56 MHz radio frequency (RF) discharge technology to ionize the working gas of Ar. This discharge was mathematically described with equivalent circuit model. The discharge voltage and current of the plasma were measured at different pressures and different powers. Based on the capacitively coupled homogeneous discharge model, the equivalent circuit and the analytical formula were established. The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation. The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa, the average electron temperature is about 1.7–2.1 eV and the average electron density is about 0.5 × 1017–3.6 × 1017 m‑3. Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.

  8. Comparison of Nitric Oxide Concentrations in μs- and ns-Atmospheric Pressure Plasmas by UV Absorption Spectroscopy

    Science.gov (United States)

    Peters, F.; Hirschberg, J.; Mertens, N.; Wieneke, S.; Viöl, W.

    2016-04-01

    In this paper, an absorption spectroscopy measurement method was applied on two atmospheric pressure plasma sources to determine their production of nitric oxide. The concentrations are essential for evaluating the plasma sources based on the principle of the Dielectric Barrier Discharge (DBD) for applications in plasma medicine. The described method is based on a setup with an electrodeless discharge lamp filled with a mixture of oxygen and nitrogen. One of the emitted wavelengths is an important resonance wavelength of nitric oxide (λ = 226.2 nm). By comparing the absorption behaviour at the minimum and maximum of the spectral absorption cross section of nitric oxide around that wavelength, and measuring the change in intensity by the absorbing plasma, the concentration of nitric oxide inside the plasma can be calculated. The produced nitric oxide concentrations depend on the pulse duration and are in the range of 180 ppm to 1400 ppm, so that a distance of about 10cm to the respiratory tract is enough to conform to the VDI Guideline 2310.

  9. Analysis of magnesium and copper in aluminum alloys with high repetition rate laser-ablation spark-induced breakdown spectroscopy

    Science.gov (United States)

    He, Xiaoyong; Dong, Bo; Chen, Yuqi; Li, Runhua; Wang, Fujuan; Li, Jiaoyang; Cai, Zhigang

    2018-03-01

    In order to improve the analytical speed and performance of laser-ablation based atomic emission spectroscopy, high repetition rate laser-ablation spark-induced breakdown spectroscopy (HRR LA-SIBS) was first developed. Magnesium and copper in aluminum alloys were analyzed with this technique. In the experiments, the fundamental output of an acousto-optically Q-switched Nd:YAG laser operated at 1 kHz repetition rate with low pulse energy and 120 ns pulse width was used to ablate the samples and the plasma emission was enhanced by spark discharge. The spectra were recorded with a compact fiber spectrometer with non-intensified charge-coupled device in non-gating mode. Different parameters relative with analytical performance, such as capacitance, voltage, laser pulse energy were optimized. Under current experimental conditions, calibration curves of magnesium and copper in aluminum alloys were built and limits of detection of them were determined to be 14.0 and 9.9 ppm by HRR LA-SIBS, respectively, which were 8-12 folds better than that achieved by HRR LA under similar experimental condition without spark discharge. The analytical sensitivities are close to those obtained with conventional LIBS but with improved analytical speed as well as possibility of using compact fiber spectrometer. Under high repetition rate operation, the noise level can be decreased and the analytical reproducibility can be improved obviously by averaging multiple measurements within short time. High repetition rate operation of laser-ablation spark-induced breakdown spectroscopy is very helpful for improving analytical speed. It is possible to find applications in fast elements analysis, especially fast two-dimension elemental mapping of solid samples.

  10. Low temperature plasma technology methods and applications

    CERN Document Server

    Chu, Paul K

    2013-01-01

    Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induce

  11. Large potential change induced by pellet injection in JIPP T-IIU tokamak plasmas

    International Nuclear Information System (INIS)

    Hamada, Y.; Sato, K.N.; Sakakita, H.

    1995-05-01

    A large, rapid change in the local plasma potential is found to be induced by off-axis hydrogen ice-pellet injection into a tokamak plasma. The polarity of the rapid change is reversed when the pellet is injected into the upper and lower halves of the poloidal plasma cross-section. This change can be interpreted as being due to the gradient-B drift of particles in the high-density plasmas of the pellet cloud, before the increase of the plasma density due to the ablation becomes uniform on the magnetic surface. (author)

  12. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    Science.gov (United States)

    Kim, G. J.; Kim, W.; Kim, K. T.; Lee, J. K.

    2010-01-01

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  13. High-temperature laser induced spectroscopy in nuclear steam generators

    International Nuclear Information System (INIS)

    Allmon, W.E.; Berthold, J.W.

    1990-01-01

    This patent describes an apparatus for conducting optical spectroscopy in a hostile environment. It comprises: a source of high intensity light; an optical fiber connected to the source of high intensity light for transmitting light therefrom. The optical fiber having an end for discharging light onto a material to be spectroscopically analyzed; a sheath defining a space around at least a part of the optical fiber carrying the end of the optical fiber for shielding the optical fiber from the hostile environment; a window in the sheath for closing the space and for passing light transmitted through the end of the optical fiber out of the sheath; light detector means for detecting and spectroscopically analyzing emitted light from the material; an optical fiber means for transmitting the emitted light from the material to the light detector means; a standardization module for containing a sample having a known composition and being exposed to known temperature and pressure conditions; an additional optical fiber connected to the module for transmitting light to the sample in the module; multiplexer means; and additional optical fiber means for returning light from the module to the detector through the multiplexer means

  14. [Study of enhancement effect of laser-induced crater on plasma radiation].

    Science.gov (United States)

    Chen, Jin-Zhong; Zhang, Xiao-Ping; Guo, Qing-Lin; Su, Hong-Xin; Li, Guang

    2009-02-01

    Single pulses exported from high-energy neodymium glass laser were used to act on the same position of soil sample surface repeatedly, and the plasma emission spectra generated from sequential laser pulse action were collected by spectral recording system. The experimental results show that the laser-induced soil plasma radiation was enhanced continuously under the confinement effect of the crater walls, and the line intensities and signal-to-background ratios both had different improvements along with increasing the number of acting pulses. The photographs of the plasma image and crater appearance were taken to study the plasma shape, laser-induced crater appearance, and the mass of the ablated sample. The internal mechanism behind that laser-induced crater enhanced plasma radiation was researched. Under the sequential laser pulse action, the forming plasma as a result enlarges gradually first, leading to distortion at the trail of plasma plume, and then, its volume diminishes slowly. And also, the color of the plasma changes from buff to white gradually, which implies that the temperature increases constantly. The laser-induced crater had a regular shape, that is, the diameter increased from its bottom to top gradually, thus forming a taper. The mass of the laser-ablated substance descends along with increasing the amount of action pulse. Atomization degree of vaporized substance was improved in virtue of the crater confinement effect, Fresnel absorption produced from the crater walls reflection, and the inverse bremsstrahlung, and the plasma radiation intensity was enhanced as a result.

  15. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy-Based Analysis of Lipid Components in Serum/Plasma of Patients with Duchenne Muscular Dystrophy (DMD).

    Science.gov (United States)

    Srivastava, Niraj Kumar

    2018-01-01

    Proton nuclear magnetic resonance spectroscopy ( 1 H NMR) is a useful tool for the analysis of lipid components in biofluids such as serum/plasma. Such tool is applied for the analysis of lipid components in serum/plasma of patients with Duchenne muscular dystrophy (DMD). The practical approach of sampling, storage, lipid extraction procedure, sample preparation before performing the 1 H NMR spectroscopy experiments is presented. All the experimental parameters of NMR spectroscopy are also described. Details of the assignments of lipid components (qualitative analysis) and quantification of particular lipid components (quantitative analysis) are explained.

  16. Speciation of actinides in aqueous solution by time-resolved laser-induced fluorescence spectroscopy (TRLFS)

    International Nuclear Information System (INIS)

    Kimura, Takaumi; Kato, Yoshiharu; Meinrath, G.; Yoshida, Zenko; Choppin, G.R.

    1995-01-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) as a sensitive and selective method has been applied to the speciation of actinides in aqueous solution. Studies on hydrolysis and carbonate complexation of U(VI) and on determination of hydration number of Cm(III) are reported. (author)

  17. Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Junjuri, R.; Myakalwar, A.K.; Gundawar, M.K.

    2017-01-01

    Roč. 67, č. 6 (2017), s. 623-630 ISSN 0011-748X Institutional support: RVO:67985882 Keywords : Laser induced breakdown spectroscopy * Multivariate analysis * Principal component analysis * Explosive detection Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.500, year: 2016

  18. Detection of Potential Induced Degradation in c-Si PV Panels Using Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Oprea, Matei-lon; Spataru, Sergiu; Sera, Dezso

    2016-01-01

    Impedance spectroscopy (IS) is an established characterization method in different electrical and chemical research areas, but not yet adopted as a commercial diagnostic tool for PV panels. This work, for the first time, proposes an IS based method for detecting potential-induced degradation (PID...

  19. Quantification of metals in preservatively-treated lumber using laser induced breakdown spectroscopy

    Science.gov (United States)

    Brad Gething; John Janowiak; Bob Falk

    2006-01-01

    The laser induced breakdown spectroscopy (LIBS) technique was evaluated for its capability of quantifying CCA in preservative-treated wood. The results of the study reveal that the LIBS technique can be used to predict the amount of preservative based on chromium peak analysis, but further refinement of the process is necessary before the technique is practiced. The...

  20. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy

    DEFF Research Database (Denmark)

    Rapin, W.; Bousquet, B.; Lasue, J.

    2017-01-01

    On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target...

  1. Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Junjuri, R.; Myakalwar, A.K.; Gundawar, M.K.

    2017-01-01

    Roč. 67, č. 6 (2017), s. 623-630 ISSN 0011-748X Institutional support: RVO:67985882 Keywords : Laser induced breakdown spectroscopy * Multivariate analysis * Principal component analysis * Explosive detection Subject RIV: JB - Sensors, Measurment, Regulation OBOR OECD: Electrical and electronic engineering Impact factor: 0.500, year: 2016

  2. A review of the development of portable laser induced breakdown spectroscopy and its applications

    Czech Academy of Sciences Publication Activity Database

    Rakovský, Jozef; Čermák, P.; Musset, O.; Veis, P.

    2014-01-01

    Roč. 101, NOV 2014 (2014), s. 269-287 ISSN 0584-8547 R&D Projects: GA ČR GA13-11635S Institutional support: RVO:61388955 Keywords : Fiber laser * Fieldable LIBS * Laser -induced breakdown spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.176, year: 2014

  3. Calculation and optimization of sample identification by laser induced breakdown spectroscopy via correlation analysis

    NARCIS (Netherlands)

    Lentjes, M.; Dickmann, K.; Meijer, J.

    2007-01-01

    Linear correlation analysis may be used as a technique for the identification of samples with a very similar chemical composition by laser induced breakdown spectroscopy. The spectrum of the “unknown” sample is correlated with a library of reference spectra. The probability of identification by

  4. Inductively coupled plasma-induced defects in n-type GaN studied from Schottky diode characteristics

    International Nuclear Information System (INIS)

    Nakamura, W.; Tokuda, Y.; Ueda, H.; Kachi, T.

    2006-01-01

    Inductively coupled plasma-(ICP-)induced defects in n-type GaN have been studied from current-voltage (I-V) characteristics and deep-level transient spectroscopy (DLTS) for Schottky diodes fabricated on etched surfaces. The samples after ICP etching show the ohmic I-V characteristics. Schottky characteristics are obtained after annealing at 600 and 800 deg. C in N 2 , but are not restored to that of the control samples. DLTS shows that the effect of ICP etching is small on the region beyond 80 nm from the surface. These results suggest that there remain ICP-induced damage in the near-surface region after thermal annealing

  5. Determination of the electron energy distribution function of a low temperature plasma from optical emission spectroscopy

    International Nuclear Information System (INIS)

    Dodt, Dirk Hilar

    2009-01-01

    The experimental determination of the electron energy distribution of a low pressure glow discharge in neon from emission spectroscopic data has been demonstrated. The spectral data were obtained with a simple overview spectrometer and analyzed using a strict probabilistic, Bayesian data analysis. It is this Integrated Data Analysis (IDA) approach, which allows the significant extraction of non-thermal properties of the electron energy distribution function (EEDF). The results bear potential as a non-invasive alternative to probe measurements. This allows the investigation of spatially inhomogeneous plasmas (gradient length smaller than typical probe sheath dimensions) and plasmas with reactive constituents. The diagnostic of reactive plasmas is an important practical application, needed e.g. for the monitoring and control of process plasmas. Moreover, the experimental validation of probe theories for magnetized plasmas as a long-standing topic in plasma diagnostics could be addressed by the spectroscopic method. (orig.)

