WorldWideScience

Sample records for induced plasma spectroscopy

  1. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  2. Laser-induced breakdown spectroscopy of tantalum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  3. Boosting persistence time of laser-induced plasma by electric arc discharge for optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eschlböck-Fuchs, S., E-mail: simon.eschlboeck-fuchs@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Kolmhofer, P.J.; Bodea, M.A.; Hechenberger, J.G.; Huber, N. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Rössler, R. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-07-01

    Plasma induced by nanosecond laser ablation is re-excited by a pulsed electric discharge and the parameters and optical emission of the plasma are measured. The discharge is a low-voltage and high-current electric arc that is triggered by the laser-induced plasma and slowly decaying with time. The optical emission of such combined plasma lasts up to several milliseconds which is much longer than without re-excitation (μs range). The emission spectra of re-excited plasma measured on different sample materials show higher line intensities than spectra measured by conventional laser-induced breakdown spectroscopy (LIBS). Moreover, emission lines of fluorine (spectral range 683–691 nm) and sulfur (range 520–550 nm) not detected by conventional LIBS become easily detectable with the combined plasma. The concentration of major components in metallurgical slags, as determined by calibration-free LIBS, agrees very well to the reference data evaluating the spectra taken from re-excited plasma. - Highlights: • Persistence time of laser-induced plasma in air is increased from ~ 10 μs to ~ 1 ms. • Laser-induced plasma triggers an electric arc discharge that boosts the plasma. • The combined laser-arc plasma is in LTE state over very long time (ms range). • CF-LIBS method delivers accurate results evaluating spectra of combined plasma. • Emission from S and F, not detected by LIBS, is detected with combined plasma.

  4. Investigation of Normalization Methods using Plasma Parameters for Laser Induced Breakdown Spectroscopy (LIBS) under simulated Martian Conditions

    OpenAIRE

    Vogt, David; Schröder, Susanne; Hübers, H.-W.

    2017-01-01

    Laser Induced Breakdown Spectroscopy data need to be normalized, especially in the field of planetary exploration We investigated plasma parameters as temperature and electron density for this purpose.

  5. Spectroscopy of laser-produced plasmas: Setting up of high-performance laser-induced breakdown spectroscopy system

    Indian Academy of Sciences (India)

    V K Unnikrishnan; Kamlesh Alti; Rajesh Nayak; Rodney Bernard; V B Kartha; C Santhosh; G P Gupta; B M Suri

    2010-12-01

    It is a well-known fact that laser-induced breakdown spectroscopy (LIBS) has emerged as one of the best analytical techniques for multi-elemental compositional analysis of samples. We report assembling and optimization of LIBS set up using high resolution and broad-range echelle spectrograph coupled to an intensified charge coupled device (ICCD) to detect and quantify trace elements in environmental and clinical samples. Effects of variations of experimental parameters on spectroscopy signals of copper and brass are reported. Preliminary results of some plasma diagnostic calculations using recorded time-resolved optical emission signals are also reported for brass samples.

  6. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  7. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  8. Combined laser induced ignition and plasma spectroscopy: Fundamentals and application to a hydrogen-air combustor

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, L. [Aeroengine Technology Center, Japan Aerospace Exploration Agency, 7-44-1 Jindaiji-Higashi Chofu, 182-8522 Tokyo (Japan)], E-mail: laurent.zimmer@em2c.ecp.fr; Okai, K. [Aeroengine Technology Center, Japan Aerospace Exploration Agency, 7-44-1 Jindaiji-Higashi Chofu, 182-8522 Tokyo (Japan)], E-mail: okai@chofu.jaxa.jp; Kurosawa, Y. [Clean engine team, Japan Aerospace Exploration Agency, 7-44-1 Jindaiji-Higashi Chofu, 182-8522 Tokyo (Japan)], E-mail: kuro@chofu.jaxa.jp

    2007-12-15

    Combined Laser Induced Ignition and Plasma Spectroscopy (LI2PS) has the potential to give the exact local composition of a mixture at the ignition point and at the ignition time. However, as different laser energies are required to ignite a particular mixture as function of space, the typical approach using two power meters to calibrate the plasma spectroscopy measurement is not well suited. Furthermore, LI2PS requires single shot measurements and therefore high accuracy. In this paper, a novel calibration scheme is presented for application of Laser Induced Plasma Spectroscopy (LIPS) to gaseous analyses. Numerical simulations of air spectra are used to show that species emission can be used directly from the broadband spectra to determine the plasma conditions. The ratio of nitrogen emission around 744 nm and around 870 nm is found to be a sensitive indication of temperature in the emission ranging from 700 to 890 nm. Comparisons with experimental spectra show identical tendencies and validate the findings of the simulations. This approach is used in a partially-premixed hydrogen-air burner. First, helium is used instead of hydrogen. After an explanation of timing issue related to LIPS, it is shown that the calibration required depends only on nitrogen excitation and nitrogen-hydrogen ratio, without the need to know the deposited power. Measurements of the fuel distribution as function of injection momentum and spatial localization are reported. To illustrate the use of such a single shot approach, combined laser ignition and plasma spectroscopy is proposed. In this case, the calibration is based on hydrogen excitation and hydrogen-oxygen and hydrogen-nitrogen ratio. Results obtained with LI2PS show that ignition is successful only for high power and relatively high hydrogen concentration compared to the local mean. It is expected that LI2PS will become an important tool when dealing with partially-premixed or diffusion flame ignition.

  9. Plasma diagnostics from self-absorbed doublet lines in laser-induced breakdown spectroscopy

    Science.gov (United States)

    D'Angelo, C. A.; Garcimuño, M.; Díaz Pace, D. M.; Bertuccelli, G.

    2015-10-01

    In this paper, a generalized approach is developed and applied for plasma characterization and quantitative purposes in laser-induced breakdown spectroscopy (LIBS) experiences by employing a selected pair of spectral lines belonging to the same multiplet. It is based on the comparison between experimental ratios of line parameters and the theoretical calculus obtained under the framework of a homogeneous plasma in local thermodynamic equilibrium. The applicability of the method was illustrated by using the atomic resonance transitions 279.55-280.27 nm of Mg II, which are usually detected in laser-induced plasma (LIP) during laser ablation of many kinds of targets. The laser induced plasmas were produced using a Nd:YAG laser from a pressed pellet of powdered calcium hydroxide with a concentration of 300 ppm of Mg. The experimental ratios for peak intensities, total intensities and Stark widths were obtained for different time windows and matched to the theoretical calculus. The temperature and the electron density of the plasma, as well as the Mg columnar density (the atom/ion concentration times the length of the plasma along the line-of-sight), were determined. The results were interpreted under the employed approach.

  10. [Determination of minor elements in stainless steel by laser-induced plasma spectroscopy (LIPS)].

    Science.gov (United States)

    Li, Jing; Zhai, Chao; Zhang, Shi-Ding; Zhang, Jian-Qiu; Meng, Xiang-Ru

    2008-04-01

    Laser-induced plasma spectroscopy (LIPS) is characterized by its non-contact and real-time analysis. Its application to the determination of steel composition can meet the need of high-speed, continuous and automatic production in large steel companies. In the present article the minor elements concentrations of aluminum, manganese, cobalt, molybdenum, and titanium in a series of stainless steel 1Cr18Ni9Ti samples were determinate by laser-induced plasma spectroscopy, based on a Nd : YAG Q-switched solid laser with wavelength 1 064 nm as an exciting source and ICCD as detector. In the experiment the working delay time and gate time of ICCD were set suitably to get high signal-to-noise ratio emission spectral lines, and the internal standardization method related to matrix effect was used to deal with spectral data. Experiment results show that the concentration ratios of all the measured elements versus the reference element ferrum have a good linear relationship with the intensity ratios of them, the detection limits of the five tested elements are within 150 microg x g(-1).

  11. Diode-Laser Induced Fluorescence Spectroscopy of an Optically Thick Plasma in Combination with Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    S. Nomura

    2013-01-01

    Full Text Available Distortion of laser-induced fluorescence profiles attributable to optical absorption and saturation broadening was corrected in combination with laser absorption spectroscopy in argon plasma flow. At high probe-laser intensity, saturated absorption profiles were measured to correct probe-laser absorption. At low laser intensity, nonsaturated absorption profiles were measured to correct fluorescence reabsorption. Saturation broadening at the measurement point was corrected using a ratio of saturated to non-saturated broadening. Observed LIF broadening and corresponding translational temperature without correction were, respectively, 2.20±0.05 GHz and 2510±100 K and corrected broadening and temperature were, respectively, 1.96±0.07 GHz and 1990±150 K. Although this correction is applicable only at the center of symmetry, the deduced temperature agreed well with that obtained by LAS with Abel inversion.

  12. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, G. [Universidad de A Coruna, Departamento de Ingenieria Industrial II, E-15403 Ferrol (A Coruna) (Spain)], E-mail: gines@cdf.udc.es; Mateo, M.P.; Yanez, A. [Universidad de A Coruna, Departamento de Ingenieria Industrial II, E-15403 Ferrol (A Coruna) (Spain)

    2007-12-15

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits.

  13. Curve of growth methodology applied to laser-induced plasma emission spectroscopy

    Science.gov (United States)

    Gornushkin, I. B.; Anzano, J. M.; King, L. A.; Smith, B. W.; Omenetto, N.; Winefordner, J. D.

    1999-04-01

    The curve-of-growth (COG) method was applied to a laser-induced plasma. The plasma was produced by a Nd:YAG laser on the surface of steel samples containing 0.007-1.3% of Cr. The emission was collected from the top of the plasma by means of a 45° pierced mirror and aligned onto an intensified charge-coupled device (ICCD) with a gate width of 1 μs and a variable delay time. The resonance 425.4 nm Cr line was used for construction of the COG. The temperature of the plasma (˜8000 K at 5-μs delay) was determined from a Boltzmann plot. The damping constant a, proportional to the ratio of the Lorentzian to the Doppler line widths, was found from the best fit of a series of calculated COG to the experimental data points and was 0.20±0.05. The number density of neutral Cr atoms which corresponded to the transition between low and high optical densities, was ≈6.5·10 12 cm -3. The cross-section for broadening collisions of Cr atoms with atmospheric species (presumably N 2) was calculated to be (66±16) Å. The shape of the 425.4-nm Cr line was additionally checked by scanning an ultra-narrow cw Ti:Sapphire laser across the atomic transition and found to be in agreement with preliminary estimates. The potential of the COG method for laser breakdown spectroscopy is discussed.

  14. Preliminary design of laser-induced breakdown spectroscopy for proto-Material Plasma Exposure eXperiment.

    Science.gov (United States)

    Shaw, G; Martin, M Z; Martin, R; Biewer, T M

    2014-11-01

    Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collection probe, and the expected results.

  15. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi; Iwamae, Atsushi (eds.) [Kyoto Univ. (Japan). Dept. of Mechanical Engineering and Science

    2008-07-01

    Plasma Polarization Spectroscopy (PPS) is now becoming a standard diagnostic technique for working with laboratory plasmas. This new area needs a comprehensive framework, both experimental and theoretical. This book reviews the historical development of PPS, develops a general theoretical formulation to deal with this phenomenon, along with an overview of relevant cross sections, and reports on laboratory experiments so far performed. It also includes various facets that are interesting from this standpoint, e.g. X-ray lasers and effects of microwave irradiation. It also offers a timely discussion of instrumentation that is quite important in a practical PPS experiment. (orig.)

  16. Measurements of egg shell plasma parameters using laser-induced breakdown spectroscopy

    Indian Academy of Sciences (India)

    Wenfeng Luo; Xiaoxia Zhao; Shuyuan Lv; Haiyan Zhu

    2015-07-01

    Measurements of 1064 nm laser-induced egg shell plasma parameters are presented in this paper. Of special interests were its elemental identification and the determination of spectroscopic temperature and electron density. The electron temperature of 5956 K was inferred using an improved iterative Boltzmann plot method with six calcium atomic emission lines, and the electron number density of 6.1 × 1016 cm−3 was determined by measuring the width of Stark-broadened once-ionized calcium line at 393.37 nm. Based on the experimental results, the laser-induced egg shell plasma was verified to be optically thin and satisfy local thermodynamic equilibrium (LTE). Furthermore, experiments also demonstrated that the loss of energy due to the reflection of the laser beam from the plasma can be neglected and the inverse bremsstrahlung (IB) absorption was the dominant mechanism of plasma heating at the IR wavelength.

  17. Elemental detection of arabica and robusta green bean coffee using laser-induced plasma spectroscopy

    Science.gov (United States)

    Abdulmadjid, Syahrun Nur; Meilina, Hesti; Hedwig, Rinda; Kurniawan, Koo Hendrik

    2017-01-01

    The elemental detection of green bean of arabica and robusta coffee from Gayo Highland, Aceh-Indonesia, has been identified by using fundamental Nd-YAG Laser at 10 Torr of surrounding air gas pressure for distinguishing the characteristics of both coffees. As the preliminary study, we have detected the elements of K 766.49 nm, Na 588.9 nm, Ca 393.3 nm, CN band at 388.3 nm, N 337.13 nm and C 247.8 nm of both coffees. It is noticed that the order of elements concentration from highest to lowest are Ca>K>CN> Na>N> C for arabica and K>Ca>CN >Na>C>N for robusta. The emission intensity of K 766.49 nm is almost same for both of coffee. However, the emission intensity of Na 588.9 nm is lower in Arabica coffee. To distinguish the Arabica coffee and Robusta Coffee, we take the ratio intensity of K/C, Na/C, CN/C, and Ca/C. It is found that the ratio intensities of CN/C and Ca/C in arabica bean are significantly different with robusta bean. That ratio intensities can be used as a marker to discriminate kind of coffee. We also noted that the arabica green bean is 1.3 harder than robusta green bean. These findings prove that the technique of laser-induced plasma spectroscopy can be used to make rapid identification of elements in coffee and can potentially be applied to measure the concentration of blended coffee for the purpose of authentication.

  18. Study of deuterium retention on lithiated tungsten exposed to high-flux deuterium plasma using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cong; Wu, Xingwei; Zhang, Chenfei [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian 116024 (China); Ding, Hongbin, E-mail: hding@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian 116024 (China); De Temmerman, G., E-mail: G.C.DeTemmerman@differ.nl [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Meiden, H.J. van der [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-10-15

    Highlights: • Deuterium retention effects on both pure tungsten and lithiated tungsten have been investigated in the linear plasma simulator Magnum-PSI by an in-situ laser-induced breakdown spectroscopy. • The lithiation can inhibit the blistering on tungsten surface. • The re-deposition of lithium results in the formation of chemical state of Li{sub 2}CO{sub 3} and tungsten oxides on a fresh surface of tungsten. - Abstract: Tungsten is under consideration for use as a plasma-facing material in the divertor region of ITER. Lithiation can significantly improve plasma performance in long-pulse tokamaks like EAST. The investigation of lithiated tungsten is important for understanding the lithium conditioning effects for EAST, where tungsten will be used as a plasma-facing material. In this paper, a few important issues of lithiated tungsten interacting with high-flux deuterium plasma have been studied, such as the effect of lithiation on deuterium retention, the profile of elemental distribution, and the chemical state of lithiated tungsten. Deuterium retention inside both pure and lithiated tungsten has been investigated for the first time in the linear plasma simulator Magnum-PSI by in-situ laser induced breakdown spectroscopy (LIBS). The results indicate that, after deuterium plasma exposure, deuterium retention could be saturated in the lithiation layer, and the lithium in the lithiated layer is chemically bound with deuterium. Moreover, the lithiation can inhibit the blistering on the tungsten surface. These results can be valuable for the application of LIBS as a diagnostic technique for plasma-facing components of tokamaks.

  19. Modeling of plasma distortions by laser-induced ablation spectroscopy (LIAS) and implications for the interpretation of LIAS measurements

    Science.gov (United States)

    Tokar, M. Z.; Gierse, N.; Philipps, V.; Samm, U.

    2015-09-01

    For the interpretation of the line radiation observed from laser induced ablation spectroscopy (LIAS) such parameters as the density and temperature of electrons within very compact clouds of atoms and singly charged ions of ablated material have to be known. Compared to the local plasma conditions prior to the laser pulse, these can be strongly changed during LIAS since new electrons are generated by the ionisation of particles ejected from the irradiated target. Because of their transience and spatial inhomogeneity it is technically difficult to measure disturbances induced in the plasma by LIAS. To overcome this uncertainty a numerical model has been elaborated, providing a self-consistent description for the spreading of ablated particles and accompanying modifications in the plasma. The results of calculations for LIAS performed on carbon-containing targets in Ohmic and additionally heated discharges in the tokamak TEXTOR are presented. Due to the increase in the electron density the ‘ionisation per photon’ ratio, S/XB factor, is significantly enhanced compared to unperturbed plasma conditions. The impact of the amount of material ablated and of the plasma conditions before LIAS on the level of the S/XB-enhancement is investigated.

  20. The use of laser-induced shock wave plasma spectroscopy (LISPS) for examining physical characteristics of pharmaceutical products

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmadjid, Syahrun Nur, E-mail: syahrun-madjid@yahoo.com; Lahna, Kurnia, E-mail: kurnialahna@gmail.com [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Aceh (Indonesia); Desiyana, Lydia Septa, E-mail: lydia-septa@yahoo.com [Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Aceh (Indonesia)

    2016-03-11

    An experimental study has been performed to examine the physical characteristics of pharmaceutical products, such as tablet, by employing an emission plasma induced by Nd-YAG laser at a low pressure of Helium gas. The hardness of tablet is one of the parameters that examined during the production process for standard quality of pharmaceutical products. In the Laser-Induced Shock Wave Plasma Spectroscopy (LISPS), the shock wave has a significant role in inducing atomic excitation. It was known that, the speed of the shock wavefront depends on the hardness of the sample, and it correlates with the ionization rate of the ablated atoms. The hardness of the tablet is examined using the intensity ratio between the ion of Mg (II) 275.2 nm and the neutral of Mg (I) 285.2 nm emission lines detected from the laser-induced plasma. It was observed that the ratio changes with respect to the change in the tablet hardness, namely the ratio is higher for the hard tablet. Besides the ratio measurements, we also measured the depth profile of a tablet by focusing 60 shots of irradiation of laser light at a fixed position on the surface of the tablet. It was found that the depth profile varies differently with the hardness of the tablet. These experiment results show that the technique of LISPS can be applied to examine the quality of pharmaceutical products.

  1. The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Penczak, John [Department of Chemistry (m/c 111), University of Illinois at Chicago, Chicago, IL 60680-7061 (United States); Kupfer, Rotem; Bar, Ilana [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Gordon, Robert J. [Department of Chemistry (m/c 111), University of Illinois at Chicago, Chicago, IL 60680-7061 (United States)

    2014-07-01

    We report an experimental and theoretical study of the mechanism for the enhancement of the laser-induced breakdown signal produced by two collinear femtosecond pulses separated by a suitable delay. A bilayer sample consisting of a 500 nm thick film of Ag deposited on Al was used in the experiments, and a particle-in-cell (PIC) simulation was implemented in the theoretical part of the study. Experiments on the effect of laser polarization, performed at a 30° angle of incidence over a wide range of fluences, together with the PIC results, showed that the plasma produced by the first pulse was further excited by the second pulse. Experiments at normal incidence and a fluence of 200 J/cm{sup 2} showed that the second pulse did not penetrate the Ag layer. In addition, measurements of the effect of pulse delay on the signal supported the conclusion that double pulse enhancement is produced by plasma heating rather than by increased surface ablation. - Highlights: • We study the mechanism for collinear double-pulse enhancement of LIBS produced by a fs laser. • We use a bilayer of Ag on Al to determine which region is reached by the 2nd pulse. • Signal enhancement is produced by plasma heating rather than by increased surface ablation. • Particle-in-cell calculations show that plasma shielding plays a key role.

  2. Indirect determination of the electric field in plasma discharges using laser-induced fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vaudolon, J., E-mail: julien.vaudolon@cnrs-orleans.fr; Mazouffre, S., E-mail: stephane.mazouffre@cnrs-orleans.fr [CNRS - ICARE (Institut de Combustion Aérothermique Réactivité et Environnement), 1 C Av. de la Recherche Scientifique, 45071 Orléans Cedex 2 (France)

    2014-09-15

    The evaluation of electric fields is of prime interest for the description of plasma characteristics. In this work, different methods for determining the electric field profile in low-pressure discharges using one- and two-dimensional Laser-Induced Fluorescence (LIF) measurements are presented and discussed. The energy conservation, fluid, and kinetic approaches appear to be well-suited for the electric field evaluation in this region of the plasma flow. However, the numerical complexity of a two-dimensional kinetic model is penalizing due to the limited signal-to-noise ratio that can be achieved, making the computation of the electric field subject to large error bars. The ionization contribution which appears in the fluid model makes it unattractive on an experimental viewpoint. The energy conservation and 1D1V kinetic approaches should therefore be preferred for the determination of the electric field when LIF data are used.

  3. The Role of Plasma Shielding in Double-Pulse Femtosecond Laser-Induced Breakdown Spectroscopy

    CERN Document Server

    Penczak, John S; Bar, Ilana; Gordon, Robert J

    2013-01-01

    It is well known that optical emission produced by femtosecond laser-induced breakdown on a surface may be enhanced by using a pair of laser pulses separated by a suitable delay. Here we elucidate the mechanism for this effect both experimentally and theoretically. Using a bilayer sample consisting of a thin film of Ag deposited on an Al substrate as the ablation target and measuring the breakdown spectrum as a function of fluence and pulse delay, it is shown experimentally that the enhanced signal is not caused by additional ablation initiated by the second pulse. Rather, particle-in-cell calculations show that the plasma produced by the first pulse shields the surface from the second pulse for delays up to 100 ps. These results indicate that the enhancement is the result of excitement of particles entrained in the plasma produced by the first pulse.

  4. Determination of plasma trace elements in tumor-bearing animals by proton-induced X-ray emission spectroscopy.

    Science.gov (United States)

    Fogle, M; Daly, B; Evans, M; Justiniano, E L; Kovacs, C J; Shinpaugh, J L; Toburen, L H

    2001-11-01

    Although altered levels of circulating essential trace elements are known to accompany malignant disease, the lack of sensitivity of conventional detection methods has generally limited their study to clinical conditions involving extensive disease (i.e., significant tumor burden). As such, the application of altered trace element levels as potential prognostic guides or as response indicators subsequent to treatment has been of limited use. During this study, proton-induced X-ray emission spectroscopy was evaluated as a tool to determine trace element imbalances in a murine tumor model. Using plasma from C57B1/6 mice bearing the syngeneic Lewis lung carcinoma (LLCa), levels of Fe, Cu, and Zn, as well as changes in the Cu /Zn ratio, were measured in animals carrying an increasing primary tumor burden. The plasma levels of Fe, Cu, and Zn were found to decrease significantly 7 d following implants of LLCa cells with no significant change observed in the Cu/Zn ratio. By d 21, however, an increase in the Cu/Zn ratio was found to accompany increased growth of the LLCa tumor; the plasma levels of Cu had returned to normal levels, whereas both the Fe and Zn plasma levels remained lowered. Collectively, the results suggest that although a net change in individual plasma trace element concentrations might not be accurately associated with tumor growth, a clear relationship was established between the Cu/Zn ratio and tumor size.

  5. Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions

    Indian Academy of Sciences (India)

    V K Unnikrishnan; Kamlesh Alti; V B Kartha; C Santhosh; G P Gupta; B M Suri

    2010-06-01

    Plasma produced by a 355 nm pulsed Nd:YAG laser with a pulse duration of 6 ns focussed onto a copper solid sample in air at atmospheric pressure is studied spectroscopically. The temperature and electron density characterizing the plasma are measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time window of 300–2000 ns. An echelle spectrograph coupled with a gated intensified charge coupled detector is used to record the plasma emissions. The temperature is obtained using the Boltzmann plot method and the electron density is determined using the Saha– Boltzmann equation method. Both parameters are studied as a function of delay time with respect to the onset of the laser pulse. The results are discussed. The time window where the plasma is optically thin and is also in local thermodynamic equilibrium (LTE), necessary for the laser-induced breakdown spectroscopy (LIBS) analysis of samples, is deduced from the temporal evolution of the intensity ratio of two Cu I lines. It is found to be 700–1000 ns.

  6. Study on the influence of laser pulse duration in the long nanosecond regime on the laser induced plasma spectroscopy

    Science.gov (United States)

    Elnasharty, I. Y.

    2016-10-01

    By using a high power pulsed fiber laser, this study reports the experimental investigation of the laser-induced plasma characteristics for the laser pulse duration range extended from 40 ns to 200 ns. The experiments were performed with keeping the laser fluence constant at 64 J/cm2. The measurements show that, for the early phase of plasma formation, the spectral line intensities and the continuum emissions as well as the plasma characteristics decay to a certain extent with the increase of the pulse duration. On the other hand, as the plasma evolves in post laser pulse regime, the electron density and the degree of ionization increase slightly for the longer pulses, while the plume temperature is more or less independent from the pulse duration. Furthermore, the ablation characteristics, such as the ablation rate, coincide with the results of plasma characteristics for the different pulse durations. Eventually, with keeping the laser fluence constant at 64 J/cm2, the analytical performance of Laser-Induced Plasma Spectroscopy (LIPS) for the corresponding pulse duration range is examined by using a temporal gating and non-gating analyses. The measurements show that, in the case of gating analysis, all pulse durations yield almost the same range of limits of detections LODs. On the other hand, for non-gating analysis, the longer pulse durations provide lower LODs (better) than the shorter ones by orders of magnitude. Moreover, the calculated absolute limit of detection (LODAbs) for the longest pulse duration (i.e. 200 ns) is lower by approximately factor 2 than that of the shortest one (i.e. 40 ns).

  7. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  8. Spectroscopy of Low Temperature Plasma

    CERN Document Server

    Ochkin, Vladimir N

    2009-01-01

    Providing an up-to-date overview on spectroscopical diagnostics of low temperature plasma Spectroscopy of Low Temperature Plasma covers the latest developments and techniques. Written by a distinguished scientist and experienced book author this text is applicable to many fields in materials and surface science as well as nanotechnology and contains numerous appendices with indispensable reference data.

  9. Emission Characteristics of Laser-Induced Plasma Using Collinear Long and Short Dual-Pulse Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung

    2017-09-01

    Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.

  10. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi [Department of Engineering Physics and Mechanics, Graduate School of Engineering, Kyoto University, Kyoto (Japan)

    2000-03-01

    Polarization of radiation emitted from a plasma reflects the anisotropic properties of the plasma, especially the angular anisotropic distribution of electron velocities. Polarization has been observed on impurity ion lines from the WT-3 tokamak and the GAMMA-10 tandem mirror machines. The soft x-ray laser line from the neonlike germanium was also found polarized. (author)

  11. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iwamae, Atsushi; Inoue, Takeru; Tanaka, Akihiro; Kawakami, Kazuki; Fujimoto, Takashi [Kyoto Univ., Dept. of Engineering Physics, Kyoto (Japan)

    2000-03-01

    Polarization of radiation emitted from plasma reflects the anisotropic properties of the plasma, especially the angular isotropic distribution of electron velocities. Polarization has been observed on impurity ion lines from the WT-3 tokamak and GAMMA 10 tandem mirror device. (author)

  12. Introduction to Plasma Spectroscopy

    CERN Document Server

    Kunze, H-J

    2009-01-01

    Based on lectures given at the Ruhr-University of Bochum for graduate students and postgraduates starting in plasma physics as well as from low- to high-density hot plasmas, this book introduces basic ideas and fundamental concepts and typical instrumentation from the X-ray to the infrared spectral regions

  13. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Rehan

    2017-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm of a Nd:YAG pulsed laser. Three samples were collected for this purpose. Spectra of textile dyes were acquired using an HR spectrometer (LIBS2000+, Ocean Optics, Inc. having an optical resolution of 0.06 nm in the spectral range of 200 to 720 nm. Toxic metals like Cr, Cu, Fe, Ni, and Zn along with other elements like Al, Mg, Ca, and Na were revealed to exist in the samples. The %-age concentrations of the detected elements were measured by means of standard calibration curve method, intensities of every emission from every species, and calibration-free (CF LIBS approach. Only Sample 3 was found to contain heavy metals like Cr, Cu, and Ni above the prescribed limit. The results using LIBS were found to be in good agreement when compared to outcomes of inductively coupled plasma/atomic emission spectroscopy (ICP/AES.

  14. Atomic hydrogen and diatomic titanium-monoxide molecular spectroscopy in laser-induced plasma

    Science.gov (United States)

    Parigger, Christian G.; Woods, Alexander C.

    2017-03-01

    This article gives a brief review of experimental studies of hydrogen Balmer series emission spectra. Ongoing research aims to evaluate early plasma evolution following optical breakdown in laboratory air. Of interest is as well laser ablation of metallic titanium and characterization of plasma evolution. Emission of titanium monoxide is discussed together with modeling of diatomic spectra to infer temperature. The behavior of titanium particles in plasma draws research interests ranging from the modeling of stellar atmospheres to the enhancement of thin film production via pulsed laser deposition.

  15. Zeeman Spectroscopy of Tokamak Edge Plasmas

    Science.gov (United States)

    Hey, J. D.; Chu, C. C.; Mertens, Ph.

    2002-12-01

    Zeeman spectroscopy is a valuable tool both for diagnostic purposes, and for more fundamental studies of atomic and molecular processes in the boundary region of magnetically confined fusion plasmas (B ≃ 1 to 10 T). The method works well when the Zeeman (Paschen-Back) effect plays an important, or dominant, rôle in relation to other broadening mechanisms (Doppler, Stark, resonant excitation transfer) in determining the spectral line shape. For impurity species identification and temperature determination, Zeeman spectroscopy has advantages over charge-exchange recombination spectroscopy from highly excited radiator states, since spectral features practically unique to the species under investigation are analysed. It also provides useful information on probable mechanisms of line production (e.g. sputtering mechanisms, electron impact-induced dissociative excitation from molecules in the edge plasma), and on the temperature evolution of lower charge states in the process of convection inwards or diffusion outwards from the hotter plasma interior. Where different physical processes are responsible for different sections of the line profile — especially in the case of hydrogen isotopes — Zeeman spectroscopy can provide a set of characteristic temperatures for each section. The method is introduced in both passive and active spectroscopy, and general principles of the Zeeman effect are discussed with special reference to régimes of interest for the tokamak. Relevant physical processes (sputtering mechanisms, electron impact-induced dissociative excitation from molecules in the edge plasma, and ion-atom collisional heating mechanisms) are illustrated by sample spectra.

  16. Characterizing a multi-MeV e-beam induced plasma through visible spectroscopy and imaging

    Science.gov (United States)

    D'Almeida, Thierry; Ribiere, Maxime; Maisonny, Rémi; Ritter, Sandra; Plouhinec, Damien; Auriel, Gérard

    2016-10-01

    High energy electrons interaction and propagation mechanisms in solid targets have a broad range of applications in high energy density physics. The latter include fast ignition for inertial fusion research, production of ultra-high mechanical stress levels, plasma interactions with e-beam particles in electron diodes, radiative hydrodynamic models...This paper presents the results from recent experiments conducted on the multi-MeV generator ASTERIX operated at CEA-Gramat. This high flux density electron beam was launched from an aluminum cathode onto an aluminum-tantalum target for voltage and current of 2.4 MeV and 55 kA, respectively. A set of optical diagnostics were fielded in all of the experiments, including a UV-visible spectrometers and a fast imaging. The imaging data obtained during the experiment allowed for the ablated species velocity to be determined. based on spectroscopic analysis, the light emission was attributed to aluminum and tantalum excited atoms and ions. The analysis of this time-integrated spectrum based on radiative transfer model clearly unveiled two distinct regions of the plasma over its expansion: a hot core surrounded by a cold vapor. A quantitative analysis of these results is presented.

  17. FTIR spectroscopy of cysteine as a ready-to-use method for the investigation of plasma-induced chemical modifications of macromolecules

    Science.gov (United States)

    Kogelheide, Friederike; Kartaschew, Konstantin; Strack, Martin; Baldus, Sabrina; Metzler-Nolte, Nils; Havenith, Martina; Awakowicz, Peter; Stapelmann, Katharina; Lackmann, Jan-Wilm

    2016-03-01

    A rapid screening method for the investigation of plasma-induced chemical modifications was developed by analyzing cysteine using Fourier Transform Infrared (FTIR) spectroscopy. Cysteine is a key amino acid in proteins due to the presence of a thiol group which provides unique structural features by offering the possibility to form disulfide bonds. Its chemical composition makes cysteine a well-suited model for the investigation of plasma-induced modifications at three functional groups—the amino, the carboxyl and the thiol group—all highly abundant in proteins. FTIR spectroscopy is present in most physical laboratories and offers a fast way to assess changes in the chemical composition of cysteine substrates due to plasma treatment and to compare different treatment conditions or plasma sources with each other. Significant changes in the fingerprint spectra of cysteine samples treated with a dielectric barrier discharge (DBD) compared to untreated controls were observed using a FTIR spectrometer. The loss of the thiol signal and the simultaneous increase of bands originating from oxidized sulfur and nitrogen species indicate that the thiol group of cysteine is modified by reactive oxygen and nitrogen species during DBD treatment. Furthermore, other plasma-induced modifications, such as changes of the amino and carbonyl groups, could be observed. Complementary mass spectrometry measurements confirmed these results.

  18. Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra

    Science.gov (United States)

    López-Claros, M.; Dell'Aglio, M.; Gaudiuso, R.; Santagata, A.; De Giacomo, A.; Fortes, F. J.; Laserna, J. J.

    2017-07-01

    There is a growing interest in the development of sensors use in exploration of the deep ocean. Techniques for the chemical analysis of submerged solids are of special interest, as they show promise for subsea mining applications where a rapid sorting of materials found in the sea bottom would improve efficiency. Laser-Induced Breakdown Spectroscopy (LIBS) has demonstrated potential for this application thanks to its unique capability of providing the atomic composition of submerged solids. Here we present a study on the parameters that affect the spectral response of metallic targets in an oceanic pressure environment. Following laser excitation of the solid, the plasma persistence and the cavitation bubble size are considerably reduced as the hydrostatic pressure increases. These effects are of particular concern in dual pulse excitation as reported here, where a careful choice of the interpulse timing is required. Shadowgraphic images of the plasma demonstrate that cavitation bubbles are formed early after the plasma onset and that the effect of hydrostatic pressure is negligible during the early stage of plasma expansion. Contrarily to what is observed at atmospheric pressure, emission spectra observed at high pressures are characterized by self-absorbed atomic lines on continuum radiation resulting from strong radiative recombination in the electron-rich confined environment. This effect is much less evident with ionic lines due to the much higher energy of the levels involved and ionization energy of ions, as well as to the lower extent of absorption effects occurring in the inner part of the plasma, where ionized species are more abundant. As a result of the smaller shorter-lived cavitation bubble, the LIBS intensity enhancement resulting from dual pulse excitation is reduced when the applied pressure increases.

  19. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process.

    Science.gov (United States)

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Yan, Jun Jie; Liu, Ji Ping

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.

  20. Determination of the elemental composition of micrometric and submicrometric particles levitating in a low pressure Radio-Frequency plasma discharge using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dutouquet, C., E-mail: Christophe.dutouquet@ineris.fr [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France); Wattieaux, G. [Groupe de Recherches sur l' Énergétique des Milieux Ionisés (GREMI) UMR 6606, CNRS/Université d' Orléans, 14 rue d' Issoudun, BP 6744, 45067 Orléans Cedex 2 (France); Compagnie Industrielle des Lasers (CILAS), 8, avenue Buffon B.P. 6319 Z.I. La Source, 45063 Orleans (France); Meyer, L. [Groupe de Recherches sur l' Énergétique des Milieux Ionisés (GREMI) UMR 6606, CNRS/Université d' Orléans, 14 rue d' Issoudun, BP 6744, 45067 Orléans Cedex 2 (France); Frejafon, E. [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France); Boufendi, L. [Groupe de Recherches sur l' Énergétique des Milieux Ionisés (GREMI) UMR 6606, CNRS/Université d' Orléans, 14 rue d' Issoudun, BP 6744, 45067 Orléans Cedex 2 (France)

    2013-05-01

    The LIBS (Laser-Induced Breakdown Spectroscopy) technique has shown its potential in many fields of applications including that of aerosol analysis. The latter is usually carried out on the particle flow, thereby allowing quantitative detection in various experimental conditions such as ambient air analysis or exhaust stack monitoring, to name but a few. A possible alternative method for particle analysis has been experimented combining a low pressure RF (Radio-Frequency) plasma discharge with the LIBS technique. Such approach has two peculiar features in comparison to the usual LIBS analysis. First, the particles injected in the RF plasma discharge are trapped in levitation. Second, the analysis is performed at a reduced pressure of around 1 mbar. LIBS detection at such low pressure has this peculiarity that particle vaporization is assumed to be achieved through direct laser particle interaction whereas it is caused by laser-induced plasma ignited in the gas at atmospheric pressure. The use of such particle trap could allow improving particle sampling, making organic particle analysis possible (by using an inert gas for RF plasma ignition) and even (depending on the pressure) obtaining a better signal to noise ratio. Detection of the elements of nanoparticle agglomerates made following their injection in the RF discharge has demonstrated the feasibility of such approach. Future experiments are intended to explore its potentialities when tackling issues such as process control or ambient air monitoring. - Highlights: ► Agglomerated composite nanoparticles are maintained in levitation within a trap. ► The trap consists in a low pressure Radio-Frequency (RF) plasma discharge. ► Particles are analyzed using Laser-Induced Breakdown Spectroscopy (LIBS). ► The analysis is done at RF discharge reduced pressure, namely 0.25 mbar.

  1. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  2. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic)], E-mail: kaiser@fme.vutbr.cz; Galiova, M.; Novotny, K.; Cervenka, R. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Reale, L. [Faculty of Sciences, University of L' Aquila, Via Vetoio (Coppito 1), 67010 L' Aquila (Italy); Novotny, J.; Liska, M.; Samek, O. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, V.; Hrdlicka, A. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Stejskal, K.; Adam, V.; Kizek, R. [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, 613 00 Brno (Czech Republic)

    2009-01-15

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 {mu}m in a up to cm x cm area of sunflower (Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  3. Zinc, lead and copper in human teeth measured by induced coupled argon plasma atomic emission spectroscopy (ICP-AES)

    Energy Technology Data Exchange (ETDEWEB)

    Chew, L.T.; Bradley, D.A. E-mail: D.A.Bradley@exeter.ac.uk; Mohd, Y.; Jamil, M

    2000-11-15

    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 {mu}g (g tooth mass){sup -1} to 40.5 {mu}g (g tooth mass){sup -1}, with a median of 9.8 {mu}g (g tooth mass){sup -1}. A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 {mu}g (g tooth mass){sup -1} respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.

  4. On the determination of plasma electron number density from Stark broadened hydrogen Balmer series lines in Laser-Induced Breakdown Spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, L., E-mail: loren.pard@gmail.com [Istituto di Chimica dei Composti Organometallici del CNR, Area della Ricerca del CNR di Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Legnaioli, S.; Lorenzetti, G.; Palleschi, V. [Istituto di Chimica dei Composti Organometallici del CNR, Area della Ricerca del CNR di Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Gaudiuso, R.; De Giacomo, A. [Dipartimento di Chimica, Università di Bari, Via Orabona 4, 70126 Bari (Italy); Diaz Pace, D.M. [Instituto de Física ‘Arroyo Seco’, Facultad de Ciencias Exactas, Paraje Arroyo Seco, B7000GHG Tandil (Argentina); Anabitarte Garcia, F. [Photonic Engineering Group, Universidad de Cantabria, Edificio I+D+iTelecomunicación, Dpto. TEISA, 39005 Santander (Spain); Holanda Cavalcanti, G. de [Institute of Physics, Universidade Federal Fluminense, UFF, Campus da Praia Vermelha, Av. Gal Milton Tavares de Souza, Gragoatá, 24310 240 Niterói, RJ (Brazil); Parigger, C. [University of Tennessee Space Institute, 411 B. H. Goethert Parkway, Tullahoma, TN 37388-9700 (United States)

    2013-10-01

    In this work, different theories for the determination of the electron density in Laser-Induced Breakdown Spectroscopy (LIBS) utilizing the emission lines belonging to the hydrogen Balmer series have been investigated. The plasmas were generated by a Nd:Yag laser (1064 nm) pulsed irradiation of pure hydrogen gas at a pressure of 2 · 10{sup 4} Pa. H{sub α}, Η{sub β}, Η{sub γ}, Η{sub δ}, and H{sub ε} Balmer lines were recorded at different delay times after the laser pulse. The plasma electron density was evaluated through the measurement of the Stark broadenings and the experimental results were compared with the predictions of three theories (the Standard Theory as developed by Kepple and Griem, the Advanced Generalized Theory by Oks et al., and the method discussed by Gigosos et al.) that are commonly employed for plasma diagnostics and that describe LIBS plasmas at different levels of approximations. A simple formula for pure hydrogen plasma in thermal equilibrium was also proposed to infer plasma electron density using the H{sub α} line. The results obtained showed that at high hydrogen concentration, the H{sub α} line is affected by considerable self-absorption. In this case, it is preferable to use the H{sub β} line for a reliable calculation of the electron density. - Highlights: • We evaluated the electron density in LIPs utilizing the hydrogen Balmer series. • Plasmas were generated by a Nd:Yag laser (1064 nm) on pure hydrogen gas. • We show that at high hydrogen concentration, H{sub b}eta line is preferable than H{sub a}lpha. • We propose a formula to derive the plasma electron density using the H{sub a}lpha line.

  5. Modeling of low-temperature plasmas generated using laser-induced breakdown spectroscopy: the ChemCam diagnostic tool on the Mars Science Laboratory Rover

    Science.gov (United States)

    Colgan, James

    2016-05-01

    We report on efforts to model the low-temperature plasmas generated using laser-induced breakdown spectroscopy (LIBS). LIBS is a minimally invasive technique that can quickly and efficiently determine the elemental composition of a target and is employed in an extremely wide range of applications due to its ease of use and fast turnaround. In particular, LIBS is the diagnostic tool used by the ChemCam instrument on the Mars Science Laboratory rover Curiosity. In this talk, we report on the use of the Los Alamos plasma modeling code ATOMIC to simulate LIBS plasmas, which are typically at temperatures of order 1 eV and electron densities of order 10 16 - 17 cm-3. At such conditions, these plasmas are usually in local-thermodynamic equilibrium (LTE) and normally contain neutral and singly ionized species only, which then requires that modeling must use accurate atomic structure data for the element under investigation. Since LIBS devices are often employed in a very wide range of applications, it is therefore desirable to have accurate data for most of the elements in the periodic table, ideally including actinides. Here, we discuss some recent applications of our modeling using ATOMIC that have explored the plasma physics aspects of LIBS generated plasmas, and in particular discuss the modeling of a plasma formed from a basalt sample used as a ChemCam standard1. We also highlight some of the more general atomic physics challenges that are encountered when attempting to model low-temperature plasmas. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396. Work performed in conjunction with D. P. Kilcrease, H. M. Johns, E. J. Judge, J. E. Barefield, R. C. Wiens, S. M. Clegg.

  6. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  7. BOOK REVIEW: Principles of Plasma Spectroscopy

    Science.gov (United States)

    Osterheld, A. L.

    1998-08-01

    This book gives a comprehensive treatment of plasma spectroscopy, the quantitative study of line and continuous radiation from high temperature plasmas. This highly interdisciplinary field combines elements of atomic, plasma and statistical physics, and has wide application to simulations and diagnostics of laboratory and astrophysical plasmas. Plasma spectroscopy is naturally intertwined with magnetic and inertial fusion energy science. Radiative processes in plasmas are important in the design of fusion facilities, and can be used to diagnose and control conditions in fusion plasmas. In turn, fusion scientists and facilities have played a central role in developing plasma spectroscopy theory and applications. The book covers radiation from plasmas, spectral line broadening, atomic processes in plasmas and level kinetic models, radiative transfer and applications to spectroscopic plasma diagnostics. It is successful both as an introductory text and as a source book of theoretical and experimental research. The book presents a broad development of the theoretical foundations of these topics, and discusses the seminal papers and critical experiments. There is a strong emphasis on applications of plasma spectroscopy, primarily to plasma diagnostics and calculations of radiative cooling rates. Extensive references (current through the end of 1995) point readers to original material and detailed discussions of advanced topics. Of course, a single text cannot treat all aspects of plasma spectroscopy in depth. The strongest and most detailed section of the book is a long chapter on spectral line broadening. For me, the most significant omission is lack of a discussion of laser assisted transitions which can occur in plasmas produced by high intensity lasers. The book was intentionally written to be accessible to young researchers and graduate students. The level is roughly that of a graduate text. It assumes some familiarity with quantum mechanics and statistical

  8. Kinetics and spectroscopy of low temperature plasmas

    CERN Document Server

    Loureiro, Jorge

    2016-01-01

    This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...

  9. Study of laser-induced removal of co-deposits from tokamak plasma-facing components using ion diagnostics and optical spectroscopy

    Science.gov (United States)

    Wolowski, J.; Gasior, P.; Hoffman, J.; Kubkowska, M.; Rosinski, M.; Szymanski, Z.

    2010-10-01

    The paper presents studies of the application of ion diagnostics and optical spectroscopy for on-line measurement of the amount and characteristics of co-deposits from the laser-ablated surface of the plasma-facing components (e.g. graphite tiles). For removal of the co-deposit layer a repetitive Nd:YAG laser was used. Determination of the characteristics of ions emitted from the laser-illuminated targets was performed using ion collectors (on the basis of a time-of-flight method) and an optical spectrometer. The main ion stream parameters and spectral lines of deuterium and carbon or tungsten ions were measured depending on laser pulse parameters. The research proved that optical spectroscopy could be a convenient method for on-line observation of the co-deposited layer removal by means of laser ablation. In combination with the investigation of collected co-deposit dust, the performed study made it possible to state that laser-induced breakdown spectroscopy can be useful as a diagnostic method for the ablative co-deposited layer removal and the wall conditioning. The properties of modified surfaces of samples and collected dust (evaporated co-deposit) were determined using different measuring methods.

  10. New ways for the quantification by the laser-induced plasma spectroscopy; Neue Wege zur Quantifizierung mit der laserinduzierten Plasmaspektroskopie (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Maike

    2010-04-27

    Laser Induced Breakdown Spectroscopy (LIBS) is capable of a fast and multielement analysis of various samples types and matrices which makes the method particularly attractive for industrial process analysis. However, for LIBS to become well accepted as an analytical method some issues in calibration and understanding of the underlying transient plasma processes have to be solved. The objective of this work was to identify influential instrumental parameters and plasma conditions in order to improve the overall quantitative performance of LIBS. As the spectral sensitivity and signal-to-noise ratio of the detector represents a decisive element for the application of LIBS in an industrial environment, two detectors, an ICCD and CCD camera, were compared. In combination with a high-resolution echelle spectrograph, the superior or at least equivalent efficiency of the non-intensified CCD was experimentally demonstrated and supported by corresponding plasma simulations. Further investigations of the plasma expansion under different atmospheric conditions revealed that the geometry of observing the expanding plasma influences the sensitivity and reproducibility of the measurements considerably. The diagnostics of self-absorbed spectral lines and their use for calibration purposes were studied with a mirror-based duplication method and a statistical line shape analysis employing linear correlation. The linear correlation approach displayed good performance for identifying the on-set of self absorption in comparison to the duplication method. As matrixmatched reference materials are essential to validate laser ablation methods, two novel preparations of individual calibration standards based on a copper-and polyacrylamide matrix were tested for their applicability to LIBS. (orig.)

  11. Proceedings of the Japan-US workshop on plasma polarization spectroscopy and the international seminar on plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi; Beiersdorfer, Peter [eds.

    1998-06-01

    The international meeting on Plasma Polarization Spectroscopy (PPS) was held in Kyoto during January 26-28, 1998. This Proceedings book includes the papers of the talks given at the meeting. These include: overviews of PPS from the aspects of atomic physics, and of plasma physics; several PPS and MSE (motional Stark effect) experiments on magnetically confined plasmas and a laser-produced plasma; polarized laser-induced fluorescence spectroscopy, several experiments on EBITs (electron beam ion trap) and their theoretical interpretations; polarized profiles of spectral lines, basic formulation of PPS; inelastic and elastic electron collisions leading to polarized atomic states; polarization in recombining plasma; relationship between the collisional polarization relaxation and the line broadening; and characteristics of the plasma produced by very short pulse and high power laser irradiation. The 19 of the presented papers are indexed individually. (J.P.N.)

  12. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  13. Laser-induced breakdown spectroscopy and inductively coupled plasma-mass spectrometry for determination of Cr in soils from Brits District, South Africa

    Directory of Open Access Journals (Sweden)

    A. A. Ambushe

    2015-10-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS is an emerging analytical technique, which can be used to perform elemental analysis of any material, irrespective of its physical state. In this study, the LIBS technique has been applied for quantification of total Cr in soil samples collected from polluted areas of Brits, North West Province, South Africa. A Q-switched neodymium-yttrium aluminium garnet (Nd-YAG laser (10 Hz, λ = 1064 nm was employed for generation of a laser-induced plasma on the surface of the soil sample. The atomic emission lines were recorded using an Andor Shamrock SR-303i spectrometer, fitted with an intensified charge-coupled device (ICCD camera. Detailed investigation of experimental parameters such as gate delay time, gate width and laser pulse energy was conducted. Soil samples were dried, finely ground, sieved and thereafter pelletized before LIBS analysis. Calibration curve for the quantification of Cr was constructed using certified reference materials of soils and sediments. The concentrations of Cr in soil samples varied from 111 to 3180 mg/kg. In order to test the validity of the LIBS results, inductively coupled plasma-mass spectrometry (ICP-MS was also employed for determination of Cr. The results obtained using LIBS were found to be in good agreement with those of ICP-MS.DOI: http://dx.doi.org/10.4314/bcse.v29i3.3

  14. Laser induced breakdown spectroscopy on meteorites

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)], E-mail: alessandro.degiacomo@ba.imip.cnr.it; Dell' Aglio, M.; De Pascale, O. [MIP-CNR sec Bari (Italy); Longo, S.; Capitelli, M. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)

    2007-12-15

    The classification of meteorites when geological analysis is unfeasible is generally made by the spectral line emission ratio of some characteristic elements. Indeed when a meteorite impacts Earth's atmosphere, hot plasma is generated, as a consequence of the braking effect of air, with the consequent ablation of the falling body. Usually, by the plasma emission spectrum, the meteorite composition is determined, assuming the Boltzmann equilibrium. The plasma generated during Laser Induced Breakdown Spectroscopy (LIBS) experiment shows similar characteristics and allows one to verify the mentioned method with higher accuracy. On the other hand the study of Laser Induced Breakdown Spectroscopy on meteorite can be useful for both improving meteorite classification methods and developing on-flight techniques for asteroid investigation. In this paper certified meteorites belonging to different typologies have been investigated by LIBS: Dofhar 461 (lunar meteorite), Chondrite L6 (stony meteorite), Dofhar 019 (Mars meteorite) and Sikhote Alin (irony meteorite)

  15. Mid infrared emission spectroscopy of carbon plasma

    Science.gov (United States)

    Nemes, Laszlo; Brown, Ei Ei; Yang, Clayton S.-C.; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6 μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10 μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5 μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results.

  16. Mid infrared emission spectroscopy of carbon plasma.

    Science.gov (United States)

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-05

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results.

  17. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair

    2016-08-01

    Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge. Copyright © 2016 Elsevier B

  18. Study of deuterium retention on lithiated tungsten exposed to high-flux deuterium plasma using laser-induced breakdown spectroscopy

    NARCIS (Netherlands)

    Li, C.; Wu, X.; Zhang, C.; Ding, H.; De Temmerman, G.; van der Meiden, H. J.

    2014-01-01

    Tungsten is under consideration for use as a plasma-facing material in the divertor region of ITER. Lithiation can significantly improve plasma performance in long-pulse tokamaks like EAST. The investigation of lithiated tungsten is important for understanding the lithium conditioning effects for

  19. Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Melikechi, Noureddine; Markushin, Yuri; Connolly, Denise C.; Lasue, Jeremie; Ewusi-Annan, Ebo; Makrogiannis, Sokratis

    2016-09-01

    Epithelial ovarian cancer (EOC) mortality rates are strongly correlated with the stage at which it is diagnosed. Detection of EOC prior to its dissemination from the site of origin is known to significantly improve the patient outcome. However, there are currently no effective methods for early detection of the most common and lethal subtype of EOC. We sought to determine whether laser-induced breakdown spectroscopy (LIBS) and classification techniques such as linear discriminant analysis (LDA) and random forest (RF) could classify and differentiate blood plasma specimens from transgenic mice with ovarian carcinoma and wild type control mice. Herein we report results using this approach to distinguish blood plasma samples obtained from serially bled (at 8, 12, and 16 weeks) tumor-bearing TgMISIIR-TAg transgenic and wild type cancer-free littermate control mice. We have calculated the age-specific accuracy of classification using 18,000 laser-induced breakdown spectra of the blood plasma samples from tumor-bearing mice and wild type controls. When the analysis is performed in the spectral range 250 nm to 680 nm using LDA, these are 76.7 (± 2.6)%, 71.2 (± 1.3)%, and 73.1 (± 1.4)%, for the 8, 12 and 16 weeks. When the RF classifier is used, we obtain values of 78.5 (± 2.3)%, 76.9 (± 2.1)% and 75.4 (± 2.0)% in the spectral range of 250 nm to 680 nm, and 81.0 (± 1.8)%, 80.4 (± 2.1)% and 79.6 (± 3.5)% in 220 nm to 850 nm. In addition, we report, the positive and negative predictive values of the classification of the two classes of blood plasma samples. The approach used in this study is rapid, requires only 5 μL of blood plasma, and is based on the use of unsupervised and widely accepted multivariate analysis algorithms. These findings suggest that LIBS and multivariate analysis may be a novel approach for detecting EOC.

  20. Laser-induced Fluorescence and Optical Emission Spectroscopy for the Determination of Reactive Species in the Effluent of Atmospheric Pressure Low Temperature Plasma Jets

    Science.gov (United States)

    Pei, Xuekai; Razavi, Hamid; Lu, Xinpei; Laroussi, Mounir

    2014-10-01

    OH radicals and O atoms are important active species in various applications of room temperature atmospheric pressure plasma jet (RT-APPJ). So the determination of absolute density of OH radicals and O atoms in RT-APPJs is necessary. In this work, the time and spatially resolved OH radicals density of a RT-APPJ are measured using the laser-induced fluorescence (LIF) technology. In addition, the spatial distribution of the emitting species along the axial direction of the jet is of interest and is measured using optical emission spectroscopy. The absolute OH density of the RT-APPJ is about 2.0 × 1013 cm-3 at 5 mm away from the plasma jet nozzle and 1 μs after the discharge. The OH density reaches a maximum when H2O concentration in helium gas flow is about 130ppm. In order to control the OH density, the effect of voltage polarity, applied voltage magnitude, pulse frequency, pulse width on the OH density are also investigated and discussed. O atoms are investigated by TA-LIF. It is demonstrated that the O atoms density reaches a maximum when O2 percent is about 0.3% in pure He and the lifetime of O atoms in RT-APPJ is much longer (up to dozens of ms) than OH radicals.

  1. Temperature measurement of plasma-assisted flames: comparison between optical emission spectroscopy and 2-color laser induced fluorescence techniques

    KAUST Repository

    Lacoste, Deanna A.

    2015-03-30

    Accurate thermometry of highly reactive environments, such as plasma-assisted combustion, is challenging. With the help of conical laminar premixed methane-air flames, this study compares two thermometry techniques for the temperature determination in a combustion front enhanced by nanosecond repetitively pulsed (NRP) plasma discharges. Based on emission spectroscopic analysis, the results show that the rotational temperature of CH(A) gives a reasonable estimate for the adiabatic flame temperature, only for lean and stoichiometric conditions. The rotational temperature of N2(C) is found to significantly underestimate the flame temperature. The 2-color OH-PLIF technique gives correct values of the flame temperature.

  2. Plasma Polarization Spectroscopy and collision cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi; Nakai, Manabu [Dept. of Engineering Physics and Mechanics, Graduate School of Engineering, Kyoto Univ. (Japan)

    2000-01-01

    In Plasma Polarization Spectroscopy (PPS), we observe the polarized spectral lines emitted from a plasma. For berylliumlike oxygen lines from a tokamak plasma the polarization feature is interpreted as due to the anisotropic velocity distribution of electrons which excite the ions. In this interpretation in terms of the population-alignment collisional-radiative (PACR) model various collision processes are involved concerning the population and the alignment, e.g., transfer of the alignment, and the coherence by collisional excitation and production of an alignment from a population by elastic collisions. These latter processes are little known so far. (author)

  3. Influence of COsub>2sub> pressure on the emission spectra and plasma parameters in underwater laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Goueguel, Christian L; McIntyre, Dustin L; Jain, Jinesh C

    2016-12-01

    Optical emission spectroscopic studies have been carried out to investigate the pressure effect of COsub>2sub> on laser-produced underwater plasma. The plasma was generated by focusing 1064 nm, 6 ns pulses from a Nd:YAG laser in a COsub>2sub>-bearing solution. The temporal evolution of the continuum emission, Sr and Ba lines, and plasma electron density and temperature was characterized under COsub>2sub> pressure ranging from 10 to 300 bars. The electron density measurements were made using the Stark broadening of the 455.40 nm Ba II line, while the temperature measurements have been performed by the Saha-Boltzmann method using the Sr I-II lines at 460.73 and 407.77 nm, respectively. It was found that COsub>2sub> pressure has little effect on the emission line intensity and signal-to-background ratio. The electron density and the temperature are found to be independent of the COsub>2sub> pressure at early times. When time becomes longer, the electron density exhibits an appreciable rise as the COsub>2sub> pressure increases, while the temperature is found to be unchanged.

