WorldWideScience

Sample records for induced diamond formation

  1. Mechanically induced degradation of diamond

    CERN Document Server

    Bouwelen, F V

    1996-01-01

    bombardment a mechanically induced graphitisation, as opposed to a thermally activated transformation, may occur locally on collision with the CVD diamond. Two types of diamond-graphite interfaces were observed: (111) planes of diamond parallel to the a-b planes of graphite and (111) planes of diamond, smoothly within the plane, connected to a-b planes of graphite. The thesis concludes with a summary of the results, conclusions and recommendations for further work. This thesis deals with the wear of diamond occurring during frictional sliding contact between diamonds. In the introduction, a literature survey on friction, wear and polishing behaviour of diamond, with some emphasis on the anisotropy, is presented and earlier work is discussed. A review of the existing theories is given, a new hypothesis is proposed and key-experiments for verification are identified. Electron microscopical techniques such as High Resolution Electron Microscopy (HREM) imaging and Electron Energy Loss Spectroscopy are described a...

  2. Process of negative-muon-induced formation of an ionized acceptor center ({sub μ}A){sup –} in crystals with the diamond structure

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Yu. M., E-mail: theorphys@phystech.edu [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2016-12-15

    The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom {sub μ}A coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon. Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.

  3. Ion-beam-assisted hexagonal diamond formation from C sub 6 sub 0 fullerene

    CERN Document Server

    Zhu, X D; Naramoto, H; Narumi, K; Miyashita, A; Miyashita, K

    2003-01-01

    Ions are commonly believed to be detrimental to diamond growth because of the high degree of lattice disorder induced by ion bombardments. In this paper, we examine the possibility of preparing diamond using thermally evaporated C sub 6 sub 0 and simultaneous bombardment with Ne sup + ions. It is found that the diamonds can be grown on Si wafers in the appropriate substrate temperature and ion energy ranges. Micro-Raman spectroscopy, x-ray diffractometry, and scanning electronic microscopy were employed to characterize the deposited specimen. These measurements provide definite evidence of the structure of nanosized hexagonal diamond. The mechanism responsible for the diamond formation is discussed.

  4. Formation of nanostructured iridium and polycluster diamond films

    Directory of Open Access Journals (Sweden)

    Pashchenko P. V.

    2007-12-01

    Full Text Available Iridium films and layered structures "iridium — diamond" were formed on Al2O3, MgO and SrTiO3 substrates. Iridium films were obtained by magnetron sputtering, and polycluster diamond films — by microwave discharge method. Structure of iridium and diamond films was studied depending on formation conditions. Application of polycluster diamond films as heatsink for hybrid microcircuit and control grid of electronic devices was considered.

  5. Doping and cluster formation in diamond

    KAUST Repository

    Schwingenschlögl, Udo

    2011-09-09

    Introducing a cluster formation model, we provide a rational fundamental viewpoint for the difficulty to achieve n-type dopeddiamond. We argue that codoping is the way forward to form appropriately doped shallow regions in diamond and other forms of carbon such as graphene. The electronegativities of the codopants are an important design criterion for the donor atom to efficiently donate its electron. We propose that the nearest neighbour codopants should be of a considerably higher electronegativity compared to the donor atom. Codoping strategies should focus on phosphorous for which there are a number of appropriate codopants.

  6. Magnetically Orchestrated Formation of Diamond at Lower Temperatures and Pressures

    Science.gov (United States)

    Little, Reginald B.; Lochner, Eric; Goddard, Robert

    2005-01-01

    Man's curiosity and fascination with diamonds date back to ancient times. The knowledge of the many properties of diamond is recorded during Biblical times. Antoine Lavoisier determined the composition of diamond by burning in O2 to form CO2. With the then existing awareness of graphite as carbon, the race began to convert graphite to diamond. The selective chemical synthesis of diamond has been pursued by Cagniard, Hannay, Moisson and Parson. On the basis of the thermodynamically predicted equilibrium line of diamond and graphite, P W Bridgman attempted extraordinary conditions of high temperature (>2200°C) and pressure (>100,000 atm) for the allotropic conversion of graphite to diamond. H T Hall was the first to successfully form bulk diamond by realizing the kinetic restrictions to Bridgman's (thermodynamic) high pressure high temperature direct allotropic conversion. Moreover, Hall identified catalysts for the faster kinetics of diamond formation. H M Strong determined the import of the liquid catalyst during Hall's catalytic synthesis. W G Eversole discovered the slow metastable low pressure diamond formation by pyrolytic chemical vapor deposition with the molecular hydrogen etching of the rapidly forming stable graphitic carbon. J C Angus determined the import of atomic hydrogen for faster etching for faster diamond growth at low pressure. S Matsumoto has developed plasma and hot filament technology for faster hydrogen and carbon radical generations at low pressure for faster diamond formation. However the metastable low pressure chemical vapor depositions by plasma and hot filament are prone to polycrystalline films. From Bridgman to Hall to Eversole, Angus and Matsumoto, much knowledge has developed of the importance of pressure, temperature, transition metal catalyst, liquid state of metal (metal radicals atoms) and the carbon radical intermediates for diamond synthesis. Here we advance this understanding of diamond formation by demonstrating the external

  7. How Plasmonic excitation influences the LIPSS formation on diamond during multipulse femtosecond laser irradiation ?

    Directory of Open Access Journals (Sweden)

    Abdelmalek Ahmed

    2017-01-01

    Full Text Available A generalized plasmonic model is proposed to calculate the nanostructure period induced by multipulse laser femtosecond on diamond at 800 nm wavelengths. We follow the evolution of LIPSS formation by changing diamond optical parameters in function of electron plasma excitation during laser irradiation. Our calculations shows that the ordered nanostructures can be observed only in the range of surface plasmon polariton excitation.

  8. Upper mantle fluids involved in diamond formation and mantle metasomatism

    Science.gov (United States)

    Sverjensky, D. A.

    2014-12-01

    Diamond formation coupled with metasomatic reactions involving the interaction of fluids with silicate host rocks provides important clues about the deep carbon cycle. However, quantitative modeling of diamond formation with silicate rock metasomatism has not been possible. Here the Deep Water (DEW) model [1] was used to generate equilibrium constants for irreversible chemical mass transfer calculations monitoring evolving fluid chemistry during diamond formation and coupled silicate reactions. Conceptual models for diamond formation in two environments were constructed for the purpose of illustrating the role of pH in diamond-forming systems. For cratonic diamonds, fluid at 900°C and 5.0 GPa was derived in equilibrium with a carbonated mafic part of a subducting slab consisting of pure diopside, enstatite, pyrope, phlogopite, magnesite, diamond and pyrite. The fluid was assumed to infiltrate and react at constant T and P with a model metasedimentary eclogite (jadeite, pyrope, kyanite and coesite). Abundant diamond was predicted to precipitate as reactant silicate minerals were destroyed and secondary pyrope, jadeite and kyanite were precipitated, which could represent the solid inclusions in natural diamonds. The final fluid chemistry was extremely enriched in Si and depleted in Ca relative to the initial fluid, consistent with the worldwide fluid inclusion trend from carbonatitic fluid to silicic fluid. The logfO2 changed by only 0.2, whereas pH continuously decreased as reaction with jadeite and kyanite and precipitation of secondary pyrope removed Mg2+ and added H+ to the fluid. Most of the carbon precipitated as diamond was derived from decreasing concentrations of formate and propionate. In the UHPM scenario, fluid at 600°C and 5.0 GPa in carbonated peridotite (forsterite, antigorite, clinochlore, magnesite, and pyrrhotite) in a subducting slab was assumed to infiltrate and react at constant T and P with a different model metasedimentary eclogite (jadeite

  9. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite

    Science.gov (United States)

    Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D. O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L. B.; Schaumann, G.; Nagler, B.; Barbrel, B.; Bachmann, B.; Gamboa, E. J.; Göde, S.; Granados, E.; Gregori, G.; Lee, H. J.; Neumayer, P.; Schumaker, W.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Roth, M.

    2016-01-01

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites. PMID:26972122

  10. Laser transfer of diamond nanopowder induced by metal film blistering

    Science.gov (United States)

    Kononenko, T. V.; Alloncle, P.; Konov, V. I.; Sentis, M.

    2009-03-01

    Blister-based laser induced forward transfer (BB-LIFT) is a promising technique to produce surface microstructures of various advanced materials including inorganic and organic micro/nanopowders, suspensions and biological micro-objects embedded in life sustaining medium. The transferred material is spread over a thin metal film irradiated from the far side by single laser pulses through a transparent support. Interaction of the laser pulse with the metal-support interface under optimized conditions causes formation of a quickly expanding blister. Fast movement of the free metal surface provides efficient material transfer, which has been investigated for the case of diamond nanopowder and diamond-containing suspension. The unique features of the given technique are universality, simplicity and efficient isolation of the transferred material from the ablation products and laser heating.

  11. Ion Beam Induced Charge analysis of diamond diodes

    Science.gov (United States)

    Lehnert, J.; Meijer, J.; Ronning, C.; Spemann, D.; Vittone, E.

    2017-08-01

    Diamond based p-i-n light-emitting diodes, developed to electrically drive single-photon sources in the visible spectral region at room temperature, have the potential to play a key role in quantum based technologies. In order to gain more insight into the charge injection mechanism occurring in these diodes, we carried out an experiment aimed to investigate the electrostatics and the charge carrier transport by the Ion Beam Induced Charge (IBIC) technique, using 1 MeV He microbeam raster scanning of p-i-n structures fabricated in a high purity diamond substrate, using lithographic masking and P and B ion implantation doping. Charge Collection Efficiency (CCE) maps obtained at low ion fluence, show that induced charge pulses arise only from the P-implanted region, whereas no IBIC signals arise from the B-implanted region. This result suggests the formation of a slightly p-type doped substrate, forming a n+-p-p+, rather than the expected p-i-n, structure. However, for high fluence scans of small areas covering the intrinsic gap, CCE maps are more uniform and compatible with a p-i-n structure, suggesting the occurrence of a ;priming effect;, which saturates acceptor levels resulting in a decrease of the effective doping of the diamond substrate.

  12. TRANSFORMATIONS IN NANO-DIAMONDS WITH FORMATION OF NANO-POROUS SILICON CARBIDE AT HIGH PRESSURE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  13. Formation of conducting nanochannels in diamond-like carbon films

    Science.gov (United States)

    Evtukh, A.; Litovchenko, V.; Semenenko, M.; Yilmazoglu, O.; Mutamba, K.; Hartnagel, H. L.; Pavlidis, D.

    2006-09-01

    A sharp increase of the emission current at high electric fields and a decrease of the threshold voltage after pre-breakdown conditioning of diamond-like carbon (DLC) films have been measured. This effect was observed for DLC-coated silicon tips and GaAs wedges. During electron field emission (EFE) at high electric fields the energy barriers caused by an sp3 phase between sp2 inclusions can be broken, resulting in the formation of conducting nanochannels between the semiconductor-DLC interface and the surface of the DLC film. At high current densities and the resulting local heating, the diamond-like sp3 phase transforms into a conducting graphite-like sp2 phase. As a result an electrical conducting nanostructured channel is formed in the DLC film. The diameter of the conducting nanochannel was estimated from the reduced threshold voltage after pre-breakdown conditioning to be in the range of 5-25 nm. The presence of this nanochannel in an insulating matrix leads to a local enhancement of the electric field and a reduced threshold voltage for EFE. Based on the observed features an efficient method of conducting nanochannel matrix formation in flat DLC films for improved EFE efficiency is proposed. It mainly uses a silicon tip array as an upper electrode in contact with the DLC film. The formation of nanochannels starts at the interface between the tips and the DLC film. This opens new possibilities of aligned and high-density conducting channel formation.

  14. Thermally induced defects in industrial diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2009-03-01

    Full Text Available with 12 mm of WC and 3 mm of PCD. The picture of the industrial diamond that was used in this study is shown in figure 1(a). The samples were heated by a Trump Laser Frequency excited (TLF) series CO2 laser and a Rosin Sinar DY044 diode pumped Nd...

  15. Redox-freezing and nucleation of diamond via magnetite formation in the Earth's mantle.

    Science.gov (United States)

    Jacob, Dorrit E; Piazolo, Sandra; Schreiber, Anja; Trimby, Patrick

    2016-06-21

    Diamonds and their inclusions are unique probes into the deep Earth, tracking the deep carbon cycle to >800 km. Understanding the mechanisms of carbon mobilization and freezing is a prerequisite for quantifying the fluxes of carbon in the deep Earth. Here we show direct evidence for the formation of diamond by redox reactions involving FeNi sulfides. Transmission Kikuchi Diffraction identifies an arrested redox reaction from pyrrhotite to magnetite included in diamond. The magnetite corona shows coherent epitaxy with relict pyrrhotite and diamond, indicating that diamond nucleated on magnetite. Furthermore, structures inherited from h-Fe3O4 define a phase transformation at depths of 320-330 km, the base of the Kaapvaal lithosphere. The oxidation of pyrrhotite to magnetite is an important trigger of diamond precipitation in the upper mantle, explaining the presence of these phases in diamonds.

  16. Redox-freezing and nucleation of diamond via magnetite formation in the Earth's mantle

    Science.gov (United States)

    Jacob, Dorrit E.; Piazolo, Sandra; Schreiber, Anja; Trimby, Patrick

    2016-06-01

    Diamonds and their inclusions are unique probes into the deep Earth, tracking the deep carbon cycle to >800 km. Understanding the mechanisms of carbon mobilization and freezing is a prerequisite for quantifying the fluxes of carbon in the deep Earth. Here we show direct evidence for the formation of diamond by redox reactions involving FeNi sulfides. Transmission Kikuchi Diffraction identifies an arrested redox reaction from pyrrhotite to magnetite included in diamond. The magnetite corona shows coherent epitaxy with relict pyrrhotite and diamond, indicating that diamond nucleated on magnetite. Furthermore, structures inherited from h-Fe3O4 define a phase transformation at depths of 320-330 km, the base of the Kaapvaal lithosphere. The oxidation of pyrrhotite to magnetite is an important trigger of diamond precipitation in the upper mantle, explaining the presence of these phases in diamonds.

  17. Re-Os dating of sulphide inclusions zonally distributed in single Yakutian diamonds: Evidence for multiple episodes of Proterozoic formation and protracted timescales of diamond growth

    Science.gov (United States)

    Wiggers de Vries, D. F.; Pearson, D. G.; Bulanova, G. P.; Smelov, A. P.; Pavlushin, A. D.; Davies, G. R.

    2013-11-01

    The timing of diamond formation in the Siberian lithospheric mantle was investigated by Re-Os isotope dating of sulphide inclusions from eclogitic and lherzolitic diamonds from the Mir, 23rd Party Congress and Udachnaya kimberlite pipes in Yakutia. The diamonds contained multiple sulphide inclusions distributed over their core-to-rim zones. Cathodoluminescence, carbon isotope and nitrogen aggregation studies demonstrate that the diamonds are zoned and that the distinct zones are associated with different diamond growth episodes. There are coherent relationships between carbon isotope composition, nitrogen concentration and aggregation state of the diamond hosts, and major and trace element compositions, Re-Os compositions and initial Os isotope ratios of the included sulphides. This suggests that the different diamond and sulphide populations formed at different times from fluids/melts with different chemical compositions. Based on the Re-Os isochron ages and the nitrogen aggregation states we conclude that the sulphides are co-genetic with their diamond hosts.

  18. Technology for boron-doped layers formation on the diamond

    Directory of Open Access Journals (Sweden)

    Zyablyuk K. N.

    2012-10-01

    Full Text Available The authors investigated natural type IIa diamond crystals and CVD diamond films. The article presents electrophysical parameters of the structures obtained in different modes of ion implantation of boron into the crystal with further annealing. Parameters of the crystals with a high nitrogen impurity density indicate that they can be used for the manufacture of microwave field-effect transistors operating at room temperature. CVD diamond films doped with boron during the growth process also have the required for MOSFET manufacture carrier mobility. However, due to the high activation energy of boron, the required channel conductivity is achieved at high operating temperatures.

  19. Formation of diamond powders from melamine under high pressure and high temperature

    Institute of Scientific and Technical Information of China (English)

    FANG Lei-Ming; CHEN Xi-Ping; H.Ohfuji; T.Irifune; SUN Guang-Ai; CHEN Bo; PENG Shu-Ming

    2013-01-01

    High pressure pyrolysis of melamine has been attracting great interest recently,due to it being considered as a suitable precursor to realize the g-C3N4 and even superhard C3N4.In this work,we studied the detailed pyrolysis behavior of melamine at 22 GPa.Melamine was stable at 800 ℃,and decomposed to diamond in the form of powder at 1500-2000 ℃ under this pressure condition.At 2000 ℃,the pure cubic diamond powders with 0.1-0.5 μm grain size were obtained.The diamond particles exhibited euhedral forms and dispersed to each other,we proposed that these novel features were caused by the presence of liquid N2 and NH3 during diamond formation.The high pressure pyrolysis of melamine may provide a new means of producing micrometer-sized diamond powders.

  20. Formation of a silicon terminated (100) diamond surface

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, Alex, E-mail: A.Schenk@latrobe.edu.au; Sear, Michael; Pakes, Chris, E-mail: C.Pakes@latrobe.edu.au [Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria 3086 (Australia); Tadich, Anton [Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria 3086 (Australia); Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); O' Donnell, Kane M. [Department of Physics, Astronomy and Medical Radiation Science, Curtin University, Bentley, Western Australia 6102 (Australia); Ley, Lothar [Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria 3086 (Australia); Institut für Technische Physik, Universität Erlangen, Staudtstrasse 1, Erlangen D-91058 (Germany); Stacey, Alastair [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2015-05-11

    We report the preparation of an ordered silicon terminated diamond (100) surface with a two domain 3 × 1 reconstruction as determined by low energy electron diffraction. Based on the dimensions of the surface unit cell and on chemical information provided by core level photoemission spectra, a model for the structure is proposed. The termination should provide a homogeneous, nuclear, and electron spin-free surface for the development of future near-surface diamond quantum device architectures.

  1. Load-Induced Confinement Activates Diamond Lubrication by Water

    Science.gov (United States)

    Zilibotti, G.; Corni, S.; Righi, M. C.

    2013-10-01

    Tribochemical reactions are chemical processes, usually involving lubricant or environment molecules, activated at the interface between two solids in relative motion. They are difficult to be monitored in situ, which leaves a gap in the atomistic understanding required for their control. Here we report the real-time atomistic description of the tribochemical reactions occurring at the interface between two diamond films in relative motion, by means of large scale ab initio molecular dynamics. We show that the load-induced confinement is able to catalyze diamond passivation by water dissociative adsorption. Such passivation decreases the energy of the contacting surfaces and increases their electronic repulsion. At sufficiently high coverages, the latter prevents surface sealing, thus lowering friction. Our findings elucidate effects of the nanoscale confinement on reaction kinetics and surface thermodynamics, which are important for the design of new lubricants.

  2. Diamonds from the Buffalo Head Hills, Alberta: Formation in a non-conventional setting

    Science.gov (United States)

    Banas, Anetta; Stachel, Thomas; Muehlenbachs, Karlis; McCandless, Tom E.

    2007-01-01

    Kimberlite pipes K11, K91 and K252 in the Buffalo Head Hills, northern Alberta show an unusually large abundance (20%) of Type II (no detectable nitrogen) diamonds. Type I diamonds range in nitrogen content from 6 ppm to 3300 ppm and in aggregation states from low (IaA) to complete (IaB). The Type IaB diamonds extend to the lowest nitrogen concentrations yet observed at such high aggregation states, implying that mantle residence occurred at temperatures well above normal lithospheric conditions. Syngenetic mineral inclusions indicate lherzolitic, harzburgitic, wehrlitic and eclogitic sources. Pyropic garnet and forsteritic olivine characterize the peridotitic paragenesis from these pipes. One lherzolitic garnet inclusion has a moderately majoritic composition indicating a formation depth of ˜ 400 km. A wehrlitic paragenesis is documented by a Ca-rich, high-chromium garnet and very CaO-rich (0.11-0.14 wt.%) olivine. Omphacitic pyroxene and almandine-rich garnet are characteristic of the eclogitic paragenesis. A bimodal δ13C distribution with peaks at - 5‰ and - 17‰ is observed for diamonds from all three kimberlite pipes. A large proportion (˜ 40%) of isotopically light diamonds ( δ13C Proterozoic metamorphic age (2.3-2.0 Ga) and hence an unconventional setting for diamond exploration. Buffalo Hills diamonds formed during multiple events in an atypical mantle setting. The presence of majorite and abundance of Type II and Type IaB diamonds suggests formation under sublithospheric conditions, possibly in a subducting slab and resulting megalith. Type IaA to IaAB diamonds indicate formation and storage under lower temperature in normal lithospheric conditions.

  3. Electrical conditioning of diamond-like carbon films for the formation of coated field emission cathodes

    Science.gov (United States)

    Semenenko, M.; Okrepka, G.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2010-11-01

    Diamond-like carbon (DLC) films deposited on different substrates by plasma enhanced chemical vapour deposition were investigated. Bonding states and film quality were characterized by FT-IR spectroscopy. The influence of the power of plasma and the deposition time on the sp2/sp3 ratio as well as the concentration of CHn bonds was studied. The influence of sp2/sp3 ratio on the formation process of conducting channels in diamond-like carbon films as a result of electrical breakdown was determined. Reproducible increase of diamond-like carbon film conductivity, with initial sp2/sp3 ratio larger than 0.16, was observed after electrical breakdown.

  4. Optically induced dynamic nuclear spin polarisation in diamond

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.

  5. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    Energy Technology Data Exchange (ETDEWEB)

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  6. Diamond detectors with laser induced surface graphite electrodes

    Science.gov (United States)

    Komlenok, M.; Bolshakov, A.; Ralchenko, V.; Konov, V.; Conte, G.; Girolami, M.; Oliva, P.; Salvatori, S.

    2016-11-01

    We report on the response of metal-less CVD polycrystalline-diamond pixel sensors under β-particles irradiation. A 21×21 array of 0.18×0.18 mm2 pixels was realized on one side of a 10.0×10.0×0.5 mm3 polycrystalline diamond substrate by means of laser induced surface graphitization. With the same technique, a large graphite contact, used for detector biasing, was fabricated on the opposite side. A coincidence detecting method was used with two other reference polycrystalline diamond detectors for triggering, instead of commonly used scintillators, positioned in the front and on the back of the sensor-array with respect to the impinging particles trajectory. The collected charge distribution at each pixel was analyzed as a function of the applied bias. No change in the pulse height distribution was recorded by inverting the bias voltage polarity, denoting contacts ohmicity and symmetry. A fairly good pixel response uniformity was obtained: the collected charge most probable value saturates for all the pixels at an electric field strength of about ±0.6 V/μm. Under saturation condition, the average collected charge was equal to =1.64±0.02 fC, implying a charge collection distance of about 285 μm. A similar result, within 2%, was also obtained for 400 MeV electrons at beam test facility at INFN Frascati National Laboratory. Experimental results highlighted that more than 84% of impinging particles involved only one pixel, with no significant observed cross-talk effects.

  7. Ion beam induced luminescence characterisation of CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Gonon, P.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The characterisation of the band structure properties of materials and devices by ion microprobe techniques has been made possible at the Melbourne MeV ion microprobe facility with the development of Ion Beam Induced Luminescence (IBIL). A number of diamond films grown by Microwave Plasma Chemical Vapour Deposition (MPCVD) on silicon substrates are analysed. A preliminary study of the luminescence properties of these samples has revealed information not previously obtainable via traditional microprobe techniques. The optical effects of incorporating dopants during the deposition process is determined using IBIL. The presence of trace element impurities introduced during growth is examined by Particle Induced X-ray Emission (PIXE), and a measurement of the film thickness is made using Rutherford Backscattering Spectrometry (RBS). 7 refs., 2 figs.

  8. Induced Nucleation of Diamond Films on ZnS Substrates Precoated with Ceramic Interlayer

    Institute of Scientific and Technical Information of China (English)

    GAO Xu-Hui; YANG Hai; LU Fan-Xiu; TONG Yu-Mei; GUO Hui-Bin; TANG Wei-Zhong; LI Cheng-Ming; CHEN Guang-Chao; YU Huai-Zhi; CHENG Hong-Fan

    2004-01-01

    @@ We attempt to coat a multi-spectrum chemical-vapour-deposition ZnS substrate with smooth crystalline diamond films on the top of properly designed ceramic interlayer, which provides protection for ZnS against corrosion by the H2-CH4 microwave plasma and mitigates the thermal expansion coefficient mismatching between diamond and ZnS. However, difficulties in the homogeneous diamond nucleation on a ceramic interlayer were encountered.It was found that high rate nucleation of diamond could be induced by a metal or semiconductor mask placed on the top of ZnS.

  9. Decrease of FIB-induced lateral damage for diamond tool used in nano cutting

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Xu, Zongwei, E-mail: zongweixu@163.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Fang, Fengzhou, E-mail: fzfang@gmail.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Liu, Bing; Xiao, Yinjing; Chen, Jinping [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Wang, Xibin [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Liu, Hongzhong [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2014-07-01

    Highlights: • We mainly aim to characterize and decrease the FIB-induced damage on diamond tool. • Raman and XPS methods were used to characterize the nanoscale FIB-induced damage. • Lower energy FIB can effectively lessen the FIB-induced damage on diamond tool. • The diamond tools’ performance was greatly improved after FIB process optimization. • 6 nm chip thickness of copper was achieved by diamond tool with 22 nm edge radius. - Abstract: Diamond cutting tools with nanometric edge radius used in ultra-precision machining can be fabricated by focused ion beam (FIB) technology. However, due to the nanoscale effects, the diamond tools performance and the cutting edge lifetime in nano cutting would be degraded because of the FIB-induced nanoscale lateral damage. In this study, the methods of how to effectively characterize and decrease the FIB-induced lateral damage for diamond tool are intensively studied. Based on the performance optimization diamond machining tools, the controllable chip thickness of less than 10 nm was achieved on a single-crystal copper in nano cutting. In addition, the ratio of minimum thickness of chip (MTC) to tool edge radius of around 0.3–0.4 in nano cutting is achieved. Methods for decreasing the FIB-induced damage on diamond tools and adding coolant during the nano cutting are very beneficial in improving the research of nano cutting and MTC. The nano cutting experiments based on the sharp and high performance of diamond tools would validate the nano cutting mechanisms that many molecular dynamic simulation studies have put forward and provide new findings for nano cutting.

  10. Depth of formation of CaSiO3-walstromite included in super-deep diamonds

    Science.gov (United States)

    Anzolini, C.; Angel, R. J.; Merlini, M.; Derzsi, M.; Tokár, K.; Milani, S.; Krebs, M. Y.; Brenker, F. E.; Nestola, F.; Harris, J. W.

    2016-11-01

    "Super-deep" diamonds are thought to crystallize between 300 and 800 km depth because some of the inclusions trapped within them are considered to be the products of retrograde transformation from lower mantle or transition zone precursors. In particular, single inclusion CaSiO3-walstromite is believed to derive from CaSiO3-perovskite, although its real depth of origin has never been proven. Our aim is therefore to determine for the first time the pressure of formation of the diamond-CaSiO3-walstromite pair by "single-inclusion elastic barometry" and to determine whether CaSiO3-walstromite derives from CaSiO3-perovskite or not. We investigated several single phases and assemblages of Ca-silicate inclusions still trapped in a diamond coming from Juina (Brazil) by in-situ analyses (single-crystal X-ray diffraction and micro-Raman spectroscopy) and we obtained a minimum entrapment pressure of 5.7 GPa (∼ 180 km) at 1500 K. However, the observed coexistence of CaSiO3-walstromite, larnite (β-Ca2SiO4) and CaSi2O5-titanite in one multiphase inclusion within the same diamond indicates that the sample investigated is sub-lithospheric with entrapment pressure between 9.5 and 11.5 GPa at 1500 K, based on experimentally-determined phase equilibria. In addition, thermodynamic calculations suggested that, within a diamond, single inclusions of CaSiO3-walstromite cannot derive from CaSiO3-perovskite, unless the diamond around the inclusion expands by 30% in volume.

  11. The formation and activity of platinum adlayers on diamond electrodes for electrocatalysis

    Science.gov (United States)

    Bennett, Jason Alan

    The research described in this dissertation evaluates the potential of diamond as an advanced carbon electrocatalyst support material. This includes both assessing the physical and electrochemical properties of the material as well as a comprehensive investigation into the nature of metal adlayer formation on the material. The physical and electrochemical properties of boron-doped polycrystalline diamond thin films, prepared with varying levels of sp2-bonded nondiamond carbon impurity, were systematically investigated. This impurity was introduced through adjustment of the methane-to-hydrogen source gas ratio used for the deposition. Increasing the methane-to-hydrogen ratio resulted in an increase in the fraction of grain boundary, the extent of secondary nucleation, and the amount of sp2-bonded nondiamond carbon impurity. The effect of the source gas ratio on the electrochemical response towards several well known redox analytes and the oxygen reduction reaction in both acidic and alkaline media was also investigated. The results demonstrate that the grain boundaries, and the sp2-bonded nondiamond carbon impurity presumably residing there, can have a significant impact on the electrode reaction kinetics for certain redox systems and little influence for others. The morphological and microstructural stability of microcrystalline and nanocrystalline boron-doped diamond thin film electrodes under conditions observed in phosphoric acid fuel cells was investigated. The electrodes were exposed to a 2 h period of anodic polarization in 85% H3PO 4 at ˜180°C and 0.1 A/cm2. Catastrophic degradation was not observed for either type of diamond. The oxidation of the microcrystalline diamond was limited to the surface, and the effects could be reversed upon exposure to a hydrogen plasma. The nanocrystalline diamond exhibited similar responses to well known redox analytes after anodic polarization, however an irreversible increase in the film capacitance was also observed

  12. Investigation of focused ion beam induced damage in single crystal diamond tools

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Zhen [Centre for Precision Manufacturing, Department of Design, Manufacture & Engineering Management, University of Strathclyde, Glasgow G1 1XQ (United Kingdom); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo, Xichun, E-mail: Xichun.Luo@strath.ac.uk [Centre for Precision Manufacturing, Department of Design, Manufacture & Engineering Management, University of Strathclyde, Glasgow G1 1XQ (United Kingdom)

    2015-08-30

    Highlights: • The FIB-induced damage layer should be paid enough attention when shaping the cutting edges of nanoscale diamond tools. • During FIB processing cutting tools made of natural single crystal diamond, the Ga{sup +} collision will create a damage layer around tool tips. • The thicknesses of damaged layer and the level for amorphization of diamond significantly increase with beam energy. • The FIB-induced doping and defects during tool fabrication are responsible for the early detection of tool wear of nanoscale diamond tools. - Abstract: In this work, transmission electron microscope (TEM) measurements and molecular dynamics (MD) simulations were carried out to characterise the focused ion beam (FIB) induced damage layer in a single crystal diamond tool under different FIB processing voltages. The results obtained from the experiments and the simulations are in good agreement. The results indicate that during FIB processing cutting tools made of natural single crystal diamond, the energetic Ga{sup +} collision will create an impulse-dependent damage layer at the irradiated surface. For the tested beam voltages in a typical FIB system (from 8 kV to 30 kV), the thicknesses of the damaged layers formed on a diamond tool surface increased from 11.5 nm to 27.6 nm. The dynamic damage process of FIB irradiation and ion–solid interactions physics leading to processing defects in FIB milling were emulated by MD simulations. The research findings from this study provide the in-depth understanding of the wear of nanoscale multi-tip diamond tools considering the FIB irradiation induced doping and defects during the tool fabrication process.