  6. Determination of the electron energy distribution function of a low temperature plasma from optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dodt, Dirk Hilar

    2009-01-05

    The experimental determination of the electron energy distribution of a low pressure glow discharge in neon from emission spectroscopic data has been demonstrated. The spectral data were obtained with a simple overview spectrometer and analyzed using a strict probabilistic, Bayesian data analysis. It is this Integrated Data Analysis (IDA) approach, which allows the significant extraction of non-thermal properties of the electron energy distribution function (EEDF). The results bear potential as a non-invasive alternative to probe measurements. This allows the investigation of spatially inhomogeneous plasmas (gradient length smaller than typical probe sheath dimensions) and plasmas with reactive constituents. The diagnostic of reactive plasmas is an important practical application, needed e.g. for the monitoring and control of process plasmas. Moreover, the experimental validation of probe theories for magnetized plasmas as a long-standing topic in plasma diagnostics could be addressed by the spectroscopic method. (orig.)

  7. Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements

    Directory of Open Access Journals (Sweden)

    R. A. Ganeev

    2013-01-01

    Full Text Available New findings in plasma harmonics studies using strong laser fields are reviewed. We discuss recent achievements in the growth of the efficiency of coherent extreme ultraviolet (XUV radiation sources based on frequency conversion of the ultrashort pulses in the laser-produced plasmas, which allowed for the spectral and structural studies of matter through the high-order harmonic generation (HHG spectroscopy. These studies showed that plasma HHG can open new opportunities in many unexpected areas of laser-matter interaction. Besides being considered as an alternative method for generation of coherent XUV radiation, it can be used as a powerful tool for various spectroscopic and analytical applications.

  8. Aqueous reactive species induced by a PCB surface micro-discharge air plasma device: a quantitative study

    Science.gov (United States)

    Chen, Chen; Li, Fanying; Chen, Hai-Lan; Kong, Michael G.

    2017-11-01

    This paper presents a quantitative investigation on aqueous reactive species induced by air plasma generated from a printed circuit board surface micro-discharge (SMD) device. Under the conditions amenable for proliferation of mammalian cells, concentrations of ten types of reactive oxygen and nitrogen species (RONS) in phosphate buffering solution (PBS) are measured by chemical fluorescent assays and electron spin resonance spectroscopy (ESR). Results show that concentrations of several detected RNS (NO2- , NO3- , peroxynitrites, and NO2\\centerdot ) are higher than those of ROS (H2O2, O2\\centerdot - , and 1O2) in the air plasma treated solution. Concentrations of NO3- can reach 150 times of H2O2 with 60 s plasma treatment. For short-lived species, the air plasma generates more copious peroxynitrite than other RONS including NO2\\centerdot , O2\\centerdot - , 1O2, and N{{O}\\centerdot } in PBS. In addition, the existence of reaction between H2O2 and NO2- /HNO2 to produce peroxynitrite is verified by the chemical scavenger experiments. The reaction relations between detected RONS are also discussed.

  9. Steroid-induced osteoporosis monitored by Raman spectroscopy

    Science.gov (United States)

    Maher, Jason R.; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2011-03-01

    Glucocorticoids are frequently used to treat inflammatory disorders such as rheumatoid arthritis. Unfortunately, extended exposure to this steroid is the leading cause of physician-induced osteoporosis, leaving patients susceptible to fractures at rates of 30-50%. In this presentation, we report correlations between Raman spectra and biomechanical strength tests on bones of glucocorticoid- and placebo- treated mice. Both wild-type mice and a transgenic model of rheumatoid arthritis have been studied. A two-way ANOVA model reveals statistically significant spectral differences as influenced by glucocorticoid treatment and mouse type.

  10. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, G. [Laboratoire d' Ingenierie de Surface, Centre de Recherche sur les Materiaux Avances, Departement de genie des mines, de la metallurgie et des materiaux, Universite Laval, 1065, avenue de la Medecine, Quebec G1V 0A6 (Canada); Centre de recherche du CHUQ, Hopital St Francois d' Assise, 10, rue de l' Espinay, local E0-165, Quebec G1L 3L5 (Canada); Vallade, J. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Agence de l' environnement et de la Ma Latin-Small-Letter-Dotless-I -carettrise de l' Energie, 20, avenue du Gresille, BP 90406, F-49004 Angers Cedex 01 (France); Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Nijnatten, P. van [OMT Solutions bv, High Tech Campus 9, 5656AE Eindhoven (Netherlands)

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  11. Cold plasma-induced modification of the dyeing properties of poly(ethylene terephthalate) fibers

    International Nuclear Information System (INIS)

    Raffaele-Addamo, Antonino; Selli, Elena; Barni, Ruggero; Riccardi, Claudia; Orsini, Francesco; Poletti, Giulio; Meda, Laura; Massafra, Maria Rosaria; Marcandalli, Bruno

    2006-01-01

    Surface modification of poly(ethylene terephthalate) (PET) fabrics induced by air radiofrequency (RF) plasma treatment has been investigated systematically as a function of plasma device parameters, to identify the plasma-polymer surface interactions prevailing under different operating conditions and leading to an increased color depth upon dyeing. Some tests have also been performed employing chemically inert argon as a feedstock gas. The dyeing properties of plasma-treated fibers were correlated to their topographical characteristics, determined by AFM analysis, and to their chemical surface composition, determined by XPS analysis, while the plasma-originated UV radiation was found to have no relevant effects in PET surface modification. The relative importance of plasma-induced surface processes, such as etching and grafting of polar species, is discussed in relation to their role in modifying PET dyeing properties

  12. Two-dimensional nanoparticle self-assembly using plasma-induced Ostwald ripening

    International Nuclear Information System (INIS)

    Tang, J; Photopoulos, P; Tsoukalas, D; Tserepi, A

    2011-01-01

    In this work, a novel Ag nanoparticle self-assembly process based on plasma-induced two-dimensional Ostwald ripening is demonstrated. Ag nanoparticles are deposited on p-doped Si substrates using a DC magnetron sputtering process. With the assistance of O 2 /Ar plasma treatment, different sizes and patterns of Ag nanoparticles are formed, due to the Ostwald ripening. The evolution of plasma-induced nanoparticle ripening is studied and a clear increase in particle size and a decrease in particle density are observed with increasing plasma treatment. From the experiments, it is concluded that the initial nanoparticle density and the plasma gas mixture (Ar/O 2 ratio) are important factors that affect the ripening process. The proposed plasma-directed Ag nanoparticle self-assembly provides a rapid method of tailoring the nanoparticle distribution on substrates, with potential applications in the fields of solar cells, biosensors, and catalysis.

  13. Standoff high energy laser induced oxidation spectroscopy (HELIOS)

    Science.gov (United States)

    Daigle, J.-F.; Pudo, D.; Théberge, F.

    2017-11-01

    High Energy Lasers (HELs) used for defense applications require operational distances ranging from few hundred meters to several kilometers. As the distance increases, the incident beam properties and, consequently, the anticipated effect delivered to the sample become less predictable. Therefore, the direct observation of the event induced by the laser can become an asset. In this paper, we propose a novel spectroscopic method that analyses in real time the spectral components present in the flames produced during the interaction of a HEL with a metallic piece at a long distance. This method was used on aluminum and carbon steel samples placed 200 m away from the laser system. It was discovered that the aluminum and iron oxides created as a by-product of the HEL reaction with the samples emitted clear fingerprint signatures that could be detected remotely using a spectroscopic receiver placed beside the HEL beam director. The real-time assessment of the laser-induced effect can be achieved by monitoring the temporal evolution of the oxide signatures, hence providing information to the operator about the reaction and the nature of the sample illuminated.

  14. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Paulino Florêncio de [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Centro de Tecnologia Canavieira, PO Box 162, 13400-970 Piracicaba, SP (Brazil); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, 09972-270, Diadema, SP (Brazil); Gustinelli Arantes de Carvalho, Gabriel; Nunes, Lidiane Cristina [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Silva Gomes, Marcos da [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Guerra, Marcelo Braga Bueno [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Krug, Francisco José, E-mail: fjkrug@cena.usp.br [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil)

    2013-05-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg{sup −1} Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm{sup −2} (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves). - Highlights: • This is the first application of LIBS for determination of Si in plant materials. • Data indicate that the method is appropriate for Si diagnosis in routine analysis. • Silicon can be simultaneously determined with macro- and

  15. Inductively Coupled Plasma-Induced Etch Damage of GaN p-n Junctions

    International Nuclear Information System (INIS)

    SHUL, RANDY J.; ZHANG, LEI; BACA, ALBERT G.; WILLISON, CHRISTI LEE; HAN, JUNG; PEARTON, S.J.; REN, F.

    1999-01-01

    Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl 2 /BCl 3 /Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions (≤ 500 W), pressures ≥2 mTorr, and at ion energies below approximately -275 V

  16. Inductively Coupled Plasma-Induced Etch Damage of GaN p-n Junctions

    Energy Technology Data Exchange (ETDEWEB)

    SHUL,RANDY J.; ZHANG,LEI; BACA,ALBERT G.; WILLISON,CHRISTI LEE; HAN,JUNG; PEARTON,S.J.; REN,F.

    1999-11-03

    Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl{sub 2}/BCl{sub 3}/Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions ({le} 500 W), pressures {ge}2 mTorr, and at ion energies below approximately -275 V.

  17. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  18. Least squares autoregressive (maximum entropy) spectral estimation for Fourier spectroscopy and its application to the electron cyclotron emission from plasma

    International Nuclear Information System (INIS)

    Iwama, N.; Inoue, A.; Tsukishima, T.; Sato, M.; Kawahata, K.

    1981-07-01

    A new procedure for the maximum entropy spectral estimation is studied for the purpose of data processing in Fourier transform spectroscopy. The autoregressive model fitting is examined under a least squares criterion based on the Yule-Walker equations. An AIC-like criterion is suggested for selecting the model order. The principal advantage of the new procedure lies in the enhanced frequency resolution particularly for small values of the maximum optical path-difference of the interferogram. The usefulness of the procedure is ascertained by some numerical simulations and further by experiments with respect to a highly coherent submillimeter wave and the electron cyclotron emission from a stellarator plasma. (author)

  19. First measurements of the temporal evolution of the plasma density in HiPIMS discharges using THz time domain spectroscopy

    Science.gov (United States)

    Meier, Steffen M.; Hecimovic, Ante; Tsankov, Tsanko V.; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2018-03-01

    In this paper, the novel technique of THz time domain spectroscopy has been applied to obtain time-resolved measurements of the plasma density in the active zone of a HiPIMS discharge with a titanium target. The obtained peak values are in the range of 1012-1013 cm-3 for discharge current densities of 1-4 A cm-2 at 0.5 and 2 Pa argon pressure. The measured densities show good correlation with the discharge current and voltage and the intensity of various atomic and ionic lines. The well known phases of the discharge have been identified and related to the variation of the electron density. The measurement results show that the plasma density remains nearly constant during the runaway/self-sputtering phase. Based on that, it is conjectured that singly charged titanium ions are the dominant ion species during this phase.

  20. Investigation of InP etching mechanisms in a Cl2/H2 inductively coupled plasma by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Gatilova, L.; Bouchoule, S.; Guilet, S.; Chabert, P.