  4. Investigation of local thermodynamic equilibrium of laser induced Al2O3-TiC plasma in argon by spatially resolved optical emission spectroscopy

    Science.gov (United States)

    Alnama, K.; Alkhawwam, A.; Jazmati, A. K.

    2016-06-01

    Plasma plume of Al2O3-TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES) at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  5. Investigation of local thermodynamic equilibrium of laser induced Al2O3–TiC plasma in argon by spatially resolved optical emission spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Alnama

    2016-06-01

    Full Text Available Plasma plume of Al2O3–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  6. Laser-Induced Breakdown Spectroscopy in Africa

    Directory of Open Access Journals (Sweden)

    M. A. Kasem

    2015-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS, known also as laser-induced plasma spectroscopy (LIPS, is a well-known spectrochemical elemental analysis technique. The field of LIBS has been rapidly matured as a consequence of growing interest in real-time analysis across a broad spectrum of applied sciences and recent development of commercial LIBS analytical systems. In this brief review, we introduce the contributions of the research groups in the African continent in the field of the fundamentals and applications of LIBS. As it will be shown, the fast development of LIBS in Africa during the last decade was mainly due to the broad environmental, industrial, archaeological, and biomedical applications of this technique.

  7. Comparative study of Nd:YAG laser-induced breakdown spectroscopy and transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy on chromated copper arsenate preservative-treated wood.

    Science.gov (United States)

    Khumaeni, Ali; Lie, Zener Sukra; Niki, Hideaki; Lee, Yong Inn; Kurihara, Kazuyoshi; Wakasugi, Motoomi; Takahashi, Touru; Kagawa, Kiichiro

    2012-03-01

    Taking advantage of the specific characteristics of a transversely excited atmospheric (TEA) CO(2) laser, a sophisticated technique for the analysis of chromated copper arsenate (CCA) in wood samples has been developed. In this study, a CCA-treated wood sample with a dimension of 20 mm × 20 mm and a thickness of 2 mm was attached in contact to a nickel plate (20 mm × 20 mm × 0.15 mm), which functions as a subtarget. When the TEA CO(2) laser was successively irradiated onto the wood surface, a hole with a diameter of approximately 2.5 mm was produced inside the sample and the laser beam was directly impinged onto the metal subtarget. Strong and stable gas plasma with a very large diameter of approximately 10 mm was induced once the laser beam had directly struck the metal subtarget. This gas plasma then interacted with the fine particles of the sample inside the hole and finally the particles were effectively dissociated and excited in the gas plasma region. By using this technique, high precision and sensitive analysis of CCA-treated wood sample was realized. A linear calibration curve of Cr was successfully made using the CCA-treated wood sample. The detection limits of Cr, Cu, and As were estimated to be approximately 1, 2, and 15 mg/kg, respectively. In the case of standard LIBS using the Nd:YAG laser, the analytical intensities fluctuate and the detection limit was much lower at approximately one-tenth that of TEA CO(2) laser. © 2012 Optical Society of America

  8. Plasma spectroscopy using optical vortex laser

    Science.gov (United States)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Toda, Yasunori; Czarnetzki, Uwe; Shikano, Yutaka

    2014-10-01

    Laser spectroscopy is a useful tool for nonintrusive plasma diagnostics; it can provide many important quantities in a plasma such as temperature, density, and flow velocity of ions and neutrals from the spectrum obtained by scanning the frequency of narrow bandwidth laser. Obtainable information is, however, limited in principle to the direction parallel to the laser path. The aim of this study is to introduce a Laguerre-Gaussian beam, which is called as optical vortex, in place of a widely used Hermite-Gaussian beam. One of the remarkable properties of the Laguerre-Gaussian beam is that it carries an angular momentum in contrast to the Hermite-Gaussian beam. It follows that particles in the laser beam feel the Doppler effect even in the transverse direction of the laser path. Therefore it is expected that the limitation imposed by the laser path can be overcome by using an optical vortex laser. The concept of optical vortex spectroscopy, the development of the laser system, and some preliminary results of a proof-of-principle experiment will be presented. This work is performed with the support and under the auspices of NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI Grant Number 25287152.

  9. Plasma generation induced by triboelectrification

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Michelsen, Poul

    2009-01-01

    A gas discharge plasma can be induced by triboelectrification around a sliding contact. The detailed physical mechanism of triboelectrification is unknown, but an empirical classification scheme can be referred to in practice. It is reported that intense ultra-violet emission from a plasma...

  10. Two-dimensional fluorescence spectroscopy of laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2016-08-01

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrum is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.

  11. Active plasma resonance spectroscopy: A functional analytic description

    OpenAIRE

    Lapke, Martin; Oberrath, Jens; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2012-01-01

    The term "Active Plasma Resonance Spectroscopy" refers to a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: An signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept h...

  12. Plasma-induced polymerization for enhancing paper hydrophobicity.

    Science.gov (United States)

    Song, Zhaoping; Tang, Jiebin; Li, Junrong; Xiao, Huining

    2013-01-30

    Hydrophobic modification of cellulose fibers was conducted via plasma-induced polymerization in an attempt to graft the hydrophobic polymer chains on paper surface, this increasing the hydrophobicity of paper. Two hydrophobic monomers, butyl acrylate (BA) and 2-ethylhexyl acrylate (2-EHA), were grafted on cellulose fibers, induced by atmospheric cold plasma. Various influencing factors associated with the plasma-induced grafting were investigated. Contact-angle measurement, Fourier Transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to ascertain the occurrence of the grafting and characterized the changes of the cellulose fiber after modification. The results showed that the hydrophobicity of the modified paper sheet was improved significantly after the plasma-induced grafting. The water contact angle on the paper surface reached up to 130°. The morphological differences between modified and unmodified samples were also revealed by SEM observation. The resulting paper is promising as a green-based packaging material.

  13. Absorption tomography of laser induced plasmas with a large aperture

    CERN Document Server

    Shabanov, Sergei V

    2010-01-01

    An emission tomography of laser-induced plasmas employed in the laser induced breakdown spectroscopy (LIBS) requires long signal integration times during which the plasma cannot be considered stationary. To reduce the integration time, it is proposed to measure a plasma absorption in parallel rays with an aperture that collects light coming from large fractions of the plasma plume at each aperture position. The needed spatial resolution is achieved by a special numerical data processing. Another advantage of the proposed procedure is that inexpensive linear CCD or non-discrete (PMT, photodiode) detectors can be used instead of costly 2-dimensional detectors.

  14. Laser Induced Breakdown Spectroscopy compared with conventional plasma optical emission techniques for the analysis of metals - A review of applications and analytical performance

    Science.gov (United States)

    Bengtson, A.

    2017-08-01

    This review is focused on a comparison of LIBS with the two most common plasma Optical Emission Spectroscopy (OES) techniques for analysis of metals; spark OES and glow discharge (GD) OES. It is shown that these two techniques have only minor differences in analytical performance. An important part of the paper reviews a direct comparison of the analytical figures of merit for bulk analysis of steels using spark and LIBS sources. The comparison was carried out using one instrument with interchangeable sources, eliminating differences related to the optical system and detectors. It was found that the spark provides slightly better analytical figures of merit. The spark analysis is considerably faster, the simple design of the spark stand has enabled complete automation, both properties of great importance in the metallurgical industry for routine analysis. The analysis of non-metallic inclusions (NMI) with spark and LIBS is presented, in the case of the spark this has become known as Pulse Distribution Analysis (PDA). A very significant difference between the techniques is that the electrical spark typically evaporates 100 times more material than a single laser pulse, resulting in complete evaporation of an NMI present in the evaporated metal. The major advantage of LIBS is that it is localised with very good lateral resolution. The major advantages of spark is that it is much faster (can be done simultaneous with the bulk analysis) and easier to quantify. Compositional Depth Profiling (CDP) is compared for GD-OES and LIBS. It is shown that for applications where GD-OES is well suited, e.g. coated metallic sheet, GD-OES still performs slightly better than LIBS. Similar to the case of NMI analysis, the major advantage of LIBS is the great lateral resolution. This allows elemental surface mapping, as well as CDP of very small areas on μm scale. One further advantage of LIBS is that samples of almost any material, shape and size can be analysed, whereas GD-OES has

  15. Compositional Analysis of Drugs by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Beldjilali, S. A.; Axente, E.; Belasri, A.; Baba-Hamed, T.; Hermann, J.

    2017-07-01

    The feasibility of the compositional analysis of drugs by calibration-free laser-induced breakdown spectroscopy (LIBS) was investigated using multivitamin tablets as a sample material. The plasma was produced by a frequencyquadrupled Nd:YAG laser delivering UV pulses with a duration of 5 ns and an energy of 12 mJ, operated at a repetition rate of 10 Hz. The relative fractions of the elements composing the multivitamin drug were determined by comparing the emission spectrum of the laser-produced plume with the spectral radiance computed for a plasma in a local thermodynamic equilibrium. Fair agreement of the measured fractions with those given by the manufacturer was observed for all elements mentioned in the leafl et of the drug. Additional elements such as Ca, Na, Sr, Al, Li, K, and Si were detected and quantifi ed. The present investigations demonstrate that laser-induced breakdown spectroscopy is a viable technique for the quality control of drugs.

  16. Insights in the laser-induced breakdown spectroscopy signal generation underwater using dual pulse excitation — Part I: Vapor bubble, shockwaves and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lazic, V., E-mail: violeta.lazic@enea.it [ENEA (UTAPRAD-DIM), Via. E. Fermi 45, 00044 Frascati (RM) (Italy); Laserna, J.J. [Dept. of Analytical Chemistry, Faculty of Sciences, University of Málaga, Málaga (Spain); Jovicevic, S. [Institute of Physics, University of Belgrade, Belgrade (Serbia)

    2013-04-01

    Plasma and vapor bubble formation and evolution after a nanosecond laser pulse delivered to aluminum targets inside water were studied by fast photography. This technique was also applied to monitor the plasma produced by a second laser pulse and for different interpulse delays. The bubble growth was evident only after 3 μs from the first laser pulse and the bubble shape changed during expansion and collapse cycles. The evolution and propagation of the initial shockwave and its reflections both from the back sample surface and cell walls were detected by Schlieren photography. The primary plasma develops in two phases: violent particle expulsion and ionization during the first μs, followed by slow plasma growth from the ablation crater into the evolving vapor bubble. The shape of the secondary plasma strongly depends on the inner bubble pressure whereas the particle expulsion into the expanded bubble is much less evident. Both the primary and secondary plasma have similar duration of about 30 μs. Detection efficiency of the secondary plasma is much reduced by light refraction at the curved bubble–water interface, which behaves as a negative lens; this leads to an apparent reduction of the plasma dimensions. Defocusing power of the bubble lens increases with its expansion due to the lowering of the vapor's refraction index with respect to that of the surrounding liquid (Lazic et al., 2012 [1]). Smell's reflections of secondary plasma radiation at the expanded bubble wall redistribute the detected intensity on a wavelength-dependent way and allow gathering of the emission also from the external plasma layer that otherwise, would not enter into the optical system. - Highlights: ► Primary plasma during the first μs is irregular due to particle expulsion. ► Later the plasma grows into the evolving bubble, its emission lasts more than 30 μs. ► The initial shockwave and its echoes alter locally the refraction index. ► Defocusing by the bubble

  17. Laser-induced breakdown spectroscopy fundamentals and applications

    CERN Document Server

    Noll, Reinhard

    2012-01-01

    This book is a comprehensive source of the fundamentals, process parameters, instrumental components and applications of laser-induced breakdown spectroscopy (LIBS). The effect of multiple pulses on material ablation, plasma dynamics and plasma emission is presented. A heuristic plasma modeling allows to simulate complex experimental plasma spectra. These methods and findings form the basis for a variety of applications to perform quantitative multi-element analysis with LIBS. These application potentials of LIBS have really boosted in the last years ranging from bulk analysis of metallic alloys and non-conducting materials, via spatially resolved analysis and depth profiling covering measuring objects in all physical states: gaseous, liquid and solid. Dedicated chapters present LIBS investigations for these tasks with special emphasis on the methodical and instrumental concepts as well as the optimization strategies for a quantitative analysis. Requirements, concepts, design and characteristic features of LI...

  18. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Anmin [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Shao, Junfeng; Wang, Tingfeng [State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Huang, Xuri [Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Jin, Mingxing [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  19. Near-infrared spectroscopy for burning plasma diagnostic applications.

    Science.gov (United States)

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  20. THz time-domain spectroscopy for tokamak plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Causa, F.; Zerbini, M.; Buratti, P.; Gabellieri, L.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O. [ASSOCIAZIONE EURATOM ENEA sulla Fusione, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Johnston, M. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Doria, A.; Gallerano, G. P.; Giovenale, E. [ENEA C.R. Frascati UTAPRAD, via E. Fermi 45, 00044 Frascati (Roma) (Italy)

    2014-08-21

    The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

  1. Analysis and differentiation of seminal plasma via polarized SERS spectroscopy

    Directory of Open Access Journals (Sweden)

    Chen X

    2012-12-01

    Full Text Available Xiwen Chen,1,* Zufang Huang,1,* Shangyuan Feng,1 Jinhua Chen,2 Lan Wang,1 Peng Lu,1 Haishan Zeng,3 Rong Chen1 1Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China; 2Fujian Provincial Hospital, Fuzhou, China; 3Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada*These authors contributed equally to this workAbstract: Polarized surface-enhanced Raman scattering (SERS spectroscopy was applied for obtaining biochemical information about the seminal plasma. The effect of different laser polarizations (nonpolarized, linear-polarized, right-handed circularly polarized, and left-handed circularly polarized on seminal plasma SERS spectroscopy was explored for the first time. The diagnostic performance in differentiating abnormal seminal plasma (n = 37 from normal seminal plasma (n = 24 was evaluated. A combination of principal component analysis (PCA and linear discriminant analysis (LDA was employed to develop diagnostic algorithms. Classification results of different laser polarizations demonstrated different diagnostic sensitivities and specificities, among which, left-handed circularly polarized laser excitation showed the best diagnostic result (95.8% sensitivity and 64.9% specificity. Our exploratory study demonstrated that SERS spectroscopy with left-handed circularly polarized laser excitation has the potential for becoming a new diagnostic method in semen-quality assessment.Keywords: SERS, seminal plasma, PCA-LDA, polarized laser excitation, silver nanoparticles, biomolecule chirality

  2. Analysis of Pulverized Coal by Laser-Induced Breakdown Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various environments. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LIBS, and the effects of particle size are analyzed.A powerful pulse Nd:YAG laser is focused on the coal sample at atmosphere pressure, and the emission spectra from laser-induced plasmas are measured by time-resolved spectroscopy, and the intensity of analyzed spectral lines is obtained through observing the laser plasma with a delay time of 0.4μs. The experimental results show that the slope of calibration curve is nearly 1 when the concentration of the analyzed element is relatively low, and the slope of curve is nearly 0.5 when the concentration of C is higher than other elements. In addition, using the calibration-free model without self-absorption effect, the results show that the decreasing of particle size leads to an increase of the plasma temperature.

  3. Simultaneous laser induced breakdown spectroscopy and Pd-assisted methane decomposition at different pressures

    Energy Technology Data Exchange (ETDEWEB)

    Reyhani, A. [Phys. Dept., Faculty of Science, Imam Khomeini International University, Qazvin, 34149-16818 (Iran, Islamic Republic of); Mortazavi, S.Z. [Phys. Dept., Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Parvin, P., E-mail: parvin@aut.ac.ir [Phys. Dept., Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Mahmoudi, Z. [Phys. Dept., Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2012-08-15

    Methane decomposition is investigated during Pd-assisted laser induced plasma in the controlled chamber at various pressures using Q-switched Nd:YAG laser. Real time LIBS monitoring is applied to reveal the involved mechanisms during methane decomposition by inspecting the plasma parameters at mano-metric pressures of 1 to 10 mbar. The dependence of electron density and plasma temperature with pressure is also studied. It is shown that the plasma recreates higher hydrocarbons during the decomposition of methane. In addition, Fourier transform infrared spectroscopy, gas chromatography, scanning electron microscopy and transmission electron microscopy are applied to support the findings. - Highlights: Black-Right-Pointing-Pointer Simultaneous laser induced breakdown spectroscopy Black-Right-Pointing-Pointer Pd-assisted methane decomposition Black-Right-Pointing-Pointer Nanosecond pulsed laser decomposition of methane Black-Right-Pointing-Pointer Generation of higher hydrocarbon Black-Right-Pointing-Pointer Dependence of electron density and temperature of induced plasma with pressure.

  4. Laser-induced breakdown spectroscopy in Asia

    Science.gov (United States)

    Wang, Zhen-Zhen; Deguchi, Yoshihiro; Zhang, Zhen-Zhen; Wang, Zhe; Zeng, Xiao-Yan; Yan, Jun-Jie

    2016-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.

  5. Evaluation of two-beam spectroscopy as a plasma diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Billard, B.D.

    1980-04-01

    A two-beam spectroscopy (TBS) system is evaluated theoretically and experimentally. This new spectroscopic technique uses correlations between components of emitted light separated by a small difference in angle of propagation. It is thus a non-perturbing plasma diagnostic which is shown to provide local (as opposed to line-of-sight averaged) information about fluctuations in the density of light sources within a plasma - information not obtainable by the usual spectroscopic methods. The present design is an improvement on earlier systems proposed in a thesis by Rostler.

  6. Active plasma resonance spectroscopy: A functional analytic description

    CERN Document Server

    Lapke, Martin; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2012-01-01

    The term "Active Plasma Resonance Spectroscopy" refers to a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: An signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept has found renewed interest as a basis of industry compatible plasma diagnostics. This paper analyzes the diagnostics technique in terms of a general description based on functional analytic (or Hilbert Space) methods which hold for arbitrary probe geometries. It is shown that the response function of the plasma-probe system can be expressed as a matrix element of the resolvent of an appropriately defined dynamical operator. A specialization of the formalism for a symmetric probe desing is given, as well as an interpreation...

  7. Non-gated laser-induced breakdown spectroscopy in bulk water by position-selective detection

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye; Xue, Boyang; Song, Jiaojian; Lu, Yuan; Zheng, Ronger, E-mail: rzheng@ouc.edu.cn [Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100 (China)

    2015-09-14

    Temporal and spatial evolutions of the laser-induced plasma in bulk water are investigated using fast imaging and emission spectroscopic techniques. By tightly focusing a single-pulse nanosecond Nd: YAG laser beam into the bulk water, we generate a strongly expanded plasma with high reproducibility. Such a strong expanding plasma enables us to obtain well-resolved spectral lines by means of position-selective detection; hence, the time-gated detector becomes abdicable. The present results suggest not only a possible non-gated approach for underwater laser-induced breakdown spectroscopy but also give an insight into the plasma generation and expansion in bulk water.

  8. Laser induced breakdown spectroscopy with picosecond pulse train

    Science.gov (United States)

    Lednev, Vasily N.; Pershin, Sergey M.; Sdvizhenskii, Pavel A.; Grishin, Mikhail Ya; Davydov, Mikhail A.; Stavertiy, Anton Ya; Tretyakov, Roman S.

    2017-02-01

    Picosecond pulse train and nanosecond pulse were compared for laser ablation and laser induced breakdown spectroscopy (LIBS) measurements. A detailed study revealed that the picosecond pulse train ablation improved the quality of laser craters (symmetric crater walls and the absence of large redeposited droplets), which was explained by a smaller heat affected zone and suppression of melt splash. Greater plasma dimensions and brighter plasma emission were observed by gated imaging for picosecond pulse train compared to nanosecond pulse ablation. Increased intensity of atomic and ionic lines in gated and time integrated spectra provided better signal-to-noise ratio for picosecond pulse train sampling. Higher temperature and electron density were detected during first microsecond for the plasma induced by the picosecond pulse train. Improved shot-to-shot reproducibility for atomic/ionic line intensity in the case of picosecond pulse train LIBS was explained by more effective atomization of target material in plasma and better quality of laser craters. Improved precision and limits of detections were determined for picosecond pulse train LIBS due to better reproducibility of laser sampling and increased signal-to-noise ratio.

  9. Quantitative analysis of gallstones using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Singh, Vivek K; Singh, Vinita; Rai, Awadhesh K; Thakur, Surya N; Rai, Pradeep K; Singh, Jagdish P

    2008-11-01

    The utility of laser-induced breakdown spectroscopy (LIBS) for categorizing different types of gallbladder stone has been demonstrated by analyzing their major and minor constituents. LIBS spectra of three types of gallstone have been recorded in the 200-900 nm spectral region. Calcium is found to be the major element in all types of gallbladder stone. The spectrophotometric method has been used to classify the stones. A calibration-free LIBS method has been used for the quantitative analysis of metal elements, and the results have been compared with those obtained from inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements. The single-shot LIBS spectra from different points on the cross section (in steps of 0.5 mm from one end to the other) of gallstones have also been recorded to study the variation of constituents from the center to the surface. The presence of different metal elements and their possible role in gallstone formation is discussed.

  10. Visible-light spectroscopy of pulsed-power plasmas (invited)

    Science.gov (United States)

    Arad, R.; Clark, R. E. H.; Dadusc, G.; Davara, G.; Duvall, R. E.; Fisher, A.; Fisher, V.; Foord, M. E.; Fruchtman, A.; Gregorian, L.; Krasik, Ya.; Litwin, C.; Maron, Y.; Perelmutter, L.; Sarfaty, M.; Sarid, E.; Shkolnikova, S.; Shpitalnik, R.; Troyansky, L.; Weingarten, A.

    1992-10-01

    We describe the investigations of the plasma behavior in three pulsed-power systems: a magnetically insulated ion diode, and plasma opening switch, and a gas-puffed Z pinch. Recently developed spectroscopic diagnostic techniques allow for measurements with relatively high spectral, temporal, and spatial resolutions. The particle velocity and density distributions within a few tens of microns from the dielectric-anode surface are observed using laser spectroscopy. Fluctuating electric fields in the plasma are inferred from anisotropic Stark broadening. For the plasma opening switch experiment, a novel gaseous plasma source was developed which is mounted inside the high-voltage inner conductor. The properties of this source, together with spectroscopic observations of the electron density and particle velocities of the injected plasma, are described. Emission line intensities during the switch operation are discussed. In the Z-pinch experiment, spectral emission-line profiles of various charge-state ions are studied during the implosion phase. Radial velocity distributions are observed from the line Doppler shifts and widths.

  11. Spectrum standardization for laser-induced breakdown spectroscopy measurements

    CERN Document Server

    Wang, Zhe; West, Logan; Li, Zheng; Ni, Weidou

    2011-01-01

    This paper presents a spectra normalization method for laser-induced breakdown spectroscopy (LIBS) measurements by converting the recorded characteristic line intensity at varying conditions to the intensity under a standard condition with standard plasma temperature, degree of ionization, and total number density of the interested species to reduce the measurement uncertainty. The characteristic line intensities of the interested species are first converted to the intensity at a fixed temperature and standard degree of ionization but varying total number density for each laser pulse analysis. Under this state, if the influence of the variation of plasma morphology is neglected, the sum of multiple spectral line intensities for the measured element can be regarded proportional to the total number density of the specific element, and the fluctuation of the total number density, or the variation of ablation mass, was compensated for by the application of this relationship. In the experiments with 29 brass alloy...

  12. Impurity-induced divertor plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, R. D., E-mail: rsmirnov@ucsd.edu; Krasheninnikov, S. I.; Pigarov, A. Yu. [University of California, San Diego, La Jolla, California 92093 (United States); Kukushkin, A. S. [NRC “Kurchatov Institute”, Moscow 123182 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Rognlien, T. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2016-01-15

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  13. Impurity-induced divertor plasma oscillations

    Science.gov (United States)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-01

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  14. Cavity Ring-Down Spectroscopy of Etching Plasmas

    Science.gov (United States)

    Booth, Jean-Paul; Cunge, Gilles; Biennier, Ludovic; Romanini, Daniele; Katachanov, Alexander

    1999-10-01

    Many of the reactive species of interest in etching plasmas absorb light in the UV spectral region (200 ~ 300 nm). Measurement of these weak absorbances (10-2 ~ 10-4 for a single pass) allows their absolute concentration to be determined. Previously, low-resolution spectra have been obtained using broad-band absorption spectroscopy, using a Xe arc lamp as the light source and a small monochromator equipped with a CCD Camera. Here we report high-resolution measurements using the recently developed Cavity Ring-Down Spectroscopy (CRDS) technique. The pulsed tunable output of an excimer pumped doubled dye laser was injected into a high-Q optical cavity in which the plasma is included. The absorbance as a function of wavelength is then deduced from the lifetime of the light pulse in the cavity. This technique offers the possibility of real-time (1 second) absolute concentration measurements. Results have been obtained for the detection of CF, CF_2, AlF and SiF2 radicals in capacitively-coupled radio-frequency plasmas in fluorocarbon gases. However, the deduction of absolute concentrations from CRDS spectra is complicated by the phenomenon of non-single exponential decays when the line-width of the laser is greater then that of the transition observed.

  15. A Review on Inductively Coupled Plasma Mass Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ramyalakshmi G

    2012-12-01

    Full Text Available Inductively coupled plasma mass spectroscopy is routinely used in many diverse research fields such as earth, environmental, life and forensic sciences and in food, material, chemical, semiconductor and nuclear industries. The high ion density and the high temperature in a plasma provide an ideal atomizer and element ionizer for all types of samples and materials introduced by a specialised devices .outstanding properties such as high sensitivity, relative salt tolerance, compound-independent element response and highest quantitation accuracy lead to the unchallenged performance of ICPMS in efficiently detecting, identifying and reliably quantifying trace element. The increasing availability of relevant reference compounds and high separation selectively extend the molecular identification capability of ICPMS hyphenated to species – specific separation techniques

  16. Applying Quantum Cascade Laser Spectroscopy in Plasma Diagnostics

    Directory of Open Access Journals (Sweden)

    Jürgen Röpcke

    2016-07-01

    Full Text Available The considerably higher power and wider frequency coverage available from quantum cascade lasers (QCLs in comparison to lead salt diode lasers has led to substantial advances when QCLs are used in pure and applied infrared spectroscopy. Furthermore, they can be used in both pulsed and continuous wave (cw operation, opening up new possibilities in quantitative time resolved applications in plasmas both in the laboratory and in industry as shown in this article. However, in order to determine absolute concentrations accurately using pulsed QCLs, careful attention has to be paid to features like power saturation phenomena. Hence, we begin with a discussion of the non-linear effects which must be considered when using short or long pulse mode operation. More recently, cw QCLs have been introduced which have the advantage of higher power, better spectral resolution and lower fluctuations in light intensity compared to pulsed devices. They have proved particularly useful in sensing applications in plasmas when very low concentrations have to be monitored. Finally, the use of cw external cavity QCLs (EC-QCLs for multi species detection is described, using a diagnostics study of a methane/nitrogen plasma as an example. The wide frequency coverage of this type of QCL laser, which is significantly broader than from a distributed feedback QCL (DFB-QCL, is a substantial advantage for multi species detection. Therefore, cw EC-QCLs are state of the art devices and have enormous potential for future plasma diagnostic studies.

  17. Quantitative Analysis of Oxygen in Coal by Laser-Induced Plasma Spectroscopy%激光诱导等离子体光谱用于煤中氧的定量分析

    Institute of Scientific and Technical Information of China (English)

    张雷; 贾锁堂; 马维光; 闫晓娟; 李志新; 张永智; 王乐; 董磊; 尹王保; 肖连团

    2011-01-01

    To improve the combustion efficiency, it is important for coal-fired power plants to achieve on line coal quality analysis in coal pipe by using laser-induced plasma spectroscopy (LIPS). However, how to determine the total content of oxygen in coal becomes a major obstacle. A new data processing method including the methods of internal normalization, the optimal emission-line selection, temperature correction and multi-line analysis has been proposed to increase the measurement accuracy and repeatability. In the experiment, the calibration equation of total oxygen is obtained with eight coal samples firstly, and then the accuracy of the equation is verified with another six coal samples. Experimental results show that the absolute measurement error for the total oxygen with this data processing is within 1.1 % and the relative standard deviation of multiple measurements is within 5.9%, which show the relative high accuracy and repeatability.%利用激光诱导等离子体光谱(LIPS)技术实现对燃煤电厂输煤管中煤质的在线检测对于提高锅炉燃烧效率具有重要的现实意义,但对煤中氧含量的测量却是个难题.提出了一种新的数据处理方法,主要包括内标法、最佳分析线选择法、温度校正法及多线法等,来提高对煤中氧含量定量分析的准确性和重复性.实验中先通过8组煤样获得了煤中氧的定标方程,然后又利用其它6组煤样来验证该定标方程的准确性.实验结果表明,利用本数据处理方法对煤中氧含量测量的绝对误差小于1.1 %,多次测量的相对标准偏差(RSD)小于5.9%,显示了较高的测量精度和重复性.

  18. Exploring the temporally resolved electron density evolution in EUV induced plasmas

    CERN Document Server

    van der Horst, R M; Beckers, J; Kroesen, G M W

    2014-01-01

    We measured for the first time the electron density in an Extreme Ultra-Violet induced plasma. This is achieved in a low-pressure argon plasma by using a method called microwave cavity resonance spectroscopy. Good agreement is found between the measured electron density at the end of the EUV pulse and a theoretical prediction. The plasma (i.e. electron density) decays in tens of microseconds.

  19. Laser-induced breakdown spectroscopy for quantification of heavy metals in soils and sediments

    CSIR Research Space (South Africa)

    Ambushe, AA

    2010-09-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS) will be used to determine the contents of heavy metals in soils and sediments. LIBS results will be compared with the results obtained by inductively coupled plasma-optical emission spectrometry (ICP...

  20. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    Science.gov (United States)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  1. Time-Resolved Spectroscopy Diagnostic of Laser-Induced Optical Breakdown

    OpenAIRE

    Parigger, Christian G.; Hornkohl, James O.; László Nemes

    2010-01-01

    Transient laser plasma is generated in laser-induced optical breakdown (LIOB). Here we report experiments conducted with 10.6-micron CO2 laser radiation, and with 1.064-micron fundamental, 0.532-micron frequency-doubled, 0.355-micron frequency-tripled Nd:YAG laser radiation. Characterization of laser induced plasma utilizes laser-induced breakdown spectroscopy (LIBS) techniques. Atomic hydrogen Balmer series emissions show electron number density of 1017 cm−3 measured approximately 10 μs and ...

  2. Apparatus, system, and method for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  3. Electric Propulsion Induced Secondary Mass Spectroscopy

    Science.gov (United States)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  4. Novel Applications of Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Bauer, Amy J Ray; Buckley, Steven G

    2017-04-01

    The goal of this review article is to provide a description of recent and novel laser-induced breakdown spectroscopy (LIBS) applications and developments, especially those discussed during the NASLIBS Conference, held during SciX in Providence, RI, in September 2015. This topic was selected in view of the numerous recent overall review papers that have successfully given a broad view of the current understanding of laser-material interactions and plasma development and have also discussed the wide landscape of analytical applications of LIBS. This paper is divided into sections that focus on a few of the many applications under development in the LIBS community. We provide a summary of updates to calibration-free LIBS (CF-LIBS) and associated developments using plasma characteristics to improve quantification in LIBS output, both in a dedicated section and as applications are discussed. We have also described the most recent publications studying the sources, generation, and use of molecular features in LIBS, including those naturally present in the spectra of organic materials, and those induced with the addition of salts to enable the measurement of halogens, not typically present in LIBS signals. In terms of development of applications of LIBS, we focused on the use of LIBS for indirect measurements such as pH and degree of humification in soil and heating value in coal. We also reviewed the extant literature on LIBS analysis of agricultural materials, coal, minerals, and metals. Finally, we discuss the nascent developments of spatially heterodyne spectroscopy, a method that seeks to circumnavigate a serious drawback of most spectrometers - very small optical throughput - through the use of interferometers.

  5. Characterization of alumina-based ceramic nanocomposites by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Ahmad, Kaleem; Al-Eshaikh, Mohammad A.; Kadachi, Ahmed N.

    2015-06-01

    Alumina-based hybrids containing different concentrations of carbon nanostructure and SiC nanoparticles were consolidated by the spark plasma sintering in order to obtain fully dense bulk ceramic nanocomposites. Laser-induced breakdown spectroscopy was employed to determine relationship between plasma temperature and surface hardness of the composites. The characteristic parameters of plasma generated by irradiation of laser Nd:YAG ( λ = 1064 nm) on different bulk nanocomposites were determined at different delay times and energies by assuming the LTE condition for optically thin plasma. The plasma temperatures were estimated through intensity of selected aluminum emission lines using the Boltzmann plot method. The electron density was determined using the Stark broadening of selected aluminum and silicon emission lines. The samples were mechanically characterized by the Vickers hardness test. It has been observed that the plasma temperature increases with the increase in hardness and shows a perfect linear relationship. The results suggest that calibration curve between hardness and the plasma temperature can be employed as an alternate method to estimate the hardness of nanocomposite with varying concentrations of nanostructures just by measuring the plasma temperature with better reproducibility and accuracy. Therefore, laser-induced break down spectroscopy (LIBS) offers potential applications in nuclear industry.

  6. Near-infrared spectroscopy and plasma homovanillic acid levels in bipolar disorder: a case report

    Directory of Open Access Journals (Sweden)

    Miura I

    2014-03-01

    Full Text Available Itaru Miura,1,2 Soichi Kono,1 Sachie Oshima,1 Keiko Kanno-Nozaki,1 Hirobumi Mashiko,1 Shin-Ichi Niwa,1 Hirooki Yabe11Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; 2Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USAAbstract: Misdiagnosis of bipolar disorder is a serious, but not unusual problem for patients. Nevertheless, there are few biomarkers for distinguishing unipolar and bipolar disorder. Near-infrared spectroscopy (NIRS is a noninvasive and useful method for the measurement of hemoglobin concentration changes in the cortical surface area, which enables the assessment of brain function. We measured NIRS and plasma monoamine metabolite levels in a patient with bipolar disorder. A 22-year-old man was admitted due to major depression. At admission, NIRS findings showed oxygenated hemoglobin reincrease in the posttask period, which is characteristic of schizophrenia. After treatment with paroxetine, he became manic with psychotic symptoms. His plasma level of homovanillic acid just before the manic switch was ten times higher than that just after paroxetine initiation. Treatment with lithium and antipsychotics was successful, and plasma homovanillic acid decreased after treatment. In this case, the NIRS findings may predict a possible risk of a manic switch, which is likely induced by paroxetine. NIRS may be able to help distinguish unipolar and bipolar disorder in clinical settings.Keywords: near-infrared spectroscopy, bipolar disorder, homovanillic acid, diagnosis, biomarker

  7. Discrimination of forensic trace evidence using laser induced breakdown spectroscopy

    Science.gov (United States)

    Bridge, Candice Mae

    Elemental analysis in forensic laboratories can be tedious and many trace evidence items are not analyzed to determine their elemental composition. Presently, scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS) is the primary analytical tool for determining the elemental composition of trace evidence items. However, due to the time it takes to obtain the required vacuum and the limited number of samples that can be analyzed at any one time, SEM-EDS can be impractical for a high volume of evidence items. An alternative instrument that can be used for this type of analysis is laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). While LA-ICP-MS is a very precise and quantitative analytical method that determines elemental composition based on isotopic mass measurements; however, the instrumentation is relatively expensive and therefore is budgetarily prohibitive for many forensic laboratories. It is the purpose of this research to evaluate an inexpensive instrument that can potentially provide rapid elemental analysis for many forensic laboratories. Laser induced breakdown spectroscopy (LIBS) is an analytical method that meets these requirements and offers information about the elemental composition based on ionic, atomic and diatomic molecular emissions.

  8. Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Rusak, D A; Anthony, T P; Bell, Z T

    2015-11-01

    Surface-enhanced Raman spectroscopy (SERS) substrates typically consist of gold or silver nanoparticles deposited on a non-conductive substrate. In Raman spectroscopy, the nanoparticles produce an enhancement of the electromagnetic field which, in turn, leads to greater electronic excitation of molecules in the local environment. Here, we show that these same surfaces can be used to enhance the signal-to-noise ratio obtained in laser-induced breakdown spectroscopy of aqueous solutions. In this case, the SERS substrates not only lower breakdown thresholds and lead to more efficient plasma initiation but also provide an appropriately wettable surface for the deposition of the liquid. We refer to this technique as surface-enhanced laser-induced breakdown spectroscopy.

  9. Medical Applications of Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  10. Laser-Induced Breakdown Spectroscopy: Capabilities and Applications

    Science.gov (United States)

    2010-07-01

    sample preparation. 14 6. References 1. Cremers D.A.; Radziemski, L. J. Handbook of Laser-Induced Breakdown Spectroscopy; West Sussex, England...30 (21), 2882–2884. 17. Salle, B.; Lacour, J. L.; Vors, E.; Fichet, P.; Maurice, S.; Cremers , D. A.; et al. Laser- Induced Breakdown Spectroscopy...90. Martin , M. Z.; Labbe, N.; Andre, N.; Harris, R.; Ebinger, M.; Wullschleger, S. D.; et al. High Resolution Applications of Laser-Induced

  11. Laser-induced breakdown plasma-based sensors

    Science.gov (United States)

    Griffin, Steven T.

    2010-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is dependent on the interaction between the initiating Laser sequence, the sampled material and the intermediate plasma states. Pulse shaping and timing have been empirically demonstrated to have significant impact on the signal available for active/passive detection and identification. The transient nature of empirical LIBS work makes data collection for optimization an expensive process. Guidance from effective computer simulation represents an alternative. This computational method for CBRNE sensing applications models the Laser, material and plasma interaction for the purpose of performance prediction and enhancement. This paper emphasizes the aspects of light, plasma, and material interaction relevant to portable sensor development for LIBS. The modeling structure emphasizes energy balances and empirical fit descriptions with limited detailed-balance and finite element approaches where required. Dusty plasma from partially decomposed material sample interaction with pulse dynamics is considered. This heuristic is used to reduce run times and computer loads. Computer simulations and some data for validation are presented. A new University of Memphis HPC/super-computer (~15 TFLOPS) is used to enhance simulation. Results coordinated with related effort at Arkansas State University. Implications for ongoing empirical work are presented with special attention paid to the application of compressive sensing for signal processing, feature extraction, and classification.

  12. Tomography of homogenized laser-induced plasma by Radon transform technique

    Science.gov (United States)

    Eschlböck-Fuchs, S.; Demidov, A.; Gornushkin, I. B.; Schmid, T.; Rössler, R.; Huber, N.; Panne, U.; Pedarnig, J. D.

    2016-09-01

    Tomography of a laser-induced plasma in air is performed by inverse Radon transform of angle-resolved plasma images. Plasmas were induced by single laser pulses (SP), double pulses (DP) in collinear geometry, and by a combination of single laser pulses with pulsed arc discharges (SP-AD). Images of plasmas on metallurgical steel slags were taken at delay times suitable for calibration-free laser-induced breakdown spectroscopy (CF-LIBS). Delays ranged from few microseconds for SP and DP up to tens of microseconds for SP-AD excitation. The white-light and the spectrally resolved emissivity ε(x,y,z) was reconstructed for the three plasma excitation schemes. The electron number density Ne(x,y,z) and plasma temperature Te(x,y,z) were determined from Mg and Mn emission lines in reconstructed spectra employing the Saha-Boltzmann plot method. The SP plasma revealed strongly inhomogeneous emissivity and plasma temperature. Re-excitation of plasma by a second laser pulse (DP) and by an arc discharge (SP-AD) homogenized the plasma and reduced the spatial variation of ε and Te. The homogenization of a plasma is a promising approach to increase the accuracy of calibration-free LIBS analysis of complex materials.

  13. Characteristics of the ablation plume induced on glasses for analysis purposes with laser-induced breakdown spectroscopy

    Science.gov (United States)

    Tian, Ye; Sokolova, Ekaterina B.; Zheng, Ronger; Ma, Qianli; Chen, Yanping; Yu, Jin

    2015-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been demonstrated as an efficient tool for elemental analyses of transparent dielectric materials such as glasses or crystals for more than ten years. The induced plasma is however much less studied compared to that induced on the surface of a metal. The purpose of this work is therefore to characterize the plasma induced on the surface of a glass sample for analytical purpose as a function of the ablation laser wavelength, infrared (IR) or ultraviolet (UV), and the ambient gas, air or argon. The surface damage of the samples was also observed for ablation with IR or UV laser pulse when the sample was a float glass or a frosted one. Optimized ablation fluence was then determined. The morphology of the plasma was observed with time-resolved spectroscopic imaging, while the profiles of the electron density and temperature were extracted from time- and space-resolved emission spectroscopy. The analytical performance of the plasmas was then studied in terms of the signal-to-noise ratio for several emission lines from some minor elements, Al, Fe, contained in glasses, and of the behavior of self-absorption for another minor element, Ca, in the different ablation conditions.

  14. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  15. Compact High Sensitive Laser-Induced Breakdown Spectroscopy Instrument Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser induced breakdown spectroscopy (LIBS) is a versatile tool for in situ substance characterization. Existing LIBS instruments are not compact enough for space...

  16. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.

    Science.gov (United States)

    Singh, Vivek Kumar; Rai, Awadhesh Kumar

    2011-09-01

    We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.

  17. [Application of laser induced breakdown spectroscopy (LIBS) to microdetection of Au film machining].

    Science.gov (United States)

    Yuan, Dong-qing; Zhou, Ming; Shen, Jian; Ren, Nai-fei; Cai, Lan

    2008-10-01

    Film micro-machining is a core in micro- and nano- technology, micro-electro-mechanical systems and photoelectron field. However, it is difficult to control the quality of machining in processing film. In the present paper the authors propose a method to solve this problem by using laser induced breakdown spectroscopy (LIBS). The authors investigated the relation between excitation condition and the quantity of plasma in the process of micro-machining by pulse laser. At low frequency (machining become true.

  18. Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique.

    Science.gov (United States)

    Hamzaoui, S; Khleifia, R; Jaïdane, N; Ben Lakhdar, Z

    2011-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used as a potential method for simultaneous measurement of the elements Ca, Na, and K, for normal and pathological nails. We compared the measured LIBS spectra of these elements for normal and pathological nails. The B²∑+ --> X²∑+ violet band emission spectrum of CN was used for the estimation of the transient temperature of the plasma plume and consequently of the sample surface considering thermodynamic equilibrium.

  19. Analysis Si/Al ratio in zeolites type FAU by laser induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Contreras, W. A.; Cabanzo, R.; Mejía-Ospino, E.

    2011-01-01

    In this work, Laser Induced Breakdown Spectroscopy (LIBS) is used to determine the Si/Al ratio of Zeolite type Y. The catalytic activity of zeolite is strongly dependent of the Si/Al ratio. We have used Si lines in the spectral region between 245-265 nm to determine temperature of the plasma generated on pelletized sample of zeolite, and stoichiometry relation between Si and Al.

  20. Positron annihilation induced Auger and gamma spectroscopies of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.H. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States)]. E-mail: weiss@uta.edu; Fazleev, N.G. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States); Nadesalingam, M.P. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States); Mukherjee, S. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States); Xie, S. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States); Zhu, J. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States); Davis, B.R. [Physics Department, Box 19059, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2007-02-15

    The annihilation of positrons with core electrons results in an element specific signature in the spectra of Auger-electron and annihilation gamma rays. Because a large fraction of positrons implanted at low energies become trapped just outside the surface, annihilation induced Auger and Gamma signals probe the surfaces of solids with single atomic layer depth resolution. Recent applications of positron annihilation-induced Auger electron spectroscopy (PAES) and Auger-gamma coincidence spectroscopy (AGCS) and future applications of Auger-gamma and gamma-gamma coincidence spectroscopy are discussed.

  1. Positron annihilation induced Auger and gamma spectroscopies of surfaces

    Science.gov (United States)

    Weiss, A. H.; Fazleev, N. G.; Nadesalingam, M. P.; Mukherjee, S.; Xie, S.; Zhu, J.; Davis, B. R.

    2007-02-01

    The annihilation of positrons with core electrons results in an element specific signature in the spectra of Auger-electron and annihilation gamma rays. Because a large fraction of positrons implanted at low energies become trapped just outside the surface, annihilation induced Auger and Gamma signals probe the surfaces of solids with single atomic layer depth resolution. Recent applications of positron annihilation-induced Auger electron spectroscopy (PAES) and Auger-gamma coincidence spectroscopy (AGCS) and future applications of Auger-gamma and gamma-gamma coincidence spectroscopy are discussed.

  2. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    Science.gov (United States)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  3. Stark spectroscopy of atomic hydrogen balmer-alpha line for electric field measurement in plasmas by saturation spectroscopy

    Science.gov (United States)

    Nishiyama, S.; Katayama, K.; Nakano, H.; Goto, M.; Sasaki, K.

    2016-09-01

    Detailed structures of electric fields in sheath and pre-sheath regions of various plasmas are interested from the viewpoint of basic plasma physics. Several researchers observed Stark spectra of Doppler-broadened Rydberg states to evaluate electric fields in plasmas; however, these measurements needed high-power, expensive tunable lasers. In this study, we carried out another Stark spectroscopy with a low-cost diode laser system. We applied saturation spectroscopy, which achieves a Doppler-free wavelength resolution, to observe the Stark spectrum of the Balmer-alpha line of atomic hydrogen in the sheath region of a low-pressure hydrogen plasma. The hydrogen plasma was generated in an ICP source which was driven by on-off modulated rf power at 20 kHz. A planar electrode was inserted into the plasma. Weak probe and intense pump laser beams were injected into the plasma from the counter directions in parallel to the electrode surface. The laser beams crossed with a small angle above the electrode. The observed fine-structure spectra showed shifts, deformations, and/or splits when varying the distance between the observation position and the electrode surface. The detection limit for the electric field was estimated to be several tens of V/cm.

  4. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates

    Science.gov (United States)

    Zanini, S.; Orlandi, M.; Colombo, C.; Grimoldi, E.; Riccardi, C.

    2009-08-01

    A detailed study of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) substrates (membranes and films) is presented. The process consists of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency evaluated in terms of amount of grafted polymer, coverage uniformity and substrates wettability, are investigated. The plasma-induced graft-polymerization of PEGA is then followed by sample weighting, water droplet adsorption time and contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in phosphate buffer saline (PBS) at 37 °C. Results clearly indicates that plasma-induced graft-polymerization of PEGA is a practical methodology for anti-fouling surface modification of materials.

  5. Towards reconstruction of overlapping fingerprints using plasma spectroscopy

    Science.gov (United States)

    Yang, Jun-Ho; Choi, Soo-Jin; Yoh, Jack J.

    2017-08-01

    Chemical analysis is commonly used in the field of forensic science where the precise discrimination of primary evidence is of significant importance. Laser-Induced Breakdown Spectroscopy (LIBS) exceeds other spectroscopic methods in terms of the time required for pre- and post-sample preparation, the insensitivity to sample phase state be it solid, liquid, or gas, and the detection of two-dimensional spectral mapping from real time point measurements. In this research, fingerprint samples on various surface materials are considered in the chemical detection and reconstruction of fingerprints using the two-dimensional LIBS technique. Strong and distinct intensities of specific wavelengths represent visible ink, natural secretion of sweat, and contaminants from the environment, all of which can be present in latent fingerprints. The particular aim of the work presented here is to enhance the precision of the two-dimensional recreation of the fingerprints present on metal, plastic, and artificially prepared soil surface using LIBS with principal component analysis. By applying a distinct wavelength discrimination for two overlapping fingerprint samples, separation into two non-identical chemical fingerprints was successfully performed.

  6. Fast analysis of wood preservers using laser induced breakdown spectroscopy

    Science.gov (United States)

    Uhl, A.; Loebe, K.; Kreuchwig, L.

    2001-06-01

    Laser-induced breakdown spectroscopy (LIBS) is used for the investigation of wood preservers in timber and in furniture. Both experiments in laboratory and practical applications in recycling facilities and on a building site prove the new possibilities for the fast detection of harmful agents in wood. A commercial system was developed for mobile laser-plasma-analysis as well as for industrial use in sorting plants. The universal measuring principle in combination with an Echelle optics permits real simultaneous multi-element-analysis in the range of 200-780 nm with a resolution of a few picometers. It enables the user to detect main and trace elements in wood within a few seconds, nearly independent of the matrix, knowing that different kinds of wood show an equal elemental composition. Sample preparation is not required. The quantitative analysis of inorganic wood preservers (containing, e.g. Cu, Cr, B, As, Pb, Hg) has been performed exactly using carbon as reference element. It can be shown that the detection limits for heavy metals in wood are in the ppm-range. Additional information is given concerning the quantitative analysis. Statistical data, e.g. the standard deviation (S.D.), were determined and calibration curves were used for each particular element. A comparison between ICP-AES and LIBS is given using depth profile correction factors regarding the different penetration depths with respect to the different volumes in wood analyzed by both analytical methods.

  7. Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn [Virginia Commonwealth Univ., Richmond, VA (United States)

    2016-10-31

    The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.

  8. Spectroscopic Study of Laser Induced Breakdown Plasma Spectroscopy in Air and Semi-Empirical Simulation%激光诱导击穿空气等离子体光谱及半经验理论模拟

    Institute of Scientific and Technical Information of China (English)

    孙对兄; 苏茂根; 董晨钟; 马云云; 杨峰; 曹世权

    2014-01-01

    A laser induced breakdown spectroscopy experiment was carried out using Nd ∶ YAG laser in air ,and time-resolved spectra were measured .Based on local thermodynamic equilibrium assumption ,a method used to simulate LIBS spectra is pro-posed .A LIBS spectrum of air in the wavelength range of 700~900 nm was simulated using this method .A good agreement be-tween experiment and simulation was obtained ,and moreover ,the relative concentrations of the N ,O and Ar in air were ob-tained .%利用Nd∶YAG激光器输出的1064 nm激光进行了激光诱导击穿空气光谱实验,测量了空气等离子体的时间分辨光谱。基于局域热动力学平衡模型,建立了模拟激光诱导击穿光谱的方法。对700~900 nm波段的空气等离子体光谱进行了模拟。通过模拟结果与实验结果的比较,进一步估算出了空气中氮、氧和氩的相对含量。

  9. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A., E-mail: sidahmed.beldjilali@univ-usto.dz; Belasri, A. [Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf USTO-MB, LPPMCA (Algeria)

    2015-09-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extract the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C{sub CF-LIBS} calculated by CF-LIBS and the certified concentrations C{sub certified} were very close.

  10. Submillimeter Absorption Spectroscopy in Semiconductor Manufacturing Plasmas and Comparison to Theoretical Models

    Science.gov (United States)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2015-06-01

    Plasmas used in the semiconductor manufacturing industry are of a similar nature to the environments often created for submillimeter spectroscopic study of astrophysical species. At the low operating pressures of these plasmas, submillimeter absorption spectroscopy is a method capable of measuring the abundances and temperatures of molecules, radicals, and ions without disturbing any of the properties of the plasma. These measurements provide details and insight into the interactions and reactions occurring within the plasma and their implications for semiconductor manufacturing processes. A continuous wave, 500 to 750 GHz, absorption spectrometer was designed and used to make measurements of species in semiconductor processing plasmas. Comparisons with expectations from theoretical plasma models provide a basis for validating and improving these models, which is a complex and difficult science itself. Furthermore, these comparisons are an evaluation for the use of submillimeter spectroscopy as a diagnostic tool in manufacturing processes.

  11. Proceedings of the 3rd US-Japan Workshop on Plasma Polarization Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P; Flyimoto, T

    2002-01-02

    The third US-Japan Workshop on Plasma Polarization Spectroscopy was held at the Lawrence Livermore National Laboratory in Livermore, California, on June 18-21, 2001. The talks presented at this workshop are summarized in these proceedings. The papers cover both experimental investigation and applications of plasma polarization spectroscopy as well as the theoretical foundation and formalisms to understand and describe the polarization phenomena. The papers give an overview of the history of plasma polarization spectroscopy, derive the formal aspects of polarization spectroscopy, including the effects of electric and magnetic fields, discuss spectra perturbed by intense microwave fields, charge exchange, and dielectronic recombination, and present calculations of various collisional excitation and ionization cross sections and the modeling of plasma polarization spectroscopy phenomena. Experimental results are given from the WT-3 tokamak, the MST reverse field pinch, the Large Helical Device, the GAMMA 10 mirror machine, the Nevada Terrawatt Facility, the Livermore EBIT-II electron beam ion trap, and beam-foil spectroscopy. In addition, results were presented from studies of several laser-produced plasma experiments and new instrumental techniques were demonstrated.

  12. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    Science.gov (United States)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-10-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s5) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s3) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations.

  13. Modeling of defect generation during plasma etching and its impact on electronic device performance—plasma-induced damage

    Science.gov (United States)

    Eriguchi, Koji

    2017-08-01

    The increasing demand for the higher performance of ultra-large-scale integration (ULSI) circuits requires the aggressive shrinkage of device feature sizes in accordance with the scaling law. Plasma processing plays an important role in achieving fine patterns with anisotropic features in metal-oxide-semiconductor field-effect transistors (MOSFETs). This article comprehensively addresses the negative aspects of plasma processing, i.e. plasma process-induced damage, in particular, the defect creation induced by ion bombardment in Si substrates during plasma etching. The ion bombardment damage forms a surface modified region and creates localized defect structures. Modeling and characterization techniques of the ion bombardment damage in Si substrates are overviewed. The thickness of the modified region, i.e. the damaged layer, is modeled by a modified range theory and the density of defects is characterized by photoreflectance spectroscopy (PRS) and the capacitance-voltage technique. The effects of plasma-induced damage (PID) on MOSFET performance are presented. In addition, some of the emerging topics—the enhanced parameter variability in ULSI circuits and recovery of the damage—are discussed as future perspectives.

  14. Triplet absorption spectroscopy and electromagnetically induced transparency

    Science.gov (United States)

    Ghafoor, F.; Nazmitdinov, R. G.

    2016-09-01

    Coherence phenomena in a four-level atomic system, cyclically driven by three coherent fields, are investigated thoroughly at zero and weak magnetic fields. Each strongly interacting atomic state is converted to a triplet due to a dynamical Stark effect. Two dark lines with a Fano-like profile arise in the triplet absorption spectrum with anomalous dispersions. We provide conditions to control the widths of the transparency windows by means of the relative phase of the driving fields and the intensity of the microwave field, which closes the optical system loop. The effect of Doppler broadening on the results of the triplet absorption spectroscopy is analysed in detail.

  15. Plasma-cavity ringdown spectroscopy for analytical measurement: Progress and prospectives

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sida; Liu, Wei [Research Center of Analytical Instrumentation, Analytical and Testing Center, College of Chemistry, Sichuan University, Chengdu (China); Zhang, Xiaohe [College of Water Resources and Hydropower, Sichuan University, Chengdu (China); Duan, Yixiang, E-mail: yduan@scu.edu.cn [Research Center of Analytical Instrumentation, Analytical and Testing Center, College of Chemistry, Sichuan University, Chengdu (China)

    2013-07-01

    Plasma-cavity ringdown spectroscopy is a powerful absorption technique for analytical measurement. It combines the inherent advantages of high sensitivity, absolute measurement, and relative insensitivity to light source intensity fluctuations of the cavity ringdown technique with use of plasma as an atomization/ionization source. In this review, we briefly describe the background and principles of plasma-cavity ringdown spectroscopy(CRDS) technology, the instrumental components, and various applications. The significant developments of the plasma sources, lasers, and cavity optics are illustrated. Analytical applications of plasma-CRDS for elemental detection and isotopic measurement in atomic spectrometry are outlined in this review. Plasma-CRDS is shown to have a promising future for various analytical applications, while some further efforts are still needed in fields such as cavity design, plasma source design, instrumental improvement and integration, as well as potential applications in radical and molecular measurements. - Highlights: • Plasma-based cavity ringdown spectroscopy • High sensitivity and high resolution • Elemental and isotopic measurements.

  16. Active plasma resonance spectroscopy: a functional analytic description

    Science.gov (United States)

    Lapke, M.; Oberrath, J.; Mussenbrock, T.; Brinkmann, R. P.

    2013-04-01

    The term ‘active plasma resonance spectroscopy’ denotes a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: a signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept has found renewed interest as a basis of industry compatible plasma diagnostics. This paper analyzes the diagnostic technique in terms of a general description based on functional analytic (or Hilbert Space) methods which hold for arbitrary probe geometries. It is shown that the response function of the plasma-probe system can be expressed as a matrix element of the resolvent of an appropriately defined dynamical operator. A specialization of the formalism to a symmetric probe design is given, as well as an interpretation in terms of a lumped circuit model consisting of series resonance circuits. We present ideas for an optimized probe design based on geometric and electrical symmetry.