  13. Pulse laser induced graphite-to-diamond phase transition: the role of quantum electronic stress

    Science.gov (United States)

    Wang, ZhengFei; Liu, Feng

    2017-02-01

    First-principles calculations show that the pulse laser induced graphite-to-diamond phase transition is related to the lattice stress generated by the excited carriers, termed as "quantum electronic stress (QES)". We found that the excited carriers in graphite generate a large anisotropic QES that increases linearly with the increasing carrier density. Using the QES as a guiding parameter, structural relaxation spontaneously transforms the graphite phase into the diamond phase, as the QES is reduced and minimized. Our results suggest that the concept of QES can be generally applied as a good measure to characterize the pulse laser induced phase transitions, in analogy to pressure induced phase transitions.

  14. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...... obtained by means of a single short and intensive carbon plasma deposition pulse. The deposited DLC coating was characterized by micro-Raman spectroscopy measurements. The DLC coating process gave rise to wide potential possibilities in micro-devices manufacturing productions....

  15. About Basic Epochs of Crust Formation and Kimberlite Magmatism in Connection with Diamond Prospecting Works

    Directory of Open Access Journals (Sweden)

    N. N. Zinchuk

    2014-06-01

    Full Text Available Results of comprehensive analysis of large amount of worldwide and regional geological information allowed suggesting necessity of more intensive research of massive crust formation and diamondiferous magmatism epochs, which were paid little attention to. Presently available highly scattered information allows distinguishing two megastages in formation of the Siberian platform diamondiferousness. The early stage includes the time from Archean to Riphean or from diamonds formation in the mantle to its first appearance at the surface conditions. Polycentrism, localization at peripheral parts of the platform, as well as diversity of transporters are characteristic for this megastage. The second megastage (Early Paleozoic-Eocene differs from the first one by spatial arrangement of occurrences, monocentrism, and prevalence of kimberlite diatremes. During planning and carrying out the diamonds prospecting works on perspective territories of the platform, it is necessary to study not only Middle-Paleozoic productive collectors, but also more ancient (Preсambrian and Lower Paleozoic and young (Mesozoic strata as well, performing detailed complex analysis of  rock composition (especially the key layers and basal horizons.

  16. The depth of sub-lithospheric diamond formation and the redistribution of carbon in the deep mantle

    Science.gov (United States)

    Beyer, Christopher; Frost, Daniel J.

    2017-03-01

    Most diamonds form in the Earth's lithosphere but a small proportion contain Si-rich majoritic garnet inclusions that indicate formation in the deeper mantle. The compositions of syngenetic garnet inclusions can potential yield information on both the depth and mantle lithology in which the diamonds formed. Pressure dependent changes in garnet compositions have been calibrated using the results of experiments conducted in a multi-anvil apparatus at pressures between 6 and 16 GPa and temperatures of 1000 to 1400 °C. Using the results of these experiments a barometer was formulated based on an empirical parameterisation of the two major majoritic substitutions, referred to as majorite (Maj; Al3+ =Mg2+ +Si4+), and Na-majorite (Na-Maj; Mg2+ +Al3+ =Na+ +Si4+). Moreover, previously published experimental garnet compositions from basaltic, kimberlite, komatiite and peridotite bulk compositions were included in the calibration, which consequently covers pressures from 6 to 20 GPa and temperatures from 900 to 2100 °C. Experimental pressures are reproduced over these conditions with a standard deviation of 0.86 GPa. The barometer is used to determine equilibration pressures of approximately 500 reported garnet inclusions in diamonds from a range of localities. As the majority of these inclusions are proposed to be syngenetic this allows a detailed picture of diamond formation depths and associated source rocks to be established using inclusion chemistry. Geographic differences in diamond source rocks are mapped within the sub-lithospheric mantle to over 500 km depth. Continuous diamond formation occurs over this depth range within lithologies with eclogitic affinities but also in lithologies that appear transitional between eclogitic and peridotitic bulk compositions, with an affinity to pyroxenites. The geographic differences between eclogitic and pyroxenitic diamond source rocks are rationalised in terms of diamond formation within downwelling and upwelling regimes

  17. Electric field deformation in diamond sensors induced by radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de; Boegelspacher, Felix; Dierlamm, Alexander; Mueller, Thomas; Steck, Pia [Institut fuer Experimentelle Kernphysik (IEKP), Karlsruher Institut fuer Technologie (KIT) (Germany); Dabrowski, Anne; Guthoff, Moritz [CERN (Switzerland)

    2016-07-01

    The BCML system is a beam monitoring device in the CMS experiment at the LHC. As detectors 32 poly-crystalline CVD diamond sensors are positioned in a ring around the beam pipe at a distance of ±1.8 m and ±14.4 m from the interaction point. The radiation hardness of the diamond sensors in terms of measured signal during operation was significantly lower than expected from laboratory measurements. At high particle rates, such as those occurring during the operation of the LHC, a significant fraction of the defects act as traps for charge carriers. This space charge modifies the electrical field in the sensor bulk leading to a reduction of the charge collection efficiency (CCE). A diamond irradiation campaign was started to investigate the rate dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the Transient Current Technique, the CCE was measured. The experimental results were used to create an effective trap model that takes the radiation damage into account. Using this trap model the rate dependent electrical field deformation and the CCE were simulated with the software ''SILVACO TCAD''. This talk compares the experimental measurement results with the simulations.

  18. Diamond Synthesis Employing Nanoparticle Seeds

    Science.gov (United States)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  19. Diamonds levitating in a Paul trap under vacuum: Measurements of laser-induced heating via NV center thermometry

    Science.gov (United States)

    Delord, T.; Nicolas, L.; Bodini, M.; Hétet, G.

    2017-07-01

    We present measurements of the electronic spin resonance (ESR) of nitrogen vacancy (NV) centers in diamonds that are levitating in a ring Paul trap under vacuum. We observe ESR spectra of NV centers embedded in micron-sized diamonds at vacuum pressures of 2 × 10-1 mbar and the NV photoluminescence down to 10-2 mbar. Further, we use the ESR to measure the temperature of the levitating diamonds and show that the green laser induces heating of the diamond at these pressures. We finally discuss the steps required to control the NV spin under ultra-high vacuum.

  20. Mechanism underlying formation of SSC in optical glass due to dynamic impact of single diamond scratch

    Institute of Scientific and Technical Information of China (English)

    陈江; 赵航; 张飞虎; 张元晶; 张勇

    2015-01-01

    During the grinding of optical glass, the abrasion directly affects the morphology and depth of subsurface cracks (SSC). The effect of dynamic impact of grinding abrasives on optical glass is an important issue in the field of optics manufacturing. In this work, a single diamond scratch was used to grind optical glass, and grinding parameters were collaboratively controlled to ensure that the cutting layer remained constant. A dynamometer was used to record the duration of the impact process, and the cross-section of the test piece was polished for scanning electron microscopy (SEM) to determine the depth of the SSCs. The experimental results show that as wheel speed increases, SSC depth tends to decrease. When the wheel speed gradually increases from 500 r/min to 2500 r/min, the probability distribution curve for the maximum SSC depth shifts downward by around 80 µm. The effect of the dynamic impact of single diamond scratch is found to be an important cause of SSC formation in optical glass during grinding, i.e., the faster the grinding, the shallower the SSCs.

  1. Mechanism underlying formation of SSC in optical glass due to dynamic impact of single diamond scratch

    Institute of Scientific and Technical Information of China (English)

    陈江; 赵航; 张飞虎; 张元晶; 张勇

    2015-01-01

    During the grinding of optical glass, the abrasion directly affects the morphology and depth of subsurface cracks(SSC). The effect of dynamic impact of grinding abrasives on optical glass is an important issue in the field of optics manufacturing. In this work, a single diamond scratch was used to grind optical glass, and grinding parameters were collaboratively controlled to ensure that the cutting layer remained constant. A dynamometer was used to record the duration of the impact process, and the cross-section of the test piece was polished for scanning electron microscopy(SEM) to determine the depth of the SSCs. The experimental results show that as wheel speed increases, SSC depth tends to decrease. When the wheel speed gradually increases from 500 r/min to 2500 r/min, the probability distribution curve for the maximum SSC depth shifts downward by around 80 μm. The effect of the dynamic impact of single diamond scratch is found to be an important cause of SSC formation in optical glass during grinding, i.e., the faster the grinding, the shallower the SSCs.

  2. Formation of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films in Vacuum Using Coaxial Arc Plasma Gun

    Science.gov (United States)

    Hanada, Kenji; Yoshida, Tomohiro; Nakagawa, You; Yoshitake, Tsuyoshi

    2010-12-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite films were grown in vacuum using a coaxial arc plasma gun. From the X-ray diffraction measurement, the UNCD crystallite size was estimated to be 1.6 nm. This size is dramatically reduced from that (2.3 nm) of UNCD/hydrogenated amorphous carbon (a-C:H) composite films grown in a hydrogen atmosphere. The sp3/(sp3 + sp2) value, which was estimated from the X-ray photoemission spectrum, was also reduced to be 41%. A reason for it might be the reduction in the UNCD crystallite size. From the near-edge X-ray absorption fine-structure (NEXAFS) spectrum, it was found that the π*C=C and π*C≡C bonds are preferentially formed instead of the σ*C-H bonds in the UNCD/a-C:H films. Since the extremely small UNCD crystallites (1.6 nm) correspond to the nuclei of diamond, we consider that UNCD crystallite formation should be due predominantly to nucleation. The supersaturated condition required for nucleation is expected to be realized in the deposition using the coaxial arc plasma gun.

  3. MHD simulations of protostellar jets: formation and stability of shock diamonds

    Science.gov (United States)

    Ustamujic, Sabina

    2016-07-01

    The early stages of a star birth are characterised by a variety of mass ejection phenomena, including outflows and collimated jets, that are strongly related with the accretion process developed in the context of the star-disc interaction. After been ejected, jets move through the ambient medium, interacting and producing shocks and complex structures that are observed at different wavelength bands. In particular, X-ray observations show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary and have been interpreted as shock diamonds. We aim at investigating the physical properties of the shocked plasma and the role of the magnetic field on the collimation performing 2.5D MHD simulations, including the effects of the thermal conduction and the radiative losses. We modelled the propagation of a jet ramming with a supersonic speed into an initially isothermal and homogeneous magnetized medium. We studied the physics that guides the formation of a stationary shock (for instance a shock diamond) and compared the results with observations, via the emission measure distribution vs. temperature and the luminosity synthesised from the simulations.

  4. Collision Induced Galaxy Formation

    CERN Document Server

    Balland, C; Schäffer, R

    1997-01-01

    We present a semi-analytical model in which galaxy collisions and strong tidal interactions, both in the field and during the collapse phase of groups and clusters help determine galaxy morphology. From a semi-analytical analysis based on simulation results of tidal collisions (Aguilar & White 1985), we propose simple rules for energy exchanges during collisions that allow to discriminate between different Hubble types: efficient collisions result in the disruption of disks and substantial star formation, leading to the formation of elliptical galaxies; inefficient collisions allow a large gas reservoir to survive and form disks. Assuming that galaxy formation proceeds in a Omega_0=1 Cold Dark Matter universe, the model both reproduces a number of observations and makes predictions, among which are the redshifts of formation of the different Hubble types in the field. When the model is normalized to the present day abundance of X-ray clusters, the amount of energy exchange needed to produce elliptical gal...

  5. Ion beam induced luminescence from diamond using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Jamieson, D. N.; Prawer, S.; Allen, M.G. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    Analysis of the luminescence induced by a MeV ion beam offers the potential to provide useful information about the chemical properties of atoms in crystals to complement the information provided by more traditional Ion Beam Analysis (IBA) such as Rutherford Backscattering Spectrometry (RBS), ion channeling and Particle Induced X-ray Emission (PIXE). Furthermore, the large penetration depth of the MeV ion beam offers several advantages over the relatively shallow penetration of keV electrons typically employed in cathodoluminescence. An Ion Beam Induced Luminescence (IBIL) detection system was developed for the Melbourne microprobe that allows the spatial mapping of the luminescence signal along with the signals from RBS and PIXE. Homoepitaxial diamond growth has been studied and remarkable shifts in the characteristic blue luminescence of diamond towards the green were observed in the overgrowth. This has been tentatively identified as being due to transition metal inclusions in the epitaxial layers. 8 refs., 2 refs.

  6. Investigation of electrically-active deep levels in single-crystalline diamond by particle-induced charge transient spectroscopy

    Science.gov (United States)

    Kada, W.; Kambayashi, Y.; Ando, Y.; Onoda, S.; Umezawa, H.; Mokuno, Y.; Shikata, S.; Makino, T.; Koka, M.; Hanaizumi, O.; Kamiya, T.; Ohshima, T.

    2016-04-01

    To investigate electrically-active deep levels in high-resistivity single-crystalline diamond, particle-induced charge transient spectroscopy (QTS) techniques were performed using 5.5 MeV alpha particles and 9 MeV carbon focused microprobes. For unintentionally-doped (UID) chemical vapor deposition (CVD) diamond, deep levels with activation energies of 0.35 eV and 0.43 eV were detected which correspond to the activation energy of boron acceptors in diamond. The results suggested that alpha particle and heavy ion induced QTS techniques are the promising candidate for in-situ investigation of deep levels in high-resistivity semiconductors.

  7. Fluctuations of electrical and mechanical properties of diamond induced by interstitial hydrogen

    Science.gov (United States)

    Zhuang, Chun-Qiang; Liu, Lei

    2015-01-01

    While experimental evidence demonstrates that the presence of hydrogen (H) impurities in diamond films plays a significant role in determining their physical properties, the small radius of the H atom makes detecting such impurities quite a challenging task. In the present work, first-principles calculations were employed to provide an insight into the effects of the interstitial hydrogen on the electrical and mechanical properties of diamond crystals at the atomic level. The migrated pathways of the interstitial hydrogen are dictated by energetic considerations. Some new electronic states are formed near the Fermi level. The interstitial hydrogen markedly narrows the bandgap of the diamond and weakens the diamond crystal. The obvious decrement of the critical strain clearly implies the presence of an H-induced embrittlement effect. Project supported by the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality, China (Grant No. IDHT20140504), the National Natural Science Foundation of China (Grant No. 51402009), and the Foundation for Young Scholars of Beijing University of Technology, China.

  8. Electromagnetically-induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing

    CERN Document Server

    Acosta, Victor M; Santori, Charles; Budker, Dmitry; Beausoleil1, Rymond G

    2013-01-01

    We use electromagnetically-induced transparency (EIT) to probe the narrow electron-spin resonance of nitrogen-vacancy centers in diamond. Working with a multi-pass diamond chip at temperatures 6-30 K, the zero-phonon absorption line (637 nm) exhibits an optical depth of 6 and inhomogenous linewidth of ~30 GHz full-width-at-half-maximum (FWHM). Simultaneous optical excitation at two frequencies separated by the ground-state zero-field splitting (2.88 GHz), reveals EIT resonances with a contrast exceeding 6% and FWHM down to 0.4 MHz. The resonances provide an all-optical probe of external electric and magnetic fields with a projected photon-shot-noise-limited sensitivity of 0.2 V/cm/sqrt(Hz) and 0.1 nT/sqrt(Hz), respectively. Operation of a prototype diamond-EIT magnetometer measures a noise floor of less than 1 nT/sqrt(Hz) for frequencies above 10 Hz and Allan deviation of 1.3 +/- 1.1 nT for 100 s intervals. The results demonstrate the potential of diamond-EIT devices for applications ranging from quantum-opti...

  9. Finite element analysis of three-dimensional laser-induced transient thermal grating in diamond/ZnSe system

    Institute of Scientific and Technical Information of China (English)

    Cheng Ying; Huang Qiao-Jian; Liu Xiao-Jun

    2008-01-01

    This paper uses finite element method to obtain the three-dimensional temperature field of laser-induced transient thermal grating (TTG) for two-layered structure of diamond film on ZnSe substrate.The numerical results indicate that unique two-times heating process is gradually experienced in the area between two adjacent grating stripes.However,there is a little change for the temperature field along the depth direction for the diamond film due to its great thermal conductivity.It further finds that the thickness of the diamond film has a significant influence on the temperature field in diamond/ZnSe system.The results are useful for the application of laser-induced TTG technique in film/substrate system.

  10. RESEARCH OF PROCESSES ON FORMATION AND TRIBOTECHNICAL PROPERTIES OF WEAR-RESISTANT COMPOSITE GAS THERMAL COATINGS BEING DISPERSIVELY STRENGTHENED BY SYNTHETIC DIAMONDS AND ELECTRO-CORUNDUM

    Directory of Open Access Journals (Sweden)

    O. S. Kobjakov

    2011-01-01

    Full Text Available Formation processes, tribotechnical and wear-resistant properties of composite gas thermal coatings being dispersively strengthened by synthetic diamonds and electro-corundum are investigated in the paper.

  11. Iron carbide as a source of carbon for graphite and diamond formation under lithospheric mantle P-T parameters

    Science.gov (United States)

    Bataleva, Yuliya V.; Palyanov, Yuri N.; Borzdov, Yuri M.; Bayukov, Oleg A.; Zdrokov, Evgeniy V.

    2017-08-01

    Experimental modeling of natural carbide-involving reactions, implicated in the graphite and diamond formation and estimation of the iron carbide stability in the presence of S-bearing fluids, sulfide melts as well as mantle silicates and oxides, was performed using a multi-anvil high-pressure split-sphere apparatus. Experiments were carried out in the carbide-sulfur (Fe3C-S), carbide-sulfur-oxide (Fe3C-S-SiO2-MgO) and carbide-sulfide (Fe3C-FeS2) systems, at pressure of 6.3 GPa, temperatures in the range of 900-1600 °C and run time of 18-40 h. During the interaction of cohenite with S-rich reduced fluid or pyrite at 900-1100 °C, extraction of carbon from carbide was realized, resulting in the formation of graphite in assemblage with pyrrhotite and cohenite. At higher temperatures complete reaction of cohenite with newly-formed sulfide melt was found to produce metal-sulfide melt with dissolved carbon (Fe64S27C9 (1200 °C)-Fe54S40C6 (1500 °C), at.%), which acted as a crystallization medium for graphite (1200-1600 °C) and diamond growth on seeds (1300-1600 °C). Reactions of cohenite and oxides with S-rich reduced fluid resulted in the formation of graphite in assemblage with highly ferrous orthopyroxene and pyrrhotite (900-1100 °C) or in hypersthene formation, as well as graphite crystallization and diamond growth on seeds in the Fe-S-C melt (1200-1600 °C). We show that the main processes of carbide interaction with S-rich fluid or sulfide melt are recrystallization of cohenite (900-1100 °C), extraction of carbon and iron in the sulfide melt, and graphite formation and diamond growth in the metal-sulfide melt with dissolved carbon. Our results evidence that iron carbide can act as carbon source in the processes of natural graphite and diamond formation under reduced mantle conditions. We experimentally demonstrate that cohenite in natural environments can be partially consumed in the reactions with mantle silicates and oxides, and is absolutely unstable in

  12. The Formation of Nanocrystalline Diamond Coating on WC Deposited by Microwave Assisted Plasma CVD

    Science.gov (United States)

    Toff, M. R. M.; Hamzah, E.; Purniawan, A.

    2010-03-01

    Diamond is one form of carbon structure. The extreme hardness and high chemical resistant of diamond coatings determined that many works on this area relate to coated materials for tribological applications in biomedicine, as mechanical seals or cutting tools for hard machining operations. In the work, nanocrystalline diamond (NCD) coated tungsten carbide (WC) have been deposited by microwave assisted plasma chemical vapor deposition (MAPCVD) from CH4/H2 mixtures. Morphology of NCD was investigated by using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The quality of NCD is defined as ratio between diamond and non diamond and also full width at half maximum (FWHM) was determined using Raman spectra. The result found that the NCD structure can be deposited on WC surface using CH4/H2 gas mixture with grain size ˜20 nm to 100 nm. Increase %CH4 concentration due to increase the nucleation of NCD whereas decrease the quality of diamond. Based on Raman spectra, the quality of NCD is in the range ˜98.82-99.01% and 99.56-99.75% for NCD and microcrystalline (MCD), respectively. In addition, FWHM of NCD is high than MCD in the range of 8.664-62.24 cm-1 and 4.24-5.05 cm-1 for NCD and MCD respectively that indicate the crystallineity of NCD is smaller than MCD.

  13. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X. D., E-mail: renxd@mail.ujs.edu.cn; Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-10-05

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphous carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.

  14. Industrial diamond

    Science.gov (United States)

    Olson, D.W.

    2001-01-01

    An overview of the industrial diamond industry is provided. More than 90 percent of the industrial diamond consumed in the U.S. and the rest of the world is manufactured diamond. Ireland, Japan, Russia, and the U.S. produce 75 percent of the global industrial diamond output. In 2000, the U.S. was the largest market for industrial diamond. Industrial diamond applications, prices for industrial diamonds, imports and exports of industrial diamonds, the National Defense Stockpile of industrial diamonds, and the outlook for the industrial diamond market are discussed.

  15. Diffusion of Co and W in diamond tool induced by 10.6 µm CO2 laser radiation

    CSIR Research Space (South Africa)

    Masina, Bathusile N

    2011-05-01

    Full Text Available the formation of microstructure oxides on the PCD layer, and showed that the temperature in the diamond tool is sufficient to radically alter its physical and chemical properties, resulting in critical fracture. Future work will be to determine by how much Co...

  16. Adsorption-induced step formation

    DEFF Research Database (Denmark)

    Thostrup, P.; Christoffersen, Ebbe; Lorensen, Henrik Qvist

    2001-01-01

    Through an interplay between density functional calculations, Monte Carlo simulations and scanning tunneling microscopy experiments, we show that an intermediate coverage of CO on the Pt(110) surface gives rise to a new rough equilibrium structure with more than 50% step atoms. CO is shown to bin...... so strongly to low-coordinated Pt atoms that it can break Pt-Pt bonds and spontaneously form steps on the surface. It is argued that adsorption-induced step formation may be a general effect, in particular at high gas pressures and temperatures....

  17. Diamond heteroepitaxial lateral overgrowth

    Science.gov (United States)

    Tang, Yung-Hsiu

    This dissertation describes improvements in the growth of single crystal diamond by microwave plasma-assisted chemical vapor deposition (CVD). Heteroepitaxial (001) diamond was grown on 1 cm. 2 a-plane sapphiresubstrates using an epitaxial (001) Ir thin-film as a buffer layer. Low-energy ion bombardment of the Ir layer, a process known as bias-enhanced nucleation, is a key step in achieving a high density of diamond nuclei. Bias conditions were optimized to form uniformly-high nucleation densities across the substrates, which led to well-coalesced diamond thin films after short growth times. Epitaxial lateral overgrowth (ELO) was used as a means of decreasing diamond internal stress by impeding the propagation of threading dislocations into the growing material. Its use in diamond growth requires adaptation to the aggressive chemical and thermal environment of the hydrogen plasma in a CVD reactor. Three ELO variants were developed. The most successful utilized a gold (Au) mask prepared by vacuum evaporation onto the surface of a thin heteroepitaxial diamond layer. The Au mask pattern, a series of parallel stripes on the micrometer scale, was produced by standard lift-off photolithography. When diamond overgrows the mask, dislocations are largely confined to the substrate. Differing degrees of confinement were studied by varying the stripe geometry and orientation. Significant improvement in diamond quality was found in the overgrown regions, as evidenced by reduction of the Raman scattering linewidth. The Au layer was found to remain intact during diamond overgrowth and did not chemically bond with the diamond surface. Besides impeding the propagation of threading dislocations, it was discovered that the thermally-induced stress in the CVD diamond was significantly reduced as a result of the ductile Au layer. Cracking and delamination of the diamond from the substrate was mostly eliminated. When diamond was grown to thicknesses above 0.1 mm it was found that

  18. Micron-scale coupled carbon isotope and nitrogen abundance variations in diamonds: Evidence for episodic diamond formation beneath the Siberian Craton

    Science.gov (United States)

    Wiggers de Vries, D. F.; Bulanova, G. P.; De Corte, K.; Pearson, D. G.; Craven, J. A.; Davies, G. R.

    2013-01-01

    The internal structure and growth history of six macro-diamonds from kimberlite pipes in Yakutia (Russia) were investigated with cathodoluminescence imaging and coupled carbon isotope and nitrogen abundance analyses along detailed core to rim traverses. The diamonds are characterised by octahedral zonation with layer-by-layer growth. High spatial resolution SIMS profiles establish that there is no exchange of the carbon isotope composition across growth boundaries at the μm scale and that isotopic variations observed between (sub)zones within the diamonds are primary. The macro-diamonds have δ13C values that vary within 2‰ of -5.3‰ and their nitrogen contents range between 0-1334 at. ppm. There are markedly different nitrogen aggregation states between major growth zones within individual diamonds that demonstrate Yakutian diamonds grew in multiple growth events. Growth intervals were punctuated by stages of dissolution now associated with <10 μm wide zones of nitrogen absent type II diamond. Across these resorption interfaces carbon isotope ratios and nitrogen contents record shifts between 0.5-2.3‰ and up to 407 at. ppm, respectively. Co-variation in δ13C value-nitrogen content suggests that parts of individual diamonds precipitated in a Rayleigh process from either oxidised or reduced fluids/melts, with two single diamonds showing evidence of both fluid types. Modelling the co-variation establishes that nitrogen is a compatible element in diamond relative to its growth medium and that the nitrogen partition coefficient is different between oxidised (3-4.1) and reduced (3) sources. The reduced sources have δ13C values between -7.3‰ and -4.6‰, while the oxidised sources have higher δ13C values between -5.8‰ and -1.8‰ (if grown from carbonatitic media) or between -3.8‰ and +0.2‰ (if grown from CO2-rich media). It is therefore concluded that individual Yakutian diamonds originate from distinct fluids/melts of variable compositions. The

  19. Investigation on the formation of tungsten carbide in tungsten-containing diamond like carbon coatings

    NARCIS (Netherlands)

    Strondl, C.; Carvalho, N.M.; Hosson, J.Th.M. De; Kolk, G.J. van der

    2003-01-01

    A series of tungsten-containing diamond-like carbon (Me-DLC) coatings have been produced by unbalanced magnetron sputtering using a Hauzer HTC-1000 production PVD system. Sputtering from WC targets has been used to form W-C:H coatings. The metal to carbon ratio has been varied to study changes in th

  20. Pressure induced polymerization of Formates

    Science.gov (United States)

    Tschauner, Oliver

    2004-03-01

    The discovery of pressure induced polymerization of CO2 inspired us to search for C-O based chain structures forming at high pressure. We used salts of carboxylic acids as starting materials and exposed them to pressures between 10 and 30 GPa. Upon heating to temperatures above 1800 K we observed deprotonation and significant changes in the Raman shifts of C-O streching modes. Structure analysis based on powder diffraction patterns collected at sector 16 of the APS showed formation of extended C-O chain structures with the cations of the salts residing in the interchain spaces. These new high pressure polymers are interesting by their mechanical strength and provide basic molecular patterns of organic metallic conductors.

  1. Diamond-like carbon formation for various positions by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Seong-Shan [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia)]. E-mail: ssyap@mmu.edu.my; Tou, Teck-Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia)

    2005-07-30

    Pulsed laser ablation of pyrolytic graphite target was carried out by an Nd-YAG laser with {lambda} = 1064 nm and fluence in the range of 1-10 J/cm{sup 2}. The plume was produced by focusing the laser beam and rastering over a 6.5 mm x 6.5 mm area on the graphite target. The substrates were placed at two positions: on-axis position facing the target and off-axis position in the target plane with 2 mm offset from the ablation site. Diamond-like carbon was formed on the substrates at both positions and on the ablated area as detected by Raman spectroscopy. Rough and granular surface was observed for the samples placed in the target plane and smooth diamond-like carbon films for the samples placed facing the target as observed by SEM and optical microscopy.