    2009-01-01

    Optical emission spectroscopy (OES) has been used in order to investigate the InP etching mechanisms in a Cl 2 -H 2 inductively coupled plasma. The authors have previously shown that anisotropic etching of InP could be achieved for a H 2 percentage in the 35%-45% range where the InP etch rate also presents a local maximum [J. Vac. Sci. Technol. B 24, 2381 (2006)], and that anisotropic etching was due to an enhanced passivation of the etched sidewalls by a silicon oxide layer [J. Vac. Sci. Technol. B 26, 666 (2008)]. In this work, it is shown that this etching behavior is related to a maximum in the H atom concentration in the plasma. The possible enhancement of the sidewall passivation process in the presence of H is investigated by comparing OES measurements and etching results obtained for Cl 2 -H 2 and Cl 2 -Ar gas mixtures

  1. Space-resolved characterization of high frequency atmospheric-pressure plasma in nitrogen, applying optical emission spectroscopy and numerical simulation

    International Nuclear Information System (INIS)

    Rajasekaran, Priyadarshini; Ruhrmann, Cornelia; Bibinov, Nikita; Awakowicz, Peter

    2011-01-01

    Averaged plasma parameters such as electron distribution function and electron density are determined by characterization of high frequency (2.4 GHz) nitrogen plasma using both experimental methods, namely optical emission spectroscopy (OES) and microphotography, and numerical simulation. Both direct and step-wise electron-impact excitation of nitrogen emissions are considered. The determination of space-resolved electron distribution function, electron density, rate constant for electron-impact dissociation of nitrogen molecule and the production of nitrogen atoms, applying the same methods, is discussed. Spatial distribution of intensities of neutral nitrogen molecule and nitrogen molecular ion from the microplasma is imaged by a CCD camera. The CCD images are calibrated using the corresponding emissions measured by absolutely calibrated OES, and are then subjected to inverse Abel transformation to determine space-resolved intensities and other parameters. The space-resolved parameters are compared, respectively, with the averaged parameters, and an agreement between them is established. (paper)

  2. Production and Characterization of Femtosecond-Laser-Induced Air Plasma

    National Research Council Canada - National Science Library

    Armbruster, David R

    2008-01-01

    .... A 40 kHz ultrasonic transducer was used to detect the plasma. A second harmonic generation crystal was placed within the beam expander to generate 400 nm blue light, enabling production of THz in the plasma via four wave mixing...

  3. A plasma membrane H ATPase gene is germination- induced in ...

    African Journals Online (AJOL)

    ONOS

    2010-01-18

    Jan 18, 2010 ... The expression pattern of a germination specific plasma membrane H+-ATPase was analyzed by RT-. PCR and in situ RNA hybridization methods. RT-PCR results revealed that germination specific plasma membrane H+-ATPase accumulation was detectable in all organs and tissues of germinating wheat.

  4. Plasma-induced Styrene Grafting onto the Surface of Polytetrafluoroethylene Powder for Proton Exchange Membrane Application

    Science.gov (United States)

    Lan, Yan; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Chen, Longwei; Yang, Guangjie; Nagatsu, M.; Meng, Yuedong

    2011-10-01

    Low-temperature plasma treatment was adopted to graft styrene onto polytetrafluoroethylene (PTFE) powder, which is widely used in the fabrication of proton exchange membrane (PEM). The grafted PTFE powder was sulfonated in chlorosulfonic acid and fabricated into a membrane, which was used as inexpensive PEM material for a proton exchange membrane fuel cell (PEMFC). Fourier transform infrared spectroscopy attenuated total reflection spectroscopy (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analysis were used to characterize the structure of the sulfonated PTFE powder. The results showed that all the PTFE powders were successfully grafted by nitrogen plasma and then sulfonated under such experimental conditions. A scanning electron microscopy (SEM) image indicated that the fabricated membrane exhibits flat morphology and homogenous structure. The ion exchange capacity (IEC) of this kind of PEM was also investigated.

  5. XUV Spectroscopy of the Interaction of Laser-produced Plasma with Solid Surfaces

    NARCIS (Netherlands)

    Kuznetsov, A.S.; Stuik, R.; Bijkerk, Frederik; Shevelko, A.P.

    2012-01-01

    Processes of interaction of dense, laser produced plasma (LPP) with solid surfaces represent an effective tool for controlled studies of various aspects of plasma-wall interaction, for instance simulating transient events in fusion reactors or EUV light sources and source exposed materials. A wide

  6. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals.

    Directory of Open Access Journals (Sweden)

    Hak Jun Ahn

    Full Text Available The plasma jet has been proposed as a novel therapeutic method for anticancer treatment. However, its biological effects and mechanism of action remain elusive. Here, we investigated its cell death effects and underlying molecular mechanisms, using air and N₂ plasma jets from a micro nozzle array. Treatment with air or N₂ plasma jets caused apoptotic death in human cervical cancer HeLa cells, simultaneously with depolarization of mitochondrial membrane potential. In addition, the plasma jets were able to generate reactive oxygen species (ROS, which function as surrogate apoptotic signals by targeting the mitochondrial membrane potential. Antioxidants or caspase inhibitors ameliorated the apoptotic cell death induced by the air and N₂ plasma jets, suggesting that the plasma jet may generate ROS as a proapoptotic cue, thus initiating mitochondria-mediated apoptosis. Taken together, our data suggest the potential employment of plasma jets as a novel therapy for cancer.

  7. Electromagnetic diagnostics of ECR-Ion Sources plasmas: optical/X-ray imaging and spectroscopy

    Science.gov (United States)

    Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F. P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; Torrisi, G.; Celona, L.; Cosentino, L. G.; Giarrusso, M.; Gammino, S.

    2017-12-01

    Magnetoplasmas in ECR-Ion Sources are excited from gaseous elements or vapours by microwaves in the range 2.45-28 GHz via Electron Cyclotron Resonance. A B-minimum, magnetohydrodynamic stable configuration is used for trapping the plasma. The values of plasma density, temperature and confinement times are typically ne= 1011-1013 cm-3, 01 eVelectromagnetic emission of such plasmas, in the optical/X-ray domain. Fast Silicon Drift detectors with high energy resolution of 125 eV at 5.9 keV have been used for the characterization of plasma emission at 02atoms/molecules in the plasmas have been measured for different values of neutral pressure, microwave power and magnetic field profile (they are critical for high-power proton sources).

  8. Vacuum UV spectroscopy of armor erosion from plasma gun disruption simulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rockett, P.D. [Sandia Nat. Labs., Albuquerque, NM (United States). Fusion Tech. Dept.; Hunter, J.A. [Sandia Nat. Labs., Albuquerque, NM (United States). Fusion Tech. Dept.; Bradley, J.T. III [Electrical Engineering and Computer Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States); Gahl, J.M. [Electrical Engineering and Computer Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States); Zhitlukhin, A. [Troitsk Institute for Innovation and Technology (TRINITI), Troitsk, Moscow Region (Russian Federation); Arkhipov, K. [Troitsk Institute for Innovation and Technology (TRINITI), Troitsk, Moscow Region (Russian Federation); Bakhtin, V. [Troitsk Institute for Innovation and Technology (TRINITI), Troitsk, Moscow Region (Russian Federation); Toporkov, D. [Troitsk Institute for Innovation and Technology (TRINITI), Troitsk, Moscow Region (Russian Federation); Ovchinnokov, I. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Kuznetsov, V.E. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Titov, V.A. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation)

    1995-03-01

    Extensive simulations of tokamak disruptions have provided a picture of material erosion that is limited by the transfer of energy from the incident plasma to the armor solid surface through a dense vapor shield. Two transmission grating vacuum ultraviolet (VUV) spectrographs were designed and utilized to study the plasma-material interface in plasma gun simulation experiments. Target materials included POCO graphite, ATJ graphite, boron nitride and plasma-sprayed tungsten. Detailed spectra were recorded with a spatial resolution of ca. 0.7mm resolution on VIKA at Efremov and on 2MK-200 at Troitsk. Time-resolved data with 40-200ns resolution were then recorded along with the same spatial resolution on 2MK-200. The VIKA plasma gun directly illuminated a target with a high-intensity plasma pulse of 2-100MJm{sup -2} with low-energy ions of ca. 100eV. The 2MK-200 plasma gun illuminated the target via a magnetic cusp that permitted only deuterium to pass with energies of ca. 1keV, but which produced a fairly low intensity of 2MJm{sup -2}. Power densities on target ranged from 10{sup 7} to 10{sup 8}Wcm{sup -2}. Emitted spectra were recorded from 15 to 450A over a distance from 0 to 7cm above the armor target surface. The data from both plasma gun facilities demonstrated that the hottest plasma region was sitting several millimeters above the armor tile surface. This apparently constituted the absorption region, which confirmed past computer simulations. Spectra indicated both the species and ionization level that were being ablated from the target, demonstrating impurity content, and showing plasma ablation velocity. Graphite samples clearly showed CV lines as well as impurity lines from O V and O VI. The BN tiles produced textbook examples of BIV and BV, and extensive NIV, V and VI lines. These are being compared with radiation-hydrodynamic calculations. (orig.).

  9. A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hoehse, Marek [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin (Germany); Mory, David [LTB Lasertechnik Berlin, Rudower Chaussee 29, 12489 Berlin (Germany); Florek, Stefan [ISAS - Institute for Analytical Science, Albert-Einstein-Str. 9, D-12489 Berlin (Germany); Weritz, Friederike [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin (Germany); Gornushkin, Igor, E-mail: igor.gornushkin@bam.d [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin (Germany); Panne, Ulrich [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin (Germany); Humboldt Universitaet zu Berlin, Chemistry Department, Brook-Taylor-Strasse 2, D-12489 Berlin (Germany)

    2009-11-15

    Raman and laser-induced breakdown spectroscopy is integrated into a single system for molecular and elemental microanalyses. Both analyses are performed on the same approx 0.002 mm{sup 2} sample spot allowing the assessment of sample heterogeneity on a micrometric scale through mapping and scanning. The core of the spectrometer system is a novel high resolution dual arm Echelle spectrograph utilized for both techniques. In contrast to scanning Raman spectroscopy systems, the Echelle-Raman spectrograph provides a high resolution spectrum in a broad spectral range of 200-6000 cm{sup -1} without moving the dispersive element. The system displays comparable or better sensitivity and spectral resolution in comparison to a state-of-the-art scanning Raman microscope and allows short analysis times for both Raman and laser induced breakdown spectroscopy. The laser-induced breakdown spectroscopy performance of the system is characterized by ppm detection limits, high spectral resolving power (15,000), and broad spectral range (290-945 nm). The capability of the system is demonstrated with the mapping of heterogeneous mineral samples and layer by layer analysis of pigments revealing the advantages of combining the techniques in a single unified set-up.

  10. Quantitative deuterium analysis of titanium samples in ultraviolet laser-induced low-pressure helium plasma.

    Science.gov (United States)

    Abdulmadjid, Syahrun Nur; Lie, Zener Sukra; Niki, Hideaki; Pardede, Marincan; Hedwig, Rinda; Lie, Tjung Jie; Jobiliong, Eric; Kurniawan, Koo Hendrik; Fukumoto, Ken-Ichi; Kagawa, Kiichiro; Tjia, May On

    2010-04-01

    An experimental study of ultraviolet (UV) laser-induced plasma spectroscopy (LIPS) on Ti samples with low-pressure surrounding He gas has been carried out to demonstrate its applicability to quantitative micro-analysis of deuterium impurities in titanium without the spectral interference from the ubiquitous surface water. This was achieved by adopting the optimal experimental condition ascertained in this study, which is specified by 5 mJ laser energy, 10 Torr helium pressure, and 1-50 mus measurement window, which resulted in consistent D emission enhancement and effective elimination of spectral interference from surface water. As a result, a linear calibration line exhibiting a zero intercept was obtained from Ti samples doped with various D impurity concentrations. An additional measurement also yielded a detection limit of about 40 ppm for D impurity, well below the acceptable threshold of damaging H concentration in Ti and its alloys. Each of these measurements was found to produce a crater size of only 25 mum in diameter, and they may therefore qualify as nondestructive measurements. The result of this study has therefore paved the way for conducting further experiments with hydrogen-doped Ti samples and the technical implementation of quantitative micro-analysis of detrimental hydrogen impurity in Ti metal and its alloys, which is the ultimate goal of this study.

  11. New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Lucena, P.; Dona, A.; Tobaria, L.M.; Laserna, J.J.

    2011-01-01

    With the objective of detection and identification of explosives, different organic compounds, including aromatic nitrocompounds, RDX, anthracene, 2,4-diaminotoluene (DAT), 4-methyl-3-nitroaniline (MNA) and pentaerythritol (PENT) have been analyzed by laser induced breakdown spectroscopy (LIBS). To avoid the secondary ionization and to discriminate between the spectral contribution due to air from that of the compound in the plasma generated in air, the emission signatures from atomic lines (C at 247.9 nm, H at 656.3 nm, N at 746.8 nm and O at 777.2 nm) and molecular bands (CN at 388.3 nm and C 2 at 516.5 nm) have been investigated in plasmas generated in air and in helium. The different possible pathways leading to the observation of molecular emissions have been studied, together with a discussion of the most useful tools for the explosives discrimination. Moreover, the effect of the laser fluence on the atomic and molecular emissions and their relationship with the oxygen balance of an organic explosive is presented.