  17. Optimization of cavity size for spatial confined laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Su, Xuejiao; Zhou, Weidong; Qian, Huiguo

    2014-11-17

    Spatial confinement with a small cavity is known to enhance the signal intensity of laser-induced breakdown spectroscopy. In this study, the optical emission intensity and signal stability in terms of the relative standard deviation of laser-induced plasmas generated from brass samples with and without the presence of small cylindrical cavities were carefully investigated. The cylindrical cavities were prefabricated by drilling on a set of aluminum plates with variable diameters and heights, which were then placed near the sample surface. Both plasma emission intensity and stability were influenced by cavity diameter and height. With increased cavity diameter from 1.5 mm to 6 mm, the emission intensity of the confined plasma initially increased and then decreased. Furthermore, if a suitable cavity size was selected, both line intensity and stability of the confined plasma emission improved. Based on these observed signal characters with varying cavities, the optimized cavity size for the best signal quality of the laser-induced plasma emission on brass sample was obtained.

  18. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain); Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid (Spain); Fuentes, L. M. [Departamento de Física Aplicada, Universidad de Valladolid, 47011-Valladolid (Spain); Grützmacher, K.; Pérez, C., E-mail: concha@opt.uva.es; Rosa, M. I. de la [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain)

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  19. Plasma diagnostics in gas metal arc welding by optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Valensi, F; Pellerin, S; Zielinska, S [GREMI, Universite d' Orleans (Site de Bourges)/CNRS, BP 4043, 18028 Bourges cedex (France); Boutaghane, A [Universite des Sciences et de la Technologie Houari Boumediene, Alger (Algeria); Dzierzega, K [Marian Smoluchowski Institute of Physics, Jagellonian University, Krakow (Poland); Pellerin, N [CNRS, UPR3079 CEMHTI, 1D av. de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Briand, F, E-mail: flavien.valensi@laplace.univ-tsle.f, E-mail: stephane.pellerin@univ-orleans.f, E-mail: aboutaghane@yahoo.f, E-mail: krzycho@netmail.if.uj.edu.p, E-mail: sylwia.zielinska@airliquide.co, E-mail: nadia.pellerin@univ-orleans.f, E-mail: francis.briand@airliquide.co [CTAS-Air Liquide Welding, Saint Ouen l' Aumone, 95315 Cergy-Pontoise cedex (France)

    2010-11-03

    The plasma column in a metal inert gas welding process is investigated by optical emission spectroscopy and high-speed imaging. The concentration and repartition of iron vapours are measured and correlated with the plasma and electrode geometric configuration. Plasma temperatures and electron densities are also measured for each studied position in the plasma. The temperatures are calculated using two different methods, allowing validation of the local thermodynamic equilibrium state of the plasma. The results show a maximum temperature of 12 500 K in the upper part of the arc, away from the arc axis. The iron concentration reaches a maximum of 0.3% close to the anode and strongly decreases along both the vertical and radial directions. The plasma thermophysical properties, calculated from this plasma composition, are then discussed regarding the metal transfer mode.

  20. Recent advances in spectroscopy of strongly correlated plasmas

    Science.gov (United States)

    Leboucher-Dalimier, E.; Sauvan, P.; Gauthier, P.; Angelo, P.; Derfoul, H.; Alexiou, S.; Poquerusse, A.; Ceccotti, T.; Calisti, A.

    1998-09-01

    The Quasimolecular Model using a Two Centre basis to describe the electronic emitting structure gives an alternative treatment of line broadening in dense and hot plasmas. Two codes are developed: IDEFIX for the radiative properties, QMSPECTRA (postprocessed to the first one) for the spectral line shapes. The observability of dense plasma effects (PPS, asymmetries and satellite features) in spectroscopic measurements is analysed within the proposed model and taking care of the eventual integrations over density gradients.

  1. Emission enhancement using two orthogonal targets in double pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ake, C. [Laboratorio de Fotofisica, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico)], E-mail: citlali.sanchez@ccadet.unam.mx; Bolanos, Marduk [Laboratorio de Fotofisica, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico); Ramirez, C.Z. [Colegio de Ciencias y Humanidades Plantel Sur, Universidad Nacional Autonoma de Mexico (Mexico)

    2009-09-15

    The enhancement of emission intensity resulting from the interaction between two laser-induced plasmas on two orthogonal targets was investigated using double pulse laser-induced breakdown spectroscopy (LIBS) at 0.7 Pa, by means of time-resolved spectroscopy and fast photography. The results showed that the interaction between both plasmas improved carbon emission intensity in comparison to a single laser-induced plasma. For all the carbon lines of interest 477.2 nm (CI), 426.7 nm (CII), and 473.4 nm (C{sub 2} Swan band head), the intensity enhancement showed a maximum at a delay between lasers in the range from 2 to 5 {mu}s; moreover it increased with the fluence of the first laser. On the other hand, in the case of C{sub 2} the intensity enhancement reached a maximum at 5 mm from the target; however it decreased with increasing fluence of the second laser. The largest intensity enhancement found was twofold for atomic species and sixfold for molecular species.

  2. Characterisation of a micro-plasma device sensor using electrical measurements and emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mariotti, D

    2002-04-01

    This thesis reports on research undertaken on the characterisation of a micro-plasma device to be used for gas analysis by mean of plasma emission spectroscopy. The work covers aspects related to the micro-plasma electrical and optical emission parameters, and their importance for the utilisation of the micro-plasma device in gas analysis. Experimental results have been used to analyse the fundamental micro-plasma processes and to develop a model, which could provide additional information. This dissertation contains a general literature review of topics related to plasma physics, plasma emission spectroscopy, gas analysis (chemical analysis and artificial olfaction) and other micro-plasma applications. Experimental work focuses on two main areas: electrical measurements and emission measurements. Firstly, electrical measurements are taken and interpretations are given. Where necessary, new theoretical treatments are suggested in order to describe better the physical phenomena. Plasma emission has been considered under different working conditions. This allowed the characterisation of the micro-plasma emission and also a better understanding of the micro-plasma processes. On the basis of the experimental data obtained and other assumptions a model has been developed. A computer simulation based on this model provided additional useful information on the micro- plasma behaviour. The first fundamental implication of this new research is the peculiar behaviour of the micro-plasma. This micro-plasma exhibited deviations from Paschen law and strong dependency on cathode material, which contributed to the formation of a low current stable regime. These results have been followed by physical interpretations and theoretical descriptions. The second implication is the establishment of the boundaries and of the influencing parameters for plasma emission spectroscopy as an analytical tool in this particular micro-plasma. From the applied perspective this study has shown that

  3. Radial variation of refractive index, plasma frequency and phase velocity in laser induced air plasma

    CSIR Research Space (South Africa)

    Mathuthu, M

    2006-12-01

    Full Text Available induced air plasma to study the spatial variation of plasma parameters in the axial direction of the laser beam. In this paper, the authors report investigation on the radial variation of the refractive index, plasma frequency, and phase velocity of a...

  4. Influence of Lead on the Interpretation of Bone Samples with Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Abdolhamed Shahedi

    2016-01-01

    Full Text Available This study is devoted to tracing and identifying the elements available in bone sample using Laser-Induced Breakdown Spectroscopy (LIBS. The bone samples were prepared from the thigh of laboratory rats, which consumed 325.29 g/mol lead acetate having 4 mM concentration in specified time duration. About 76 atomic lines have been analyzed and we found that the dominant elements are Ca I, Ca II, Mg I, Mg II, Fe I, and Fe II. Temperature curve and bar graph were drawn to compare bone elements of group B which consumed lead with normal group, group A, in the same laboratory conditions. Plasma parameters including plasma temperature and electron density were determined by considering Local Thermodynamic Equilibrium (LTE condition in the plasma. An inverse relationship has been detected between lead absorption and elements like Calcium and Magnesium absorption comparing elemental values for both the groups.

  5. Optical spectroscopy of free-propagating plasma and its interaction with tungsten targets in PF-1000 facility

    Energy Technology Data Exchange (ETDEWEB)

    Skladnik-Sadowska, E.; Malinowski, K. [The Andrzej Soltan Institute for Nuclear Studies, IPJ, 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [The Andrzej Soltan Institute for Nuclear Studies, IPJ, 05-400 Otwock-Swierk (Poland)] [Institute of Plasma Physics and Laser Microfusion, IPPLM, 01-497 Warsaw (Poland); Kubkowska, M.; Jakubowska, K.; Paduch, M.; Scholz, M. [Institute of Plasma Physics and Laser Microfusion, IPPLM, 01-497 Warsaw (Poland); Garkusha, I.E.; Ladygina, M.; Tereshin, V.I. [Institute of Plasma Physics, NSC KIPT, 61-108 Kharkov (Ukraine)

    2011-07-01

    The paper reports on optical spectroscopy of pulsed plasma streams during their free propagation within a vacuum chamber and their interaction with tungsten targets. Experiments were performed with the PF-1000 facility and particular attention was paid to improvements in spectroscopic diagnostics techniques. In contrary to preliminary studies, the recent spectroscopic measurements of the free plasma streams were carried out perpendicular to the z-axis and at a larger distance from the electrode outlet. The center of the observation quartz-window was located at z = 30 cm in order to observe first a pure deuterium-plasma stream, and later on some heavy impurities which might reach that distance with a delay induced by differences in their production and time-of-flight. The recorded spectral lines were identified by means of a Kurucz database. It was confirmed that at the pure D{sub 2}-filling the PF-1000 facility emits first the deuterium-plasma stream and one can observe intense deuterium Balmer lines, but at a distance z = 30 cm, after about 2 microseconds there appear many impurity lines originating mainly from the Cu-electrodes, i.e. Cu-lines. The second part of the experiment concerned the spectroscopic measurements of metal plasma 'pillow' produced by the plasma stream impinging upon a solid target made of pure tungsten. The described measurements enabled the most intense spectral lines to be identified. This document is composed of an abstract followed by the slides of the presentation

  6. Determining Concentrations and Temperatures in Semiconductor Manufacturing Plasmas via Submillimeter Absorption Spectroscopy

    Science.gov (United States)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2016-06-01

    Plasmas used in the manufacturing processes of semiconductors are similar in pressure and temperature to plasmas used in studying the spectroscopy of astrophysical species. Likewise, the developed technology in submillimeter absorption spectroscopy can be used for the study of industrial plasmas and for monitoring manufacturing processes. An advantage of submillimeter absorption spectroscopy is that it can be used to determine absolute concentrations and temperatures of plasma species without the need for intrusive probes. A continuous wave, 500 - 750 GHz absorption spectrometer was developed for the purpose of being used as a remote sensor of gas and plasma species. An important part of this work was the optical design to match the geometry of existing plasma reactors in the manufacturing industry. A software fitting routine was developed to simultaneously fit for the background and absorption signal, solving for concentration, rotational temperature, and translational temperature. Examples of measurements made on inductively coupled plasmas will be demonstrated. We would like to thank the Texas Analog Center of Excellence/Semiconductor Research Corporation (TxACE/SRC) and Applied Materials for their support of this work.

  7. Introduction to Plasma Spectroscopy 2.What do spectra tell us ?

    Science.gov (United States)

    Goto, Motoshi; Murakami, Izumi; Fujimoto, Takashi

    The collisional-radiative(CR) model is introduced as an improvement to the corona model. Its formulation indicates that the population of every excited level is divided into two independent components, i.e., the ionizing and recombining plasma components. For the pulsed discharge with helium gas in a Pyrex tube which exhibits intense line radiations twice, the first and second peaks are found to correspond to the ionizing and recombining plasmas, respectively, from the different population distributions over the n3D levels. The spectrum taken in the stationary phase of the main discharge in the Large Helical Device (LHD) with helium gas suggests an ionizing plasma, and for the other two spectra taken in the plasma terminating phase, the first and the second spectra indicate the recombining plasmas of ionized and neutral helium, respectively. In all these analyses, the electron temperature and density are the variable parameters and are determined as a result of fitting of calculation to the experimental data. The spectrum observed in the helium glow discharge cannot be reproduced by CR model calculations even if the quasi-steady-state approximation for meta stable states of neutral helium is removed. The opacity effect may be the origin of this difficulty.

  8. Investigations of GMAW plasma by optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zielinska, S [Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Musiol, K [Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K [Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S [LASEP, Faculte des Sciences-Bourges, Universite d' Orleans, BP 4043, 18028 Bourges Cedex (France); Valensi, F [LASEP, Faculte des Sciences-Bourges, Universite d' Orleans, BP 4043, 18028 Bourges Cedex (France); Izarra, Ch de [LASEP, Faculte des Sciences-Bourges, Universite d' Orleans, BP 4043, 18028 Bourges Cedex (France); Briand, F [CTAS - Air Liquide Welding, Rue des Epluches, Saint Ouen l' Aumone (France)

    2007-11-15

    We report on investigations of gas metal arc welding plasma operated in pure argon and in a mixture of argon and CO{sub 2} at a dc current of 326 A. The spatially resolved electron densities and temperatures were directly obtained by measuring the Stark widths of the Ar I 695.5 nm and Fe I 538.3 nm spectral lines. Our experimental results show a reduction of the plasma conductivity and transfer from spray arc to globular arc operation with increasing CO{sub 2} concentration. Although the electron density n{sub e} increases while approaching the core of the plasma in the spray-arc mode, a drop in the electron temperature T{sub e} is observed. Moreover, the maximum T{sub e} that we measure is about 13 000 K. Our experimental results differ from the Haidar model where T{sub e} is always maximum on the arc axis and its values exceed 20 000 K. These discrepancies can be explained as a result of underestimation of the amount of metal vapours in the plasma core and of the assumption of local thermal equilibrium plasma in the model.

  9. Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water

    Institute of Scientific and Technical Information of China (English)

    WU Jiang-lai; LU Yuan; Li Ying; CHENG Kai; GUO Jin-jia; ZHENG Rong-er

    2011-01-01

    @@ The laser induced breakdown spectroscopy (LIBS) is an element analysis technique with the advantages of real time detection, simultaneous multi-element identification, and in-situ and stand-off capacities.To evaluate its potential of ocean applications, in this paper, the time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water is investigated.With the optimum experimental parameters, the plasma emission lifetime is determined to be about 500 ns with 532 nm laser excitation, and 1000 ns with 1064 nm laser excitation.The lowest detection concentration of 50ppm is achieved for calcium detection in CaC12 water solution using the 532 nm LIBS.Even better detection sensitivity is achieved using the 1064 nm LIBS, and the resulted lowest detection concentration of calcium is 25 ppm.The results suggest that it is feasible to develop LIBS as an on-line sensor for metal element monitoring in the sea.

  10. Plasma Induced Physicochemical Changes and Reactive Dyeing of Wool Fabrics

    Directory of Open Access Journals (Sweden)

    J. Udakhe

    2015-01-01

    Full Text Available This study focuses on the effect of dielectric barrier discharge (DBD plasma treatment on physical and chemical properties of wool fabric and its relation to exhaustion of Drimalan Navy Blue FBI reactive dye. AFM analysis of plasma treated wool fabric has shown partial removal of epicuticle and thus reduced scale height. FD spectroscopy has shown improvement in hydrophilicity by many folds after plasma treatment. ATR graphs depict the removal of hydrophobic layer of 18-MEA and introduction of hydrophilic groups like cysteic acid after plasma treatment. Alkali solubility of wool fabric increases with increasing plasma treatment time. Wetting time for plasma treated fabric reduces drastically when compared to untreated wool fabric. It is found that plasma treated fabric takes much lesser time to reach maximum dye exhaustion than untreated fabric. Substantivity of the dye increases significantly after plasma treatment. Colour fastness properties improve with increase in plasma treatment time. Chemical oxygen demand (COD of spent dyebath liquor is found to reduce with increase in plasma treatment time. Biological oxygen demand (BOD is found to be higher for plasma treated samples, while ratio of COD/BOD has reduced with increase in the plasma treatment time.

  11. E × B ion mass spectroscopy in magnetised plasmas

    Science.gov (United States)

    Hellblom, K. G.; Armstrong, R. J.

    1995-02-01

    A spectrometer based on the E × B drift during the transit time of the ion through a cross field region has been tested in a hydrogen plasma in the Blaamann toroidal plasma device [T. Brundtland, Vacuum 43 (1992) 185]. The magnetic field B, is the field of the device. The electric field E, which is imposed and oriented perpendicular to the magnetic field, is swept with a time long compared to the ion transit time. The ions are accelerated along the magnetic field as they enters the cross field region giving them a velocity and a transit time proportional to the charge over the mass.

  12. Fusion related research with laser-induced-breakdown-spectroscopy on metallic samples at the ENEA-Frascati laboratory.

    Science.gov (United States)

    Almaviva, S.; Caneve, L.; Colao, F.; Maddaluno, G.

    2016-04-01

    The study of plasma-wall interactions is of paramount importance for continuous and fault free operations in thermonuclear fusion research to monitor the damages of plasma facing components (PFCs), plasma pollution from impurities and wall retention of hydrogen isotopes, like tritium. These needs make laser-induced-breakdown-spectroscopy (LIBS) a suitable candidate for a real time monitoring of PFCs in the current and next generation fusion devices, like ITER. It is also worthwhile for the quantitative analysis of surfaces, with micro-destructivity of the sample and depth profiling capabilities with sub-micrometric sensitivity. In this paper LIBS spectroscopy is exploited as a valid diagnostic tool for PFCs at the ENEA Research Center in Frascati (Italy) and at the Institute of Plasma Physics and Laser Microfusion (IPPLM) of Warsaw (Poland). The activities have been focused on LIBS characterization of samples simulating PFCs surfaces eroded/redeposited or contaminated from nuclear fuel after or during the normal operation of the reactor.

  13. Laser-Induced Breakdown Spectroscopy and Chlorophyll a Flourescence Transients

    DEFF Research Database (Denmark)

    Frydenvang, Jens

    of a sufficient quality; something that remains a problem for many in-situ methods. In my PhD, I present my work with two such in-situ methods, Laser-Induced Breakdown Spectroscopy (LIBS) and OJIP transients, the rising part of chlorophyll a fluorescence transients from dark-adapted leaves....

  14. Laser-Induced Breakdown Spectroscopy and Chlorophyll a Flourescence Transients

    DEFF Research Database (Denmark)

    Frydenvang, Jens

    of a sufficient quality; something that remains a problem for many in-situ methods. In my PhD, I present my work with two such in-situ methods, Laser-Induced Breakdown Spectroscopy (LIBS) and OJIP transients, the rising part of chlorophyll a fluorescence transients from dark-adapted leaves....

  15. Laser-Induced Breakdown Spectroscopy of Trace Metals

    Science.gov (United States)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  16. Drop coating deposition Raman spectroscopy of blood plasma for the detection of colorectal cancer

    Science.gov (United States)

    Li, Pengpeng; Chen, Changshui; Deng, Xiaoyuan; Mao, Hua; Jin, Shaoqin

    2015-03-01

    We have recently applied the technique of drop coating deposition Raman (DCDR) spectroscopy for colorectal cancer (CRC) detection using blood plasma. The aim of this study was to develop a more convenient and stable method based on blood plasma for noninvasive CRC detection. Significant differences are observed in DCDR spectra between healthy (n=105) and cancer (n=75) plasma from 15 CRC patients and 21 volunteers, particularly in the spectra that are related to proteins, nucleic acids, and β-carotene. The multivariate analysis principal components analysis and the linear discriminate analysis, together with leave-one-out, cross validation were used on DCDR spectra and yielded a sensitivity of 100% (75/75) and specificity of 98.1% (103/105) for detection of CRC. This study demonstrates that DCDR spectroscopy of blood plasma associated with multivariate statistical algorithms has the potential for the noninvasive detection of CRC.

  17. Time-resolved characterization of laser-induced plasma from fresh potatoes

    Science.gov (United States)

    Lei, Wenqi; Motto-Ros, Vincent; Boueri, Myriam; Ma, Qianli; Zhang, Dacheng; Zheng, Lijuan; Zeng, Heping; Yu, Jin

    2009-09-01

    Optical emission of laser-induced plasma on the surface of fresh vegetables provides sensitive analysis of trace elements for in situ or online detection of these materials. This emergent technique promises applications with expected outcomes in food security or nutrition quality, as well as environment pollution detection. Characterization of the plasma induced on such soft and humid materials represents the first step towards quantitative measurement using this technique. In this paper, we present the experimental setup and protocol that optimize the plasma generation on fresh vegetables, potatoes for instance. The temporal evolution of the plasma properties are investigated using time-resolved laser-induced breakdown spectroscopy (LIBS). In particular, the electron density and the temperatures of the plasma are reported as functions of its decay time. The temperatures are evaluated from the well known Boltzmann and Saha-Boltzmann plot methods. These temperatures are further compared to that of the typical molecular species, CN, for laser-induced plasma from plant materials. This comparison validates the local thermodynamic equilibrium (LTE) in the specific case of fresh vegetables ablated in the typical LIBS conditions. A study of the temporal evolution of the signal to noise ratio also provides practical indications for an optimized detection of trace elements. We demonstrate finally that, under certain conditions, the calibration-free LIBS procedure can be applied to determine the concentrations of trace elements in fresh vegetables.

  18. Approaching the ppb detection limits for copper in water using laser induced breakdown spectroscopy

    Science.gov (United States)

    Tawfik, Walid; Sawaf, Sausan

    2014-05-01

    Copper concentrations in drinking-water is very important to be monitored which can cause cancer if it exceed about 10 mg/liter. In the present work, we have developed a simple, low laser power method to improve the detection limits of laser induced plasma spectroscopy LIBS for copper in aqueous solutions with different concentrations. In this method a medium density fiberboard (MDF) wood have been used as a substrate that absorbs the liquid sample to transform laser liquid interaction to laser solid interaction. Using the fundamental wavelength of Nd:YAG laser, the constructed plasma emissions were monitored for elemental analysis. The signal-to-noise ratio SNR was optimized using low laser fluence of 32 J cm-2, and detector (CDD camera) gate delay of 0.5 μs. Both the electron temperature and density of the induced plasma were determined using Boltzmann plot and the FWHM of the Cu at 324.7 nm, respectively. The plasma temperature was found to be 1.197 eV, while the plasma density was about 1.66 x 1019 cm-3. The detection limits for Cu at 324.7 nm is found to be 131 ppb comparable to the results by others using complicated system.

  19. Surface-nitriding treatment of steels using microwave-induced nitrogen plasma at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shigeo, E-mail: s.sato@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Arai, Yuuki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamashita, Noboru; Kojyo, Atsushi; Kodama, Kenji [Rigaku Corporation, Takatsuki, Osaka 569-1146 (Japan); Ohtsu, Naofumi [Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan); Okamoto, Yukio [Research Institute of Industrial Technology, Toyo University, Kawagoe 350-8585 (Japan); Wagatsuma, Kazuaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2012-07-15

    A rapid surface-nitriding system using microwave-induced nitrogen plasma at atmospheric pressure was developed for modifying iron and steel surfaces. Since the conventional plasma nitriding technique requires a low-pressure atmosphere in the treatment chamber, the population of excited nitrogen molecules in the plasma is limited. Accordingly, several hours are required for nitriding treatment. By contrast, the developed nitriding system can use atmospheric-pressure plasma through application of the Okamoto cavity for excitation of nitrogen plasma. The high population of excited nitrogen molecules induced by the atmospheric-pressure plasma allowed the formation of a nitriding layer that was several micrometers thick within 1 min and produced an expanded austenite iron phase with a high nitrogen concentration close to the solubility limit on the iron substrate. In addition, the nitriding treatment on high-chromium steel was performed by introducing a reducing gas such as NH{sub 3} and H{sub 2} into the treatment chamber. While the nitriding reaction did not proceed in a simple N{sub 2} atmosphere due to surface oxidation, the surface reduction induced by the NH{sub 3} or H{sub 2} gas promoted the nitriding reaction at the surface. These nitriding phenomena characteristics of the atmospheric-pressure plasma are discussed in this paper based on the effects of the specimen temperature and plasma atmosphere on the thickness, the chemical states, and the nitride compounds of the nitrided layer as investigated by X-ray diffraction, glow-discharge optical emission spectroscopy, and X-ray photoelectron spectroscopy.

  20. Collisional-radiative model: a plasma spectroscopy theory for experimentalists

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi [Kyoto Univ. (Japan); Sawada, Keiji

    1997-01-01

    The rate equation describing the population n(p) of an excited (and the ground state) level p of ions immersed in plasma is shown. In 1962, the method of quasi-steady state solution (collisional-radiative model) was proposed. Its idea is explained. The coupled differential equations reduce to a set of coupled linear equations for excited levels. The solution of these coupled equations is presented. The equations giving the ionization and recombination of this system of ions under consideration are described in terms of the effective rate coefficients. The collisional-radiative ionization and recombination rate coefficients are expressed in terms of the population coefficients for p > 1. As for ionizing plasma, the excited level populations, the populations, the population distribution among the excited levels, two regimes of the excited levels, the dominant flows of electrons among the levels and so on are shown. As for recombining plasma, the excited level populations, the population distribution among the excited levels, the dominant flows of electrons and so on are shown. Ionization balance plasma may be considered. (K.I.)

  1. Simulations for plasma spectroscopy based on UTA theory

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The unresolved transition array(UTA) simulation with configurationaverage approximation is used to calculate the spectral properties ofplasmas involving complex ions. This method is used to simulate thetransmission of X-rays through aluminum plasma and niobium plasmarespectively. The results are compared with experiments and other results ofadvanced models and good agreements are obtained.

  2. Spatially resolved spectroscopy of an atmospheric pressure microwave plasma jet used for surface treatment

    OpenAIRE

    Potočňáková Lucia; Hnilica Jaroslav; Kudrle Vít

    2014-01-01

    In this study, the variations of properties of a microwave plasma jet (surfatron) along the discharge axis have been investigated using optical emission spectroscopy. As the argon jet is not enclosed, the spatial distribution of individual species in effluent plasma is the result of rather complicated interplay between energy loss and gradual mixing with the air. Spatial 2D relative intensity profiles of atomic lines and molecular bands at 310 nm, 336 nm, 391 nm and 656 nm are presented in th...

  3. Development of a gated optical multichannel analyser for laser-plasma spectroscopy

    OpenAIRE

    Corcoran, Richard

    1990-01-01

    An Optical Multichannel Analyser (OMA) has been developed for the detection of radiation from laser-produced plasmas (LPPs). The system is based on a gated image - intensified photodiode array (PDA) Software for the control of, and data acquisition from, the OMA system has been developed. A high resolution (10ns) delay generator was also designed and constructed to permit timeresolved. optical spectroscopy. The system has been tested and operated with a laser plasma source m...

  4. Spatial confinement in laser-induced breakdown spectroscopy

    Science.gov (United States)

    Li, Xingwen; Yang, Zefeng; Wu, Jian; Wei, Wenfu; Qiu, Yan; Jia, Shenli; Qiu, Aici

    2017-01-01

    The spatial confinement of plasma produced by a nanosecond laser is investigated using time resolved spectroscopy, fast imaging, interferometry, and numerical computation. The dynamics of the plasma, depending on shock waves, laser power, and wall distances, are studied. Experimental results confirm that the plasma is constricted by the reflected shock associated with a temperature and density gradient. The peak laser power determines the initial plasma parameters which affect the spectral intensities and the velocity of the reflective shock waves. The wall distance determines the reflection time of the shocks, which in turn influences the time delay of the collision between the two reflective shocks. The numerical results reveal a fast propagation process surrounding the reflective shocks, which indicates that the velocity of the reflective shock wave is influenced by the density of the plasma. The maximum enhancement factor ~5.2 is realized at a delay time of 11.7 µs under a pulse laser energy of 180 mJ and a wall distance of 9 mm.

  5. Stability of Atmospheric-Pressure Plasma Induced Changes on Polycarbonate Surfaces

    Science.gov (United States)

    Sharma, Rajesh; Holcomb, Edward; Trigwell, Steve

    2006-01-01

    Polycarbonate films are subjected to plasma treatment in a number of applications such as improving adhesion between polycarbonate and silicon alloy in protective and optical coatings. The changes in surface chemistry due to plasma treatment have tendency to revert back. Thus stability of the plasma induced changes on polymer surfaces over desired time period is very important. The objective of this study was to examine the effect of ageing on atmospheric pressure helium-plasma treated polycarbonate (PC) sample as a function of treatment time. The ageing effects were studied over a period of 10 days. The samples were plasma treated for 0.5, 2, 5 and 10 minutes. Contact angle measurements were made to study surface energy changes. Modification of surface chemical structure was examined using, X-ray Photoelectron Spectroscopy (XPS). Contact angle measurements on untreated and plasma treated surfaces were made immediately, 24, 48, 72 and 96 hrs after treatment. Contact angle decreased from 93 deg for untreated sample to 30 deg for sample plasma treated for 10 minutes. After 10 days the contact angles for the 10 minute plasma treated sample increased to 67 deg, but it never reverted back to that of untreated surface. Similarly the O/C ratio increased from 0.136 for untreated sample to 0.321 for 10 minute plasma treated sample indication increase in surface energy.

  6. Spectroscopy Measurements on Ablation Testing in High Enthalpy Plasma Flows

    Science.gov (United States)

    2010-11-01

    stagnation point, are located on the ablative material sample. 3.5 InfraRed THERMOGRAPHY Surface temperature measurement is a topic of great concern...high temperature material at two different narrow wavelengths. The temperature is calculated by building the ratio of the radiation intensities. The...this work is to develop the capability of testing and characterization of ablative materials exposed to high enthalpy plasma flows including both

  7. Comparative investigation of laser-induced breakdown spectroscopy in bulk water using 532- and 1064-nm lasers

    Science.gov (United States)

    Tian, Ye; Xue, Boyang; Song, Jiaojian; Lu, Yuan; Li, Ying; Zheng, Ronger

    2017-07-01

    The influence of laser wavelength on the characteristics of laser-induced breakdown spectroscopy (LIBS) in bulk water was investigated by using 532- and 1064-nm lasers. We demonstrated that higher laser energy does not lead to higher LIBS signals because of the strong plasma shielding occurring at high laser energies, as shown by the spectroscopic and fast imaging results in this work. At threshold energies of 100% breakdown probability, the 1064 nm beam could induce a plasma with higher electron density and temperature than the 532 nm beam, which leads to higher signal-to-noise ratios and longer lifetimes of the emission lines.

  8. Trace metal mapping by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Jozef [ORNL; Novotny, Dr. Karel [Masaryk University; Hrdlicka, A [Brno University of Technology, Czech Republic; Malina, R [Brno University of Technology, Czech Republic; Hartl, M [Brno University of Technology, Czech Republic; Kizek, R [Mendel University of Brno; Adam, V [Mendel University of Brno

    2012-01-01

    Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) is a sensitive optical technique capable of fast multi-elemental analysis of solid, gaseous and liquid samples. The potential applications of lasers for spectrochemical analysis were developed shortly after its invention; however the massive development of LIBS is connected with the availability of powerful pulsed laser sources. Since the late 80s of 20th century LIBS dominated the analytical atomic spectroscopy scene and its application are developed continuously. Here we review the utilization of LIBS for trace elements mapping in different matrices. The main emphasis is on trace metal mapping in biological samples.

  9. Exploring the electron density in plasma induced by EUV radiation: II. Numerical studies in argon and hydrogen

    CERN Document Server

    Astakhov, D I; Lee, C J; Ivanov, V V; Krivtsun, V M; Koshelev, K N; Lopaev, D V; van der Horst, R M; Beckers, J; Osorio, E A; Bijkerk, F

    2016-01-01

    We used numerical modeling to study the evolution of EUV-induced plasmas in argon and hydrogen. The results of simulations were compared to the electron densities measured by microwave cavity resonance spectroscopy. It was found that the measured electron densities can be used to derive the integral amount of plasma in the cavity. However, in some regimes, the impact of the setup geometry, EUV spectrum, and EUV induced secondary emission should be taken into account. The influence of these parameters on the generated plasma and the measured electron density is discussed.

  10. Laser-induced breakdown spectroscopy analysis of human deciduous teeth samples.

    Science.gov (United States)

    Khalid, Arooj; Bashir, Shazia; Akram, Mahreen; Hayat, Asma

    2015-12-01

    Laser-induced breakdown spectroscopy (LIBS) analysis of human deciduous teeth has been performed by employing Nd:YAG laser (1064 nm, 10 ns) for the evaluation of plasma parameters as well as elemental analysis. The plasma parameters, i.e., electron temperature and electron number density of laser-induced teeth plasma at various fluencies, have been evaluated. Both parameters show an increasing trend up to a certain value of laser fluence, i.e., 2.6 J/cm(2). With further increase in laser fluence up to a value of 3.9 J/cm(2), a decreasing trend is observed which is due to shielding effect. With further increase in laser fluence up to a maximum value of 10.5 J/cm(2), the insignificant changes in plasma parameters are observed which are attributed to saturation phenomenon governed by self-regulating regime. Emission spectroscopy results exhibit that laser fluence is the controlling factor for both plasma parameters. The elemental analysis was also performed at constant laser fluence of 2.6 J/cm(2) by evaluating the variation in detected elemental concentration of Ca, Fe, Sr, Zn, and Pb in three different parts of human teeth, i.e., enamel, dentine, and cementum. The lower concentration of Ca as compared to the standard values of CaCO3 (self-fabricated pellet) reveals that enamel is the most deciduous part of the human teeth. However, at the same time, it is also observed that the highest concentration of micro minerals is also found in enamel, then in dentine, and lowest in cementum. Carious or unhealthy tooth is identified by enhanced concentration of micro minerals (Pb, Sr, Zn, and Fe). The highest concentration of micro minerals as compared to other parts of teeth (dentine and root cementum) and lower concentration of Ca as compared to standard CaCO3 pellet in enamel confirm that enamel is the most deciduous part of the teeth.

  11. Laser-induced breakdown spectroscopy for real time and online elemental analysis

    CERN Document Server

    Rai, V N; Yueh, Fang-Yu; Singh, J P

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a laser based diagnostics used to study atomic emission from the expanding plasma plume formed during the laser-matter interaction. It provides valuable information about the composition of the target material. LIBS has proved its potential application in the analysis of impurities, pollutants and toxic elements in various types of matrices of different samples (solid, liquid and gases), even those present under difficult and harsh environmental conditions. This article reviews some recent developments in the field, and its wide application in various fields of research and analysis.

  12. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  13. Advances in experimental spectroscopy of Z-pinch plasmas and applications

    Science.gov (United States)

    Kantsyrev, V. L.; Safronova, A. S.; Safronova, U. I.; Shrestha, I.; Weller, M. E.; Osborne, G. C.; Shlyaptseva, V. V.; Wilcox, P. G.; Stafford, A.

    2012-06-01

    Recent advances in experimental work on plasma spectroscopy of Z-pinches are presented. The results of experiments on the 1.7 MA Z-pinch Zebra generator at UNR with wire arrays of various configurations and X-pinches are overviewed. A full x-ray and EUV diagnostic set for detailed spatial and temporal monitoring of such plasmas together with theoretical support from relativistic atomic structure and non-LTE kinetic codes used in the analysis are discussed. The use of a variety of wire materials in a broad range from Al to W provided an excellent opportunity to observe and study specific atomic and plasma spectroscopy features. In addition, the applications of such features to fusion and astrophysics will be considered.

  14. [Research Progress on Laser-Induced Breakdown Spectroscopy Based on Resonance Excitation].

    Science.gov (United States)

    Wang, Xu-zhao; Hao, Zhong-qi; Guo, Lian-bo; Li, Xiang-you; Lu, Yong-feng; Zeng, Xiao-yan

    2015-05-01

    Laser-induced breakdown spectroscopy (LIBS), a new kind of atomic spectrum analysis technology, has attracted much atterition of the researchers due to its characteristics of real-time, simultaneous multi-element analysis, and no sample preparation. However, the poor analytical sensitivity has been an important factor that restricts the development of this technology. LIBS based on resonance excitation combines atomic fluorescence spectroscopy and laser-induced breakdown spectroscopy and selectively excites the target elements. In this way, the analytical sensitivity of LIBS can be improved substantially and its application for trace elements detection is greatly expanded. In this paper, the research development of LIBS based on resonance excitation is summarized. The generation of atomic, fluorescence spectrum in laser-induced plasma, the typical classification and the basic principle of LIBS based on resonance. excitation are introduced. The influence of ablation laser energy, resonant laser energy and wavelength, delay between the ablation laser and the resonant laser, and the gate width on spectral enhancement are analyzed in detail. The application status and deficiencies of LIBS based on resonance excitation in the fields of metallurgy, environmental monitoring and isotope detection are elaborated. Future prospects of LIBS based on resonance excitation are also described.

  15. On Stability of Targets for Plasma Jet Induced Magnetoinertial Fusion

    CERN Document Server

    Samulyak, Roman; Kim, Hyoungekun

    2015-01-01

    The compression and stability of plasma targets for the plasma jet-induced magneto-inertial fusion (PJMIF) have been investigated via large scale simulations using the FronTier code capable of explicit tracking of material interfaces. In the PJMIF concept, a plasma liner, formed by the merger of a large number of radial, highly supersonic plasma jets, implodes on a magnetized plasma target and compresses it to conditions of the fusion ignition. A multi-stage computational approach for simulations of the liner-target interaction and the compression of plasma targets has been developed to minimize computing time. Simulations revealed important features of the target compression process, including instability and disintegration of targets. The non-uniformity of the leading edge of the liner, caused by plasma jets as well as oblique shock waves between them, leads to instabilities during the target compression. By using front tracking, the evolution of targets has been studied in 3-dimensional simulations. Optimi...

  16. Applications of laser-induced gratings to spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, E.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  17. Exploring the electron density in plasma induced by EUV radiation: II. Numerical studies in argon and hydrogen

    NARCIS (Netherlands)

    Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsun, V. M.; Koshelev, K. N.; Lopaev, D. V.; van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Bijkerk, F.

    2016-01-01

    We used numerical modeling to study the evolution of EUV-induced plasmas in argon and hydrogen. The results of simulations were compared to the electron densities measured by microwave cavity resonance spectroscopy. It was found that the measured electron densities can be used to derive the integral

  18. Time-resolved laser-induced breakdown spectroscopy of aluminum

    Institute of Scientific and Technical Information of China (English)

    LIU Xian-yun; ZHANG Wei-jun; WANG Zhen-ya; HAO Li-qing; HUANG Ming-qiang; ZHAO Wen-wu; LONG Bo; Zhao Wei

    2008-01-01

    We develop a system to measure the elemental composition of unprepared samples using laser-induced breakdown spectroscopy (LIBS) in our laboratory, which can be used for the determination of elements in solids, liquids and aerosols. A description of the instrumentation, including laser, sample chamber and detection, is followed by a brief discussion. The time-resolved LIBS of aluminum at atmospheric pressure is presented. At the end, the possibilities and later uses of this technique are briefly discussed.

  19. Laser-Induced Breakdown Spectroscopy: Fundamentals, Applications, and Challenges

    OpenAIRE

    Anabitarte, F.; Cobo, A.; J. M. Lopez-Higuera

    2012-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a technique that provides an accurate in situ quantitative chemical analysis and, thanks to the developments in new spectral processing algorithms in the last decade, has achieved a promising performance as a quantitative chemical analyzer at the atomic level. These possibilities along with the fact that little or no sample preparation is necessary have expanded the application fields of LIBS. In this paper, we review the state of the ar...

  20. Laser-induced breakdown spectroscopy: A versatile technique of elemental analysis and its applications

    CERN Document Server

    Rai, V N

    2014-01-01

    This paper reviews the state of art technology of laser induced breakdown spectroscopy (LIBS). Research on LIBS is gaining momentum in the field of instrumentation and data analysis technique due to its wide application in various field particularly in environmental monitoring and in industry. The main focus is on its miniaturization for field application and on increasing its sensitivity. The sensitivity of LIBS has been increased by confining the laser produced plasma using external magnetic field as well as using two successive laser pulse excitation of plasma. LIBS has capability for simultaneous multi element determination, localized microanalysis, surface analysis and has been used successfully for determination and identification of hazardous explosive and biological samples. Experimental findings of LIBS study in different applications have been discussed.

  1. Temperature Effect on the Optical Emission Intensity in Laser Induced Breakdown Spectroscopy of Super Alloys

    Science.gov (United States)

    Darbani, S. M. R.; Ghezelbash, M.; Majd, A. E.; Soltanolkotabi, M.; Saghafifar, H.

    2014-12-01

    In this paper, the influence of heating and cooling samples on the optical emission spectra and plasma parameters of laser-induced breakdown spectroscopy for Titanium 64, Inconel 718 super alloys, and Aluminum 6061 alloy is investigated. Samples are uniformly heated up to approximately 200°C and cooled down to -78°C by an external heater and liquid nitrogen, respectively. Variations of plasma parameters like electron temperature and electron density with sample temperature are determined by using Boltzmann plot and Stark broadening methods, respectively. Heating the samples improves LIBS signal strength and broadens the width of the spectrum. On the other hand, cooling alloys causes fluctuations in the LIBS signal and decrease it to some extent, and some of the spectral peaks diminish. In addition, our results show that electron temperature and electron density depend on the sample temperature variations.

  2. The Influence of Acquisition Delay for Calibration-Free Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Fu, Hongbo; Dong, Fengzhong; Ni, Zhibo; Wang, Jingge

    2016-03-01

    Time-resolved spectra of neutral and ionized atomic emissions from slag sample are measured by laser-induced breakdown spectroscopy (LIBS). Various factors affecting the calibration-free CF-LIBS method are carefully analyzed, and subsequently these factors are either avoided or corrected. Plasma temperature and electron density are calculated by Saha-Boltzmann plot and Stark broadening of Ca, respectively. At the same time, self-absorption and local thermodynamic equilibrium have been carefully studied. An automatic spectral lines elimination algorithm is applied to calculate plasma temperature and element concentration. The calculated element concentrations show marked changes with acquisition time increasing. Due to the influence of continuous spectrum at early times and self-absorption at late times, the large absolute errors sum is obtained in these two periods. The smallest absolute errors sum corresponds to the gate delay time 1.5 μs < td < 2 μs for our experimental setup.

  3. Detection and evaluation of uranium in different minerals by gamma spectrometry and laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sergani, F.M.; Khedr, M.A.; Harith, M.A. [National Inst. of Laser Enhanced Sciences (NILES), Cairo Univ. (Egypt); El Mongy, S.A. [National Center for Nuclear Safety, Atomic Energy Authority, Nasr City, Cairo (Egypt)

    2004-07-01

    Analysis, detection and evaluation of source nuclear materials (e.g. uranium) in different minerals by sensitive techniques are a vital objective for uranium exploration, nuclear materials extraction, processing and verification. In this work, uranium in different geological formations was determined using gamma spectrometry and laser induced breakdown spectroscopy (LIBS). The investigated samples were collected from different regions distributed all over Egypt. The samples were then prepared for non-destructive analysis. A hyper pure germanium detector was used to measure the emitted gamma rays of uranium and its daughters in the samples. The concentrations of uranium in ppm ({mu}g/g) in the investigated samples are given and discussed in this work. The highest uranium concentration (4354.9 ppm) was found in uranophane samples of Gattar rocks. In Laser induced breakdown spectroscopy (LIBS) technique, plasma was formed by irradiating the rock surface with focused Q-switched Nd:Yag laser pulses of 7 ns pulse duration at the fundamental wavelength (1064 nm). Atoms and ions originating from the rock surface are excited and ionized in the laser produced hot plasma ({proportional_to}10 000 K). The plasma emission spectral line is characteristic of the elements present in the plasma and allows identification of the uranium in the uranophane mineral. The strong atomic line at 424.2 nm is used for the qualitative identification of uranium. It can be mentioned that the elevated levels of uranium in some of the investigated uranophane samples are of great economic feasibility to be extracted. (orig.)

  4. Plasma-water systems studied with optical diagnostics including sum-frequency generation spectroscopy

    Science.gov (United States)

    Ito, Tsuyohito

    2016-09-01

    Recently, various applications of plasma-water systems have been reported, such as materials synthesis, agricultural applications, and medical treatments. As one of basic studies of such systems, we are investigating water surface structure influenced by a plasma via vibrational sum-frequency generation spectroscopy. Vibrational sum-frequency generation spectroscopy is known to be an interfacially active diagnostic technique, as such process occurs in noncentrosymmetric medium. Visible and wavenumber-tunable infrared beams are simultaneously irradiated to the interface. The interfacial water has ice-like ( 3200 cm-1), liquid-like ( 3400 cm-1), and free OH (3700 cm-1) structures (assignment of the ice-like structure still remains contentious), and the intensity of the signal becomes stronger when the tunable infrared beam resonates with a vibration of the structures. The results indicate that with generating air dielectric barrier discharges for supplying reactive species to the water surface, all investigated signals originating from the above-mentioned three structures decrease. Furthermore, the signal strengths are recovered after terminating the plasma generation. We currently believe that the surface density of the reactive species should be high when they are found at the water surface. Details on the experimental results of the sum-frequency generation spectroscopy, as well as other spectroscopic results of plasma-water systems, will be presented at the conference.

  5. Optical emission studies of plasma induced by single and double femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Pinon, V. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, 71110 Heraklion, Crete (Greece); Universidad de A Coruna, Departamento de Ingenieria Industrial II, E-15403 Ferrol, A Coruna (Spain); Anglos, D., E-mail: anglos@iesl.forth.g [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, 71110 Heraklion, Crete (Greece); Department of Chemistry, University of Crete, 71003 Heraklion, Crete (Greece)

    2009-10-15

    Double-pulse femtosecond laser ablation has been shown to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to single-pulse ablation particularly when an appropriate interpulse delay is selected, that is typically in the range of 50-1000 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy analysis of materials. A detailed comparative study of collinear double- over single-pulse femtosecond laser-induced breakdown spectroscopy has been carried out, based on measurements of emission lifetime, temperature and electronic density of plasmas, produced during laser ablation of brass with 450 fs laser pulses at 248 nm. The results obtained show a distinct increase of plasma temperature and electronic density as well as a longer decay time in the double-pulse case. The plasma temperature increase is in agreement with the observed dependence of the emission intensity enhancement on the upper energy level of the corresponding spectral line. Namely, intensity enhancement of emission lines originating from higher lying levels is more profound compared to that of lines arising from lower energy levels. Finally, a substantial decrease of the plasma threshold fluence was observed in the double-pulse arrangement; this enables sensitive analysis with minimal damage on the sample surface.

  6. Comparison endpoint study of process plasma and secondary electron beam exciter optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Thamban, P. L.; Yun, Stuart; Padron-Wells, Gabriel; Hosch, Jimmy W.; Goeckner, Matthew J. [Department of Mechanical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Department of Electrical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Verity Instruments, Inc., 2901 Eisenhower Street, Carrollton, Texas 75007 (United States); Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080 (United States)

    2012-11-15

    Traditionally process plasmas are often studied and monitored by optical emission spectroscopy. Here, the authors compare experimental measurements from a secondary electron beam excitation and direct process plasma excitation to discuss and illustrate its distinctiveness in the study of process plasmas. They present results that show excitations of etch process effluents in a SF{sub 6} discharge and endpoint detection capabilities in dark plasma process conditions. In SF{sub 6} discharges, a band around 300 nm, not visible in process emission, is observed and it can serve as a good indicator of etch product emission during polysilicon etches. Based on prior work reported in literature the authors believe this band is due to SiF{sub 4} gas phase species.

  7. Mass spectroscopy of the ion flux produced during inductively coupled plasma nitriding process

    Science.gov (United States)

    Kolodko, D. V.; Kaziev, A. V.; Ageychenkov, D. G.; Meshcheryakova, E. A.; Pisarev, A. A.; Tumarkin, A. V.

    2017-05-01

    Ion fluxes on the surface of sample embedded in inductively coupled plasma have been studied in conditions typical for titanium alloy nitriding: total pressure 0.44 Pa, Ar/N2 = 70%/30%, and RF power 1500 W. The gas composition was independently monitored by the quadrupole analyser. The ion fluxes were sampled using a specially designed electrostatic extractor and then analysed with a magnetic sector mass-separator. The extractor design allowed us to apply a bias voltage to the plasma facing electrode thus imitating interaction of ions with the surface during the plasma processing. The ion fluxes of Ar+, {{{N}}}2{}+, and N+ on the surface were measured. The mass spectroscopy diagnostics unit is suitable for extensive ion content studies in the plasma technology facilities.

  8. Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment

    Science.gov (United States)

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier

    2013-03-01

    An atmospheric pressure resistive barrier air plasma jet is designed to inactivate bacteria in aqueous media in direct and indirect exposure modes of treatment. The resistive barrier plasma jet is designed to operate at both dc and standard 50-60 Hz low frequency ac power input and the ambient air at 50% humidity level was used as the operating gas. The voltage-current characteristics of the plasma jet were analyzed and the operating frequency of the discharge was measured to be 20 kHz and the plasma power was measured to be 26 W. The plasma jet rotational temperatures (Trot) are obtained from the optical emission spectra, from the N2C-B(2+) transitions by matching the experimental spectrum results with the Spectra Air (SPECAIR) simulation spectra. The reactive oxygen and nitrogen species were measured using optical emission spectroscopy and gas analyzers, for direct and indirect treatment modes. The nitric oxides (NO) were observed to be the predominant long lived reactive nitrogen species produced by the plasma. Three different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and Neisseria meningitidis (Gram-negative) were suspended in an aqueous media and treated by the resistive barrier air plasma jet in direct and indirect exposure modes. The results show that a near complete bacterial inactivation was achieved within 120 s for both direct and indirect plasma treatment of S. aureus and E. coli bacteria. Conversely, a partial inactivation of N. meningitidis was observed by 120 s direct plasma exposure and insignificant inactivation was observed for the indirect plasma exposure treatment. Plasma induced shifts in N. meningitidis gene expression was analyzed using pilC gene expression as a representative gene and the results showed a reduction in the expression of the pilC gene compared to untreated samples suggesting that the observed protection against NO may be regulated by other genes.

  9. Vacuum ultraviolet spectroscopy in detached plasmas with impurity gas seeding in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, C., E-mail: csuzuki@nifs.ac.jp; Murakami, I.; Akiyama, T.; Masuzaki, S.; Funaba, H.; Yoshinuma, M.

    2015-08-15

    We have carried out vacuum ultraviolet (VUV) spectroscopy of impurity ions in detached plasmas with impurity gas seeding in the Large Helical Device (LHD). In neon (Ne) gas seeding experiments, temporal evolutions of VUV spectral lines from Ne IV–VIII were recorded by a grazing incidence spectrometer. In addition, spatial profiles of fully ionized Ne density were measured by charge exchange spectroscopy. An electron temperature range where each ion emits is inferred based on the comparisons of the measured line intensity ratios with the calculations using collisional-radiative models.

  10. Analysis of structural transformation in wool fiber resulting from oxygen plasma treatment using vibrational spectroscopy

    Science.gov (United States)

    Barani, Hossein; Haji, Aminoddin

    2015-01-01

    The aim of this study was to investigate the influence of oxygen plasma procedure at different time treatments on wool fiber using the micro-Raman spectroscopy as a non-destructive vibrational spectroscopic technique and Fourier transform infrared spectroscopy. The amide I and III regions, Csbnd C skeletal vibration region, and Ssbnd S and Csbnd S bonds vibration regions were analyzed with the Raman microscope. The Fourier transform infrared spectroscope analysis was employed to find out the effect of oxygen plasma treatment on the cysteic acid residues content of the wool fiber sample. The results indicated that the α-helix structure was the highest component content of wool fiber. Moreover, the protein secondary structure of wool fibers was transformed from α-helical arrangement to the β-pleated sheet configuration during the oxygen plasma treatment. Also, the disulphide bonds content in the treated wool fiber reduced because they were fractured and oxidized during oxygen plasma treatment. The oxygen plasma treated samples presented higher cysteic acid compared to the untreated wool samples due to produce more cleavage of disulfide linkages.

  11. Non-thermal atmospheric plasma brush induces HEMA grafting onto dentin collagen

    Science.gov (United States)

    Chen, Mingsheng; Zhang, Ying; Dusevich, Vladimir; Liu, Yi; Yu, Qingsong; Wang, Yong

    2014-01-01

    Objective Non-thermal atmospheric plasma (NTAP) brush has been regarded as a promising technique to enhance dental interfacial bonding. However, the principal enhancement mechanisms have not been well identified. In this study, the effect of non-thermal plasmas on grafting of HEMA, a typical dental monomer, onto dentin collagen thin films was investigated. Methods Human dentin was sectioned into 10-um-thick films. After total demineralization in 0.5 M EDTA solution for 30 min, the dentin collagen films were water-rinsed, air-dried, treated with 35 wt% HEMA aqueous solution. The films were then subject to plasma-exposure under a NTAP brush with different time (1–8 min) / input power (5–15 w). For comparison, the dentin collagen films were also treated with the above HEMA solution containing photo-initiators, then subject to light-curing. After plasma-exposure or light-curing, the HEMA-collagen films were rinsed in deionized water, and then examined by FTIR spectroscopy and TEM. Results The FITR results indicated that plasma-exposure could induce significant HEMA grafting onto dentin collagen thin films. In contrast, light-curing led to no detectable interaction of HEMA with dentin collagen. Quantitative IR spectral analysis (i.e., 1720/3075 or 749/3075, HEMA/collagen ratios) further suggested that the grafting efficacy of HEMA onto the plasma-exposed collagen thin films strongly depended on the treatment time and input power of plasmas. TEM results indicated that plasma treatment did not alter collagen’s banding structure. Significance The current study provides deeper insight into the mechanism of dental adhesion enhancement induced by non-thermal plasmas treatment. The NTAP brush could be a promising method to create chemical bond between resin monomers and dentin collagen. PMID:25458523

  12. Spectroscopy of the tungsten plasma produced by pulsed plasma-ion streams or laser beams

    Science.gov (United States)

    Skladnik-Sadowska, E.; Malinowski, K.; Sadowski, M. J.; Wolowski, J.; Gasior, P.; Kubkowska, M.; Rosinski, M.; Marchenko, A. K.; Sartowska, B.

    2009-06-01

    The paper reports on experiments, which concerned studies of plasma produced from a tungsten (W) target bombarded by powerful (ca. 5 μs, 1-5 MW/cm 2) plasma-ion streams in RPI-IBIS plasma accelerator, and a similar target irradiated with intense Nd:YAG laser pulses (0.5 J, 3 ns, ca. 5.3 × 10 9 W/cm 2) in another vacuum chamber. In both experiments optical measurements were performed with a Mechelle ®900 spectrometer, which enabled the spectrum from 300 nm to 1100 nm to be recorded, and different WI- and WII-lines to be identified. From space- and time-resolved measurements of those lines, basic W-plasma parameters were estimated. During W-plasma expansion the electron temperature was found to be 0.8-1 eV and electron concentration (2-8) × 10 16 cm -3. The emission of higher-ionized W-ions (up to W +6) was confirmed by measurements with an ion-energy analyzer. Structural changes in the irradiated targets were investigated with an optical microscope and SEM.

  13. Spectroscopy of the tungsten plasma produced by pulsed plasma-ion streams or laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Skladnik-Sadowska, E.; Malinowski, K. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Sadowski, M.J., E-mail: msadowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Institute of Plasma Physics and Laser Microfusion (IPPLM), 01-497 Warsaw (Poland); Wolowski, J.; Gasior, P.; Kubkowska, M.; Rosinski, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), 01-497 Warsaw (Poland); Marchenko, A.K. [Institute of Plasma Physics, NSC KIPT, 61-108 Kharkov (Ukraine); Sartowska, B. [Institute of Nuclear Chemistry and Technology, 03-195 Warsaw (Poland)

    2009-06-15

    The paper reports on experiments, which concerned studies of plasma produced from a tungsten (W) target bombarded by powerful (ca. 5 mus, 1-5 MW/cm{sup 2}) plasma-ion streams in RPI-IBIS plasma accelerator, and a similar target irradiated with intense Nd:YAG laser pulses (0.5 J, 3 ns, ca. 5.3 x 10{sup 9} W/cm{sup 2}) in another vacuum chamber. In both experiments optical measurements were performed with a Mechelle 900 spectrometer, which enabled the spectrum from 300 nm to 1100 nm to be recorded, and different WI- and WII-lines to be identified. From space- and time-resolved measurements of those lines, basic W-plasma parameters were estimated. During W-plasma expansion the electron temperature was found to be 0.8-1 eV and electron concentration (2-8) x 10{sup 16} cm{sup -3}. The emission of higher-ionized W-ions (up to W{sup +6}) was confirmed by measurements with an ion-energy analyzer. Structural changes in the irradiated targets were investigated with an optical microscope and SEM.

  14. Laser-induced breakdown spectroscopy theory and applications

    CERN Document Server

    Perini, Umberto

    2014-01-01

    This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS), a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.

  15. Laser induced phase locking of hydrogen plasma striations

    Energy Technology Data Exchange (ETDEWEB)

    Glab, W.; Nayfeh, M.H.

    1982-04-01

    Laser induced transient striations of a hydrogen discharge plasma are studied as a function of the ''detuning'' of the discharge parameters from the steady-state oscillatory response conditions. We observed laser induced phase locking of the steady-state striations.

  16. Composition and species evolution in a laser-induced LuMnO3 plasma

    Science.gov (United States)

    Bator, Matthias; Hu, Yi; Esposito, Martin; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander

    2012-09-01

    Pulsed laser deposition is often used to grow multi-elemental thin films from stoichiometric targets. The growth process is influenced by a wide variety of parameters like the target composition, background gases, laser wavelength, laser fluence, or spot size. The changes these parameters induce in the film growth also affect the plasma plume and species formed during laser ablation. For oxide growth O2, and sometimes N2O, is utilized as background gas to achieve the required oxygen composition for the as-grown film. Mass spectrometry combined with time- and space resolved emission spectroscopy is used to investigate the behavior and evolution of plasma species in the plasma plume during the ablation process of LuMnO3 dependent on the background gas.