  2. Iloprost induces tertiary dentin formation.

    Science.gov (United States)

    Limjeerajarus, Chalida Nakalekha; Chanarattanubol, Thichaporn; Trongkij, Panruethai; Rujiwanichkul, Mirantee; Pavasant, Prasit

    2014-11-01

    Prostacyclin (PGI2), a member of the prostaglandin family, can promote angiogenesis and cell proliferation. In this study, the effect of the application of a PGI2 analog (iloprost) on dentin repair was examined in vitro and in vivo. Iloprost significantly stimulated the expression of vascular endothelial growth factor and osteo-/odontogenic marker messenger RNA in human dental pulp cells (HDPCs) under osteoinductive conditions in vitro. In addition, iloprost enhanced HDPC alkaline phosphatase enzymatic activity and mineral deposition. An in vivo study was performed using a rat molar mechanical pulp exposure model. After 30 days, histologic analysis revealed that there was a dramatic tertiary dentin formation in the iloprost-treated group compared with the calcium hydroxide and the untreated control groups. Furthermore, vascular endothelial growth factor protein expression in dental pulp tissue was increased in the iloprost-treated group as determined by immunohistochemical staining. Taken together, the present study, for the first time, shows that iloprost induces the expression of osteo-/odontogenic markers in vitro and promotes angiogenic factor expression and enhances tertiary dentin formation in vivo. This implies the potential clinical usefulness of iloprost in vital pulp therapy. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Induced astigmatism after diamond burr superficial keratectomy for recurrent corneal erosion.

    Science.gov (United States)

    Yoo, Janie H; Choi, David M

    2009-11-01

    To report a case of induced astigmatism after diamond burr superficial keratectomy (DBSK) for recurrent corneal erosion (RCE). Case report. Review of clinical findings in a 54-year-old women with ocular history of a scleral buckling procedure for a retinal detachment from blunt trauma and phacoemulsification with intraocular lens placement. The patient presented with RCE after trauma with a mascara brush to the OD and was treated with DBSK. Postoperatively, she developed significant astigmatism. In the third postoperative week after the DBSK procedure, the patient reported of worsening vision. On corneal topography, the patient was found to have 4 diopters of induced astigmatism. The astigmatic error was followed closely by serial corneal topography; a gradual decrease in the amount of astigmatism occurred over the course of 30 weeks. Forme fruste keratoconus was suspected in the patient's contralateral eye, based on corneal topographic analysis. Induced corneal astigmatism is a previously undescribed complication that can occur after DBSK. It is unclear whether the induced astigmatism in our patient was caused by the DBSK procedure alone or whether the patient had decompensated structural integrity from forme fruste keratoconus or blunt corneal trauma or both. The authors recommend that corneal topographic analysis be appropriately considered before DBSK for RCE and that corneal astigmatism be seen as a potential complication of the procedure.

  4. Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3 and SiO2

    Science.gov (United States)

    Maeda, Fumiya; Ohtani, Eiji; Kamada, Seiji; Sakamaki, Tatsuya; Hirao, Naohisa; Ohishi, Yasuo

    2017-01-01

    Diamond is an evidence for carbon existing in the deep Earth. Some diamonds are considered to have originated at various depth ranges from the mantle transition zone to the lower mantle. These diamonds are expected to carry significant information about the deep Earth. Here, we determined the phase relations in the MgCO3-SiO2 system up to 152 GPa and 3,100 K using a double sided laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. MgCO3 transforms from magnesite to the high-pressure polymorph of MgCO3, phase II, above 80 GPa. A reaction between MgCO3 phase II and SiO2 (CaCl2-type SiO2 or seifertite) to form diamond and MgSiO3 (bridgmanite or post-perovsktite) was identified in the deep lower mantle conditions. These observations suggested that the reaction of the MgCO3 phase II with SiO2 causes formation of super-deep diamond in cold slabs descending into the deep lower mantle. PMID:28084421

  5. Iron Oxide Nanoparticles Employed as Seeds for the Induction of Microcrystalline Diamond Synthesis

    Directory of Open Access Journals (Sweden)

    Resto Oscar

    2008-01-01

    Full Text Available AbstractIron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. X-ray diffraction, visible, and ultraviolet Raman Spectroscopy, energy-filtered transmission electron microscopy , electron energy-loss spectroscopy, and X-ray photoelectron spectroscopy (XPS were employed to study the carbon bonding nature of the films and to analyze the carbon clustering around the seed nanoparticles leading to diamond synthesis. The results indicate that iron oxide nanoparticles lose the O atoms, becoming thus active C traps that induce the formation of a dense region of trigonally and tetrahedrally bonded carbon around them with the ensuing precipitation of diamond-type bonds that develop into microcrystalline diamond films under chemical vapor deposition conditions. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  6. Near-infrared induced charge dynamics of the nitrogen vacancy center in diamond

    Science.gov (United States)

    Hopper, David A.; Grote, Richard R.; Exarhos, Annemarie L.; Bassett, Lee C.

    The nitrogen-vacancy (NV) center in diamond is a key functional element in emerging quantum technologies such as nodes in quantum information processing and nanoscale sensors for condensed matter physics and biology. Recent efforts to optimize the NV's functionality lead to the discovery of photoinduced charge-state switching between the negative (NV-) and neutral (NV0) states which holds great potential to enhance the fidelity of spin readout. While the charge state dynamics under visible illumination have been studied, the effect of infrared light remains unexplored. Here, we use a tunable, pulsed infrared source to illuminate NV centers under various spin and optical states. Precise time-domain control of visible, microwave, and infrared pulses together with single-shot charge readout allows for the direct probing of spin and charge dynamics induced by the infrared light. This new understanding is relevant for the development of advanced protocols to leverage the NV's complete spin, charge, and optical dynamics for quantum control and sensing applications.

  7. All-Optical Formation of Coherent Dark States of Silicon-Vacancy Spins in Diamond

    Science.gov (United States)

    Pingault, Benjamin; Becker, Jonas N.; Schulte, Carsten H. H.; Arend, Carsten; Hepp, Christian; Godde, Tillmann; Tartakovskii, Alexander I.; Markham, Matthew; Becher, Christoph; Atatüre, Mete

    2014-12-01

    Spin impurities in diamond can be versatile tools for a wide range of solid-state-based quantum technologies, but finding spin impurities that offer sufficient quality in both photonic and spin properties remains a challenge for this pursuit. The silicon-vacancy center has recently attracted much interest because of its spin-accessible optical transitions and the quality of its optical spectrum. Complementing these properties, spin coherence is essential for the suitability of this center as a spin-photon quantum interface. Here, we report all-optical generation of coherent superpositions of spin states in the ground state of a negatively charged silicon-vacancy center using coherent population trapping. Our measurements reveal a characteristic spin coherence time, T2* , exceeding 45 nanoseconds at 4 K. We further investigate the role of phonon-mediated coupling between orbital states as a source of irreversible decoherence. Our results indicate the feasibility of all-optical coherent control of silicon-vacancy spins using ultrafast laser pulses.

  8. Industrial diamond

    Science.gov (United States)

    Olson, D.W.

    2013-01-01

    Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.

  9. Evaluation of subsurface damage in GaN substrate induced by mechanical polishing with diamond abrasives

    Energy Technology Data Exchange (ETDEWEB)

    Aida, Hideo, E-mail: h-aida@namiki.net [NJC Institute of Technology, Namiki Precision Jewel Co., Ltd., 3-8-22 Shinden, Adachi, Tokyo 123-8511 (Japan); KASTEC, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan); Takeda, Hidetoshi; Kim, Seong-Woo; Aota, Natsuko; Koyama, Koji [NJC Institute of Technology, Namiki Precision Jewel Co., Ltd., 3-8-22 Shinden, Adachi, Tokyo 123-8511 (Japan); Yamazaki, Tsutomu; Doi, Toshiro [KASTEC, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2014-02-15

    The relationship between the depth of the subsurface damage (SSD) and the size of the diamond abrasive used for mechanical polishing (MP) of GaN substrates was investigated in detail. GaN is categorized as a hard, brittle material, and material removal in MP proceeds principally to the fracture of GaN crystals. Atomic force microscopy and cathodoluminescence imaging revealed that the mechanical processing generated surface scratches and SSD. The SSD depth reduced as the diamond abrasive size reduced. A comparison of the relationship between the SSD depth and the diamond abrasive size used in the MP of GaN with the same relationship for typical brittle materials such as glass substrates suggests that the MP of GaN substrates proceeds via the same mechanism as glass.

  10. Investigation of chemical vapour deposition diamond detectors by X- ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    CERN Document Server

    Olivero, P; Vittone, E; Fizzotti, F; Paolini, C; Lo Giudice, A; Barrett, R; Tucoulou, R

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the Large Hadron Collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of "detector grade" artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro- beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitati...

  11. Oxygen fugacities determined from iron oxidation state in natural (Mg,Fe)O ferropericlase: new insights into lower mantle diamond formation

    Science.gov (United States)

    Longo, Micaela; McCammon, Catherine; Bulanova, Galina; Kaminsky, Felix; Tappert, Ralf

    2010-05-01

    Mineral inclusions in diamonds reflect the chemical composition and mineral assemblages of the two principal rock types occurring in the deep lithosphere, peridotite and eclogite. However, in the past two decades, the discovery of rare diamonds containing inclusions such as former Mg,Si-perovskite and (Mg,Fe)O ferropericlase led to the possibility that diamonds can form also at greater depths. (Mg,Fe)O ferropericlase is the most commonly found inclusion in lower mantle diamonds (more than 50% of the occurrences). Since the Fe3+ concentration in (Mg,Fe)O is sensitive to oxygen fugacity also at high pressures (Frost et al., 2004), the determination of Fe3+/Σ Fe in such inclusions provides a direct method for investigating lower mantle redox conditions during diamond formation. In the present study we explore whether variations in mantle oxygen fugacity exist as a function of chemical, physical and geographic parameters, by studying (Mg,Fe)O inclusions in lower mantle diamonds from a wide range of localities. Eighteen (Mg,Fe)O ferropericlase inclusions from lower mantle diamonds selected worldwide were measured by the flank method using the calibration previously established for synthetic ferropericlase (Longo et al., in preparation). The Fe3+/Σ Fe measured in (Mg,Fe)O inclusions of the present work (Juina, Brazil, Machado River, Brazil and Orroroo, Australia) were compared to data already available for other inclusions of larger size previously measured by Mössbauer spectroscopy (McCammon et al. 1997, 2004). Oxygen fugacity was estimated for each specimen relative to two reference buffers such as the Fe-(Mg,Fe)O buffer (reducing conditions) and the Re-ReO2 buffer (oxidizing conditions). Our results show a dependence on geographical location, and in particular, inclusions from the African province (Kankan Guinea) seem to record more reducing mantle conditions than the inclusions measured from the other provinces, which cover a larger range of fO2 conditions. It is

  12. Oxygen fugacity determined from iron oxidation state in natural (Mg,Fe)O ferropericlase: new insights for lower mantle diamond formation

    Science.gov (United States)

    Longo, M.; McCammon, C.; Bulanova, G.; Kaminsky, F. V.; Tappert, R.

    2009-12-01

    The most common mineral found in diamonds originating in the lower mantle is (Mg,Fe)O ferropericlase (more than 50 percent of occurrences). Since it is well known that the Fe3+ concentration in (Mg,Fe)O is sensitive to oxygen fugacity, even at high pressures, the determination of Fe3+ over Fe total in such inclusions provides a direct method for investigating lower mantle redox conditions during diamond formation. Therefore, the goal of this study is to measure Fe3+ using a new method, namely the flank method (EMPA) in (Mg,Fe)O lower mantle diamond inclusions from a wide range of sites worldwide in order to explore the variation of oxygen fugacity with chemical, physical and geographic parameters. Eighteen (Mg,Fe)O ferropericlase inclusions from ultra deep diamonds selected worldwide (four from Juina area, Brazil, two from Machado River, Brazil, and twelve from Ororoo, Australia) were analyzed by the flank method. Inclusions were all less than 50 microns in size. Our results follow the theoretical trend described by the synthetic samples, confirming high phase homogeneity for most of the samples. Flank method measurements show a large range of redox conditions for (Mg,Fe)O inclusions, with a Fe3+ over Fe total ratio varying between 1 and 15 percent, similar to results for a suite of much larger diameter inclusions that were studied using Mössbauer spectroscopy. Inclusions recovered from the same host diamond show a strong redox gradient, which leads to the conclusion of varying oxygen fugacity conditions involved in the formation of the inclusions. These observations combined with the geographical correlation observed among all inclusions measured in the present work and from previous studies in literature leads to the suggestion of other mechanisms than subducted slabs being involved in diamond formation. In order to provide insights on the mechanisms controlling the redox conditions at lower mantle depths and how a heterogeneous oxygen fugacity may affect the

  13. Diamond growth in mantle fluids

    Science.gov (United States)

    Bureau, Hélène; Frost, Daniel J.; Bolfan-Casanova, Nathalie; Leroy, Clémence; Esteve, Imène; Cordier, Patrick

    2016-11-01

    In the upper mantle, diamonds can potentially grow from various forms of media (solid, gas, fluid) with a range of compositions (e.g. graphite, C-O-H fluids, silicate or carbonate melts). Inclusions trapped in diamonds are one of the few diagnostic tools that can constrain diamond growth conditions in the Earth's mantle. In this study, inclusion-bearing diamonds have been synthesized to understand the growth conditions of natural diamonds in the upper mantle. Diamonds containing syngenetic inclusions were synthesized in multi-anvil presses employing starting mixtures of carbonates, and silicate compositions in the presence of pure water and saline fluids (H2O-NaCl). Experiments were performed at conditions compatible with the Earth's geotherm (7 GPa, 1300-1400 °C). Results show that within the timescale of the experiments (6 to 30 h) diamond growth occurs if water and carbonates are present in the fluid phase. Water promotes faster diamond growth (up to 14 mm/year at 1400 °C, 7 GPa, 10 g/l NaCl), which is favorable to the inclusion trapping process. At 7 GPa, temperature and fluid composition are the main factors controlling diamond growth. In these experiments, diamonds grew in the presence of two fluids: an aqueous fluid and a hydrous silicate melt. The carbon source for diamond growth must be carbonate (CO32) dissolved in the melt or carbon dioxide species in the aqueous fluid (CO2aq). The presence of NaCl affects the growth kinetics but is not a prerequisite for inclusion-bearing diamond formation. The presence of small discrete or isolated volumes of water-rich fluids is necessary to grow inclusion-bearing peridotitic, eclogitic, fibrous, cloudy and coated diamonds, and may also be involved in the growth of ultradeep, ultrahigh-pressure metamorphic diamonds.

  14. Formation of Boron-Carbon Nanosheets and Bilayers in Boron-Doped Diamond: Origin of Metallicity and Superconductivity

    National Research Council Canada - National Science Library

    Polyakov, S N; Denisov, V N; Mavrin, B N; Kirichenko, A N; Kuznetsov, M S; Martyushov, S Yu; Terentiev, S A; Blank, V D

    2016-01-01

    The insufficient data on a structure of the boron-doped diamond (BDD) has frustrated efforts to fully understand the fascinating electronic properties of this material and how they evolve with doping...

  15. Experimental study of diamond resorption during mantle metasomatism

    Science.gov (United States)

    Fedorchuk, Yana; Schmidt, Max W.; Liebske, Christian

    2014-05-01

    Many of kimberlite-derived diamonds are partially dissolved to various degree but show similar resorption style. This resorption style has been observed in experiments with aqueous fluid at the conditions corresponding to kimberlite emplacement (1-2 GPa). At the same time, each diamond population has more than ten percent of diamond crystals with several drastically different resorption styles, which have not been observed in experiments, and may represent partial dissolution of diamonds during metasomatism in different mantle domains. Metasomatic processes modify the composition of subcratonic mantle, may trigger the formation of kimberlite magma, and result in the growth and partial dissolution of diamonds. Composition of metasomatic agents as constrained from studies of the reaction rims on mantle minerals (garnet, clinopyroxene) and experimental studies vary between carbonatitic melt, aqueous silicate melt, and CHO fluid. However, complex chemical pattern of mantle minerals and estimates of redox regime in subcratonic mantle allow different interpretations. Here we explore diamond dissolution morphology as an indicator of the composition of mantle metasomatic agents. Towards this end we examine diamond dissolution morphologies developed in experiments at the conditions of mantle metasomatism in different reacting media and compare them to the mantle-derived dissolution features of natural diamonds. The experiments were conducted in multi-anvil (Walker-Type) apparatus at 6 GPa and 1200-1500oC. Dissolution morphology of natural octahedral diamond crystals (0.5 mg) was examined in various compositions in synthetic system MgO-CaO- SiO2-CO2-H2O. The runs had the following phases present: solid crystals with fluid (various ratio of H2O-CO2-SiO2, and in the air), carbonate melt, carbonate-silicate melt, and carbonate melt with CHO fluid. Experiments produced three different styles of diamond resorption. In the presence of a fluid phase with variable proportions of H2O

  16. In situ x-ray observations of the diamond formation process in the C-H sub 2 O-MgO system

    CERN Document Server

    Okada, T; Shimomura, O

    2002-01-01

    The diamond formation process in aqueous fluid catalyst under high-pressure and high-temperature conditions has been observed for the first time. Quench experiments and in situ x-ray diffraction experiments using synchrotron radiation have been performed upon a mixture of brucite (Mg(OH) sub 2) and graphite as the starting material. It was confirmed that brucite decomposed into periclase and H sub 2 O at 3.6 GPa and 1050 deg. C while its complete melting occurred at 6.2 GPa and 1150 deg. C, indicating that the solubility of MgO in H sub 2 O greatly increases with increasing pressure. The conversion of carbon from its graphite to its diamond form in aqueous fluid was observed at 7.7 GPa and 1835 deg. C.

  17. Phase Transformation and Enhancing Electron Field Emission Properties in Microcrystalline Diamond Films Induced by Cu Ion Implantation and Rapid Annealing

    Institute of Scientific and Technical Information of China (English)

    Yan-Yan Shen; Yi-Xin Zhang; Ting Qi; Yu Qiao; Yu-Xin Jia; Hong-Jun Hei; Zhi-Yong He

    2016-01-01

    Cu ion implantation and subsequent rapid annealing at 500℃ in N2 result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm2 V-1 S-1 for microcrystalline diamond (MCD) films.Its electrical field emission behavior can be turned on at Eo =2.6 V/μm,attaining a current density of 19.5μA/cm2 at an applied field of 3.5 V/μm.Field emission scanning electron microscopy combined with Raman and x-ray photoelectron microscopy reveal that the formation of Cu nanoparticles in MCD films can catalytically convert the less conducting disorder/a-C phases into graphitic phases and can provoke the formation of nanographite in the films,forming conduction channels for electron transportation.

  18. Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination

    Energy Technology Data Exchange (ETDEWEB)

    Dumeige, Y.; Treussart, F. E-mail: francois.treussart@physique.ens-cachan.fr; Alleaume, R.; Gacoin, T.; Roch, J.-F.; Grangier, P

    2004-08-01

    Diamond nanocrystals deposited on a dielectric mirror at the focus of a microscope objective have been illuminated by femtosecond laser pulses. We have observed the photo-creation of color centers, under peak power corresponding to an intensity of about 50 GW/cm{sup 2}. In a nanocrystal initially containing a single Nitrogen Vacancy (NV) center, femtosecond illumination resulted in the transformation of this center into another one with different spectral features. These features are tentatively attributed to the neutral form NV{sup 0}. This irreversible transformation goes together with the photocreation of other unstable color centers at the laser focus. Such behavior under femtosecond laser illumination place some limitations on the use of sub-picosecond pulses to trigger single photon emission from a single NV center in diamond nanocrystal.

  19. Superconductivity in repulsively interacting fermions on a diamond chain: Flat-band-induced pairing

    Science.gov (United States)

    Kobayashi, Keita; Okumura, Masahiko; Yamada, Susumu; Machida, Masahiko; Aoki, Hideo

    2016-12-01

    To explore whether a flat-band system can accommodate superconductivity, we consider repulsively interacting fermions on the diamond chain, a simplest possible quasi-one-dimensional system that contains a flat band. Exact diagonalization and the density-matrix renormalization group are used to show that we have a significant binding energy of a Cooper pair with a long-tailed pair-pair correlation in real space when the total band filling is slightly below 1/3, where a filled dispersive band interacts with the flat band that is empty but close to EF. Pairs selectively formed across the outer sites of the diamond chain are responsible for the pairing correlation. At exactly 1/3-filling an insulating phase emerges, where the entanglement spectrum indicates the particles on the outer sites are highly entangled and topological. These come from a peculiarity of the flat band in which "Wannier orbits" are not orthogonalizable.

  20. Diamond-Blackfan anemia and nutritional deficiency-induced anemia in children.

    Science.gov (United States)

    Gelbart, David

    2014-04-01

    Diamond-Blackfan anemia is a rare, inherited disease that characteristically presents as a chronic, normochromic macrocytosis due to red cell lineage bone marrow failure. Although studies are elaborating on the genetic basis for its associated comorbidities, little has been published comparing this anemia to other chronic anemias that have similar laboratory results in children. This article offers a global perspective of the disease and compares it with anemia due to vitamin B12 and folate deficiency in children.

  1. Superconductivity in CVD diamond films.

    Science.gov (United States)

    Takano, Yoshihiko

    2009-06-24

    A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.

  2. Broadband Visible Light Induced NO Formation

    Science.gov (United States)

    Lubart, Rachel; Eichler, Maor; Friedmann, Harry; Savion, N.; Breitbart, Haim; Ankri, Rinat

    2009-06-01

    Nitric oxide formation is a potential mechanism for photobiomodulation because it is synthesized in cells by nitric oxide synthase (NOS), which contains both flavin and heme, and thus absorbs visible light. The purpose of this work was to study broadband visible light induced NO formation in various cells. Cardiac, endothelial, sperm cells and RAW 264.7 macrophages were illuminated with broadband visible light, 40-130 mW/cm2, 2.4-39 J/cm2, and nitric oxide production was quantified by using the Griess reagent. The results showed that visible light illumination increased NO concentration both in sperm and endothelial cells, but not in cardiac cells. Activation of RAW 264.7 macrophages was very small. It thus appears that NO is involved in photobiomodulation, though different light parameters and illumination protocols are needed to induce NO in various cells.

  3. Ferromagnetic-resonance induced electromotive forces in Ni81Fe19 | p-type diamond

    Science.gov (United States)

    Fukui, Naoki; Morishita, Hiroki; Kobayashi, Satoshi; Miwa, Shinji; Mizuochi, Norikazu; Suzuki, Yoshishige

    2016-10-01

    We report on direct-current (DC) electromotive forces (emfs) in a nickel-iron alloy (Ni81 Fe19) | p-type diamond under the ferromagnetic resonance of the Ni81Fe19 layer at room temperature. The observed DC emfs take its maximum around the ferromagnetic resonant frequency of the Ni81Fe19, and their signs are reversed by reversing the direction of an externally-applied magnetic field; it shows that the observed DC emfs are spin-related emfs.

  4. Diamond single crystal-surface modification under high- fluence ion irradiation

    Science.gov (United States)

    Anikin, V. A.; Borisov, A. M.; Kazakov, V. A.; Mashkova, E. S.; Palyanov, Yu N.; Popov, V. P.; Shmytkova, E. A.; Sigalaev, S. K.

    2016-09-01

    The modification of (111) face of synthetic diamond has been studied experimentally for high-fluence 30 keV argon bombardment. It has been found that ion irradiation leads to the electrically conductive layer formation the sheet resistance of which decreases more than 100 times while changing the temperature of the irradiated diamond from 70 to 400 oC. This effect, as well as significant changes of optical transmittance after ion irradiation are associated with ion-induced structural changes of irradiated diamond obtained by the methods of Raman spectroscopy.

  5. Phase control of electromagnetically induced acoustic wave transparency in a diamond nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Evangelou, Sofia, E-mail: Evangelousof@gmail.com

    2017-05-10

    Highlights: • A high-Q single-crystal diamond nanomechanical resonator embedded with nitrogen-vacancy (NV) centers is studied. • A Δ-type coupling configuration is formed. • The spin states of the ground state triplet of the NV centers interact with a strain field and two microwave fields. • The absorption and dispersion properties of the acoustic wave field are controlled by the use of the relative phase of the fields. • Phase-dependent acoustic wave absorption, transparency, and gain are obtained. • “Slow sound” and negative group velocities are also possible. - Abstract: We consider a high-Q single-crystal diamond nanomechanical resonator embedded with nitrogen-vacancy (NV) centers. We study the interaction of the transitions of the spin states of the ground state triplet of the NV centers with a strain field and two microwave fields in a Δ-type coupling configuration. We use the relative phase of the fields for the control of the absorption and dispersion properties of the acoustic wave field. Specifically, we show that by changing the relative phase of the fields, the acoustic field may exhibit absorption, transparency, gain and very interesting dispersive properties.

  6. In situ study of annealing-induced strain relaxation in diamond nanoparticles using Bragg coherent diffraction imaging

    Directory of Open Access Journals (Sweden)

    S. O. Hruszkewycz

    2017-02-01

    Full Text Available We observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strain-sensitive images as a function of time/temperature. Up to temperatures of 800 °C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8×10−4 were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 °C that are consistent with graphitization of the surface, a result verified with ensemble Raman measurements.

  7. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2013-05-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  8. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2012-11-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon-oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by acids generated by the photo-ionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  9. Diamond Nanophotonics

    CERN Document Server

    Aharonovich, Igor

    2014-01-01

    The burgeoning field of nanophotonics has grown to be a major research area, primarily because of the ability to control and manipulate single quantum systems (emitters) and single photons on demand. For many years studying nanophotonic phenomena was limited to traditional semiconductors (including silicon and GaAs) and experiments were carried out predominantly at cryogenic temperatures. In the last decade, however, diamond has emerged as a new contender to study photonic phenomena at the nanoscale. Offering plethora of quantum emitters that are optically active at room temperature and ambient conditions, diamond has been exploited to demonstrate super-resolution microscopy and realize entanglement, Purcell enhancement and other quantum and classical nanophotonic effects. Elucidating the importance of diamond as a material, this review will highlight the recent achievements in the field of diamond nanophotonics, and convey a roadmap for future experiments and technological advancements.

  10. Electron-beam induced diamond-like-carbon passivation of plasmonic devices

    Science.gov (United States)

    Balaur, Eugeniu; Sadatnajafi, Catherine; Langley, Daniel; Lin, Jiao; Kou, Shan Shan; Abbey, Brian

    2015-12-01

    Engineered materials with feature sizes on the order of a few nanometres offer the potential for producing metamaterials with properties which may differ significantly from their bulk counterpart. Here we describe the production of plasmonic colour filters using periodic arrays of nanoscale cross shaped apertures fabricated in optically opaque silver films. Due to its relatively low loss in the visible and near infrared range, silver is a popular choice for plasmonic devices, however it is also unstable in wet or even ambient conditions. Here we show that ultra-thin layers of Diamond-Like Carbon (DLC) can be used to prevent degradation due to oxidative stress, ageing and corrosion. We demonstrate that DLC effectively protects the sub-micron features which make up the plasmonic colour filter under both atmospheric conditions and accelerated aging using iodine gas. Through a systematic study we confirm that the nanometre thick DLC layers have no effect on the device functionality or performance.

  11. CO{sub 2} laser-induced plasma CVD synthesis of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Konov, V.I.; Prokhorov, A.M.; Uglov, S.A.; Bolshakov, A.P.; Leontiev, I.A. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Obshchej Fiziki; Dausinger, F.; Huegel, H.; Angstenberger, B. [Institute of High Power Beam Technology (IFSW), Stuttgart University, Pfaffenwaldring 43, D-70569 Stuttgart (Germany); Sepold, G.; Metev, S. [Bremen Institute of Applied Beam Technology, D-28800 Bremen 33, Klagenfurter Str. 2 (Germany)

    1998-05-01

    A novel technique for CVD synthesis of materials that does not demand a vacuum chamber and provides high deposition rates has been developed. It is based on CO{sub 2} laser maintenance of a stationary optical discharge in a gas stream, exhausting over a substrate into the air (laser plasmatron). Nano- and polycrystalline-diamond films were deposited on tungsten substrates from atmospheric-pressure Xe(Ar):H{sub 2}:CH{sub 4} gas mixtures at flow rates of 2 l/min. A 2.5-kW CO{sub 2} laser focused beam produced plasma. The deposition area was about 1 cm{sup 2} and growth rates were up to 30-50 {mu}m/h. Peculiarities and advantages of laser plasmatrons are discussed. (orig.) With 4 figs., 4 refs.

  12. Nanodot formation induced by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Abere, M. J.; Kang, M.; Goldman, R. S.; Yalisove, S. M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, C. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Rittman, D. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Phillips, J. D. [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, B. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-10-20

    The femtosecond laser generation of ZnSe nanoscale features on ZnSe surfaces was studied. Irradiation with multiple exposures produces 10–100 nm agglomerations of nanocrystalline ZnSe while retaining the original single crystal structure of the underlying material. The structure of these nanodots was verified using a combination of scanning transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The nanodots continue to grow hours after irradiation through a combination of bulk and surface diffusion. We suggest that in nanodot formation the result of ultrafast laser induced point defect formation is more than an order of magnitude below the ZnSe ultrafast melt threshold fluence. This unique mechanism of point defect injection will be discussed.

  13. Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111)

    Science.gov (United States)

    Ozawa, Hayato; Tahara, Kosuke; Ishiwata, Hitoshi; Hatano, Mutsuko; Iwasaki, Takayuki

    2017-04-01

    Selectively aligning a nitrogen-vacancy (NV) ensemble in diamond is an important technique for obtaining a high-sensitivity magnetic sensor. Nitrogen-doped diamonds were grown on (111) substrates by microwave plasma chemical vapor deposition to perform the selective alignment of high-density NV ensembles, yielding perfectly aligned NV ensembles along the [111] direction with a density greater than 1016 cm‑3 and a spin relaxation time of 2 µs. Such alignment results in a high signal contrast with an optical magnetic resonance close to the typical value reported with an isolated NV center. These results indicate the possibility of achieving a high sensitivity through the selective alignment of NV ensembles.

  14. Shengli Diamond Bits

    Institute of Scientific and Technical Information of China (English)

    Yang Yukun; Han Tao

    1995-01-01

    @@ The geologic condition of Shengli Oilfield (SLOF)is complicated and the range of the rock drillability is wide. For more than 20 years,Shengli Drilling Technology Research Institute, in view of the formation conditions of SLOF,has done a lot of effort and obtained many achivements in design,manufacturing technology and field service. Up to now ,the institute has developed several ten kinds of diamond bits applicable for drilling and coring in formations from extremely soft to hard.