  12. New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, P.; Dona, A.; Tobaria, L.M.; Laserna, J.J., E-mail: laserna@uma.es

    2011-01-15

    With the objective of detection and identification of explosives, different organic compounds, including aromatic nitrocompounds, RDX, anthracene, 2,4-diaminotoluene (DAT), 4-methyl-3-nitroaniline (MNA) and pentaerythritol (PENT) have been analyzed by laser induced breakdown spectroscopy (LIBS). To avoid the secondary ionization and to discriminate between the spectral contribution due to air from that of the compound in the plasma generated in air, the emission signatures from atomic lines (C at 247.9 nm, H at 656.3 nm, N at 746.8 nm and O at 777.2 nm) and molecular bands (CN at 388.3 nm and C{sub 2} at 516.5 nm) have been investigated in plasmas generated in air and in helium. The different possible pathways leading to the observation of molecular emissions have been studied, together with a discussion of the most useful tools for the explosives discrimination. Moreover, the effect of the laser fluence on the atomic and molecular emissions and their relationship with the oxygen balance of an organic explosive is presented.

  13. A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    Science.gov (United States)

    Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.

    1978-01-01

    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.

  14. V.U.V. plasma spectroscopy diagnostic of electron cyclotron resonance multicharged ion sources; Diagnostic de plasmas crees dans des sources d'ions multicharges a resonance cyclotronique electronique par spectroscopie V.U.V

    Energy Technology Data Exchange (ETDEWEB)

    Berreby, R

    1997-12-15

    To characterize the multicharged ions within the plasma of an E.C.R. ion source, the V.U.V. spectroscopy is used as a non invasive diagnostic of excited matter. In E.C.R.I. S. (electron cyclotron resonance ion source) electrons are heated and magnetically confined within the mirror machine to overcome the successive ionization potentials of the desired elements. As the electrons bounce inside the magnetic configuration in their gyration movement, they interact with the microwaves injected into the source at the resonance frequency. To enhance the performances in high charge states and extracted currents delivered by E.C.R.I.S., the fundamental parameters of the plasma created in these machines must be known. The goal of spectroscopic diagnostics in the V.U.V. range installed on the sources is to determine electron density and temperature on one hand, and the ionic densities and confinement time on the other hand. We used microchannel plates as detector on a 3 meter grazing incidence spectrometer equipped with a 600 lines/mm holographic grating. The calibration of the whole grating with detector was performed by two different methods. These are the branching ratio and charge exchange methods. Identification of lines emitted by a plasma, which gather the whole charge states of ions is necessary to make an exhaustive study of the plasma state. And finally, the determination of plasma parameters like electron density and temperature and ion densities and confinement times that uses theoretical models were the aim of this work. (author)

  15. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification.

    Science.gov (United States)

    Wang, Weiping; Zheng, Zhi; Huang, Xin; Fan, Wenling; Yu, Wenkui; Zhang, Zhibing; Li, Lei; Mao, Chun

    2017-10-01

    Polyethylene glycol (PEG) and heparin (Hep) were grafted onto polysulfone (PSF) membrane by plasma-induced surface modification to prepare PSF-PEG-Hep membranes used for artificial lung. The effects of plasma treatment parameters, including power, gas type, gas flow rate, and treatment time, were investigated, and different PEG chains were bonded covalently onto the surface in the postplasma grafting process. Membrane surfaces were characterized by water contact angle, PEG grafting degree, attenuated total reflectance-Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, X-ray photoelectron spectroscopy, critical water permeability pressure, and scanning electron microscopy. Protein adsorption, platelet adhesion, and coagulation tests showed significant improvement in the hemocompatibility of PSF-PEG-Hep membranes compared to pristine PSF membrane. Gas exchange tests through PSF-PEG6000-Hep membrane showed that when the flow rate of porcine blood reached 5.0 L/min, the permeation fluxes of O 2 and CO 2 reached 192.6 and 166.9 mL/min, respectively, which were close to the gas exchange capacity of a commercial membrane oxygenator. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1737-1746, 2017. © 2016 Wiley Periodicals, Inc.

  16. A portable optical emission spectroscopy-cavity ringdown spectroscopy dual-mode plasma spectrometer for measurements of environmentally important trace heavy metals: Initial test with elemental Hg

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji

    2012-09-01

    A portable optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode plasma spectrometer is described. A compact, low-power, atmospheric argon microwave plasma torch (MPT) is utilized as the emission source when the spectrometer is operating in the OES mode. The same MPT serves as the atomization source for ringdown measurements in the CRDS mode. Initial demonstration of the instrument is carried out by observing OES of multiple elements including mercury (Hg) in the OES mode and by measuring absolute concentrations of Hg in the metastable state 6s6p 3P0 in the CRDS mode, in which a palm-size diode laser operating at a single wavelength 405 nm is incorporated in the spectrometer as the light source. In the OES mode, the detection limit for Hg is determined to be 44 parts per 109 (ppb). A strong radiation trapping effect on emission measurements of Hg at 254 nm is observed when the Hg solution concentration is higher than 50 parts per 106 (ppm). The radiation trapping effect suggests that two different transition lines of Hg at 253.65 nm and 365.01 nm be selected for emission measurements in lower (50 ppm), respectively. In the CRDS mode, the detection limit of Hg in the metastable state 6s6p 3P0 is achieved to be 2.24 parts per 1012 (ppt) when the plasma is operating at 150 W with sample gas flow rate of 480 mL min-1; the detection limit corresponds to 50 ppm in Hg sample solution. Advantage of this novel spectrometer has two-fold, it has a large measurement dynamic range, from a few ppt to hundreds ppm and the CRDS mode can serve as calibration for the OES mode as well as high sensitivity measurements. Measurements of seven other elements, As, Cd, Mn, Ni, P, Pb, and Sr, using the OES mode are also carried out with detection limits of 1100, 33, 30, 144, 576, 94, and 2 ppb, respectively. Matrix effect in the presence of other elements on Hg measurements has been found to increase the detection limit to 131 ppb. These elements in lower

  17. Studies of Basalt Through Laser Induced Breakdown Spectroscopy (LIBS for the Manufacturing of Lapilli Blocks

    Directory of Open Access Journals (Sweden)

    Ismael De la Viuda-Pérez

    2016-10-01

    Full Text Available Basaltic samples selected from different areas of Tenerife were analyzed by applying laser induced breakdown spectroscopy (LIBS, Raman spectroscopy and X Ray Diffraction (XRD in order to identify the basic chemical composition and mineralogy. The basic composition obtained from the analysis was: O, F, Na, K, Mg, Al Si, Ca, Ti and Fe. Raman spectroscopic and XRD analyses indicated a basaltic mineralogy which is consistent with the basic composition results obtained from LIBS. The results of the analyses carried out using portable instrumentation proved the suitability of the LIBS, specially combined with the Raman spectroscopy for their application in the mineralogical-chemical identification in the areas where basalts and lapilli are extracted for construction works in Tenerife.

  18. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    Science.gov (United States)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  19. Investigation of early plasma evolution induced by ultrashort laser pulses.

    Science.gov (United States)

    Hu, Wenqian; Shin, Yung C; King, Galen B

    2012-07-02

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment(1-11). Early plasma evolution has been captured through pump-probe shadowgraphy(1-3) and interferometry(1,4-7). However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 10(14) W/cm(2). Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions(12). The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. (12) to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators.

  20. Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge

    International Nuclear Information System (INIS)

    Jiao Yiming; Gao Qingdi; Shi Bingren

    2001-01-01

    The poloidal rotation of the magnetized edge plasma in tokamak driven by the ponderomotive force which is generated by injecting lower hybrid wave (LHW) electric field has been studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla's grill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneous cold plasma have been derived. It is shown that a strong wave electric field will be generated in the plasma edge by injecting LH wave of the power in MW magnitude, and this electric field will induce a poloidal rotation with a sheared poloidal velocity

  1. Emission Spectroscopy of OH Radical in Water-Argon Arc Plasma Jet

    Directory of Open Access Journals (Sweden)

    Alan Mašláni

    2014-01-01

    Full Text Available Emission spectra of OH radical are studied in the plasma jet generated by a plasma torch with hybrid water-argon stabilization. Plasma jet is located in a chamber with pressures 4 kPa and 10 kPa. In spite of high temperatures of produced plasma, OH spectra are observed in a large area of the jet. OH spectra are used to obtain rotational temperatures from the Boltzmann plots of resolved rotational lines. Due to line-of-sight integration of radiation, interpretation of the temperatures is not straightforward. It seems that excited OH molecules can be formed by various mechanisms, mainly in the outer parts of the jet, where thermal processes are not as dominant as in the hot central region.

  2. Radial variation of refractive index, plasma frequency and phase velocity in laser induced air plasma

    CSIR Research Space (South Africa)

    Mathuthu, M

    2006-12-01

    Full Text Available the behavior of transport coefficients of plasmas [19]. Thus, a versatile and quick diagnostic tool (like LIBS) for and measurements could be very helpful in research application like ITER and JET tokamaks2 [24] and Plasma Focus Fusion devices [25], etc. C... the laser axis, i.e., around a diameter of 0.5 mm. The electron density and electron–neutron collision frequency are crucial in understanding transport coefficients of large scale plasmas as found in thermonuclear fusion devices like tokamaks, etc...

  3. Atomic physics for fusion plasma spectroscopy; a soft x-ray study of molybdenum ions

    International Nuclear Information System (INIS)

    Fournier, K.B.

    1996-01-01

    Understanding the radiative patterns of the ions of heavy atoms (Z approx-gt 18) is crucial to fusion experiments. The present thesis applies ab initio, relativistic calculations of atomic data to modeling the emission of molybdenum (Z = 42) ions in magnetically confined fusion plasmas. The models are compared to observations made in the Alcator C-Mod tokamak (Plasma Fusion Center, Massachusetts Institute of Technology), and the Frascati Tokamak Upgrade. Experimental confirmation of these models allows confidence in calculations of the total molybdenum concentration and quantitative estimates of the total power lost from the plasmas due to molybdenum line radiation. Charge states in the plasma core (Mo 33+ to Mo 29+ ) emit strong x-ray and XUV spectra which allow benchmarking of models for the spatial distribution of highly stripped molybdenum ions; the models only achieve agreement with observations when the rates of indirect ionization and recombination processes are included in the calculation of the charge state distribution of the central molybdenum ions. The total concentration of molybdenum in the core of the plasma is found, and the total power radiated from the plasma core is computed. Observations of line emission from more highly charged molybdenum ions (Mo 36+ to Mo 34+ ) are presented. open-quotes Bulkclose quotes molybdenum charge states (Mo 25+ to Mo 23+ ) emit complicated XUV spectra from a position in the plasma near C-Mod's half radius; spatial profiles of these ions' emission are analyzed. Models for the line-emission spectra of adjacent ions (Mo 28+ to Mo 26+ ) are offered, and the accuracy and limits of ab initio energy level calculations are discussed. open-quotes Edgeclose quotes charge states (Mo 22+ to Mo 15 ) extend to the last closed magnetic flux surface of the C-Mod plasma. The strongest features from these charge states are emitted in a narrow band from ∼70 Angstrom

  4. CH spectroscopy for carbon chemical erosion analysis in high density low temperature hydrogen plasma

    NARCIS (Netherlands)

    Westerhout, J.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2009-01-01

    The CH A-X molecular band is measured upon seeding the hydrogen plasma in the linear plasma generator Pilot-PSI [electron temperature T-e=0.1-2.5 eV and electron density n(e)=(0.5-5) X 10(20) m(-3)] with methane. Calculated inverse photon efficiencies for these conditions range from 3 up to

  5. Optical emission spectroscopy of the Linac4 and superconducting proton Linac plasma generators.

    Science.gov (United States)

    Lettry, J; Fantz, U; Kronberger, M; Kalvas, T; Koivisto, H; Komppula, J; Mahner, E; Schmitzer, C; Sanchez, J; Scrivens, R; Midttun, O; Myllyperkiö, P; O'Neil, M; Pereira, H; Paoluzzi, M; Tarvainen, O; Wünderlich, D

    2012-02-01

    CERN's superconducting proton Linac (SPL) study investigates a 50 Hz high-energy, high-power Linac for H(-) ions. The SPL plasma generator is an evolution of the DESY ion source plasma generator currently operated at CERN's Linac4 test stand. The plasma generator is a step towards a particle source for the SPL, it is designed to handle 100 kW peak RF-power at a 6% duty factor. While the acquisition of an integrated hydrogen plasma optical spectrum is straightforward, the measurement of a time-resolved spectrum requires dedicated amplification schemes. The experimental setup for visible light based on photomultipliers and narrow bandwidth filters and the UV spectrometer setup are described. The H(α), H(β), and H(γ) Balmer line intensities, the Lyman band and alpha transition were measured. A parametric study of the optical emission from the Linac4 ion source and the SPL plasma generator as a function of RF-power and gas pressure is presented. The potential of optical emission spectrometry coupled to RF-power coupling measurements for on-line monitoring of short RF heated hydrogen plasma pulses is discussed.