  17. Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Hussain, T; Gondal, M A

    2008-01-01

    Laser-induced breakdown spectroscopy (LIBS) was applied for the detection of toxic metals in oil spill contaminated soil (OSCS). The OSCS samples were collected from Khursania Saudi Arabia along the coast of Persian Gulf exposed to oil spills in 1991 Gulf war. Environmentally important elements like Aluminum Magnesium, Calcium, Chromium, Titanium, Strontium, Iron, Barium, Sodium, potassium, Zirconium and Vanadium from the contaminated soil have been detected. Optimal experimental conditions for analysis were investigated. The LIBS system was calibrated using standard samples containing these trace elements. The results obtained using Laser-Induced Breakdown Spectroscopy (LIBS) were compared with the results obtained using Inductively Coupled Plasma Emission Spectroscopy (ICP). The concentrations of some elements (Ba and Cr) were found higher than permissible safe limits. Health risks associated with exposure to such toxic elements are also discussed.

  18. Laser-induced breakdown spectroscopy application to control of the process of precious metal recovery and recycling

    Science.gov (United States)

    Legnaioli, S.; Lorenzetti, G.; Pardini, L.; Palleschi, V.; Pace, D. M. Diaz; Garcia, F. Anabitarte; Grassi, R.; Sorrentino, F.; Carelli, G.; Francesconi, M.; Francesconi, F.; Borgogni, R.

    2012-05-01

    In this paper, we discuss the application of laser-induced breakdown spectroscopy to precious metal alloys used for the control of the process of recovery and recycling of scraps and waste of industrial processes. In particular, the possibility to obtain sensitivity and trueness comparable to the current systems used in industrial environment in the quantitative determination of the elements of interest was explored. The present study demonstrates that laser-induced breakdown spectroscopy can be considered as a viable alternative to inductively coupled plasma optical emission spectrometry and X-ray fluorescence spectroscopy for the determination of recovered precious metals. The limits of detection obtained are of the order of 0.2 mg/g for all the elements considered. The maximum deviation with respect to the nominal concentrations is around 1 mg/g at concentrations around 20 mg/g (gold) corresponding to a relative error slightly higher than ± 5%.

  19. Optical emission spectroscopy of deuterium and helium plasma jets emitted from plasma focus discharges at the PF-1000U facility

    Science.gov (United States)

    Skladnik-Sadowska, E.; Dan'ko, S. A.; Kwiatkowski, R.; Sadowski, M. J.; Zaloga, D. R.; Paduch, M.; Zielinska, E.; Kharrasov, A. M.; Krauz, V. I.

    2016-12-01

    Optical emission spectroscopy techniques were used to investigate the spectra of dense deuterium-plasma jets generated by high-current pulse discharges within the large PF-1000U facility and to estimate parameters of plasma inside the jets and their surroundings. Time-resolved optical spectra were recorded by means of a Mechelle®900 spectrometer. From an analysis of the deuterium line broadening, it was estimated that the electron concentration at a distance 57 cm from the electrode outlets amounted to (0.4-3.7) × 1017 cm-3 depending on the initial gas distribution and the time interval of the spectrum registration after the instant of the plasma jet generation. From the re-absorption dip in the Dβ profile, it was assessed that the electron concentration in the surrounding gas was equal to about 1.5 × 1015 cm-3. On the basis of the measured ratio of He II 468.6 nm and He I 587.6 nm line intensities, it was estimated that the electron temperature amounted to about 5.3 eV. Also estimated were some dimensionless parameters of the investigated plasma jets.

  20. Quantitative determination of citric acid in seminal plasma by using Raman spectroscopy.

    Science.gov (United States)

    Huang, Zufang; Chen, Xiwen; Li, Yongzeng; Chen, Jinhua; Lin, Juqiang; Wang, Jing; Lei, Jinping; Chen, Rong

    2013-07-01

    In this study, Raman spectroscopy was first used to study the linear relationship between Raman spectral intensities and citric acid concentrations in aqueous solution. By using the specific Raman band of 942 cm(-1), concentrations of citric acid ranging from 2 to 20 mg/mL were observed linearly (R(2) = 0.993), and the limit of detection was 1.0 mg/mL. Then, citric acid detection in clinical seminal plasma ultrafiltrate samples was performed, and the intensity of the Raman-specific peak demonstrates a good linear correlation (R(2) = 0.946) with citric acid concentrations determined by the enzymatic method. Our results showed that Raman spectroscopy has the potential of being applied to detect concentrations of citric acid in seminal plasma in clinic.

  1. Calibration-free laser-induced breakdown spectroscopy for quantitative elemental analysis of materials

    Indian Academy of Sciences (India)

    V K Unnikrishnan; K Mridul; R Nayak; K Alti; V B Kartha; C Santhosh; G Gupta; B M Suri

    2012-08-01

    The application of calibration-free laser-induced breakdown spectroscopy (CF-LIBS) for quantitative analysis of materials, illustrated by CF-LIBS applied to a brass sample of known composition, is presented in this paper. The LIBS plasma is produced by a 355 nm pulsed Nd:YAG laser with a pulse duration of 6 ns focussed onto a brass sample in air at atmospheric pressure. The time-resolved atomic and ionic emission lines of Cu and Zn from the LIBS spectra recorded by an Echelle spectrograph coupled with a gated intensified charge coupled detector are used for the plasma characterization and the quantitative analysis of the sample. The time delay where the plasma is optically thin and is also in local thermodynamic equilibrium (LTE), necessary for the elemental analysis of samples from the LIBS spectra, is deduced. An algorithm relating the experimentally measured spectral intensity values with the basic physics of the plasma is developed. Using the algorithm, the Zn and Cu concentratioins in the brass sample are determined. The analytical result obtained from the CF-LIBS technique agree well with the certified valued of the elements in the sample, with an accuracy error < 1%

  2. Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement

    Science.gov (United States)

    Junfeng, Shao; Tingfeng, Wang; Jin, Guo; Anmin, Chen; Mingxing, Jin

    2017-02-01

    In this paper, we present a study on the spatial confinement effect of laser-induced plasma with a cylindrical cavity in laser-induced breakdown spectroscopy (LIBS). The emission intensity with the spatial confinement is dependent on the height of the confinement cavity. It is found that, by selecting the appropriate height of cylindrical cavity, the signal enhancement can be significantly increased. At the cylindrical cavity (diameter = 2 mm) with a height of 6 mm, the enhancement ratio has the maximum value (approximately 8.3), and the value of the relative standard deviation (RSD) (7.6%) is at a minimum, the repeatability of LIBS signal is best. The results indicate that the height of confinement cavity is very important for LIBS technique to reduce the limit of detection and improve the precision.

  3. Quantitative Classification of Quartz by Laser Induced Breakdown Spectroscopy in Conjunction with Discriminant Function Analysis

    Directory of Open Access Journals (Sweden)

    A. Ali

    2016-01-01

    Full Text Available A responsive laser induced breakdown spectroscopic system was developed and improved for utilizing it as a sensor for the classification of quartz samples on the basis of trace elements present in the acquired samples. Laser induced breakdown spectroscopy (LIBS in conjunction with discriminant function analysis (DFA was applied for the classification of five different types of quartz samples. The quartz plasmas were produced at ambient pressure using Nd:YAG laser at fundamental harmonic mode (1064 nm. We optimized the detection system by finding the suitable delay time of the laser excitation. This is the first study, where the developed technique (LIBS+DFA was successfully employed to probe and confirm the elemental composition of quartz samples.

  4. Self-absorption influence on the optical spectroscopy of zinc oxide laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    De Posada, E; Arronte, M A; Ponce, L; Rodriguez, E; Flores, T [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada-Unidad Altamira, Tamaulipas (Mexico); Lunney, J G, E-mail: edeposada@ipn.mx [School of Physics, Trinity College Dublin (Ireland)

    2011-01-01

    Optical spectroscopy is used to study the laser ablation process of ZnO targets. It is demonstrated that even if Partial Local Thermal Equilibrium is present, self absorption process leads to a decrease of recorded lines emission intensities and have to be taken into account to obtain correct values of such parameters. It is presented a method that combines results of both Langmuir probe technique and Anisimov model to obtain correct values of plasma parameters.

  5. Individual variation in macronutrient regulation measured by proton magnetic resonance spectroscopy of human plasma.

    Science.gov (United States)

    Park, Youngja; Kim, Seoung Bum; Wang, Bing; Blanco, Roberto A; Le, Ngoc-Anh; Wu, Shaoxiong; Accardi, Carolyn J; Alexander, R Wayne; Ziegler, Thomas R; Jones, Dean P

    2009-07-01

    Proton nuclear magnetic resonance ((1)H-NMR) spectroscopy of plasma provides a global metabolic profiling method that shows promise for clinical diagnostics. However, cross-sectional studies are complicated by a lack of understanding of intraindividual variation, and this limits experimental design and interpretation of data. The present study determined the diurnal variation detected by (1)H NMR spectroscopy of human plasma. Data reduction methods revealed three time-of-day metabolic patterns, which were associated with morning, afternoon, and night. Major discriminatory regions for these time-of-day patterns included the various kinds of lipid signals (-CH(2)- and -CH(2)OCOR), and the region between 3 and 4 ppm heavily overlapped with amino acids that had alpha-CH and alpha-CH(2). The phasing and duration of time-of-day patterns were variable among individuals, apparently because of individual difference in food processing/digestion and absorption and clearance of macronutrient energy sources (fat, protein, carbohydrate). The times of day that were most consistent among individuals, and therefore most useful for cross-sectional studies, were fasting morning (0830-0930), postprandial afternoon (1430-1630), and nighttime samples (0430-0530). Importantly, the integrated picture of metabolism provided by (1)H-NMR spectroscopy of plasma suggests that this approach is suitable to study complex regulatory processes, including eating patterns/eating disorders, upper gastrointestinal functions (gastric emptying, pancreatic, biliary functions), and absorption/clearance of macronutrients. Hence, (1)H-NMR spectroscopy of plasma could provide a global metabolic tolerance test to assess complex processes involved in disease, including eating disorders and the range of physiological processes causing dysregulation of energy homeostasis.

  6. Properties of plasma induced by pulsed CO2 laser on a copper target under different ambient conditions

    Science.gov (United States)

    Kuzmanovic, M.; Momcilovic, M.; Ciganovic, J.; Rankovic, D.; Savovic, J.; Milovanovic, D.; Stoiljkovic, M.; Pavlovic, M. S.; Trtica, M.

    2014-09-01

    Optical emission spectroscopy was applied for investigation of copper plasma induced by a nanosecond transversely excited atmospheric CO2 laser, operating at 10.6 μm. The effect of the background gas (air, Ar, He and N2) and pressure (1-25 mbar) on plasma formation was examined. The plasma shielding effect was more pronounced for background gases with lower ionization potential than for He. The increase of He pressure from 1 to 25 mbar resulted in fivefold increase of Cu atomic line intensity.

  7. Quantitative analysis of Al-Si alloy using calibration free laser induced breakdown spectroscopy (CF-LIBS)

    Science.gov (United States)

    Shakeel, Hira; Haq, S. U.; Aisha, Ghulam; Nadeem, Ali

    2017-06-01

    The quantitative analysis of the standard aluminum-silicon alloy has been performed using calibration free laser induced breakdown spectroscopy (CF-LIBS). The plasma was produced using the fundamental harmonic (1064 nm) of the Nd: YAG laser and the emission spectra were recorded at 3.5 μs detector gate delay. The qualitative analysis of the emission spectra confirms the presence of Mg, Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Sn, and Pb in the alloy. The background subtracted and self-absorption corrected emission spectra were used for the estimation of plasma temperature as 10 100 ± 300 K. The plasma temperature and self-absorption corrected emission lines of each element have been used for the determination of concentration of each species present in the alloy. The use of corrected emission intensities and accurate evaluation of plasma temperature yield reliable quantitative analysis up to a maximum 2.2% deviation from reference sample concentration.

  8. Biomedical and environmental applications of laser-induced breakdown spectroscopy

    Indian Academy of Sciences (India)

    V K Unnikrishnan; K S Choudhari; Suresh D Kulkarni; Rajesh Nayak; V B Kartha; C Santhosh; B M Suri

    2014-02-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, minimal sample preparation, minimal destruction, low cost and versatility of being applied to a wide range of materials. In this paper, we report the preliminary observations we obtained using LIBS for clinical and environmental samples. Elemental analysis has been done qualitatively in human teeth samples which show encouraging results. It has also been demonstrated in this paper that LIBS can be very well utilized in field applications such as plastic waste sorting and recycling.

  9. Controlled calibration method for laser induced breakdown spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Chijian Zhang; Yuan Feng

    2008-01-01

    Laser induced breakdown spectroscopy (LIBS) is a potential technique for rapid analysis of samples present in solids, gases and liquids. In the last two decades it was an object of extensive studies. Controlled calibration method used to analysis the LIBS spectra is investigated. Compared with the inner calibration and calibration-free (CF) methods, this new method overcomes "matrix effect", and demonstrates a better ability to cope with the spectra. It is used to analyze natural soil, and errors of the concentration are decreased about 5%. The result shows that the new method is feasible and accurate.

  10. Progress in fieldable laser-induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Miziolek, Andrzej W.

    2012-06-01

    In recent years there has been great progress in the Laser Induced Breakdown Spectroscopy (LIBS) technology field. Significant advances have been made both in fundamental and applied research as well as in data processing/chemometrics. Improvements in components, most notably lasers/optics and spectrometers are enabling the development of new devices that are suitable for field use. These new commercial devices recently released to the marketplace, as well as ones currently under development, are bringing the potential of LIBS for CBRNE threat analysis into real-world applications.

  11. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  12. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  13. Dynamics of the spatial electron density distribution of EUV-induced plasmas

    Science.gov (United States)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.

    2015-11-01

    We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure.

  14. Laser Optogalvanic Spectroscopy pf Neon and Argon in a Discharge Plasma and its Significance for Microgravity Combustion

    Science.gov (United States)

    Misra, Prabhakar; Haridass, C.; Major, H.

    1999-01-01

    A detailed study of combustion mechanisms in flames, employing laser-based diagnostics, has provided good knowledge and understanding of the physical phenomena, and led to better characterization of the dynamical and chemical combustion processes, both under low-gravity (in space) and normal gravity (in ground based facilities, e.g. drop towers). Laser induced fluorescence (LIF), laser-induced incandescence (LII) and LIF thermometry have been widely used to perform nonintrusive measurements and to better understand combustion phenomena. Laser optogalvanic (LOG) spectroscopy has well-established applications in ion mobility measurements, atomic and molecular spectroscopy, ionization rates, recombination rates, velocity measurements and as a combustion probe for trace element detection. Absorption spectra of atomic and molecular species in flames can be obtained via LOG spectroscopy by measuring the voltage and current changes induced by laser irradiation. There are different kinds of processes that contribute to a discharge current, namely: (1) electron impact ionization, (2) collisions among the excited atoms of the discharge species and (3) Penning ionization. In general, at higher discharge currents, the mechanism of electron impact ionization dominates over Penning ionization, whereby the latter is hardly noticeable. In a plasma, whenever the wavelength of a laser coincides with the absorption of an atomic or molecular species, the rate of ionization of the species momentarily increases or decreases due to laser-assisted acceleration of collisional ionization. Such a rate of change in the ionization is monitored as a variation in the transient current by inserting a high voltage electrode into the plasma. Optogalvanic spectroscopy in discharges has been useful for characterizing laser line-widths and for providing convenient calibration lines for tunable dye lasers in the ultraviolet, visible and infrared wavelength regions. Different kinds of quantitative

  15. A project based on multi-configuration Dirac-Fock calculations for plasma spectroscopy

    Science.gov (United States)

    Comet, M.; Pain, J.-C.; Gilleron, F.; Piron, R.

    2017-09-01

    We present a project dedicated to hot plasma spectroscopy based on a Multi-Configuration Dirac-Fock (MCDF) code, initially developed by J. Bruneau. The code is briefly described and the use of the transition state method for plasma spectroscopy is detailed. Then an opacity code for local-thermodynamic-equilibrium plasmas using MCDF data, named OPAMCDF, is presented. Transition arrays for which the number of lines is too large to be handled in a Detailed Line Accounting (DLA) calculation can be modeled within the Partially Resolved Transition Array method or using the Unresolved Transition Arrays formalism in jj-coupling. An improvement of the original Partially Resolved Transition Array method is presented which gives a better agreement with DLA computations. Comparisons with some absorption and emission experimental spectra are shown. Finally, the capability of the MCDF code to compute atomic data required for collisional-radiative modeling of plasma at non local thermodynamic equilibrium is illustrated. In addition to photoexcitation, this code can be used to calculate photoionization, electron impact excitation and ionization cross-sections as well as autoionization rates in the Distorted-Wave or Close Coupling approximations. Comparisons with cross-sections and rates available in the literature are discussed.

  16. Charge-exchange recombination spectroscopy of the plasma ion temperature at the T-10 tokamak

    Science.gov (United States)

    Krupin, V. A.; Tugarinov, S. N.; Barsukov, A. G.; Dnestrovskij, A. Yu.; Klyuchnikov, L. A.; Korobov, K. V.; Krasnyanskii, S. A.; Naumenko, N. N.; Nemets, A. R.; Sushkov, A. V.; Tilinin, G. N.

    2013-08-01

    Charge-exchange recombination spectroscopy (CXRS) based on a diagnostic neutral beam has been developed at the T-10 tokamak. The diagnostics allows one to measure the ion temperature profile in the cross section of the plasma column. In T-10 experiments, the measurement technique was adjusted and the elements of the CXRS diagnostics for ITER were tested. The used spectroscopic equipment makes it possible to reliably determine the ion temperature from the Doppler broadening of impurity lines (helium, carbon), as well as of the spectral lines of the working gas. The profiles of the plasma ion temperature in deuterium and helium discharges were measured at different plasma currents and densities, including with the use of active Doppler measurements of lines of different elements. The validity and reliability of ion temperature measurements performed by means of the developed CXRS diagnostics are analyzed.

  17. Ion rotational velocity of a field-reversed configuration plasma measured by neutral beam probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y.; Tanjyo, M.; Ohi, S.; Goto, S.; Ishimura, T.

    1987-01-01

    The ion rotational angular velocity ..cap omega.. and the ion temperature T/sub i/ of a translated field-reversed configuration (FRC) plasma are measured using neutral beam probe spectroscopy. The value of ..cap omega.. is --(1.0--1.2) x ..cap omega..* at the onset time of the n = 2 rotational instability, where ..cap omega..* is the ion diamagnetic frequency for a rigid-rotor equilibrium. The ion rotational direction is the same as the ion diamagnetic direction. The value of ..cap omega.. is smaller than the angular frequency ..omega../sub re/ of the n = 2 instability, which can yield experimental evidence of the ion kinetic effects on the n = 2 instability in the FRC plasma. When the octupole field is applied to the plasma in order to suppress the n = 2 deformation, ..cap omega.. is slightly reduced. The ion temperature T/sub i/ is --70 eV at the onset time of the n = 2 instability.

  18. Bremsstrahlung and Line Spectroscopy of Warm Dense Aluminum Plasma Generated by EUV Free Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Zastrau, U; Fortmann, C; Faustlin, R; Bornath, T; Cao, L F; Doppner, T; Dusterer, S; Forster, E; Glenzer, S H; Gregori, G; Holl, A; Laarmann, T; Lee, H; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Tiggesbaumker, J; Thiele, R; Truong, N X; Uschmann, I; Toleikis, S; Tschentscher, T; Wierling, A

    2008-03-07

    We report on the novel creation of a solid density aluminum plasma using free electron laser radiation at 13.5 nm wavelength. Ultrashort pulses of 30 fs duration and 47 {micro}J pulse energy were focused on a spot of 25 {micro}m diameter, yielding an intensity of 3 x 10{sup 14} W/cm{sup 2} on the bulk Al-target. The radiation emitted from the plasma was measured using a high resolution, high throughput EUV spectrometer. The analysis of both bremsstrahlung and line spectra results in an estimated electron temperature of (30 {+-} 10) eV, which is in very good agreement with radiation hydrodynamics simulations of the laser-target-interaction. This demonstrates the feasibility of exciting plasmas at warm dense matter conditions using EUV free electron lasers and their accurate characterization by EUV spectroscopy.

  19. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  20. Thomson scattering from laser induced plasma in air

    Energy Technology Data Exchange (ETDEWEB)

    Dzierzega, K; Mendys, A [Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Pellerin, S; Thouin, E [GREMI - site de Bourges, Universite d' Orleans, rue Gaston Berger BP 4043, 18028 Bourges (France); Travaille, G; Bousquet, B; Canioni, L [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 351 Cours de la Liberation, 33405 Talence CEDEX (France); Pokrzywka, B, E-mail: krzysztof.dzierzega@uj.edu.p [Mt. Suhora Observatory, Pedagogical University of Cracow, ul. Podchorazych 2, 30-084 Krakow (Poland)

    2010-05-01

    The laser induced plasma in air produced by 6 ns, 532 nm Nd:YAG pulses with 25 mJ energy was studied using the Thomson scattering method and plasma imaging techniques. Plasma images and Thomson scattered spectra were registered at delay times ranging from 150 ns to 1 {mu}s after the breakdown pulses. The electron density and temperature, as determined in the core of the plasma plume, were found to decrease from 7.4 x 10{sup 17} cm{sup -3} to about 1.03 x 10{sup 17} cm{sup -3} and from 100 900 K to 22 700 K. The highly elevated electron temperatures are the result of plasma heating by the second, probe pulse in the Thomson scattering experiments.

  1. Image Analysis of Plasma Induced by Focused IR Pulsed Laser

    Directory of Open Access Journals (Sweden)

    Ahmad Hadi Ali

    2011-12-01

    Full Text Available Plasma induced by focused laser beam is very essential especially in laser material interaction. Preliminary study leading to this research has been carried out. A Q-switch Nd:YAG laser was employed as a source of energy. The laser was focused using a wide-angle camera lens. The formation of plasma at the focal region was visualized perpendicularly using a CCD video camera interfaced to an image processing system. The dynamic expansion of the laser plasma was grabbed in conjunction with a high-speed photographic system. The observation results show that the plasma was formed in an ellipsoidal shape. The lateral width and the length of the plasma were found gradually increased

  2. Determination of the Zinc Concentration in Human Fingernails Using Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Riberdy, Vlora A; Frederickson, Christopher J; Rehse, Steven J

    2017-04-01

    The absolute concentration of Zn in human fingernail clippings was determined ex vivo using 1064 nm laser-induced breakdown spectroscopy and confirmed by speciated isotope dilution mass spectrometry. A nail testing protocol that sampled across the nail (perpendicular to the direction of growth) was developed and validated by scanning electron microscopy energy-dispersive X-ray spectrometry. Using this protocol, a partial least squares (PLS) regression model predicted the Zn concentration in the fingernails of five people to within an average of 7 ppm. The variation in the Zn concentration with depth into the nail determined by laser-induced breakdown spectroscopy was studied and showed no systematic variation for up to 15 subsequent laser pulses in one location. The effects of nail hydration (dehydrated and over-hydrated) and nail surface roughness were investigated to explain an anomalously large scatter observed in the measurements. This scatter was attributed to the layered nature and fibrous structure of the fingernails, which resulted in non-uniform ablation as determined by scanning electron microscopy. This work demonstrates that a protocol consisting of low pulse energy (laser pulses incident on human fingernail clippings in an Ar environment can produce quantifiable Zn emission in the laser-induced plasma and that the measured Zn intensity can be used to accurately predict the Zn concentration in human fingernails.

  3. Plasma Induced Grafting of PMMA onto Titanium Dioxide Powder

    Institute of Scientific and Technical Information of China (English)

    Zhong Shaofeng; Meng Yuedong; Ou Qiongrong; Xu Xu

    2005-01-01

    Grafting of polymer of methyl methacrylate (PMMA) onto titanium dioxide powder is investigated in this paper. The graft polymerization reaction is induced by dielectric-barrierdischarge produced N2 plasma treatment of titanium dioxide surfaces. IR, XPS and TGA results show that PMMA is grafted onto the surfaces of titanium dioxide powder. And crystal structure of the titanium dioxide powder observed with XRD spectra is unchanged after plasma graft polymerization.

  4. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Science.gov (United States)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  5. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  6. Propane decomposition and conversion into other hydrocarbons using metal target assisted laser induced plasma

    Science.gov (United States)

    Moosakhani, A.; Parvin, P.; Reyhani, A.; Mortazavi, S. Z.

    2017-01-01

    It is shown that the propane molecules are strongly decomposed in the metal assisted laser induced plasma based on the nano-catalytic adsorption. A Q-Switched Nd:YAG laser is employed to irradiate the propane gas filled in the control chamber in the presence of the reactive metals such as Ni, Fe, Pd, and Cu in order to study the effect of catalysts during the decomposition. The catalytic targets simultaneously facilitate the plasma formation and the decomposition events leading to generate a wide distribution of the light and heavy hydrocarbon molecules, mainly due to the recombination processes. Fourier transform infrared spectroscopy and gas chromatography instruments support the findings by detecting the synthetic components. Furthermore, the optical emission spectroscopy of the laser induced plasma emissions realizes the real time monitoring of the reactions taking place during each laser shot. The subsequent recombination events give rise to the generation of a variety of the hydrocarbon molecules. The dissociation rate, conversion ratio, selectivity, and yield as well as the performance factor arise mainly from the catalytic effects of the metal species. Moreover, the ablation rate of the targets of interest is taken into account as a measure of the catalytic reactivity due to the abundance of the metal species ablated from the target. This leads to assess the better performance factor for Pd among four metal catalysts of interest during propane decomposition. Finally, the molecules such as ethane and ethylene are identified as the stable abundant species created during the successive molecular recombination processes.

  7. Laser Induced Fluorescence Spectroscopy of IrN

    Institute of Scientific and Technical Information of China (English)

    H. F. Pang; A. S. C. Cheung

    2009-01-01

    High resolution laser induced fluorescence spectra of IrN in the spectral region between 394and 520 nm were recorded using laser vaporization/reaction free jet expansion and laser induced fluorescence spectroscopy. Seven new vibronic transition bands were observed and analyzed. TwoΩ=1 and five Ω=0 new states were identified. Least squares fit of rotationally resolved transition lines yielded accurate molecular constants for the upper states. Spectra of isotopic molecules were observed, which provided confirmation for the vibrational assignment. Comparison of the observed electronic states of IrB, IrC, and IrN provides a good understanding of the chemical bonding of this group of molecules.

  8. Time-Resolved Spectroscopy Diagnostic of Laser-Induced Optical Breakdown

    Directory of Open Access Journals (Sweden)

    Christian G. Parigger

    2010-01-01

    Full Text Available Transient laser plasma is generated in laser-induced optical breakdown (LIOB. Here we report experiments conducted with 10.6-micron CO2 laser radiation, and with 1.064-micron fundamental, 0.532-micron frequency-doubled, 0.355-micron frequency-tripled Nd:YAG laser radiation. Characterization of laser induced plasma utilizes laser-induced breakdown spectroscopy (LIBS techniques. Atomic hydrogen Balmer series emissions show electron number density of 1017 cm−3 measured approximately 10 μs and 1 μs after optical breakdown for CO2 and Nd:YAG laser radiation, respectively. Recorded molecular recombination emission spectra of CN and C2 Swan bands indicate an equilibrium temperature in excess of 7000 Kelvin, inferred for these diatomic molecules. Reported are also graphite ablation experiments where we use unfocused laser radiation that is favorable for observation of neutral C3 emission due to reduced C3 cation formation. Our analysis is based on computation of diatomic molecular spectra that includes accurate determination of rotational line strengths, or Hönl-London factors.

  9. Selective Surface Sintering Using a Laser-Induced Breakdown Spectroscopy System

    Directory of Open Access Journals (Sweden)

    H. Jull

    2017-01-01

    Full Text Available Titanium metal injection molding allows creation of complex metal parts that are lightweight and biocompatible with reduced cost in comparison with machining titanium. Laser-induced breakdown spectroscopy (LIBS can be used to create plasma on the surface of a sample to analyze its elemental composition. Repetitive ablation on the same site has been shown to create differences from the original sample. This study investigates the potential of LIBS for selective surface sintering of injection-molded titanium metal. The temperature created throughout the LIBS process on the surface of the injection-molded titanium is high enough to fuse together the titanium particles. Using the ratio of the Ti II 282.81 nm and the C I 247.86 nm lines, the effectiveness of repetitive plasma formation to produce sintering can be monitored during the process. Energy-dispersive X-ray spectroscopy on the ablation craters confirms sintering through the reduction in carbon from 20.29 Wt.% to 2.13 Wt.%. Scanning electron microscope images confirm sintering. A conventional LIBS system, with a fixed distance, investigated laser parameters on injection-molded and injection-sintered titanium. To prove the feasibility of using this technique on a production line, a second LIBS system, with an autofocus and 3-axis translation stage, successfully sintered a sample with a nonplanar surface.

  10. [Discussion on diagenesis of Xilingang pluton-constrained by X-ray Fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy].

    Science.gov (United States)

    Tang, Yu-Kun; Chen, Guo-Neng; Zhang, Ke; Huang, Hai-Hua

    2013-05-01

    The results on Xilingang pluton, mainly consisting of red beds, granites containing numerous debris of red beds and granites, obtained by X-ray fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy show: (1) Xilingang pluton from red beds, granites containing numerous debris of red beds to granites has obvious characteristics of decreasing silicon and alkali content, and rising ignition loss, dark mineral content and oxidation index; (2) Chondrite-normalized REE distribution curves and primitive mantle-normalized spider diagram for trace elements of redbed, granites containing numerous debris of red beds and granites have a good consistency, the distribution characteristics of elements are similar to Nanling transformation-type granite; (3) The value of Raman spectrogram characteristic peak of quartz crystal in Xilingang granite decreased from the center of quartz crystal, and FWHM is steady. According to the above, the authors believe that Xilingang granite formed was related to in-situ melting of red beds and underlying strata and magma consolidation. Volatile components were discharged continuously, and oxidation index decreased gradually in the melting process. In the process of diagenesis, the top of pluton tend to be an ongoing silicon and alkali increase, while TFeO and MgO continue to migrate to bottom, and crystallization environment is a relatively closed and steady system.

  11. [Classification of results of studying blood plasma with laser correlation spectroscopy based on semiotics of preclinical and clinical states].

    Science.gov (United States)

    Ternovoĭ, K S; Kryzhanovskiĭ, G N; Musiĭchuk, Iu I; Noskin, L A; Klopov, N V; Noskin, V A; Starodub, N F

    1998-01-01

    The usage of laser correlation spectroscopy for verification of preclinical and clinical states is substantiated. Developed "semiotic" classifier for solving the problems of preclinical and clinical states is presented. The substantiation of biological algorithms as well as the mathematical support and software for the proposed classifier for the data of laser correlation spectroscopy of blood plasma are presented.

  12. Plasma Wind Tunnel Investigation of European Ablators in Nitrogen/Methane Using Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ricarda Wernitz

    2013-01-01

    Full Text Available For atmospheric reentries at high enthalpies ablative heat shield materials are used, such as those for probes entering the atmosphere of Saturn’s moon Titan, such as Cassini-Huygens in December, 2004. The characterization of such materials in a nitrogen/methane atmosphere is of interest. A European ablative material, AQ60, has been investigated in plasma wind tunnel tests at the IRS plasma wind tunnel PWK1 using the magnetoplasma dynamic generator RD5 as plasma source in a nitrogen/methane atmosphere. The dimensions of the samples are 45 mm in length with a diameter of 39 mm. The actual ablator has a thickness of 40 mm. The ablator is mounted on an aluminium substructure. The experiments were conducted at two different heat flux regimes, 1.4 MW/m2 and 0.3 MW/m2. In this paper, results of emission spectroscopy at these plasma conditions in terms of plasma species’ temperatures will be presented, including the investigation of the free-stream species, N2 and N2+, and the major erosion product C2, at a wavelength range around 500 nm–600 nm.

  13. Fast analysis of complex metallic alloys by double-pulse time-integrated Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sorrentino, F., E-mail: marwan@df.unipi.i [Marwan Technology s.r.l., Spin-off University of Pisa Largo Pontecorvo 3, 56127 Pisa (Italy); Carelli, G.; Francesconi, F.; Francesconi, M.; Marsili, P. [Marwan Technology s.r.l., Spin-off University of Pisa Largo Pontecorvo 3, 56127 Pisa (Italy); Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Tognoni, E. [Applied Laser Spectroscopy Laboratory, IPCF/CNR - Via G.Moruzzi 1, 56124 Pisa (Italy)

    2009-10-15

    Results are reported on the application of double-pulse Laser-Induced Breakdown Spectroscopy (LIBS) for fast analysis of complex metallic alloys. The approach followed for the determination of the composition of the alloys is based on the time-integrated acquisition of LIBS spectra emitted by plasmas induced by collinear double-pulse laser excitation. The spectra are analysed using the Partial Least Squares method, which allows the determination of sample composition even in the presence of strong spectral interferences. The results shown indicate the possibility of measuring the composition of complex metallic alloys in very short times and using relatively cheap LIBS instrumentation.

  14. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable ro...

  15. Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review

    Energy Technology Data Exchange (ETDEWEB)

    Roepcke, J [INP-Greifswald, 17489 Greifswald, Friedrich-Ludwig-Jahn-Str. 19 (Germany); Lombardi, G [CNRS LIMHP, Universite Paris XIII, 99, av. J.B. Clement, 93430 Villetaneuse (France); Rousseau, A [Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Davies, P B [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2006-11-01

    Within the last decade mid-infrared absorption spectroscopy over a region from 3 to 17{mu}m and based on tuneable lead salt diode lasers, often called tuneable diode laser absorption spectroscopy or TDLAS, has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry in molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, organo-silicon and boron compounds has led to further applications of TDLAS because most of these compounds and their decomposition products are infrared active. TDLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetic phenomena. Information about gas temperature and population densities can also be derived from TDLAS measurements. A variety of free radicals and molecular ions have been detected by TDLAS. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of quantum cascade lasers (QCLs) offers an attractive new option for the monitoring and control of industrial plasma processes. The aim of the present paper is threefold: (i) to review recent achievements in our understanding of molecular phenomena in plasmas (ii) to report on selected studies of the spectroscopic properties and kinetic behaviour of radicals and (iii) to describe the current status of advanced instrumentation for TDLAS in the mid-infrared.

  16. Comparison of laser induced breakdown spectroscopy and spark induced breakdown spectroscopy for determination of mercury in soils

    Energy Technology Data Exchange (ETDEWEB)

    Srungaram, Pavan K.; Ayyalasomayajula, Krishna K.; Yu-Yueh, Fang; Singh, Jagdish P., E-mail: singh@icet.msstate.edu

    2013-09-01

    Mercury is a toxic element found throughout the environment. Elevated concentrations of mercury in soils are quite hazardous to plants growing in these soils and also the runoff of soils to nearby water bodies contaminates the water, endangering the flora and fauna of that region. This makes continuous monitoring of mercury very essential. This work compares two potential spectroscopic methods (laser induced breakdown spectroscopy (LIBS) and spark induced breakdown spectroscopy (SIBS)) at their optimum experimental conditions for mercury monitoring. For LIBS, pellets were prepared from soil samples of known concentration for generating a calibration curve while for SIBS, soil samples of known concentration were used in the powder form. The limits of detection (LODs) of Hg in soil were calculated from the Hg calibration curves. The LOD for mercury in soil calculated using LIBS and SIBS is 483 ppm and 20 ppm, respectively. The detection range for LIBS and SIBS is discussed. - Highlights: • We compared SIBS and LIBS for mercury (Hg) measurements in soil. • Hg 546.07 nm line was selected for both LIBS and SIBS measurements. • Limit of detection for Hg was found to be 20 ppm with SIBS and 483 ppm with LIBS.

  17. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas

    Science.gov (United States)

    Winter, Jörn; Hänel, Mattis; Reuter, Stephan

    2016-04-01

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90∘ off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s5) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

  18. Real-time imaging, spectroscopy, and structural investigation of cathodic plasma electrolytic oxidation of molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs; Tadić, Nenad; Šišović, Nikola M.; Vasilić, Rastko [Faculty of Physics, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-06-21

    In this paper, the results of the investigation of cathodic plasma electrolytic oxidation (CPEO) of molybdenum at 160 V in a mixed solution of borax, water, and ethylene glycol are presented. Real-time imaging and optical emission spectroscopy were used for the characterization of the CPEO. During the process, vapor envelope is formed around the cathode and strong electric field within the envelope caused the generation of plasma discharges. The spectral line shape analysis of hydrogen Balmer line H{sub β} (486.13 nm) shows that plasma discharges are characterized by the electron number density of about 1.4 × 10{sup 21 }m{sup −3}. The electron temperature of 15 000 K was estimated by measuring molybdenum atomic lines intensity. Surface morphology, chemical, and phase composition of coatings formed by CPEO were characterized by scanning electron microscopy with energy dispersive x-ray spectroscopy and x-ray diffraction. The elemental components of CPEO coatings are Mo and O and the predominant crystalline form is MoO{sub 3}.

  19. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas.

    Science.gov (United States)

    Winter, Jörn; Hänel, Mattis; Reuter, Stephan

    2016-04-01

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90(∘) off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s5) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

  20. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Jörn, E-mail: winter@inp-greifswald.de; Hänel, Mattis; Reuter, Stephan [Leibniz Institute for Plasma Science and Technology e.V., Felix-Hausdorff-St. 2, 17489 Greifswald (Germany)

    2016-04-15

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90{sup ∘} off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s{sub 5}) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

  1. Laser-induced breakdown spectroscopy: A versatile tool for monitoring traces in materials

    Indian Academy of Sciences (India)

    Shiwani Pandhija; A K Rai

    2008-03-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging technique for simultaneous multi-elemental analysis of solids, liquids and gases with minute or no sample preparation and thus revolutionized the area of on-line analysis technologies. The foundation for LIBS is a solid state, short-pulsed laser that is focused on a sample to generate a high-temperature plasma, and the emitted radiation from the excited atomic and ionic fragments produced within the plasma is characteristic of the elemental composition of the sample that can be detected and analyzed using a suitable optical spectrograph. In the present paper, the applicability of LIBS for different solid samples having homogeneous (silver ornament, aluminum plate) or heterogeneous composition (soil) using nanosecond laser pulses is discussed. Nanosecond pulse laser makes plasma at the sample surface even at very low pulse energies and also allows for precise ablation of the substrate material with little damage to the surrounding area. We have also studied the penetration of different heavy metals inside the soil surface.

  2. Quantitative determination of calcium, magnesium, and zinc in fingernails by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Rusak, David A; Zeleniak, Ann E; Obuhosky, Jillian L; Holdren, Scott M; Noldy, Craig A

    2013-12-15

    Quantitative determination of Ca, Mg, and Zn in fingernails was performed with laser-induced breakdown spectroscopy. Two different methods of producing solid standards for calibration were explored - preparation of keratin pellets and deposition of aqueous solutions to filter papers. Measurements of the temperature and electron density of the plasma produced on keratin pellets, filter paper, and nails were performed, and it was determined that the standards prepared on filter paper gave plasma temperatures and electron densities closer to those observed on the nails. The ablation rate of the filter paper was also more similar to that of the nails. Using calibration curves produced using these filter paper standards, Ca, Mg, and Zn were determined in fingernails of 11 subjects. For comparison, the same samples were digested and atomic absorption was used to determine the same three elements. The differences in results are discussed in light of sample homogeneity and instrumental precision; the best agreement was obtained for determination of Zn. The work suggests that the filter paper method of standard preparation may be appropriate for LIBS analysis of other samples that give relatively low temperature, low electron density plasmas (i.e., polymers). © 2013 Elsevier B.V. All rights reserved.

  3. Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan; Li, Yuandong; Li, Ying [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China); Wang, Yangfan; Wang, Shi; Bao, Zhenmin [Life Science College, Ocean University of China, Qingdao 266003 (China); Zheng, Ronger, E-mail: rzheng@ouc.edu.cn [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China)

    2015-08-01

    The seashell has been studied as a proxy for the marine researches since it is the biomineralization product recording the growth development and the ocean ecosystem evolution. In this work a hybrid of Laser Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy was introduced to the composition analysis of seashell (scallop, bivalve, Zhikong). Without any sample treatment, the compositional distribution of the shell was obtained using LIBS for the element detection and Raman for the molecule recognition respectively. The elements Ca, K, Li, Mg, Mn and Sr were recognized by LIBS; the molecule carotene and carbonate were identified with Raman. It was found that the LIBS detection result was more related to the shell growth than the detection result of Raman. The obtained result suggested the shell growth might be developing in both horizontal and vertical directions. It was indicated that the LIBS–Raman combination could be an alternative way for the shell researches. - Highlights: • A LIBS–Raman hybrid system was developed. • A seashell has been analyzed for the elementary and molecular distribution with a system. • The shell growth development was studied on the surface and in the depth.

  4. Laser-induced breakdown spectroscopy: a new approach for nanoparticle's mapping and quantification in organ tissue.

    Science.gov (United States)

    Sancey, Lucie; Motto-Ros, Vincent; Kotb, Shady; Wang, Xiaochun; Lux, François; Panczer, Gérard; Yu, Jin; Tillement, Olivier

    2014-06-18

    Emission spectroscopy of laser-induced plasma was applied to elemental analysis of biological samples. Laser-induced breakdown spectroscopy (LIBS) performed on thin sections of rodent tissues: kidneys and tumor, allows the detection of inorganic elements such as (i) Na, Ca, Cu, Mg, P, and Fe, naturally present in the body and (ii) Si and Gd, detected after the injection of gadolinium-based nanoparticles. The animals were euthanized 1 to 24 hr after intravenous injection of particles. A two-dimensional scan of the sample, performed using a motorized micrometric 3D-stage, allowed the infrared laser beam exploring the surface with a lateral resolution less than 100 μm. Quantitative chemical images of Gd element inside the organ were obtained with sub-mM sensitivity. LIBS offers a simple and robust method to study the distribution of inorganic materials without any specific labeling. Moreover, the compatibility of the setup with standard optical microscopy emphasizes its potential to provide multiple images of the same biological tissue with different types of response: elemental, molecular, or cellular.

  5. Geographical analysis of 'conflict minerals' utilizing laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hark, Richard R., E-mail: hark@juniata.edu [Department of Chemistry, Juniata College, Huntingdon, PA 16652 (United States); Remus, Jeremiah J. [Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699 (United States); East, Lucille J. [Applied Spectra, Inc., Fremont, CA 94538 (United States); Harmon, Russell S. [Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695 (United States); Wise, Michael A. [Department of Mineral Sciences, Smithsonian Institution, Washington, DC 20013 (United States); Tansi, Benjamin M.; Shughrue, Katrina M. [Department of Chemistry, Juniata College, Huntingdon, PA 16652 (United States); Dunsin, Kehinde S. [Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699 (United States); Liu, Chunyi [Applied Spectra, Inc., Fremont, CA 94538 (United States)

    2012-08-15

    Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different geographic sources for a mineral because the LIBS plasma emission spectrum provides information on the chemical composition (i.e. geochemical fingerprint) of a geomaterial. An application of this approach with potentially significant commercial and political importance is the spectral fingerprinting of 'conflict minerals' such as columbite-tantalite ('coltan'). Following a successful pilot study of a columbite-tantalite suite from North America, a more geographically diverse set of 57 samples from 37 locations around the world was analyzed using a commercially available LIBS system. The LIBS spectra were analyzed using advanced multivariate statistical signal processing techniques. Partial least squares discriminant analysis (PLSDA) resulted in a correct place-level geographic classification at success rates above 90%. The possible role of rare-earth elements (REEs) as a factor contributing to the high levels of sample discrimination was explored. These results provide additional evidence that LIBS has the potential to be utilized in the field as a real-time screening tool to discriminate between columbite-tantalite ores of different provenance. - Highlights: Black-Right-Pointing-Pointer Analysis of columbite-tantalite using laser-induced breakdown spectroscopy (LIBS) Black-Right-Pointing-Pointer Chemometric analysis (PLSDA) affords 90-100% correct sample classification. Black-Right-Pointing-Pointer Possible role of rare-earth elements in the high level of sample discrimination.

  6. Carbon determination in carbon-manganese steels under atmospheric conditions by Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Labutin, Timur A; Zaytsev, Sergey M; Popov, Andrey M; Zorov, Nikita B

    2014-09-22

    The most sensitive lines of carbon, used nowadays for its determination in steels by laser-induced-breakdown spectroscopy (LIBS), are at vacuum UV and, thereby, LIBS potential is significantly reduced. We suggested the use of the C I 833.51 nm line for carbon determination in low-alloy steels (c(C)~0.186-1.33 wt.%) in air. Double-pulse LIBS with the collinear scheme was performed for maximal enhancement of a carbon emission signal without substantial complication of experimental setup. Since this line is strongly broadened in laser plasma, it overlapped with the closest iron lines greatly. We implemented a PCR method for the construction of a multivariate calibration model under spectral interferences. The model provided a RMSECV = 0.045 wt.%. The predicted carbon content in the rail templet was in an agreement with the reference value obtained by a combustion analyzer within the relative error of 6%.

  7. Double pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination

    Energy Technology Data Exchange (ETDEWEB)

    De Lucia, Frank C. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)], E-mail: fdelucia@arl.army.mil; Gottfried, Jennifer L.; Munson, Chase A.; Miziolek, Andrzej W. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)

    2007-12-15

    Detecting trace explosive residues at standoff distances in real-time is a difficult problem. One method ideally suited for real-time standoff detection is laser-induced breakdown spectroscopy (LIBS). However, atmospheric oxygen and nitrogen contributes to the LIBS signal from the oxygen- and nitrogen-containing explosive compounds, complicating the discrimination of explosives from other organic materials. While bathing the sample in an inert gas will remove atmospheric oxygen and nitrogen interference, it cannot practically be applied for standoff LIBS. Alternatively, we have investigated the potential of double pulse LIBS to improve the discrimination of explosives by diminishing the contribution of atmospheric oxygen and nitrogen to the LIBS signal. These initial studies compare the close-contact (< 1 m) LIBS spectra of explosives using single pulse LIBS in argon with double pulse LIBS in atmosphere. We have demonstrated improved discrimination of an explosive and an organic interferent using double pulse LIBS to reduce the air entrained in the analytical plasma.

  8. The Study of Carious Teeth by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Hamzaoui, S.; Nouir, R.; Jaidene, N.

    2017-03-01

    The aim of this work is a multi-component analysis of the element composition of the enamel and carious parts of teeth and the quantification of enamel demineralization using laser-induced breakdown spectroscopy (LIBS). For each tooth the P/Ca ratios of the emission line intensities in the enamel part and those in the carious regions were compared. Since zinc is a trace element, the same procedure was performed for Zn/Ca ratios in the enamel and carious parts. These comparisons showed that the mineral loss from carious lesions occurs at different rates for the studied elements. Calcium has the highest casualty rate. On the other hand, the zinc level diminishes also in the carious region but at a lower rate. The lines were obtained from plume plasma emission generated on the enamel and carious regions.

  9. Compositional Analysis of Aerosols Using Calibration-Free Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Boudhib, Mohamed; Hermann, Jörg; Dutouquet, Christophe

    2016-04-05

    We demonstrate that the elemental composition of aerosols can be measured using laser-induced breakdown spectroscopy (LIBS) without any preliminary calibration with standard samples. Therefore, a nanosecond Nd:YAG laser beam was focused into a flux of helium charged with alumina aerosols of a few micrometers diameter. The emission spectrum of the laser-generated breakdown plasma was recorded with an echelle spectrometer coupled to a gated detector. The spectral features including emission from both the helium carrier gas and the Al2O3 aerosols were analyzed on the base of a partial local thermodynamic equilibrium. Thus, Boltzmann equilibrium distributions of population number densities were assumed for all plasma species except of helium atoms and ions. By analyzing spectra recorded for different delays between the laser pulse and the detector gate, it is shown that accurate composition measurements are only possible for delays ≤1 μs, when the electron density is large enough to ensure collisional equilibrium for the aerosol vapor species. The results are consistent with previous studies of calibration-free LIBS measurements of solid alumina and glass and promote compositional analysis of aerosols via laser-induced breakdown in helium.

  10. [A method for time-resolved laser-induced breakdown spectroscopy measurement].

    Science.gov (United States)

    Pan, Cong-Yuan; Han, Zhen-Yu; Li, Chao-Yang; Yu, Yun-Si; Wang, Sheng-Bo; Wang, Qiu-Ping

    2014-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is strongly time related. Time-resolved LIBS measurement is an important technique for the research on laser induced plasma evolution and self-absorption of the emission lines. Concerning the temporal characteristics of LIBS spectrum, a method is proposed in the present paper which can achieve micros-scale time-resolved LIBS measurement by using general ms-scale detector. By setting different integration delay time of the ms-scale spectrum detector, a series of spectrum are recorded. And the integration delay time interval should be longer than the worst temporal precision. After baseline correction and spectrum fitting, the intensity of the character line was obtained. Calculating this intensity with differential method at a certain time interval and then the difference value is the time-resolved line intensity. Setting the plasma duration time as X-axis and the time-resolved line intensity as Y-axis, the evolution curve of the character line intensity can be plotted. Character line with overlap-free and smooth background should be a priority to be chosen for analysis. Using spectrometer with ms-scale integration time and a control system with temporal accuracy is 0.021 micros, experiments carried out. The results validate that this method can be used to characterize the evolution of LIBS characteristic lines and can reduce the cost of the time-resolved LIBS measurement system. This method makes high time-resolved LIBS spectrum measurement possible with cheaper system.

  11. Multi-elemental mapping of a speleothem using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Q.L.; Motto-Ros, V. [Universite de Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM F-69622, Lyon (France); Lei, W.Q. [Universite de Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM F-69622, Lyon (France); State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China); Boueri, M. [Universite de Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM F-69622, Lyon (France); Zheng, L.J.; Zeng, H.P. [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China); Bar-Matthews, M.; Ayalon, A. [Geological Survey of Israel, 30 Malkhei Israel St., Jerusalem (Israel); Panczer, G. [Universite de Lyon, Universite Lyon 1, Villeurbanne, CNRS UMR 5620, LPCML F-69622, Lyon (France); Yu, J., E-mail: jin.yu@lasim.univ-lyon1.f [Universite de Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM F-69622, Lyon (France)

    2010-08-15

    Speleothems represent an important record of the paleoclimate, and more generally past environmental changes thanks to their laminar structure which is related to variations in rainfall and vegetation throughout the seasons and to their elemental as well as structural compositions which are sensitive to climatic and environmental conditions during their growth. Studies of their composition, especially those with spatial resolution, reveal rich information for paleoclimatology. In this paper, we demonstrate that laser-induced breakdown spectroscopy (LIBS) provides a suitable tool for elemental analysis and especially for 2-dimensional elemental mapping of speleothems. Main, minor, as well as trace elements can be analyzed with this technique. The temporal evolution of the induced plasma is first studied in order to determine a suitable detection window for emission spectrum recording following the impact of the laser pulse on the sample. The matrix effect is then evaluated with a scan on the sample surface by measuring the electron density and the temperature of the plasmas at different positions of the analyzed surface. Concentration mapping is performed for minor and trace elements such as Na, Mg, Al, Si, K, Fe and Sr, by measuring relative variations of line emission intensities from these elements. Finally, correlations in concentration among detected elements are determined. Groups of correlated elements can be attributed to different mineralogical phases.

  12. UVB radiation induced effects on cells studied by FTIR spectroscopy

    CERN Document Server

    Di Giambattista, Lucia; Gaudenzi, S; Pozzi, D; Grandi, M; Morrone, S; Silvestri, I; Castellano, A Congiu; 10.1007/s00249-009-0446-9

    2010-01-01

    We have made a preliminary analysis of the results about the eVects on tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose of 310 mJ/cm^2) with and without a vegetable mixture. In the present study, we have used two techniques: Fourier transform infrared spectroscopy (FTIR) and flow cytometry. FTIR spectroscopy has the potential to provide the identiWcation of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The second technique has allowed us to perform measurements of cytotoxicity and to assess the percentage of apoptosis. We already studied the induction of apoptotic process in the same cell line by UVB radiation; in particular, we looked for correspondences and correlations between FTIR spetroscopy and flow cytometry data finding three highly probable spectroscopic markers of apoptosis (Pozzi et al. in Radiat Res 168:698-705, 2007). In the present work, the results have shown significant changes ...

  13. Fast differentiation of SIRS and sepsis from blood plasma of ICU patients using Raman spectroscopy.

    Science.gov (United States)

    Neugebauer, Ute; Trenkmann, Sabine; Bocklitz, Thomas; Schmerler, Diana; Kiehntopf, Michael; Popp, Jürgen

    2014-04-01

    Currently, there is no biomarker that can reliable distinguish between infectious and non-infectious systemic inflammatory response syndrome (SIRS). However, such a biomarker would be of utmost importance for early identification and stratification of patients at risk to initiate timely and appropriate antibiotic treatment. Within this proof of principle study, the high potential of Raman spectroscopy for the fast differentiation of non-infectious SIRS and sepsis is demonstrated. Blood plasma collected from 70 patients from the intensive care unit (31 patients with sepsis and 39 patients classified with SIRS without infection) was analyzed by means of Raman spectroscopy. A PCA-LDA based classification model was trained with Raman spectra from test samples and yielded for sepsis a sensitivity of 1.0 and specificity of 0.82. These results have been confirmed with an independent dataset (prediction accuracy 80%). Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Study of plasma-induced graft polymerization of stearyl methacrylate on cotton fabric substrates

    Science.gov (United States)

    Li, Yongqiang; Zhang, Yan; Zou, Chao; Shao, Jianzhong

    2015-12-01

    A simple and facile method to prepare the cotton fabric with hydrophobicity was described in the present work. In the one-step process, the cotton fabric pre-impregnated with the monomer solution of stearyl methacrylate (SMA) was placed in the plasma chamber and followed by glow discharge of the Helium low temperature plasma. The cotton fabrics before and after the plasma treatment were characterized by field emission scanning electron microscopy (FESEM), infrared spectroscopic analysis (FTIR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA), respectively. The wettability of the cotton fabrics was evaluated by contact angle measurement. Fabric Hand Values and mechanical properties were also measured in the experiment. The results showed that polymer films could be coated on the cotton fibers through the plasma induced grafting polymerization of SMA. The modified cotton fabrics exhibited an extraordinary hydrophobicity with a contact angle of 149° for a 5 μL water droplet and excellent thermal stability. The relative hand value and mechanical breaking strength of the cotton fabrics declined slightly after graft polymerization of SMA by the plasma.

  15. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    Science.gov (United States)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

  16. Detection of early caries by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  17. Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Gondal, Mohammed Ashraf; Dastageer, Mohamed A.

    The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.

  18. Analysis of fresco by laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Caneve, L., E-mail: luisa.caneve@enea.i [ENEA, CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Diamanti, A. [Universita ' Tor Vergata' , Dipartimento di Scienze e Tecnologie Chimiche, via della Ricerca Scientifica 1, 00133 Roma (Italy); Grimaldi, F. [ENEA, CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Palleschi, G. [Universita ' Tor Vergata' , Dipartimento di Scienze e Tecnologie Chimiche, via della Ricerca Scientifica 1, 00133 Roma (Italy); Spizzichino, V. [ENEA, CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Valentini, F. [Universita ' Tor Vergata' , Dipartimento di Scienze e Tecnologie Chimiche, via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2010-08-15

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  19. Analysis of fresco by laser induced breakdown spectroscopy

    Science.gov (United States)

    Caneve, L.; Diamanti, A.; Grimaldi, F.; Palleschi, G.; Spizzichino, V.; Valentini, F.

    2010-08-01

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  20. Analytical study of seashell using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Ying, LI; Yanhong, GU; Ying, Zhang; Yuandong, LI; Yuan, LU

    2017-02-01

    Seashell has been applied as an indicator for ocean research and element analysis of the seashell is used to track biological or environmental evolution. In this work, laser-induced breakdown spectroscopy (LIBS) was applied for elementary analysis of an ezo scallop-shell, and a graphite enrichment method was used as the assistance. It was found that LIBS signal intensity of Ca fluctuated less than 5%, in spite of the sampling positions, and Sr/Ca was related to the shell growth. A similar variation was also found when using a direct LIBS analysis on the shell surface, and it might be more practicable to track shell growth by investigating Sr/Ca ratio with Sr ionic line at 421.6 nm. The obtained results prove that calcium (Ca) is qualified as an internal reference for shell analysis, and LIBS is a potential analytical method for seashell study.

  1. Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator

    Institute of Scientific and Technical Information of China (English)

    LI Ying-Hong; WU Yun; JIA Min; ZHOU Zhang-Wen; GUO Zhi-Gang; PU Yi-Kang

    2008-01-01

    The optical emission spectroscopy of a surface dielectric barrier discharge plasma aerodynamic actuator is investigated with different electrode configurations, applied voltages and driving frequencies. The rotational temperature of N2 (C3IIu) molecule is calculated according to its rotational emission band near 380.5 nm. The average electron energy of the discharge is evaluated by emission intensity ratio of first negative system to second positive system of N2. The rotational temperature is sensitive to the inner space of an electrode pair. The average electron energy shows insensitivity to the applied voltage, the driving frequency and the electrode configuration.

  2. A laser-generated plasma as a source of VUV continuum radiation for photoelectronic spectroscopy

    OpenAIRE

    Heckenkamp, Ch.; Heinzmann, Ulrich; Schönhense, G.; BURGESS.D.D; Thorne, A. P.; Wheaton, J. E. G.