  15. Optimization of black diamond films for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, Alessandro; Calvani, Paolo; Girolami, Marco [CNR-ISM—Montelibretti Sect., Via Salaria km 29.300, Monterotondo Scalo, 00015 Roma (Italy); Orlando, Stefano [CNR-ISM—Tito Scalo Sect., Zona Industriale, 85050 Tito Scalo, PZ (Italy); Polini, Riccardo [CNR-ISM—Montelibretti Sect., Via Salaria km 29.300, Monterotondo Scalo, 00015 Roma (Italy); Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Trucchi, Daniele M., E-mail: daniele.trucchi@ism.cnr.it [CNR-ISM—Montelibretti Sect., Via Salaria km 29.300, Monterotondo Scalo, 00015 Roma (Italy)

    2016-09-01

    Highlights: • Black diamond films were developed by fs-laser subwavelength surface texturing. • Black diamond films can be used as photon-enhanced thermionic emission devices. • A simple method for developing a 2D periodic surface texturing is proposed. • Although not perfectly regular, the 2D texturing induced a 98% solar absorptance. • The 2D texturing enhances the photoelectronic capability of black diamond films. - Abstract: Black diamond, namely a surface textured diamond film able to absorb efficiently the sunlight, is developed by the use of ultrashort pulse laser treatments. With the aim of fabricating a 2D periodic surface structure, a double-step texturing process is implemented and compared to the single-step one, able to induce the formation of 1D periodic structures. Although the obtained sub-microstructure does not show a regular 2D periodicity, a solar absorptance of about 98% is achieved as well as a quantum efficiency enhanced of one order of magnitude with respect to the 1D periodic surface texturing.

  16. Rescuing loading induced bone formation at senescence.

    Directory of Open Access Journals (Sweden)

    Sundar Srinivasan

    Full Text Available The increasing incidence of osteoporosis worldwide requires anabolic treatments that are safe, effective, and, critically, inexpensive given the prevailing overburdened health care systems. While vigorous skeletal loading is anabolic and holds promise, deficits in mechanotransduction accrued with age markedly diminish the efficacy of readily complied, exercise-based strategies to combat osteoporosis in the elderly. Our approach to explore and counteract these age-related deficits was guided by cellular signaling patterns across hierarchical scales and by the insight that cell responses initiated during transient, rare events hold potential to exert high-fidelity control over temporally and spatially distant tissue adaptation. Here, we present an agent-based model of real-time Ca(2+/NFAT signaling amongst bone cells that fully described periosteal bone formation induced by a wide variety of loading stimuli in young and aged animals. The model predicted age-related pathway alterations underlying the diminished bone formation at senescence, and hence identified critical deficits that were promising targets for therapy. Based upon model predictions, we implemented an in vivo intervention and show for the first time that supplementing mechanical stimuli with low-dose Cyclosporin A can completely rescue loading induced bone formation in the senescent skeleton. These pre-clinical data provide the rationale to consider this approved pharmaceutical alongside mild physical exercise as an inexpensive, yet potent therapy to augment bone mass in the elderly. Our analyses suggested that real-time cellular signaling strongly influences downstream bone adaptation to mechanical stimuli, and quantification of these otherwise inaccessible, transient events in silico yielded a novel intervention with clinical potential.

  17. Quantifying strain birefringence halos around inclusions in diamond

    Science.gov (United States)

    Howell, D.; Wood, I. G.; Dobson, D. P.; Jones, A. P.; Nasdala, L.; Harris, J. W.

    2010-11-01

    The pressure and temperature conditions of formation of natural diamond can be estimated by measuring the residual stress that an inclusion remains under within a diamond. Raman spectroscopy has been the most commonly used technique for determining this stress by utilising pressure-sensitive peak shifts in the Raman spectrum of both the inclusion and the diamond host. Here, we present a new approach to measure the residual stress using quantitative analysis of the birefringence induced in the diamond. As the analysis of stress-induced birefringence is very different from that of normal birefringence, an analytical model is developed that relates the spherical inclusion size, R i, host diamond thickness, L, and measured value of birefringence at the edge of the inclusion, Updelta n(R_{text{i}} )_{text{av}} , to the peak value of birefringence that has been encountered; to first order Updelta n_{text{pk}} = (3/4)(L/R_{text{i}} ) Updelta n(R_{text{i}} )_{text{av}} . From this birefringence, the remnant pressure ( P i) can be calculated using the photoelastic relationship Updelta n_{text{pk}} = - (3/4)n3 q_{text{iso}} P_{text{i}} , where q iso is a piezo-optical coefficient, which can be assumed to be independent of crystallographic orientation, and n is the refractive index of the diamond. This model has been used in combination with quantitative birefringence analysis with a MetriPol system and compared to the results from both Raman point and 2D mapping analysis for a garnet inclusion in a diamond from the Udachnaya mine (Russia) and coesite inclusions in a diamond from the Finsch mine (South Africa). The birefringence model and analysis gave a remnant pressure of 0.53 ± 0.01 GPa for the garnet inclusion, from which a source pressure was calculated as 5.7 GPa at 1,175°C (temperature obtained from IR analysis of the diamond host). The Raman techniques could not be applied quantitatively to this sample to support the birefringence model; they were, however, applied

  18. REVISITING JOVIAN-RESONANCE INDUCED CHONDRULE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, M. [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Tanaka, K. K.; Tanaka, H. [Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819 (Japan); Nakamoto, T. [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Miura, H. [Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya 467-8501 (Japan); Yamamoto, T., E-mail: nagasawa.m.ad@m.titech.ac.jp [Center for Planetary Science, Kobe University, 7-1-48 Minamimachi, Minatojima, Chuo-ku, Kobe 650-0047 (Japan)

    2014-10-10

    It is proposed that planetesimals perturbed by Jovian mean-motion resonances are the source of shock waves that form chondrules. It is considered that this shock-induced chondrule formation requires the velocity of the planetesimal relative to the gas disk to be on the order of ≳ 7 km s{sup –1} at 1 AU. In previous studies on planetesimal excitation, the effects of Jovian mean-motion resonance together with the gas drag were investigated, but the velocities obtained were at most 8 km s{sup –1} in the asteroid belt, which is insufficient to account for the ubiquitous existence of chondrules. In this paper, we reexamine the effect of Jovian resonances and take into account the secular resonance in the asteroid belt caused by the gravity of the gas disk. We find that the velocities relative to the gas disk of planetesimals a few hundred kilometers in size exceed 12 km s{sup –1}, and that this is achieved around the 3:1 mean-motion resonance. The heating region is restricted to a relatively narrowband between 1.5 AU and 3.5 AU. Our results suggest that chondrules were produced effectively in the asteroid region after Jovian formation. We also find that many planetesimals are scattered far beyond Neptune. Our findings can explain the presence of crystalline silicate in comets if the scattered planetesimals include silicate dust processed by shock heating.

  19. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    Science.gov (United States)

    Abraham, J. B. S.; Aguirre, B. A.; Pacheco, J. L.; Vizkelethy, G.; Bielejec, E.

    2016-08-01

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. The ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantation process.

  20. Photo induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single shot charge state detection

    CERN Document Server

    Aslam, N; Neumann, P; Jelezko, F; Wrachtrup, J

    2012-01-01

    The nitrogen-vacancy centre (NV) has drawn much attention for over a decade, yet detailed knowledge of the photophysics needs to be established. Under typical conditions, the NV can have two stable charge states, negative (NV-) or neutral (NV0), with photo induced interconversion of these two states. Here, we present detailed studies of the ionization dynamics of single NV centres in bulk diamond at room temperature during illumination in dependence of the excitation wavelength and power. We apply a recent method which allows us to directly measure the charge state of a single NV centre, and observe its temporal evolution. Results of this work are the steady state NV- population, which was found to be always < 75% for 450 to 610 nm excitation wavelength, the relative absorption cross-section of NV- for 540 to 610 nm, and the energy of the NV- ground state of 2.6 eV below the conduction band. These results will help to further understand the photo-physics of the NV centre.

  1. Dysregulation of the Transforming Growth Factor β Pathway in Induced Pluripotent Stem Cells Generated from Patients with Diamond Blackfan Anemia.

    Directory of Open Access Journals (Sweden)

    Jingping Ge

    Full Text Available Diamond Blackfan Anemia (DBA is an inherited bone marrow failure syndrome with clinical features of red cell aplasia and variable developmental abnormalities. Most affected patients have heterozygous loss of function mutations in ribosomal protein genes but the pathogenic mechanism is still unknown. We generated induced pluripotent stem cells from DBA patients carrying RPS19 or RPL5 mutations. Transcriptome analysis revealed the striking dysregulation of the transforming growth factor β (TGFβ signaling pathway in DBA lines. Expression of TGFβ target genes, such as TGFBI, BAMBI, COL3A1 and SERPINE1 was significantly increased in the DBA iPSCs. We quantified intermediates in canonical and non-canonical TGFβ pathways and observed a significant increase in the levels of the non-canonical pathway mediator p-JNK in the DBA iPSCs. Moreover, when the mutant cells were corrected by ectopic expression of WT RPS19 or RPL5, levels of p-JNK returned to normal. Surprisingly, nuclear levels of SMAD4, a mediator of canonical TGFβ signaling, were decreased in DBA cells due to increased proteolytic turnover. We also observed the up-regulation of TGFβ1R, TGFβ2, CDKN1A and SERPINE1 mRNA, and the significant decrease of GATA1 mRNA in the primitive multilineage progenitors. In summary our observations identify for the first time a dysregulation of the TGFβ pathway in the pathobiology of DBA.

  2. Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon

    Energy Technology Data Exchange (ETDEWEB)

    SOKOLOWSKI-TINTEN,K.; VON DER LINDE,D.; SIEGAL,MICHAEL P.; OVERMYER,DONALD L.

    2000-02-07

    Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration.

  3. Biofunctionalization of diamond microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Reitinger, Andreas Adam; Lud, Simon Quartus; Stutzmann, Martin; Garrido, Jose Antonio [Walter Schottky Institut, TU Muenchen (Germany); Hutter, Naima Aurelia; Richter, Gerhard; Jordan, Rainer [WACKER-Chair of Macromolecular Chemistry, TU Muenchen (Germany)

    2010-07-01

    In this work we present two main routes for the biofunctionalization of nanocrystalline diamond films, aiming at the application of diamond microelectrodes as amperometric biosensors. We report on direct covalent grafting of biomolecules on nanocrystalline diamond films via diazonium monophenyls and biphenyls as well as other linker molecules, forming self-assembled monolayers on the diamond surface. Monolayers with different functional head groups have been characterized. Patterning of the available functional groups using electron beam-induced chemical lithography allows the selective preparation of well-localized docking sites for the immobilization of biomolecules. Furthermore, polymer brushes are expected to enable novel paths for designing more advanced biosensing schemes, incorporating multifunctional groups and a higher loading capacity for biomolecules. Here, we focus on the preparation of polymer grafts by self-initiated photografting and photopolymerization. Further chemical modification of the grafted polymer brushes results in the introduction of additional functional molecules, paving the way for the incorporation of more complex molecular structures such as proteins. In a comparative study we investigate the advantages and disadvantages of both approaches.

  4. Genetic Types of Diamond Mineralization

    Institute of Scientific and Technical Information of China (English)

    A.A.MARAKUSHEV; 桑隆康; 等

    1998-01-01

    The paper describes the proposed models of diamond formation both in meteorites and in kimberlite and lamproite bodies.metamorphic complexes and explosive-ring structures ("astroblemes"),The diamond distribution in meteorites(chondrites,iron meteorites and ureilites)is restricted to taente-kamasite phase.The diamond generation here is tied up with the first stage of evolution of the planets,This stage is characterized by high pressure of hydrogen. leading to the formation of the planet envelope,The second stage of planet evolution began with the progressive imopoverishment of their atmospheres in hydrogen due to its predominant emission into the space and to progressive development of oxidative conditions.The model appears to have proved the relict nature of diamond mineraolization in meteorites.Diamond and other high-pressure minerals(its"satellites") were crystallized without any exception in the early intratelluric stages of peridotite and eclogite-pyroxenite magma evolution just before the magma intrusion into the higher levels of the mantle and crust where diamond is not thermodynamically stable,The ultramafic intrusive bodies(bearing rich relict diamonds)in the dase of a platform paaear to be the substrata for the formation of kimberlite-lamproite magma chambers as a result of magmatic replacement.The model explains the polyfacial nature of diamondiferous eclotgites,pyroxenites and peridotites and discusses the process of inheritance of their diamond mineralization by kimberlites and lamproites.Dimond oproductivity of metamorthic complexes is originated by the inheritance of their diamonds from the above-mentioned primary diamondiferous rocks.Large diamondiferous explosive-ring structures were formed by high-energy endogenic explosion of fluid which came from the Earth's core.This high energy differs endogenic impactogenesis from explosive volcanism.It proceeds at very high temperature to create diaplectic galsses(monomineral pseudomorphs)-the product of

  5. High collection efficiency CVD diamond alpha detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bergonzo, P.; Foulon, F.; Marshall, R.D.; Jany, C.; Brambilla, A. [CEA/Saclay, Gif-sur-Yvette (France); McKeag, R.D.; Jackman, R.B. [University College London (United Kingdom). Electronic and Electrical Engineering Dept.

    1998-06-01

    Advances in Chemical Vapor Deposited (CVD) diamond have enabled the routine use of this material for sensor device fabrication, allowing exploitation of its unique combination of physical properties (low temperature susceptibility (> 500 C), high resistance to radiation damage (> 100 Mrad) and to corrosive media). A consequence of CVD diamond growth on silicon is the formation of polycrystalline films which has a profound influence on the physical and electronic properties with respect to those measured on monocrystalline diamond. The authors report the optimization of physical and geometrical device parameters for radiation detection in the counting mode. Sandwich and co-planar electrode geometries are tested and their performances evaluated with regard to the nature of the field profile and drift distances inherent in such devices. The carrier drift length before trapping was measured under alpha particles and values as high as 40% of the overall film thickness are reported. Further, by optimizing the device geometry, they show that a gain in collection efficiency, defined as the induced charge divided by the deposited charge within the material, can be achieved even though lower bias values are used.

  6. Trace elements in Gem-Quality Diamonds - Origin and evolution of diamond-forming fluid inclusions

    Science.gov (United States)

    Pearson, Graham; Krebs, Mandy; Stachel, Thomas; Woodland, Sarah; Chinn, Ingrid; Kong, Julie

    2017-04-01

    In the same way that melt inclusions in phenocrysts have expanded our idea of melt formation and evolution in basalts, studying fluids trapped in diamonds is providing important new constraints on the nature of diamond-forming fluids. Fibrous and cloudy diamonds trap a high but variable density of fluid inclusions and so have been extensively studied using major and trace element compositions. In contrast, constraining the nature of the diamond-forming fluid for high purity gem-quality diamonds has been restricted by the rarity of available high quality trace element data. This is due to the extremely low concentrations of impurities that gem diamonds contain - often in the ppt range. The recent discovery of fluids in gem diamonds showing similar major element chemistry to fluid-rich diamonds suggest that many diamonds may share a common spectrum of parental fluids. Here we test this idea further. Recent advances in analytical techniques, in particular the development of the "off-line" laser ablation pre-concentration approach, have allowed fully quantitative trace element data to be recovered from "fluid-poor", high quality gem diamonds. We present trace element data for gem diamonds from a variety of locations from Canada, S. Africa and Russia, containing either silicate or sulphide inclusions to examine possible paragenetic or genetic differences between fluids. REE abundance in the "gem" diamonds vary from 0.1 to 0.0001 x chondrite. To a first order, we observe the same spectrum of trace element compositions in the gem diamonds as that seen in fluid-rich "fibrous" diamonds, supporting a common origin for the fluids. REE patterns range from extremely flat (Ce/Yb)n 2.5 to 5 (commonly in sulphide-bearing diamonds) to >70, the latter having significantly greater inter-element HFSE/LILE fractionation. In general, the fluids from the sulphide-bearing diamonds are less REE-enriched than the silicate-bearing diamonds, but the ranges overlap significantly. The very

  7. Nature and genesis of Kalimantan diamonds

    Science.gov (United States)

    Smith, Chris B.; Bulanova, Galina P.; Kohn, Simon C.; Milledge, H. Judith; Hall, Anne E.; Griffin, Brendan J.; Pearson, D. Graham

    2009-11-01

    The origin of alluvial diamonds from the four main diamond mining districts in Kalimantan was studied through characterisation of their properties, and determination of PT and age of formation of representative collections of diamonds from four localities of the island. The diamonds are mostly colourless, yellow or pale brown, shiny surfaced, dodecahedroids, octahedron/dodecahedroids, and more rarely cube combination forms. They are intensively resorbed. They have surface radiation damage and show abrasion features indicative of fluvial transportation and crustal recycling. The diamonds were polished down to expose internal structures and mineral inclusions. The majority of the diamonds are internally homogeneous or have simple octahedral zonation and show plastic deformation. Analysis by Fourier transform infra red spectroscopy of their N content and aggregation characteristics shows that many diamonds are well-aggregated type IaB implying a long-term, mantle residence time and/or high temperatures of formation. Identified inclusion parageneses are 68% peridotitic and 32% eclogitic. The peridotitic inclusions are represented by olivine, chromite, garnet, orthopyroxene and pentlandite. Olivines (Fo 92-93) belong to the dunite-harzburgite paragenesis, with one at Fo 90 identified as lherzolitic. Chromite inclusions with 65-66 wt.% Cr 2O 3 and 4.2 GPa) are consistent with a paleo-heat flow of 38 to 40 mW/m 2 and derivation from 120 to 160 km depth, i.e. subcontinental mantle lithosphere conditions similar to diamonds from African and Yakutian cratonic situations.

  8. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Directory of Open Access Journals (Sweden)

    Vojtěch Kundrát

    2015-04-01

    Full Text Available Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42 substrates using a multi-structured molybdenum (Mo – tungsten (W interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  9. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Energy Technology Data Exchange (ETDEWEB)

    Kundrát, Vojtěch; Sullivan, John; Ye, Haitao, E-mail: h.ye@aston.ac.uk [School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET (United Kingdom); Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin [Miba Coating Group: Teer Coatings Ltd, West-Stone-House, West-Stone, Berry-Hill-Industrial-Estate, WR9 9AS, Droitwich (United Kingdom)

    2015-04-15

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  10. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    In the present study crack formation is investigated on both micro and macro scale using spherical indenter tips. in particular, systems consisting of elastic coatings that are well adhered to elastic-plastic substrates are studied. Depth sensing indentation is used on the micro scale and Rockwell...... indentation on the macro scale. The predominant driving force for coating failure and crack formation during indentation is plastic deformation of the underlying substrate. The aim is to relate the mechanisms creating both delamination and cohesive cracking on both scales with fracture mechanical models...

  11. Diamonds: Exploration, mines and marketing

    Science.gov (United States)

    Read, George H.; Janse, A. J. A. (Bram)

    2009-11-01

    The beauty, value and mystique of exceptional quality diamonds such as the 603 carat Lesotho Promise, recovered from the Letseng Mine in 2006, help to drive a multi-billion dollar diamond exploration, mining and marketing industry that operates in some 45 countries across the globe. Five countries, Botswana, Russia, Canada, South Africa and Angola account for 83% by value and 65% by weight of annual diamond production, which is mainly produced by four major companies, De Beers, Alrosa, Rio Tinto and BHP Billiton (BHPB), which together account for 78% by value and 72% by weight of annual diamond production for 2007. During the last twelve years 16 new diamond mines commenced production and 4 re-opened. In addition, 11 projects are in advanced evaluation and may begin operations within the next five years. Exploration for diamondiferous kimberlites was still energetic up to the last quarter of 2008 with most work carried out in Canada, Angola, Democratic Republic of the Congo (DRC) and Botswana. Many kimberlites were discovered but no new economic deposits were outlined as a result of this work, except for the discovery and possible development of the Bunder project by Rio Tinto in India. Exploration methods have benefitted greatly from improved techniques of high resolution geophysical aerial surveying, new research into the geochemistry of indicator minerals and further insights into the formation of diamonds and the relation to tectonic/structural events in the crust and mantle. Recent trends in diamond marketing indicate that prices for rough diamonds and polished goods were still rising up to the last quarter of 2008 and subsequently abruptly sank in line with the worldwide financial crisis. Most analysts predict that prices will rise again in the long term as the gap between supply and demand will widen because no new economic diamond discoveries have been made recently. The disparity between high rough and polished prices and low share prices of publicly

  12. Primitive helium in diamonds

    Science.gov (United States)

    Ozima, M.; Zashu, S.

    1983-03-01

    He-3/He-4 isotopic ratio analyses of 13 diamond stones from unspecified mines in South Africa yield values ranging from less than 10 to the -7th to 0.00032 + or - 0.000025. The latter value is higher than the primordial He-3/He-4 ratio in meteorites, and close to the ratio for solar type He. It is suggested that these elevated values may represent primitive He which has evolved little, in view of its minute increase in radiogenic He-4, since the earth's formation.

  13. Isocurvature fluctuations induce early star formation

    NARCIS (Netherlands)

    Sugiyama, N; Zaroubi, S; Silk, J

    2004-01-01

    The early reionization of the Universe inferred from the WMAP polarization results, if confirmed, poses a problem for the hypothesis that scale-invariant adiabatic density fluctuations account for large-scale structure and galaxy formation. One can only generate the required amount of early star for

  14. Isocurvature fluctuations induce early star formation

    NARCIS (Netherlands)

    Sugiyama, N; Zaroubi, S; Silk, J

    2004-01-01

    The early reionization of the Universe inferred from the WMAP polarization results, if confirmed, poses a problem for the hypothesis that scale-invariant adiabatic density fluctuations account for large-scale structure and galaxy formation. One can only generate the required amount of early star

  15. Pulsed laser-induced formation of silica nanogrids

    National Research Council Canada - National Science Library

    Ihlemann, Jürgen; Weichenhain-Schriever, Ruth

    2014-01-01

    ... ) coating through the transparent substrate. A polydimethylsiloxane (PDMS) superstrate (cover layer) coated on top of the SiO x film prior to laser exposure serves as confinement for controlled laser-induced structure formation...

  16. Ion beam induced stress formation and relaxation in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  17. Experimental Signatures of Anomaly Induced DCC Formation

    CERN Document Server

    Asakawa, M; Müller, B

    2002-01-01

    We discuss possible experimental signatures related to the formation of domains of disoriented chiral condensate (DCC) triggered by the axial anomaly in relativistic heavy ion collisions. Our predictions make use of the feature of the anomaly effect that is coherent over a large region of space, but opposite in sign above and below the ion scattering plane. We predict an enhancement of the fraction of neutral pions compared to all pions, which depends on the angle of emission with respect to the scattering plane and is concentrated at small transverse momentum and small rapidity in the center-of-mass frame.

  18. Stability and breakdown of Ca{sup 13}CO{sub 3} melt associated with formation of {sup 13}C-diamond in static high pressure experiments up to 43 GPa and 3900 K

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, A.V., E-mail: spivak@iem.ac.ru [Institute of Experimental Mineralogy of the Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation); Litvin, Yu.A. [Institute of Experimental Mineralogy of the Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation); Ovsyannikov, S.V. [Bayerishes Geoinstitut, University of Bayreuth, Bayreuth (Germany); Dubrovinskaia, N.A. [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth (Germany); Dubrovinsky, L.S. [Bayerishes Geoinstitut, University of Bayreuth, Bayreuth (Germany)

    2012-07-15

    Melting of calcium carbonate Ca{sup 13}CO{sub 3}, stability of the melt and its decomposition were studied in static high pressure experiments at pressures of 11-43 GPa and temperatures of 1600-3900 K using diamond anvil cell technique with laser heating. We observed formation of {sup 13}C-graphite (below 16 GPa) and {sup 13}C-diamond (between 16 and 43 GPa) on decomposition of the Ca{sup 13}CO{sub 3} melt at temperatures above 3400 K. At temperatures below 3400 K congruent melting of calcium carbonate was confirmed. The experimental results were applied to construction of the phase diagram of CaCO{sub 3} up to 43 GPa and 3900 K focusing at the melting curve of calcium carbonate and the decomposition phase boundary of CaCO{sub 3} melt. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer Phase states of CaCO{sub 3} were studied at P=11-43 GPa and T=1600-3900 K. Black-Right-Pointing-Pointer {sup 13}C-diamond easily crystallizes in carbonate-carbon (Ca{sup 13}CO{sub 3-}{sup 13}C-graphite) melt-solutions. Black-Right-Pointing-Pointer Ca-carbonate melts congruently that was observed in experiments in DAC with laser heating. Black-Right-Pointing-Pointer Decomposition of CaCO{sub 3} melt, indicated by formation of graphite and/or diamond. Black-Right-Pointing-Pointer Decomposition of CaCO{sub 3} was observed at temperatures above 3400 K in the pressure interval studied.

  19. Debris disc formation induced by planetary growth

    CERN Document Server

    Kobayashi, Hiroshi

    2014-01-01

    Several hundred stars older than 10 million years have been observed to have infrared excesses. These observations are explained by dust grains formed by the collisional fragmentation of hidden planetesimals. Such dusty planetesimal discs are known as debris discs. In a dynamically cold planetesimal disc, collisional coagulation of planetesimals produces planetary embryos which then stir the surrounding leftover planetesimals. Thus, the collisional fragmentation of planetesimals that results from planet formation forms a debris disc. We aim to determine the properties of the underlying planetesimals in debris discs by numerically modelling the coagulation and fragmentation of planetesimal populations. The brightness and temporal evolution of debris discs depend on the radial distribution of planetesimal discs, the location of their inner and outer edges, their total mass, and the size of planetesimals in the disc. We find that a radially narrow planetesimal disc is most likely to result in a debris disc that ...

  20. Improvement on Diamond Nucleation Treated by Pulsed Arc Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    马志斌; 万军; 汪建华; 张文文

    2004-01-01

    A technique of improvement on diamond nucleation based on pulsed arc discharge plasma at atmospheric pressure was developed. The pulsed arc discharge was induced respectively by nitrogen, argon and methanol gas. After the arc plasma pretreatment, a nucleation density higher than 1010 cm-2 may be obtained subsequently in chemical vapor deposition (CVD) on a mirror-polished silicon substrate without any other mechanical treatment. The effects of the arc discharge plasma on the diamond nucleation were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR) and Raman spectroscopy. The enhancement of nucleation is postulated to be a result of the formation of carbonlike phase materials or nitrogenation on the substrate surface without surface defect produced by arc discharge.

  1. Catalysis of Dialanine Formation by Glycine in the Salt-Induced Peptide Formation Reaction.

    Science.gov (United States)

    Suwannachot, Yuttana; Rode, Bernd M.

    1998-02-01

    Mutual catalysis of amino acids in the salt-induced peptide formation (SIPF) reaction is demonstrated for the case of glycine/alanine. The presence of glycine enhances dialanine formation by a factor up to 50 and enables dialanine formation at much lower alanine concentrations. The actual amounts of glycine play an important role for this catalytic effect, the optimal glycine concentration is 1/8 of the alanine concentration. The mechanism appears to be based on the formation of the intermediate Gly-Ala-Ala tripeptide, connected to one coordination site of copper(II) ion, and subsequent hydrolysis to dialanine and glycine.

  2. Formation of Mixture of A and C Centres in Diamond Synthesized with Fe90Ni10-C-High-Content Additive NaN3 by HPHT

    Institute of Scientific and Technical Information of China (English)

    LIANG Zhong-Zhu; JIA xiao-Peng; LIANG Jing-Qiu

    2007-01-01

    Very rich nitrogen concentration with the dominant C centres and some A centres are found in diamonds grown from a Fe90Ni10-C-high-content NaN3 additive system.The concentrations of C centres rapidly increase with increasing content of NaN3 additive,while the concentrations of A centres increase slowly.The total nitrogen concentration tends to increa.rapidly with increasing content of NaN3 additive when the content of NaNa is below 0.7wt%.However,the total concentration of nitrogen in the diamonds increases slowly when the content of NaN3 is further increased up to 1.0wt%,and the total nitrogen average concentration are calculated to be around 2230ppm for most of the analysed synthetic diamonds.Furthermore,the nitrogen impurities in different crystal sectors of the diamonds are inhomogeneously distributed.The nitrogen impurities in the diamonds in [111] zones are incorporated more easily than that in[100].

  3. The effect of substrate holder size on the electric field and discharge plasma on diamond-film formation at high deposition rates during MPCVD

    Science.gov (United States)

    An, Kang; Chen, Liangxian; Liu, Jinlong; Zhao, Yun; Yan, Xiongbo; Hua, Chenyi; Guo, Jianchao; Wei, Junjun; Hei, Lifu; Li, Chengming; Lu, Fanxiu

    2017-09-01

    The effect of the substrate holder feature dimensions on plasma density (n e), power density (Q mw) and gas temperature (T) of a discharge marginal plasma (a plasma caused by marginal discharge) and homogeneous plasma were investigated for the microwave plasma chemical vapor deposition process. Our simulations show that decreasing the dimensions of the substrate holder in a radical direction and increasing its dimension in the direction of the axis helps to produce marginally inhomogeneous plasma. When the marginal discharge appears, the maximum plasma density and power density appear at the edge of the substrate. The gas temperature increases until a marginally inhomogeneous plasma develops. The marginally inhomogeneous plasma can be avoided using a movable substrate holder that can tune the plasma density, power density and gas temperature. It can also ensure that the power density and electron density are as high as possible with uniform distribution of plasma. Moreover, both inhomogeneous and homogeneous diamond films were prepared using a new substrate holder with a diameter of 30 mm. The observation of inhomogeneous diamond films indicates that the marginal discharge can limit the deposition rate in the central part of the diamond film. The successfully produced homogeneous diamond films show that by using a substrate holder it is possible to deposit diamond film at 7.2 μm h-1 at 2.5 kW microwave power.