  6. Microwave Emission Spectroscopy of Short Pulse Laser-Produced Plasma in Air

    Science.gov (United States)

    Englesbe, Alexander; Elle, Jennifer; Reid, Remington; Lucero, Adrian; Pohle, Hugh; Kalmykov, Serge; Domonkos, Matthew; Schmitt-Sody, Andreas; Krushelnick, Karl

    2017-10-01

    Measuring the radiated power spectral density of microwaves from plasmas has long been used to infer details about plasma behavior. We apply this technique to plasma generated via ultra-short pulse laser ionization. The impulsive interaction of the laser with the plasma drives current, which couples to radiated fields and is a source of broadband terahertz and microwave radiation. We measure the radiated spectrum and angular distribution in the far field over a frequency range of 1-40 GHz. The spectrum of the microwaves is sampled using calibrated, tunable heterodyne receivers. We show that neutral gas pressure significantly alters the amplitude of microwave emissions from the plasma. The spectrum as a function of background neutral density is used to infer information about the free electron density of the plasma. Experimental results are compared to a moving dipole model, with good agreement over a limited parameter range. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16RDCOR325.

  7. Study on the effects of ion motion on laser-induced plasma wakes

    International Nuclear Information System (INIS)

    Zhou Suyun; Yu Wei; Yuan Xiao; Xu Han; Cao, L. H.; Cai, H. B.; Zhou, C. T.

    2012-01-01

    A 2D analytical model is presented for the generation of plasma wakes (or bubbles) with an ultra-intense laser pulse by taking into account the response of plasma ions. It is shown that the effect of ion motion becomes significant at the laser intensity exceeding 10 21 W/cm 2 and plasma background density below 10 19 cm −3 . In this regime, ion motion tends to suppress the electrostatic field induced by charge separation and makes the electron acceleration less effective. As a result, the assumption of immobile ions overestimates the efficiency of laser wake-field acceleration of electrons. Based on the analytical model, the dynamics of plasma ions in laser-induced wake field is investigated. It is found that only one bubble appears as the plasmas background density exceeds the resonant density and the deposited laser energy is concentrated into the bubble, resulting in the generation of an ion bunch with extremely high energy density.

  8. Evaluation of physical parameters during the plasma-induced ablation of teeth

    Science.gov (United States)

    Niemz, Markolf H.

    1995-01-01

    The physical parameters of the plasma-induced ablation mechanism were investigated using a picosecond Nd:YLF laser system. The laser consists of a diode-pumped oscillator and a lamp- pumped regenerative amplifier. It operates at a wavelength of 1.053 micrometers with pulse durations of 30 ps and pulse energies up to 1 mJ. The laser beam was expanded to a diameter of 4 mm and focussed to spot sizes of about 30 micrometers . At these high power densities a localized plasma was induced at the focal spot. Surfaces of extracted human teeth were used as target material. In order to study the effect of accompanying shock waves, dye penetration tests, hardness tests and polarized microscopy were performed. At moderate pulse energies no significant impact of shock waves was observed. Because of this result, the terms `plasma- induced ablation' or `plasma-mediated ablation' are more appropriate for ablations solely induced by plasma ionization, and should be distinguished from photodisruptive ablations. In another series of experiments the generated plasma sparks were spectroscopically analyzed. From the measured spectra, mean plasma temperatures of about 5 eV and mean electron densities of about 1018/cm3 were estimated.

  9. Measurements of plasma temperature and electron density in laser ...

    Indian Academy of Sciences (India)

    where the plasma is optically thin and is also in local thermodynamic equilibrium (LTE), necessary for the laser-induced breakdown spectroscopy (LIBS) analysis of ..... [5] H R Griem, Principles of plasma spectroscopy (Cambridge University Press, Cam- bridge, 1997). [6] Y I Lee, S P Sawan, T L Thiem, Y Y Teng and J ...

  10. Elemental segregation in titanium alloys induced by plasma-surface interaction

    International Nuclear Information System (INIS)

    Raveh, A.

    1990-07-01

    The microstructure and surface composition of nitrided titanium alloys (Ti-6Al-4V and Ti-8Al-1V-Mo) were investigated after plasma nitriding with nitrogen, hydrogen and argon. The composition of the plasma, near the surface of the sample (plasma layer) was examined by optical emission spectroscopy and mass spectrometry, while the composition of the surface of the alloy after the process, the structure and microstructure of the layers were studied by auger electron spectrometry, scanning auger microprobe, x-ray difraction, scanning electron microscope,transmission electron microscope and high resolution transmission electron microscope. It was observed that elemental segregation occurs in titanium alloys at the interface between compound layer and diffusion layer. Based on the present results, a mechanism for the formation of the nitrided layers in the plasma was suggested

  11. Quantitative X-ray spectroscopy of sodium Z-pinch plasmas for Na/ne photopumping

    International Nuclear Information System (INIS)

    Burkhalter, P.G.; Mehlman, G.; Apruzese, J.P.; Newman, D.A.; Scherrer, V.E.; Young, F.C.; Stephanakis, S.J.; Hinshelwood, D.D.

    1990-01-01

    Spectra of sodium K-shell x-ray emission were measured for implosions of sodium-bearing plasmas produced on the Naval Research Laboratory Gamble II pulsed-power generator. Sodium fluoride from a capillary discharge provided the initial plasma for these fast Z-pinch implosions. Spatially-resolved images, corresponding to sodium K-shell x-rays from a 3 to 4 cm long plasma column, were recorded with a curved-crystal spectrograph. Non-uniform emission was observed along this column. The diameter of the plasma along the column (1-5 mm) was determined from time-integrated pinhole-camera images, and the duration of the x-ray emission (15-23 ns FWHM) was measured with a vacuum x-ray diode. Absolute emissivities were determined for X-rays from the n=2-1 and n=3-1 transitions in Na X and Na XI. Emissivities calculated using a collisional-radiative equilibrium model were fitted to these measurements to determine plasma temperatures of 230 to 550 eV and electron densities of 0.2 to 4.0 x 10 20 cm -3 at several locations along the plasma column. The slope of the recombination continuum was also used to determine temperatures of 200 to 300 eV and 200 to 400 eV for Na X and Na XI ions, respectively. Absolute intensity measurements of the n=2-1 line emissions from Na X and Na XI, averaged over the entire plasma length, indicated shot-to-shot variations of more than a factor of two in these implosions. (author)

  12. Study of plasma charging-induced white pixel defect increase in CMOS active pixel sensor

    International Nuclear Information System (INIS)

    Tokashiki, Ken; Bai, KeunHee; Baek, KyeHyun; Kim, Yongjin; Min, Gyungjin; Kang, Changjin; Cho, Hanku; Moon, Jootae

    2007-01-01

    Plasma process-induced 'white pixel defect' (WPD) of CMOS active pixel sensor (APS) is studied for Si3N4 spacer etch back process by using a magnetically enhanced reactive ion etching (MERIE) system. WPD preferably takes place at the wafer edge region when the magnetized plasma is applied to Si3N4 etch. Plasma charging analysis reveals that the plasma charge-up characteristic is well matching the edge-intensive WPD generation, rather than the UV radiation. Plasma charging on APS transfer gate might lead to a gate leakage, which could play a role in generation of signal noise or WPD. In this article the WPD generation mechanism will be discussed from plasma charging point of view

  13. High contrast periodic plasma pattern formation during the laser-induced breakdown in transparent dielectric

    Science.gov (United States)

    Gildenburg, V. B.; Pavlichenko, I. A.

    2017-12-01

    Based on a simple 1D initial-time model, we have carried out the numerical simulation for the spatio-temporal evolution of femtosecond laser pulse induced breakdown in transparent dielectric (fused silica) at the nonlinear stage of the plasma resonance ionization instability. The instability develops from very small seed perturbations of the medium permittivity and results in, because of the strong mutual enhancement of the electric field and plasma density perturbations in the plasma resonance region, the formation of the subwavelength periodic plasma-field structure consisting of the overcritical plasma layers perpendicular to the laser polarization. The calculation of the time-course and spatial profiles of the plasma density, field amplitude, and energy deposition density in the medium during one breakdown pulse has allowed us to establish the main possible scenarios of the process considered and to found the laser intensity range where this process can underlie the nanograting modification of the medium by repeated pulses.

  14. Laser-induced breakdown spectroscopy of solid aerosols produced by optical catapulting

    International Nuclear Information System (INIS)

    Fortes, F.J.; Cabalin, L.M.; Laserna, J.J.

    2009-01-01

    Laser-induced breakdown spectroscopy of particles ejected by optical catapulting is discussed for the first time. For this purpose, materials deposited on a substrate were ejected and transported from the surface in the form of a solid aerosol by optical catapulting using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 1064 nm. A Q-switched Nd:YAG laser at 532 nm was used for chemical characterization of the particles by laser-induced breakdown spectroscopy. Both lasers were synchronized in order to perform suitable spectral detection. The optical catapulting was optimized and evaluated using aluminum silicate particles, nickel spheres, and quartz and stainless steel particles. Experimental parameters such as the interpulse delay time, the sampling distance, the laser fluence, the sampling rate and the particle size have been studied. A correlation between these parameters and the particle size is reported and discussed.

  15. Identification of inks and structural characterization of contemporary artistic prints by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oujja, M. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Vila, A. [Departament de Pintura, Conservacio-Restauracio, Facultat de Belles Arts, Universitat de Barcelona, Pau Gargallo 4, 08028 Barcelona (Spain); Rebollar, E. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Garcia, J.F. [Departament de Pintura, Conservacio-Restauracio, Facultat de Belles Arts, Universitat de Barcelona, Pau Gargallo 4, 08028 Barcelona (Spain); Castillejo, M. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)]. E-mail: marta.castillejo@iqfr.csic.es

    2005-08-31

    Identification of the inks used in artistic prints and the order in which different ink layers have been applied on a paper substrate are important factors to complement the classical stylistic aspects for the authentication of this type of objects. Laser-induced breakdown spectroscopy (LIBS) is investigated to determine the chemical composition and structural distribution of the constituent materials of model prints made by applying one or two layers of several blue and black inks on an Arches paper substrate. By using suitable laser excitation conditions, identification of the inks was possible by virtue of emissions from key elements present in their composition. Analysis of successive spectra on the same spot allowed the identification of the order in which the inks were applied on the paper. The results show the potential of laser-induced breakdown spectroscopy for the chemical and structural characterization of artistic prints.

  16. Laser-induced-breakdown-spectroscopy-based detection of metal particles released into the air during combustion of solid propellants.

    Science.gov (United States)

    O'Neil, Morgan; Niemiec, Nicholas A; Demko, Andrew R; Petersen, Eric L; Kulatilaka, Waruna D

    2018-03-10

    Numerous metals and metal compounds are often added to propellants and explosives to tailor their properties such as heat release rate and specific impulse. When these materials combust, these metals can be released into the air, causing adverse health effects such as pulmonary and cardiovascular disease, particulate-matter-induced allergies, and cancer. Hence, robust, field-deployable methods are needed to detect and quantify these suspended metallic particles in air, identify their sources, and develop mitigation strategies. Laser-induced breakdown spectroscopy (LIBS) is a technique for elemental detection, commonly used on solids and liquids. In this study, we explored nanosecond-duration LIBS for detecting airborne metals during reactions of solid propellant strands, resulting from additives of aluminum (Al), copper, lead, lead stearate, and mercury chloride. Using the second harmonic of a 10-ns-duration 10-Hz, Nd:YAG laser, plasma was generated in the gas-phase exhaust plume of burning propellant strands containing the target metals. Under the current experimental conditions, the ns-LIBS scheme was capable of detecting Al at concentrations of 5%, 10%, and 16% by weight in the propellant strand. As the weight percentage increased, the LIBS signal was detected by more laser shots, up to a point where the system transition from being nonhomogeneous to a more-uniform distribution of particles. Further measurements and increased understanding of the reacting flow field are necessary to quantify the effects of other metal additives besides Al.