    1981-01-01

    The feasibility of using laser-generated plasmas as VUV continuum sources for photoelectron spectroscopy has been demonstrated by measuring the spectral intensity distribution of the VUV continuum in the wavelength region from 79 to 43 nm by energy analysis of the photoelectrons ejected from argon atoms. The maximum photon flux obtained after reflection at a gold-coated spherical mirror was of the order of 10(11) photons nm(-1) per pulse at 50 nm for a laser energy of 830 mJ. The results show...

  3. Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy.

    Science.gov (United States)

    de Carvalho, Gabriel Gustinelli Arantes; Moros, Javier; Santos, Dário; Krug, Francisco José; Laserna, J Javier

    2015-05-30

    Femtosecond laser-induced breakdown spectroscopy (fs-LIBS) has been used for the first time for quantitative determination of nutrients in plant materials from different crops. A highly heterogeneous population of 31 samples, previously analyzed by inductively coupled plasma optical emission spectroscopy, covering a wide range of matrices was interrogated. To tackle the analysis, laser-induced plasmas under argon atmosphere of pellets prepared from sieved cryogenically ground leaves were studied. Predictive functions based on univariate and multivariate modeling of optical emissions associated to macro- (Ca, Mg, and P) and micronutrients (Cu, Fe, Mn and Zn) were designed. Hierarchical cluster analysis was performed to select representative calibration (n(cal)=17) and validation (n(val)=14) datasets. The predictive performance of calibration functions over fs-LIBS data was compared with that attained on spectral information from nanosecond LIBS (ns-LIBS) operating at different wavelengths (1064 nm, 532 nm, and 266 nm). Findings established higher accuracy and less uncertainty on mass fractions quantification from fs-LIBS, whatever the modeling approach. Quality coefficients below 20% for the accuracy error on mass fractions' prediction in unknown samples, and residual predictive deviations in general above 5, were obtained. In contrast, only multivariate modeling satisfactorily handled the non-linear variations of emissions in ns-LIBS, leading to 2-fold decrease in the root mean square error of prediction (RMSEP) of Ca, Mg, P, Cu, Fe, Mn and Zn in comparison with the univariate approach. But still, an averaged quality coefficient about 35% and residual predictive deviations below 3 were found. Similar predictive capabilities were observed when changing the laser wavelength. Although predicted values by ns-LIBS multivariate modeling exhibit better agreement with reference mass fractions as compared to univariate functions, fs-LIBS conducts better quantification of

  4. Oxygen plasma flow properties deduced from laser-induced fluorescence and probe measurements

    Science.gov (United States)

    Löhle, Stefan; Eichhorn, Christoph; Steinbeck, Andreas; Lein, Sebastian; Herdrich, Georg; Röser, Hans-Peter; Auweter-Kurtz, Monika

    2008-04-01

    Estimation of the local dissociation degree and the local mass-specific enthalpy of a pure oxygen plasma flow determined mainly from laser-induced fluorescence measurements are reported. Measurements have been conducted for several generator parameters in an inductively heated plasma wind tunnel. Additional probe measurements of total pressure together with the deduced translational temperature are used to estimate the local mass-specific enthalpy. For a reference condition, full dissociation has been measured. The measured translational temperature of atomic oxygen for this condition is T = 3500 K. Subsequently, the local mass-specific enthalpy has been derived using these local density and temperature measurements. For the reference condition the estimated value of h = 27 MJ/kg is in good agreement with the probe measurements and results from diode laser absorption spectroscopy.

  5. LDPE Surface Modifications Induced by Atmospheric Plasma Torches with Linear and Showerhead Configurations

    CERN Document Server

    Rich, Sami Abou; Leroy, Perrine; Reniers, François; Nittler, Laurent; Pireaux, Jean-Jacques

    2016-01-01

    Low density polyethylene (LDPE) surfaces have been plasma modified to improve their nanostructural and wettability properties. These modifications can significantly improve the deposition of subsequent layers such as films with specific barrier properties. For this purpose, we compare the treatments induced by two atmospheric plasma torches with different configurations (showerhead vs. linear). The modifications of LDPE films in terms of chemical surface composition and surface morphology are evidenced by X-ray photoelectron spectro-scopy, water contact angles measurements, and atomic force microscopy. A comparison between the two post-discharge treatments is achieved for several torch-to-substrate distances (gaps), treatment times, and oxygen flow rates in terms of etching rate, roughening rate, diffusion of oxygen into the subsur-face and hydrophilicity. By correlating these results with the chemical composition of the post-discharges, we identify and compare the 'species which are responsible for the chemi...

  6. Laser-frequency locking using light-pressure-induced spectroscopy in a calcium beam

    NARCIS (Netherlands)

    Mollema, A. K.; Wansbeek, L. W.; Willmann, L.; Jungmann, K.; Timmermans, R. G. E.; Hoekstra, R.

    We demonstrate a spectroscopy method that can be applied in an atomic beam, light-pressure-induced spectroscopy (LiPS). A simple pump and probe experiment yields a dispersivelike spectroscopy signal that can be utilized for laser frequency stabilization. The underlying principles are discussed and

  7. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    Science.gov (United States)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  8. Investigations of plasma induced effects on the surface properties of lignocellulosic natural coir fibres

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, K.M., E-mail: praveenkmiiucnn@gmail.com [International and Inter University Centre for Nano Science and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala (India); Centre de Recherche C.Huygens, LIMATB (Laboratoired’Ingénierie des Matériaux de Bretagne), Université De Bretagne-Sud, Rue stMaudé – BP 92116, Cedex Lorient 56321 Lorient (France); Thomas, Sabu [International and Inter University Centre for Nano Science and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala (India); Grohens, Yves [Centre de Recherche C.Huygens, LIMATB (Laboratoired’Ingénierie des Matériaux de Bretagne), Université De Bretagne-Sud, Rue stMaudé – BP 92116, Cedex Lorient 56321 Lorient (France); Mozetič, Miran; Junkar, Ita; Primc, Gregor [Department of Surface Engineering, Jozef Stefan Institute, Jamovacesta 39, Ljubljana 1000 (Slovenia); Gorjanc, Marija [Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, Ljubljana 1000 (Slovenia)

    2016-04-15

    Graphical abstract: Plasma induced changes on the morphology of coir fibres (Viewed and Analysed using scanning electron microscopy, Jeol JSM 7600 FEG). The O{sub 2} plasma treated fibre possessed increased hydrophilicity due to the chemical and physical changes induced by plasma. - Highlights: • Plasma-induced effects on the surface properties of lignocellulosic natural coir fibres were investigated. • The morphological study using SEM analysis also confirmed the surface changes which were observed after plasma treatment. • The water absorption studies show an increase of water absorption from 39% to around 100%. • The topographic measurements done using atomic force microscopy (AFM) showed etching of fibre wall, and this is responsible for higher water absorption. • XPS analysis reveals that the oxygen content measured for samples treated at 50 Pa increased from initial 18 at% to about 32 at%. - Abstract: The development of lignocellulosic natural-fibre-reinforced polymers composites are constrained by two limitations: the upper temperature at which the fibre can be processed and the significant differences between the surface energy of the fibre and the polymer matrix. Since the fibres and matrices are chemically different, strong adhesion at their interface is needed for the effective transfer of stress and bond distribution throughout the interface. The present study investigated the plasma induced effects on the surface properties of natural coir fibres. Weakly ionized oxygen plasma was created in two different discharge chambers by an inductively coupled radiofrequency (RF) discharge. The water absorption studies showed an increase of water sorption from 39% to 100%. The morphological study using scanning electron microscopy (SEM) analysis also confirmed the surface changes which were observed after the plasma treatment. The topographic measurements and phase imaging done using atomic force microscopy (AFM) indicated difference in topographic

  9. Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results.

    Science.gov (United States)

    Gaudiuso, Rosalba; Dell'Aglio, Marcella; De Pascale, Olga; Senesi, Giorgio S; De Giacomo, Alessandro

    2010-01-01

    Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS), namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds.

  10. Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results

    Directory of Open Access Journals (Sweden)

    Alessandro De Giacomo

    2010-08-01

    Full Text Available Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS, namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds.

  11. Laser-Induced Breakdown Spectroscopy in open-path configuration for the analysis of distant objects

    Science.gov (United States)

    Sallé, B.; Mauchien, P.; Maurice, S.

    2007-08-01

    A review of recent results on stand-off Laser-Induced Breakdown Spectroscopy (LIBS) analysis and applications is presented. Stand-off LIBS was suggested for elemental analysis of materials located in environments where any physical access was not possible but optical access could be envisaged. This review only refers to the use of the open-path LIBS configuration in which the laser beam and the returning plasma light are transmitted through the atmosphere. It does not present the results obtained with a transportation of the laser pulses to the target through an optical fiber. Open-path stand-off LIBS has mainly been used with nanosecond laser pulses for solid sample analysis at distances of tens of meters. Liquid samples have also been analyzed at distances of a few meters. The distances achievable depend on many parameters including the laser characteristics (pulse energy and power, beam divergence, spatial profile) and the optical system used to focus the pulses at a distance. A large variety of laser focusing systems have been employed for stand-off analysis comprising refracting or reflecting telescope. Efficient collection of the plasma light is also needed to obtain analytically useful signals. For stand-off LIBS analysis, a lens or a mirror is required to increase the solid angle over which the plasma light can be collected. The light collection device can be either at an angle from the laser beam path or collinear with the optical axis of the system used to focus the laser pulses on the target surface. These different configurations have been used depending on the application such as rapid sorting of metal samples, identification of material in nuclear industry, process control and monitoring in metallurgical industry, applications in future planetary missions, detection of environmental contamination or cleaning of objects of cultural heritage. Recent stand-off analyses of metal samples have been reported using femtosecond laser pulses to extend LIBS

  12. Decreased plasma levels of the endothelial protective sphingosine-1-phosphate are associated with dengue-induced plasma leakage

    NARCIS (Netherlands)

    Michels, M.; Japtok, L.; Alisjahbana, B.; Wisaksana, R.; Sumardi, U.; Puspita, M.; Kleuser, B.; Mast, Q. de; Ven, A.J.A.M. van der

    2015-01-01

    BACKGROUND: A transient endothelial hyperpermeability is a hallmark of severe dengue infections. Sphingosine-1-phosphate (S1P) maintains vascular integrity and protects against plasma leakage. We related plasma S1P levels to dengue-induced plasma leakage and studied mechanisms that may underlie the

  13. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    Science.gov (United States)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  14. The study of UHMWPEF surface modification with plasma- induced polymerization

    Science.gov (United States)

    Zhang, Yu-Fang; Jia, Qing-Xiu; Wang, Xin; Zhang, Pei-Ran

    2015-07-01

    In order to improve the surface activity levels of the ultrahigh molecular weight polyethylene fiber (UHMWPEF), as well as enhancing the interface strength of the UHMWPEF based composite materials, the method of plasma-induced polymerization was applied to modify the UHMWPEF surface. In this study, the plasma's power, time, pressure and the grafting monomer concentration were introduced. Also, through a well-conducted comparison and analysis of the grafting rate, fabric surface functional groups and the microcosmic morphology, the most suitable plasma modification process was discovered and determined. The mechanics performance of hybrid composites with the modified UHMWPEF and unidirectional carbon fiber cloth (CF) was tested to reveal that, compared with the unmodified composites, the tensile strength and the laminar shear strength could be improved.

  15. Agyrotropic pressure tensor induced by the plasma velocity shear

    Science.gov (United States)

    Pegoraro, Francesco; Del Sarto, Danele; Califano, Francesco

    2016-10-01

    We show that the spatial inhomogeneity of a shear flow in a fluid plasma is transferred to a pressure anisotropy that has both a gyrotropic and a non gyrotropic component. We investigate this process both analytically and numerically by including the full pressure tensor dynamics. We determine the time evolution of the pressure agyrotropy and in general of the pressure tensor anisotropization which arise from the action of both the magnetic eld and the flow strain tensor. This mechanism can affect the onset and development of shear-induced fluid instabilities in plasmas and is relevant to the understanding of the origin of some of the non-Maxwellian distribution functions evidenced both in Vlasov simulations and in space plasma measurements that exhibit pressure agyrotropy.

  16. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    Science.gov (United States)

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  17. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  18. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in the Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.

  19. Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application.

    Science.gov (United States)

    Ferreira, Edilene Cristina; Milori, Débora Marcondes Bastos Pereira; Ferreira, Ednaldo José; Dos Santos, Larissa Macedo; Martin-Neto, Ladislau; Nogueira, Ana Rita de Araújo

    2011-07-15

    Laser induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy technique for simple, direct and clean analysis, with great application potential in environmental sustainability studies. In a single LIBS spectrum it is possible to obtain qualitative information on the sample composition. However, quantitative analysis requires a reliable model for analytical calibration. Multilayer perceptron (MLP), an artificial neural network, is a multivariate technique that is capable of learning to recognize features from examples. Therefore MLP can be used as a calibration model for analytical determinations. Accordingly, the present study proposes to evaluate the traditional linear fit and MLP models for LIBS calibration, in order to attain a quantitative multielemental method for contaminant determination in soil under sewage sludge application. Two sets of samples, both composed of two kinds of soils were used for calibration and validation, respectively. The analyte concentrations in these samples, used as reference, were determined by a reference analytical method using inductively coupled plasma optical emission spectrometry (ICP OES). The LIBS-MLP was compared to a LIBS-linear fit method. The values determined by LIBS-MLP showed lower prediction errors, correlation above 98% with values determined by ICP OES, higher accuracy and precision, lower limits of detection and great application potential in the analysis of different kinds of soils. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Real-time specific surface area measurements via laser-induced breakdown spectroscopy

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.; Howard, James E.

    2017-01-01

    From healthcare to cosmetics to environmental science, the specific surface area (SSA) of micro- and mesoporous materials or products can greatly affect their chemical and physical properties. SSA results are also widely used to examine source rocks in conventional and unconventional petroleum resource plays. Despite its importance, current methods to measure SSA are often cumbersome, time-consuming, or require cryogenic consumables (e.g., liquid nitrogen). These methods are not amenable to high-throughput environments, have stringent sample preparation requirements, and are not practical for use in the field. We present a new application of laser-induced breakdown spectroscopy for rapid measurement of SSA. This study evaluates geological samples, specifically organic-rich oil shales, but the approach is expected to be applicable to many other types of materials. The method uses optical emission spectroscopy to examine laser-generated plasma and quantify the amount of argon adsorbed to a sample during an inert gas purge. The technique can accommodate a wide range of sample sizes and geometries and has the potential for field use. These advantages for SSA measurement combined with the simultaneous acquisition of composition information make this a promising new approach for characterizing geologic samples and other materials.

  1. Quantitation of a novel metalloporphyrin drug in plasma by atomic absorption spectroscopy.

    Science.gov (United States)

    Hoffman, K L; Feng, M R; Rossi, D T

    1999-03-01

    A bioanalytical method to quantify cobalt mesoporphyrin (CoMP), a novel therapeutic agent, in plasma has been developed and validated. The approach involves atomic absorption spectroscopy to determine total cobalt in a sample and a back-calculation of the amount of compound present. Endogenous plasma cobalt concentrations were small ( <0.2 ng/ml(-1) Co in rat plasma) in comparison to the quantitation limit (4.5 ng/ml(-1) Co). The inter-day imprecision of the method was 10.0% relative standard deviation (RSD) and the inter-day bias was +/- 8.0% relative error (RE) over a standard curve range of 4.5- 45.0 ng/ml(-1) Co. Because it quantifies total cobalt, the method cannot differentiate between parent drug and metabolites, but negligible metabolism allows reliable estimates of the actual parent drug concentration. A correlation study between the atomic absorption method and 14C-radiometry demonstrated excellent agreement (r = 0.9868, slope = 1.041 +/- 0.028, intercept = 223.7 +/- 190.0) and further substantiated the accuracy of the methods. Methodology was successfully applied to a pharmacokinetic study of CoMP in rat, with pharmacokinetic parameter estimation. The elimination half-lives, after intra-muscular and subcutaneous administration, were 7.7 and 8.8 days, respectively.

  2. Time-resolved tunable diode laser absorption spectroscopy of pulsed plasma.

    Science.gov (United States)

    Adámek, P; Olejníček, J; Čada, M; Kment, Š; Hubička, Z

    2013-07-15

    A method for time-resolved tunable diode laser absorption spectroscopy (LAS) has been developed. In this Letter, we describe in detail a developed electronic module that controls the time resolution of the LAS system. The transistor-transistor logic signal triggering the plasma pulse is used for generation of two signals: the first one triggers fine tuning of the laser wavelength and the second one controls time-defined signal sampling from the absorption detector. The described method and electronic system enable investigation of the temporal evolution of the density and temperature of selected particles in technological plasma systems. The high-power impulse magnetron sputtering system with a period of 10 ms and a duty cycle of 1% has been used to verify this method. The temporal evolution of argon metastable density was measured in the active part of the pulse and in the afterglow. The resulting density of Ar* displays a double-peak structure with a first peak in the plasma "ON" phase and a second peak in the afterglow approximately 1 ms after the end of the pulse.

  3. Hypochlorite-induced oxidation of proteins in plasma

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1999-01-01

    Activated phagocyte cells generate hypochlorite (HOCl) via the release of H2O2 and the enzyme myeloperoxidase. Plasma proteins are major targets for HOCl, although little information is available about the mechanism(s) of oxidation. In this study the reaction of HOCl (at least 50 microM) with dil......Activated phagocyte cells generate hypochlorite (HOCl) via the release of H2O2 and the enzyme myeloperoxidase. Plasma proteins are major targets for HOCl, although little information is available about the mechanism(s) of oxidation. In this study the reaction of HOCl (at least 50 micro......M) with diluted fresh human plasma has been shown to generate material that oxidizes 5-thio-2-nitrobenzoic acid; these oxidants are believed to be chloramines formed from the reaction of HOCl with protein amine groups. Chloramines have also been detected with isolated plasma proteins treated with HOCl. In both....... These results are consistent with protein-derived chloramines, and the radicals derived from them, as contributing agents in HOCl-induced plasma protein oxidation....

  4. Validating Laser-Induced Birefringence Theory with Plasma Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cecilia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cornell Univ., Ithaca, NY (United States)

    2015-09-02

    Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variations of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.

  5. Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy

    Science.gov (United States)

    Zhong, Shi-Lei; Lu, Yuan; Kong, Wei-Jin; Cheng, Kai; Zheng, Ronger

    2016-08-01

    In this study, an ultrasonic nebulizer unit was established to improve the quantitative analysis ability of laser-induced breakdown spectroscopy (LIBS) for liquid samples detection, using solutions of the heavy metal element Pb as an example. An analytical procedure was designed to guarantee the stability and repeatability of the LIBS signal. A series of experiments were carried out strictly according to the procedure. The experimental parameters were optimized based on studies of the pulse energy influence and temporal evolution of the emission features. The plasma temperature and electron density were calculated to confirm the LTE state of the plasma. Normalizing the intensities by background was demonstrated to be an appropriate method in this work. The linear range of this system for Pb analysis was confirmed over a concentration range of 0-4,150ppm by measuring 12 samples with different concentrations. The correlation coefficient of the fitted calibration curve was as high as 99.94% in the linear range, and the LOD of Pb was confirmed as 2.93ppm. Concentration prediction experiments were performed on a further six samples. The excellent quantitative ability of the system was demonstrated by comparison of the real and predicted concentrations of the samples. The lowest relative error was 0.043% and the highest was no more than 7.1%.

  6. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges

    Science.gov (United States)

    Sobral, H.; Robledo-Martinez, A.

    2016-10-01

    A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.

  7. Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Guo, L B; Hao, Z Q; Shen, M; Xiong, W; He, X N; Xie, Z Q; Gao, M; Li, X Y; Zeng, X Y; Lu, Y F

    2013-07-29

    To improve the accuracy of quantitative analysis in laser-induced breakdown spectroscopy, the plasma produced by a Nd:YAG laser from steel targets was confined by a cavity. A number of elements with low concentrations, such as vanadium (V), chromium (Cr), and manganese (Mn), in the steel samples were investigated. After the optimization of the cavity dimension and laser fluence, significant enhancement factors of 4.2, 3.1, and 2.87 in the emission intensity of V, Cr, and Mn lines, respectively, were achieved at a laser fluence of 42.9 J/cm(2) using a hemispherical cavity (diameter: 5 mm). More importantly, the correlation coefficient of the V I 440.85/Fe I 438.35 nm was increased from 0.946 (without the cavity) to 0.981 (with the cavity); and similar results for Cr I 425.43/Fe I 425.08 nm and Mn I 476.64/Fe I 492.05 nm were also obtained. Therefore, it was demonstrated that the accuracy of quantitative analysis with low concentration elements in steel samples was improved, because the plasma became uniform with spatial confinement. The results of this study provide a new pathway for improving the accuracy of quantitative analysis of LIBS.

  8. Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ji-hyun [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Lenth, Christoph; Salb, Christian [Photonic Sensor Technology, Laser-Laboratorium Goettingen e.V., Hans-Adolf-Krebs-Weg 1 D-37077 Goettingen (Germany); Ko, Eun-Joung; Kim, Kyoung-Woong [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Park, Kihong, E-mail: kpark@gist.ac.k [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of)

    2009-10-15

    A double pulse-laser induced breakdown spectroscopy (DP-LIBS) was used to determine arsenic (As) concentration in 16 soil samples collected from 5 different mine tailing sites in Korea. We showed that the use of double pulse laser led to enhancements of signal intensity (by 13% on average) and signal-to-noise ratio of As emission lines (by 165% on average) with smaller relative standard deviation compared to single pulse laser approach. We believe this occurred because the second laser pulse in the rarefied atmosphere produced by the first pulse led to the increase of plasma temperature and populations of exited levels. An internal standardization method using a Fe emission line provided a better correlation and sensitivity between As concentration and the DP-LIBS signal than any other elements used. The Fe was known as one of the major components in current soil samples, and its concentration varied not substantially. The As concentration determined by the DP-LIBS was compared with that obtained by atomic absorption spectrometry (AAS) to evaluate the current LIBS system. They are correlated with a correlation coefficient of 0.94. The As concentration by the DP-LIBS was underestimated in the high concentration range (>1000 mg-As/kg). The loss of sensitivity that occurred at high concentrations could be explained by self-absorption in the generated plasma.

  9. Reactions of nitroxide radicals in aqueous solutions exposed to non-thermal plasma: limitations of spin trapping of the plasma induced species

    Science.gov (United States)

    Gorbanev, Yury; Stehling, Nicola; O'Connell, Deborah; Chechik, Victor

    2016-10-01

    Low temperature (‘cold’) atmospheric pressure plasmas have gained much attention in recent years due to their biomedical effects achieved through the interactions of plasma-induced species with the biological substrate. Monitoring of the radical species in an aqueous biological milieu is usually performed via electron paramagnetic resonance (EPR) spectroscopy using various nitrone spin traps, which form persistent radical adducts with the short-lived radicals. However, the stability of these nitroxide radical adducts in the plasma-specific environment is not well known. In this work, chemical transformations of nitroxide radicals in aqueous solutions using a model nitroxide 4-oxo-TEMPO were studied using EPR and LC-MS. The kinetics of the nitroxide decay when the solution was exposed to plasma were assessed, and the reactive pathways proposed. The use of different scavengers enabled identification of the types of reactive species which cause the decay, indicating the predominant nitroxide group reduction in oxygen-free plasmas. The 2H adduct of the PBN spin trap (PBN-D) was shown to decay similarly to the model molecule 4-oxo-TEMPO. The decay of the spin adducts in plasma-treated solutions must be considered to avoid rendering the spin trapping results unreliable. In particular, the selectivity of the decay indicated the limitations of the PTIO/PTI nitroxide system in the detection of nitric oxide.

  10. Laser induced spectroscopy breakdown (LIBS) application to heavy metal detection in soils; Applicazioni della tecnica Laser induced breakdown spectroscopy (LIBS) alla determinazione dei metalli pesanti nei suoli

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R.; Fantoni, R.; Palucci, A.; Ribezzo, S.; Colao, F. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Div. Fisica Applicata; Capitelli, F. [Bari, Univ., Bari (Italy). Dipt. di Biologia e Chimica Agroforestale ed Ambientale

    2000-07-01

    LIBS (Laser induced breakdown spectroscopy) is a new spectroscopic technique suitable to the use in the analysis of samples of environmental interest, such as soils and rocks, and of industrial interest, such as alloys. Results dealing with the application of the technique to heterogeneous soil samples certified by Ispra Joint Research Centre in the contest of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) with an agronomical interest are presented in this report. In the LIBS technique, a high power laser beam is focused onto the sample in order to generate a small volume of plasma at its surface. Emissions from single atomic species are collected by a lens system coupled to an optical fiber bundle, dispersed on a monochromator and analyzed by an iCCD. the identification and the assignment of emission lines relevant to single atomic species allows to determine the sample elemental composition and, after calibration against reference samples, to perform quantitative analysis for a large number of species. This technique requires no sample pre-treatment, a part from eventually compacting powders by mechanical press. This is a considerable advantage with respect to traditional spectroscopic techniques, such as the ICP (Inductively Coupled Plasma) which needs sample mineralization by acid attack. Measurements performed on soil samples by means of the LIBS technique at ENEA Frascati were compared with the results obtained by ICP, which is considered a traditional technique for this kind of analysis. Results showed a general overestimation of the LIBS values with respect to the ICP ones, probably due to differences in lytologic matrix between the analyzed samples and the standard. The phenomenon is usually referred to the matrix effect, which is held responsible for the deviation from linearity between single element concentration and its row intensity. The effect is due to local plasma density variations and limit the correlation between the plasma elemental composition

  11. Development of a Stand-off Laser Induced Breakdown Spectroscopy (ST-LIBS) system for the analysis of complex matrices

    Science.gov (United States)

    Tamboli, M. M.; Unnikrishnan, V. K.; Nayak, R.; Devangad, P.; Muhammed Shameem, K. M.; Kartha, V. B.; Santhosh, C.

    2016-08-01

    In the present work, we discuss the evaluation and optimization of a stand-off laser induced breakdown spectroscopy (ST-LIBS) system, developed indigenously for remote analysis of heavy elements in soil. A compact Q-switched Nd:YAG laser operating at fundamental wavelength 1064 nm was used for plasma generation at distances up to 6 meters. Techniques for optimal experimental results were evaluated for detection of Cd, Cr, Pb, Mo and Ni in soil. The system was evaluated with two NIST certified soil samples. The effect of working distance on the LIBS signal is also discussed briefly. Results confirm the capabilities of the system for remote monitoring.

  12. Investigation of the osteitis deformans phases in snake vertebrae by double-pulse laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Galiová, M; Kaiser, J; Novotný, K; Ivanov, M; Nývltová Fisáková, M; Mancini, L; Tromba, G; Vaculovic, T; Liska, M; Kanický, V

    2010-09-01

    Double-pulse laser-induced breakdown spectroscopy (DP-LIBS) was optimized for microspatial analyses of fossil and recent snake vertebrae. As complimentary techniques, solution analysis by inductively coupled plasma mass spectrometry and synchrotron radiation X-ray microtomography was utilized in order to determine the overall concentration of the selected elements in the samples and to visualize nondestructively the fossil sample microstructure, respectively. Elemental mapping of pathological bony tissue by DP-LIBS has been proven as a powerful tool for considering the osteitis deformans phases in fossil vertebrae.

  13. Independent component analysis classification of laser induced breakdown spectroscopy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Forni, Olivier, E-mail: olivier.forni@irap.omp.eu [Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysiqe et Planétologie, Toulouse (France); CNRS, IRAP, 9, av. Colonel Roche, BP 44346, F-31028 Cedex 4, Toulouse (France); Maurice, Sylvestre, E-mail: sylvestre.maurice@irap.omp.eu [Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysiqe et Planétologie, Toulouse (France); CNRS, IRAP, 9, av. Colonel Roche, BP 44346, F-31028 Cedex 4, Toulouse (France); Gasnault, Olivier, E-mail: olivier.gasnault@irap.omp.eu [Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysiqe et Planétologie, Toulouse (France); CNRS, IRAP, 9, av. Colonel Roche, BP 44346, F-31028 Cedex 4, Toulouse (France); Wiens, Roger C., E-mail: rwiens@lanl.gov [Space Remote Sensing, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Cousin, Agnès, E-mail: acousin@lanl.gov [Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysiqe et Planétologie, Toulouse (France); CNRS, IRAP, 9, av. Colonel Roche, BP 44346, F-31028 Cedex 4, Toulouse (France); Chemical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Clegg, Samuel M., E-mail: sclegg@lanl.gov [Chemical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Sirven, Jean-Baptiste, E-mail: jean-baptiste.sirven@cea.f [CEA Saclay, DEN/DPC/SCP, 91191 Cedex, Gif sur Yvette (France); Lasue, Jérémie, E-mail: jeremie.lasue@irap.omp.eu [Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysiqe et Planétologie, Toulouse (France); CNRS, IRAP, 9, av. Colonel Roche, BP 44346, F-31028 Cedex 4, Toulouse (France)

    2013-08-01

    The ChemCam instrument on board Mars Science Laboratory (MSL) rover uses the laser-induced breakdown spectroscopy (LIBS) technique to remotely analyze Martian rocks. It retrieves spectra up to a distance of seven meters to quantify and to quantitatively analyze the sampled rocks. Like any field application, on-site measurements by LIBS are altered by diverse matrix effects which induce signal variations that are specific to the nature of the sample. Qualitative aspects remain to be studied, particularly LIBS sample identification to determine which samples are of interest for further analysis by ChemCam and other rover instruments. This can be performed with the help of different chemometric methods that model the spectra variance in order to identify a the rock from its spectrum. In this paper we test independent components analysis (ICA) rock classification by remote LIBS. We show that using measures of distance in ICA space, namely the Manhattan and the Mahalanobis distance, we can efficiently classify spectra of an unknown rock. The Mahalanobis distance gives overall better performances and is easier to manage than the Manhattan distance for which the determination of the cut-off distance is not easy. However these two techniques are complementary and their analytical performances will improve with time during MSL operations as the quantity of available Martian spectra will grow. The analysis accuracy and performances will benefit from a combination of the two approaches. - Highlights: • We use a novel independent component analysis method to classify LIBS spectra. • We demonstrate the usefulness of ICA. • We report the performances of the ICA classification. • We compare it to other classical classification schemes.

  14. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  15. Time- and space-resolved spectroscopic characterization of laser-induced swine muscle tissue plasma

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, J.J. [Departamento de Química-Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Diaz, L., E-mail: luis.diaz@csic.es [Instituto de Estructura de la Materia, CFMAC, CSIC, Serrano 121, 28006 Madrid (Spain); Martinez-Ramirez, S. [Instituto de Estructura de la Materia, CFMAC, CSIC, Serrano 121, 28006 Madrid (Spain); Caceres, J.O. [Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, Cuidad Universitaria, 28040 Madrid (Spain)

    2015-09-01

    The spatial-temporal evolution of muscle tissue sample plasma induced by a high-power transversely excited atmospheric (TEA) CO{sub 2} pulsed laser at vacuum conditions (0.1–0.01 Pa) has been investigated using high-resolution optical emission spectroscopy (OES) and imaging methods. The induced plasma shows mainly electronically excited neutral Na, K, C, Mg, H, Ca, N and O atoms, ionized C{sup +}, C{sup 2+}, C{sup 3+}, Mg{sup +}, Mg{sup 2+}, N{sup +}, N{sup 2+}, Ca{sup +}, O{sup +} and O{sup 2+} species and molecular band systems of CN(B{sup 2}Σ{sup +}–X{sup 2}Σ{sup +}), C{sub 2}(d{sup 3}Π{sub g}–a{sup 3}Π{sub u}), CH(B{sup 2}Σ{sup −}–X{sup 2}Π; A{sup 2}Δ–X{sup 2}Π), NH(A{sup 3}Π–X{sup 3}Σ{sup −}), OH(A{sup 2}Σ{sup +}–X{sup 2} Σ{sup +}), and CaOH(B{sup 2}Σ{sup +}–X{sup 2}Σ{sup +}; A{sup 2}Π–X{sup 2}Σ{sup +}). Time-resolved two-dimensional emission spectroscopy is used to study the expanded distribution of different species ejected during ablation. Spatial and temporal variations of different atoms and ionic excited species are reported. Plasma parameters such as electron density and temperature were measured from the spatio-temporal analysis of different species. Average velocities of some plasma species were estimated. - Highlights: • LIBS of swine muscle tissue sample generated by CO{sub 2} laser pulses has been done for the first time. • Average velocities of some plasma species have been calculated from spatial and temporally resolved 2D OES images. • Electron density (~ 9 × 10{sup 17} cm{sup -3}) has been studied with spatial and temporal resolution. • Temporal evolution of the plasma temperature has been calculated by means of Boltzmann plots.

  16. Enhancing the analytical performance of laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cremers, D.A.; Chinni, R.C.; Pichahchy, A.E.; Thornquist, H.K.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this work is to enhance the analytical capabilities of laser-induced breakdown spectroscopy (LIBS). LIBS is a method of elemental analysis in which powerful laser pulses are focused on a sample to form a microplasma. LIBS is perhaps the most versatile elemental analysis method, applicable to a variety of different real-world analysis problems. Therefore, it is important to enhance the capabilities of the method as much as possible. Accomplishments include: (1) demonstration of signal enhancements of 5--30 times from soils and metals using a double pulse method; (2) development of a model of the observed enhancement obtained using double pulses; (3) demonstration that the analytical performance achievable using low laser-pulse energies (10 and 25 mJ) can match that achievable using an energy of 100 mJ; and (4) demonstration that time-gated detection is not necessary with LIBS.

  17. Portable LED-induced autofluorescence spectroscopy for oral cancer diagnosis

    Science.gov (United States)

    Yan, Yung-Jhe; Huang, Ting-Wei; Cheng, Nai-Lun; Hsieh, Yao-Fang; Tsai, Ming-Hsui; Chiou, Jin-Chern; Duann, Jeng-Ren; Lin, Yung-Jiun; Yang, Chin-Siang; Ou-Yang, Mang

    2017-04-01

    Oral cancer is a serious and growing problem in many developing and developed countries. To improve the cancer screening procedure, we developed a portable light-emitting-diode (LED)-induced autofluorescence (LIAF) imager that contains two wavelength LED excitation light sources and multiple filters to capture ex vivo oral tissue autofluorescence images. Compared with conventional means of oral cancer diagnosis, the LIAF imager is a handier, faster, and more highly reliable solution. The compact design with a tiny probe allows clinicians to easily observe autofluorescence images of hidden areas located in concave deep oral cavities. The ex vivo trials conducted in Taiwan present the design and prototype of the portable LIAF imager used for analyzing 31 patients with 221 measurement points. Using the normalized factor of normal tissues under the excitation source with 365 nm of the central wavelength and without the bandpass filter, the results revealed that the sensitivity was larger than 84%, the specificity was not smaller than over 76%, the accuracy was about 80%, and the area under curve of the receiver operating characteristic (ROC) was achieved at about 87%, respectively. The fact shows the LIAF spectroscopy has the possibilities of ex vivo diagnosis and noninvasive examinations for oral cancer.

  18. Analysis of bakery products by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Bilge, Gonca; Boyacı, İsmail Hakkı; Eseller, Kemal Efe; Tamer, Uğur; Çakır, Serhat

    2015-08-15

    In this study, we focused on the detection of Na in bakery products by using laser-induced breakdown spectroscopy (LIBS) as a quick and simple method. LIBS experiments were performed to examine the Na at 589 nm to quantify NaCl. A series of standard bread sample pellets containing various concentrations of NaCl (0.025-3.5%) were used to construct the calibration curves and to determine the detection limits of the measurements. Calibration graphs were drawn to indicate functions of NaCl and Na concentrations, which showed good linearity in the range of 0.025-3.5% NaCl and 0.01-1.4% Na concentrations with correlation coefficients (R(2)) values greater than 0.98 and 0.96. The obtained detection limits for NaCl and Na were 175 and 69 ppm, respectively. Performed experimental studies showed that LIBS is a convenient method for commercial bakery products to quantify NaCl concentrations as a rapid and in situ technique.

  19. Dust Removal on Mars Using Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Graff, T. G.; Morris, R. V.; Clegg, S. M.; Wiens, R. C.; Anderson, R. B.

    2011-01-01

    Dust coatings on the surface of Mars complicate and, if sufficiently thick, mask the spectral characteristics and compositional determination of underlying material from in situ and remote sensing instrumentation. The Laser-Induced Breakdown Spectroscopy (LIBS) portion of the Chemistry & Camera (ChemCam) instrument, aboard the Mars Science Laboratory (MSL) rover, will be the first active remote sensing technique deployed on Mars able to remove dust. ChemCam utilizes a 5 ns pulsed 1067 nm high-powered laser focused to less than 400 m diameter on targets at distances up to 7 m [1,2]. With multiple laser pulses, dust and weathering coatings can be remotely analyzed and potentially removed using this technique [2,3]. A typical LIBS measurement during MSL surface operations is planned to consist of 50 laser pulses at 14 mJ, with the first 5 to 10 pulses used to analyze as well as remove any surface coating. Additionally, ChemCam's Remote Micro-Imager (RMI) is capable of resolving 200 m details at a distance of 2 m, or 1 mm at 10 m [1,4]. In this study, we report on initial laboratory experiments conducted to characterize the removal of dust coatings using similar LIBS parameters as ChemCam under Mars-like conditions. These experiments serve to better understand the removal of surface dust using LIBS and to facilitate the analysis of ChemCam LIBS spectral data and RMI images.

  20. Analysis of human nails by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Hosseinimakarem, Zahra; Tavassoli, Seyed Hassan

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to analyze human fingernails using nanosecond laser pulses. Measurements on 45 nail samples are carried out and 14 key species are identified. The elements detected with the present system are: Al, C, Ca, Fe, H, K, Mg, N, Na, O, Si, Sr, Ti as well as CN molecule. Sixty three emission lines have been identified in the spectrum that are dominated by calcium lines. A discriminant function analysis is used to discriminate among different genders and age groups. This analysis demonstrates efficient discrimination among these groups. The mean concentration of each element is compared between different groups. Correlation between concentrations of elements in fingernails is calculated. A strong correlation is found between sodium and potassium while calcium and magnesium levels are inversely correlated. A case report on high levels of sodium and potassium in patients with hyperthyroidism is presented. It is shown that LIBS could be a promising technique for the analysis of nails and therefore identification of health problems.

  1. Laser-induced breakdown spectroscopy for polymer identification.

    Science.gov (United States)

    Grégoire, Sylvain; Boudinet, Marjorie; Pelascini, Frédéric; Surma, Fabrice; Detalle, Vincent; Holl, Yves

    2011-07-01

    This study aims at differentiating several organic materials, particularly polymers, by laser induced breakdown spectroscopy. The goal is to apply this technique to the fields of polymer recycling and cultural heritage conservation. We worked with some usual polymers families: polyethylene (PE), polypropylene (PP), polyoxymethylene, (POM), poly(vinyl chloride), polytetrafluoroethylene, polyoxyethylene (POE), and polyamide for the aliphatic ones, and poly(butylene terephthalate), acrylonitrile-butadiene-styrene, polystyrene, and polycarbonate for the aromatic ones. The fourth harmonic of a Nd:YAG laser (266 nm) in ambient air at atmospheric pressure was used. A careful analysis of the C(2) Swan system (0,0) band in polymers containing no C-C (POM), few C-C (POE), or aromatic C-C linkages led us to the conclusion that the C(2) signal might be native, i.e., the result of direct ablation from the sample. With use of these results, aliphatic and aromatic polymers could be differentiated. Further data treatments, such as properly chosen line ratios, principal component analysis, and partial least squares regression, were evaluated. It was shown that many polymers could be separated, including PE and PP, despite their similar chemical structures.

  2. Unsupervised verification of laser-induced breakdown spectroscopy dataset clustering

    Science.gov (United States)

    Wójcik, Michał R.; Zdunek, Rafał; Antończak, Arkadiusz J.

    2016-12-01

    Laser-induced breakdown spectroscopy is a versatile, optical technique used in a wide range of qualitative and quantitative analyses conducted with the use of various chemometric techniques. The aim of this research is to demonstrate the possibility of unsupervised clustering of an unknown dataset using K-means clustering algorithm, and verifying its input parameters through investigating generalized eigenvalues derived with linear discriminant analysis. In all the cases, principal component analyses have been applied to reduce data dimensionality and shorten computation time of the whole operation. The experiment was conducted on a dataset collected from twenty four different materials divided into six groups: metals, semiconductors, ceramics, rocks, metal alloys and others with the use of a three-channel spectrometer (298.02-628.73nm overall spectral range) and a UV (248nm) excimer laser. Additionally, two more complex groups containing all specimens and all specimens excluding rocks were created. The resulting spaces of eigenvalues were calculated for every group and three different distances in the multidimensional space (cosine, square Euclidean and L1). As expected, the correct numbers of specimens within groups with small deviations were obtained, and the validity of the unsupervised method has thus been proven.

  3. Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    W, A. Farooq; M, Atif; W, Tawfik; M, S. Alsalhi; Z, A. Alahmed; M, Sarfraz; J, P. Singh

    2014-12-01

    Laser-induced breakdown spectroscopy (LIBS) technique has been applied to investigate two different types of bacteria, Escherichia coli (B1) and Micrococcus luteus (B2) deposited on glass slides using Spectrolaser 7000. LIBS spectra were analyzed using spectrolaser software. LIBS spectrum of glass substrate was compared with bacteria spectra. Ca, Mg, Na, K, P, S, Cl, Fe, Al, Mn, Cu, C, H and CN-band appeared in bacterial samples in air. Two carbon lines at 193.02 nm, 247.88 nm and one hydrogen line at 656.28 nm with intensity ratios of 1.9, 1.83 and 1.53 appeared in bacterial samples B1 and B2 respectively. Carbon and hydrogen are the important components of the bio-samples like bacteria and other cancer cells. Investigation on LIBS spectra of the samples in He and Ar atmospheres is also presented. Ni lines appeared only in B2 sample in Ar atmosphere. From the present experimental results we are able to show that LIBS technique has a potential in the identification and discrimination of different types of bacteria.

  4. Investigations of the cathode region of an argon arc plasma by degenerate four-wave mixing laser spectroscopy and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dzierzega, K [Marian Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow (Poland); Pokrzywka, B [Mt. Suhora Observatory, Cracow Pedagogical University, ul. Podchorazych 2, 30-083 Cracow (Poland); Pellerin, S [LASEP, Universite d' Orleans-Centre Universitaire de Bourges, Rue Gaston Berger BP 4043, 18028 Bourges (France)

    2004-07-07

    Degenerate four-wave mixing (DFWM) laser spectroscopy was used in local studies of atmospheric pressure argon plasma generated in a free-burning arc. The results of plasma diagnostics using the DFWM method were compared to the results obtained with optical emission measurements. In the cathode region of the arc the maxima of both the DFWM signal and the emission coefficient for the 696.5 nm Ar I line depend on the distance from the cathode tip. This effect proves the departure of the plasma state from local thermal equilibrium (LTE) as it has been reported by many authors. On the other hand the Stark shifts of the 696.5 nm Ar I line determined by the DFWM method in relation to plasma diagnostic results show no deviations from LTE on the arc axis down to 1.0 mm from the cathode tip.

  5. Atomic oxygen in a cold argon plasma jet: TALIF spectroscopy in ambient air with modelling and measurements of ambient species diffusion

    Science.gov (United States)

    Reuter, S.; Winter, J.; Schmidt-Bleker, A.; Schroeder, D.; Lange, H.; Knake, N.; Schulz-von der Gathen, V.; Weltmann, K.-D.

    2012-04-01

    By investigating the atomic oxygen density in its effluent, two-photon absorption laser-induced fluorescence (TALIF) spectroscopy measurements are for the first time performed in a cold argon/oxygen atmospheric pressure plasma jet. The measurements are carried out in ambient air and quenching by inflowing air species is considered. We propose a novel absorption technique in the VUV spectral range, where emission originating from within the discharge is used as light source to determine the inflow of atmospheric oxygen into the effluent. Furthermore, we propose a modelling solution for the on-axis density of inflowing ambient air based on the stationary convection-diffusion equation.

  6. Asphaltene Erosion Process in Air Plasma: Emission Spectroscopy and Surface Analysis for Air-Plasma Reactions

    Institute of Scientific and Technical Information of China (English)

    H. MARTINEZ; O. FLORES; J. C. POVEDA; B. CAMPILLO

    2012-01-01

    Optical emission spectroscopy (OES) was applied for plasma characterization during the erosion of asphaltene substrates. An amount of 100 mg of asphaltene was carefully applied to an electrode and exposed to air-plasma glow discharge at a pressure of 1.0 Torr. The plasma was generated in a stainless steel discharge chamber by an ac generator at a frequency of 60 Hz, output power of 50 W and a gas flow rate of 1.8 L/min. The electron temperature and ion density were estimated to be 2.15±0.11 eV and (1.24±0.05)× 10^16 m^-3, respectively, using a double Langmuir probe. OES was employed to observe the emission from the asphaltene exposed to air plasma. Both molecular band emission from N2, N2+, OH, CH, NH, O2 as well as CN, and atomic light emission from V and Hγ were observed and used to monitor the evolution of asphaltene erosion. The asphaltene erosion was analyzed with the aid of a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) detector. The EDX analysis showed that the time evolution of elements C, O, S and V were similar and the chemical composition of the exposed asphaltenes remained constant. Particle size evolution was measured, showing a maximum size of 2307 μm after 60 min. This behavior is most likely related to particle agglomeration as a function of time.

  7. Quantitative plasma spectroscopy in a resistive shell reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Hedqvist, Anders

    1999-10-01

    The subject addressed in this thesis is quantitative plasma spectroscopy. Measurements of electron temperature and impurity ion density, performed at EXTRAP-T2, are aimed to investigate the effects of operating a reversed- field pinch with a resistive shell and a graphite wall. The spectroscopic measurements are analyzed with a collisional-radiative model and a consistency check is performed for the measurements and the model itself. The resistive shell results in wall-locked modes, enhanced plasma-wall interaction and degraded confinement. Measurements of vacuum ultraviolet resonant transitions of carbon and oxygen show that the local heating of the wall, at the position of the locking, leads to influxes of hydrogen and impurities, resulting in a cold and resistive plasma. Effects on the local scale are also observed. Spatially-resolved measurements of line emission originating from charge exchange collisions are used to investigate the change in neutral hydrogen profile. Temporal correlations between soft x-ray emission and poloidal loop voltage at the position of the wall-locked modes are observed and in connection, a decrease in central electron temperature, indicating there is a direct energy loss channel between the center and the edge. The hydrogen recycling properties of the graphite wall are investigated in an isotope exchange experiment. The density of the hydrogen isotopes are measured from spectral line emission and compared with recycling models. In charge exchange collisions between fully stripped chlorine and thermal deuterium, observed in JET plasmas, only a single n-level is populated. This is different from most ions and may be used to test models for calculating charge exchange collision cross-sections.

  8. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    Science.gov (United States)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm-1 and 3272 cm-1, respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm-1. The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity.

  9. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  10. Chimiométrie appliquée à la spectroscopie de plasma induit par laser (LIBS) et à la spectroscopie terahertz

    OpenAIRE

    El Haddad, Josette

    2013-01-01

    The aim of this work was the application of multivariate methods to analyze spectral data from laser-induced breakdown spectroscopy (LIBS) and terahertz (THz) spectroscopy to improve the analytical ability of these techniques.In this work, the LIBS data were derived from on-site measurements of soil samples. The common univariate approach was not efficient enough for accurate quantitative analysis and consequently artificial neural networks (ANN) were applied. This allowed quantifying several...

  11. Inductively coupled plasma optical emission spectroscopy determination of trace element composition of argan oil.

    Science.gov (United States)

    Gonzálvez, A; Ghanjaoui, M E; El Rhazi, M; de la Guardia, M

    2010-02-01

    A methodology based on inductively coupled plasma optical emission spectroscopy (ICP-OES) after microwave assisted acid digestion has been developed to determine the trace element content of Moroccan argan oil. Limit of detection values equal or lower than few mg/kg were obtained for all elements under study. To assure the accuracy of the whole procedure, recovery studies were carried out on argan oil samples spiked at different concentration levels from 10 to 200 µg/L. Quantitative average recovery values were obtained for all elements evaluated, demonstrating the suitability of this methodology for the determination of trace elements in argan oil samples. Aluminum, calcium, chromium, iron, potassium, lithium, magnesium, sodium, vanadium and zinc were quantitatively determined in Moroccan argan oils being found that their concentration is different of that found in other edible oils thus offering a way for authentication and for the evaluation of possible adulterations.

  12. Spatially resolved optical-emission spectroscopy of a radio-frequency driven iodine plasma source

    Science.gov (United States)

    Dedrick, James; Doyle, Scott; Grondein, Pascaline; Aanesland, Ane

    2016-09-01

    Iodine is of interest for potential use as a propellant for spacecraft propulsion, and has become attractive as a replacement to xenon due to its similar mass and ionisation potential. Optical emission spectroscopy has been undertaken to characterise the emission from a low-pressure, radio-frequency driven inductively coupled plasma source operating in iodine with respect to axial distance across its transverse magnetic filter. The results are compared with axial profiles of the electron temperature and density for identical source conditions, and the spatial distribution of the emission intensity is observed to be closely correlated with the electron temperature. This work has been done within the LABEX Plas@Par project, and received financial state aid managed by the ``Agence Nationale de la Recherche'', as part of the ``Programme d'Investissements d'Avenir'' under the reference ANR-11-IDEX-0004-02.

  13. A Movable Mass Spectroscopy Sampling Apparatus for Measuring Spatial Distribution of Neutral Radicals in Silane Plasma

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-Kui; LIN Kui-Xun; LIN Xuan-Ying; QIU Gui-Ming; ZHU Zu-Song

    2005-01-01

    @@ A movable mass spectroscopy gas sampling apparatus has been established and a straight-line fit ofsilane depletion fraction f is proposed.The spatial density distributions of SiHn (n = 0-3) radicals in silane radio frequency glow discharge have been measured by a mass spectrometer.The experimental results demonstrate that the densities of the neutral radicals have the peak value near the middle position of electrodes, and the densities of SiH2 and SiHs are higher than those of Si and SiH in silane plasma.This reveals that SiH2 and SiH3 may be the primary precursors in forming the a-Si:H film.

  14. Laser-induced breakdown spectroscopy of major and minor oxides in steel slags: Influence of detection geometry and signal normalization

    Science.gov (United States)

    Ahamer, C. M.; Eschlböck-Fuchs, S.; Kolmhofer, P. J.; Rössler, R.; Huber, N.; Pedarnig, J. D.

    2016-08-01

    Slag from secondary metallurgy in industrial steel production is analyzed by laser-induced breakdown spectroscopy (LIBS). The major oxides CaO, Al2O3, MgO, SiO2, FeO, MnO, and TiO2 are determined by calibration-free LIBS (CF-LIBS) method. For the minor oxide P2O5 calibration curves are established and the limits of detection (LOD) and the root-mean squared errors of prediction (RMSEP) are determined. The optical emission of the laser-induced plasma is measured for different detection geometries and varying sample position relative to the focal plane of the laser beam. LIBS spectra, plasma parameters, and analytical results are very similar for light collection with optical fibres close to the plasma ("direct detection") and at remote position ("collinear detection"). With collinear detection, the CF-LIBS calculated oxide concentrations are insensitive to sample position along the optical axis over wide range. The detection limits and the prediction errors of minor P2O5 depend on the major slag element used for signal normalization. With Mg and Si as internal reference elements the LOD values are 0.31 wt% and 0.07 wt%, respectively. The RMSEP values are lowest for signal normalization to Si. Calculations of the optical emission of ideal plasma support the experimental preference for Si as reference element in the phosphorous calibration.

  15. Double-pulse laser ablation coupled to laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, Reto, E-mail: reglaus@ufl.edu; Hahn, David W.

    2014-08-01

    Laser ablation coupled to laser-induced breakdown spectroscopy (LA-LIBS) is an analytical method, which minimizes sample matrix effects typically found in quantitative LIBS-based direct solid analyses. This paper reports the application of double-pulse laser ablation (DP-LA) to improve the analyte response and the achievable precisions of LA-LIBS. Two coaxial laser beams were applied at the ablation site and the analytical signals were then collected from a second free-standing LIBS plasma downstream of the ablation site. Signal improvements of up to one order of magnitude were observed compared to single-pulse LA-LIBS. The effect of the interpulse delay on the observed signal-to-noise ratios was studied and the quantification capabilities of the optimized DP-LA-LIBS setup were investigated for manganese and iron in a broad range of different alloy types. A linear response was observed for manganese across the different matrices, allowing for nonmatrix-matched calibrations. Matrix effects were observed when analyzing aluminum samples, which, however, could be compensated for by applying iron as internal standard. Size distributions of the ablated material and electron density measurements provide additional insight into the double-pulse process, with additional future work suggested. - Highlights: • Double-pulse laser ablation was coupled to laser-induced breakdown spectroscopy. • Nonmatrix-matched calibration of manganese in various alloys was performed. • Improved sensitivities and precisions compared to single-pulse LA were demonstrated. • Remaining matrix effects and internal standardization are discussed.

  16. Qualitative Analysis of Teeth and Evaluation of Amalgam Elements Penetration into Dental Matrix Using Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Gazmeh, Meisam; Bahreini, Maryam; Tavassoli, Seyed Hassan; Asnaashari, Mohammad

    2015-01-01

    Introduction: In this study, laser induced breakdown spectroscopy (LIBS) is used for qualitative analysis of healthy and carious teeth. The technique of laser ablation is receiving increasing attention for applications in dentistry, specifically for the treatment of teeth such as drilling of micro-holes and plaque removal. Methods: A quality-switched (Q-switched) Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) laser operating at wavelength of 1064 nm, pulse energy of 90 mJ/pulse, repetition rate of 2Hz and pulse duration of 6 ns was used in this analysis. In the process of ablation a luminous micro-plasma is normally generated which may be exploited for on-line elemental analysis via laser induced breakdown spectroscopy technique. We propose laser induced breakdown spectroscopy as a rapid, in situ and easy method for monitoring drilling process. Results: The results of elemental analysis show the presence of some trace elements in teeth including P, Ca, Mg, Zn, K, Sr, C, Na, H, O and the permeability of some amalgam (teeth filling materials) elements including Hg, Ag, Cu and Sn into dental matrix. Conclusion: This study addresses the ability of LIBS in elemental analysis of teeth and its feasibility in acute identification of healthy and carious teeth during drilling process for future clinical applications. PMID:25987971

  17. Analysis of fast ion induced instabilities in tokamak plasmas

    CERN Document Server

    Horváth, László

    2015-01-01

    In magnetic confinement fusion devices like tokamaks, it is crucial to confine the high energy fusion-born helium nuclei ($\\alpha$-particles) to maintain the energy equilibrium of the plasma. However, energetic ions can excite various instabilities which can lead to their enhanced radial transport. Consequently, these instabilities may degrade the heating efficiency and they can also cause harmful power loads on the plasma-facing components of the device. Therefore, the understanding of these modes is a key issue regarding future burning plasma experiments. One of the main open questions concerning energetic particle (EP) driven instabilities is the non-linear evolution of the mode structure. In this thesis, I present my results on the investigation of $\\beta$-induced Alfv\\'{e}n eigenmodes (BAEs) and EP-driven geodesic acoustic modes (EGAMs) observed in the ramp-up phase of off-axis NBI heated plasmas in the ASDEX Upgrade tokamak. These modes were well visible on several line-of-sights (LOSs) of the soft X-ra...

  18. Nanometer-film analysis by the laser-induced breakdown spectroscopy method: the effects of laser focus to sample distance.

    Science.gov (United States)

    Sun, Yuxiang; Zhong, Shilei; Shan, Fukai; Lu, Yuan; Sun, Xin; Liu, Zhe; Sheng, Pengpeng

    2015-05-20

    In order to develop a method to analyze metal elements in thin-film samples rapidly, directly and without sample preparation, and to understand the mechanism of laser-film interaction and plasma formation and evolution, a laboratory laser-induced breakdown spectroscopy system was established recently for nanometer-film analysis. ZrO(2) films prepared on silicon chips by a sol-gel process were employed in the following experiment and their thickness was about 40 nm. By the initial investigation that we carried out, the stability of this system was verified and the relative standard deviation of the target peak was found to be lower than 1.6% with the help of a position system. The influences of different experimental parameters, such as laser energy, laser focus to sample distance (LFTSD) settings, and gate delay, were studied under conditions of room temperature and atmospheric pressure. The experimental results show that the LFTSD was one of the most important parameters for plasma formation and spectral collection in comparison with other parameters by means of plasma spectra and images. So the effects of the LFTSD on the spectra, plasma evolution, and craters are specially discussed in this paper. At last, we calculated the plasma temperature and electron density under optimal parameters for quantitative analysis. The result shows that the established system is available for qualitative and quantitative analysis of films under conditions of single pulse and low ablation energy.