  4. Geometry-induced protein pattern formation.

    Science.gov (United States)

    Thalmeier, Dominik; Halatek, Jacob; Frey, Erwin

    2016-01-19

    Protein patterns are known to adapt to cell shape and serve as spatial templates that choreograph downstream processes like cell polarity or cell division. However, how can pattern-forming proteins sense and respond to the geometry of a cell, and what mechanistic principles underlie pattern formation? Current models invoke mechanisms based on dynamic instabilities arising from nonlinear interactions between proteins but neglect the influence of the spatial geometry itself. Here, we show that patterns can emerge as a direct result of adaptation to cell geometry, in the absence of dynamical instability. We present a generic reaction module that allows protein densities robustly to adapt to the symmetry of the spatial geometry. The key component is an NTPase protein that cycles between nucleotide-dependent membrane-bound and cytosolic states. For elongated cells, we find that the protein dynamics generically leads to a bipolar pattern, which vanishes as the geometry becomes spherically symmetrical. We show that such a reaction module facilitates universal adaptation to cell geometry by sensing the local ratio of membrane area to cytosolic volume. This sensing mechanism is controlled by the membrane affinities of the different states. We apply the theory to explain AtMinD bipolar patterns in [Formula: see text] EcMinDE Escherichia coli. Due to its generic nature, the mechanism could also serve as a hitherto-unrecognized spatial template in many other bacterial systems. Moreover, the robustness of the mechanism enables self-organized optimization of protein patterns by evolutionary processes. Finally, the proposed module can be used to establish geometry-sensitive protein gradients in synthetic biological systems.

  5. Formation of redbacks via accretion induced collapse

    CERN Document Server

    Smedley, Sarah L; Ferrario, Lilia; Wickramasinghe, Dayal T

    2014-01-01

    We examine the growing class of binary millisecond pulsars known as redbacks. In these systems the pulsar's companion has a mass between 0.1 and about 0.5 solar masses in an orbital period of less than 1.5 days. All show extended radio eclipses associated with circumbinary material. They do not lie on the period-companion mass relation expected from the canonical intermediate-mass X-ray binary evolution in which the companion filled its Roche lobe as a red giant and has now lost its envelope and cooled as a white dwarf. The redbacks lie closer to, but usually at higher period than, the period-companion mass relation followed by cataclysmic variables and low-mass X-ray binaries. In order to turn on as a pulsar mass accretion on to a neutron star must be sufficiently weak, considerably weaker than expected in systems with low-mass main-sequence companions driven together by magnetic braking or gravitational radiation. If a neutron star is formed by accretion induced collapse of a white dwarf as it approaches th...

  6. Interface Instability of Diamond Crystals at High Temperature and High Pressure

    Institute of Scientific and Technical Information of China (English)

    尹龙卫; 李木森; 许斌; 崔建军; 郝兆印

    2002-01-01

    Diamond growth instability at high temperature and high pressure (HPHT) has been elucidated by observing the cellular interface in diamond crystals. The HPHIT diamond crystals grow layer by layer from solution of carbon in the molten catalyst. In the growth of any other crystals from solution, the growth interface is not stable and should be of the greatest significance to understand further the diamond growth mechanism. During the diamond growth, the carbon atoms are delivered to the growing diamond crystal by diffusion through a diamond crystal-solution boundary layer. In front of the boundary layer, there is a narrow constitutional supercooling zone related to the solubility difference between diamond and graphite in the molten catalyst. The diamond growth stability is broken, and the flat or planar growth interface transforms into a cellular interface due to the light supercooling. The phenomenon of solute trails in the diamonds was observed, the formation of solute trails was closely associated with the cellular interface.

  7. Fracture behavior of HPHT synthetic diamond with micrometers metallic inclusions

    Institute of Scientific and Technical Information of China (English)

    He-sheng LI; Yong-xin QI; Yuan-pei ZHANG; Mu-sen LI

    2009-01-01

    The fracture behavior of the diamond single cwstals with metallic inclusions was investigated in the present paper.Single diamond crystals with metallic inclusions were formed by a special process with high pressure and high tempemture(HPHT).The inclusions trapped in the diamond were characterized mainly to be metallic carbide of(Fe,Ni)23C6 or Fe3C and solid solution of y-(Fe,Ni)by transmission electronic microscopy(TEM).The grain size of the inclusions is about micrometers. The fracture characteristics of the diamond single crystals,after compression and heating,were investigated by optical microscopy (OM) and scanning electron microscopy (SEM).The fracture sections of the compressed and heated diamonds were found to be parallel to the (111)plane. The interface of the inclusions and diamond is deduced to be the key factor and the original region Of the fracture formation. Mechanisms of the fracture behavior ofthe HPHT synthesized diamonds are discussed.

  8. Diamond genesis, seismic structure, and evolution of the Kaapvaal-Zimbabwe craton.

    Science.gov (United States)

    Shirey, Steven B; Harris, Jeffrey W; Richardson, Stephen H; Fouch, Matthew J; James, David E; Cartigny, Pierre; Deines, Peter; Viljoen, Fanus

    2002-09-06

    The lithospheric mantle beneath the Kaapvaal-Zimbabwe craton of southern Africa shows variations in seismic P-wave velocity at depths within the diamond stability field that correlate with differences in the composition of diamonds and their syngenetic inclusions. Middle Archean mantle depletion events initiated craton keel formation and early harzburgitic diamond formation. Late Archean accretionary events involving an oceanic lithosphere component stabilized the craton and contributed a younger Archean generation of eclogitic diamonds. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the Archean diamond suite.

  9. Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah Tasdemir, H., E-mail: habdullah46@gmail.com [Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Tokoroyama, Takayuki; Kousaka, Hiroyuki; Umehara, Noritsugu [Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Mabuchi, Yutaka [Nissan Motor Co. (Japan)

    2014-07-01

    Diamond-like carbon (DLC) coatings offer excellent mechanical and tribological properties that make them suitable protective coatings for various industrial applications. In recent years, several engine and power train components in passenger cars, which work under boundary lubricated conditions, have been coated with DLC coatings. Since conventional lubricants and lubricant additives are formulated for metal surfaces, there are still controversial questions concerning chemical reactivity between DLC surfaces and common lubricant additives owing to the chemical inertness of DLC coatings. In this work, we present the influence of zinc dialkyldithiophosphate (ZnDTP) anti-wear additives on the tribological performance of various self-mated DLC coatings under boundary lubrication conditions. The effects of hydrogen, doping elements, and surface morphology on the reactivity of DLC coatings to form a ZnDTP-derived tribofilm were investigated by atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirmed that ZnDTP-derived pad-like or patchy tribofilm forms on the surfaces depending on the DLC coating. It is seen that hydrogen content and doping elements increase pad-like tribofilm formation. Doped DLC coatings are found to give better wear resistance than non-doped DLC coatings. Furthermore, the addition of ZnDTP additives to the base oil significantly improves the wear resistance of hydrogenated DLC, silicon-doped hydrogenated DLC, and chromium-doped hydrogenated DLC. Hydrogen-free tetrahedral amorphous DLC coatings provide the lowest friction coefficient both in PAO (poly-alpha-olefin) and PAO + ZnDTP oils. - Highlights: • Zinc dialkyldithiophosphate (DTP) tribofilm formation on various DLC surfaces was evidenced. • Pad-like tribofilm was found on a-C:H, a-C, Si-DLC and Cr-DLC. • Pad-like tribofilm on DLC surfaces greatly increased the wear resistance. • Hydrogenated and doped DLC coatings are

  10. Bubble-Induced Star Formation in Dwarf Irregular Galaxies

    CERN Document Server

    Kawata, Daisuke; Barnes, David J; Grand, Robert J J; Rahimi, Awat

    2013-01-01

    To study the star formation and feedback mechanism, we simulate the evolution of an isolated dwarf irregular galaxy (dIrr) in a fixed dark matter halo, similar in size to WLM. We use the new version of our original N-body/smoothed particle chemodynamics code, GCD+, which adopts improved hydrodynamics, metal diffusion between the gas particles and new modelling of star formation and stellar wind and supernovae (SNe) feedback. Comparing the simulations with and without stellar feedback effects, we demonstrate that the collisions of bubbles produced by strong feedback can induce star formation in a more widely spread area. We also demonstrate that the metallicity in star forming regions is kept low due to the mixing of the metal-rich bubbles and the metal-poor inter-stellar medium. Our simulations also suggest that the bubble-induced star formation leads to many counter-rotating stars. The bubble-induced star formation could be a dominant mechanism to maintain star formation in dIrrs, which is different from lar...

  11. The characterization of low energy molecular hydrogen ion—induced defects in synthetic diamond by optical absorption

    Institute of Scientific and Technical Information of China (English)

    MaZhong-Quan; AokiY; 等

    1998-01-01

    The results of optical absorption analysis of the synthetic diamonds(type Ib) which were implanted with 40 keV molecular hydrogen ions at doses of 1015-1017H/cm2(at 100K),showed that the increase of optical density(OD) of modified layer(-140nm) in UV-VIS region was dependent upon the damage level caused by ion implantation process.The range of relative optical band gap(Er.opt) around 2.0eV suggested that an amorphous carbon network structure like a-C film,which probably contains some localized subtetrabedral-coordinated clusters embedded in the fourflod(sp3) sites.was tentatively found in this layer,basing on the optical gap of carbon materials.The evolution of Er,opt with ion fluence indicated that no more hydrogenated carbon compositions were produced in as -implanted samples,while the increase of Er,opt with annealing temperature was very similar to that of hydrogen content dependence of Eopt in hydrogenately amorphous carbon(a-C:H):In addition the optical inhomogeneity of type Ib diamond has been revealed by a 2-dimension topograph in transmission mode at λ=430nm。

  12. Effects of gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell

    Science.gov (United States)

    Feng, Biao; Levitas, Valery I.

    2016-01-01

    Combined plastic flow and strain-induced phase transformations (PTs) under high pressure in a sample within a gasket subjected to three dimensional compression and torsion in a rotational diamond anvil cell (RDAC) are studied using a finite element approach. The results are obtained for the weaker, equal-strength, and stronger high-pressure phases in comparison with low-pressure phases. It is found that, due to the strong gasket, the pressure in the sample is relatively homogenous and the geometry of the transformed zones is mostly determined by heterogeneity in plastic flow. For the equal-strength phases, the PT rate is higher than for the weaker and stronger high-pressure phases. For the weaker high-pressure phase, transformation softening induces material instability and leads to strain and PT localization. For the stronger high-pressure phase, the PT is suppressed by strain hardening during PT. The effect of the kinetic parameter k that scales the PT rate in the strain-controlled kinetic equation is also examined. In comparison with a traditional diamond anvil cell without torsion, the PT progress is much faster in RDAC under the same maximum pressure in the sample. Finally, the gasket size and strength effects are discussed. For a shorter and weaker gasket, faster plastic flow in radial and thickness directions leads to faster PT kinetics in comparison with a longer and stronger gasket. The rates of PT and plastic flows are not very sensitive to the modest change in a gasket thickness. Multiple experimental results are reproduced and interpreted. Obtained results allow one to design the desired pressure-plastic strain loading program in the experiments for searching new phases, reducing PT pressure by plastic shear, extracting kinetic properties from experiments with heterogeneous fields, and controlling homogeneity of all fields and kinetics of PTs.

  13. Emodin suppresses cadmium-induced osteoporosis by inhibiting osteoclast formation.

    Science.gov (United States)

    Chen, Xiao; Ren, Shuai; Zhu, Guoying; Wang, Zhongqiu; Wen, Xiaolin

    2017-09-01

    Environmental level of cadmium (Cd) exposure can induce bone loss. Emodin, a naturally compound found in Asian herbal medicines, could influence osteoblast/osteoclast differentiation. However, the effects of emodin on Cd-induced bone damage are not clarified. The aim of this study was to investigate the role of emodin on Cd-induced osteoporosis. Sprague-Dawley male rats were divided into three groups which were given 0mg/L, 50mg Cd/L and 50mg Cd/L plus emodin (50mg/kg body weight). Bone histological investigation, microCT analysis, metabolic biomarker determination and immunohistochemical staining were performed at the 12th week. The bone mass and bone microstructure index of rats treated with Cd were obviously lower than in control. Cd markedly enhanced the osteoclast formation compared with control. Emodin significantly abolished the Cd-induced bone microstructure damage (p<0.05), osteoclast formation and increase of tartrate-resistant acid phosphatase 5b level (p<0.05). Our data further showed that emodin attenuated the Cd-induced inhibition of osteoprotegerin expression and stimulation of receptor activator for nuclear factor-κ B ligand expression. Our data show that emodin suppresses the Cd-induced osteoporosis by inhibiting osteoclast formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Studies of defects on ion irradiated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Lai, P.F.; Prawer, S.; Spargo, A.E.C.; Bursill, L.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    It is known that diamond is amorphized or graphitized when irradiated above a critical dose. Above this critical dose, D{sub c}, the resistance R is found to drop very rapidly due to the formation of graphite regions which overlap at D{sub c} to form a semi-continuous electrically conducting pathway through the sample. One particularly interesting method of studying this transformation is electron energy-loss spectroscopy (EELS). Using EELS, the different phases of carbon can be identified and distinguished from each other using the extended energy-loss fine structure (EXELFS) of the core-loss part of the spectrum. EELS is a sensitive method for determining the electronic structure of small areas of a sample. In this paper, transmission electron microscopy (TEM) and EELS measurements of the ion irradiated diamond were combined in an attempt to correlate the microstructural nature of the ion-beam induced damage to the changes in the electrical and other properties. 7 refs., 1 tab., 2 figs.

  15. Bias-enhanced post-treatment process for enhancing the electron field emission properties of ultrananocrystalline diamond films

    Science.gov (United States)

    Saravanan, A.; Huang, B. R.; Sankaran, K. J.; Dong, C. L.; Tai, N. H.; Lin, I. N.

    2015-03-01

    The electron field emission (EFE) properties of ultrananocrystalline diamond films were markedly improved via the bias-enhanced plasma post-treatment (bep) process. The bep-process induced the formation of hybrid-granular structure of the diamond (bep-HiD) films with abundant nano-graphitic phase along the grain boundaries that increased the conductivity of the films. Moreover, the utilization of Au-interlayer can effectively suppress the formation of resistive amorphous-carbon (a-C) layer, thereby enhancing the transport of electrons crossing the diamond-to-Si interface. Therefore, bep-HiD/Au/Si films exhibit superior EFE properties with low turn-on field of E0 = 2.6 V/μm and large EFE current density of Je = 3.2 mA/cm2 (at 5.3 V/μm).

  16. Signaling events in pathogen-induced macrophage foam cell formation.

    Science.gov (United States)

    Shaik-Dasthagirisaheb, Yazdani B; Mekasha, Samrawit; He, Xianbao; Gibson, Frank C; Ingalls, Robin R

    2016-08-01

    Macrophage foam cell formation is a key event in atherosclerosis. Several triggers induce low-density lipoprotein (LDL) uptake by macrophages to create foam cells, including infections with Porphyromonas gingivalis and Chlamydia pneumoniae, two pathogens that have been linked to atherosclerosis. While gene regulation during foam cell formation has been examined, comparative investigations to identify shared and specific pathogen-elicited molecular events relevant to foam cell formation are not well documented. We infected mouse bone marrow-derived macrophages with P. gingivalis or C. pneumoniae in the presence of LDL to induce foam cell formation, and examined gene expression using an atherosclerosis pathway targeted plate array. We found over 30 genes were significantly induced in response to both pathogens, including PPAR family members that are broadly important in atherosclerosis and matrix remodeling genes that may play a role in plaque development and stability. Six genes mainly involved in lipid transport were significantly downregulated. The response overall was remarkably similar and few genes were regulated in a pathogen-specific manner. Despite very divergent lifestyles, P. gingivalis and C. pneumoniae activate similar gene expression profiles during foam cell formation that may ultimately serve as targets for modulating infection-elicited foam cell burden, and progression of atherosclerosis.

  17. Suppression of T cell-induced osteoclast formation

    Energy Technology Data Exchange (ETDEWEB)

    Karieb, Sahar; Fox, Simon W., E-mail: Simon.fox@plymouth.ac.uk

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  18. Laser-induced pattern formation from homogeneous polyisoprene solutions

    Institute of Scientific and Technical Information of China (English)

    Lin Dian-Yang; Li Ming; Wang Shu-Jie; Lü Zhi-Wei

    2008-01-01

    This paper reports that the pattern formation in homogeneous solutions of polyisoprene in toluene saturated with C60 induced by a continuous-wave visible laser is observed experimentally. The transmitted beam patterns change with the increase of the laser irradiation time. In the initial phase, the patterns with concentric ring-shaped structure are formed. In the end, the patterns become speckle-shaped. The incubation time of the transmitted beam widening is inversely proportional to the laser power density and solution concentration. The pattern formation results from the optical-field-induced refractive index changes in the solutions, but the mechanism of optical-field-induced refractive index changes in the polymer solutions needs to be further studied.

  19. Nano-inclusions in diamond: Evidence of diamond genesis

    Science.gov (United States)

    Wirth, R.

    2015-12-01

    The use of Focused Ion Beam technology (FIB) for TEM sample preparation introduced approximately 15 years ago revolutionized the application of TEM in Geosciences. For the first time, FIB enabled cutting samples for TEM use from exactly the location we are interested in. Applied to diamond investigation, this technique revealed the presence of nanometre-sized inclusions in diamond that have been simply unknown before. Nanoinclusions in diamond from different location and origin such as diamonds from the Lower and Upper Mantle, metamorphic diamonds (Kazakhstan, Erzgebirge, Bohemia), diamonds from ophiolites (Tibet, Mongolia, Xinjiang, Ural Mountains), diamonds from igneous rocks (Hawaii, Kamchatka) and impact diamonds (Popigai Crater, Siberia) have been investigated during the last 15 years. The major conclusion of all these TEM studies is, that the nanoinclusions, their phases and phase composition together with the micro- and nanostructure evidence the origin of diamond and genesis of diamond. We can discriminate Five different mechanisms of diamond genesis in nature are observed: Diamond crystallized from a high-density fluid (Upper mantle and metamorphic diamond). Diamond crystallized from carbonatitic melt (Lower mantle diamond). Diamond precipitates from a metal alloy melt (Diamond from ophiolites). Diamond crystallized by gas phase condensation or chemical vapour condensation (CVD) (Lavas from Kamchatka, xenoliths in Hawaiian lavas). Direct transformation of graphite into diamond.

  20. Structure formation in the universe from texture induced fluctuation

    CERN Document Server

    Durrer, R; Ruth Durrer; Zhi-hong Zhou

    1995-01-01

    The topic of this letter is structure formation with topological defects. We first present a partially new, fully local and gauge invariant system of perturbation equations to treat microwave background and dark matter fluctuations induced by topological defects (or any other type of seeds). We show that this treatment is extremly well suited for linear numerical analysis of structure formation by applying it to the texture scenario. Our numerical results cover a larger dynamical range than previous investigations and are complementary since we use substantially different methods.

  1. Tracing the depositional history of Kalimantan diamonds by zircon provenance and diamond morphology studies

    Science.gov (United States)

    Kueter, Nico; Soesilo, Joko; Fedortchouk, Yana; Nestola, Fabrizio; Belluco, Lorenzo; Troch, Juliana; Wälle, Markus; Guillong, Marcel; Von Quadt, Albrecht; Driesner, Thomas

    2016-11-01

    Diamonds in alluvial deposits in Southeast Asia are not accompanied by indicator minerals suggesting primary kimberlite or lamproite sources. The Meratus Mountains in Southeast Borneo (Province Kalimantan Selatan, Indonesia) provide the largest known deposit of these so-called "headless" diamond deposits. Proposals for the origin of Kalimantan diamonds include the adjacent Meratus ophiolite complex, ultra-high pressure (UHP) metamorphic terranes, obducted subcontinental lithospheric mantle and undiscovered kimberlite-type sources. Here we report results from detailed sediment provenance analysis of diamond-bearing Quaternary river channel material and from representative outcrops of the oldest known formations within the Alino Group, including the diamond-bearing Campanian-Maastrichtian Manunggul Formation. Optical examination of surfaces of diamonds collected from artisanal miners in the Meratus area (247 stones) and in West Borneo (Sanggau Area, Province Kalimantan Barat; 85 stones) points toward a classical kimberlite-type source for the majority of these diamonds. Some of the diamonds host mineral inclusions suitable for deep single-crystal X-ray diffraction investigation. We determined the depth of formation of two olivines, one coesite and one peridotitic garnet inclusion. Pressure of formation estimates for the peridotitic garnet at independently derived temperatures of 930-1250 °C are between 4.8 and 6.0 GPa. Sediment provenance analysis includes petrography coupled to analyses of detrital garnet and glaucophane. The compositions of these key minerals do not indicate kimberlite-derived material. By analyzing almost 1400 zircons for trace element concentrations with laser ablation ICP-MS (LA-ICP-MS) we tested the mineral's potential as an alternative kimberlite indicator. The screening ultimately resulted in a small subset of ten zircons with a kimberlitic affinity. Subsequent U-Pb dating resulting in Cretaceous ages plus a detailed chemical reflection make

  2. Diamond tool machining of materials which react with diamond

    Science.gov (United States)

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  3. Processing of Photonic Crystal Nanocavity for Quantum Information in Diamond

    CERN Document Server

    Bayn, Igal; Lahav, Alex; Salzman, Joseph; Kalish, Rafi; Fairchild, Barbara A; Prawer, Steven; Barth, Michael; Benson, Oliver; Wolf, Thomas; Siyushev, Petr; Jelezko, Fedor; Wrachtrup, Jorg

    2010-01-01

    The realization of photonic crystals (PC) in diamond is of major importance for the entire field of spintronics based on fluorescent centers in diamond. The processing steps for the case of diamond differ from those commonly used, due to the extreme chemical and mechanical properties of this material. The present work summarizes the state of the art in the realization of PC's in diamond. It is based on the creation of a free standing diamond membrane into which the desired nano-sized patterns are milled by the use of Focused-Ion-Beam (FIB). The optimal fabrication-oriented structure parameters are predicted by simulations. The milling strategies, the method of formation the diamond membrane, recipes for dielectric material-manipulation in FIB and optical characterization constraints are discussed in conjunction with their implication on PC cavity design. The thus produced structures are characterized via confocal photoluminescence.

  4. Optical properties of bias-induced CH sub 4 -H sub 2 plasma for diamond film deposition

    CERN Document Server

    Zhu, X D; Zhou, H Y; Wen, X H; Li, D

    2002-01-01

    Methane (CH sub 4) and hydrogen (H sub 2) reactive gas mixture has been in situ investigated in a hot filament diamond chemical vapor deposition reactor with a negatively variable biasing voltage applied to the hot filament with respect to the substrate using infrared absorption spectroscopy and optical emission spectroscopy. It is found that CH sub 4 converts increasingly to C sub 2 H sub 2 upon raising the filament temperature in a pure thermal activation state, no optical emission of species is observed. Upon bias application, both CH sub 4 and C sub 2 H sub 2 in infrared (IR) absorption intensity decrease with increasing bias current, even the IR absorption intensity of C sub 2 H sub 2 decreases more rapidly than that of CH sub 4. Meanwhile, the clear emission lines indexed to H, CH, and CH sup + appear in the optical emission spectrum obtained, showing that a large amount of excited radicals are produced in the gas phase after applying bias. It is believed that the further generation of activated radical...

  5. Bullous pemphigoid autoantibodies directly induce blister formation without complement activation.

    Science.gov (United States)

    Ujiie, Hideyuki; Sasaoka, Tetsumasa; Izumi, Kentaro; Nishie, Wataru; Shinkuma, Satoru; Natsuga, Ken; Nakamura, Hideki; Shibaki, Akihiko; Shimizu, Hiroshi

    2014-11-01

    Complement activation and subsequent recruitment of inflammatory cells at the dermal/epidermal junction are thought to be essential for blister formation in bullous pemphigoid (BP), an autoimmune blistering disease induced by autoantibodies against type XVII collagen (COL17); however, this theory does not fully explain the pathological features of BP. Recently, the involvement of complement-independent pathways has been proposed. To directly address the question of the necessity of the complement activation in blister formation, we generated C3-deficient COL17-humanized mice. First, we show that passive transfer of autoantibodies from BP patients induced blister formation in neonatal C3-deficient COL17-humanized mice without complement activation. By using newly generated human and murine mAbs against the pathogenic noncollagenous 16A domain of COL17 with high (human IgG1, murine IgG2), low (murine IgG1), or no (human IgG4) complement activation abilities, we demonstrate that the deposition of Abs, and not complements, is relevant to the induction of blister formation in neonatal and adult mice. Notably, passive transfer of BP autoantibodies reduced the amount of COL17 in lesional mice skin, as observed in cultured normal human keratinocytes treated with the same Abs. Moreover, the COL17 depletion was associated with a ubiquitin/proteasome pathway. In conclusion, the COL17 depletion induced by BP autoantibodies, and not complement activation, is essential for the blister formation under our experimental system. Copyright © 2014 by The American Association of Immunologists, Inc.

  6. Gravitationally induced particle production and its impact on structure formation

    CERN Document Server

    Nunes, Rafael C

    2016-01-01

    In this paper we investigate the influence of a continuous particles creation processes on the linear and nonlinear matter clustering, and its consequences on the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole $l$, showing that the scale where the nonlinear growth overcomes the linear effect depends strongly of particles creation rate.

  7. Nanoparticle formation by ozonolysis of inducible plant volatiles

    Directory of Open Access Journals (Sweden)

    J. Joutsensaari

    2005-01-01

    Full Text Available We present the first laboratory experiments of aerosol formation from oxidation of volatile organic species emitted by living plants, a process which for half a century has been known to take place in the atmosphere. We have treated white cabbage crops with methyl jasmonate in order to induce the production of monoterpenes and certain less-volatile sesqui- and homoterpenes. Ozone was introduced into the growth chamber in which the crops were placed, and the subsequent aerosol formation and growth of aerosols were monitored by measuring the particle size distributions continuously during the experiments. Our observations show similar particle formation rates as in the atmosphere but much higher growth rates. The results indicate that the concentrations of nonvolatile oxidation products of plant released precursors needed to induce the nucleation are roughly an order-of-magnitude higher than their concentrations during atmospheric nucleation events. Our results therefore suggest that atmospheric nucleation events proceed via condensation of oxidized organics on pre-existing molecular clusters rather than via their homogeneous or ion-induced nucleation.

  8. Induced dicentric chromosome formation promotes genomic rearrangements and tumorigenesis.

    Science.gov (United States)

    Gascoigne, Karen E; Cheeseman, Iain M

    2013-07-01

    Chromosomal rearrangements can radically alter gene products and their function, driving tumor formation or progression. However, the molecular origins and evolution of such rearrangements are varied and poorly understood, with cancer cells often containing multiple, complex rearrangements. One mechanism that can lead to genomic rearrangements is the formation of a "dicentric" chromosome containing two functional centromeres. Indeed, such dicentric chromosomes have been observed in cancer cells. Here, we tested the ability of a single dicentric chromosome to contribute to genomic instability and neoplastic conversion in vertebrate cells. We developed a system to transiently and reversibly induce dicentric chromosome formation on a single chromosome with high temporal control. We find that induced dicentric chromosomes are frequently damaged and mis-segregated during mitosis, and that this leads to extensive chromosomal rearrangements including translocations with other chromosomes. Populations of pre-neoplastic cells in which a single dicentric chromosome is induced acquire extensive genomic instability and display hallmarks of cellular transformation including anchorage-independent growth in soft agar. Our results suggest that a single dicentric chromosome could contribute to tumor initiation.

  9. Optical engineering of diamond

    CERN Document Server

    Rabeau, James R

    2013-01-01

    This is the first comprehensive book on the engineering of diamond optical devices. It will give readers an up-to-date account of the properties of optical quality synthetic diamond (single crystal, nanodiamond and polycrystalline) and reviews the large and growing field of engineering of diamond-based optical devices, with applications in quantum computation, nano-imaging, high performance lasers, and biomedicine. It aims to provide scientists, engineers and physicists with a valuable resource and reference book for the design and performance of diamond-based optical devices.

  10. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  11. Impact-Induced Clay Mineral Formation and Distribution on Mars

    Science.gov (United States)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  12. Study on characteristic parameters influencing laser-induced damage threshold of KH(2)PO(4) crystal surface machined by single point diamond turning.

    Science.gov (United States)

    Chen, Mingjun; Li, Mingquan; Cheng, Jian; Jiang, Wei; Wang, Jian; Xu, Qiao

    2011-12-01

    It has fundamental meaning to find the elements influencing the laser-induced damage threshold (LIDT) of KH(2)PO(4) (KDP) crystal and to provide suitable characterization parameters for these factors in order to improve the LIDT of KDP. Using single-point diamond turning (SPDT) to process the KDP crystal, the machined surface quality has important effects on its LIDT. However, there are still not suitable characteristic parameters of surface quality of KDP to correspond with the LIDT nowadays. In this paper, guided by the Fourier model theory, we study deeply the relationship between the relevant characteristic parameters of surface topography of KDP crystal and the experimental LIDT. Research results indicate that the waviness rather than the roughness is the leading topography element on the KDP surface machined by the SPDT method when the LIDT is considered and the amplitude of micro-waviness has greater influence on the light intensity inside the KDP crystal within the scope of dangerous frequencies between (180 μm)(-1) and (90 μm)(-1); with suitable testing equipment, the characteristic parameters of waviness amplitude, such as the arithmetical mean deviation of three-dimensional profile S(a) or root mean square deviation of three-dimensional contour S(q), are able to be considered as suitable parameters to reflect the optical quality of the machined surface in order to judge approximately the LIDT of the KDP surface and guide the machining course.