  17. Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Lucena, P.; Gaona, I.; Moros, J.; Laserna, J.J.

    2013-01-01

    Detection of explosive-contaminated human fingerprints constitutes an analytical challenge of high significance in security issues and in forensic sciences. The use of a laser-induced breakdown spectroscopy (LIBS) sensor working at 31 m distance to the target, fitted with 2D scanning capabilities and designed for capturing spectral information from laser-induced plasmas of fingerprints is presented. Distribution chemical maps based on Na and CN emissions are used to locate and detect chloratite, DNT, TNT, RDX and PETN residues that have been deposited on the surface of aluminum and glass substrates. An effectiveness of 100% on fingerprints detection, regardless the substrate scanned, is reached. Environmental factors that affect the prevalence of the fingerprint LIBS response are discussed. - Highlights: • Explosive remnants left behind by fingerprints have been detected from afar. • Operating in scanning mode, LIBS boasts high ability to locate traces over a surface. • Effectiveness in trace detection plainly depends on the scanning spatial resolution. • The detection capability of LIBS shrinks as the fingerprints deteriorate over time

  18. Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis

    OpenAIRE

    Pořízka, Pavel; Klus, Jakub; Mašek, Jan; Rajnoha, Martin; Prochazka, David; Modlitbová, Pavlína; Novotný, Jan; Burget, Radim; Novotný, Karel; Kaiser, Jozef

    2017-01-01

    In this work, we proposed a new data acquisition approach that significantly improves the repetition rates of Laser-Induced Breakdown Spectroscopy (LIBS) experiments, where high-end echelle spectrometers and intensified detectors are commonly used. The moderate repetition rates of recent LIBS systems are caused by the utilization of intensified detectors and their slow full frame (i.e. echellogram) readout speeds with consequent necessity for echellogram-to-1D spectrum conversion (intensity v...

  19. Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses.

    Science.gov (United States)

    Scaffidi, Jon; Pender, Jack; Pearman, William; Goode, Scott R; Colston, Bill W; Carter, J Chance; Angel, S Michael

    2003-10-20

    Nanosecond and femtosecond laser pulses were combined in an orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS) configuration. Even without full optimization of interpulse alignment, ablation focus, large signal, signal-to-noise ratio, and signal-to-background ratio enhancements were observed for both copper and aluminum targets. Despite the preliminary nature of this study, these results have significant implications in the attempt to explain the sources of dual-pulse LIBS enhancements.

  20. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement

    OpenAIRE

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-01

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS)...

  1. Detection of Potential Induced Degradation in c-Si PV Panels Using Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Oprea, Matei-lon; Spataru, Sergiu; Sera, Dezso

    2016-01-01

    This work, for the first time, investigates an Impedance Spectroscopy (IS) based method for detecting potential-induced degradation (PID) in crystalline silicon photovoltaic (c-Si PV) panels. The method has been experimentally tested on a set of panels that were confirmed to be affected by PID...... by using traditional current-voltage (I-V) characterization methods, as well as electroluminescence (EL) imaging. The results confirm the effectiveness of the new approach to detect PID in PV panels....

  2. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Morgen, Michael Mark [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-05-01

    We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.

  3. Transition probability of the 5971-A line in neutral uranium from collision-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gagne, J.M.; Mongeau, B.; Demers, Y.; Pianarosa, P.

    1981-01-01

    From collision-induced fluorescence spectroscopy measurements, we have determined the transition probability Aof the 5971-A transition in neutral uranium. Our value, A 5971 = (5.9 +- 1.8) x 10 5 sec -1 , is, within experimental error, in good agreement with the previous determination of Corliss, A 5971 = (7.3 +- 3.0) x 10 5 sec -1 [J. Res. Nat. Bur. Stand. Sect. A 80,1 (1976)

  4. The effect of ion flux on plasma-induced modification and deuterium retention in tungsten and tungsten–tantalum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zayachuk, Y., E-mail: yevhen.zayachuk@materials.ox.ac.uk [SCK-CEN, Trilateral Euregio Cluster, Boeretang 200, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Manhard, A. [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Hoen, M.H.J. ' t [FOM Institute DIFFER, Trilateral Euregio Cluster, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); Jacob, W. [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER, Trilateral Euregio Cluster, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); Aviation Academy, Amsterdam University of Applied Sciences, Weesperzijde 190, 1097 DZ Amsterdam (Netherlands); Van Oost, G. [Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium)

    2015-09-15

    The paper presents the results of an experimental study of deuterium retention in W and W–Ta alloy that were exposed to first-wall relevant low flux (∼10{sup 20} m{sup −2} s{sup −1}) deuterium plasma in the ECR plasma generator PlaQ. Subsequent analysis included surface imaging by optical microscopy, deuterium depth profiling by nuclear reaction analysis (NRA) and measurements of deuterium content by thermal desorption spectroscopy (TDS). It was found that under investigated exposure conditions the deuterium content was higher in W–Ta alloy than in W. Combined with the previously reported results showing that under high-flux (∼10{sup 24} m{sup −2} s{sup −1}) retention is higher in W instead, this gives rise to a peculiar flux effect – dependence of relative retention between different materials on exposure flux. We interpret this effect as evidence that at different flux ranges different populations of trapping sites determine the retention, namely pre-existing microstructural traps at low-flux exposure and plasma-induced ones at high-flux exposure.

  5. Plasma spectroscopy diagnostics in pulsed-power X-ray radiography diode research

    International Nuclear Information System (INIS)

    Maron, Yitzhak; Oliver, Bryan Velten; Portillo, Salvador; Johnston, Mark D.; Rose, David Vincent; Hahn, Kelly Denise; Schamiloglu, Edl; Welch, Dale R.; Droemer, Darryl W.; Rovang, Dean Curtis; Maenchen, John Eric

    2005-01-01

    Spectroscopic investigations in the visible and near UV are underway to study plasmas present in X-ray radiography diodes during the time of the electron beam propagation. These studies are being performed on the RITS-3 accelerator (5.25 MV and 120 kA) at Sandia National Laboratories using several diode configurations. The proper characterization of the plasmas occurring during the time of the X-ray pulse can lead to a greater understanding of diode behavior and X-ray spot size evolution. By studying these plasmas along with the use of selective dopants, insights into such phenomena as impedance collapse, thermal and non-thermal species behavior, charge and current neutralization, anode and cathode plasma formation and propagation, and beam/foil interactions, can be obtained. Information from line and continuum emission and absorption can give key plasma parameters such as temperatures, densities, charge states, and expansion velocities. This information is important for proper modeling and future predictive capabilities for the design and improvement of flash X-ray radiography diodes. Diagnostics include a gated, intensified multichannel plate camera combined with a 1 meter Czerny-Turner monochromator with a multi-fiber spectral input, allowing for both temporal and spatial resolution. Recent results are presented.

  6. Hypochlorite-induced oxidation of proteins in plasma

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1999-01-01

    more efficient. The reaction of fresh diluted plasma with HOCl also gives rise to protein-derived nitrogen-centred radicals in a time- and HOCl-concentration-dependent manner; these have been detected by EPR spin trapping. Identical radicals have been detected with isolated HOCl-treated plasma proteins....... Radical formation was inhibited by excess methionine, implicating protein-derived chloramines (probably from lysine side chains) as the radical source. Plasma protein fragmentation occurs in a time- and HOCl-concentration-dependent manner, as evidenced by the increased mobility of the EPR spin adducts......, the detection of further radical species believed to be intermediates in protein degradation and the loss of the parent protein bands on SDS/PAGE. Fragmentation can be inhibited by methionine and other agents (ascorbate, urate, Trolox C or GSH) capable of removing chloramines and reactive radicals...

  7. Optical Emission Spectroscopy of Plasma in Hybrid Pulsed Laser Deposition System

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Jelínek, Miroslav; Bulíř, Jiří; Lančok, Ján; Jastrabík, Lubomír; Zelinger, Zdeněk

    2002-01-01

    Roč. 52, Suppl. D (2002), s. 292-298 ISSN 0011-4626 R&D Projects: GA AV ČR IAA1010110 Keywords : optical emission spectroscopy * pulsed laser deposition * RF discharge Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.311, year: 2002

  8. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Nobuyuki [Institute for Laser Science, University of Electro-Communications, Tokyo 182-8585 (Japan); National Institute for Fusion Science, Gifu 509-5292 (Japan); Ding Xiaobin; Dong Chenzhong [North West Normal University, Lanzhou 730070 (China); Hara, Hirohisa; Watanabe, Tetsuya [National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A. [National Institute for Fusion Science, Gifu 509-5292 (Japan); Koike, Fumihiro [School of Medicine, Kitasato University, Kanagawa 252-0373 (Japan); Nakano, Tomohide [Japan Atomic Energy Agency, Ibaraki 311-0193 (Japan); Ohashi, Hayato [Institute for Laser Science, University of Electro-Communications, Tokyo 182-8585 (Japan); Watanabe, Hirofumi; Yamamoto, Norimasa [Chubu University, Aichi 487-8501 (Japan)

    2013-07-11

    We present spectra of highly charged iron, gadolinium, and tungsten ions obtained with electron beam ion traps. Spectroscopic studies of these ions are important to diagnose and control hot plasmas in several areas. For iron ions, the electron density dependence of the line intensity ratio in extreme ultraviolet spectra is investigated for testing the model calculation used in solar corona diagnostics. Soft x-ray spectra of gadolinium are studied to obtain atomic data required in light source development for future lithography. Tungsten is considered to be the main impurity in the ITER plasma, and thus visible and soft x-ray spectra of tungsten have been observed to explore the emission lines useful for the spectroscopic diagnostics of the ITER plasma.

  9. Degradation of polyethylene induced by plasma in oxidizing atmospheres

    International Nuclear Information System (INIS)

    Colin, E.; Olayo, M.G.; Cruz, G.J.

    2002-01-01

    The garbage of polyethylene is not easily degradable in normal environmental conditions . The indiscriminate use of this polymer and the enormous quantity of garbage which is generated carries a damage to the environment due to its long life as waste. The objective of this work is to study the conditions in which can be carried out the degradation of polyethylene. A form of accelerating the degradation is exposing it to plasma with reactive atmospheres. In this work a study of surface modification of polyethylene by plasmas with discharges of direct current of oxygen and nitrogen is presented. (Author)

  10. 4D Density Determination of NH Radicals in an MSE Microplasma Combining Planar Laser Induced Fluorescence and Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Visser, Martin; Schenk, Andreas; Gericke, Karl-Heinz

    2010-10-01

    An application of microplasmas is surface modification under mild conditions and of small, well defined areas. For this, an understanding of the plasma composition is of importance. First results of our work on the production and detection of NH radicals in a capacitively coupled radio frequency (RF) microplasma are presented. A microstructured comb electrode was used to generate a glow discharge in a hydrogen/nitrogen gas mixture by applying 13.56 MHz RF voltage. The techniques of planar laser induced fluorescence (PLIF) and cavity ring-down spectroscopy (CRDS) are used for space and time resolved, quantitative detection of the NH radical in the plasma. The rotational temperature was determined to be 820 K and, the density 5.1×1012 cm3. Also, time dependent behaviour of the NH production was observed.

  11. 4D Density Determination of NH Radicals in an MSE Microplasma Combining Planar Laser Induced Fluorescence and Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Visser, Martin; Schenk, Andreas; Gericke, Karl-Heinz

    2010-01-01

    An application of microplasmas is surface modification under mild conditions and of small, well defined areas. For this, an understanding of the plasma composition is of importance. First results of our work on the production and detection of NH radicals in a capacitively coupled radio frequency (RF) microplasma are presented. A microstructured comb electrode was used to generate a glow discharge in a hydrogen/nitrogen gas mixture by applying 13.56 MHz RF voltage. The techniques of planar laser induced fluorescence (PLIF) and cavity ring-down spectroscopy (CRDS) are used for space and time resolved, quantitative detection of the NH radical in the plasma. The rotational temperature was determined to be 820 K and, the density 5.1x10 12 cm 3 . Also, time dependent behaviour of the NH production was observed.