  19. X-ray spectroscopic characterization of laser produced hot dense plasmas; Caracterisation par spectroscopie X de plasmas chauds et denses crees par lasers de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Kontogiannopoulos, N

    2007-12-15

    In this work we performed experiments of emission and absorption spectroscopy of laser produced plasmas, to provide well characterized spectral data which permit to benchmark atomic physics codes. More precisely, we produced xenon and krypton plasmas in NLTE (non local thermodynamic equilibrium) conditions and studied their emission spectra. In a second experiment, we characterized the absorption spectra of zinc sulfide and aluminium plasmas in LTE (local thermodynamic equilibrium) conditions.The first two chapters give an outline of the theory involved in the study of the emission and absorption plasma spectroscopy. Chapter 1 describes the different atomic processes occurring in a plasma. The LTE and the NLTE statistics ruling the equilibrium of the atomic processes are presented. Then, we give a brief description of the different codes of plasma atomic physics used in the analysis of our experimental data, namely HULLAC, SCO and TRANSPEC/AVERROES. In Chapter 2 the macroscopic theory of the radiation transport through a plasma is given. We describe also the self-similar model of Basko and the view factor approach, which permits us to calculate the heating conditions of the absorption foils achieved in the interior of the spherical gold cavity. Chapter 3 gives a description of the instruments used for realizing the two experiments, as well as the technical characteristics of the LULI2000 laser facility used to perform the experiments. Chapter 4 presents the experiment realized to characterize the emission spectra of the xenon and krypton plasmas in NLTE, as well the analysis of the experimental data with TRANSPEC/AVERROES. Finally, the experiment for measuring the absorption spectrum of the ZnS plasma mixture and the analysis of the experimental data with the code SCO are given in Chapter 5.

  20. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Elizabeth J. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Barefield, James E., E-mail: jbarefield@lanl.gov [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Berg, John M. [Manufacturing Engineering and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Clegg, Samuel M.; Havrilla, George J.; Montoya, Velma M.; Le, Loan A.; Lopez, Leon N. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines. - Highlights: • LIBS analysis of mixed actinide samples: depleted uranium oxide and thorium oxide • LIBS analysis of actinide samples in powder form on carbon adhesive discs • Detection of uranium in a complex matrix (uranium ore) as a precursor to analyzing uranium in environmental samples.

  1. Eye-safe infrared laser-induced breakdown spectroscopy (LIBS) emissions from energetic materials

    Science.gov (United States)

    Brown, Ei E.; Hömmerich, Uwe; Yang, Clayton C.; Jin, Feng; Trivedi, Sudhir B.; Samuels, Alan C.

    2016-05-01

    Laser-induced breakdown spectroscopy is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. Besides elemental emissions from conventional UV-Vis LIBS, molecular LIBS emission signatures of the target compounds were observed in the long-wave infrared (LWIR) region in recent studies. Most current LIBS studies employ the fundamental Nd:YAG laser output at 1.064 μm, which has extremely low eye-damage threshold. In this work, comparative LWIR-LIBS emissions studies using traditional 1.064 μm pumping and eye-safe laser wavelength at 1.574 μm were performed on several energetic materials for applications in chemical, biological, and explosive (CBE) sensing. A Q-switched Nd: YAG laser operating at 1.064 μm and the 1.574 μm output of a pulsed Nd:YAG pumped Optical Parametric Oscillator were employed as the excitation sources. The investigated energetic materials were studied for the appearance of LWIR-LIBS emissions (4-12 μm) that are directly indicative of oxygenated breakdown products as well as partially dissociated and recombination molecular species. The observed molecular IR LIBS emission bands showed strong correlation with FTIR absorption spectra of the studied materials for 1.064 μm and 1.574 μm pump wavelengths.

  2. Analysis of acid pitchstone (Iceland using laser induced breakdown spectroscopy (LIBS

    Directory of Open Access Journals (Sweden)

    Pavel Veis

    2013-11-01

    Full Text Available Analysis of acid pitchstone (sample from Iceland using laser induced breakdown spectroscopy (LIBS is presented in this study. The rock sample was taken because of its uniform composition and a homogenous structure at microscale. Elements like Si, Fe, Ca, Mg, Al, Mn, Ti, Na, K, Ba, Sr and Li were detected in the LIBS spectra. Important plasma parameters (electron density and temperature were calculated on the base of Stark broadening mechanism of spectral lines and Saha- Boltzmann plot method, respectively. Quantitative analysis was performed using calibration free (CF approach of LIBS method. CF-LIBS analysis compared to reconstructed bulk rock analysis using precise mineral and glass analyses obtained by electron microprobe analysis (EMPA gives a good correlation, sufficient enough for having primary information of chemical composition of the studied rock sample or alternatively large mineral phases. An element with very low atomic number, lithium, was detected only by LIBS. Li is not detectable on microprobe. Taking into account possible local mineral accumulations and imprecisions induced by estimation of mineral volumes in the glass the CF-LIBS method gives acceptably precise analyses for geological purposes.

  3. Multivariate methods for analysis of environmental reference materials using laser-induced breakdown spectroscopy

    Directory of Open Access Journals (Sweden)

    Shikha Awasthi

    2017-06-01

    Full Text Available Analysis of emission from laser-induced plasma has a unique capability for quantifying the major and minor elements present in any type of samples under optimal analysis conditions. Chemometric techniques are very effective and reliable tools for quantification of multiple components in complex matrices. The feasibility of laser-induced breakdown spectroscopy (LIBS in combination with multivariate analysis was investigated for the analysis of environmental reference materials (RMs. In the present work, different (Certified/Standard Reference Materials of soil and plant origin were analyzed using LIBS and the presence of Al, Ca, Mg, Fe, K, Mn and Si were identified in the LIBS spectra of these materials. Multivariate statistical methods (Partial Least Square Regression and Partial Least Square Discriminant Analysis were employed for quantitative analysis of the constituent elements using the LIBS spectral data. Calibration models were used to predict the concentrations of the different elements of test samples and subsequently, the concentrations were compared with certified concentrations to check the authenticity of models. The non-destructive analytical method namely Instrumental Neutron Activation Analysis (INAA using high flux reactor neutrons and high resolution gamma-ray spectrometry was also used for intercomparison of results of two RMs by LIBS.

  4. Ultrafast laser-collision-induced fluorescence in atmospheric pressure plasma

    Science.gov (United States)

    Barnat, E. V.; Fierro, A.

    2017-04-01

    The implementation and demonstration of laser-collision-induced fluorescence (LCIF) generated in atmospheric pressure helium environments is presented in this communication. As collision times are observed to be fast (~10 ns), ultrashort pulse laser excitation (<100 fs) of the 23S to 33P (388.9 nm) is utilized to initiate the LCIF process. Both neutral-induced and electron-induced components of the LCIF are observed in the helium afterglow plasma as the reduced electric field (E/N) is tuned from  <0.1 Td to over 5 Td. Under the discharge conditions presented in this study (640 Torr He), the lower limit of electron density detection is ~1012 e cm‑3. The spatial profiles of the 23S helium metastable and electrons are presented as functions of E/N to demonstrate the spatial resolving capabilities of the LCIF method.

  5. Optical emission enhancement in laser-induced breakdown spectroscopy using micro-torches

    Science.gov (United States)

    Liu, L.; Huang, X.; Li, S.; Lu, Yao; Chen, K.; Lu, Y. F.

    2016-03-01

    A cost effective method for optical emission enhancement in laser-induced breakdown spectroscopy (LIBS) has been proposed in this research. The pulsed Nd:YAG laser with a wavelength of 532 nm was used for sample ablation and plasma generation. A cost effective commercial butane micro-torch was put parallel to the sample surface to generate a small flame above the surface. The laser-induced plasma expanded in the flame environment. The time-resolved optical emission intensity and signal-to-noise ratio (SNR) have been observed with and without micro torch. For laser with pulse energy of 20 mJ, the relationship between optical emission intensity and delay time indicates that signal intensities have been greatly enhanced in the initial several microseconds when using micro torch. The time-resolved study of signal-to-noise ratio shows that the maximum SNR occurs at the delay time of 2 μs. The laser energy effects on the enhancements of optical emission intensity and SNR have also been analyzed, which indicates that the enhancement factors are both delay time and laser energy dependent. The maximum enhancement factors for both optical emission intensity and SNR gradually decreases with the laser energy increase. The limits of detection (LODs) for aluminum (Al) and molybdenum (Mo) in steel have been estimated, which shows that the detection sensitivity has been improved by around 4 times. The LODs of Al and Mo have been reduced from 18 to 6 ppm and from 110 to 36 ppm in LIBS, respectively. The method of LIBS by a micro torch has been demonstrated to be a cost effective method for detection sensitivity improvement, especially in the situation of low laser pulse energy.

  6. Fast, deep record length, time-resolved visible spectroscopy of plasmas using fiber grids

    Science.gov (United States)

    Brockington, Samuel; Case, Andrew; Cruz, Edward; Witherspoon, F. Douglas; Horton, Robert; Klauser, Ruth; Hwang, D. Q.

    2016-10-01

    HyperV Technologies is developing a fiber-coupled, deep-record-length, low-light camera head for performing high time resolution spectroscopy on visible emission from plasma events. New solid-state Silicon Photo-Multiplier (SiPM) chips are capable of single photon event detection and high speed data acquisition. By coupling the output of a spectrometer to an imaging fiber bundle connected to a bank of amplified SiPMs, time-resolved spectroscopic imagers of 100 to 1,000 pixels can be constructed. Target pixel performance is 10 Megaframes/sec with record lengths of up to 256,000 frames yielding 25.6 milliseconds of record at10 Megasamples/sec resolution. Pixel resolutions of 8 to 12 bits are pos- sible. Pixel pitch can be refined by using grids of 100 μm to 1000 μm diameter fibers. A prototype 32-pixel spectroscopic imager employing this technique was constructed and successfully tested at the University of California at Davis Compact Toroid Injection Experiment (CTIX) as a full demonstration of the concept. Experimental results will be dis-cussed, along with future plans for the Phase 2 project, and potential applications to plasma experiments . Work supported by USDOE SBIR Grant DE-SC0013801.

  7. K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections

    CERN Document Server

    Pain, Jean-Christophe; Comet, Maxime; Gilles, Dominique

    2016-01-01

    The broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,...) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy. The approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates and the relativistic fine-structure of Lyman lines is included by diagonalizing the hamiltonian matrix associated to quantum states having the same principal quantum number n. The SCO-RCG code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satell...

  8. Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Peng, Yi; Gislum, René;

    and texture was tested and compared with near infrared spectroscopy (NIRS) technique and traditional laboratory analysis. Calibration models were developed on 50 topsoil samples. For all properties except silt, higher predictive ability of LIBS than NIRS models was obtained. Successful calibrations indicate......Soil organic carbon (SOC) and texture have a practical value for agronomy and the environment. Thus, alternative techniques to supplement or substitute for the expensive conventional analysis of soil are developed. Here the feasibility of laser-induced breakdown spectroscopy (LIBS) to determine SOC...

  9. Exploring the electron density in plasma induced by EUV radiation: I. Experimental study in hydrogen

    NARCIS (Netherlands)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsun, V. M.; Koshelev, K. N.; Lopaev, D. V.; Bijkerk, F.; Banine, V.

    2016-01-01

    Plasmas induced by EUV radiation are unique since they are created without the need of any discharge. Moreover, it is essential to characterize these plasmas to understand and predict their long term impact on highly delicate optics in EUV lithography tools. In this paper we study plasmas induced by

  10. Emission spectroscopy of laser-ablated Si plasma related to nanoparticle formation

    Science.gov (United States)

    Narayanan, V.; Thareja, R. K.

    2004-01-01

    We report on the laser ablation of Si in vacuum, and in the presence of helium ambient at 1 and 10 Torr, respectively. The silicon nanoparticles were deposited on silicon substrate at room temperature by ablating silicon wafer in ambient atmosphere of helium at 1 Torr. The mean cluster size ranging from 1.8 to 4.4 nm is observed depending on the laser intensity. Optical emission spectroscopy and images of the plume are used to study the spatial and temporal variation of the silicon plasma. The electron density, measured by the Stark-broadening of Si I transition 3 p2 1S-4 s 1P0 at 390.55 nm and temperature, assuming thermal equilibrium, were found to be 1.2×10 18 cm -3 and 2 eV, respectively. The temporal variation of Si I transition 3 p2 1S-4 s 1P0 at 390.55 nm showed a shift in peak position attributed to collisions at an early stage of plasma formation. The relative concentration of Si II/Si I estimated by using the Saha-Boltzmann relation showed abundance of Si I. Time resolved images of the plume were used to investigate the dynamics of the expanding plasma plume, estimating the vapor pressure, vapor temperature, velocity, and stopping distance of the plume. The photoluminescent spectra of the Si thin films showed three distinct emission bands at 2.7, 2.2 and 1.69 eV, the origin of these bands is attributed to defects and quantum confinement.

  11. Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Eschlböck-Fuchs, S.; Haslinger, M.J.; Hinterreiter, A.; Kolmhofer, P.; Huber, N. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Rössler, R. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Heitz, J. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2013-09-01

    We investigate the influence of sample temperature on the dynamics and optical emission of laser induced plasma for various solid materials. Bulk aluminum alloy, silicon wafer, and metallurgical slag samples are heated to temperature T{sub S} ≤ 500 °C and ablated in air by Nd:YAG laser pulses (wavelength 1064 nm, pulse duration approx. 7 ns). The plasma dynamics is investigated by fast time-resolved photography. For laser-induced breakdown spectroscopy (LIBS) the optical emission of plasma is measured by Echelle spectrometers in combination with intensified CCD cameras. For all sample materials the temporal evolution of plume size and broadband plasma emission vary systematically with T{sub S}. The size and brightness of expanding plumes increase at higher T{sub S} while the mean intensity remains independent of temperature. The intensity of emission lines increases with temperature for all samples. Plasma temperature and electron number density do not vary with T{sub S}. We apply the calibration-free LIBS method to determine the concentration of major oxides in slag and find good agreement to reference data up to T{sub S} = 450 °C. The LIBS analysis of multi-component materials at high temperature is of interest for technical applications, e.g. in industrial production processes. - Highlights: • Size and emission of laser-induced plasma increase with sample temperature Ts. • Mean optical intensity of plasma is independent of Ts. • Plasma temperature and electron number density do not vary with Ts. • Major oxides in steel slag are quantified up to Ts = 450 °C. • Industrial steel slags are analyzed by calibration-free LIBS method.

  12. Cold plasma interactions with plants: Morphing and movements of Venus flytrap and Mimosa pudica induced by argon plasma jet.

    Science.gov (United States)

    Volkov, Alexander G; Xu, Kunning G; Kolobov, Vladimir I

    2017-12-01

    Low temperature (cold) plasma finds an increasing number of applications in biology, medicine and agriculture. In this paper, we report a new effect of plasma induced morphing and movements of Venus flytrap and Mimosa pudica. We have experimentally observed plasma activation of sensitive plant movements and morphing structures in these plants similar to stimulation of their mechanosensors in vivo. Application of an atmospheric pressure argon plasma jet to the inside or outside of a lobe, midrib, or cilia in Dionaea muscipula Ellis induces trap closing. Treatment of Mimosa pudica by plasma induces movements of pinnules and petioles similar to the effects of mechanical stimulation. We have conducted control experiments and simulations to illustrate that gas flow and UV radiation associated with plasma are not the primary reasons for the observed effects. Reactive oxygen and nitrogen species (RONS) produced by cold plasma in atmospheric air appear to be the primary reason of plasma-induced activation of phytoactuators in plants. Some of these RONS are known to be signaling molecules, which control plants' developmental processes. Understanding these mechanisms could promote plasma-based technology for plant developmental control and future use for plant protection from pathogens. Our work offers new insight into mechanisms which trigger plant morphing and movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Temporal-resolved characterization of laser-induced plasma for spectrochemical analysis of gas shales

    Science.gov (United States)

    Xu, Tao; Zhang, Yong; Zhang, Ming; He, Yi; Yu, Qiaoling; Duan, Yixiang

    2016-07-01

    Optical emission of laser ablation plasma on a shale target surface provides sensitive laser-induced breakdown spectrometry (LIBS) detection of major, minor or trace elements. An exploratory study for the characterization of the plasma induced on shale materials was carried out with the aim to trigger a crucial step towards the quantitative LIBS measurement. In this work, the experimental strategies that optimize the plasma generation on a pressed shale pellet surface are presented. The temporal evolution properties of the plasma induced by ns Nd:YAG laser pulse at the fundamental wavelength in air were investigated using time-resolved space-integrated optical emission spectroscopy. The electron density as well as the temperatures of the plasma were diagnosed as functions of the decay time for the bulk plasma analysis. In particular, the values of time-resolved atomic and ionic temperatures of shale elements, such as Fe, Mg, Ca, and Ti, were extracted from the well-known Boltzmann or Saha-Boltzmann plot method. Further comparison of these temperatures validated the local thermodynamic equilibrium (LTE) within specific interval of the delay time. In addition, the temporal behaviors of the signal-to-noise ratio of shale elements, including Si, Al, Fe, Ca, Mg, Ba, Li, Ti, K, Na, Sr, V, Cr, and Ni, revealed the coincidence of their maximum values with LIBS LTE condition in the time frame, providing practical implications for an optimized LIBS detection of shale elements. Analytical performance of LIBS was further evaluated with the linear calibration procedure for the most concerned trace elements of Sr, V, Cr, and Ni present in different shales. Their limits of detection obtained are elementally dependent and can be lower than tens of parts per million with the present LIBS experimental configurations. However, the occurrence of saturation effect for the calibration curve is still observable with the increasing trace element content, indicating that, due to the

  14. Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air

    Science.gov (United States)

    Wang, Jinmei; Zheng, Peichao; Liu, Hongdi; Fang, Liang

    2016-11-01

    An experimental setup of laser-induced graphite plasma was built and the spectral characteristics and properties of graphite plasma were studied. From the temporal behavior of graphite plasma, the duration of CN partials (B2 Σ+ → X2 Σ+) emission was two times longer than that of atomic carbon, and all intensities reached the maximum during the early stage from 0.2 μs to 0.8 μs. The electron temperature decreased from 11807 K to 8755 K, the vibration temperature decreased from 8973 K to 6472 K, and the rotational temperature decreased from 7288 K to 4491 K with the delay time, respectively. The effect of the laser energy was also studied, and it was found that the thresholds and spectral characteristics of CN molecular and C atomic spectroscopy presented great differences. At lower laser energies, the electron excited temperature, the electron density, the vibrational temperature and rotational temperature of CN partials increased rapidly. At higher laser energies, the increasing of electron excited temperature and electron density slow down, and the vibrational temperature and rotational temperature even trend to saturation due to plasma shielding and dissociation of CN molecules. The relationship among the three kinds of temperatures was Telec>Tvib>Trot at the same time. The electron density of the graphite plasma was in the order of 1017 cm-3 and 1018 cm-3. supported by National Natural Science Foundation of China (No. 61205149), Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry, Science Research Funds of Chongqing Municipal Education Commission (KJ1500436), Scientific and Technological Talents Training Project of Chongqing (CSTC2013kjrc-qnrc40002), Key Project of Foundation and Advanced Technology Research Project of Chongqing (CSTC2015jcyjB0358), Visiting Scholarship of State Key Laboratory of Power Transmission Equipment & System Security and New Technology (2007DA10512714409)

  15. Nanoparticle detection in aqueous solutions using Raman and Laser Induced Breakdown Spectroscopy

    NARCIS (Netherlands)

    Sovago, M.; Buis, E.-J.; Sandtke, M.

    2013-01-01

    We show the chemical identification and quantification of the concentration and size of nanoparticle (NP) dispersions in aqueous solutions by using a combination of Raman Spectroscopy and Laser Induced Breakdown Spectroscopy (LIBS). The two spectroscopic techniques are applied to demonstrate the NP

  16. Nanoparticle detection in aqueous solutions using Raman and Laser Induced Breakdown Spectroscopy

    NARCIS (Netherlands)

    Sovago, M.; Buis, E.-J.; Sandtke, M.

    2013-01-01

    We show the chemical identification and quantification of the concentration and size of nanoparticle (NP) dispersions in aqueous solutions by using a combination of Raman Spectroscopy and Laser Induced Breakdown Spectroscopy (LIBS). The two spectroscopic techniques are applied to demonstrate the NP

  17. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Blaskó, Ágnes; Mike, Nóra; Gróf, Pál; Gazdag, Zoltán; Czibulya, Zsuzsanna; Nagy, Lívia; Kunsági-Máté, Sándor; Pesti, Miklós

    2013-09-01

    Citrinin (CTN) is a toxic fungal metabolite that is a hazardous contaminant of foods and feeds. In the present study, its acute toxicity and effects on the plasma membrane of Schizosaccharomyces pombe were investigated. The minimum inhibitory concentration of CTN against the yeast cells proved to be 500 μM. Treatment with 0, 250, 500 or 1000 μM CTN for 60 min resulted in a 0%, 2%, 21% or 100% decrease, respectively, in the survival rate of the cell population. Treatment of cells with 0, 100, 500 or 1000 μM CTN for 20 min induced decrease in the phase-transition temperature of the 5-doxylstearic acid-labeled plasma membrane to 16.51, 16.04, 14.18 or 13.98°C, respectively as measured by electron paramagnetic resonance spectroscopy. This perturbation was accompanied by the efflux of essential K⁺ from the cells. The existence of an interaction between CTN and glutathione was detected for the first time by spectrofluorometry. Our observations may suggest a direct interaction of CTN with the free sulfhydryl groups of the integral proteins of the plasma membrane, leading to dose-dependent membrane fluidization. The change in fluidity disturbed the ionic homeostasis, contributing to the death of the cells, which is a novel aspect of CTN cytotoxicity.

  18. Kinetic aspects of the formation of aluminium oxide by use of a microwave-induced plasma.

    Science.gov (United States)

    Quade, A; Steffen, H; Hippler, R; Wulff, H

    2002-10-01

    The oxidation of thin aluminium layers in a microwave plasma has been investigated to determine the kinetics of oxide growth. Thin Al-coatings were oxidized by means of a variety of gas mixtures, characterized by different partial pressures of oxygen, in microwave-induced plasmas of different power. To study the whole kinetic process the Al-metal and the oxide formed were investigated by means of a combination of grazing incidence X-ray reflectometry (GIXR) and grazing incidence X-ray diffractometry (GIXRD). XPS and FTIR spectroscopy confirmed the formation of stoichiometric Al(2)O(3). The alumina formed is X-ray amorphous. Quantitative description of oxide formation was achieved indirectly by determination of the decrease in the integrated intensity of the Al(111)-peak and the total thickness of the whole coating. These values enabled calculation of kinetic data. It was found that oxide growth was a combination of two simultaneous processes - diffusion and sputter processes. The diffusion coefficient D (cm(2) s(-1)) and the sputter rate S (nm s(-1)) were determined. The effect of the composition of the gas mixture, microwave power, and concentration of activated oxygen species on the oxidation process will be discussed. For calculation of the activation energy, E(A), of this plasma-enhanced diffusion process the temperature-dependence of D was investigated.

  19. Emission properties of plasmas induced by near IR laser pulses in the far VUV

    Science.gov (United States)

    Khater, Mohamed

    2013-07-01

    Influence of pulsed laser energy on emission characteristics of laser plasmas induced in various inert atmospheres and pressures is demonstrated by emission spectroscopy in the far vacuum UV zone (around 100 nm). In this context, argon and helium were employed and their pressures were controlled in the range 0.005-5.0 mbar. A Q-switched Nd:YAG laser emitting in the near IR at 1064 nm was employed in the experiments. The laser energy was varied between 200 and 800 mJ and focused onto a reference steel sample within a vacuum-tight chamber. The radiation emitted from the line plasmas generated was recorded from a section located 2.5 mm from the target surface. Under any gas composition and pressure studied, line and background emission intensities as well as signal-to-background ratios showed significant dependence on the laser energy. For example, at 800 mJ the highest spectral line intensity was obtained in argon atmosphere at a pressure of about 0.5 mbar, while helium at the same pressure produced the largest signal-to-background ratio using lower laser pulse energy of 400 mJ. In any case, the nature and characteristics of laser plasma-based emission in the far vacuum UV are similar to those recorded in the UV-visible range.

  20. Determining the Concentrations and Temperatures of Products in a CF_4/CHF_3/N_2 Plasma via Submillimeter Absorption Spectroscopy

    Science.gov (United States)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2017-06-01

    Plasmas used for the manufacturing of semiconductor devices are similar in pressure and temperature to those used in the laboratory for the study of astrophysical species in the submillimeter (SMM) spectral region. The methods and technology developed in the SMM for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied and their spectra have been cataloged or are in the literature. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500-750 GHz radiation through a commercial inductively coupled plasma chamber. The measurement of transmission spectra was simultaneously fit for background and absorption signal. The measured absorption was used to calculate absolute densities and temperatures of polar species. Measurements for CHF_3, CF_2, FCN, HCN, and CN made in a CF_4/CHF_3/N_2 plasma will be presented. Temperature equilibrium among species will be shown and the common temperature is leveraged to obtain accurate density measurements for simultaneously observed species. The densities and temperatures of plasma species are studied as a function of plasma parameters, including flow rate, pressure, and discharge power.

  1. Wake-induced bending of two-dimensional plasma crystals

    Energy Technology Data Exchange (ETDEWEB)

    Röcker, T. B., E-mail: tbr@mpe.mpg.de; Ivlev, A. V., E-mail: ivlev@mpe.mpg.de; Zhdanov, S. K.; Morfill, G. E. [Max Planck Institute for Extraterrestrial Physics, 85741 Garching (Germany); Couëdel, L. [CNRS, Aix-Marseille-Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille Cedex 20 (France)

    2014-07-15

    It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.

  2. Wake-induced bending of two-dimensional plasma crystals

    CERN Document Server

    Röcker, T B; Zhdanov, S K; Couëdel, L; Morfill, G E

    2014-01-01

    It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.

  3. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    National Research Council Canada - National Science Library

    Gimenez, Y; Busser, B; Trichard, F; Kulesza, A; Laurent, J M; Zaun, V; Lux, F; Benoit, J M; Panczer, G; Dugourd, P; Tillement, O; Pelascini, F; Sancey, L; Motto-Ros, V

    2016-01-01

    .... The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy...

  4. Exploring the electron density in plasmas induced by extreme ultraviolet radiation in argon

    CERN Document Server

    van der Horst, R M; Osorio, E A; Banine, V Y

    2015-01-01

    The new generation of lithography tools use high energy EUV radiation which ionizes the present background gas due to photoionization. To predict and understand the long term impact on the highly delicate mirrors It is essential to characterize these kinds of EUV-induced plasmas. We measured the electron density evolution in argon gas during and just after irradiation by a short pulse of EUV light at 13.5 nm by applying microwave cavity resonance spectroscopy. Dependencies on EUV pulse energy and gas pressure have been explored over a range relevant for industrial applications. Our experimental results show that the maximum reached electron density depends linearly on pulse energy. A quadratic dependence - caused by photoionization and subsequent electron impact ionization by free electrons - is found from experiments where the gas pressure is varied. This is demonstrated by our theoretical estimates presented in this manuscript as well.

  5. Characterizing Hohlraum Plasma Conditions at the National Ignition Facility (NIF) Using X-ray Spectroscopy

    Science.gov (United States)

    Barrios, Maria Alejandra

    2015-11-01

    Improved hohlraums will have a significant impact on increasing the likelihood of indirect drive ignition at the NIF. In indirect-drive Inertial Confinement Fusion (ICF), a high-Z hohlraum converts laser power into a tailored x-ray flux that drives the implosion of a spherical capsule filled with D-T fuel. The x-radiation drive to capsule coupling sets the velocity, adiabat, and symmetry of the implosion. Previous experiments in gas-filled hohlraums determined that the laser-hohlraum energy coupling is 20-25% less than modeled, therefore identifying energy loss mechanisms that reduce the efficacy of the hohlraum drive is central to improving implosion performance. Characterizing the plasma conditions, particularly the plasma electron temperature (Te) , is critical to understanding mechanism that affect the energy coupling such as the laser plasma interactions (LPI), hohlraum x-ray conversion efficiency, and dynamic drive symmetry. The first Te measurements inside a NIF hohlraum, presented here, were achieved using K-shell X-ray spectroscopy of an Mn-Co tracer dot. The dot is deposited on a thin-walled CH capsule, centered on the hohlraum symmetry axis below the laser entrance hole (LEH) of a bottom-truncated hohlraum. The hohlraum x-ray drive ablates the dot and causes it to flow upward, towards the LEH, entering the hot laser deposition region. An absolutely calibrated streaked spectrometer with a line of sight into the LEH records the temporal history of the Mn and Co X-ray emission. The measured (interstage) Lyα/ Heα line ratios for Co and Mn and the Mn-Heα/Co-Heα isoelectronic line ratio are used to infer the local plasma Te from the atomic physics code SCRAM. Time resovled x-ray images perpendicular to the hohlraum axis record the dot expansion and trajectory into the LEH region. The temporal evolution of the measured Te and dot trajectory are compared with simulations from radiation-hydrodynamic codes. This work was performed under the auspices of the U

  6. Plasma-induced field emission study of carbon nanotube cathode

    Directory of Open Access Journals (Sweden)

    Yi Shen

    2011-10-01

    Full Text Available An investigation on the plasma-induced field emission (PFE properties of a large area carbon nanotube (CNT cathode on a 2 MeV linear induction accelerator injector is presented. Experimental results show that the cathode is able to emit intense electron beams. Intense electron beams of 14.9–127.8  A/cm^{2} are obtained from the cathode. The CNT cathode desorbs gases from the CNTs during the PFE process. The fast cathode plasma expansion affects the diode perveance. The amount of outgassing is estimated to be 0.06–0.49  Pa·L, and the ratio of outgassing and electron are roughly calculated to be within the range of 170–350 atoms per electron. The effect of the outgassing is analyzed, and the outgassing mass spectrum of the CNT cathode has been studied during the PFE. There is a significant desorption of CO_{2}, N_{2}(CO, and H_{2} gases, which plays an important role during the PFE process. All the experiments demonstrate that the outgassing plays an important role in the formation of the cathode plasma. Moreover, the characteristic turn-on time of the CNT cathode was measured to be 39 ns.

  7. Plasma transport induced by the stochastic magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Tetsuyuki [Interdisciplinary Graduate School of Engineering Sciences, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Sanae-I.; Yagi, Masatoshi

    1998-10-01

    The anomalous plasma transport induced by the stochastic magnetic field is studied to understand the disruption phenomena in the tokamak plasma. At first, the transport matrix which indicate the plasma transport in the stochastic magnetic field is formulated. For the formulation, the quasi-linear approximation for the diffusivity of the stochastic magnetic field is used and the shifted Maxwellian is assumed to the particle distribution. Using this transport matrix the radial electric field formation, which is generated by the ambipolar condition, and the associated temperature profile is obtained. The temperature profile in the stochastic magnetic field becomes flat because of the rapid temperature diffusion. Next the temperature crash, i.e., the sawtooth oscillation and the giant ELM, is analyzed using the turbulence-turbulence transition model, which describes the transition between the state of the electrostatic turbulence and that of the electromagnetic turbulence. This transition has a hysteresis characteristics. When the state changes to the electromagnetic mode, the stochastic magnetic field appears and the temperature transport is enhanced. This transition model is included in the 1-D transport equation. To calculate this transport equation numerically the crash of the temperature profile and the propagation of the crash front (avalanche) are realized by this model. The collapse without a precursor oscillation is revealed. (author)

  8. Dynamics of double-pulse laser produced titanium plasma inferred from thin film morphology and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krstulović, N., E-mail: niksak@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Salamon, K., E-mail: ksalamon@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Modic, M., E-mail: martina.modic@ijs.si [Jožef Stefan Institute, Jamova 39, 1001 Ljubljana (Slovenia); Bišćan, M., E-mail: mbiscan@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Milat, O., E-mail: milat@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Milošević, S., E-mail: slobodan@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia)

    2015-05-01

    In this paper, dynamics of double-pulse laser produced titanium plasma was studied both directly using optical emission spectroscopy (OES) and indirectly from morphological properties of deposited thin films. Both approaches yield consistent results. Ablated material was deposited in a form of thin film on the Si substrate. During deposition, plasma dynamics was monitored using optical emission spectroscopy with spatial and temporal resolutions. The influence of ablation mode (single and double) and delay time τ (delay between first and second pulses in double-pulse mode) on plasma dynamics and consequently on morphology of deposited Ti-films was studied using X-ray reflectivity and atomic force microscopy. Delay time τ was varied from 170 ns to 4 μs. The results show strong dependence of both emission signal and Ti-film properties, such as thickness, density and roughness, on τ. In addition, correlation of average density and thickness of film is observed. These results are discussed in terms of dependency of angular distribution and kinetic energy of plasma plume particles on τ. Advantages of using double-pulse laser deposition for possible application in thin film production are shown. - Highlights: • Ti-thin films produced by single and double pulse laser ablation mode. • Ablation mode and delay time influenced plasma plume and film characteristics. • Films are most compact for optimized delay time (thinnest, smoothest and most dense). • Plasma dynamics can be inferred from film characteristics.

  9. Laser-induced breakdown spectroscopy application to control of the process of precious metal recovery and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Legnaioli, S.; Lorenzetti, G.; Pardini, L. [Institute of Chemistry of Organometallic Compounds, Research Area of CNR, Via G. Moruzzi, 1-56124 Pisa (Italy); Palleschi, V., E-mail: vincenzo.palleschi@cnr.it [Institute of Chemistry of Organometallic Compounds, Research Area of CNR, Via G. Moruzzi, 1-56124 Pisa (Italy); Pace, D.M. Diaz [Instituto de Fisica ' Arroyo Seco' , Facultad de Ciencias Exactas, Paraje Arroyo Seco-(B7000GHG) Tandil (Argentina); Garcia, F. Anabitarte [Photonic Engineering Group, Universidad de Cantabria, Edificio I-D-i Telecomunicacion, Dpto. TEISA-39005 Santander (Spain); Grassi, R.; Sorrentino, F.; Carelli, G.; Francesconi, M.; Francesconi, F. [Marwan Technology, Largo Pontecorvo, 3-56127 Pisa Italy (Italy); Borgogni, R. [CABRO S.p.A.,Via Setteponti, 141-52100 Arezzo (Italy)

    2012-05-15

    In this paper, we discuss the application of laser-induced breakdown spectroscopy to precious metal alloys used for the control of the process of recovery and recycling of scraps and waste of industrial processes. In particular, the possibility to obtain sensitivity and trueness comparable to the current systems used in industrial environment in the quantitative determination of the elements of interest was explored. The present study demonstrates that laser-induced breakdown spectroscopy can be considered as a viable alternative to inductively coupled plasma optical emission spectrometry and X-ray fluorescence spectroscopy for the determination of recovered precious metals. The limits of detection obtained are of the order of 0.2 mg/g for all the elements considered. The maximum deviation with respect to the nominal concentrations is around 1 mg/g at concentrations around 20 mg/g (gold) corresponding to a relative error slightly higher than {+-} 5%. - Highlights: Black-Right-Pointing-Pointer We discuss application of LIBS for the analysis of recovered precious metals. Black-Right-Pointing-Pointer The advantages and drawbacks of LIBS vs. XRF are evidenced. Black-Right-Pointing-Pointer A strategy is devised for obtaining by LIBS limits of detection comparable to XRF. Black-Right-Pointing-Pointer The same strategy would provide trueness in analytical results comparable to XRF. Black-Right-Pointing-Pointer The time needed and the complexity of LIBS analysis would not exceed the XRF ones.

  10. Multivariate Analysis of Laser-Induced Breakdown Spectroscopy for Discrimination between Explosives and Plastics

    Institute of Scientific and Technical Information of China (English)

    WANG Qian-Qian; LIU Kai; ZHAO Hua

    2012-01-01

    A method to distinguish explosives from plastics using laser-induced breakdown spectroscopy is discussed. A model for classification with cross-validation theory is built based on the partial least-square discriminant analysis method. Seven types of plastics and one explosive are used as samples to test the model. The experimental results demonstrate that laser-induced breakdown spectroscopy has the capacity to discriminate explosives from plastics combined with chemometrics methods. The results could be useful for prospective research of laser-induced breakdown spectroscopy on the differentiation of explosives and other materials.%A method to distinguish explosives from plastics using laser-induced breakdown spectroscopy is discussed.A model for classification with cross-validation theory is built based on the partial least-square discriminant analysis method.Seven types of plastics and one explosive are used as samples to test the model.The experimental results demonstrate that laser-induced breakdown spectroscopy has the capacity to discriminate explosives from plastics combined with chemometrics methods.The results could be useful for prospective research of laser-induced breakdown spectroscopy on the differentiation of explosives and other materials.

  11. Elemental analysis of powders with surface-assisted thin film laser-induced breakdown spectroscopy

    Science.gov (United States)

    Tian, Ye; Cheung, Hoi Ching; Zheng, Ronger; Ma, Qianli; Chen, Yanping; Delepine-Gilon, Nicole; Yu, Jin

    2016-10-01

    We have developed in this work a method of elemental analysis of powdered materials with laser-induced breakdown spectroscopy (LIBS). This method requires simple sample preparation. Powders are first mixed into a 75 cSt base oil to obtain a paste which is then smeared onto the polished surface of a solid state substrate, aluminum plate for instance, in the form of a uniform thin film. The prepared sample is ablated by a high energy infrared (IR at 1064 nm) nanosecond laser pulse. The laser beam transmits through the coating layer of the material to be analyzed and induces a strong plasma from the substrate. The initial plasma interacts in turn with the coating layer, leading to the vaporization and excitation of the incorporated powder particles. The subsequent emission from the plasma includes emission lines of the elements contained in the powder, which is preferentially captured by a suitable detection system. The analysis of the recorded spectrum allows the concentration determination of the targeted elements in the powder. We first applied the method on a cellulose powder of 20 μm typical particle size. The powder was spiked with titanium dioxide (TiO2) nanoparticles for Ti concentrations ranging from 25 ppm to 5000 ppm by weight. Calibration graphs were thus built to deduce figures-of-merit parameters such as the coefficient of determination (R2) and the limits of detection and quantification (LoD and LoQ). We optimized especially the choice of reference line for spectrum normalization, which resulted in better analytical performances. In the second step, two sets of powders, the aforementioned cellulose powder and an alumina powder with average particle size of ≤ 10 μm, were spiked with TiO2 nanoparticles. We then assessed the matrix effect between these two different powders for the determination of Ti by comparing their calibration curves. Our results show universal calibration curve in Ti determination in the two tested matrices. The results are

  12. Plasma-induced Escape and Alterations of Planetary Atmospheres

    Science.gov (United States)

    Johnson, R. E.; Tucker, O. J.; Ewrin, J.; Cassidy, T. A.; Leblanc, F.

    2009-12-01

    The atmospheres of planets and planetary satellites are typically imbedded in space plasmas. Depending on the interaction with the induced or intrinsic fields energetic ions can have access to the thermosphere and the corona affecting their composition and thermal structure and causing loss to space. These processes are often lumped together as ‘atmospheric sputtering’ (Johnson 1994). In this talk I will review the results of simulations of the plasma bombardment at a number of solar system bodies and use those data to describe the effect on the upper atmosphere and on escape. Of considerable recent interest is the modeling of escape from Titan. Prior to Cassini’s tour of the Saturnian system, plasma-induced escape was suggested to be the dominant loss process, but recent models of enhanced thermal escape, often referred to as ‘slow hydrodynamic’ escape, have been suggested to lead to much larger Titan atmospheric loss rates (Strobel 2008; Cui et al. 2008). Such a process has been suggested to be active at some point in time on a number of solar system bodies. I will present hybrid fluid/ kinetic models of the upper atmosphere of certain bodies in order to test both the plasma-induced and thermal escape processes. Preliminary results suggest that the loss rates estimated using the ‘slow hydrodynamic’ escape process can be orders of magnitude too large. The implications for Mars, Titan and Pluto will be discussed. Background for this talk is contained in the following papers (Johnson 2004; 2009; Chaufray et al. 2007; Johnson et al. 2008; 2009; Tucker and Johnson 2009). References: Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann, Mars Solar Wind interaction: formation of the Martian corona and atmosphric loss to space, JGR 112, E09009, doi:10.1029/2007JE002915 (2007) Cui, J., Yelle, R. V., Volk, K. Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. J. Geophys. Res. 113, doi:10

  13. Plasma-ion Induced Sputtering and Heating of Titan's Atmosphere

    Science.gov (United States)

    Johnson, R. E.; Tucker, O. J.

    2007-05-01

    Titan is unique among the outer solar system icy satellites in having an atmosphere with a column density about ten times that of the Earth's atmosphere and an atmospheric mass to solid mass ratio comparable to that of Venus. Atmospheres equivalent in size to that at Titan would have been removed from the icy Galilean satellites by the plasma trapped in the Jovian magnetosphere (Johnson 2004). Therefore, the use of Cassini data to determine the present erosion rate of Titan's atmosphere provides an important end point for studying the erosion and heating of planetary and satellite atmospheres by an ambient plasma. In this paper we describe the deposition of energy, the erosion and the expansion of the upper atmosphere of Titan using Direct Simulation Monte Carlo models (Shematovich et al. 2003; Michael et al. 2005; Michael and Johnson 2005). These calculations are used to calibrate semi-empirical models of atmospheric sputtering (Johnson 1994) that are used to interpret Cassini data at Titan. Using a number of plasma conditions, the temperature and density vs. altitude above the exobase and the rate of escape are calculated. References: Johnson, R.E. "Plasma-induced Sputtering of an Atmosphere" in Space Science Reviews 69 215-253 (1994). Johnson. R.E., " The magnetospheric plasmadriven evolution of satellite atmospheres" Astrophys. J. 609, L99-L102 (2004). Michael, M. and R.E. Johnson, "Energy deposition of pickup ions and heating of Titan's atmosphere", Planetary & Space Sci.53, 1510-1514 (2005). Michael M., R.E. Johnson, F. Leblanc, M. Liu, J.G. Luhmann, and V.I. Shematovich, "Ejection of nitrogen from Titan's atmosphere by magnetospheric ions and pick-up ions", Icarus 175, 263-267 (2005). Shematovich, V.I., R.E. Johnson, M. Michael, and J.G. Luhmann, "Nitrogen loss from Titan", JGR 108, No. E8, 5087, doi:10.1029/2003JE002094 (2003).

  14. Radiation-induced defects in chalcogenide glasses characterized by combined optical spectroscopy, XPS and PALS methods

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa 42201 (Poland); Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Lviv Institute of Materials of SRC ' ' Carat' ' , 202, Stryjska str., 79031 Lviv (Ukraine); Kovalskiy, A.; Jain, H. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Golovchak, R. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Lviv Institute of Materials of SRC ' ' Carat' ' , 202, Stryjska str., 79031 Lviv (Ukraine); Zurawska, A. [Opole University of Technology, 75, Ozimska str., Opole 45370 (Poland)

    2007-03-15

    Temperature-dependent optical absorption spectroscopy, high-resolution X-ray photoelectron spectroscopy and positron annihilation lifetimes spectroscopy are utilized to understand radiation-induced changes in Ge-Sb-S chalcogenide glasses. Theoretically predicted topological scheme of {gamma}-induced coordination defect formation in stoichiometric Ge{sub 23.5}Sb{sub 11.8}S{sub 64.7} glass composition is supported by these measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells

    Science.gov (United States)

    Choi, Jae-Sun; Kim, Jeongho; Hong, Young-Jun; Bae, Woom-Yee; Choi, Eun Ha; Jeong, Joo-Won; Park, Hun-Kuk

    2017-01-01

    Non-thermal atmospheric-pressure plasma has been introduced in various applications such as sterilization, wound healing, blood coagulation, and other biomedical applications. The most attractive application of non-thermal atmospheric-pressure plasma is in cancer treatment, where the plasma is used to produce reactive oxygen species (ROS) to facilitate cell apoptosis. We investigate the effects of different durations of exposure to dielectric-barrier discharge (DBD) plasma on colon cancer cells using measurement of cell viability and ROS levels, western blot, immunocytochemistry, and Raman spectroscopy. Our results suggest that different kinds of plasma-treated cells can be differentiated from control cells using the Raman data. PMID:28663896

  16. In Situ Nanocalorimetric Investigations of Plasma Assisted Deposited Poly(ethylene oxide)-like Films by Specific Heat Spectroscopy.

    Science.gov (United States)

    Madkou, Sherif; Melnichu, Iurii; Choukourov, Andrei; Krakovsky, Ivan; Biederman, Hynek; Schönhals, Andreas

    2016-04-28

    In recent years, highly cross-linked plasma polymers have started to unveil their potential in numerous biomedical applications in thin-film form. However, conventional diagnostic methods often fail due to their diverse molecular dynamics conformations. Here, glassy dynamics and the melting transition of thin PEO-like plasma assisted deposited (ppPEO) films (thickness 100 nm) were in situ studied by a combination of specific heat spectroscopy, utilizing a pJ/K sensitive ac-calorimeter chip, and composition analytical techniques. Different cross-linking densities were obtained by different plasma powers during the deposition of the films. Glassy dynamics were observed for all values of the plasma power. It was found that the glassy dynamics slows down with increasing the plasma power. Moreover, the underlying relaxation time spectra broaden indicating that the molecular motions become more heterogeneous with increasing plasma power. In a second set of the experiment, the melting behavior of the ppPEO films was studied. The melting temperature of ppPEO was found to decrease with increasing plasma power. This was explained by a decrease of the order in the crystals due to formation of chemical defects during the plasma process.

  17. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Teghil, R; De Bonis, A; Galasso, A [Dipartimento di Chimica, Universita della Basilicata, Via N. Sauro 85, 85100 Potenza (Italy); Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P [CNR-IMIP, Unita di Potenza, Via S. Loja, 85050 Tito Scalo (Italy)], E-mail: roberto.teghil@unibas.it

    2008-10-15

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  18. Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy

    Science.gov (United States)

    Lucena, P.; Gaona, I.; Moros, J.; Laserna, J. J.

    2013-07-01

    Detection of explosive-contaminated human fingerprints constitutes an analytical challenge of high significance in security issues and in forensic sciences. The use of a laser-induced breakdown spectroscopy (LIBS) sensor working at 31 m distance to the target, fitted with 2D scanning capabilities and designed for capturing spectral information from laser-induced plasmas of fingerprints is presented. Distribution chemical maps based on Na and CN emissions are used to locate and detect chloratite, DNT, TNT, RDX and PETN residues that have been deposited on the surface of aluminum and glass substrates. An effectiveness of 100% on fingerprints detection, regardless the substrate scanned, is reached. Environmental factors that affect the prevalence of the fingerprint LIBS response are discussed.

  19. Hydrogen isotope detection in metal matrix using double-pulse laser-induced breakdown-spectroscopy

    Science.gov (United States)

    Fantoni, Roberta; Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Maddaluno, Giorgio; Gasior, Pawel; Kubkowska, Monika

    2017-03-01

    The amount of hydrogen isotopes retained in plasma facing components (PFCs) and the determination of their surface layer composition are among the most critical issues for the next generation fusion device, ITER, under construction in Cadarache (France). Laser Induced Breakdown Spectroscopy (LIBS) is currently under evaluation as a technique suitable for quantitative, in situ, non-invasive measurements of these quantities. In order to detect traces of contaminant in metallic samples and improve its limit of detection (LOD), the Double Pulse LIBS (DP-LIBS) variant can be used instead of the standard Single Pulse LIBS (SP-LIBS), as it has been proven by several authors that DP-LIBS can considerably raise the analytical performances of the technique. In this work Mo samples coated with a 1.5-1.8 μm thick W-Al mixed layer, contaminated with co-deposited deuterium (D) were measured by SP- and DP-LIBS under vacuum (p 5 × 10- 5 mbar), with an experimental set-up simulating conditions that can be found in a real fusion device between plasma discharges. A partial Calibration Free procedure (pCF) was applied to the LIBS data in order to retrieve the relative concentration of W and Al in the mixed layer. The amount of deuterium was then inferred by using tungsten as internal standard, accounting for the intensity ratio between the Dα line and nearby W I lines. The results are in satisfactory agreement with those obtained from preliminary Ion Beam Analysis measurements performed immediately after the specimen's realization.

  20. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands

    Science.gov (United States)

    Trautner, Stefan; Jasik, Juraj; Parigger, Christian G.; Pedarnig, Johannes D.; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925 nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1 wt% feasible.

  1. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodelli, Gustavo, E-mail: gunicolodelli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Senesi, Giorgio Saverio, E-mail: giorgio.senesi@imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, CNR, Bari, 70126 Bari (Italy); Romano, Renan Arnon, E-mail: renan.romano@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Oliveira Perazzoli, Ivan Luiz de, E-mail: ivanperazzoli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Milori, Débora Marcondes Bastos Pereira, E-mail: debora.milori@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil)

    2015-09-01

    Laser-induced breakdown spectroscopy (LIBS) is a well-known consolidated analytical technique employed successfully for the qualitative and quantitative analysis of solid, liquid, gaseous and aerosol samples of very different nature and origin. Several techniques, such as dual-pulse excitation setup, have been used in order to improve LIBS's sensitivity. The purpose of this paper was to optimize the key parameters as excitation wavelength, delay time and interpulse, that influence the double pulse (DP) LIBS technique in the collinear beam geometry when applied to the analysis at atmospheric air pressure of soil samples of different origin and texture from extreme regions of Brazil. Additionally, a comparative study between conventional single pulse (SP) LIBS and DP LIBS was performed. An optimization of DP LIBS system, choosing the correct delay time between the two pulses, was performed allowing its use for different soil types and the use of different emission lines. In general, the collinear DP LIBS system improved the analytical performances of the technique by enhancing the intensity of emission lines of some elements up to about 5 times, when compared with conventional SP-LIBS, and reduced the continuum emission. Further, the IR laser provided the best performance in re-heating the plasma. - Highlights: • The correct choice of the delay time between the two pulses is crucial for the DP system. • An optimization of DP LIBS system was performed allowing its use for different soil and the use of different emission lines. • The DP LIBS system improved the analytical performances of the technique up to about 5 times, when compared with SP LIBS. • The IR laser provided the best performance in re-heating the plasma.

  2. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  3. Preliminary results of in situ laser-induced breakdown spectroscopy for the first wall diagnostics on EAST

    Science.gov (United States)

    Zhenhua, Hu; Cong, Li; Qingmei, Xiao; Ping, Liu; Fang, Ding; Hongmin, Mao; Jing, Wu; Dongye, Zhao; Hongbin, Ding; Guang-Nan, Luo; EAST Team

    2017-02-01

    Post-mortem methods cannot fulfill the requirement of monitoring the lifetime of the plasma facing components (PFC) and measuring the tritium inventory for the safety evaluation. Laser-induced breakdown spectroscopy (LIBS) is proposed as a promising method for the in situ study of fuel retention and impurity deposition in a tokamak. In this study, an in situ LIBS system was successfully established on EAST to investigate fuel retention and impurity deposition on the first wall without the need of removal tiles between plasma discharges. Spectral lines of D, H and impurities (Mo, Li, Si, … ) in laser-induced plasma were observed and identified within the wavelength range of 500-700 nm. Qualitative measurements such as thickness of the deposition layers, element depth profile and fuel retention on the wall are obtained by means of in situ LIBS. The results demonstrated the potential applications of LIBS for in situ characterization of fuel retention and co-deposition on the first wall of EAST. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB105002, 2015GB109001, and 2013GB109005), National Natural Science Foundation of China (Nos. 11575243, 11605238, 11605023), Chinesisch-Deutsches Forschungs Project (GZ765), and Korea Research Council of Fundamental Science and Technology (KRCF) under the international collaboration & research in Asian countries (PG1314).

  4. Preliminary results of in situ laser-induced breakdown spectroscopy for the first wall diagnostics on EAST

    Science.gov (United States)

    Hu, Zhenhua; Li, Cong; Xiao, Qingmei; Liu, Ping; Fang, Ding; Mao, Hongmin; Wu, Jing; Zhao, Dongye; Ding, Hongbin; Luo, Guang-Nan; EAST Team

    2017-02-01

    Post-mortem methods cannot fulfill the requirement of monitoring the lifetime of the plasma facing components (PFC) and measuring the tritium inventory for the safety evaluation. Laser-induced breakdown spectroscopy (LIBS) is proposed as a promising method for the in situ study of fuel retention and impurity deposition in a tokamak. In this study, an in situ LIBS system was successfully established on EAST to investigate fuel retention and impurity deposition on the first wall without the need of removal tiles between plasma discharges. Spectral lines of D, H and impurities (Mo, Li, Si, … ) in laser-induced plasma were observed and identified within the wavelength range of 500-700 nm. Qualitative measurements such as thickness of the deposition layers, element depth profile and fuel retention on the wall are obtained by means of in situ LIBS. The results demonstrated the potential applications of LIBS for in situ characterization of fuel retention and co-deposition on the first wall of EAST. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB105002, 2015GB109001, and 2013GB109005), National Natural Science Foundation of China (Nos. 11575243, 11605238, 11605023), Chinesisch-Deutsches Forschungs Project (GZ765), and Korea Research Council of Fundamental Science and Technology (KRCF) under the international collaboration & research in Asian countries (PG1314).

  5. Approach for determination of detonation performance and aluminum percentage of aluminized-based explosives by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Rezaei, Amir Hossein; Keshavarz, Mohammad Hossein; Tehrani, Masoud Kavosh; Reza Darbani, Seyyed Mohammad; Farhadian, Amir Hossein; Mousavi, Seyyed Jabbar; Mousaviazar, Ali

    2016-04-20

    Energetic materials containing aluminum powder are hazardous compounds, which have wide applications as propellants, explosives, and pyrotechnics. This work introduces a new method on the basis of the laser-induced breakdown spectroscopy technique in air and argon atmospheres to investigate determination of aluminum content and detonation performance of 1,3,5-trinitro-1,3,5-triazine (RDX)-based aluminized explosives. Plasma emission of aluminized RDX explosives are recorded where atomic lines of Al, C, H, N, and O, as well as molecular bands of AlO and CN are identified. The formation mechanism of AlO and CN molecular bands is affected by the aluminum percentage and oxygen content present in the composition and plasma. Relative intensity of the Al/O is used to determine detonation velocity and pressure of the RDX/Al samples. The released energy in the laser-induced plasma of aluminized RDX composition is related to the heat of explosion and percentage of aluminum.

  6. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable...... to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope Then...... routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely...

  7. Detection of HO2 in an atmospheric pressure plasma jet using optical feedback cavity-enhanced absorption spectroscopy

    Science.gov (United States)

    Gianella, Michele; Reuter, Stephan; Lawry Aguila, Ana; Ritchie, Grant A. D.; van Helden, Jean-Pierre H.

    2016-11-01

    Cold non-equilibrium atmospheric pressure plasma jets are increasingly applied in material processing and plasma medicine. However, their small dimensions make diagnosing the fluxes of generated species a challenge. Here we report on the detection of the hydroperoxyl radical, HO2, in the effluent of a plasma jet by the use of optical feedback cavity-enhanced absorption spectroscopy. The spectrometer has a minimum detectable absorption coefficient {α }\\min of 2.25× {10}-10 cm-1 with a 100 second acquisition, equivalent to 5.5× {10}12 {{cm}}-3 of HO2 (under ideal conditions). Concentrations in the range of (3.1-7.8) × 1013 cm-3 were inferred in the 4 mm wide effluent of the plasma jet.

  8. Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Campbell, Keri R.; Wozniak, Nicholas R.; Colgan, James P.; Judge, Elizabeth J.; Barefield, James E.; Kilcrease, David P.; Wilkerson, Marianne P.; Czerwinski, Ken R.; Clegg, Samuel M.

    2017-08-01

    Nuclear forensics goals for characterizing samples of interest include qualitative and quantitative analysis of major and trace elements, isotopic analysis, phase identification, and physical analysis. These samples may include uranium oxides UO2, U3O8, and UO3, which play an important role in the front end of the nuclear fuel cycle, from mining to fuel fabrication. The focus of this study is to compare the ratios of the intensities of uranium and oxygen emission lines which can be used to distinguish between different uranium oxide materials using Laser-Induced Breakdown Spectroscopy (LIBS). Measurements at varying laser powers were made under an argon atmosphere at 585 Torr to ensure the oxygen emission intensity was originating from the sample, and not from the atmosphere. Fifteen uranium emission lines were used to compare experimental results with theoretical calculations in order to determine the plasma conditions. Using a laser energy of 26 mJ, the uranium lines 591.539 and 682.692 nm provide the highest degree of discrimination between the uranium oxides. The study presented here suggests that LIBS is useful for discriminating uranium oxide phases, UO2, U3O8, and UO3.

  9. High-speed identification of polymers by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Moench, Ingo; Sattmann, R.; Noll, Reinhard

    1997-09-01

    One way to reduce the increasing waste streams of used polymers is an efficient material recycling. This requires a technology for the separation of polymer mixtures into different material fractions. For this purpose the principal suitability of laser-induced breakdown spectroscopy was investigated. Plasma emission spectra of LDPE, HDPE, PP, PET, PVC, and PS were studied. Basic investigations were performed in order to assess the influence of different measurement parameters and to optimize the analytical performance. More than 140 spectra lines are identified, which can be related to C, H, O, N, C2, CN and CH from the bulk material and the atmosphere and to Al, Ca, Cu, Fe, Mg, Sn, Ti and Zn from additives of the polymer. Estimated detection limits of down to 2 ppm are achieved for metallic additives. Different artificial neural networks were tested for the evaluation of the spectra. PET and PVC can be identified unambiguously detecting the characteristic elements oxygen and chlorine. For plastics, which differ in their contents of inorganic additives, the line emission of additives can be used as `fingerprints' of the plastics. In this way identification accuracies of 87% to 100% for PE, PP, PET and PVC are achieved.