  13. Diamond films: Historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Messier, R. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  14. Investing in Diamonds

    NARCIS (Netherlands)

    Renneboog, Luc

    2015-01-01

    This paper examines the risk-return characteristics of investment grade gems (white diamonds, colored diamonds and other types of gems including sapphires, rubies, and emeralds). The transactions are coming from gem auctions and span the period 1999-2012. Over our time frame, the annual nominal USD

  15. Investing in Diamonds

    NARCIS (Netherlands)

    Renneboog, Luc

    2015-01-01

    This paper examines the risk-return characteristics of investment grade gems (white diamonds, colored diamonds and other types of gems including sapphires, rubies, and emeralds). The transactions are coming from gem auctions and span the period 1999-2012. Over our time frame, the annual nominal USD

  16. Jet-induced star formation by a microquasar

    CERN Document Server

    Mirabel, I F; Rodriguez, L F; Sauvage, M

    2014-01-01

    Theoretical and observational work show that jets from AGN can trigger star formation. However, in the Milky Way the first -and so far- only clear case of relativistic jets inducing star formation has been found in the surroundings of the microquasar GRS 1915+105. Here we summarize the multiwavelength observations of two compact star formation IRAS sources axisymmetrically located and aligned with the position angle of the sub-arcsec relativistic jets from the stellar black hole binary GRS 1915+105 (Mirabel & Rodriguez 1994). The observations of these two star forming regions at centimeter (Rodriguez & Mirabel 1998), millimeter and infrared (Chaty et al. 2001) wavelengths had suggested -despite the large uncertainties in the distances a decade ago- that the jets from GRS 1915+105 are triggering along the radio jet axis the formation of massive stars in a radio lobe of bow shock structure. Recently, Reid et al.(2014) found that the jet source and the IRAS sources are at the same distance, enhancing the...

  17. STABLE DIAMOND GRINDING

    Directory of Open Access Journals (Sweden)

    Yury Gutsalenko

    2010-06-01

    Full Text Available The paper generalizes on the one hand theory of kinematic-geometrical simulation of grinding processes by means of tools with working part as binding matrix with abrasive grains located in it in random manner, for example diamond grains, and on the other hand practical performance of combined grinding process, based on introduction of additional energy as electric discharges and called by the organization-developer (Kharkov Polytechnic Institute «diamond-spark grinding» as applied to processing by means of diamond wheel. Implementation of diamond-spark grinding technologies on the basis of developed generalized theoretical approach allows to use the tool with prescribed tool-life, moreover to make the most efficient use of it up to full exhausting of tool-life, determined by diamond-bearing thickness. Development is directed forward computer-aided manufacturing.

  18. Diamond Integrated Optomechanical Circuits

    CERN Document Server

    Rath, Patrik; Nebel, Christoph; Wild, Christoph; Pernice, Wolfram H P

    2013-01-01

    Diamond offers unique material advantages for the realization of micro- and nanomechanical resonators due to its high Young's modulus, compatibility with harsh environments and superior thermal properties. At the same time, the wide electronic bandgap of 5.45eV makes diamond a suitable material for integrated optics because of broadband transparency and the absence of free-carrier absorption commonly encountered in silicon photonics. Here we take advantage of both to engineer full-scale optomechanical circuits in diamond thin films. We show that polycrystalline diamond films fabricated by chemical vapour deposition provide a convenient waferscale substrate for the realization of high quality nanophotonic devices. Using free-standing nanomechanical resonators embedded in on-chip Mach-Zehnder interferometers, we demonstrate efficient optomechanical transduction via gradient optical forces. Fabricated diamond resonators reproducibly show high mechanical quality factors up to 11,200. Our low cost, wideband, carri...

  19. Noise induced pattern formation of oscillation growth in traffic flow

    CERN Document Server

    Tian, Junfang; Treiber, Martin

    2016-01-01

    Noise is able to induce diverse patterns in physical and interdisciplinary extended systems. This Letter investigates the role of noise in pattern formation of traffic flow, which is a typical self-driven system far from equilibrium. We demonstrate that noise is necessary to correctly describe the observed spatiotemporal dynamics of growing traffic oscillation in the car following process. A heuristic analysis qualitatively explains the concave growth of the oscillation amplitude along the vehicles of a platoon. Based on this analysis, we propose a simple car-following model containing indifference regions and acceleration noise described by Brownian motion which reproduces well the experimental and empirical observations. Our study indicates that noise might also play an important role in pattern formation in other biological or socio-economic systems that are subject to stochasticity.

  20. Liquid Jet Formation in Laser-Induced Forward Transfer

    Science.gov (United States)

    Brasz, C. Frederik

    Laser-induced forward transfer (LIFT) is a direct-write technique capable of printing precise patterns of a wide variety of materials. In this process, a laser pulse is focused through a transparent support and absorbed in a thin donor film, propelling material onto an adjacent acceptor substrate. For fluid materials, this transfer occurs through the formation of a narrow liquid jet, which eventually pinches off due to surface tension. This thesis examines in detail the fluid mechanics of the jet formation process occurring in LIFT. The main focus is on a variant of LIFT known as blister-actuated LIFT (BA-LIFT), in which the laser pulse is absorbed in an ink-coated polymer layer, rapidly deforming it locally into a blister to induce liquid jet formation. The early-time response of a fluid layer to a deforming boundary is analyzed with a domain perturbation method and potential-flow simulations, revealing scalings for energy and momentum transfer to the fluid and providing physical insight on how and why a jet forms in BA-LIFT. The remaining chapters explore more complex applications and modifications of LIFT. One is the possibility of high-repetition rate printing and limits on time delay and separation between pulses imposed by a tilting effect found for adjacent jets. Another examines a focusing effect achieved by perturbing the interface with ring-shaped disturbances. The third contains an experimental study of LIFT using a silver paste as the donor material instead of a Newtonian liquid. The transfer mechanism is significantly different, although with repeated pulses at one location, a focusing effect is again observed. All three of these chapters investigate how perturbations to the interface can strongly influence the jet formation process.

  1. Fabrication of vertically aligned diamond whiskers from highly boron-doped diamond by oxygen plasma etching.

    Science.gov (United States)

    Terashima, Chiaki; Arihara, Kazuki; Okazaki, Sohei; Shichi, Tetsuya; Tryk, Donald A; Shirafuji, Tatsuru; Saito, Nagahiro; Takai, Osamu; Fujishima, Akira

    2011-02-01

    Conductive diamond whiskers were fabricated by maskless oxygen plasma etching on highly boron-doped diamond substrates. The effects of the etching conditions and the boron concentration in diamond on the whisker morphology and overall substrate coverage were investigated. High boron-doping levels (greater than 8.4 × 10(20) cm(-3)) are crucial for the formation of the nanosized, densely packed whiskers with diameter of ca. 20 nm, length of ca. 200 nm, and density of ca. 3.8 × 10(10) cm(-2) under optimal oxygen plasma etching conditions (10 min at a chamber pressure of 20 Pa). Confocal Raman mapping and scanning electron microscopy illustrate that the boron distribution in the diamond surface region is consistent with the distribution of whisker sites. The boron dopant atoms in the diamond appear to lead to the initial fine column formation. This simple method could provide a facile, cost-effective means for the preparation of conductive nanostructured diamond materials for electrochemical applications as well as electron emission devices.

  2. Formation of step bunches induced by flow in solution

    OpenAIRE

    Inaba, Masashi; Sato, Masahide

    2012-01-01

    We study the formation of step bunches induced by flow in solution during growth. In our previous study [M. Inaba and M. Sato: J. Phys. Soc. Jpn. 80 (2011) 074606], we showed that the step-down flow in solution causes bunching. In this research, we study the dependence of step behavior on some parameters. With a slow flow, the separation and coalescence between steps and bunches occur frequently during step bunching. With increasing flow rate, the frequency decreases and tight bunches are for...

  3. Strangeness production and hypernucleus formation in antiproton induced reactions

    CERN Document Server

    Feng, Zhao-Qing

    2015-01-01

    Formation mechanism of fragments with strangeness in collisions of antiprotons on nuclei has been investigated within the Lanzhou quantum molecular dynamics (LQMD) transport approach combined with a statistical model (GEMINI) for describing the decays of excited fragments. Production of strange particles in the antiproton induced nuclear reactions is modeled within the LQMD model, in which all possible reaction channels such as elastic scattering, annihilation, charge exchange and inelastic scattering in antibaryon-baryon, baryon-baryon and meson-baryon collisions have been included. A coalescence approach is developed for constructing hyperfragments in phase space after de-excitation of nucleonic fragments. The combined approach could describe the production of fragments in low-energy antiproton induced reactions. Hyperfragments are formed within the narrower rapidities and lower kinetic energies. It has advantage to produce heavier hyperfragments and hypernuclides with strangeness s=-2 (double-$\\Lambda$ fra...

  4. Ionoluminescence of diamond, synthetic diamond and simulants

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H. [Departamento de Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Ctra de Colmenar km 15, Madrid 27049 (Spain); Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, Ciudad de Mexico 04519, Mexico, DF (Mexico); Ruvalcaba-Sil, J.L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, Ciudad de Mexico 04519, Mexico, DF (Mexico); Barboza-Flores, M. [Centro de Investigacio en Fisica, Universidad de Sonora, Apartado postal 5-088, Hermosillo, Sonora 83190 (Mexico); Belmont, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, Ciudad de Mexico 04519, Mexico, DF (Mexico); Calderon, T. [Departamento de Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Ctra de Colmenar km 15, Madrid 27049 (Spain)], E-mail: tomas.calderon@uam.es

    2007-09-21

    Ionoluminescence (IL) spectra of diamond (natural samples and synthetic CVD) and its more common synthetic simulates such as sapphire, spinel, cubic zirconia, strontium titanate and yttrium aluminium garnet (YAG: Er) will be discussed here in order to support some criteria that will allow to distinguish between them. While diamond shows emission bands due to nitrogen defects, simulants feature d-transition metals and rare earths such as Cr{sup 3+}, Mn{sup 2+}, Fe{sup 3+}, Ti{sup 3+} and Er{sup 3+} emissions.

  5. Amino-terminated diamond surfaces: Photoelectron emission and photocatalytic properties

    Science.gov (United States)

    Zhu, Di; Bandy, Jason A.; Li, Shuo; Hamers, Robert J.

    2016-08-01

    We report a new approach to making stable negative electron-affinity diamond surfaces by terminating diamond with amino groups (also known as amine groups, -NH2). Previous studies have shown that negative electron affinity can be induced by terminating diamond surfaces with hydrogen, creating a surface dipole favorable toward electron emission. Here, we demonstrate that covalent tethering of positive charges in the form of protonated amino groups, -NH3+, also leads to negative electron affinity (NEA) and facile electron emission into vacuum and into water. Amino-terminated diamond was prepared using a very mild plasma discharge. Valence-band photoemission studies of the amino-terminated diamond samples show a characteristic "NEA" peak, demonstrating that the amino-terminated surface has NEA. Diamond's ability to emit electrons into water was evaluated using photochemical conversion of N2 to NH3. Time-resolved surface photovoltage studies were used to characterize charge separation at the diamond interface, and Mott-Schottky measurements were performed to characterize band-bending at the diamond-water interface. XPS studies show that the amino-terminated surfaces provide increased chemical resistance to oxidation compared with H-terminated diamond when illuminated with ultraviolet light.

  6. Wüstite stability in the presence of a CO2-fluid and a carbonate-silicate melt: Implications for the graphite/diamond formation and generation of Fe-rich mantle metasomatic agents

    Science.gov (United States)

    Bataleva, Yuliya V.; Palyanov, Yuri N.; Sokol, Alexander G.; Borzdov, Yuri M.; Bayukov, Oleg A.

    2016-02-01

    Experimental simulation of the interaction of wüstite with a CO2-rich fluid and a carbonate-silicate melt was performed using a multianvil high-pressure split-sphere apparatus in the FeO-MgO-CaO-SiO2-Al2O3-CO2 system at a pressure of 6.3 GPa and temperatures in the range of 1150 °C-1650 °C and with run time of 20 h. At relatively low temperatures, decarbonation reactions occur in the system to form iron-rich garnet (Alm75Prp17Grs8), magnesiowüstite (Mg# ≤ 0.13), and CO2-rich fluid. Under these conditions, magnesiowüstite was found to be capable of partial reducing CO2 to C0 that leads to the formation of Fe3+-bearing magnesiowüstite, crystallization of magnetite and metastable graphite, and initial growth of diamond seeds. At T ≥ 1450 °C, an iron-rich carbonate-silicate melt (FeO ~ 56 wt.%, SiO2 ~ 12 wt.%) forms in the system. Interaction between (Fe,Mg)O, SiO2, fluid and melt leads to oxidation of magnesiowüstite and crystallization of fayalite-magnetite spinel solid solution (1450 °C) as well as to complete dissolution of magnesiowüstite in the carbonate-silicate melt (1550 °C-1650 °C). In the presence of both carbonate-silicate melt and CO2-rich fluid, dissolution (oxidation) of diamond and metastable graphite was found to occur. The study results demonstrate that under pressures of the lithospheric mantle in the presence of a CO2-rich fluid, wüstite/magnesiowüstite is stable only at relatively low temperatures when it is in the absolute excess relative to CO2-rich fluid. In this case, the redox reactions, which produce metastable graphite and diamond with concomitant partial oxidation of wüstite to magnetite, occur. Wüstite is unstable under high concentrations of a CO2-rich fluid as well as in the presence of a carbonate-silicate melt: it is either completely oxidized or dissolves in the melt or fluid phase, leading to the formation of Fe2 +- and Fe3 +-enriched carbonate-silicate melts, which are potential metasomatic agents in the

  7. Remobilization in the cratonic lithosphere recorded in polycrystalline diamond

    Science.gov (United States)

    Jacob; Viljoen; Grassineau; Jagoutz

    2000-08-18

    Polycrystalline diamonds (framesites) from the Venetia kimberlite in South Africa contain silicate minerals whose isotopic and trace element characteristics document remobilization of older carbon and silicate components to form the framesites shortly before kimberlite eruption. Chemical variations within the garnets correlate with carbon isotopes in the diamonds, indicating contemporaneous formation. Trace element, radiogenic, and stable isotope variations can be explained by the interaction of eclogites with a carbonatitic melt, derived by remobilization of material that had been stored for a considerable time in the lithosphere. These results indicate more recent formation of diamonds from older materials within the cratonic lithosphere.

  8. Bone formation induced in mouse thigh by cultured human cells.

    Science.gov (United States)

    Anderson, H C; Coulter, P R

    1967-04-01

    Cultured FL human amnion cells injected intramuscularly into cortisone-conditioned mice proliferate to form discrete nodules which become surrounded by fibroblasts. Within 12 days, fibroblastic zones differentiate into cartilage which calcifies to form bone. Experiments were conducted to test the hypothesis that FL cells behave as an inductor of bone formation. In the electron microscope, FL cells were readily distinguished from surrounding fibroblasts. Transitional forms between the two cell types were not recognized. Stains for acid mucopolysaccharides emphasized the sharp boundary between metachromatic fibroblastic and cartilaginous zones and nonmetachromatic FL cells. (35)S was taken up preferentially by fibroblasts and chondrocytes and then deposited extracellularly in a manner suggesting active secretion of sulfated mucopolysaccharides. FL cells showed negligible (35)S utilization and secretion. FL cells, labeled in vitro with thymidine-(3)H, were injected and followed radioautographically, during bone formation. Nuclear label of injected FL cells did not appear in adjacent fibroblasts in quantities sufficient to indicate origin of the latter from FL cells. The minimal fibroblast nuclear labeling seen may represent reutilization of label from necrotic FL cells. It is suggested that FL cells injected into the mouse thigh induced cartilage and bone formation by host fibroblasts.

  9. Bases of the Mantle-Carbonatite Conception of Diamond Genesis

    Science.gov (United States)

    Litvin, Yuriy; Spivak, Anna; Kuzyura, Anastasia

    2016-04-01

    In the mantle-carbonatite conception of diamond genesis, the results of physic-chemical experiments are coordinated with the data of analytic mineralogy of primary inclusions in natural diamonds. Generalization of the solutions of principal genetic problems constitutes the bases of the conception. The solutions are following: (1) it is grounded that diamond-parental melts of the upper mantle have peridotite/eclogite - carbonatite - carbon compositions, of the transition zone - (wadsleite↔ringwoodite) - majorite - stishovite - carbonatite - carbon compositions, and of the lower mantle - periclase/wustite - bridgmanite - Ca-perovskite -stishovite - carbonatite - carbon compositions; (2) a construction of generalized diagrams for the diamond-parental media, which reveal changeable compositions of the growth melts of diamonds and associated phases, their genetic relations to the mantle substance, and classification connections of the primary inclusions in natural diamonds; (3) experimental equilibrium phase diagrams of syngenesis of diamonds and primary inclusions, which characterize the nucleation and growth conditions of diamonds and a capture of paragenetic and xenogenetic minerals by the growing diamonds; (4) a determination of the phase diagrams of diamonds and inclusions syngenesis under the regime of fractional crystallization, which discover the regularities of ultrabasic-basic evolution and paragenesis transitions in the diamond-forming systems of the upper and lower mantle. The evidence of the physic-chemically united mode of diamond genesis at the mantle depths with different mineralogy is obtained. References. Litvin Yu.A. (2007). High-pressure mineralogy of diamond genesis. In: Advances in High-Pressure Mineralogy (edited by Eiji Ohtani), Geological Society of America Special paper 421, 83-103. Litvin Yu.A. (2012). Experimental study of physic-chemical conditions of natural diamond formation on an example of the eclogite-carbonatite-sulphide-diamond

  10. Formation of silicon carbide and diamond nanoparticles in the surface layer of a silicon target during short-pulse carbon ion implantation

    Science.gov (United States)

    Remnev, G. E.; Ivanov, Yu. F.; Naiden, E. P.; Saltymakov, M. S.; Stepanov, A. V.; Shtan'ko, V. F.

    2009-04-01

    Synthesis of silicon carbide and diamond nanoparticles is studied during short-pulse implantation of carbon ions and protons into a silicon target. The experiments are carried out using a TEMP source of pulsed powerful ion beams based on a magnetically insulated diode with radial magnetic field B r . The beam parameters are as follows: the ion energy is 300 keV, the pulse duration is 80 ns, the beam consists of carbon ions and protons, and the ion current density is 30 A/cm2. Single-crystal silicon wafers serve as a target. SiC nanoparticles and nanodiamonds form in the surface layer of silicon subjected to more than 100 pulses. The average coherent domain sizes in the SiC particles and nanodiamonds are 12-16 and 8-9 nm, respectively.

  11. Experimental and Theoretical Evidence for Surface-Induced Carbon and Nitrogen Fractionation during Diamond Crystallization at High Temperatures and High Pressures

    Directory of Open Access Journals (Sweden)

    Vadim N. Reutsky

    2017-06-01

    Full Text Available Isotopic and trace element variations within single diamond crystals are widely known from both natural stones and synthetic crystals. A number of processes can produce variations in carbon isotope composition and nitrogen abundance in the course of diamond crystallization. Here, we present evidence of carbon and nitrogen fractionation related to the growing surfaces of a diamond. We document that difference in the carbon isotope composition between cubic and octahedral growth sectors is solvent-dependent and varies from 0.7‰ in a carbonate system to 0.4‰ in a metal-carbon system. Ab initio calculations suggest up to 4‰ instantaneous 13C depletion of cubic faces in comparison to octahedral faces when grown simultaneously. Cubic growth sectors always have lower nitrogen abundance in comparison to octahedral sectors within synthetic diamond crystals in both carbonate and metal-carbon systems. The stability of any particular growth faces of a diamond crystal depends upon the degree of carbon association in the solution. Octahedron is the dominant form in a high-associated solution while the cube is the dominant form in a low-associated solution. Fine-scale data from natural crystals potentially can provide information on the form of carbon, which was present in the growth media.

  12. Mantle Degassing and Diamond Genesis:A Carbon Isotope Perspective

    Institute of Scientific and Technical Information of China (English)

    郑永飞

    1994-01-01

    The effect of Co2 and CH4 degassing from the mantle on the carbon isotopic composition of diamond has been quantitatively modeled in terms of the principles of Rayleigh distillation.Assuming the δ13 C value of -5‰ for the mantle,the outgassing of CO2 can result in the large negative δ13 C values of diamond,whereas the outgassing of CH4 can drive the δ13C values of diamond in the positive direction.The theoretical expectations can be used to explain the full range of δ13 C values from-34.4‰5 to+5‰ observed for natural diamonds.It is possible that diamond formation was triggered by the degassing of Co2 and/or CH4 from the mantle and the associated fractional crystallization of carbonate-bearing melt.

  13. Crystal growth of CVD diamond and some of its peculiarities

    CERN Document Server

    Piekarczyk, W

    1999-01-01

    Experiments demonstrate that CVD diamond can form in gas environments that are carbon undersaturated with respect to diamond. This fact is, among others, the most serious violation of principles of chemical thermodynamics. In this $9 paper it is shown that none of the principles is broken when CVD diamond formation is considered not a physical process consisting in growth of crystals but a chemical process consisting in accretion of macro-molecules of polycyclic $9 saturated hydrocarbons belonging to the family of organic compounds the smallest representatives of which are adamantane, diamantane, triamantane and so forth. Since the polymantane macro-molecules are in every respect identical with $9 diamond single crystals with hydrogen-terminated surfaces, the accretion of polymantane macro- molecules is a process completely equivalent to the growth of diamond crystals. However, the accretion of macro-molecules must be $9 described in a way different from that used to describe the growth of crystals because so...

  14. Electronic structure studies of nanocrystalline diamond grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Zapol, P.; Sternberg, M.; Frauenheim, T.; Gruen, D. M.; Curtiss, L. A.

    1999-11-29

    Diamond growth from hydrogen-poor plasmas results in diamond structures that are profoundly different from conventionally CVD-grown diamond. High concentration of carbon dimers in the microwave plasma results in a high rate of heterogeneous renucleation leading to formation of nanocrystalline diamond with a typical grain size of 3--10 nm. Therefore, up to 10% of carbon atoms are located in the grain boundaries. In this paper the authors report on density-functional based tight-binding molecular dynamics calculations of the structure of a {Sigma}13 twist (100) grain boundary in diamond. Beginning with a coincidence site lattice model, simulated annealing of the initial structure was performed at 1,500 K followed by relaxation toward lower temperatures. About one-half of the carbons in the grain boundary are found to be three-coordinated. Coordination numbers, bond length and bond angle distributions are analyzed and compared to those obtained in previous studies.

  15. Effects of high energy Au-ion irradiation on the microstructure of diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shih-Show [Department of Physics, Tamkang University, Tamsui, New-Taipei 251, Taiwan (China); Department of Information Technology and Mobile Communication, Taipei College of Maritime Technology, Tamsui, New-Taipei 251, Taiwan (China); Chen, Huang-Chin [Department of Physics, Tamkang University, Tamsui, New-Taipei 251, Taiwan (China); Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Wang, Wei-Cheng; Lin, I-Nan; Chang, Ching-Lin [Department of Physics, Tamkang University, Tamsui, New-Taipei 251, Taiwan (China); Lee, Chi-Young [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Guo Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2013-03-21

    The effects of 2.245 GeV Au-ion irradiation and subsequent annealing processes on the evolution of microstructure of diamond films with microcrystalline (MCD) or ultra-nanocrystalline (UNCD) granular structure were investigated, using near edge x-ray absorption fine structure and electron energy loss spectroscopy in transmission electron microscopy. For MCD films, the Au-ion irradiation disintegrated some of the diamond grains, resulting in the formation of nano-sized carbon clusters embedded in a matrix of amorphous carbon (a-C). The annealing process recrystallized the diamond grains and converted the a-C into nano-sized graphite particulates and, at the same time, induced the formation of nano-sized i-carbon clusters, the bcc structured carbon with a{sub 0} = 0.432 nm. In contrast, for UNCD films, the Au-ion irradiation transformed the grain boundary phase into nano-sized graphite, but insignificantly altered the crystallinity of the grains of the UNCD films. The annealing process recrystallized the materials. In some of the regions, the residual a-C phases were transformed into nano-sized graphites, whereas in other regions i-carbon nanoclusters were formed. The difference in irradiation-induced microstructural transformation behavior between the MCD and the UNCD films is ascribed to the different granular structures of the two types of films.

  16. Magnetic properties of point defects in proton irradiated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Makgato, T.N., E-mail: Thuto.Makgato@students.wits.ac.za [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Sideras-Haddad, E. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Center of Excellence in Strong Materials, Physics Building, University of the Witwatersrand, Johannesburg 2050 (South Africa); Ramos, M.A. [CMAM, Centro de Micro-Analisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, Campus de Cantoblanco, E-28049 Madrid (Spain); Departamento de Fisica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain); García-Hernández, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Climent-Font, A.; Zucchiatti, A.; Muñoz-Martin, A. [CMAM, Centro de Micro-Analisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, Campus de Cantoblanco, E-28049 Madrid (Spain); Shrivastava, S. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Erasmus, R. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Center of Excellence in Strong Materials, Physics Building, University of the Witwatersrand, Johannesburg 2050 (South Africa)

    2016-09-01

    We investigate the magnetic properties of ultra-pure type-IIa diamond following irradiation with proton beams of ≈1–2 MeV energy. SQUID magnetometry indicate the formation of Curie type paramagnetism according to the Curie law. Raman and Photoluminescence spectroscopy measurements show that the primary structural features created by proton irradiation are the centers: GR1, ND1, TR12 and 3H. The Stopping and Range of Ions in Matter (SRIM) Monte Carlo simulations together with SQUID observations show a strong correlation between vacancy production, proton fluence and the paramagnetic factor. At an average surface vacancy spacing of ≈1–1.6 nm and bulk (peak) vacancy spacing of ≈0.3-0.5 nm Curie paramagnetism is induced by formation of ND1 centres with an effective magnetic moment μ{sub eff}~(0.1–0.2)μ{sub B}. No evidence of long range magnetic ordering is observed in the temperature range 4.2-300 K. - Highlights: • Proton macro-irradiation of pure diamond creates fluence dependent paramagnetism. • The effective magnetic moment is found to be in the range μ{sub eff}~(0.1–0.2)μ{sub B}. • No evidence of long range magnetic ordering is observed.

  17. Fabrication of diamond shells

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  18. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.

    2014-10-21

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  19. Diamond nanobeam waveguide optomechanics

    CERN Document Server

    Khanaliloo, Behzad; Hryciw, Aaron C; Lake, David P; Kaviani, Hamidreza; Barclay, Paul E

    2015-01-01

    Optomechanical devices sensitively transduce and actuate motion of nanomechanical structures using light, and are central to many recent fundamental studies and technological advances. Single--crystal diamond promises to improve the performance of optomechanical devices, while also providing opportunities to interface nanomechanics with diamond color center spins and related quantum technologies. Here we demonstrate measurement of diamond nanobeam resonators with a sensitivity of 9.5 fm/Hz^0.5 and bandwidth >120 nm through dissipative waveguide--optomechanical coupling. Nanobeams are fabricated from bulk single--crystal diamond using a scalable quasi--isotropic oxygen plasma undercut etching process, and support mechanical resonances with quality factor of 2.5 x 10^5 at room temperature, and 7.2 x 10^5 in cryogenic conditions (5K). Mechanical self--oscillations, resulting from interplay between optomechanical coupling and the photothermal response of nanobeams in a buckled state, are observed with amplitude e...

  20. Quantum engineering: Diamond envy

    Science.gov (United States)

    Nunn, Joshua

    2013-03-01

    Nitrogen atoms trapped tens of nanometres apart in diamond can now be linked by quantum entanglement. This ability to produce and control entanglement in solid systems could enable powerful quantum computers.

  1. Laser-induced atomic adsorption: a mechanism for nanofilm formation

    CERN Document Server

    Martins, Weliton S; Oriá, Marcos; Chevrollier, Martine

    2013-01-01

    We demonstrate and interpret a technique of laser-induced formation of thin metallic films using alkali atoms on the window of a dense-vapour cell. We show that this intriguing photo-stimulated process originates from the adsorption of Cs atoms via the neutralisation of Cs$^+$ ions by substrate electrons. The Cs$^+$ ions are produced via two-photon absorption by excited Cs atoms very close to the surface, which enables the transfer of the laser spatial intensity profile to the film thickness. An initial decrease of the surface work function is required to guarantee Cs$^+$ neutralisation and results in a threshold in the vapour density. This understanding of the film growth mechanism may facilitate the development of new techniques of laser-controlled lithography, starting from thermal vapours.

  2. Inducing vortex formation in multilayered circular dots using remanent curves

    Science.gov (United States)

    Kim, Dong-Ok; Ryeol Lee, Dong; Choi, Yongseong; Metlushko, Vitali; Park, Jihwey; Kim, Jae-Young; Bong Lee, Ki

    2012-11-01

    We report field manipulation of magnetic vortex states in Co(30 nm)/Cu(3 nm)/Ni80Fe20 (20 nm)-multilayer dot arrays via remanent curve. The element-resolved resonant x-ray magnetic measurements, combined with micromagnetic simulations, show vortex formation in the Co layer but not in the NiFe layer along the major hysteresis loop. Although the two magnetic layers are not directly coupled due to the presence of the Cu interlayer, the NiFe layer is strongly influenced by the dipolar field from uncompensated magnetic poles in the Co layer. Using remanent curves, we demonstrate that the single vortex state can be induced simultaneously in both layers.

  3. Diamond dipole active antenna

    OpenAIRE

    Bubnov, Igor N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.

    2015-01-01

    Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.

  4. Deuterium ion irradiation induced blister formation and destruction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jaemin; Kim, Nam-Kyun; Kim, Hyun-Su; Jin, Younggil; Roh, Ki-Baek; Kim, Gon-Ho, E-mail: ghkim@snu.ac.kr

    2016-11-01

    Highlights: • The areal number density of blisters on the grain with (1 1 1) plane orientation increased with increasing ion fluence. • No more blisters were created above the temperature about 900 K due to high thermal mobility of ions and inactivity of traps. • The destruction of blister at the boundary induced by sputtering is proposed. • The blisters were destructed at the position about the boundary by high sputtering yield of oblique incident ions and thin thickness due to plastic deformation at the boundary. - Abstract: The blisters formation and destruction induced by the deuterium ions on a polycrystalline tungsten were investigated with varying irradiation deuterium ion fluence from 3.04 × 10{sup 23} to 1.84 × 10{sup 25} D m{sup −2} s{sup −1} and an fixed irradiated ion energy of 100 eV in an electron cyclotron resonance plasma source, which was similar to the far-scrape off layer region in the nuclear fusion reactors. Target temperature was monitored during the irradiation. Most of blisters formed easily on the grain with (1 1 1) plane orientation which had about 250 nm in diameter. In addition, the areal number density of blisters increased with increasing the ion fluence under the surface temperature reaching to about 900 K. When the fluence exceeded 4.6 × 10{sup 24} D m{sup −2}, the areal number density of the blister decreased. It could be explained that the destruction of the blister was initiated by erosion at the boundary region where the thickness of blister lid was thin and the sputtering yield was high by oblique incident ions, resulting in remaining the lid open, e.g., un-eroded center dome. It is possible to work as a tungsten dust formation from the plasma facing divertor material at far-SOL region of fusion reactor.