  12. Time-resolved spectroscopy of laser-induced breakdown in water

    Science.gov (United States)

    Thomas, Robert J.; Hammer, Daniel X.; Noojin, Gary D.; Stolarski, David J.; Rockwell, Benjamin A.; Roach, William P.

    1996-05-01

    Laser pulses of 60-ps and 80-ps at a wavelength of 532-nm and 1064-nm respectively were used to produce laser induced breakdown in triple-distilled water. The resulting luminescent flash from the plasma was captured with an imaging spectrograph coupled to a streak camera with a 5-ps time resolution. The wavelength range was 350 to 900-nm. We present the resulting experimental data which gives plasma duration and time-resolved spectral information. Plasma temperature is also computed from the data. All parameters are presented at a pulse energy of 1-mJ and are compared with time-integrated spectra at the same pulse duration and at 5 to 7-ns pulse duration in a similar energy range.

  13. Comparison of the Detection Characteristics of Trace Species Using Laser-Induced Breakdown Spectroscopy and Laser Breakdown Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Zhenzhen Wang

    2015-03-01

    Full Text Available The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS and laser breakdown time-of-flight mass spectrometry (LB-TOFMS. Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application.

  14. Comparison of electron spin resonance spectroscopy and inductively-coupled plasma optical emission spectroscopy for biodistribution analysis of iron-oxide nanoparticles.

    Science.gov (United States)

    Chertok, Beata; Cole, Adam J; David, Allan E; Yang, Victor C

    2010-04-05

    Magnetic nanoparticles (MNP) have been widely studied for use in targeted drug delivery. Analysis of MNP biodistribution is essential to evaluating the success of targeting strategies and the potential for off-target toxicity. This work compared the applicability of inductively coupled plasma optical emission spectroscopy (ICP-OES) and electron spin resonance (ESR) spectroscopy in assessing MNP biodistribution. Biodistribution was evaluated in 9L-glioma bearing rats administered with MNP (12-25 mg Fe/kg) under magnetic targeting. Ex vivo analysis of MNP in animal tissues was performed with both ICP-OES and ESR. A cryogenic method was developed to overcome the technical hurdle of loading tissue samples into ESR tubes. Comparison of results from the ICP-OES and ESR measurements revealed two distinct relationships for organs accumulating high or low levels of MNP. In organs with high MNP accumulation such as the liver and spleen, data were strongly correlated (r = 0.97, 0.94 for the liver and spleen, respectively), thus validating the equivalency of the two methods in this high concentration range (>1000 nmol Fe/g tissue). The two sets of measurements, however, differed significantly in organs with lower levels of MNP accumulation such as the brain, kidney, and the tumor. Whereas ESR resolved MNP to 10-55 nmol Fe/g tissue, ICP-OES failed to detect MNP because of masking by endogenous iron. These findings suggest that ESR coupled to cryogenic sample handling is more robust than ICP-OES, attaining better sensitivity in analyses. Such advantages render ESR the method of choice for accurate profiling of MNP biodistribution across tissues with high variability in nanoparticle accumulation.

  15. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  16. Plasma-Induced Degradation of Quercetin Associated with the Enhancement of Biological Activities.

    Science.gov (United States)

    Kim, Tae Hoon; Lee, Jaemin; Kim, Hyun-Joo; Jo, Cheorun

    2017-08-16

    Nonthermal plasma is a promising technology to improve the safety and to extend the shelf-life of various minimally processed foods. However, research on plasma-induced systemic degradation related to changes in chemical structure and biological activity is still very limited. In this study, the enhancement of biological activity and the mechanism of degradation of the most common type of flavonol, quercetin, induced by a dielectric barrier discharge (DBD) plasma were investigated. Quercetin is dissolved in methanol and exposed to nonthermal DBD plasma for 5, 10, 20, and 30 min. The quercetin treated with the plasma for 20 min showed rapidly increased α-glucosidase inhibitory and radical scavenging activities compared to those of parent quercetin. The structures of the degradation products 1-3 from the quercetin treated with the plasma for 20 min were isolated and characterized by interpretation of their spectroscopic data. Among the generated products, (±)-alphitonin (1) exhibited significantly improved antidiabetic and antioxidant properties compared to those of the parent quercetin. The antidiabetic and antioxidant properties were measured by α-glucosidase inhibition and 1,1-diphenyl-2-picrylhydrazyl radical scavenging assays. These results suggested that structural changes in quercetin induced by DBD plasma might be attributable to improving the biological activity.

  17. The feasibility of TEA CO2 laser-induced plasma for spectrochemical analysis of geological samples in simulated Martian conditions

    Science.gov (United States)

    Savovic, Jelena; Stoiljkovic, Milovan; Kuzmanovic, Miroslav; Momcilovic, Milos; Ciganovic, Jovan; Rankovic, Dragan; Zivkovic, Sanja; Trtica, Milan

    2016-04-01

    The present work studies the possibility of using pulsed Transversely Excited Atmospheric (TEA) carbon dioxide laser as an energy source for laser-induced breakdown spectroscopy (LIBS) analysis of rocks under simulated Martian atmospheric conditions. Irradiation of a basaltic rock sample with the laser intensity of 56 MW cm- 2, in carbon-dioxide gas at a pressure of 9 mbar, created target plasma with favorable conditions for excitation of all elements usually found in geological samples. Detection limits of minor constituents (Ba, Cr, Cu, Mn, Ni, Sr, V, and Zr) were in the 3 ppm-30 ppm range depending on the element. The precision varied between 5% and 25% for concentration levels of 1% to 10 ppm, respectively. Generally, the proposed relatively simple TEA CO2 laser-LIBS system provides good sensitivity for geological studies under reduced CO2 pressure.

  18. Changes in blood pressure and plasma urate induced by the ...

    African Journals Online (AJOL)

    ... as yet another risk factor for hypertension, known to be common amongst habitual ethanol drinkers. Further research is however, required to establish the mechanism (s) involved in such relationships. Key Words: Blood pressure, plasma urate, hypertension, alcohol. Global Jnl Medical Sciences Vol.2(2) 2003: 157-160 ...

  19. A plasma membrane H ATPase gene is germination- induced in ...

    African Journals Online (AJOL)

    ONOS

    2010-01-18

    Jan 18, 2010 ... Ewing and Bennet (1994) identi- fied at least 7 genes in tomato and Harper et al. (1994) identified 10 genes in Arabidopsis thaliana, indicating the presence of large families of H+-ATPase genes. In this report, we determine and localize the expression pattern of germination specific plasma membrane ...

  20. Hypochlorite-induced oxidation of proteins in plasma

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1999-01-01

    Activated phagocyte cells generate hypochlorite (HOCl) via the release of H2O2 and the enzyme myeloperoxidase. Plasma proteins are major targets for HOCl, although little information is available about the mechanism(s) of oxidation. In this study the reaction of HOCl (at least 50 microM) with dil...

  1. How tunneling currents reduce plasma-induced charging

    OpenAIRE

    Hwang, Gyeong S.; Giapis, Konstantinos P.

    1997-01-01

    As semiconductor manufacturing moves towards smaller logic devices and thinner gate oxides, there is serious concern that pattern-dependent charging during plasma etching will impede progress by distorting etch profiles and by causing oxide breakdown. Simulations of the final overetch predict that the use of ultrathin oxides (

  2. Preliminary evaluation of near infrared spectroscopy as a method to detect plasma leakage in children with dengue hemorrhagic fever.

    Science.gov (United States)

    Soller, Babs; Srikiatkachorn, Anon; Zou, Fengmei; Rothman, Alan L; Yoon, In-Kyu; Gibbons, Robert V; Kalayanarooj, Siripen; Thomas, Stephen J; Green, Sharone

    2014-07-17

    Dengue viral infections are prevalent in the tropical and sub-tropical regions of the world, resulting in substantial morbidity and mortality. Clinical manifestations range from a self-limited fever to a potential life-threatening plasma leakage syndrome (dengue hemorrhagic fever). The objective of this study was to assess the utility of near infrared spectroscopy (NIRS) measurements of muscle oxygen saturation (SmO2) as a possible continuous measure to detect plasma leakage in children with dengue. Children ages 6 months to 15 years of age admitted with suspected dengue were enrolled from the dengue ward at Queen Sirikit National Institute for Child Health. Children were monitored daily until discharge. NIRS data were collected continuously using a prototype CareGuide Oximeter 1100 with sensors placed on the deltoid or thigh. Daily ultrasound of the chest and a right lateral decubitus chest x-ray the day after defervescence were performed to detect and quantitate plasma leakage in the pleural cavity. NIRS data were obtained from 19 children with laboratory-confirmed dengue. Average minimum SmO2 decreased for all subjects prior to defervescence. Average minimum SmO2 subsequently increased in children with no ultrasound evidence of pleural effusion but remained low in children with pleural effusion following defervescence. Average minimum SmO2 was inversely correlated with pleural space fluid volume. ROC analysis revealed a cut-off value for SmO2 which yielded high specificity and sensitivity. SmO2 measured using NIRS may be a useful guide for real-time and non-invasive identification of plasma leakage in children with dengue. Further investigation of the utility of NIRS measurements for prediction and management of severe dengue syndromes is warranted.

  3. Determination of the electron-electron collisional frequency by means of plasma electron spectroscopy

    International Nuclear Information System (INIS)

    Kolokolov, N.B.; Kudryavtsev, A.A.; Romanenko, V.A.

    1989-01-01

    Methods of controlling fast part of electron distribution function (DF) in nonlocal regime of current-free plasma are suggested and realized. Artificially created step in DF fast part has a simple link with frequencies of electron-electron and elastic electron-atom collisions that may be defined in the corresponding experiments

  4. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    Science.gov (United States)

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  5. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    Science.gov (United States)

    Hansen, Stephanie

    2017-10-01

    The burning core of an inertial confinement fusion (ICF) plasma at stagnation is surrounded by a shell of warm, dense matter whose properties are difficult both to model (due to a complex interplay of thermal, degeneracy, and strong coupling effects) and to diagnose (due to low emissivity and high opacity). We demonstrate a promising technique to study the warm dense shells of ICF plasmas based on the fluorescence emission of dopants or impurities in the shell material. This emission, which is driven by x-rays produced in the hot core, exhibits signature changes in response to compression and heating. High-resolution measurements of absorption and fluorescence features can refine our understanding of the electronic structure of material under high compression, improve our models of density-driven phenomena such as ionization potential depression and plasma polarization shifts, and help diagnose shell density, temperature, mass distribution, and residual motion in ICF plasmas at stagnation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This work was supported by the U.S. Department of Energy, Office of Science Early Career Research Program, Office of Fusion Energy Sciences under FWP-14-017426.

  6. THz spectroscopy of whole blood, plasma and cells in mice of SHR line with various pathology

    Science.gov (United States)

    Panchenko, A.; Tyndyk, M.; Smolyanskaya, O.; Sulatskiy, M.; Kravtsenyuk, O.; Balbekin, N.; Khodzitsky, M.

    2016-08-01

    This paper is devoted to studying of optical properties of whole blood and blood plasma in SHR mice grafted Ehrlich's carcinoma and mice with chronic inflammation at the terahertz frequency range. Additionally physiological saline solution suspension of ascites Ehrlich's carcinoma cells was explored.

  7. Solid-State 13C NMR Spectroscopy Applied to the Study of Carbon Blacks and Carbon Deposits Obtained by Plasma Pyrolysis of Natural Gas

    Directory of Open Access Journals (Sweden)

    Jair C. C. Freitas

    2016-01-01

    Full Text Available Solid-state 13C nuclear magnetic resonance (NMR spectroscopy was used in this work to analyze the physical and chemical properties of plasma blacks and carbon deposits produced by thermal cracking of natural gas using different types of plasma reactors. In a typical configuration with a double-chamber reactor, N2 or Ar was injected as plasma working gas in the first chamber and natural gas was injected in the second chamber, inside the arc column. The solid residue was collected at different points throughout the plasma apparatus and analyzed by 13C solid-state NMR spectroscopy, using either cross polarization (CP or direct polarization (DP, combined with magic angle spinning (MAS. The 13C CP/MAS NMR spectra of a number of plasma blacks produced in the N2 plasma reactor showed two resonance bands, broadly identified as associated with aromatic and aliphatic groups, with indication of the presence of oxygen- and nitrogen-containing groups in the aliphatic region of the spectrum. In contrast to DP experiments, only a small fraction of 13C nuclei in the plasma blacks are effectively cross-polarized from nearby 1H nuclei and are thus observed in spectra recorded with CP. 13C NMR spectra are thus useful to distinguish between different types of carbon species in plasma blacks and allow a selective study of groups spatially close to hydrogen in the material.