  10. Rapid Analysis of Ash Composition Using Laser-Induced Breakdown Spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Tyler L. Westover

    2013-01-01

    Inorganic compounds are known to be problematic in the thermochemical conversion of biomass to syngas and ultimately hydrocarbon fuels. The elements Si, K, Ca, Na, S, P, Cl, Mg, Fe, and Al are particularly problematic and are known to influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. Substantial quantities of inorganic species can be entrained in the bark of trees during harvest operations. Herbaceous feedstocks often have even greater quantities of inorganic constituents, which can account for as much as one-fifth of the total dry matter. Current methodologies to measure the concentrations of these elements, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS) are expensive in time and reagents. This study demonstrates that a new methodology employing laser-induced breakdown spectroscopy (LIBS) can rapidly and accurately analyze the inorganic constituents in a wide range of biomass materials, including both woody and herbaceous examples. This technique requires little or no sample preparation, does not consume any reagents, and the analytical data is available immediately. In addition to comparing LIBS data with the results from ICP-OES methods, this work also includes discussions of sample preparation techniques, calibration curves for interpreting LIBS spectra, minimum detection limits, and the use of internal standards and standard reference materials.

  11. Geographical analysis of ``conflict minerals'' utilizing laser-induced breakdown spectroscopy

    Science.gov (United States)

    Hark, Richard R.; Remus, Jeremiah J.; East, Lucille J.; Harmon, Russell S.; Wise, Michael A.; Tansi, Benjamin M.; Shughrue, Katrina M.; Dunsin, Kehinde S.; Liu, Chunyi

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different geographic sources for a mineral because the LIBS plasma emission spectrum provides information on the chemical composition (i.e. geochemical fingerprint) of a geomaterial. An application of this approach with potentially significant commercial and political importance is the spectral fingerprinting of "conflict minerals" such as columbite-tantalite ("coltan"). Following a successful pilot study of a columbite-tantalite suite from North America, a more geographically diverse set of 57 samples from 37 locations around the world was analyzed using a commercially available LIBS system. The LIBS spectra were analyzed using advanced multivariate statistical signal processing techniques. Partial least squares discriminant analysis (PLSDA) resulted in a correct place-level geographic classification at success rates above 90%. The possible role of rare-earth elements (REEs) as a factor contributing to the high levels of sample discrimination was explored. These results provide additional evidence that LIBS has the potential to be utilized in the field as a real-time screening tool to discriminate between columbite-tantalite ores of different provenance.

  12. Laser-induced breakdown spectroscopy application in environmental monitoring of water quality: a review.

    Science.gov (United States)

    Yu, Xiaodong; Li, Yang; Gu, Xiaofeng; Bao, Jiming; Yang, Huizhong; Sun, Li

    2014-12-01

    Water quality monitoring is a critical part of environmental management and protection, and to be able to qualitatively and quantitatively determine contamination and impurity levels in water is especially important. Compared to the currently available water quality monitoring methods and techniques, laser-induced breakdown spectroscopy (LIBS) has several advantages, including no need for sample pre-preparation, fast and easy operation, and chemical free during the process. Therefore, it is of great importance to understand the fundamentals of aqueous LIBS analysis and effectively apply this technique to environmental monitoring. This article reviews the research conducted on LIBS analysis for liquid samples, and the article content includes LIBS theory, history and applications, quantitative analysis of metallic species in liquids, LIBS signal enhancement methods and data processing, characteristics of plasma generated by laser in water, and the factors affecting accuracy of analysis results. Although there have been many research works focusing on aqueous LIBS analysis, detection limit and stability of this technique still need to be improved to satisfy the requirements of environmental monitoring standard. In addition, determination of nonmetallic species in liquid by LIBS is equally important and needs immediate attention from the community. This comprehensive review will assist the readers to better understand the aqueous LIBS technique and help to identify current research needs for environmental monitoring of water quality.

  13. Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy.

    Science.gov (United States)

    Bilge, Gonca; Sezer, Banu; Eseller, Kemal Efe; Berberoglu, Halil; Topcu, Ali; Boyaci, Ismail Hakki

    2016-12-01

    A rapid and in situ method has been developed to detect and quantify adulterated milk powder through adding whey powder by using laser induced breakdown spectroscopy (LIBS). The methodology is based on elemental composition differences between milk and whey products. Milk powder, sweet and acid whey powders were produced as standard samples, and milk powder was adulterated with whey powders. Based on LIBS spectra of standard samples and commercial products, species was identified using principle component analysis (PCA) method, and discrimination rate of milk and whey powders was found as 80.5%. Calibration curves were obtained with partial least squares regression (PLS). Correlation coefficient (R(2)) and limit of detection (LOD) values were 0.981 and 1.55% for adulteration with sweet whey powder, and 0.985 and 0.55% for adulteration with acid whey powder, respectively. The results were found to be consistent with the data from inductively coupled plasma - mass spectrometer (ICP-MS) method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Development of laser induced breakdown spectroscopy for studying erosion, deposition, and fuel retention in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Peeter; Piip, Kaarel [Institute of Physics, University of Tartu, Tartu (Estonia); Hakola, Antti [VTT Technical Research Centre of Finland, Espoo (Finland); Laan, Matti, E-mail: matti.laan@ut.ee [Institute of Physics, University of Tartu, Tartu (Estonia); Aints, Märt [Institute of Physics, University of Tartu, Tartu (Estonia); Koivuranta, Seppo; Likonen, Jari [VTT Technical Research Centre of Finland, Espoo (Finland); Lissovski, Aleksandr [Institute of Physics, University of Tartu, Tartu (Estonia); Mayer, Matej [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Neu, Rudolf [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Technische Universität München, Fachgebt Plasma-Material-Wechelwirkung, Garching (Germany); Rohde, Volker; Sugiyama, Kazuyoshi [Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-10-15

    Highlights: • LIBS development for in situ monitoring of first walls of fusion reactors. • Testing of samples extracted from the divertor tiles of ASDEX Upgrade. • Reliable detection of deuterium depth profiles. • A method of LIBS data processing which allows to find the elemental depth profiles. • Comparison of LIBS results with those of other surface characterization methods. - Abstract: The paper deals with the development of laser induced breakdown spectroscopy (LIBS) into an in situ method for studying erosion/deposition processes at the first walls of fusion reactors. To this end, samples extracted from the divertor tiles of ASDEX Upgrade after the 2009 plasma operations were analyzed using LIBS for their composition and the results were compared with other post mortem deposition data. Quantitative depth profiles for the elemental concentrations were extracted from LIBS spectra by applying a novel data processing method. In addition, both multiline and multispot averaging procedures were applied to reduce fluctuations in the data. The LIBS concentration profiles matched qualitatively with those given by secondary ion mass spectrometry and quantitatively with the ion-beam data. The deuterium content of the samples could be reliably determined if the surface densities were >10{sup 17} at/cm{sup 2}.

  15. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Peng, Jiyu; Song, Kunlin; Zhu, Hongyan; Kong, Wenwen; Liu, Fei; Shen, Tingting; He, Yong

    2017-03-01

    Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe production loss and affect the quality of products. In this study, we have proposed a novel approach to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish classification models based on full spectrum and observed emission lines. The influences of moisture content on spectral profile, signal stability and plasma parameters (temperature and electron density) were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen the stability of analysis, and have a detrimental effect on the classification results. Good classification results were achieved based on the data from both full spectrum and observed emission lines of dried leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector machine (SVM) could improve the classification results and eliminate influences of moisture content. The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and low-cost approach for TMV-infected disease detection in tobacco leaves.

  16. Signal enhancement of neutral He emission lines by fast electron bombardment of laser-induced He plasma

    Directory of Open Access Journals (Sweden)

    Hery Suyanto

    2016-08-01

    Full Text Available A time-resolved spectroscopic study is performed on the enhancement signals of He gas plasma emission using nanosecond (ns and picosecond (ps lasers in an orthogonal configuration. The ns laser is used for the He gas plasma generation and the ps laser is employed for the ejection of fast electrons from a metal target, which serves to excite subsequently the He atoms in the plasma. The study is focused on the most dominant He I 587.6 nm and He I 667.8 nm emission lines suggested to be responsible for the He-assisted excitation (HAE mechanism. The time-dependent intensity enhancements induced by the fast electrons generated with a series of delayed ps laser ablations are deduced from the intensity time profiles of both He emission lines. The results clearly lead to the conclusion that the metastable excited triplet He atoms are actually the species overwhelmingly produced during the recombination process in the ns laser-induced He gas plasma. These metastable He atoms are believed to serve as the major energy source for the delayed excitation of analyte atoms in ns laser-induced breakdown spectroscopy (LIBS using He ambient gas.

  17. Signal enhancement of neutral He emission lines by fast electron bombardment of laser-induced He plasma

    Science.gov (United States)

    Suyanto, Hery; Pardede, Marincan; Hedwig, Rinda; Marpaung, Alion Mangasi; Ramli, Muliadi; Lie, Tjung Jie; Abdulmadjid, Syahrun Nur; Kurniawan, Koo Hendrik; Tjia, May On; Kagawa, Kiichiro

    2016-08-01

    A time-resolved spectroscopic study is performed on the enhancement signals of He gas plasma emission using nanosecond (ns) and picosecond (ps) lasers in an orthogonal configuration. The ns laser is used for the He gas plasma generation and the ps laser is employed for the ejection of fast electrons from a metal target, which serves to excite subsequently the He atoms in the plasma. The study is focused on the most dominant He I 587.6 nm and He I 667.8 nm emission lines suggested to be responsible for the He-assisted excitation (HAE) mechanism. The time-dependent intensity enhancements induced by the fast electrons generated with a series of delayed ps laser ablations are deduced from the intensity time profiles of both He emission lines. The results clearly lead to the conclusion that the metastable excited triplet He atoms are actually the species overwhelmingly produced during the recombination process in the ns laser-induced He gas plasma. These metastable He atoms are believed to serve as the major energy source for the delayed excitation of analyte atoms in ns laser-induced breakdown spectroscopy (LIBS) using He ambient gas.

  18. Analytical capability of the plasma induced by IR TEA CO2 laser pulses on copper based alloys

    Directory of Open Access Journals (Sweden)

    Momčilović Miloš

    2015-01-01

    Full Text Available The applicability of nanosecond infrared (IR transversely excited atmospheric (TEA CO2 laser, operating at 10.6 μm and 100 ns pulse length (initial spike, induced plasma under reduced air pressure for spectrochemical analysis of bronze and brass samples was investigated. The plasma consisted of two clearly distinguished and spatially separated regions and expanded to a distance of about 10 mm from the surface. Elemental composition of the samples was determined using a time-integrated space-resolved laser-induced plasma spectroscopy (TISR-LIPS technique. Sharp and well resolved spectral lines mostly atomic, and negligibly low background emission, were obtained from a plasma region 7 mm from the target surface. Good signal to background and signal to noise ratios were obtained. Estimated detection limits for trace elements Mg, Fe, Al and Ca were in the order of 10 ppm in bronze and around 50 ppm in brass. Damage on the investigated samples induced by TEA CO2 laser radiation was negligible. [Projekat Ministarstva nauke Republike Srbije, br. 172019

  19. Signal enhancement of neutral He emission lines by fast electron bombardment of laser-induced He plasma

    Energy Technology Data Exchange (ETDEWEB)

    Suyanto, Hery [Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Hedwig, Rinda [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Marpaung, Alion Mangasi [Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University, Rawamangun, Jakarta 12440 (Indonesia); Ramli, Muliadi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Lie, Tjung Jie; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Abdulmadjid, Syahrun Nur [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha,Bandung 40132 (Indonesia); Kagawa, Kiichiro [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Fukui Science Education Academy, Takagi Chuo 2 chome, Fukui 910-0804 (Japan)

    2016-08-15

    A time-resolved spectroscopic study is performed on the enhancement signals of He gas plasma emission using nanosecond (ns) and picosecond (ps) lasers in an orthogonal configuration. The ns laser is used for the He gas plasma generation and the ps laser is employed for the ejection of fast electrons from a metal target, which serves to excite subsequently the He atoms in the plasma. The study is focused on the most dominant He I 587.6 nm and He I 667.8 nm emission lines suggested to be responsible for the He-assisted excitation (HAE) mechanism. The time-dependent intensity enhancements induced by the fast electrons generated with a series of delayed ps laser ablations are deduced from the intensity time profiles of both He emission lines. The results clearly lead to the conclusion that the metastable excited triplet He atoms are actually the species overwhelmingly produced during the recombination process in the ns laser-induced He gas plasma. These metastable He atoms are believed to serve as the major energy source for the delayed excitation of analyte atoms in ns laser-induced breakdown spectroscopy (LIBS) using He ambient gas.

  20. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy; Probabilidades de transicion de algunos niveles de Cr II, Na II y Sb I medediante espectroscopia de plasma producidos por laser

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-07-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities ({approx}{approx} 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs.

  1. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  2. Issues in deep ocean collinear double-pulse laser induced breakdown spectroscopy: Dependence of emission intensity and inter-pulse delay on solution pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence-Snyder, Marion; Scaffidi, Jonathan P.; Pearman, William F.; Gordon, Christopher M.; Angel, S. Michael

    2014-09-01

    Double-pulse laser-induced breakdown spectroscopy (DP-LIBS) with a collinear laser beam orientation is shown for high-pressure bulk aqueous solutions (up to 50 bar) along with bubble and plasma images. These investigations reveal that the emission plasma is quenched much more rapidly in solution requiring much shorter detector gate delays than for typical LIBS measurements in air. Also, the emission is inversely proportional to solution pressure, and the most intense emission at all pressures occurs when the laser-induced vapor bubble is at a maximum diameter. It is also shown that the laser-induced bubble grows initially at the same rate for all solution pressures, collapsing more quickly as the pressure is increased. Intense emission is best obtained for conditions where the laser-induced bubble formed by the first laser pulse is small and spherically shaped. - Highlights: • Collinear double-pulse LIBS is shown for 50 bar bulk aqueous solutions. • LIBS plasma in solution is much more rapidly quenched than a LIBS plasma in air. • For DP LIBS, the emission is inversely proportional to solution pressure. • Laser-induced bubble growth rate is the same at all solution pressures. • Large spherical laser-induced bubbles produce the strongest DP LIBS emission.

  3. Schlieren High Speed Imaging on Fluid Flow in Liquid Induced by Plasma-driven Interfacial Forces

    Science.gov (United States)

    Lai, Janis; Foster, John

    2016-10-01

    Effective plasma-based water purification depends heavily on the transport of plasma-derived reactive species from the plasma into the liquid. Plasma interactions at the liquid-gas boundary are known to drive circulation in the bulk liquid. This forced circulation is not well understood. A 2-D plasma- in-liquid water apparatus is currently being investigated as a means to study the plasma-liquid interface to understand not only reactive species flows but to also understand plasma- driven fluid dynamic effects in the bulk fluid. Using Schlieren high speed imaging, plasma-induced density gradients near the interfacial region and into the bulk solution are measured to investigate the nature of these interfacial forces. Plasma-induced flow was also measured using particle imaging velocimetry. NSF CBET 1336375 and DOE DE-SC0001939.

  4. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.

    Science.gov (United States)

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, Stanislav; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-04-01

    A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

  5. Plasma induced by pulsed laser and fabrication of silicon nanostructures

    Science.gov (United States)

    Hang, Wei-Qi; Dong, Tai-Ge; Wang, Gang; Liu, Liu Shi-Rong; Huang, Zhong-Mei; Miao, Xin-Jian; Lv, Quan; Qin, Chao-Jian

    2015-08-01

    It is interesting that in preparing process of nanosilicon by pulsed laser, the periodic diffraction pattern from plasmonic lattice structure in the Purcell cavity due to interaction between plasmons and photons is observed. This kind of plasmonic lattice structure confined in the cavity may be similar to the Wigner crystal structure. Emission manipulation on Si nanostructures fabricated by the plasmonic wave induced from pulsed laser is studied by using photoluminescence spectroscopy. The electronic localized states and surface bonding are characterized by several emission bands peaked near 600 nm and 700 nm on samples prepared in oxygen or nitrogen environment. The electroluminescence wavelength is measured in the telecom window on silicon film coated by ytterbium. The enhanced emission originates from surface localized states in band gap due to broken symmetry from some bonds on surface bulges produced by plasmonic wave in the cavity. Project supported by the National Natural Science Foundation of China (Grant Nos. 11264007 and 61465003).

  6. Optical emission spectroscopy characterizations of micro-air plasma used for simulation of cell membrane poration

    Science.gov (United States)

    Zerrouki, A.; Motomura, H.; Ikeda, Y.; Jinno, M.; Yousfi, M.

    2016-07-01

    A micro-air corona discharge, which is one of the plasmas successfully used for gene transfection in terms of high transfection and cell viability rates, is characterized by optical emission spectroscopy. This non-equilibrium low temperature plasma is generated from the tip of a pulsed high voltage micro-tube (0.2 mm inner diameter and 0.7 mm for outer diameter) placed 2 mm in front of a petri dish containing deionized water and set on a grounded copper plate. The electron temperature, equal to about 6.75 eV near the electrode tip and decreased down to 3.4 eV near the plate, has been estimated, with an error bar of about 30%, from an interesting approach based on the experimental ratio of the closest nitrogen emission spectra of \\text{N}2+ (FNS) at 391.4 nm and N2(SPS) at 394.3 nm. This is based on one hand on a balance equation between creations and losses of the excited upper levels of these two UV spectra and on the other hand on the electron impact rates of the creation of these upper levels calculated from solution of the multi-term Boltzmann equation. Then using the measured Hα spectrum, electron density n e has been estimated from Stark broadening versus the inter-electrode position with an average error bar of about 50%. n e  ≈  1  ×  1015 cm-3 is near the tip coherent with the usual magnitude of electron density in the streamer head developed near the tip of the corona discharges. Rotational temperatures, estimated from comparison of synthetic and experimental spectra of OH(A  -  X), \\text{N}2+ (FNS) at 391.4 nm, and N2(SPS) at 337 nm are respectively equal to 2350 K, 2000 K and 700 K in the gap space. This clearly underlines a thermal non-equilibrium of the corresponding excited species generated inside the thin streamer filaments. But, due to the high dilution of these species in the background gas, these high rotational temperatures do not affect the mean gas temperature that remains close to 300

  7. Recognition of spectral identifier from green coffee beans of arabica and robusta varieties using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Anggraeni, Karina; Nasution, Aulia; Suyanto, Hery

    2016-11-01

    Coffee is one of the world's commodity that is cultivated in more than 50 countries. Production of coffee in Indonesia is positioned of fourth rank in the world, after Brazil, Vietnam, and Colombia. There are two varieties of coffee grown in Indonesia, i.e. the arabica and robusta. The chemical compositions between arabica and robusta are different each other. A trained coffee tester can distinguish these differences from its taste, but it is very subjective. Laser-Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique based on the analysis of micro-plasma induced on the surface sample after being shot with a laser pulse. In this study, elemental spectra acquired using Laser-Induced Breakdown Spectroscopy (LIBS) technique were analysed to differentate between green coffee beans of arabica and robusta, which are collected from plantations in Malang, Bondowoso, Prigen, and Pasuruan. Results show that optimum conditions for acquiring spectra from green coffee beans using LIBS are at 120 mJ of laser energy and 1,0 μs of delay time. Green coffee beans of arabica and robusta contain some elements such as Ca, W, Sr, Mg, Be, Na, H, N, K, Rb, and O. Discriminant analysis method was then applied to distinguish the green beans of arabica and robusta coffee. Element identifiers of green coffee beans are Ca, W, Mg, Be, Na, and Sr. The abundant element in green coffee beans is Calcium (Ca), and depth-profile testing shows that Ca is homogeneous inside the beans.

  8. Induced Compton Scattering by Relativistic Electrons in Magnetized Astrophysical Plasmas.

    Science.gov (United States)

    Sincell, Mark William

    1994-01-01

    The effects of stimulated scattering on high brightness temperature radiation are studied in two important contexts. In the first case, we assume that the radiation is confined to a collimated beam traversing a relativistically streaming magnetized plasma. When the plasma is cold in the bulk frame, stimulated scattering is only significant if the angle between the photon motion and the plasma velocity is less than gamma^{-1} , where gamma is the bulk Lorentz factor. Under the assumption that the center of the photon beam is parallel to the bulk motion, we calculate the scattering rate as a function of the angular spread of the beam and gamma. Magnetization changes the photon recoil, without which stimulated scattering has no effect. It also introduces a strong dependence on frequency and polarization: if the photon frequency matches the electron cyclotron frequency, the scattering rate of photons polarized perpendicular to the magnetic field can be substantially enhanced relative to Thomson, and if the photon frequency is much less than the cyclotron frequency the scattering is suppressed. Applying these calculations to pulsars, we find that stimulated scattering of the radio beam in the magnetized wind believed to exist outside the light cylinder can substantially alter the spectrum and polarization state of the radio signal. We suggest that the scattering rate is so high in some pulsars that the ability of the radio signal to penetrate the pulsar magnetosphere requires modification of either the conventional model of the magnetosphere or assumptions about the effects of stimulated scattering upon a beam. In the second case, we present a model of the radio emission from synchrotron self-absorbed sources, including the effects of induced Compton scattering by the relativistic electrons in the source. Order of magnitude estimates show that stimulated scattering becomes the dominant absorption process when (kTB/m ec^2)tau_{T }_sp{~}> 0.1. Numerical simulations

  9. Optical emission spectroscopy of OH lines in N2 and Ar plasma during the treatments of cotton fabric

    Science.gov (United States)

    Skoro, Nikola; Puac, Nevena; Spasic, Kosta; Malovic, Gordana; Gorjanc, Marija; Petrovic, Zoran Lj

    2016-09-01

    Low pressure non-equilibrium plasmas are proven to be irreplaceable tool in material processing. Among other fields their applications in treatments of textiles are still diversifying, but the main role of plasma is activation of the surface of treated sample. After, or during, the treatments these surfaces can be covered with different materials or species (such as microcapsules) that enhance properties of the fabric. In order to investigate mechanisms how active species from plasma interact with the cotton surface, we studied both plasma and surface properties. Bleached cotton samples were treated in low-pressure nitrogen and argon plasma in a chamber with parallel-plate electrodes. The effect of the plasma treatment on the cotton samples was investigated with the colorimetric measurements on dyes absorption by a spectrophotometer. Optical emission spectroscopy was performed by using spectrometer with a sensitive CCD camera. We have recorded the evolution of the maximum of the intensity of OH and N2 second positive band lines. Measurement were done with and without samples in the chamber and comparison between the lines intensity was made. The parameters for optimal plasma treatment conditions were determined. Research supported by the MESTD, projects III41011 and ON171037.

  10. Radiation-induced defects in tungsten and evolution in temperature: a positron annihilation spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Debelle, A.; Barthe, M.F.; Sauvage, T.; Gentils, A.; Desgardin, P. [CERI, Centre d' Etudes et de Recherches par Irradiation, CNRS, 45 - Orleans (France)

    2007-07-01

    Full text of publication follows: In the future International Thermonuclear Experimental Reactor (ITER), tungsten, due to its physical intrinsic properties, such as low sputtering yield with light elements and good thermo-mechanical behaviour, is a potential divertor candidate. The divertor, as a plasma-facing component, will be subjected to intense irradiations at high temperature. In the specific case of fusion reactor, high 14 MeV neutrons flux will cause the continuous production of both H and He by (n,p) and (n,a) nuclear reactions, and of irradiation-induced defects by recoils. Thus, it appears of crucial interest to study the He and H interaction with the irradiation-induced defects. Obviously, this first requires to accurately characterise these defects. To address this issue, positron annihilation spectroscopy techniques were implemented, namely Doppler Broadening measurements with the use of a slow positron beam, and lifetime measurements with fast positrons. The presented results deal with the characterisation of irradiation-induced defects in tungsten, and also with its evolution during thermal treatment. Polycrystalline tungsten samples were first thermally annealed in order to eliminate most of the pre-existing defects so that detection of radiation-induced defects becomes possible. Then, specimens were irradiated with 12 MeV H at a 4x10{sup 16} cm{sup -2} fluence or with 800 keV {sup 3}He at different fluences, ranging from 10{sup 14} to 10{sup 17} cm{sup -2}. The positron annihilation characteristics, namely low and high annihilation fractions and lifetimes, were determined in the annealed and irradiated samples. Moreover, Monte Carlo simulations were performed with the SRIM code to evaluate the radiation damage. Results allowed to identify the radiation-induced defects as mono-vacancies. Besides, it is shown that the defects nature does not change with increasing fluence, but their concentration increases. The evolution of the defects nature and

  11. Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution.

    Science.gov (United States)

    Ohba, Hironori; Saeki, Morihisa; Wakaida, Ikuo; Tanabe, Rie; Ito, Yoshiro

    2014-10-01

    For aqueous-solution-based elemental analysis, we used a thin liquid sheet (μm-scale thickness) in laser-induced breakdown spectroscopy with nanosecond laser pulses. Laser-induced plasma is emitted by focusing a pulsed Nd:YAG laser (1064 nm) on a 5- to 80-μm-thick liquid sheet in air. To optimize the conditions for detecting elements, we studied how the signal-to-background ratio (SBR) for Hα Balmer and Na-neutral emission lines depends on the liquid-sheet thickness. The SBR of the Hα Balmer and Na-neutral lines was maximized for a sheet thickness of ~20 μm at the laser energy of 100 mJ. The hydrodynamics of liquid flow induced by the laser pulse was analyzed by laser flash shadowgraph imaging. Time-resolved observation of the hydrodynamics and plasma emission suggests that the dependence of the SBR on the liquid-sheet thickness is correlated with the volume of flowing liquid that interacts with the laser pulses.

  12. Laser-induced breakdown spectroscopy of dental lesions: diagnostic and therapeutic monitoring tool

    Science.gov (United States)

    Borisova, Ekaterina; Uzunov, Tzonko; Penev, Dimitar; Genova, Tsanislava; Avramov, Latchezar

    2016-01-01

    The carious decay develops a tiny area of demineralization on the enamel, which could be detected by element analytic techniques such as laser-induced breakdown spectroscopy (LIBS). That demineralization can quickly turn into a large lesion inside the tooth, it is often discovered too late to prevent the kind of decay that leads to cavities. The same optical LIBS detection approach could be used for monitoring of the caries removal using laser ablation or drilling techniques. For LIBS measurements we applied LIBS 2500Plus (Ocean Optics Inc., Dunedin, USA) system, which consists of seven spectrometric channels, covering spectral region from 200 to 980 nm, which optical resolution 0,05 nm, the spectrometers are connected with sample fiber bundle for 7-channels spectral system to the chamber for solid and liquid samples, Q-switched Nd:YAG laser, at 1 064 nm, with energy per pulse - 40 mJ, which is applied to induce plasma in the samples. LIBS spectra were obtained after single shot of the laser in the region of pathology. Samples investigated by LIBS are extracted teeth from patients, with periodontal problems on different stage of carious lesions, and their LIBS spectra are compared with the LIBS signals obtained from normal enamel and dentine tissues to receive complete picture of the carious lesion development. The major line of our investigations is related to the development of a methodology for real-time optical feedback control during selective ablation of tooth tissues using LIBS. Tooth structures, with and without pathological changes, are compared and their LIBS element analysis is used to differentiate major changes, which occur during tooth carious process and growth.

  13. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  14. Analysis of frozen salt solutions with laser-induced breakdown spectroscopy under Martian conditions

    Science.gov (United States)

    Schröder, S.; Pavlov, S. G.; Hübers, H.-W.; Rauschenbach, I.; Jessberger, E. K.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique for determining the elemental composition of materials. It can be applied in-situ to geological surfaces on planetary missions. Since pure liquid water is unstable at the current surface conditions on Mars, i.e. low surface pressure and temperatures ranging from 140 K to 300 K, salt solutions or brines are of particular interest. It has been suggested that salts could stabilize liquid water on Mars lowering the freezing point of the solution and suppressing evaporation rates. The appropriate salts have been found on Mars in different locations. In this study LIBS is employed for the investigation of frozen sulphate and chloride solutions under Martian conditions in a dedicated simulation chamber. For the laboratory experiments, various salt solutions were prepared with different concentrations. To produce ice with only little inclusions of air, the samples were degassed before freezing them in a copper container. The measurements were performed at 240 K by cooling with liquid nitrogen and controlled heating. A constant flow of a Martian atmosphere-like gas mixture at a pressure of approximately 6 hPa was maintained through the chamber during the measurements. A Q-switched Nd:YAG laser operating at 1064nm and at 10 Hz was used to ablate material and to generate a plasma on the frozen sample's surface. The emitted light of the plasma was collected into the entrance slit of an echelle spectrometer (LTB Aryelle Butterfly) by a toroid mirror. A time-gated ICCD camera (Andor) at the exit of the spectrometer recorded the plasma emission signal. The laser beam was focused at a new position for each measurement. The delay time and the integration time of the spectrometer have been optimized to obtain good signal-to-noise ratios up to 150 while at the same time not losing signals from fast recombining ions. First, the spectra of several frozen salt solutions were investigated qualitatively

  15. Laser-induced breakdown spectroscopy for analysis of frozen salt solutions under Martian conditions

    Science.gov (United States)

    Schröder, Susanne; Pavlov, Sergey; Hübers, Heinz-Wilhelm; Rauschenbach, Isabelle; Jessberger, Elmar K.

    Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique for determin-ing the elemental composition of materials. It can be applied in-situ to geological surfaces on planetary missions. Since pure liquid water is unstable at the current surface conditions on Mars, i.e. low surface pressure and temperatures ranging from 140 K to 300 K, salt solutions or brines are of particular interest. It has been suggested that salts could stabilize liquid water on Mars lowering the freezing point of the solution and suppressing evaporation rates. The ap-propriate salts have been found on Mars in different locations. In this study LIBS is employed for the investigation of frozen sulphate and chloride solutions under Martian conditions in a dedicated simulation chamber. For the laboratory experiments, various salt solutions were prepared with different concen-trations. To produce ice with only little inclusions of air, the samples were degassed before freezing them in a copper container. The measurements were performed at 240 K by cooling with liquid nitrogen and controlled heating. A constant flow of a Martian atmosphere-like gas mixture at a pressure of approximately 6 hPa was maintained through the chamber during the measurements. A Q-switched Nd:YAG laser operating at 1064nm and at 10 Hz was used to ablate material and to generate a plasma on the frozen sample's surface. The emitted light of the plasma was collected into the entrance slit of an echelle spectrometer (LTB Aryelle But-terfly) by a toroid mirror. A time-gated ICCD camera (Andor) at the exit of the spectrometer recorded the plasma emission signal. The laser beam was focused at a new position for each measurement. The delay time and the integration time of the spectrometer have been optimized to obtain good signal-to-noise ratios up to 150 while at the same time not losing signals from fast recombining ions. First, the spectra of several frozen salt solutions were investigated qualitatively

  16. Investigation of the atomic emission spectroscopy of F atoms and CF2 molecules in CF4 plasma processing

    Science.gov (United States)

    Jin, Huiliang; Li, Jie; Tang, Caixue; Deng, Wenhui; Chen, Xianhua

    2016-10-01

    The surface chemistry reaction involved in the processing of Atmospheric Pressure Plasma Jet (APPJ) produced from CF4 precursor has been explored. The atomic emission spectroscopy of F atoms and CF2 molecules was investigated as they contribute to substrate etching and FC film formation during APPJ processing. Optical emission spectroscopy (OES) spectra were acquired for CF4 plasma, relative concentrations of excited state species of F atoms and CF2 molecules were also dependent upon plasma parameters. The densities of F atoms increased dramatically with increasing applied RF power, whereas CF2 molecules decreased monotonically over the same power range, the subsequent electron impacted decomposition of plasma species after CF4 precursor fragmentation. The spectrum of the F atoms and CF2 molecules fallowed the same tendency with the increasing concentration of gas CF4, reaching the maximum at the 20sccm and 15sccm respectively, and then the emission intensity of reactive atoms decreased with more CF4 molecules participating. Addition certain amount O2 into CF4 plasma resulted in promoting CF4 dissociation, O2 can easily react with the dissociation product of CF2 molecules, which inhibit the compound of the F atoms, so with the increasing concentration of O2, the concentration of the CF2 molecules decreased and the emission intensities of F atoms showed the maximum at the O2/CF4 ratio of 20%. These results have led to the development of a scheme that illustrates the mechanisms of surface chemistry reaction and the affection of plasma parameters in CF4 plasma systems with respect to F and CF2 gas-phase species.

  17. Coupling Nuclear Induced Phonon Propagation with Conversion Electron Moessbauer Spectroscopy

    Science.gov (United States)

    2015-06-18

    by analogy, the nucleus) recoils with a recoil energy ER when firing a bullet (the γ-ray). A more in-depth discussion of the recoil energy loss can...Number of Mössbauer Peaks 1 The next consideration was the geometry of the absorber. The absorber not only had to fit in the CEMS detector opening ...Methodology, vol. 7. Plenum Press, New York. (1971) 24. Spikerman, J.J. Mossbauer Spectroscopy Instruction Manual for the MS-1200. Ranger Scientific

  18. Numerical and experimental studies of the carbon etching in EUV-induced plasma

    NARCIS (Netherlands)

    Astakhov, Dmitry; Goedheer, W.J.; Lee, Christopher James; Ivanov, V.V.; Krivtsun, V.M.; Yakushev, O.; Koshelev, K.N.; Lopaev, D.V.; Bijkerk, Frederik

    2016-01-01

    We have used a combination of numerical modeling and experiments to study carbon etching in the presence of a hydrogen plasma. We model the evolution of a low density EUV-induced plasma during and after the EUV pulse to obtain the energy resolved ion fluxes from the plasma to the surface. By

  19. Valence band gaps and plasma energies for galena, sphalerite, and chalcopyrite natural minerals using differential optical reflectance spectroscopy

    Science.gov (United States)

    Todoran, R.; Todoran, D.; Szakacs, Zs.

    2015-12-01

    The paper presents the determinations of the valence band gaps and plasma energies of the galena, sphalerite and chalcopyrite natural minerals. The work was carried out using differential optical reflectance spectroscopy of the clean mineral surfaces. The determination of the optical properties such as refractive index, real part of the complex dielectric constant and the location of certain van Hove singularities, was carried out using the Kramers-Kronig formalism.

  20. The role of spatial confinement for improvement of laser-induced Mg plasma parameters and growth of surface features

    Science.gov (United States)

    Hayat, Asma; Bashir, Shazia; Rafique, Muhammad Shahid; Ahmad, Riaz; Akram, Mahreen; Mahmood, Khaliq; Zaheer, Ali

    2017-08-01

    The role of spatial confinement for improvement of laser-induced Mg plasma parameters and growth of surface features is investigated by introducing a metallic blocker. Nd: YAG laser at various fluences ranging from 7 to 28 J cm-2 was employed as an irradiation source. All measurements were performed in the presence of Ar under different pressures. Confinement effects offered by metallic blocker are investigated by placing the blocker at different distances of 6, 8 and 10 mm from the target surface. It is revealed from laser-induced breakdown spectroscopy analysis that both plasma parameters, i.e., excitation temperature and electron number density initially increase with increasing laser fluence due to enhancement in energy deposition. With further increase in laser fluence, a decreasing trend followed by saturation is observed which is attributable to shielding effect and self-regulating regime. It is also observed that spatial confinement offered by metallic blocker is responsible for the significant enhancement of both electron temperature and electron number density of Mg plasma. This is true for all laser fluences and pressures of Ar. Maximum values of electron temperature and electron number density without blocker are 8335 K and 2.4 × 1016 cm-3, respectively, whereas these values are enhanced to 12,200 K and 4 × 1016 cm-3 in the presence of the blocker. The physical mechanisms responsible for the enhancement of Mg plasma parameters are plasma compression, confinement and pronounced collisional excitations due to reflection of shock waves. Scanning electron microscope analysis was performed to explore the surface morphology of laser-ablated Mg. It reveals the formation of cones, cavities and ripples. These features become more distinct and well defined in the presence of the blocker due to plasma confinement. The optimum combination of blocker distance, fluence and Ar pressure can identify the suitable conditions for defining the role of plasma parameters

  1. Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Gislum, René; Hermansen, Cecilie

    2017-01-01

    Soil organic carbon (SOC) and particle size fractions have a practical value for agronomy and the environment. Thus, alternative techniques to replace the expensive conventional analyses of soil are needed. Visible near-infrared reflectance spectroscopy (viseNIRS) has already shown potential...... for becoming an alternative method for soil analysis since it is faster and cheaper than conventional methods. Laser-induced breakdown spectroscopy (LIBS) is another cost-effective technique with potential for rapid analysis of elements present in the soil. In this study, the feasibility of using LIBS...... to determine SOC, clay, silt and sand contents of Danish agricultural soils was tested and compared with the viseNIRS method. First, country-scale Partial Least Squares (PLS) regression models on soils collected across Denmark (N ¼ 78) were built and validated using independent field samples (N ¼ 54). Secondly...

  2. Laser-induced atomic fragment fluorescence spectroscopy: a facile technique for molecular spectroscopy of spin-forbidden states.

    Science.gov (United States)

    Zhang, Qun; Chen, Yang; Keil, Mark

    2009-03-01

    Spectra of spin-forbidden and spin-allowed transitions in the mixed b (3)Pi(u) approximately A (1)Sigma(u)(+) state of Na(2) are measured separately by two-photon excitation using a single tunable dye laser. The two-photon excitation produces Na(*)(3p) by photodissociation, which is easily and sensitively detected by atomic fluorescence. At low laser power, only the A (1)Sigma(u)(+) state is excited, completely free of triplet excitation. At high laser power, photodissociation via the intermediate b (3)Pi(u) triplet state becomes much more likely, effectively "switching" the observations from singlet spectroscopy to triplet spectroscopy with only minor apparatus changes. This technique of perturbation-assisted laser-induced atomic fragment fluorescence may therefore be especially useful as a general vehicle for investigating perturbation-related physics pertinent to the spin-forbidden states, as well as for studying allowed and forbidden states of other molecules.

  3. Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.

    2017-09-01

    Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.

  4. Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anoop, K. K.; Harilal, S. S.; Philip, Reji; Bruzzese, R.; Amoruso, S.

    2016-11-14

    The characteristic emission features of a laser-produced plasma strongly depend strongly on the laser fluence. We investigated the spatial and temporal dynamics of neutrals and ions in femtosecond laser (800 nm, ≈ 40 fs, Ti:Sapphire) induced copper plasma in vacuum using both optical emission spectroscopy (OES) and spectrally resolved two-dimensional (2D) imaging methods over a wide fluence range of 0.5 J/cm2-77.5 J/cm2. 2D fast gated monochromatic images showed distinct plume splitting between the neutral and ions especially at moderate to higher fluence ranges. OES studies at low to moderate laser fluence regime confirm intense neutral line emission over the ion emission whereas this trend changes at higher laser fluence with dominance of the latter. This evidences a clear change in the physical processes involved in femtosecond laser matter interaction at high input laser intensity. The obtained ion dynamics resulting from the OES, and spectrally resolved 2D imaging are compared with charged particle measurement employing Faraday cup and Langmuir probe and results showed good correlation.

  5. Experimental investigation of silicon photomultipliers as compact light readout systems for gamma-ray spectroscopy applications in fusion plasmas.

    Science.gov (United States)

    Nocente, M; Fazzi, A; Tardocchi, M; Cazzaniga, C; Lorenzoli, M; Pirovano, C; Rebai, M; Uboldi, C; Varoli, V; Gorini, G

    2014-11-01

    A matrix of Silicon Photo Multipliers has been developed for light readout from a large area 1 in. × 1 in. LaBr3 crystal. The system has been characterized in the laboratory and its performance compared to that of a conventional photo multiplier tube. A pulse duration of 100 ns was achieved, which opens up to spectroscopy applications at high counting rates. The energy resolution measured using radioactive sources extrapolates to 3%-4% in the energy range Eγ = 3-5 MeV, enabling gamma-ray spectroscopy measurements at good energy resolution. The results reported here are of relevance in view of the development of compact gamma-ray detectors with spectroscopy capabilities, such as an enhanced gamma-ray camera for high power fusion plasmas, where the use of photomultiplier is impeded by space limitation and sensitivity to magnetic fields.

  6. Experimental investigation of silicon photomultipliers as compact light readout systems for gamma-ray spectroscopy applications in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nocente, M., E-mail: massimo.nocente@mib.infn.it; Gorini, G. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Istituto di Fisica del Plasma “P. Caldirola,” EURATOM-ENEA-CNR Association, Milano (Italy); Fazzi, A.; Lorenzoli, M.; Pirovano, C. [Dipartimento di Energia, CeSNEF, Politecnico di Milano, Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano (Italy); Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola,” EURATOM-ENEA-CNR Association, Milano (Italy); Cazzaniga, C.; Rebai, M. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Uboldi, C.; Varoli, V. [Dipartimento di Energia, CeSNEF, Politecnico di Milano, Milano (Italy)

    2014-11-15

    A matrix of Silicon Photo Multipliers has been developed for light readout from a large area 1 in. × 1 in. LaBr{sub 3} crystal. The system has been characterized in the laboratory and its performance compared to that of a conventional photo multiplier tube. A pulse duration of 100 ns was achieved, which opens up to spectroscopy applications at high counting rates. The energy resolution measured using radioactive sources extrapolates to 3%–4% in the energy range E{sub γ} = 3–5 MeV, enabling gamma-ray spectroscopy measurements at good energy resolution. The results reported here are of relevance in view of the development of compact gamma-ray detectors with spectroscopy capabilities, such as an enhanced gamma-ray camera for high power fusion plasmas, where the use of photomultiplier is impeded by space limitation and sensitivity to magnetic fields.

  7. Calibration-free quantitative analysis of elemental ratios in intermetallic nanoalloys and nanocomposites using Laser Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Davari, Seyyed Ali; Hu, Sheng; Mukherjee, Dibyendu

    2017-03-01

    Intermetallic nanoalloys (NAs) and nanocomposites (NCs) have increasingly gained prominence as efficient catalytic materials in electrochemical energy conversion and storage systems. But their morphology and chemical compositions play critical role in tuning their catalytic activities, and precious metal contents. While advanced microscopy techniques facilitate morphological characterizations, traditional chemical characterizations are either qualitative or extremely involved. In this study, we apply Laser Induced Breakdown Spectroscopy (LIBS) for quantitative compositional analysis of NAs and NCs synthesized with varied elemental ratios by our in-house built pulsed laser ablation technique. Specifically, elemental ratios of binary PtNi, PdCo (NAs) and PtCo (NCs) of different compositions are determined from LIBS measurements employing an internal calibration scheme using the bulk matrix species as internal standards. Morphology and qualitative elemental compositions of the aforesaid NAs and NCs are confirmed from Transmission Electron Microscopy (TEM) images and Energy Dispersive X-ray Spectroscopy (EDX) measurements. LIBS experiments are carried out in ambient conditions with the NA and NC samples drop cast on silicon wafers after centrifugation to increase their concentrations. The technique does not call for cumbersome sample preparations including acid digestions and external calibration standards commonly required in Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) techniques. Yet the quantitative LIBS results are in good agreement with the results from ICP-OES measurements. Our results indicate the feasibility of using LIBS in future for rapid and in-situ quantitative chemical characterizations of wide classes of synthesized NAs and NCs.

  8. Analysis of photobiomodulation associated or not with platelet-rich plasma on repair of muscle tissue by Raman spectroscopy.

    Science.gov (United States)

    Ozaki, Guilherme Akio Tamura; Camargo, Regina Celi Trindade; Koike, Tatiana Emy; Garcia, Thiago Alves; Castoldi, Robson Chacon; Pereira, João Domingos Augusto Dos Santos; Constantino, Carlos José Leopoldo; Camargo Filho, José Carlos Silva

    2016-12-01

    Treatment of muscle injuries usually results in the interruption of sports practice; thus, studies aimed at accelerating the return to activity, with proper tissue repair, are important. Therefore, this study aimed to evaluate the effects of photobiomodulation (PBM), associated or not with platelet-rich plasma (PRP), on the treatment of muscle injury. Thirty-five animals were used and divided into five groups (n = 7): control (C), control lesion (CL), lesion treated with low-level laser therapy (LLLT) (LLt), lesion treated with PRP (LP), and lesion treated with both techniques, LLLT and PRP (LLtP). Muscle injury was induced by stretching the gastrocnemius muscle, and the animals in the LLtP and LP groups received the application of PRP immediately following the injury. The LLLT was applied daily for 7 days. The animals were euthanized 7 days after the injury. Analysis of the NADH/NAD ratio and collagen was performed by Raman spectroscopy; in addition to which, histological analysis of the gastrocnemius muscle was performed. The LLtP group demonstrated a reduction in the area of injury, regenerating cells and a healthy appearance of muscle fibers. The Raman analyses showed a reduction in the NADH/NAD ratio in the CL group, demonstrating oxidative stress, and the collagen presented a reduction in the CL and LLt groups, when compared with the C group. It is concluded that either PBM or PRP, and the association of both, was able to reduce the oxidative stress promoted by injury and modulate collagen production at the site of the injury. Furthermore, although both treatments individually were effective for repairing the damage caused by muscle injury, the association of both demonstrated a better histological aspect.

  9. X-ray and EUV spectroscopy of various astrophysical and laboratory plasmas -- Collisional, photoionization and charge-exchange plasmas

    CERN Document Server

    Liang, G Y; Wang, F L; Wu, Y; Zhong, J Y; Zhao, G

    2014-01-01

    Several laboratory facilities were used to benchmark theoretical spectral models those extensively used by astronomical communities. However there are still many differences between astrophysical environments and laboratory miniatures that can be archived. Here we setup a spectral analysis system for astrophysical and laboratory (SASAL) plasmas to make a bridge between them, and investigate the effects from non-thermal electrons, contribution from metastable level-population on level populations and charge stage distribution for coronal-like, photoionized, and geocoronal plasmas. Test applications to laboratory measurement (i.e. EBIT plasma) and astrophysical observation (i.e. Comet, Cygnus X-3) are presented. Time evolution of charge stage and level population are also explored for collisional and photoionized plasmas.

  10. Influence of molecular structure on the laser-induced plasma emission of the explosive RDX and organic polymers.

    Science.gov (United States)

    De Lucia, Frank C; Gottfried, Jennifer L

    2013-10-03

    A series of organic polymers and the military explosive cyclotrimethylenetrinitramine (RDX) were studied using the light emission from a femtosecond laser-induced plasma under an argon atmosphere. The relationship between the molecular structure and plasma emission was established by using the percentages of the atomic species (C, H, N, O) and bond types (C-C, C═C, C-N, and C≡N) in combination with the atomic/molecular emission intensities and decay rates. In contrast to previous studies of organic explosives in which C2 was primarily formed by recombination, for the organic materials in this study the percentage of C-C (and C═C) bonds was strongly correlated to the molecular C2 emission. Time-resolved emission spectra were collected to determine the lifetimes of the atomic and molecular species in the plasma. Observed differences in decay rates were attributed to the differences in both the molecular structure of the organic polymers or RDX and the chemical reactions that occur within the plasma. These differences could potentially be exploited to improve the discrimination of explosive residues on organic substrates with laser-induced breakdown spectroscopy.

  11. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  12. Broadband field-resolved terahertz detection via laser induced air plasma with controlled optical bias.

    Science.gov (United States)

    Li, Chia-Yeh; Seletskiy, Denis V; Yang, Zhou; Sheik-Bahae, Mansoor

    2015-05-04

    We report a robust method of coherent detection of broadband THz pulses using terahertz induced second-harmonic (TISH) generation in a laser induced air plasma together with a controlled second harmonic optical bias. We discuss a role of the bias field and its phase in the process of coherent detection. Phase-matching considerations subject to plasma dispersion are also examined.

  13. Transcutaneous monitoring of steroid-induced osteoporosis with Raman spectroscopy

    Science.gov (United States)

    Maher, Jason R.; Inzana, Jason; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2012-01-01

    Although glucocorticoids are among the most frequently prescribed anti-inflammatory agents used in the treatment of rheumatoid arthritis, extended exposure to this steroid hormone is the leading cause of iatrogenic osteoporosis. Recently, Raman spectroscopy has been utilized to exploit biochemical differences between osteoporotic and normal bones in order to predict fracture risk. In this presentation, we report the results of ongoing research in our laboratory towards the clinical translation of this technique. We will discuss strategies for the transcutaneous acquisition of spectra from the tibiae of mice that are of sufficient quality to generate accurate predictions of fracture risk.

  14. Copper Determination in Gunshot Residue by Cyclic Voltammetric and Inductive Coupled Plasma-Optical Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mohd Hashim Nurul’Afiqah Hashimah

    2016-01-01

    Full Text Available Analysis of gunshot residue (GSR is a crucial evidences for a forensic analyst in the fastest way. GSR analysis insists a suitable method provides a relatively simple, rapid and precise information on the spot at the crime scene. Therefore, the analysis of Cu(II in GSR using cyclic voltammetry (CV on screen printed carbon electrode (SPCE is a better choice compared to previous alternative methods such as Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES those required a long time for analysis. SPCE is specially designed to handle with microvolumes of sample such as GSR sample. It gives advantages for identification of copper in GSR on-site preliminary test to prevent the sample loss on the process to be analyzed in the laboratory. SPCE was swabbed directly on the shooter’s arm immediately after firing and acetate buffer was dropped on SPCE before CV analysis. For ICP-OES analysis, cotton that had been soaked in 0.5 M nitric acid was swabbed on the shooter’s arm immediately after firing and kept in a tightly closed sampling tube. Gold coated SPCE that had been through nanoparticles modification exhibits excellent performance on voltammograms. The calibration was linear from 1 to 50 ppm of copper, the limit of detection for copper was 0.3 ppm and a relative standard deviation was 6.1 %. The method was successfully applied to the determination of copper in GSR. The Cu determination on SPCE was compared and validated by ICP-OES method with 94 % accuracy.

  15. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perring, Loic; Basic-Dvorzak, Marija [Department of Quality and Safety Assurance, Nestle Research Centre, P.O. Box 44, Vers chez-les-Blanc, 1000, Lausanne (Switzerland)

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99{+-}5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. (orig.)

  16. Analysis of plutonium oxide surrogate residue using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Hongbo [Department of Applied Physics, College of Science, Nanjing University of Technology, Nanjing (China); Yueh, F.Y.; Miller, Tracy [Institute for Clean Energy Technology (ICET), Mississippi State University, Starkville, MS 39759-7704 (United States); Singh, Jagdish P. [Institute for Clean Energy Technology (ICET), Mississippi State University, Starkville, MS 39759-7704 (United States)], E-mail: singh@icet.msstate.edu; Zeigler, Kristine E.; Marra, James C. [Savannah River National Laboratory (SRNL), Aiken, SC 29808 (United States)

    2008-09-15

    Laser-induced breakdown spectroscopy was used to determine the elemental composition of a CeO{sub 2} composite powder for process control verification during lanthanide borosilicate glass fabrication. Cerium oxide is used as a surrogate for plutonium oxide, which along with other canister contents will be combined with frit to make glass. Laser-induced breakdown spectroscopy data for the composition of the CeO{sub 2} batch containing concentrations of Ce, Cr, Si, Fe, Ta, Ni, Zn, Al Mg, Gd, and W were quantitatively determined from laser-induced breakdown spectroscopy spectra of both pellet and powder samples. The results of both forms were compared and it was determined that the pellet data gave slightly better precision than the powder sample.

  17. Laser-induced breakdown spectroscopy detection of heavy metal in water based on graphite conch method

    Science.gov (United States)

    Wang, Chunlong; Liu, Jianguo; Zhao, Nanjing; Shi, Huan; Liu, Lituo; Ma, Mingjun; Zhang, Wei; Chen, Dong; Liu, Jing; Zhang, Yujun; Liu, Wenqing

    2012-10-01

    The laser-induced breakdown spectroscopy emission characteristics of trace heavy metal lead in water is studied based on graphite conch method, with a 1064nm wavelength Nd: YAG laser as excitation source, the echelle spectrometer and ICCD detector are used for spectral separation and high sensitive detection with high resolution and wide spectral range. The delay time 900ns and gate time 1600ns are determined in the experiment. The calibration curve of Pb is plotted based on the different concentration measurement results, and a limit of detection of 0.0138mg / L is obtained for Pb in water. Graphite conch method effectively overcomes the current problems on laser-induced breakdown spectroscopy detection of heavy metal in water. The detection limits and stability are improved. The reference data is provided for further study on the fast measurement of trace heavy metals in water by laser induced breakdown spectroscopy technique.

  18. Label-Free Optical Detection of Acute Myocardial Infarction Based on Blood Plasma Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    Chen, Y. X.; Chen, M. W.; Lin, J. Y.; Lai, W. Q.; Huang, W.; Chen, H. Y.; Weng, G. X.

    2016-11-01

    This study is intended to explore the potential of silver (Ag) nanoparticle-based plasma surface-enhanced Raman spectroscopy (SERS) for providing a rapid and simple "Yes/No" assessment to detect acute myocardial infarction (AMI). A simple, rapid, and accurate method of diagnosing AMI is critical to reduce mortality and improve prognosis. Techniques such as electrocardiography examination and use of cardiac troponins have not yet met the current clinical need. Therefore, alternative approaches need to be developed. Plasma samples from 32 patients with AMI and 32 healthy control (Clt) subjects were assessed. Multivariate statistical techniques, including principal component (PC) analysis and linear discriminant analysis (PCA-LDA), were employed to develop a diagnostic algorithm for differentiating between patients with AMI and Clt subjects. Furthermore, the receiver operating characteristic was tested to evaluate the performance of the PCA-LDA algorithm for AMI detection. Each plasma sample was mixed with an equal volume of Ag colloidal solution, and the SERS measurement of each plasma sample was performed. The plasma SERS spectrum showed much stronger and sharper peaks compared with the normal Raman spectrum. Tentative assignments of Raman spectroscopy bands showed specific biomolecular (e.g., proteins, adenosine, adenine, and uric acid) changes. PC analysis and LDA were employed to discriminate patients with AMI from Clt subjects, yielding a sensitivity of 87.5% and a specificity of 93.8%. The findings of this study suggest that plasma SERS has a great potential for improving AMI in the future, and this will certainly reduce the difficulty, time to draw blood, and patients' pain to a great extent.

  19. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    Science.gov (United States)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  20. Quantitative analysis of soil calcium by laser-induced breakdown spectroscopy using addition and addition-internal standardizations

    Science.gov (United States)

    Shirvani-Mahdavi, Hamidreza; Shafiee, Parisa

    2016-12-01

    Matrix mismatching in the quantitative analysis of materials through calibration-based laser-induced breakdown spectroscopy (LIBS) is a serious problem. In this paper, to overcome the matrix mismatching, two distinct approaches named addition standardization (AS) and addition-internal combinatorial standardization (A-ICS) are demonstrated for LIBS experiments. Furthermore, in order to examine the efficiency of these methods, the concentration of calcium in ordinary garden soil without any fertilizer is individually measured by each of the two procedures. To achieve this purpose, ten standard samples with different concentrations of calcium (as the analyte) and copper (as the internal standard) are prepared in the form of cylindrical tablets, so that the soil plays the role of the matrix in all of them. The measurements indicate that the relative error of concentration compared to a certified value derived by induced coupled plasma optical emission spectroscopy is 3.97% and 2.23% for AS and A-ICS methods, respectively. Furthermore, calculations related to standard deviation indicates that A-ICS method may be more accurate than AS one.

  1. Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z.; Stewart, Arthur J.; Gwinn, Kimberley D.; Waller, John C.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by inductively coupled plasma (ICP) mass spectrometry (MS). Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni, and Zn) were measured by both techniques at concentrations great enough for a reliable comparison. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typically achieved using ICP MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.

  2. Can the provenance of the conflict minerals columbite and tantalite be ascertained by laser-induced breakdown spectroscopy?

    Science.gov (United States)

    Harmon, Russell S; Shughrue, Katrina M; Remus, Jeremiah J; Wise, Michael A; East, Lucille J; Hark, Richard R

    2011-07-01

    Conflict minerals is a term applied to ores mined in conditions of armed conflict and human rights abuse. Niobium and tantalum are two rare metals whose primary natural occurrence is in the complex oxide minerals columbite and tantalite, the ore of which is commonly referred to as coltan. The illicit export of coltan ore from the Democratic Republic of the Congo is thought to be responsible for financing the ongoing civil conflicts in this region. Determining the chemical composition of an ore is one of the means of ascertaining its provenance. Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different geographic sources for a mineral because the LIBS plasma emission spectrum provides the complete chemical composition (i.e., "chemical fingerprint") of any material in real time. To test this idea for columbite-tantalite, three sample sets were analyzed. Partial least squares discriminant analysis (PLSDA) allows correct sample-level geographic discrimination at a success rate exceeding 90%.

  3. The application of spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy

    CERN Document Server

    Li, Xiongwei; Fu, Yangting; Li, Zheng; Liu, Jianming; Ni, Weidou

    2014-01-01

    Measurements of carbon content in coal using laser-induced breakdown spectroscopy (LIBS) is limited by its low measurement precision and accuracy. A spectrum standardization method was proposed to achieve both reproducible and accurate results for the quantitative analysis of carbon content in coal with LIBS. The proposed method utilized the molecular carbon emissions to compensate the diminution of atomic carbon emission caused by matrix effect. The compensated carbon line intensities were further converted into an assumed standard state with fixed plasma temperature, electron density, and total number density of elemental carbon, which is proportional to its concentration in the coal samples. In addition, in order to obtained better compensation for total carbon number density fluctuations, an iterative algorithm was applied, which is different from our previous standardization calculations. The modified spectrum standardization model was applied to the measurement of carbon content in 24 bituminous coal sa...

  4. Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements.

    Science.gov (United States)

    Laserna, J J; Reyes, R Fernández; González, R; Tobaria, L; Lucena, P

    2009-06-08

    We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.

  5. Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis.