  5. Fibroblast-like synoviocytes induce calcium mineral formation and deposition.

    Science.gov (United States)

    Sun, Yubo; Mauerhan, David R; Franklin, Atiya M; Zinchenko, Natalia; Norton, Harry James; Hanley, Edward N; Gruber, Helen E

    2014-01-01

    Calcium crystals are present in the synovial fluid of 65%-100% patients with osteoarthritis (OA) and 20%-39% patients with rheumatoid arthritis (RA). This study sought to investigate the role of fibroblast-like synoviocytes (FLSs) in calcium mineral formation. We found that numerous genes classified in the biomineral formation process, including bone gamma-carboxyglutamate (gla) protein/osteocalcin, runt-related transcription factor 2, ankylosis progressive homolog, and parathyroid hormone-like hormone, were differentially expressed in the OA and RA FLSs. Calcium deposits were detected in FLSs cultured in regular medium in the presence of ATP and FLSs cultured in chondrogenesis medium in the absence of ATP. More calcium minerals were deposited in the cultures of OA FLSs than in the cultures of RA FLSs. Examination of the micromass stained with nonaqueous alcoholic eosin indicated the presence of birefringent crystals. Phosphocitrate inhibited the OA FLSs-mediated calcium mineral deposition. These findings together suggest that OA FLSs are not passive bystanders but are active players in the pathological calcification process occurring in OA and that potential calcification stimuli for OA FLSs-mediated calcium deposition include ATP and certain unidentified differentiation-inducing factor(s). The OA FLSs-mediated pathological calcification process is a valid target for the development of disease-modifying drug for OA therapy.

  6. Fibroblast-Like Synoviocytes Induce Calcium Mineral Formation and Deposition

    Directory of Open Access Journals (Sweden)

    Yubo Sun

    2014-01-01

    Full Text Available Calcium crystals are present in the synovial fluid of 65%–100% patients with osteoarthritis (OA and 20%–39% patients with rheumatoid arthritis (RA. This study sought to investigate the role of fibroblast-like synoviocytes (FLSs in calcium mineral formation. We found that numerous genes classified in the biomineral formation process, including bone gamma-carboxyglutamate (gla protein/osteocalcin, runt-related transcription factor 2, ankylosis progressive homolog, and parathyroid hormone-like hormone, were differentially expressed in the OA and RA FLSs. Calcium deposits were detected in FLSs cultured in regular medium in the presence of ATP and FLSs cultured in chondrogenesis medium in the absence of ATP. More calcium minerals were deposited in the cultures of OA FLSs than in the cultures of RA FLSs. Examination of the micromass stained with nonaqueous alcoholic eosin indicated the presence of birefringent crystals. Phosphocitrate inhibited the OA FLSs-mediated calcium mineral deposition. These findings together suggest that OA FLSs are not passive bystanders but are active players in the pathological calcification process occurring in OA and that potential calcification stimuli for OA FLSs-mediated calcium deposition include ATP and certain unidentified differentiation-inducing factor(s. The OA FLSs-mediated pathological calcification process is a valid target for the development of disease-modifying drug for OA therapy.

  7. Gibberellin-induced formation of tension wood in angiosperm trees.

    Science.gov (United States)

    Funada, Ryo; Miura, Tatsuhiko; Shimizu, Yousuke; Kinase, Takanori; Nakaba, Satoshi; Kubo, Takafumi; Sano, Yuzou

    2008-05-01

    After gibberellin had been applied to the vertical stems of four species of angiosperm trees for approximately 2 months, we observed eccentric radial growth that was due to the enhanced growth rings on the sides of stems to which gibberellin had been applied. Moreover, the application of gibberellin resulted in the formation of wood fibers in which the thickness of inner layers of cell walls was enhanced. These thickened inner layers of cell walls were unlignified or only slightly lignified. In addition, cellulose microfibrils on the innermost surface of these thickened inner layers of cell walls were oriented parallel or nearly parallel to the longitudinal axis of the fibers. Such thickened inner layers of cell walls had features similar to those of gelatinous layers in the wood fibers of tension wood, which are referred to as gelatinous fibers. Our anatomical and histochemical investigations indicate that the application of gibberellin can induce the formation of tension wood on vertical stems of angiosperm trees in the absence of gravitational stimulus.

  8. Near edge X-ray absorption fine structure study for optimization of hard diamond-like carbon film formation with Ar cluster ion beam

    CERN Document Server

    Kitagawa, T; Kanda, K; Shimizugawa, Y; Toyoda, N; Matsui, S; Yamada, I; Tsubakino, H; Matsuo, J

    2003-01-01

    Diamond-like carbon (DLC) film deposited using C sub 6 sub 0 vapor with simultaneous irradiation of an Ar cluster ion beam was characterized by a near edge X-ray absorption fine structure (NEXAFS), in order to optimize the hard DLC film deposition conditions. Contents of sp sup 2 orbitals in the films, which were estimated from NEXAFS spectra, are 30% lower than that of a conventional DLC film deposited by a RF plasma method. Those contents were obtained under the flux ratio of the C sub 6 sub 0 molecules to the Ar cluster ions to range from 1 to 20, at 5keV of Ar cluster ion acceleration energy. Average hardness of the films was 50 GPa under these flux ratios. This hardness was three times higher than that of a conventional DLC film. Furthermore, the lowest sp sup 2 content and above-mentioned high hardness were obtained at room temperature of the substrate when the depositions were performed in the range of the substrate temperature from room temperature to 250degC. (author)

  9. Cryotribology of diamond and graphite

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Yukikazu; Ashaboglu, A.F.; Rabinowicz, E.R. [Francis Bitter Magnet Lab., Cambridge, MA (United States)

    1996-12-31

    An experimental study was carried out on the tribological behavior of materials of interest in cryogenic applications, focusing on diamond and graphite. Both natural diamond (referred in the text as diamond) and chemical-vapor-deposition (CVD) diamond (CVD-diamond) were used. The experiment was carried out using a pin-on-disk tribometer capable of operating at cryogenic temperatures, from 4.2 to 293 K. Two basic scenarios of testing were used: (1) frictional coefficient ({mu}) vs velocity (v) characteristics at constant temperatures; (2) {mu} vs temperature (T) behavior at fixed sliding speeds. For diamond/CVD-diamond, graphite/CVD-diamond, stainless steel/CVD-diamond pairs, {mu}`s are virtually velocity independent. For each of diamond/graphite, alumina/graphite, and graphite/graphite pairs, the {partial_derivative}{mu}/{partial_derivative}v characteristic is favorable, i.e., positive. For diamond/CVD-diamond and graphite/CVD-diamond pairs, {mu}`s are nearly temperature independent between in the range 77 - 293 K. Each {mu} vs T plot for pin materials sliding on graphite disks has a peak at a temperature in the range 100 - 200 K.

  10. Native and induced triplet nitrogen-vacancy centers in nano- and micro-diamonds: Half-field electron paramagnetic resonance fingerprint

    Science.gov (United States)

    Shames, A. I.; Osipov, V. Yu.; von Bardeleben, H.-J.; Boudou, J.-P.; Treussart, F.; Vul', A. Ya.

    2014-02-01

    Multiple frequency electron paramagnetic resonance (EPR) study of small (4-25 nm) nanodiamonds obtained by various dynamic synthesis techniques reveals systematic presence in the half-field (HF) region a distinctive doublet fingerprint consisting of resolved gHF1 = 4.26 and gHF2 = 4.00 signals. This feature is attributed to "forbidden" ΔMS = 2 transitions in EPR spectra of two native paramagnetic centers of triplet (S = 1) origin designated as TR1 and TR2, characterized by zero field splitting values D1 = 0.0950 ± 0.002 cm-1 and D2 = 0.030 ± 0.005 cm-1. Nanodiamonds of ˜50 nm particle size, obtained by crushing of Ib type nitrogen rich synthetic diamonds, show only HF TR2 signal whereas the same sample undergone high energy (20 MeV) electron irradiation and thermal annealing demonstrates rise of HF TR1 signal. The same HF TR1 signals appear in the process of fabrication of fluorescent nanodiamonds from micron-size synthetic diamond precursors. Results obtained allow unambiguous attribution of the half-field TR1 EPR signals with gHF1 = 4.26, observed in nano- and micron-diamond powders, to triplet negatively charged nitrogen-vacancy centers. These signals are proposed as reliable and convenient fingerprints in both qualitative and quantitative study of fluorescent nano- and micron-diamonds.

  11. Effect of Regrown Graphite on the Growth of Large Gem Diamonds by Temperature Gradient Method

    Institute of Scientific and Technical Information of China (English)

    ZANG Chuan-Yi; JIA Xiao-Peng; MA Hong-An; TIAN Yu; XIAO Hong-Yu

    2005-01-01

    @@ Generally, when growing high-quality large gem diamond crystals by temperature gradient method under high pressure and high temperature, the crystal growth rate is only determined by the temperature gradient. However,we find that the seed crystal cannot completely absorb all the diffused carbon sources, when growing gem diamonds under a higher temperature gradient. Other influence factors appear, and the growth rate of growing diamonds is partly dependent on the crystalline form of superfluous unabsorbed carbon source, flaky regrown graphite or small diamond crystals nucleated spontaneously. The present form is determined by the growth temperature if the pressure isfixed. Different from spontaneous diamond nuclei, the appearance of regrown graphite in the diamondstable region can retard the growth rate of gem diamonds substantially, even if the temperature gradient keeps unchanged. On the other hand, the formation mechanism of metastable regrown graphite in the diamond-stable region is also explained.

  12. Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression.

    Science.gov (United States)

    Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella

    2008-05-14

    We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.

  13. Diamond electronic properties and applications

    CERN Document Server

    Kania, Don R

    1995-01-01

    The use of diamond in electronic applications is not a new idea, but limitations in size and control of properties restricted the use of diamond to a few specialised applications. The vapour-phase synthesis of diamond, however, has facilitated serious interest in the development of diamond-based electronic devices. The process allows diamond films to be laid down over large areas. Both intrinsic and doped diamond films have a unique combination of extreme properties for high speed, high power and high temperature applications. The eleven chapters in Diamond: Electronic Properties and Applications, written by the world's foremost experts on the subject, give a complete characterisation of the material, in both intrinsic and doped forms, explain how to grow it for electronic applications, how to use the grown material, and a description of both passive and active devices in which it has been used with success. Diamond: Electronic Properties and Applications is a compendium of the available literature on the sub...

  14. Diamond pixel modules

    CERN Document Server

    Gan, K K; Robichaud, A; Potenza, R; Kuleshov, S; Kagan, H; Kass, R; Wermes, N; Dulinski, W; Eremin, V; Smith, S; Sopko, B; Olivero, P; Gorisek, A; Chren, D; Kramberger, G; Schnetzer, S; Weilhammer, P; Martemyanov, A; Hugging, F; Pernegger, H; Lagomarsino, S; Manfredotti, C; Mishina, M; Trischuk, W; Dobos, D; Cindro, V; Belyaev, V; Duris, J; Claus, G; Wallny, R; Furgeri, A; Tuve, C; Goldstein, J; Sciortino, S; Sutera, C; Asner, D; Mikuz, M; Lo Giudice, A; Velthuis, J; Hits, D; Griesmayer, E; Oakham, G; Frais-Kolbl, H; Bellini, V; D'Alessandro, R; Cristinziani, M; Barbero, M; Schaffner, D; Costa, S; Goffe, M; La Rosa, A; Bruzzi, M; Schreiner, T; de Boer, W; Parrini, G; Roe, S; Randrianarivony, K; Dolenc, I; Moss, J; Brom, J M; Golubev, A; Mathes, M; Eusebi, R; Grigoriev, E; Tsung, J W; Mueller, S; Mandic, I; Stone, R; Menichelli, D

    2011-01-01

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8 x 10(16) protons/cm(2) illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel m...

  15. Heteroepitaxial diamond growth

    Science.gov (United States)

    Markunas, R. J.; Rudder, R. A.; Posthill, J. B.; Thomas, R. E.; Hudson, G.

    1994-02-01

    Technical highlights from 1993 include the following: Growth Chemistries: A clear correlation was observed between ionization potential of feedstock gasses and critical power necessary for inductive coupling of the plasma and consequent diamond growth. Substrate preparation and epitaxial film quality: Ion-implantation of C and O has been coupled with either electrochemical etching or acid cleaning for surface preparation prior to homoepitaxial growth. Reactor modifications: Key improvements were made to the RF reactor to allow for long growths to consolidate substrates. Liquid mass flow controllers were added to precisely meter both the water and selected alcohol. Ion-implantation and lift off: Lift off of diamond platelets has been achieved with two processes. Ion-implantation of either C or O followed by annealing and implantation of either C or O followed by water based electrolysis. Diamond characterization: Development of novel detect characterization techniques: (1) Etch delineation of defects by exposure to propane torch flame. (2) Hydrogen plasma exposure to enhance secondary electron emission and provide non-topographical defect contrast. Acetylene will react at room temperature with sites created by partial desorption of oxygen from the (100) diamond surface. Thermal desorption measurements give an apparent activation energy for CO desorption from diamond (100) of 45 kcal/mol. Quantum chemical calculations indicate an activation energy of 38 kcal/mol for CO desorption. Ab initio calculations on (100) surfaces indicates that oxygen adsorbed at one dimer site has an effect on the dimerization of an adjacent site.

  16. PREFACE: Science's gem: diamond science 2009 Science's gem: diamond science 2009

    Science.gov (United States)

    Mainwood, Alison; Newton, Mark E.; Stoneham, Marshall

    2009-09-01

    diamond's exceptional properties for quantum information processing [2], a topic on which there have been many recent papers, and where a diamond colour centre single photon source is already commercially available. Biomedical applications of diamond are recognised, partly tribological and partly electrochemical, but lie outside the present group of papers. Processing and controlling diamond surfaces and interfaces with other materials in their environment are critical steps en route to exploitation. Boron-doped diamond has already found application in electro-analysis and in the bulk oxidation of dissolved species in solution [3]. Energy-related applications—ranging from high-power electronics [3] to a potential first wall of fusion reactors [4]—are further exciting potential applications. Even small and ugly diamonds have value. Their mechanical properties [5] dominate, with significant niche applications such as thermal sinks. The major applications for diamond to date exploit only a fraction of diamond's special properties: visual for status diamonds, and mechanical for working diamonds. Diamond physics reaches well beyond the usual laboratory, to the geological diamond formation processes in the Earth's mantle. Characterization of natural gem diamonds [6, 7] is one part of the detective story that allows us to understand the conditions under which they formed. It was only half a century ago that the scientific and technological challenges of diamond synthesis were met systematically. Today, most of the recent research on diamond has concentrated on synthetics, whether created using high pressure, high temperature (HPHT) techniques or chemical vapour deposition (CVD). The HPHT synthesis of diamond has advanced dramatically [8, 9] to the extent that dislocation birefringence [10] can be largely eliminated. In silicon technology, the elimination of dislocations was a major step in microelectronics. Now, even diamond can be synthesised containing virtually no

  17. Laser-induced jetting and controlled droplet formation

    Science.gov (United States)

    Pascu, Mihail Lucian; Andrei, Ionut Relu; Delville, Jean-Pierre

    2016-12-01

    The article reports, in the general context of developing techniques to generate microjets, nanojets and even individual nanodroplets, a new method to obtain such formations by interaction of a single laser pulse at 532 nm with an individual/single mother droplet in pendant position in open air. The beam energy per pulse is varied between 0.25 and 1 mJ, the focus diameter is 90 μm, and the droplet's volumes are either 3 μl or 3.5 μl. Droplet's shape evolution and jet emission at impact with laser pulse was visualised with a high speed camera working at 10 kfps. Reproducible jets and/or separated microdroplets and nanodroplets are obtained which shows potential for applications in particular in jet printing. It is demonstrated that it becomes possible to play with the geometrical symmetry of both laser excitation and liquid in order to manage the number and the orientation of an induced microjet and consequently to actuate the orientation and the production of nanodroplets by light.

  18. Initial damage processes for diamond film exposure to hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deslandes, A., E-mail: acd@ansto.gov.au [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Guenette, M.C. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Samuell, C.M. [Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Karatchevtseva, I. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Ionescu, M.; Cohen, D.D. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Blackwell, B. [Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Corr, C., E-mail: cormac.corr@anu.edu.au [Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Riley, D.P., E-mail: dry@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia)

    2013-12-15

    Graphical abstract: -- Highlights: • Exposing chemical vapour deposited (CVD) diamond films in a recently constructed device, MAGPIE, specially commissioned to simulate fusion plasma conditions. • Non-diamond material is etched from the diamond. • There is no hydrogen retention observed, which suggests diamond is an excellent candidate for plasma facing materials. • Final structure of the surface is dependent on synergistic effects of etching and ion-induced structural change. -- Abstract: Diamond is considered to be a possible alternative to other carbon based materials as a plasma facing material in nuclear fusion devices due to its high thermal conductivity and resistance to chemical erosion. In this work CVD diamond films were exposed to hydrogen plasma in the MAGnetized Plasma Interaction Experiment (MAGPIE): a linear plasma device at the Australian National University which simulates plasma conditions relevant to nuclear fusion. Various negative sample stage biases of magnitude less than 500 V were applied to control the energies of impinging ions. Characterisation results from SEM, Raman spectroscopy and ERDA are presented. No measureable quantity of hydrogen retention was observed, this is either due to no incorporation of hydrogen into the diamond structure or due to initial incorporation as a hydrocarbon followed by subsequent etching back into the plasma. A model is presented for the initial stages of diamond erosion in fusion relevant hydrogen plasma that involves chemical erosion of non-diamond material from the surface by hydrogen radicals and damage to the subsurface region from energetic hydrogen ions. These results show that the initial damage processes in this plasma regime are comparable to previous studies of the fundamental processes as reported for less extreme plasma such as in the development of diamond films.

  19. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-01

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  20. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-02

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  1. Diamond Measuring Machine

    Energy Technology Data Exchange (ETDEWEB)

    Krstulic, J.F.

    2000-01-27

    The fundamental goal of this project was to develop additional capabilities to the diamond measuring prototype, work out technical difficulties associated with the original device, and perform automated measurements which are accurate and repeatable. For this project, FM and T was responsible for the overall system design, edge extraction, and defect extraction and identification. AccuGem provided a lab and computer equipment in Lawrence, 3D modeling, industry expertise, and sets of diamonds for testing. The system executive software which controls stone positioning, lighting, focusing, report generation, and data acquisition was written in Microsoft Visual Basic 6, while data analysis and modeling were compiled in C/C++ DLLs. All scanning parameters and extracted data are stored in a central database and available for automated analysis and reporting. The Phase 1 study showed that data can be extracted and measured from diamond scans, but most of the information had to be manually extracted. In this Phase 2 project, all data required for geometric modeling and defect identification were automatically extracted and passed to a 3D modeling module for analysis. Algorithms were developed which automatically adjusted both light levels and stone focus positioning for each diamond-under-test. After a diamond is analyzed and measurements are completed, a report is printed for the customer which shows carat weight, summarizes stone geometry information, lists defects and their size, displays a picture of the diamond, and shows a plot of defects on a top view drawing of the stone. Initial emphasis of defect extraction was on identification of feathers, pinpoints, and crystals. Defects were plotted color-coded by industry standards for inclusions (red), blemishes (green), and unknown defects (blue). Diamonds with a wide variety of cut quality, size, and number of defects were tested in the machine. Edge extraction, defect extraction, and modeling code were tested for

  2. Suilysin-induced Platelet-Neutrophil Complexes Formation is Triggered by Pore Formation-dependent Calcium Influx

    Science.gov (United States)

    Zhang, Shengwei; Zheng, Yuling; Chen, Shaolong; Huang, Shujing; Liu, Keke; Lv, Qingyu; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Platelet activation and platelet–neutrophil interactions have been found to be involved in inflammation, organ failure and soft-tissue necrosis in bacterial infections. Streptococcus suis, an emerging human pathogen, can cause streptococcal toxic-shock syndrome (STSS) similarly to Streptococcus pyogenes. Currently, S. suis–platelet interactions are poorly understood. Here, we found that suilysin (SLY), the S. suis cholesterol-dependent cytolysin (CDC), was the sole stimulus of S. suis that induced platelet-neutrophil complexes (PNC) formation. Furthermore, P-selectin released in α-granules mediated PNC formation. This process was triggered by the SLY-induced pore forming-dependent Ca2+ influx. Moreover, we demonstrated that the Ca2+ influx triggered an MLCK-dependent pathway playing critical roles in P-selectin activation and PNC formation, however, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signalling were not involved. Additionally, the “outside-in” signalling had a smaller effect on the SLY-induced P-selectin release and PNC formation. Interestingly, other CDCs including pneumolysin and streptolysin O have also been found to induce PNC formation in a pore forming-dependent Ca2+ influx manner. It is possible that the bacterial CDC-mediated PNC formation is a similar response mechanism used by a wide range of bacteria. These findings may provide useful insight for discovering potential therapeutic targets for S. suis-associated STSS. PMID:27830834

  3. Specific plant induced biofilm formation in Methylobacterium species

    Science.gov (United States)

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  4. IR-stimulated visible fluorescence in pink and brown diamond.

    Science.gov (United States)

    Byrne, K S; Chapman, J G; Luiten, A N

    2014-03-19

    Irradiation of natural pink and brown diamond by middle-ultraviolet light (photon energy ϵ ≥ 4.1 eV ) is seen to induce anomalous fluorescence phenomena at N3 defect centres (structure N3-V). When diamonds primed in this fashion are subsequently exposed to infrared light (even with a delay of many hours), a transient burst of blue N3 fluorescence is observed. The dependence of this IR-triggered fluorescence on pump wavelength and intensity suggest that this fluorescence phenomena is intrinsically related to pink diamond photochromism. An energy transfer process between N3 defects and other defect species can account for both the UV-induced fluorescence intensity changes, and the apparent optical upconversion of IR light. From this standpoint, we consider the implications of this N3 fluorescence behaviour for the current understanding of pink diamond photochromism kinetics.

  5. Twinning of cubic diamond explains reported nanodiamond polymorphs

    Science.gov (United States)

    Németh, Péter; Garvie, Laurence A. J.; Buseck, Peter R.

    2015-12-01

    The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin ( rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications.

  6. Native and induced triplet nitrogen-vacancy centers in nano- and micro-diamonds: Half-field electron paramagnetic resonance fingerprint

    Energy Technology Data Exchange (ETDEWEB)

    Shames, A. I., E-mail: sham@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negev, Be' er-Sheva 84105 (Israel); Osipov, V. Yu.; Vul’, A. Ya. [Ioffe Physical-Technical Institute, Polytechnicheskaya 26, 194021 St. Petersburg (Russian Federation); Bardeleben, H.-J. von [Institut des Nano Sciences de Paris-INSP, Université Pierre et Marie Curie/UMR 7588 au CNRS, 7500 Paris (France); Boudou, J.-P.; Treussart, F. [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud and ENS Cachan, 91405 Orsay (France)

    2014-02-10

    Multiple frequency electron paramagnetic resonance (EPR) study of small (4–25 nm) nanodiamonds obtained by various dynamic synthesis techniques reveals systematic presence in the half-field (HF) region a distinctive doublet fingerprint consisting of resolved g{sub HF1} = 4.26 and g{sub HF2} = 4.00 signals. This feature is attributed to “forbidden” ΔM{sub S} = 2 transitions in EPR spectra of two native paramagnetic centers of triplet (S = 1) origin designated as TR1 and TR2, characterized by zero field splitting values D{sub 1} = 0.0950 ± 0.002 cm{sup −1} and D{sub 2} = 0.030 ± 0.005 cm{sup −1}. Nanodiamonds of ∼50 nm particle size, obtained by crushing of Ib type nitrogen rich synthetic diamonds, show only HF TR2 signal whereas the same sample undergone high energy (20 MeV) electron irradiation and thermal annealing demonstrates rise of HF TR1 signal. The same HF TR1 signals appear in the process of fabrication of fluorescent nanodiamonds from micron-size synthetic diamond precursors. Results obtained allow unambiguous attribution of the half-field TR1 EPR signals with g{sub HF1} = 4.26, observed in nano- and micron-diamond powders, to triplet negatively charged nitrogen-vacancy centers. These signals are proposed as reliable and convenient fingerprints in both qualitative and quantitative study of fluorescent nano- and micron-diamonds.

  7. Diamond nanospherulite: A novel material produced at carbon-water interface by pulsed-laser ablation

    Institute of Scientific and Technical Information of China (English)

    王育煌; 黄群健; 陈忠; 黄荣彬; 郑兰荪

    1997-01-01

    Formation of carbon nanoparticles with perfectly spherical.shape and diamond structure (diamond nanospherulite) by laser-ablating a variety of carbon samples in water is reported for the first time The studies reveal that molten carbon nanoparticles generated by laser ablation are quenched directly by water and end up as diamond nanospherulites,possibly due to the high pressure arising from surface tension and the high stability resulting from termination of dangling bonds with hydrogen atoms.

  8. CVD diamond - fundamental phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, W.A. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  9. Nuclear techniques of analysis in diamond synthesis and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D. N.; Prawer, S.; Gonon, P.; Walker, R.; Dooley, S.; Bettiol, A.; Pearce, J. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Nuclear techniques of analysis have played an important role in the study of synthetic and laser annealed diamond. These measurements have mainly used ion beam analysis with a focused MeV ion beam in a nuclear microprobe system. A variety of techniques have been employed. One of the most important is nuclear elastic scattering, sometimes called non-Rutherford scattering, which has been used to accurately characterise diamond films for thickness and composition. This is possible by the use of a database of measured scattering cross sections. Recently, this work has been extended and nuclear elastic scattering cross sections for both natural boron isotopes have been measured. For radiation damaged diamond, a focused laser annealing scheme has been developed which produces near complete regrowth of MeV phosphorus implanted diamonds. In the laser annealed regions, proton induced x-ray emission has been used to show that 50 % of the P atoms occupy lattice sites. This opens the way to produce n-type diamond for microelectronic device applications. All these analytical applications utilize a focused MeV microbeam which is ideally suited for diamond analysis. This presentation reviews these applications, as well as the technology of nuclear techniques of analysis for diamond with a focused beam. 9 refs., 6 figs.

  10. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de [Institute for Experimental Nuclear Physics (IEKP), KIT, Karlsruhe (Germany); Guthoff, Moritz; Dabrowski, Anne [CERN, Meyrin (Switzerland)

    2016-10-15

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb{sup -1} corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the

  11. Double Aztec Diamonds and the Tacnode Process

    CERN Document Server

    Adler, Mark; van Moerbeke, Pierre

    2011-01-01

    Discrete and continuous non-intersecting random processes have given rise to critical "infinite dimensional diffusions", like the Airy process, the Pearcey process and variations thereof. It has been known that domino tilings of very large Aztec diamonds lead macroscopically to a disordered region within an inscribed ellipse (arctic circle in the homogeneous case), and a regular brick-like region outside the ellipse. The fluctuations near the ellipse, appropriately magnified and away from the boundary of the Aztec diamond, form an Airy process, run with time tangential to the boundary. This paper investigates the domino tiling of two overlapping Aztec diamonds; this situation also leads to non-intersecting random walks and an induced point process; this process is shown to be determinantal. In the large size limit, when the overlap is such that the two arctic ellipses for the single Aztec diamonds merely touch, a new critical process will appear near the point of osculation (tacnode), which is run with a time...

  12. Raman analyses of residual stress in diamond thin films grown on Ti6Al4V alloy

    Directory of Open Access Journals (Sweden)

    Azevedo Adriana F.

    2003-01-01

    Full Text Available The stress evolution in diamond films grown on Ti6Al4V was investigated in order to develop a comprehensive view of the residual stress formation. Residual stress is composed of intrinsic stress induced during diamond film growth and extrinsic stress caused by the different thermal expansion coefficients between the film and substrate. In the coalescence stage it has been observed that the residual stress is dominated by the microstructure, whereas on continuous films, the thermal stress is more important. In this work diamond thin films with small grain size and good size and good quality were obtained in a surface wave-guide microwave discharge, the Surfatron system, with a negative bias voltage applied between the plasma shell and substrate. For above of -100V applied bias, the ratio of carbon sp³/sp² bond may increase and the nucleation rate increase arising the high value at the -250V applied bias. Stress measurements and sp³ content in the film were studied by Raman scattering spectroscopy. The total residual stress is compressive and varied from -1.52 to -1.48 GPa between 0 and -200 V applied bias, respectively, and above the -200 V, the compressive residual stress increased drastically to -1.80 GPa. The diamond nucleation density was evaluated by top view SEM images.

  13. Forty years of development in diamond tools

    Science.gov (United States)

    The growth of the diamond industry in Western Countries since the First World War is surveyed. The articles described deal specifically with the development of the industrial diamond and diamond tool sector in different countries. All data point to continuing rapid expansion in the diamond tool sector. The West consumes 80 percent of world industrial diamond production. Diamond consumption increased sharply in the U.S. during World War 2. There are 300 diamond manufacturers in the U.S. today. In 1940, there were 25. In Japan, consumption of industrial diamonds has increased several times. In Italy, there has been a 75 fold increase in the production of diamond tools since 1959.