  8. Novel mechanism for plasma glucose-lowering action of metformin in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Cheng, Juei-Tang; Huang, Ching-Chiu; Liu, I-Min; Tzeng, Thing-Fong; Chang, Chih Jen

    2006-03-01

    To better understand the insulin-independent plasma glucose-lowering action of metformin, we used streptozotocin (STZ)-induced diabetic rats to investigate the possible mechanisms. Oral intake of metformin decreased the plasma glucose of STZ-induced diabetic rats with a parallel increase of plasma beta-endorphin-like immunoreactivity (BER). Mediation of opioid mu-receptors in the action of metformin was identified by the blockade of receptors with antagonist in STZ-induced diabetic rats and the failure of action in opioid mu-receptor knockout diabetic mice. Release of BER from adrenal glands by metformin was characterized, using bilateral adrenalectomy and the release of BER from isolated adrenal medulla of STZ-induced diabetic rats. Repeated treatment with metformin in STZ-induced diabetic rats increased the mRNA and protein levels of GLUT-4 in soleus muscle that was blocked by naloxonazine. Reduction of the mRNA or protein levels of hepatic PEPCK was also impeded in the same group of STZ-induced diabetic rats. In conclusion, our results provide novel mechanisms for the plasma glucose-lowering action of metformin, via an increase of beta-endorphin secretion from adrenal glands to stimulate opioid mu-receptor linkage, leading to an increase of GLUT-4 gene expression and an attenuation of hepatic PEPCK gene expression in STZ-induced diabetic rats.

  9. Formation and emission characteristics of CN molecules in laser induced low pressure He plasma and its applications to N analysis in coal and fossilization study.

    Science.gov (United States)

    Lahna, Kurnia; Idroes, Rinaldi; Idris, Nasrullah; Abdulmadjid, Syahrun Nur; Kurniawan, Koo Hendrik; Tjia, May On; Pardede, Marincan; Kagawa, Kiichiro

    2016-03-01

    Presented in this paper are the results of an experimental study on the laser induced plasma emission of a number of CN free samples (urea, sucrose) with 40 mJ pulse energy using He and N₂ ambient gases. It is shown that the CN emission has its exclusive sources in the molecules produced as the result of chemical bonding either between the ablated C and N ions in the He plasma or between the ablated C and dissociated N from the N₂ ambient gas. The emission intensities in both cases are found to have the highest values at the low gas pressure of 2 kPa. The emission in He gas is shown to exhibit the typical characteristics related to a shockwave generated excitation mechanism. The experiments using He ambient gas further demonstrate the feasible laser-induced breakdown spectroscopy application to quantitative and sensitive N analysis of coal and promising application for practical in situ carbon dating of fossils.

  10. Plasma emission spectroscopy of solids irradiated by intense XUV pulses from a free electron laser

    Czech Academy of Sciences Publication Activity Database

    Dzelzainis, T.W.J.; Chalupský, Jaromír; Fajardo, M.; Fäustlin, R.; Heimann, P.A.; Hájková, Věra; Juha, Libor; Jurek, Karel; Khattak, F.Y.; Kozlová, Michaela; Krzywinski, J.; Lee, R. W.; Nagler, B.; Nelson, A.J.; Rosmej, F.B.; Soberierski, R.; Toleikis, S.; Tschentscher, T.; Vinko, S.M.; Wark, J. S.; Whitcher, T.; Riley, D.

    2010-01-01

    Roč. 6, č. 1 (2010), 109-112 ISSN 1574-1818 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z10100521 Keywords : XUV emission spectroscopy * free-electron laser * warm dense matter Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.206, year: 2010

  11. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, S.; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-01-01

    Roč. 22, č. 2 (2016), s. 290-299 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GAP305/11/2476; GA ČR(CZ) GPP501/12/P951 Institutional support: RVO:61389030 ; RVO:61388955 Keywords : raster image correlation spectroscopy * fluorescence recovery after photobleaching * auxin influx Subject RIV: EB - Genetics ; Molecular Biology; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.891, year: 2016

  12. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lazović, S.; Maletić, D.; Puač, N.; Malović, G.; Petrović, Z. Lj. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Leskovac, A.; Filipović, J.; Joksić, G. [Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade (Serbia)

    2014-09-22

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  13. Raman, Infrared, and Laser-Induced Breakdown Spectroscopy Identification of Particles in Raw Materials.

    Science.gov (United States)

    Lee, Kathryn; Lankers, Markus; Valet, Oliver

    2018-02-01

    Raw materials need to be of a certain quality with respect to physical and chemical composition. They also need to have no contaminants, including particles, because these could indicate raw material impurities or contaminate the product. Particle identification allows determination of process conditions that caused them and whether the quality of the final product is acceptable. Particles may appear to the eye to be very different things than they actually are. They may be coated with the raw material and may consist of several components; therefore, chemical and elemental analyses are required for accuracy in proper identification and definitive information about their source. Thus, microscope versions of Raman spectroscopy, laser-induced breakdown spectroscopy (LIBS), and infrared (IR) spectroscopy are excellent tools for identifying particles in materials. Those tools are fast and accurate, and can provide chemical and elemental composition as well as images that can aid identification. The micro-analysis capabilities allow for easy analysis of different portions of samples so that multiple components can be identified and sample preparation can be reduced or eliminated. The differences in sensitivities of Raman and IR spectroscopies to different functional groups as well as the elemental analysis provided by LIBS and the image analysis provided by the microscopy makes these complementary techniques and provides the advantage of identifying various chemical components. Proper spectral searching techniques and interpretation of the results are important for interpretation and identification of trace contaminants.

  14. Metallodrug induced apoptotic cell death and survival attempts are characterizable by Raman spectroscopy

    Science.gov (United States)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2014-09-01

    Chrysotherapeutics are under investigation as new or additional treatments for different types of cancers. In this study, gold complexes were investigated for their anticancer potential using Raman spectroscopy. The aim of the study was to determine whether Raman spectroscopy could be used for the characterization of metallodrug-induced cell death. Symptoms of cell death such as decreased peak intensities of proteins bonds and phosphodiester bonds found in deoxyribose nucleic acids were evident in the principal component analysis of the spectra. Vibrational bands around 761 cm-1 and 1300 cm-1 (tryptophan, ethanolamine group, and phosphatidylethanolamine) and 1720 cm-1 (ester bonds associated with phospholipids) appeared in the Raman spectra of cervical adenocarcinoma (HeLa) cells after metallodrug treatment. The significantly (p mechanism of cancer cells under chemical stress. Cancer cells excrete chemotherapeutics to improve their chances of survival and utilize glucose to achieve this. Raman spectroscopy was able to monitor a survival strategy of cancer cells in the form of glucose uptake to alleviate chemical stress. Raman spectroscopy was invaluable in obtaining molecular information generated by biomolecules affected by anticancer metallodrug treatments and presents an alternative to less reproducible, conventional biochemical assays for cytotoxicity analyses.

  15. Infrared and Raman spectroscopy study of Assbnd S chalcogenide films prepared by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Mochalov, Leonid; Dorosz, Dominik; Kudryashov, Mikhail; Nezhdanov, Aleksey; Usanov, Dmitry; Gogova, Daniela; Zelentsov, Sergey; Boryakov, Aleksey; Mashin, Alexandr

    2018-03-01

    Assbnd S chalcogenide films, where As content is 60-40 at.%, have been prepared via a RF non-equilibrium low-temperature argon plasma discharge, using volatile As and S as the precursors. Optical properties of the films were studied in UV-visible-NIR region in the range from 0.2 to 2.5 μm. Infrared and Raman spectroscopy have been employed for the elucidation of the molecular structure of the newly developed material. It was established that PECVD films possess a higher degree of transparency (up to 80%) and a wider transparency window (> 20 μm) in comparison with the "usual" Assbnd S thin films, prepared by different thermal methods, which is highly advantageous for certain applications.

  16. Infrared and Raman spectroscopy study of AsS chalcogenide films prepared by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Mochalov, Leonid; Dorosz, Dominik; Kudryashov, Mikhail; Nezhdanov, Aleksey; Usanov, Dmitry; Gogova, Daniela; Zelentsov, Sergey; Boryakov, Aleksey; Mashin, Alexandr

    2018-03-15

    AsS chalcogenide films, where As content is 60-40at.%, have been prepared via a RF non-equilibrium low-temperature argon plasma discharge, using volatile As and S as the precursors. Optical properties of the films were studied in UV-visible-NIR region in the range from 0.2 to 2.5μm. Infrared and Raman spectroscopy have been employed for the elucidation of the molecular structure of the newly developed material. It was established that PECVD films possess a higher degree of transparency (up to 80%) and a wider transparency window (>20μm) in comparison with the "usual" AsS thin films, prepared by different thermal methods, which is highly advantageous for certain applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Investigation of neutral and ion dynamics in a HiPIMS plasma by tunable laser diode absorption spectroscopy (TDLAS)

    Science.gov (United States)

    Preissing, Patrick; Hecimovic, Ante; von Keudell, Achim

    2016-09-01

    High power impulse magnetron sputtering (HiPIMS) discharges are known for complex plasma interactions, and complex temporal and spatial dynamics. Spatial and temporal dynamic of argon metastable (Arm), Ti atom (Ti0) and Ti ion (Ti+) density and temperature is studied by an extended tunable diode laser absorption spectroscopy setup (TDLAS) during a HiPIMS pulse. The TDLAS setup used a beam expander in combination with a 6 photo diode array to simultaneously measure spatial (resolution 5 mm) and time resolved absorption profiles of an Arm, Ti0 and Ti+ transition. This in combination with moving the magnetron in axial direction gives a complete 2D map of the density evolution. Temporal resolution of 400 ns was achieved by recording the photo diode signal on the National Instruments card. Final results allowed to investigate temporal evolution of the observed species in the volume between the target and the substrate.

  18. Application of resonant ultrasound spectroscopy to determine elastic constants of plasma-sprayed coatings with high internal friction

    Czech Academy of Sciences Publication Activity Database

    Sedmák, P.; Seiner, Hanuš; Sedlák, Petr; Landa, Michal; Mušálek, Radek; Matějíček, Jiří

    2013-01-01

    Roč. 232, October (2013), s. 747-757 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GA13-13616S; GA ČR(CZ) GPP108/12/P552; GA ČR(CZ) GAP108/12/1872 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100761203 Program:M Institutional support: RVO:61388998 ; RVO:61389021 Keywords : plasma-sprayed coatings * elastic constants * resonant ultrasound spectroscopy * internal friction * anisotropy Subject RIV: BI - Acoustics; BI - Acoustics (UFP-V) Impact factor: 2.199, year: 2013 http://www.sciencedirect.com/science/article/pii/S0257897213006063

  19. Plasma emission spectroscopy (DCP) for rare earths determination in waters from Morro do Ferro (MG) Brazil, after chromatographic preconcentration

    International Nuclear Information System (INIS)

    Figueiredo, A.M.R. de.

    1987-01-01

    Rare earth determinations in surface and well waters from Morro do Ferro was studied using chemical preconcentration methods of the group and plasma emission spectroscopy excited by direct current are - DCP. A method that combines retention in alumina is HF medium with ion exchange for the preconcentration of the group was developed in semi micro scale. DCP determination, in the sequencial mode by using mixed standards containing, Y, La, Ce, Nd, Pr, Sm, Eu, Ga, Tb, Dy, Er, Yb and Al, principal concentrate componentes was studied by analysis of the profile of each spectral line. Principal cations, anions, ph and Eh were determined. Semi-micro techniques were developed for anions preconcentration and for determination of sulphate, phosphate and carbonate. (M.J.C.) [pt

  20. Standard test method for determining elements in waste streams by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the specimen. Waste streams from manufacturing processes of nuclear and nonnuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable to process control within waste treatment facilities. This test method is applicable only to waste streams that contain radioactivity levels which do not require special personnel or environmental protection. A list of the elements determined in waste streams and the corresponding lower reporting limit is included