    Science.gov (United States)

    Gazmeh, Meisam; Bahreini, Maryam; Tavassoli, Seyed Hassan

    2015-01-01

    In the laser drilling of teeth, a microplasma is generated which may be utilized for elemental analysis of ablated tissue via a laser-induced breakdown spectroscopy (LIBS) technique. In this study, LIBS is used to investigate the possibility of discrimination of healthy and carious tooth tissues. This possibility is examined using multivariate statistical analysis called partial least square discriminant analysis (PLS-DA) based on atomic and ionic emission lines of teeth LIBS spectra belonging to P, Ca, Mg, Zn, K, Sr, C, Na, H, and O elements. Results show an excellent discrimination and prediction of unknown tooth tissues. It is shown that using the PLS-DA method, the spectroscopic analysis of plasma emission during the laser drilling, would be a promising technique for caries detection.

  6. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis...... of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins....

  7. Comparison of plasma parameters and line emissions of laser-induced plasmas of an aluminum target using single and orthogonal double nanosecond/picosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Sobral, H., E-mail: martin.sobral@ccadet.unam.mx; Sanginés, R.

    2014-04-01

    The emission of laser-induced plasma on aluminum targets in air was investigated with nanosecond- and picosecond-pulsed Nd:YAG laser emitting at the fundamental wavelength. Orthogonal double pulse in pre-ablation and reheating configurations was also performed where the picosecond laser was employed to ablate the target. Ablation fluences were kept fixed at 100 J cm{sup −2} regardless of the laser pulse duration. Time integrated emission spectroscopy was employed to determine the plasma emission; thus, picosecond laser ablation provided larger figures than the nanosecond one. The emission was further enhanced when double pulse schemes were used. This enhancement was analyzed as a function of interpulse delays. Electron density and temperature evolutions were determined from time delays of 150 ns after the ablation plasma onset. Results are discussed in terms of the ablation rate. - Highlights: • A comparison of LIBS signal keeping constant the ablation fluence is performed. • Emission of ps laser ablation is up to four-fold enlarged compared with ns pulses. • Drilling ablation efficiency is 6 times larger with ps compared with ns pulses. • LIBS sensitivity with ps pulse ablation is equivalent to that of ns double pulse configuration.

  8. New Approach for Near-Real-Time Measurement of Elemental Composition of Aerosol Using Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Diwakar, Prasoon; Kulkarni, Pramod; Birch, M. Eileen

    2015-01-01

    A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30–900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200–980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018–5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps—a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18–670 ng m−3 can be achieved for most of the elements studied at a flow rate of 1.5 L min−1 with sampling times of 5 min. PMID:26692632

  9. New Approach for Near-Real-Time Measurement of Elemental Composition of Aerosol Using Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Diwakar, Prasoon; Kulkarni, Pramod; Birch, M Eileen

    A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30-900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200-980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018-5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps-a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18-670 ng m(-3) can be achieved for most of the elements studied at a flow rate of 1.5 L min(-1) with sampling times of 5 min.

  10. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.

    Science.gov (United States)

    Senesi, G S; Dell'Aglio, M; Gaudiuso, R; De Giacomo, A; Zaccone, C; De Pascale, O; Miano, T M; Capitelli, M

    2009-05-01

    Soil is unanimously considered as one of the most important sink of heavy metals released by human activities. Heavy metal analysis of natural and polluted soils is generally conducted by the use of atomic absorption spectroscopy (AAS) or inductively coupled plasma optical emission spectroscopy (ICP-OES) on adequately obtained soil extracts. Although in recent years the emergent technique of laser-induced breakdown spectroscopy (LIBS) has been applied widely and with increasing success for the qualitative and quantitative analyses of a number of heavy metals in soil matrices with relevant simplification of the conventional methodologies, the technique still requires further confirmation before it can be applied fully successfully in soil analyses. The main objective of this work was to demonstrate that new developments in LIBS technique are able to provide reliable qualitative and quantitative analytical evaluation of several heavy metals in soils, with special focus on the element chromium (Cr), and with reference to the concentrations measured by conventional ICP spectroscopy. The preliminary qualitative LIBS analysis of five soil samples and one sewage sludge sample has allowed the detection of a number of elements including Al, Ca, Cr, Cu, Fe, Mg, Mn, Pb, Si, Ti, V and Zn. Of these, a quantitative analysis was also possible for the elements Cr, Cu, Pb, V and Zn based on the obtained linearity of the calibration curves constructed for each heavy metal, i.e., the proportionality between the intensity of the LIBS emission peaks and the concentration of each heavy metal in the sample measured by ICP. In particular, a triplet of emission lines for Cr could be used for its quantitative measurement. The consistency of experiments made on various samples was supported by the same characteristics of the laser-induced plasma (LIP), i.e., the typical linear distribution confirming the existence of local thermodynamic equilibrium (LTE) condition, and similar excitation

  11. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    Science.gov (United States)

    Lunov, Oleg; Zablotskii, Vitalii; Churpita, Olexander; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-11-01

    Non-thermal plasma has been recognized as a promising tool across a vast variety of biomedical applications, with the potential to create novel therapeutic methods. However, the understanding of the molecular mechanisms behind non-thermal plasma cellular effects remains a significant challenge. In this study, we show how two types of different non-thermal plasmas induce cell death in mammalian cell cultures via the formation of multiple intracellular reactive oxygen/nitrogen species. Our results showed a discrepancy in the superoxide accumulation and lysosomal activity in response to air and helium plasma, suggesting that triggered signalling cascades might be grossly different between different plasmas. In addition, the effects of ozone, a considerable component of non-thermal plasma, have been simultaneously evaluated and have revealed much faster and higher cytotoxic effects. Our findings offer novel insight into plasma-induced cellular responses, and provide a basis for better controlled biomedical applications.

  12. [The auto-focusing remote laser-induced breakdown spectroscopy system].

    Science.gov (United States)

    Han, Zhen-yu; Pan, Cong-yuan; An, Ning; Du, Xue-wei; Yu, Yun-si; Du, Liang-liang; Wang, Sheng-bo; Wang, Qiu-ping

    2015-02-01

    The present paper presents an auto-focus laser-induced breakdown spectroscopy (LIBS) remote measuring system. This system contains a Schwarzschild telescope, which consists of a convex mirror and a concave mirror. The two spherical mirrors are coaxially placed. The convex mirror is mounted on a motorized linear translation stage. With this motorized linear translation stage, the convex mirror can move along the optical axis to change the spacing between the convex mirror and the concave mirror. Therefore the focal length can be adjusted to focus the laser on samples at different distances and collect the plasma spectra. The advantages of the telescope system include, firstly, the light path of laser focusing and spectra signal collection is the same, which make it easier for mounting and collimation; secondly, the light path of the telescope uses total reflection type, which is fit for the detection in ultra-violate region; finally, the telescope consists of only two spherical mirrors which are relatively easier to manufacture. Within the translation range of the motorized linear translation stage, the focal length of the telescope in this paper can be adjusted from 1.5 to 3.6 m. The diameter of the focusing spot varies from 0.5 to 1.0 mm. Utilizing this telescope system, LIBS experiments were conducted using copper sample. And the characteristic lines of Cu element (Cu I 223.01 nm, Cu I 224.43 nm) obtained are used for the auto focusing. By investigating the relation of the area of spectral lines covered and the spacing between the mirrors, the optimal laser focusing location was obtained. The LIBS experiment results show that the system functions well, fulfilling the demand of remote ablation of sample and LIBS spectral measuring, and the telescope is able to auto-focus the laser on samples at different position to perform remote LIBS experiment.

  13. Trace element quantification of lead based roof sheets of historical monuments by Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Syvilay, D., E-mail: delphine.syvilay@culture.gouv.fr [LRMH USR 3224, 29 rue de Paris, 77420 Champs-sur-Marne (France); Texier, A. [LRMH USR 3224, 29 rue de Paris, 77420 Champs-sur-Marne (France); Arles, A.; Gratuze, B. [IRAMAT, 3D, rue de la Férollerie, 45071 Orléans Cedex 2 (France); Wilkie-Chancellier, N.; Martinez, L.; Serfaty, S. [SATIE, UMR CNRS 8029, Université de Cergy-Pontoise, ENS Cachan, 95000 Cergy-Pontoise Cedex (France); Detalle, V. [LRMH USR 3224, 29 rue de Paris, 77420 Champs-sur-Marne (France)

    2015-01-01

    The aim of this paper is to identify the different periods of construction or restoration of the lead roof of a historic monument. Trace elements in a lead matrix can be a signature of the metallurgical processes, allowing identification of a specific time period for the production of the lead used to build the roof. The ability of LIBS (Laser Induced Breakdown Spectroscopy) to detect such trace elements in a lead matrix is therefore explored and checked by comparing its results with LA-ICP-MS as a reference method (Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry). Concentrations of 263 samples were compared between LIBS and LA-ICP-MS data and their correlation was evaluated. Another way to compare their results is also suggested by combining PCA (Principal Component Analysis) and GIS (Geographic Information System). As a result statistical mappings were created, highlighting metallurgical groups of samples across the roof of the building. This innovative approach links concentration and spatial location resulting in an easily interpretable graphical presentation of the data. The results of both spectrometry methods lead to similar conclusions with distinctive areas of different lead compositions and by extension different lead dating across the roof. But since LIBS is portable we can conclude that it is a suitable and reliable instrument for in-situ applications on historic monuments. - Highlights: • Quantification of trace elements (Ag, Bi, Cu and Sn) in a lead matrix by LIBS and LA-ICP-MS • Low limit of detection for Ag, Bi, Cu and Sn by using LIBS portable instrumentation • Set up a specific data processing combining PCA and GIS for cultural heritage application • Comparison of LIBS and LA-ICP-MS results with 263 samples • 488 samples analyzed by LIBS.

  14. Wavelength dependence of laser induced breakdown spectroscopy (LIBS) on questioned document investigation.

    Science.gov (United States)

    Elsherbiny, Nany; Aied Nassef, O

    2015-07-01

    The fast and nearly non-destructive criteria of laser induced breakdown spectroscopy (LIBS) technique has been exploited for forensic purposes, specifically, document investigation. The dependence of the optical emission spectra of different black gel ink samples on the excitation laser wavelength, namely the visible wavelength at λ=532 nm and the IR wavelength at λ=1064 nm, was studied. The inks of thirty black gel-ink pens comprising ten brands were analyzed to determine the variation of the chemical composition of ink and to discriminate among them with minimum mass removal and minimum damage to the document's paper. Under the adopted experimental conditions, the ability of the visible LIBS to differentiate among the different ink samples was successful compared to IR LIBS at the same laser pulse energy (~25 mJ/pulse, laser fluence is ~1400J·cm(-2) for visible laser and ~1100J·cm(-2) for IR laser) which could be attributed to the IR absorption effects by the black ink. However, the visible LIBS produces deeper crater with respect to that produced by IR LIBS. Applying IR LIBS with higher pulse energy of ~87mJ (laser fluence is ~4100J·cm(-2)), identification and differentiation of the adopted samples was performed with producing a larger-diameter but superficial crater. The plasma parameters are discussed at the adopted experimental conditions. The results support the potential of LIBS technique using both the visible and IR lasers to be commercially developed for forensic document examination. Copyright © 2015 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Cross-sectional study of kidney stones by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Singh, V K; Rai, A K; Rai, P K; Jindal, P K

    2009-09-01

    We performed laser-induced breakdown spectroscopy (LIBS) for the in situ quantitative estimation of elemental constituents distributed in different parts of kidney stones obtained directly from patients by surgery. We did this by focusing the laser light directly on the center, shell, and surface of the stones to find the spatial distribution of the elements inside the stone. The elements detected in the stones were calcium, magnesium, manganese, copper, iron, zinc, strontium, sodium, potassium, carbon, hydrogen, nitrogen, oxygen, phosphorus, sulfur, and chlorine (Cl), etc. We optimized the LIBS signals by varying the laser energy from 10 mJ to 40 mJ to obtain the best signal-to-background and signal-to-noise ratios. We estimated the quantities of different elements in the stones by drawing calibration curves, plotting graphs of the analyte signal versus the absolute concentration of the elements in standard samples. The detection limits of the calibration curves were discussed. The concentrations of the different elements were found to be widely different in different stones found in different age groups of patients. It was observed that stones containing higher amounts of copper also possessed higher amounts of zinc. In general, the concentrations of trace elements present in the kidney stones decreased as we moved from center to shell and surface. Our results also revealed that the concentrations of elements present in the stones increased with the age of the patients. The results obtained from the calibration curves were compared with results from inductively coupled plasma mass spectrometry (ICP-MS). We also used the intensity ratios of different elemental lines to find the spatial distribution of different elements inside the kidney stones.

  16. Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Jantzi, Sarah C; Almirall, José R

    2011-07-01

    A method for the quantitative elemental analysis of surface soil samples using laser-induced breakdown spectroscopy (LIBS) was developed and applied to the analysis of bulk soil samples for discrimination between specimens. The use of a 266 nm laser for LIBS analysis is reported for the first time in forensic soil analysis. Optimization of the LIBS method is discussed, and the results compared favorably to a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method previously developed. Precision for both methods was <10% for most elements. LIBS limits of detection were <33 ppm and bias <40% for most elements. In a proof of principle study, the LIBS method successfully discriminated samples from two different sites in Dade County, FL. Analysis of variance, Tukey's post hoc test and Student's t test resulted in 100% discrimination with no type I or type II errors. Principal components analysis (PCA) resulted in clear groupings of the two sites. A correct classification rate of 99.4% was obtained with linear discriminant analysis using leave-one-out validation. Similar results were obtained when the same samples were analyzed by LA-ICP-MS, showing that LIBS can provide similar information to LA-ICP-MS. In a forensic sampling/spatial heterogeneity study, the variation between sites, between sub-plots, between samples and within samples was examined on three similar Dade sites. The closer the sampling locations, the closer the grouping on a PCA plot and the higher the misclassification rate. These results underscore the importance of careful sampling for geographic site characterization.

  17. Forensic application of laser-induced breakdown spectroscopy for the discrimination of questioned documents.

    Science.gov (United States)

    Lennard, Chris; El-Deftar, Moteaa M; Robertson, James

    2015-09-01

    Document examination is an important forensic discipline and the legal system regularly needs the knowledge and skills of the scientific expert when questioned documents are involved in criminal or civil matters. Amongst the many aspects of the scientific examination of documents, elemental analysis can provide useful results. In this study, the evaluation of the analytical performance of a commercially available laser-induced breakdown spectroscopy (LIBS) instrument was conducted on office papers, writing inks, inkjet inks and laser printer toners. The paper sample set analysed consisted of 33 Australian paper specimens originating from the same production plant but representing different brands and/or batches. In addition, a total of 131 ink or toner samples were examined that included black and blue ballpoint inks, black inkjet inks, and black laser printer toners originating from several manufacturing sources, models and/or batches. Results from the LIBS method were compared against those obtained using more established elemental profiling method such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). LIBS demonstrated detectable and significant differences between different batches of the same brand as well as between different brands of paper, ink and toner samples. The LIBS method provided comparable discrimination powers for the selected sample sets when compared to those obtained using LA-ICP-MS (discrimination from 99.8 and 100% of the sample pairs, depending on the sample subset under examination). LIBS is a suitable technique for the determination of elemental composition as part of a protocol for the examination of questioned documents.

  18. Laser-Induced Breakdown Spectroscopy Technique in Identification of Ancient Ceramics Bodies and Glazes

    Science.gov (United States)

    Elsayed, Khaled; Imam, Hisham; Madkour, Fatma; Meheina, Galila; Gamal, Yosr

    2011-06-01

    In this paper we report a study on Laser Induced Breakdown Spectroscopy (LIBS) as a promising non-destructive technique for the identification of the colored glazes, and clay's bodies of Fatimid ceramics ancient artifacts. The scientific examination of ceramics may be helpful in unraveling the history of ancient shards, particularly as the process of its production such as firing condition and temperatures. The analysis of pottery, ceramic bodies and glazed coatings is required in order to structure the conservation or restoration of a piece. Revealing the technical skills of ancient potters has been one of the most important issues for gaining a deep insight of bygone culture and also it is required in order to structure the conservation or restoration of a piece of art. LIBS measurements were carried out by focusing a Nd-YAG laser at 1064 nm with pulse width of 10 ns and 50 mJ pulse energy on the surface of the sample by a 100-mm focal length lens. The plasma emission was collected by telescopic system and transferred through a fiber to Echelle spectrometer attached to an ICCD camera. The focal spot diameter is found to be in the range of 100-150 μm. which is small enough to consider this technique as a non-destructive technique. LIBS technique clarified that each piece of archaeological objects has its own finger print. X-ray diffraction (XRD) analysis was carried out on these archaeological ceramic body samples to study raw materials such as clays, which allowed the investigation of the crystal structure and showed the changes in its structure through firing process. This provided information on the ceramic characteristic and composition of the ceramic bodies.

  19. Proceedings of the eighth international colloquium on ultraviolet and x-ray spectroscopy of astrophysical and laboratory plasmas (IAU colloquium 86)

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This volume represents the Proceedings of the Eighth International Colloquium on Ultraviolet and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas. The aim of this series of colloquia has been to bring together workers in the fields of astrophysical spectroscopy, laboratory spectroscopy and atomic physics in order to exchange ideas and results on problems which are common to these different disciplines. In addition to the presented papers there was a poster paper session. (WRF)

  20. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in a Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4

  1. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    Science.gov (United States)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kanzaki, Makoto; Kaneko, Toshiro

    2016-08-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor(s), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OHaq), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OHaq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OHaq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OHaq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool.

  2. Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery.

    Science.gov (United States)

    Mehari, Fanuel; Rohde, Maximillian; Kanawade, Rajesh; Knipfer, Christian; Adler, Werner; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael

    2016-10-01

    In the present study, the elemental compositions of fat and nerve tissue during their plasma mediated laser ablation are studied in the context of tissue differentiation for laser surgery applications by using Laser-Induced Breakdown Spectroscopy (LIBS). Tissue samples of porcine fat and nerve were prepared as ex vivo experimental objects. Plasma mediated laser ablation is performed using an Nd : YAG laser in open air and under normal stray light conditions. The performed measurements suggest that the two tissue types show a high similarity in terms of qualitative elemental composition while at the same time revealing a distinct difference in the concentration of the constituent elements. Different analysis approaches are evaluated and discussed to optimize the tissue-differentiation performance of the LIBS approach. Plasma mediated laser tissue ablation.

  3. Discrimination of moist oil shale and limestone using laser induced breakdown spectroscopy

    Science.gov (United States)

    Paris, P.; Piip, K.; Lepp, A.; Lissovski, A.; Aints, M.; Laan, M.

    2015-05-01

    Laser-induced plasma emission spectra of Estonian oil shale and associated limestone with varying moisture content were studied. Time gated spectra excited by 1064 nm laser radiation were recorded. Spectral lines for determination of plasma parameters were selected. Moisture causes the reduction of the intensity of the total emission, and increases the intensity of the Hα line. It was found that the effect of the moisture content on the plasma temperature and electron concentration was inconsiderable. Using the ratio of intensities of Hα and Mg spectral lines, it was possible to distinguish reliably between limestone and oil shale independently of their moisture content.

  4. Discrimination of moist oil shale and limestone using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paris, P., E-mail: peeter.paris@ut.ee; Piip, K.; Lepp, A.; Lissovski, A.; Aints, M.; Laan, M.

    2015-05-01

    Laser-induced plasma emission spectra of Estonian oil shale and associated limestone with varying moisture content were studied. Time gated spectra excited by 1064 nm laser radiation were recorded. Spectral lines for determination of plasma parameters were selected. Moisture causes the reduction of the intensity of the total emission, and increases the intensity of the H{sub α} line. It was found that the effect of the moisture content on the plasma temperature and electron concentration was inconsiderable. Using the ratio of intensities of H{sub α} and Mg spectral lines, it was possible to distinguish reliably between limestone and oil shale independently of their moisture content. - Highlights: • Laser induced plasma emission spectra of both; Estonian oil shale and limestone with varying moisture content were studied. • The temporal change of the laser induced plasma plume temperature T{sub e} and electron density n{sub e} were evaluated. • Plasma temperature and electron concentration changed with the moisture content inconsiderably. • Limestone and oil shale are distinguished independently of their moisture content by the intensity ratio of H{sub α} and Mg lines.

  5. Comparison of Nitric Oxide Concentrations in μs- and ns-Atmospheric Pressure Plasmas by UV Absorption Spectroscopy

    Science.gov (United States)

    Peters, F.; Hirschberg, J.; Mertens, N.; Wieneke, S.; Viöl, W.

    2016-04-01

    In this paper, an absorption spectroscopy measurement method was applied on two atmospheric pressure plasma sources to determine their production of nitric oxide. The concentrations are essential for evaluating the plasma sources based on the principle of the Dielectric Barrier Discharge (DBD) for applications in plasma medicine. The described method is based on a setup with an electrodeless discharge lamp filled with a mixture of oxygen and nitrogen. One of the emitted wavelengths is an important resonance wavelength of nitric oxide (λ = 226.2 nm). By comparing the absorption behaviour at the minimum and maximum of the spectral absorption cross section of nitric oxide around that wavelength, and measuring the change in intensity by the absorbing plasma, the concentration of nitric oxide inside the plasma can be calculated. The produced nitric oxide concentrations depend on the pulse duration and are in the range of 180 ppm to 1400 ppm, so that a distance of about 10cm to the respiratory tract is enough to conform to the VDI Guideline 2310.

  6. Hypochlorite-induced damage to plasma and proteins: formation of nitrogen-centred radicals and their role in protein oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, C.L.; Davies, M.J. [Heart Research Institute, Camperdown, NSW (Australia)

    1998-12-31

    The respiratory burst of activated phagocyte cells results in the generation of hypochlorite (HOCl) via the release of the hydrogen peroxide and the enzyme myeloperoxidase. Little information is available about the mechanisms and intermediates involved in these reactions. Electron paramagnetic resonance (EPR) spectroscopy with spin trapping has been employed to identify radicals formed in fresh human plasma and isolated proteins and peptides on treatment with HOCI. Reaction of plasma with HOCI in the presence of a spin trap gives broad, anisotropic radical adducts consistent with the formation of large, slowly-tumbling, protein-derived radicals. The identity of the plasma-derived radical adducts was investigated further by the incubation of the pre-formed adducts with the non-specific proteolytic enzyme pronase. This treatment gave sharper, signals consistent with the release of more mobile, low-molecular-weight spin adducts from the initial protein-derived adducts. The hyperfine couplings of these sharper signals are characteristic of the formation of nitrogen-centred radical adducts. Similar or identical species are observed on treatment with isolated human serum albumin, suggesting that this is a major site of HOCI-induced oxidation. Reaction of HOCI-treated plasma or isolated proteins/peptides with excess methionine eliminates radical formation, consistent with lysine-derived chloramines (via homolysis or heterolysis of N-CI bonds) being the radical source. The effect of HOCI on the structural integrity of the plasma proteins was investigated by SDS-PAGE. It was demonstrated that incubation of HOCI-treated plasma or proteins, after removal of excess oxidant, resulted in a time- and HOCI-dependent fragmentation of the proteins. No evidence was obtained for the presence of either discrete fragments or aggregated material. This suggests that the reaction of HOCI with plasma proteins results in the formation of a large number of random fragments. Treatment with

  7. Mechanism of laser-induced plasma shock wave evolution in air

    Institute of Scientific and Technical Information of China (English)

    Zhao Rui; Liang Zhong-Cheng; Han Bing; Zhang Hong-Chao; Xu Rong-Qing; Lu Jian; Ni Xiao-Wu

    2009-01-01

    A theoretical model is proposed to describe the mechanism of laser-induced plasma shock wave evolution in air. To verify the validity of the theoretical model, an optical beam deflection technique is employed to track the plasma shock wave evolution process. The theoretical model and the experimental signals are found to be in good agreement with each other. It is shown that the laser-induced plasma shock wave undergoes formation, increase and decay processes; the increase and the decay processes of the laser-induced plasma shock wave result from the overlapping of the compression wave and the rarefaction wave, respectively. In addition, the laser-induced plasma shock wave speed and pressure distributions, both a function of distance, are presented.

  8. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  9. Comparative investigation of laser ablation plumes in air and argon by analysis of spectral line shapes: Insights on calibration-free laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Jörg, E-mail: hermann@lp3.univ-mrs.fr [LP3, CNRS — Aix Marseille University, 163 Av. de Luminy, 13288 Marseille (France); Gerhard, Christoph [Laboratory of Laser and Plasma Technologies, University of Applied Sciences and Arts, Von-Ossietzky-Straße 99, 37085 Göttingen (Germany); Axente, Emanuel [Laser–Surface–Plasma Interactions Laboratory, Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania); Dutouquet, Christophe [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France)

    2014-10-01

    We investigate the characteristic features of plume expansion in air and argon resulting from ultraviolet laser ablation of solid matter in conditions typically applied in material analysis via laser-induced breakdown spectroscopy (LIBS). Barite crown glass is chosen as a target material for the characteristic emission spectrum suitable for plasma diagnostics. The space-integrated plasma emission spectrum recorded with an echelle spectrometer coupled to a gated detector is compared to the computed spectral radiance of a nonuniform plasma in local thermodynamic equilibrium. In particular, resonance lines of neutral sodium atoms and barium ions are observed to probe gradients of temperature and density within the plume. It is shown that laser ablation in argon leads to an almost uniform plasma whereas gradients of temperature and density are evidenced in ambient air. The discrepancy is attributed to the different physical properties of both gases leading to a stronger vapor–gas energy exchange in the case of air. However, strong gradients occur only in a thin peripheral zone, close to the vapor–gas contact front. The larger plasma core appears almost uniform. The peripheral zone of low temperature mostly contributes to the plasma emission spectrum by absorption and material analysis via calibration-free LIBS in air may ignore the nonuniform character of the plasma if only transitions of small optical thickness are considered. - Highlights: • Investigation of laser ablation plumes by analysis of spectral line shapes • Simulation of emission spectra from nonuniform laser-produced plasmaPlasma is more uniform for ablation in argon. • Plasma nonuniformity mostly affects optically thick lines. • Calibration-free LIBS may ignore gradients if optically thin lines are chosen.

  10. Enhanced acceleration of injected electrons in a laser-beat-wave-induced plasma channel.

    Science.gov (United States)

    Tochitsky, S Ya; Narang, R; Filip, C V; Musumeci, P; Clayton, C E; Yoder, R B; Marsh, K A; Rosenzweig, J B; Pellegrini, C; Joshi, C

    2004-03-05

    Enhanced energy gain of externally injected electrons by a approximately 3 cm long, high-gradient relativistic plasma wave (RPW) is demonstrated. Using a CO2 laser beat wave of duration longer than the ion motion time across the laser spot size, a laser self-guiding process is initiated in a plasma channel. Guiding compensates for ionization-induced defocusing (IID) creating a longer plasma, which extends the interaction length between electrons and the RPW. In contrast to a maximum energy gain of 10 MeV when IID is dominant, the electrons gain up to 38 MeV energy in a laser-beat-wave-induced plasma channel.

  11. Characteristics of Ions Emitted from Laser-Induced Silver Plasma

    Institute of Scientific and Technical Information of China (English)

    M. S. RAFIQUE; M. KHALEEQ-UR-RAHMAN; Shakoor MUNAZZA; K. A. BHATTI

    2008-01-01

    In this work, study of laser-induced ions is presented. The plasma was produced by focusing a Nd:YAG laser, with a wavelength of 1064 nm, a pulsed width of 9~14 ns, a power of 1.1 MW and energy of 10 mJ, on silver target in vacuum (10'-3> Torr = 1.3332 Pa). The charac-teristics of ion streams were investigated by CR-39 detectors located at angles of 0°, 30°, 60° and 90° with respect to normal of the target. The distance between the silver target and each detector was 11 cm. The energy of silver ions was found ranging from 1.5 eV to 1.06E4 eV. There was a high concentration of ions with low energy as compared to those with high energy, showing the energy distribution amongst the ions. The flux of ions was maximum in the axial direction which was decreasing with the angle increase with respect to normal of the target, and finally became minimum in the radial direction. Hence the silver ions have shown anisotropic behaviour.

  12. Low temperature plasma technology methods and applications

    CERN Document Server

    Chu, Paul K

    2013-01-01

    Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induce

  13. Optical spectroscopy by 5-aminolevulinic acid hexylester induced photodynamic treatment in rat bladder cancer

    Science.gov (United States)

    Larsen, Eivind L. P.; Randeberg, Lise L.; Gederaas, Odrun A.; Arum, Carl-Jørgen; Krokan, Hans E.; Hjelme, Dag R.; Svaasand, Lars O.

    2006-02-01

    Photodynamic therapy (PDT) is a treatment modality which has been shown to be effective for both malignant and non-malignant diseases. New photosensitizers such as 5-aminolevulinic acid hexylester (hALA) may increase the efficiency of PDT. Monitoring of the tissue response provides important information for optimizing factors such as drug and light dose for this treatment modality. Optical spectroscopy may be suited for this task. To test the efficacy of hALA induced PDT, a study on rats with a superficial bladder cancer model, in which a bladder cancer cell line (AY-27) is instilled, will be performed. Preliminary studies have included a PDT feasibility study on rats, fluorescence spectroscopy on AY-27 cell suspensions, and optical reflection and fluorescence spectroscopy in rat bladders in vivo. The results from the preliminary studies are promising, and the study on hALA induced PDT treatment of bladder cancer will be continued.

  14. Determination of the electron energy distribution function of a low temperature plasma from optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dodt, Dirk Hilar

    2009-01-05

    The experimental determination of the electron energy distribution of a low pressure glow discharge in neon from emission spectroscopic data has been demonstrated. The spectral data were obtained with a simple overview spectrometer and analyzed using a strict probabilistic, Bayesian data analysis. It is this Integrated Data Analysis (IDA) approach, which allows the significant extraction of non-thermal properties of the electron energy distribution function (EEDF). The results bear potential as a non-invasive alternative to probe measurements. This allows the investigation of spatially inhomogeneous plasmas (gradient length smaller than typical probe sheath dimensions) and plasmas with reactive constituents. The diagnostic of reactive plasmas is an important practical application, needed e.g. for the monitoring and control of process plasmas. Moreover, the experimental validation of probe theories for magnetized plasmas as a long-standing topic in plasma diagnostics could be addressed by the spectroscopic method. (orig.)

  15. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    Science.gov (United States)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  16. Detection of Potential Induced Degradation in c-Si PV Panels Using Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Oprea, Matei-lon; Spataru, Sergiu; Sera, Dezso;

    2016-01-01

    Impedance spectroscopy (IS) is an established characterization method in different electrical and chemical research areas, but not yet adopted as a commercial diagnostic tool for PV panels. This work, for the first time, proposes an IS based method for detecting potential-induced degradation (PID...

  17. Quantification of metals in preservatively-treated lumber using laser induced breakdown spectroscopy

    Science.gov (United States)

    Brad Gething; John Janowiak; Bob Falk

    2006-01-01

    The laser induced breakdown spectroscopy (LIBS) technique was evaluated for its capability of quantifying CCA in preservative-treated wood. The results of the study reveal that the LIBS technique can be used to predict the amount of preservative based on chromium peak analysis, but further refinement of the process is necessary before the technique is practiced. The...

  18. Use of laser induced breakdown spectroscopy for the analysis of poultry products

    Science.gov (United States)

    Laser Induced Breakdown Spectroscopy is evaluated as a potential method to characterize a wide range of poultry product quality and safety characteristics. In one part of this study, breast meat quality indices, including pH and water holding capacity, were treated as dependent variables for correla...

  19. North American Symposium on Laser Induced Breakdown Spectroscopy (NASLIBS): introduction to feature issue.

    Science.gov (United States)

    Singh, Jagdish P; Almirall, Jose; Sabsabi, Mohamad; Miziolek, Andrzej W

    2012-03-01

    This feature issue highlights the topics of the 2011 North American Symposium on Laser Induced Breakdown Spectroscopy (NASLIBS). These include LIBS application to Security and Forensic, Biomedical and Environmental, Liquid Analysis and Fundamentals of LIBS, Instrumentation/Commercialization, Fusion with LIBS, and New Frontiers. © 2012 Optical Society of America

  20. Online sensor system based on laser-induced breakdown spectroscopy in quality inspection of demolition concrete

    NARCIS (Netherlands)

    Xia, H.; Bakker, M.C.M.

    2012-01-01

    In the C2CA project, an online sensor system is required to measure and control the quality and homogeneity of demolition concrete continuously. Laser-induced breakdown spectroscopy is a candidate to fulfil the objective in several tasks. Investigated is the ability of LIBS as an online

  1. Calculation and optimization of sample identification by laser induced breakdown spectroscopy via correlation analysis

    NARCIS (Netherlands)

    Lentjes, M.; Dickmann, K.; Meijer, J.

    2007-01-01

    Linear correlation analysis may be used as a technique for the identification of samples with a very similar chemical composition by laser induced breakdown spectroscopy. The spectrum of the “unknown” sample is correlated with a library of reference spectra. The probability of identification by

  2. Femtosecond laser induced breakdown spectroscopy of silver within surrogate high temperature gas reactor fuel coated particles

    CSIR Research Space (South Africa)

    Roberts, DE

    2010-11-01

    Full Text Available been studied with femtosecond Laser Induced Breakdown Spectroscopy (femto-LIBS). The SiC layer of the TRISO coated particle is the main barrier to metallic and gaseous fission products of which 110mAg is of particular interest for direct cycle high...

  3. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution.

    Science.gov (United States)

    Laroche, G; Vallade, J; Bazinette, R; van Nijnatten, P; Hernandez, E; Hernandez, G; Massines, F

    2012-10-01

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm × 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45° beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  4. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, G. [Laboratoire d' Ingenierie de Surface, Centre de Recherche sur les Materiaux Avances, Departement de genie des mines, de la metallurgie et des materiaux, Universite Laval, 1065, avenue de la Medecine, Quebec G1V 0A6 (Canada); Centre de recherche du CHUQ, Hopital St Francois d' Assise, 10, rue de l' Espinay, local E0-165, Quebec G1L 3L5 (Canada); Vallade, J. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Agence de l' environnement et de la Ma Latin-Small-Letter-Dotless-I -carettrise de l' Energie, 20, avenue du Gresille, BP 90406, F-49004 Angers Cedex 01 (France); Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Nijnatten, P. van [OMT Solutions bv, High Tech Campus 9, 5656AE Eindhoven (Netherlands)

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  5. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Pedarnig, J. D.; Haslinger, M. J.; Bodea, M. A.; Huber, N.; Wolfmeir, H.; Heitz, J.

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe2O3 powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe2O3 pellets and Fe3O4 ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λL). The UV pulses (λL = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λL = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of td ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency.

  6. Steroid-induced osteoporosis monitored by Raman spectroscopy

    Science.gov (United States)

    Maher, Jason R.; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2011-03-01

    Glucocorticoids are frequently used to treat inflammatory disorders such as rheumatoid arthritis. Unfortunately, extended exposure to this steroid is the leading cause of physician-induced osteoporosis, leaving patients susceptible to fractures at rates of 30-50%. In this presentation, we report correlations between Raman spectra and biomechanical strength tests on bones of glucocorticoid- and placebo- treated mice. Both wild-type mice and a transgenic model of rheumatoid arthritis have been studied. A two-way ANOVA model reveals statistically significant spectral differences as influenced by glucocorticoid treatment and mouse type.

  7. Spectroscopy of strontium Rydberg states using electromagnetically induced transparency

    OpenAIRE

    Mauger, Sarah; Millen, James; Jones, M. P. A.

    2007-01-01

    We report on the all-optical detection of Rydberg states in a effusive atomic beam of strontium atoms using electromagnetically induced transparency (EIT). Using narrow-linewidth CW lasers we obtain an EIT linewidth of 5 MHz. To illustrate the high spectroscopic resolution offered by this method, we have measured isotope shifts of the 5s18d ^1D_2 and 5s19s ^1S_0 Rydberg states. This technique could be applied to high-resolution, non-destructive measurements of ultra-cold Rydberg gases and pla...

  8. Absorption of laser radiation by femtosecond laser-induced plasma of air and its emission characteristics

    Science.gov (United States)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.

    2015-11-01

    The energy absorbed by femtosecond laser plasma has nonlinear dependence on incident laser energy. The threshold power for plasma formation is 5.2 GW. Emission of nitrogen molecule, nitrogen molecule ion, atomic oxygen (unresolved triplet O I 777 nm) and nitrogen (triplet N I 742.4, 744.3 and 746.8 nm) lines is detected. Molecular emission consists of second positive and firs negative systems of nitrogen. Time-resolved spectroscopy of plasmas shows short molecular line emission (up to 1 ns) and long atomic line emission (up to 150 ns).

  9. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    OpenAIRE

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number den...

  10. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Paulino Florêncio de [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Centro de Tecnologia Canavieira, PO Box 162, 13400-970 Piracicaba, SP (Brazil); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, 09972-270, Diadema, SP (Brazil); Gustinelli Arantes de Carvalho, Gabriel; Nunes, Lidiane Cristina [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Silva Gomes, Marcos da [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Guerra, Marcelo Braga Bueno [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Krug, Francisco José, E-mail: fjkrug@cena.usp.br [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil)

    2013-05-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg{sup −1} Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm{sup −2} (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves). - Highlights: • This is the first application of LIBS for determination of Si in plant materials. • Data indicate that the method is appropriate for Si diagnosis in routine analysis. • Silicon can be simultaneously determined with macro- and

  11. Tin re-deposition and erosion measured by cavity-ring-down-spectroscopy under a high flux plasma beam

    Science.gov (United States)

    Kvon, V.; Al, R.; Bystrov, K.; Peeters, F. J. J.; van de Sanden, M. C. M.; Morgan, T. W.

    2017-08-01

    Cavity-ring-down spectroscopy (CRDS) was implemented to measure the re-deposition of liquid tin under a high flux plasma beam in the linear plasma device Pilot-PSI. A capillary porous system (CPS) consisting of a molybdenum cup and tungsten meshes (pores diameters of 0.2 mm and 0.44 mm) was filled with tin and exposed to argon plasma. The absorption of a UV laser-beam at 286.331 nm was used to determine a number of sputtered neutral tin atoms. The incoming flux of argon ions of ~50 eV was 1.6-2.7  ×  1023 m-2 s-1, and the sample temperature measured by pyrometry varied from 850 °C to 1200 °C during exposures. The use of CRDS for measuring absolute number of particles under such plasma exposure was demonstrated for the first time. The number of sputtered tin particles in the cavity region assuming no losses would be expected to be 5.5  ×  1011-1.2  ×  1012 while CRDS measurements showed only 5.7-9.9  ×  108. About 98-99.8% of sputtered particles were therefore found to not reach the CRDS observation volume. Spectroscopic ratios of Sn I to Sn II ions, as well as equilibrium considerations, indicate that fast ionization as well as plasma entrainment of neutrals is responsible for the discrepancy. This would lead to high re-deposition rates, implying a lowered contamination rate of core plasma and lower required replenishment rates at high-flux conditions than would otherwise be expected.

  12. Evaluation of Penicillium digitatum sterilization using non-equilibrium atmospheric pressure plasma by terahertz time-domain spectroscopy

    Science.gov (United States)

    Hiraoka, Takehiro; Ebizuka, Noboru; Takeda, Keigo; Ohta, Takayuki; Kondo, Hiroki; Ishikawa, Kenji; Kawase, Kodo; Ito, Masafumi; Sekine, Makoto; Hori, Masaru

    2011-10-01

    Recently, the plasma sterilization has attracted much attention as a new sterilization technique that takes the place of spraying agricultural chemicals. The conventional methods for sterilization evaluation, was demanded to culture the samples for several days after plasma treatment. Then, we focused on Terahertz time-domain spectroscopy (THz-TDS). At the THz region, vibrational modes of biological molecules and fingerprint spectra of biologically-relevant molecules were also observed. In this study, our purpose was measurement of the fingerprint spectrum of the Penicillium digitatum (PD) spore and establishment of sterilization method by THz-TDS. The sample was 40mg/ml PD spore suspensions which dropped on cover glass. The atmospheric pressure plasma generated under the conditions which Ar gas flow was 3slm, and alternating voltage of 6kV was applied. The samples were exposed the plasma from 10mm distance for 10 minutes. We could obtain the fingerprint spectrum of the PD spore from 0.5 to 0.9THz. This result indicated the possibility of in-situ evaluation for PD sterilization using THz-TDS.

  13. Characterization of low temperature graphene synthesis in inductively coupled plasma chemical vapor deposition process with optical emission spectroscopy.

    Science.gov (United States)

    Ma, Yifei; Kim, Daekyoung; Jang, Haegyu; Cho, Sung Min; Chae, Heeyeop

    2014-12-01

    Low-temperature graphene was synthesized at 400 degrees C with inductively coupled plasma chemical vapor deposition (PECVD) process. The effects of plasma power and flow rate of various carbon containing precursors and hydrogen on graphene properties were investigated with optical emission spectroscopy (OES). Various radicals monitored by OES were correlated with graphene film properties such as sheet resistance, I(D)/I(G) ratio of Raman spectra and transparency. C2H2 was used as a main precursor and the increase of plasma power enhanced intensity of carbon (C2) radical OES intensity in plasma, reduced sheet resistance and increased transparency of graphene films. The reduced flow rate of C2H2 decreased sheet resistance and increased transparency of graphene films in the range of this study. H2 addition was found to increase sheet resistance, transparency and attributed to reduction of graphene grain and etching graphene layers. OES analysis showed that C2 radicals contribute to graphite networking and sheet resistance reduction. TEM and AFM were applied to provide credible information that graphene had been successfully grown at low temperature.

  14. Inductively Coupled Plasma-Induced Etch Damage of GaN p-n Junctions

    Energy Technology Data Exchange (ETDEWEB)

    SHUL,RANDY J.; ZHANG,LEI; BACA,ALBERT G.; WILLISON,CHRISTI LEE; HAN,JUNG; PEARTON,S.J.; REN,F.

    1999-11-03

    Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl{sub 2}/BCl{sub 3}/Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions ({le} 500 W), pressures {ge}2 mTorr, and at ion energies below approximately -275 V.

  15. Detection of chromium in wastewater from refuse incineration power plant near Poyang Lake by laser induced breakdown spectroscopy.

    Science.gov (United States)

    Yao, Mingyin; Lin, Jinlong; Liu, Muhua; Xu, Yuan

    2012-04-01

    A laser induced breakdown spectroscopy (LIBS) system was developed for determination of toxic metals Cr in wastewater collected from a refuse incineration power plant near Poyang Lake. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on the surface of liquid. Experimental conditions were optimized for improving the sensitivity and repeatability of the LIBS system through a parametric dependence study in potassium bichromate (K(2)Cr(2)O(7)) aqueous solutions. Calibration curves for Cr I 425.43 and 357.87 nm lines are compared and the limit of detection is found to be 39 and 86 ppm, respectively. This calibration curve of Cr I 425.43 nm has been used for quantification of Cr in wastewater collected from a refuse incineration power plant near Poyang Lake where the concentration of Cr is found to be 97 ppm. The results between LIBS and standard analytical technique such as atomic absorption spectroscopy were compared, and the relative standard deviation was 8.5%.

  16. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    Science.gov (United States)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  17. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  18. Analysis of experimental tendinitis in rats treated with laser and platelet-rich plasma therapies by Raman spectroscopy and histometry.

    Science.gov (United States)

    de Carvalho, Paula Kariluce; Silveira, Landulfo; Barbosa, Danillo; Munin, Egberto; Salgado, Miguel Angel Castillo; Villaverde, Antonio Balbin

    2016-01-01

    The objective of this controlled experimental study was to analyze the changes in the Achilles tendons of rats with experimentally induced tendinitis after treatment with platelet-rich plasma (PRP) and/or laser therapies by histometry to quantify fibroblasts and by Raman spectroscopy to determine the biochemical concentration of collagen types I and III. Fifty-four male Wistar rats were divided into six treatment groups: control (G1); PRP only (G2); irradiation with 660 nm laser (G3); irradiation with 830 nm laser (G4); PRP plus 660 nm laser irradiation (G5); and PRP plus 830 nm laser irradiation (G6). Injuries (partial tenotomy) were inflicted in the middle third of the Achilles tendon, with PRP added prior to suture in the appropriate experimental groups. A diode laser (model Laser Flash® III, DMC Equipamentos Ltda, São Carlos, SP, Brazil) that can be operated in two wavelengths 660 and 830 nm was used for irradiation treatments. The irradiation protocol was energy density of 70 J/cm², 20 s irradiation time, and 0.028 cm² spot area, per point in three points in the injured. The histometry was made in micrographical images of the H&E stained sections and evaluated by ImageJ (version 1.46r)®. Raman spectra were collected using a dispersive spectrometer at 830 nm excitation, 200 mW power, and 10 s integration time (P-1 Raman system, Lambda Solutions, Inc. MA, USA). The relative amount of type I collagen was significantly greater in the PRP plus 830 nm laser irradiation group (468 ± 188) than in the control (147 ± 137), 630 nm laser only (191 ± 117), and 830 nm laser only (196 ± 106) groups (p < 0.01), while the quantity of type III collagen was significantly greater in the PRP-only group compared to both irradiated groups without PRP (p < 0.05). Treatment with PRP combined with irradiation at 830 nm resulted in a larger number of fibroblasts and increased concentration of type I collagen, thus accelerating the healing of the injured

  19. Micro-Raman Spectroscopy of Silver Nanoparticle Induced Stress on Optically-Trapped Stem Cells

    Science.gov (United States)

    Bankapur, Aseefhali; Krishnamurthy, R. Sagar; Zachariah, Elsa; Santhosh, Chidangil; Chougule, Basavaraj; Praveen, Bhavishna; Valiathan, Manna; Mathur, Deepak

    2012-01-01

    We report here results of a single-cell Raman spectroscopy study of stress effects induced by silver nanoparticles in human mesenchymal stem cells (hMSCs). A high-sensitivity, high-resolution Raman Tweezers set-up has been used to monitor nanoparticle-induced biochemical changes in optically-trapped single cells. Our micro-Raman spectroscopic study reveals that hMSCs treated with silver nanoparticles undergo oxidative stress at doping levels in excess of 2 µg/ml, with results of a statistical analysis of Raman spectra suggesting that the induced stress becomes more dominant at nanoparticle concentration levels above 3 µg/ml. PMID:22514708

  20. Space-dependent characterization of laser-induced plasma plume during fiber laser welding

    Science.gov (United States)

    Xiao, Xianfeng; Song, Lijun; Xiao, Wenjia; Liu, Xingbo

    2016-12-01

    The role of a plasma plume in high power fiber laser welding is of considerable interest due to its influence on the energy transfer mechanism. In this study, the space-dependent plasma characteristics including spectrum intensity, plasma temperature and electron density were investigated using optical emission spectroscopy technique. The plasma temperature was calculated using the Boltzmann plot of atomic iron lines, whereas the electron density was determined from the Stark broadening of the Fe I line at 381.584 nm. Quantitative analysis of plasma characteristics with respect to the laser radiation was performed. The results show that the plasma radiation increases as the laser power increases during the partial penetration mode, and then decreases sharply after the initiation of full penetration. Both the plasma temperature and electron density increase with the increase of laser power until they reach steady state values after full penetration. Moreover, the hottest core of the plasma shifts toward the surface of the workpiece as the penetration depth increases, whereas the electron density is more evenly distributed above the surface of the workpiece. The results also indicate that the absorption and scattering of nanoparticles in the plasma plume is the main mechanism for laser power attenuation.

  1. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals.

    Directory of Open Access Journals (Sweden)

    Hak Jun Ahn

    Full Text Available The plasma jet has been proposed as a novel therapeutic method for anticancer treatment. However, its biological effects and mechanism of action remain elusive. Here, we investigated its cell death effects and underlying molecular mechanisms, using air and N₂ plasma jets from a micro nozzle array. Treatment with air or N₂ plasma jets caused apoptotic death in human cervical cancer HeLa cells, simultaneously with depolarization of mitochondrial membrane potential. In addition, the plasma jets were able to generate reactive oxygen species (ROS, which function as surrogate apoptotic signals by targeting the mitochondrial membrane potential. Antioxidants or caspase inhibitors ameliorated the apoptotic cell death induced by the air and N₂ plasma jets, suggesting that the plasma jet may generate ROS as a proapoptotic cue, thus initiating mitochondria-mediated apoptosis. Taken together, our data suggest the potential employment of plasma jets as a novel therapy for cancer.

  2. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals.

    Science.gov (United States)

    Ahn, Hak Jun; Kim, Kang Il; Kim, Geunyoung; Moon, Eunpyo; Yang, Sang Sik; Lee, Jong-Soo

    2011-01-01

    The plasma jet has been proposed as a novel therapeutic method for anticancer treatment. However, its biological effects and mechanism of action remain elusive. Here, we investigated its cell death effects and underlying molecular mechanisms, using air and N₂ plasma jets from a micro nozzle array. Treatment with air or N₂ plasma jets caused apoptotic death in human cervical cancer HeLa cells, simultaneously with depolarization of mitochondrial membrane potential. In addition, the plasma jets were able to generate reactive oxygen species (ROS), which function as surrogate apoptotic signals by targeting the mitochondrial membrane potential. Antioxidants or caspase inhibitors ameliorated the apoptotic cell death induced by the air and N₂ plasma jets, suggesting that the plasma jet may generate ROS as a proapoptotic cue, thus initiating mitochondria-mediated apoptosis. Taken together, our data suggest the potential employment of plasma jets as a novel therapy for cancer.

  3. V.U.V. plasma spectroscopy diagnostic of electron cyclotron resonance multicharged ion sources; Diagnostic de plasmas crees dans des sources d'ions multicharges a resonance cyclotronique electronique par spectroscopie V.U.V

    Energy Technology Data Exchange (ETDEWEB)

    Berreby, R

    1997-12-15

    To characterize the multicharged ions within the plasma of an E.C.R. ion source, the V.U.V. spectroscopy is used as a non invasive diagnostic of excited matter. In E.C.R.I. S. (electron cyclotron resonance ion source) electrons are heated and magnetically confined within the mirror machine to overcome the successive ionization potentials of the desired elements. As the electrons bounce inside the magnetic configuration in their gyration movement, they interact with the microwaves injected into the source at the resonance frequency. To enhance the performances in high charge states and extracted currents delivered by E.C.R.I.S., the fundamental parameters of the plasma created in these machines must be known. The goal of spectroscopic diagnostics in the V.U.V. range installed on the sources is to determine electron density and temperature on one hand, and the ionic densities and confinement time on the other hand. We used microchannel plates as detector on a 3 meter grazing incidence spectrometer equipped with a 600 lines/mm holographic grating. The calibration of the whole grating with detector was performed by two different methods. These are the branching ratio and charge exchange methods. Identification of lines emitted by a plasma, which gather the whole charge states of ions is necessary to make an exhaustive study of the plasma state. And finally, the determination of plasma parameters like electron density and temperature and ion densities and confinement times that uses theoretical models were the aim of this work. (author)

  4. Study of Hydrogen and Oxygen and Its Reaction With Host Elements in Sandstone by Laser-Induced Breakdown Spectroscopy (LIBS)

    Science.gov (United States)

    Suyanto, Hery

    2017-05-01

    A study of hydrogen and oxygen and its reaction with host elements in a sandstone has been done by laser-induced breakdown spectroscopy (LIBS). The sandstone was irradiated by Nd-YAG laser (1064 nm, 7 ns) with varied energy of 60 mJ till 140 mJ in surrounding air gas pressure of 1 atm and produced plasma. The emission intensities of hydrogen H I 656.2 nm and oxygen O I 777.2 nm in the plasma were captured by HR 2500+ spectrometer and displayed in intensity as a function of wavelength. The data show that the emission intensities of hydrogen and oxygen increase with increasing laser energy at a gradient of 5.4 and 11.8 respectively every increasing laser energy of 20 mJ. To characterize the reaction process between hydrogen and oxygen with the host elements of the sandstone, a 0.2 ml demineralized water was dropped on the sandstone surface and was analyzed as a function of delay time reaction and temperature. The data show that the oxidation reaction between host elements and oxygen occurred after 25 minutes that the oxygen emission intensity increases and the hydrogen emission intensity decreases. Another data also show that the increasing temperature of sandstone until 80 C increased intermolecular bond between oxygen and host element and dehydrogenation took place after reaching this temperature

  5. Selective ablation of Copper-Indium-Diselenide solar cells monitored by laser-induced breakdown spectroscopy and classification methods

    Energy Technology Data Exchange (ETDEWEB)

    Diego-Vallejo, David [Technische Universität Berlin, Institute of Optics and Atomic Physics, Straße des 17, Juni 135, 10623 Berlin (Germany); Laser- und Medizin- Technologie Berlin GmbH (LMTB), Applied Laser Technology, Fabeckstr. 60-62, 14195 Berlin (Germany); Ashkenasi, David, E-mail: d.ashkenasi@lmtb.de [Laser- und Medizin- Technologie Berlin GmbH (LMTB), Applied Laser Technology, Fabeckstr. 60-62, 14195 Berlin (Germany); Lemke, Andreas [Laser- und Medizin- Technologie Berlin GmbH (LMTB), Applied Laser Technology, Fabeckstr. 60-62, 14195 Berlin (Germany); Eichler, Hans Joachim [Technische Universität Berlin, Institute of Optics and Atomic Physics, Straße des 17, Juni 135, 10623 Berlin (Germany); Laser- und Medizin- Technologie Berlin GmbH (LMTB), Applied Laser Technology, Fabeckstr. 60-62, 14195 Berlin (Germany)

    2013-09-01

    Laser-induced breakdown spectroscopy (LIBS) and two classification methods, i.e. linear correlation and artificial neural networks (ANN), are used to monitor P1, P2 and P3 scribing steps of Copper-Indium-Diselenide (CIS) solar cells. Narrow channels featuring complete removal of desired layers with minimum damage on the underlying film are expected to enhance efficiency of solar cells. The monitoring technique is intended to determine that enough material has been removed to reach the desired layer based on the analysis of plasma emission acquired during multiple pass laser scribing. When successful selective scribing is achieved, a high degree of similarity between test and reference spectra has to be identified by classification methods in order to stop the scribing procedure and avoid damaging the bottom layer. Performance of linear correlation and artificial neural networks is compared and evaluated for two spectral bandwidths. By using experimentally determined combinations of classifier and analyzed spectral band for each step, classification performance achieves errors of 7, 1 and 4% for steps P1, P2 and P3, respectively. The feasibility of using plasma emission for the supervision of processing steps of solar cell manufacturing is demonstrated. This method has the potential to be implemented as an online monitoring procedure assisting the production of solar cells. - Highlights: • LIBS and two classification methods were used to monitor CIS solar cells processing. • Selective ablation of thin-film solar cells was improved with inspection system. • Customized classification method and analyzed spectral band enhanced performance.

  6. Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method.

    Science.gov (United States)

    Sun, Lanxiang; Yu, Haibin

    2009-07-15

    A simplified procedure for correcting self-absorption effect was proposed in calibration-free laser-induced breakdown spectroscopy (CF-LIBS). In typical LIBS measurement conditions, the plasma produced is often optically thick, especially for the strong lines of major elements. The selection of self-absorption lines destroys the performance of CF-LIBS, and the familiar correction method based on the curve of growth is complex in implementation. The procedure we proposed, named internal reference for self-absorption correction (IRSAC), first chose an internal reference line for each species, then compared other spectral line intensity of the same species with the reference line to estimate the self-absorption degrees of other spectral lines, and finally achieved an optimal correction by a regressive algorithm. The self-absorption effect of the selected reference line can be ignored, since the reference line with high excitation energy of the upper level is slightly affected by the self-absorption. Through the IRSAC method, the points on the Boltzmann plot become more regular, and the evaluations of the plasma temperature and material composition are more accurate than the basic CF-LIBS.

  7. Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation.

    Science.gov (United States)

    Guo, L B; Zhang, B Y; He, X N; Li, C M; Zhou, Y S; Wu, T; Park, J B; Zeng, X Y; Lu, Y F

    2012-01-16

    In laser-induced breakdown spectroscopy (LIBS), a pair of aluminum-plate walls were used to spatially confine the plasmas produced in air by a first laser pulse (KrF excimer laser) from chromium (Cr) targets with a second laser pulse (Nd:YAG laser at 532 nm, 360 mJ/pulse) introduced parallel to the sample surface to re-excite the plasmas. Optical emission enhancement was achieved by combing the spatial confinement and dual-pulse LIBS (DP-LIBS), and then optimized by adjusting the distance between the two walls and the interpulse delay time between both laser pulses. A significant enhancement factor of 168.6 for the emission intensity of the Cr lines was obtained at an excimer laser fluence of 5.6 J/cm(2) using the combined spatial confinement and DP-LIBS, as compared with an enhancement factor of 106.1 was obtained with DP-LIBS only. The enhancement mechanisms based on shock wave theory and reheating in DP-LIBS are discussed.

  8. Detection of calculus by laser-induced breakdown spectroscopy (LIBS) using an ultra-short pulse laser system (USPL)

    Science.gov (United States)

    Schelle, F.; Brede, O.; Krueger, S.; Oehme, B.; Dehn, C.; Frentzen, M.; Braun, A.

    2011-03-01

    The aim of this study was to assess the detection of calculus by Laser Induced Breakdown Spectroscopy (LIBS). The study was performed with an Nd:YVO4 laser, emitting pulses with a duration of 8 ps at a wavelength of 1064 nm. A repetition rate of 500 kHz at an average power of 5 W was used. Employing a focusing lense, intensities of the order of 1011 W/cm2 were reached on the tooth surface. These high intensities led to the generation of a plasma. The