  14. Analysis of Laser-Brazed Diamond Particle Microstructures

    Directory of Open Access Journals (Sweden)

    Zhibo YANG

    2015-11-01

    Full Text Available Brazing diamond particles to a steel substrate using Ni-based filler alloy was carried out via laser in an argon atmosphere. The brazed diamond particles were detected by scanning electron microscope (SEM, X-ray diffraction (XRD, and energy dispersive X-ray spectroscopy (EDS. The formation mechanism of carbide layers was discussed. All the results indicated that a high-strength bond between the diamond particles and the steel substrate was successfully realized. The chromium in the Ni-based alloy segregated preferentially to the surfaces of the diamonds to form a chromium-rich reaction product, and the bond between the alloy and the steel substrate was established through a cross-diffusion of iron and Ni-based alloy.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9626

  15. Dual Ion Beam Deposition Of Diamond Films On Optical Elements

    Science.gov (United States)

    Deutchman, Arnold H.; Partyka, Robert J.; Lewis, J. C.

    1990-01-01

    Diamond film deposition processes are of great interest because of their potential use for the formation of both protective as well as anti-reflective coatings on the surfaces of optical elements. Conventional plasma-assisted chemical vapor deposition diamond coating processes are not ideal for use on optical components because of the high processing temperatures required, and difficulties faced in nucleating films on most optical substrate materials. A unique dual ion beam deposition technique has been developed which now makes possible deposition of diamond films on a wide variety of optical elements. The new DIOND process operates at temperatures below 150 aegrees Farenheit, and has been used to nucleate and grow both diamondlike carbon and diamond films on a wide variety of optical :taterials including borosilicate glass, quartz glass, plastic, ZnS, ZnSe, Si, and Ge.

  16. MSR Studies in the Progress Towards Diamond Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Connell, S. H., E-mail: connell@src.wits.ac.za [University of the Witwatersrand, Schonland Research Institute for Nuclear Sciences (South Africa); Machi, I. Z. [University of South Africa, Physics Department (South Africa); Bharuth-Ram, K. [University of KwaZulu Natal, School of Pure and Applied Physics (South Africa)

    2004-12-15

    The recent development of device quality synthetic diamond dramatically increases the potential of diamond as a wide band gap semiconductor. A remaining obstacle is the lack of shallow n-type dopants. Molecular dopant systems have been shown theoretically to lead to the shallowing of levels in the band gap. Some of these systems involve defect-hydrogen complexes. This, and other phenomena, motivate the study of the chemistry and dynamics of hydrogen in diamond. Much information on this topic has been obtained from Muon Spin Rotation (MSR) experiments. These experiments view the muonium (Mu {identical_to} {mu}{sup +}e{sup -}) atom as a light chemical analogue of hydrogen. Data on isolated muonium in diamond is reviewed, and evidence on formation of N-Mu-N (a shallow dopant candidate), the trapping of Mu at B-dopants, and fast quantum diffusion of muonium are discussed.

  17. Water-Induced Blister Formation in a Thin Film Polymer

    NARCIS (Netherlands)

    Berkelaar, R.P.; Bampoulis, Pantelis; Dietrich, E.; Jansen, H.P.; Zhang, Xuehua; Kooij, Ernst S.; Lohse, Detlef; Zandvliet, Henricus J.W.

    2015-01-01

    A failure mechanism of thin film polymers immersed in water is presented: the formation of blisters. The growth of blisters is counterintuitive as the substrates were noncorroding and the polymer does not swell in water. We identify osmosis as the driving force behind the blister formation. The

  18. Water induced blister formation in a thin film polymer

    NARCIS (Netherlands)

    Berkelaar, R.P.; Bampoulis, Pantelis; Dietrich, E.; Jansen, H.P.; Zhang, Xuehua; Kooij, Ernst S.; Lohse, Detlef; Zandvliet, Henricus J.W.

    2015-01-01

    A failure mechanism of thin film polymers immersed in water is presented: the formation of blisters. The growth of blisters is counterintuitive as the substrates were noncorroding and the polymer does not swell in water. We identify osmosis as the driving force behind the blister formation. The

  19. Water-Induced Blister Formation in a Thin Film Polymer

    NARCIS (Netherlands)

    Berkelaar, R.P.; Bampoulis, P.; Dietrich, E.; Jansen, H.P.; Zhang, X.; Kooij, E.S.; Lohse, D.; Zandvliet, Harold J.W.

    2015-01-01

    A failure mechanism of thin film polymers immersed in water is presented: the formation of blisters. The growth of blisters is counterintuitive as the substrates were noncorroding and the polymer does not swell in water. We identify osmosis as the driving force behind the blister formation. The dyna

  20. Water induced blister formation in a thin film polymer

    NARCIS (Netherlands)

    Berkelaar, R.P.; Bampoulis, P.; Dietrich, E.; Jansen, H.P.; Zhang, Xuehua; Kooij, E.S.; Lohse, D.; Zandvliet, H.J.W.

    2015-01-01

    A failure mechanism of thin film polymers immersed in water is presented: the formation of blisters. The growth of blisters is counterintuitive as the substrates were noncorroding and the polymer does not swell in water. We identify osmosis as the driving force behind the blister formation. The dyna

  1. Formation of protein induced micro-pores in Chitosan membranes

    Science.gov (United States)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2017-05-01

    Polymer based nanocomposites are important class of materials and have wide applications. Blending two biopolymers can lead to the development of new materials with tailored properties. Chitosan is a naturally occurring polysaccharide with useful properties such as biodegradability and excellent film forming capacity. Bovine serum albumin (BSA) is a abundantly available globular protein. In our research the interaction of chitosan with BSA and the effect of formation of Au nanoparticles on chitosan-BSA system were investigated. Scanning electron microscope (SEM) of the films showed formation of micron sized pores and these pores were hindered with formation of Au nanoparticles. Small angle neutron scattering (SANS) analysis showed that BSA interacts with chitosan chain and affects the Rg value of chitosan. The formation of micro pores decreases the conductivity values (σ'), while the formation of Au nanoparticles increases σ'.

  2. Ram pressure induced star formation in Abell 3266

    Science.gov (United States)

    Bonsall, Brittany

    An X-ray observation of the merging galaxy cluster Abell 3266 was obtained via the ROSAT PSPC. This information, along with spectroscopic data from the WIde-field Nearby Galaxy-clusters Survey (i.e. WINGS), were used to investigate whether ram pressure is a mechanism that influences star formation. Galaxies exhibiting ongoing star formation are identified by the presence of strong Balmer lines (Hbeta), known to correspond to early type stars. Older galaxies where a rapid increase in star formation has recently ceased, known as E+A galaxies, are identified by strong Hbeta absorption coupled with little to no [OII] emission. The correlation between recent star formation and "high" ram pressure, as defined by Kapferer et al. (2009) as ≥ 5 x 10-11 dyn cm-2, was tested and lead to a contradiction of the previously held belief that ram pressure influences star formation on the global cluster scale.

  3. Kinetics of diamond-silicon reaction under high pressure-high temperature conditions

    Science.gov (United States)

    Pantea, Cristian

    In this dissertation work, the kinetics of the reaction between diamond and silicon at high pressure-high temperature conditions was investigated. This study was motivated by the extremely limited amount of information related to the kinetics of the reaction in diamond-silicon carbide composites formation. It was found that the reaction between diamond and melted silicon and the subsequent silicon carbide formation is a two-stage process. The initial stage is a result of direct reaction of melted silicon with carbon atoms from the diamond surface, the phase boundary reaction. Further growth of SiC is much more complicated and when the outer surfaces of diamond crystals are covered with the silicon carbide layer it involves diffusion of carbon and silicon atoms through the SiC layer. The reaction takes place differently for the two regions of stability of carbon. In the graphite-stable region, the reaction between diamond and melted silicon is associated with the diamond-to-graphite phase transition, while in the diamond-stable region there is no intermediary step for the reaction. The data obtained at HPHT were fitted by the Avrami-Erofeev equation. It was found that the reaction is isotropic, the beta-SiC grown on different faces of the diamond crystals showing the same reaction rate, and that the controlling mechanism for the reaction is the diffusion. In the graphite-stable region the activation energy, 402 kJ/mol is slightly higher than in the diamond-stable region, 260 kJ/mol, as the reaction between diamond and melted silicon is associated with the diamond-to-graphite phase transition, which has higher activation energy. In the diamond-stable region, the calculated activation energy is higher for micron size diamond powders (≈260 kJ/mol), while for nanocrystalline diamond powders a lower value of 170 kJ/mol was obtained. This effect was attributed to nanocrystalline structure and strained bonds within grain boundaries in SiC formed from nanosize diamond

  4. Trace elements in sulfide inclusions from Yakutian diamonds

    Science.gov (United States)

    Bulanova, G. P.; Griffin, W. L.; Ryan, C. G.; Shestakova, O. Y.; Barnes, S.-J.

    1996-07-01

    single diamonds are consistent with growth histories shown by cathodoluminescence images, in which several stages of growth and resorption have occurred within magmatic environments that evolved during diamond formation.

  5. Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip

    Science.gov (United States)

    Xiao, Min; Xu, Na; Wang, Cheng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2017-03-01

    Membrane nanotubes (MNTs) are physical connections for intercellular communication and induced by various viruses. However, the formation of vaccinia virus (VACV)-induced MNTs has never been studied. In this report, VACV-induced MNTs formation process was monitored on a microfluidic chip equipped with a series of side chambers, which protected MNTs from fluidic shear stress. MNTs were formed between susceptible cells and be facilitated by VACV infection through three patterns. The formed MNTs varied with cell migration and virus concentration. The length of MNTs was positively correlated with the distance of cell migration. With increasing virus titer, the peak value of the ratio of MNT-carried cell appeared earlier. The immunofluorescence assay indicated that the rearrangement of actin fibers induced by VACV infection may lead to the formation of MNTs. This study presents evidence for the formation of MNTs induced by virus and helps us to understand the relationship between pathogens and MNTs.

  6. Structure and properties of diamond and diamond-like films

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E. [Oak Ridge National Lab., TN (United States)

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  7. Growth and tribological properties of diamond films on silicon and tungsten carbide substrates

    Science.gov (United States)

    Radhika, R.; Ramachandra Rao, M. S.

    2016-11-01

    Hot filament chemical vapor deposition technique was used to deposit microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) films on silicon (Si) and tungsten carbide (WC-6Co) substrates. Friction coefficient of larger diamond grains deposited on WC-6Co substrate shows less value approximately 0.2 while this differs marginally on films grown on Si substrate. The study claims that for a less friction coefficient, the grain size is not necessarily smaller. However, the less friction coefficient (less than 0.1 saturated value) in MCD and NCD deposited on Si is explained by the formation of graphitized tribolayer. This layer easily forms when diamond phase is thermodynamically unstable.

  8. Induced dicentric chromosome formation promotes genomic rearrangements and tumorigenesis

    OpenAIRE

    Gascoigne, Karen E; Cheeseman, Iain M.

    2013-01-01

    Chromosomal rearrangements can radically alter gene products and their function, driving tumor formation or progression. However, the molecular origins and evolution of such rearrangements are varied and poorly understood, with cancer cells often containing multiple, complex rearrangements. One mechanism that can lead to genomic rearrangements is the formation of a “dicentric” chromosome containing two functional centromeres. Indeed, such dicentric chromosomes have been observed in cancer cel...

  9. Systemic mesenchymal stem cell administration enhances bone formation in fracture repair but not load-induced bone formation

    Directory of Open Access Journals (Sweden)

    AE Rapp

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSC were shown to support bone regeneration, when they were locally transplanted into poorly healing fractures. The benefit of systemic MSC transplantation is currently less evident. There is consensus that systemically applied MSC are recruited to the site of injury, but it is debated whether they actually support bone formation. Furthermore, the question arises as to whether circulating MSC are recruited only in case of injury or whether they also participate in mechanically induced bone formation. To answer these questions we injected green fluorescent protein (GFP-labelled MSC into C57BL/6J mice, which were subjected either to a femur osteotomy or to non-invasive mechanical ulna loading to induce bone formation. We detected GFP-labelled MSC in the early (day 10 and late fracture callus (day 21 by immunohistochemistry. Stromal cell-derived factor 1 (SDF-1 or CXCL-12, a key chemokine for stem cell attraction, was strongly expressed by virtually all cells near the osteotomy – indicating that SDF-1 may mediate cell migration to the site of injury. We found no differences in SDF-1 expression between the groups. Micro-computed tomography (µCT revealed significantly more bone in the callus of the MSC treated mice compared to untreated controls. The bending stiffness of callus was not significantly altered after MSC-application. In contrast, we failed to detect GFP-labelled MSC in the ulna after non-invasive mechanical loading. Histomorphometry and µCT revealed a significant load-induced increase in bone formation; however, no further increase was found after MSC administration. Concluding, our results suggest that systemically administered MSC are recruited and support bone formation only in case of injury but not in mechanically induced bone formation.

  10. Formation of globular clusters induced by external ultraviolet radiation

    CERN Document Server

    Hasegawa, Kenji; Kitayama, Tetsu

    2009-01-01

    We present a novel scenario for globular cluster (GC) formation, where the ultraviolet (UV) background radiation effectively works so as to produce compact star clusters. Here, we explore the formation of GCs in UV radiation fields. For this purpose, we calculate baryon and dark matter (DM) dynamics in spherical symmetry, incorporating the self-shielding effects by solving the radiative transfer of UV radiation. In addition, we prescribe the star formation in cooled gas components and pursue the dynamics of formed stars. As a result, we find that the evolution of subgalactic objects in UV background radiation are separated into three types, that is, (1) prompt star formation, where less massive clouds ~10^{5-8} M_sun are promptly self-shielded and undergo star formation, (2) delayed star formation, where photoionized massive clouds >10^8 M_sun collapse despite high thermal pressure and are eventually self-shielded to form stars in a delayed fashion, and (3) supersonic infall, where photoionized less massive c...

  11. Phase diagram with a region of liquid carbon-diamond metastable states

    Science.gov (United States)

    Basharin, A. Yu.; Dozhdikov, V. S.; Kirillin, A. V.; Turchaninov, M. A.; Fokin, L. R.

    2010-06-01

    Metastable cubic diamond has been found in the structure of solid carbon obtained by quenching of a liquid phase at a pressure (0.012 GPa) much lower than that corresponding to the existence of stable diamond. It is suggested that this metastable diamond is formed as a result of the recalescence of supercooled liquid carbon to the melting point ( T dm) of metastable diamond due to a lower energy barrier for the formation of diamond as compared to that of graphite. A comparison between the calculated Gibbs energies of metastable phases provided an estimate of T dm = 4160 ± 50 K. For the first time, metastable continuations of the curve of diamond melting at pressures of up to 0.012 GPa are constructed on the phase diagrams of carbon (according to various published data) using analytical curves described by a two-parametric Simon equation.

  12. Genetics Home Reference: Diamond-Blackfan anemia

    Science.gov (United States)

    ... Home Health Conditions Diamond-Blackfan anemia Diamond-Blackfan anemia Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Diamond-Blackfan anemia is a disorder of the bone marrow . The ...

  13. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    Nanocrystalline diamond films, which comprise the so called nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), represent a class of biomaterials possessing outstanding mechanical, tribological, and electrical properties, which include high surface smoothness, high corrosion re...

  14. Biological applications of nanocrystalline diamond

    OpenAIRE

    Williams, Oliver; Daenen, Michael; Haenen, Ken

    2007-01-01

    Nanocrystalline diamond films have generated substantial interest in recent years due to their low cost, extreme properties and wide application arena. Diamond is chemically inert, has a wide electrochemical window and is stable in numerous harsh environments. Nanocrystalline diamond has the advantage of being readily grown on a variety of substrates at very low thickness, resulting in smooth conformal coatings with high transparency. These films can be doped from highly insulating to metalli...

  15. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  16. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite a...... implantation. Implantation of cobalt and argon clusters into two different allotropic forms of carbon, namely, graphite and diamond is analysed and compared in order to approach universal theory of cluster stopping in matter....... and diamond samples implanted by keV-energy size-selected cobalt and argon clusters. One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the development of scaling law for cluster...

  17. Cretaceous mantle of the Congo craton: Evidence from mineral and fluid inclusions in Kasai alluvial diamonds

    Science.gov (United States)

    Kosman, Charles W.; Kopylova, Maya G.; Stern, Richard A.; Hagadorn, James W.; Hurlbut, James F.

    2016-11-01

    Alluvial diamonds from the Kasai River, Democratic Republic of the Congo (DRC) are sourced from Cretaceous kimberlites of the Lucapa graben in Angola. Analysis of 40 inclusion-bearing diamonds provides new insights into the characteristics and evolution of ancient lithospheric mantle of the Congo craton. Silicate inclusions permitted us to classify diamonds as peridotitic, containing Fo91-95 and En92-94, (23 diamonds, 70% of the suite), and eclogitic, containing Cr-poor pyrope and omphacite with 11-27% jadeite (6 diamonds, 18% of the suite). Fluid inclusion compositions of fibrous diamonds are moderately to highly silicic, matching compositions of diamond-forming fluids from other DRC diamonds. Regional homogeneity of Congo fibrous diamond fluid inclusion compositions suggests spatially extensive homogenization of Cretaceous diamond forming fluids within the Congo lithospheric mantle. In situ cathodoluminescence, secondary ion mass spectrometry and Fourier transform infrared spectroscopy reveal large heterogeneities in N, N aggregation into B-centers (NB), and δ13C, indicating that diamonds grew episodically from fluids of distinct sources. Peridotitic diamonds contain up to 2962 ppm N, show 0-88% NB, and have δ13C isotopic compositions from - 12.5‰ to - 1.9‰ with a mode near mantle-like values. Eclogitic diamonds contain 14-1432 ppm N, NB spanning 29%-68%, and wider and lighter δ13C isotopic compositions of - 17.8‰ to - 3.4‰. Fibrous diamonds on average contain more N (up to 2976 ppm) and are restricted in δ13C from - 4.1‰ to - 9.4‰. Clinopyroxene-garnet thermobarometry suggests diamond formation at 1350-1375 °C at 5.8 to 6.3 GPa, whereas N aggregation thermometry yields diamond residence temperatures between 1000 and 1280 °C, if the assumed mantle residence time is 0.9-3.3 Ga. Integrated geothermobaromtery indicates heat fluxes of 41-44 mW/m2 during diamond formation and a lithosphere-asthenosphere boundary (LAB) at 190-210 km. The hotter

  18. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    CERN Document Server

    Kassel, Florian; Dabrowski, Anne; de Boer, Wim

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field,...

  19. Freeze/thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation

    Directory of Open Access Journals (Sweden)

    Sanna eSevanto

    2012-06-01

    Full Text Available Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g. branches or outermost layer of the xylem. Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.

  20. Argon ion beam induced surface pattern formation on Si

    Energy Technology Data Exchange (ETDEWEB)

    Hofsäss, H.; Bobes, O.; Zhang, K. [2nd Institute of Physics, Faculty of Physics, University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2016-01-21

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°. We confirm the absence of patterns at least for ion fluences up to 10{sup 18} ions/cm{sup 2}. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV.

  1. Repulsive effects of hydrophobic diamond thin films on biomolecule detection

    Energy Technology Data Exchange (ETDEWEB)

    Ruslinda, A. Rahim, E-mail: ruslindarahim@gmail.com [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Jln Kgr-Alor Setar, Seriab, 01000 Kangar, Perlis (Malaysia); Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan); Ishiyama, Y. [Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan); Penmatsa, V. [Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 (United States); Ibori, S.; Kawarada, H. [Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan)

    2015-02-15

    Highlights: • We report the effect of fluorine plasma treatment on diamond thin film to resist the nonspecific adsorption of biomolecules. • The diamond thin film were highly hydrophobic with a surface energy value of ∼25 mN/m. • The repulsive effect shows excellent binding efficiency for both DNA and HIV-1 Tat protein. - Abstract: The repulsive effect of hydrophobic diamond thin film on biomolecule detection, such as single-nucleotide polymorphisms and human immunodeficiency virus type 1 trans-activator of transcription peptide protein detection, was investigated using a mixture of a fluorine-, amine-, and hydrogen-terminated diamond surfaces. These chemical modifications lead to the formation of a surface that effectively resists the nonspecific adsorption of proteins and other biomolecules. The effect of fluorine plasma treatment on elemental composition was also investigated via X-ray photoelectron spectroscopy (XPS). XPS results revealed a fluorocarbon layer on the diamond thin films. The contact angle measurement results indicated that the fluorine-treated diamond thin films were highly hydrophobic with a surface energy value of ∼25 mN/m.

  2. Electronic properties of hydrogen- and oxygen-terminated diamond surfaces exposed to the air

    Institute of Scientific and Technical Information of China (English)

    Liu Feng-Bin; Wang Jia-Dao; Chen Da-Rong; Yan Da-Yun

    2009-01-01

    The electronic properties of hydrogen- and oxygen-terminated diamond surfaces exposed to the air are investigated by scanning probe microscopy (SPM). The results indicate that for the hydrogen-terminated diamond surface a shallow acceptor above the valence-band-maximum (VBM) appears in the band gap. However, the oxygen-terminated diamond film exhibits a high resistivity with a wide band gap. Based on the density-functional-theory, the densities of states, corresponding to molecular adsorbate in hydrogenated and oxygenated diamond (100) surfaces, are studied. The results show that the shallow acceptor in the band gap for the hydrogen-terminated diamond film can be attributed to the interaction between the surface C-H bonding orbitals and the adsorbate molecules, while for the oxygen-terminated diamond film, the interaction between the surface C-O bonding orbitals and the adsorbate molecules can induce occupied states in the valence-band.

  3. Fluctuation-Induced Pattern Formation in a Surface Reaction

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2006-01-01

    Spontaneous nucleation, pulse formation, and propagation failure have been observed experimentally in CO oxidation on Pt(110) at intermediate pressures ($\\approx 10^{-2}$mbar). This phenomenon can be reproduced with a stochastic model which includes temperature effects. Nucleation occurs randomly...

  4. ElectronTransfer Induced Ring Opening of α-Epoxyketones: Spirodioxolane Formation

    Directory of Open Access Journals (Sweden)

    Farzad Nikpour

    2002-01-01

    Full Text Available Stereospecific formation of spirodioxolanes has been observed on electron transfer induced ring opening of α-epoxyketones by 2,4,6-triphenylpyrylium tetrafluoroborate in the presence of cyclohexanone

  5. Characterization of boron doped nanocrystalline diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, 13083-852 Campinas SP Brasil (Brazil)], E-mail: vitor.baranauskas@gmail.com

    2008-03-15

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/{mu}m range.

  6. Diamond Pixel Detectors and 3D Diamond Devices

    Science.gov (United States)

    Venturi, N.

    2016-12-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  7. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation

    OpenAIRE

    Kafka, K. R. P.; D. R. Austin; Li, H.; Yi, A; Cheng, J.; Chowdhury, E. A.

    2015-01-01

    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripple...

  8. Boron Doped Nanocrystalline Diamond Films for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    V. Petrák

    2011-01-01

    Full Text Available With the rise of antibiotic resistance of pathogenic bacteria there is an increased demand for monitoring the functionality of bacteria membranes, the disruption of which can be induced by peptide-lipid interactions. In this work we attempt to construct and disrupt supported lipid membranes (SLB on boron doped nanocrystalline diamond (B-NCD. Electrochemical Impedance Spectroscopy (EIS was used to study in situ changes related to lipid membrane formation and disruption by peptide-induced interactions. The observed impedance changes were minimal for oxidized B-NCD samples, but were still detectable in the low frequency part of the spectra. The sensitivity for the detection of membrane formation and disruption was significantly higher for hydrogenated B-NCD surfaces. Data modeling indicates large changes in the electrical charge when an electrical double layer is formed at the B-NCD/SLB interface, governed by ion absorption. By contrast, for oxidized B-NCD surfaces, these changes are negligible indicating little or no change in the surface band bending profile.

  9. Formation of liquid inclusion induced light scatter in KDP (DKDP) crystals

    Institute of Scientific and Technical Information of China (English)

    孙洵; 孙大亮; 许心光; 王正平; 付有君; 王圣来; 曾红; 李毅平; 于锡玲; 高樟寿

    2001-01-01

    We describe in this paper the formation of liquid inclusion induced light scatter in potassium dihydrogen phosphate (KDP) crystal and deuterated potassium dihydrogen phosphate (DKDP) crystals. The measurement has been done with an atomic force microscope (AFM). The mechanism of formation of liquid inclusion scatter has been proposed and the effect of super-saturation discussed.

  10. Novel phase of carbon, ferromagnetism, and conversion into diamond

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Jagdish, E-mail: narayan@ncsu.edu; Bhaumik, Anagh [Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States)

    2015-12-07

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp{sup 3} (75%–85%) with the rest being threefold sp{sup 2} bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g{sup −1}. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing

  11. Spontaneous formation of optically induced surface relief gratings

    CERN Document Server

    Leblond, H; Ahamadi-kandjani, S; Nunzi, J -M; Ortyl, E; Kucharski, S

    2009-01-01

    A model based on Fick's law of diffusion as a phenomenological description of the molecular motion, and on the coupled mode theory, is developped to describe single-beam surface relief grating formation in azopolymers thin films. It allows to explain the mechanism of spontaneous patterning, and self-organization. It allows also to compute the surface relief profile and its evolution in time with good agreement with experiments.

  12. NGC6240: Merger-Induced Star Formation & Gas Dynamics

    CERN Document Server

    Engel, H; Genzel, R; Tacconi, L J; Hicks, E K S; Sturm, E; Naab, T; Johansson, P H; Karl, S J; Max, C E; Medling, A; van der Werf, P P

    2010-01-01

    We present spatially resolved integral field spectroscopic K-band data at a resolution of 0.13" (60pc) and interferometric CO(2-1) line observations of the prototypical merging system NGC6240. Despite the clear rotational signature, the stellar kinematics in the two nuclei are dominated by dispersion. We use Jeans modelling to derive the masses and the mass-to-light ratios of the nuclei. Combining the luminosities with the spatially resolved Br-gamma equivalent width shows that only 1/3 of the K-band continuum from the nuclei is associated with the most recent star forming episode; and that less than 30% of the system's bolometric luminosity and only 9% of its stellar mass is due to this starburst. The star formation properties, calculated from typical merger star formation histories, demonstrate the impact of different assumptions about the star formation history. The properties of the nuclei, and the existence of a prominent old stellar population, indicate that the nuclei are remnants of the progenitor gal...

  13. IBIC characterization of an ion-beam-micromachined multi-electrode diamond detector

    Energy Technology Data Exchange (ETDEWEB)

    Forneris, J., E-mail: forneris@to.infn.it [Università di Torino, Dipartimento di Fisica e Centro di Eccellenza NIS, INFN, sez. Torino, CNISM, sez. Torino, via P. Giuria 1, 10125 Torino (Italy); Grilj, V.; Jakšić, M. [Ruđer Bošković Institute, Bijenička cesta 54, P.O. Box 180, 10002 Zagreb (Croatia); Lo Giudice, A.; Olivero, P.; Picollo, F. [Università di Torino, Dipartimento di Fisica e Centro di Eccellenza NIS, INFN, sez. Torino, CNISM, sez. Torino, via P. Giuria 1, 10125 Torino (Italy); Skukan, N. [Ruđer Bošković Institute, Bijenička cesta 54, P.O. Box 180, 10002 Zagreb (Croatia); Verona, C.; Verona-Rinati, G. [Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata”, Via del Politecnico 1, 00133 Roma (Italy); Vittone, E. [Università di Torino, Dipartimento di Fisica e Centro di Eccellenza NIS, INFN, sez. Torino, CNISM, sez. Torino, via P. Giuria 1, 10125 Torino (Italy)

    2013-07-01

    Deep Ion Beam Lithography (DIBL) has been used for the direct writing of buried graphitic regions in monocrystalline diamond with micrometric resolution. As part of the development and the characterization of a fully ion-beam-micromachined solid-state ionization chamber, a device with interdigitated electrodes was fabricated by using a 1.8 MeV He{sup +} ion microbeam, which scanned a 40 μm thick homoepitaxial detector grade diamond sample grown by chemical vapor deposition (CVD). In order to evaluate the ionizing-radiation-detection performance of the device, charge collection efficiency (CCE) maps were extracted from Ion Beam Induced Charge (IBIC) measurements carried out by probing different arrangements of buried micro-electrodes. The analysis of the CCE maps allowed an exhaustive evaluation of the detector features, in particular the individuation of the different role played by electrons and holes in the formation of the induced charge pulses. Finally, a comparison of the performances of the detector with buried graphitic electrodes with those relevant to conventional metallic surface electrodes evidenced the formation of a dead layer overlying the buried electrodes as a result of the fabrication process.

  14. Effects of hydrogen atoms on surface conductivity of diamond film

    Directory of Open Access Journals (Sweden)

    Fengbin Liu

    2015-04-01

    Full Text Available To investigate the effects of surface chemisorbed hydrogen atoms and hydrogen atoms in the subsurface region of diamond on surface conductivity, models of hydrogen atoms chemisorbed on diamond with (100 orientation and various concentrations of hydrogen atoms in the subsurface layer of the diamond were built. By using the first-principles method based on density functional theory, the equilibrium geometries and densities of states of the models were studied. The results showed that the surface chemisorbed hydrogen alone could not induce high surface conductivity. In addition, isolated hydrogen atoms in the subsurface layer of the diamond prefer to exist at the bond centre site of the C-C bond. However, such a structure would induce deep localized states, which could not improve the surface conductivity. When the hydrogen concentration increases, the C-H-C-H structure and C-3Hbc-C structure in the subsurface region are more stable than other configurations. The former is not beneficial to the increase of the surface conductivity. However, the latter would induce strong surface states near the Fermi level, which would give rise to high surface conductivity. Thus, a high concentration of subsurface hydrogen atoms in diamond would make significant contributions to surface conductivity.

  15. Aflatoxin B1 Induces Reactive Oxygen Species-Mediated Autophagy and Extracellular Trap Formation in Macrophages

    Science.gov (United States)

    An, Yanan; Shi, Xiaochen; Tang, Xudong; Wang, Yang; Shen, Fengge; Zhang, Qiaoli; Wang, Chao; Jiang, Mingguo; Liu, Mingyuan; Yu, Lu

    2017-01-01

    Aflatoxins are a group of highly toxic mycotoxins with high carcinogenicity that are commonly found in foods. Aflatoxin B1 (AFB1) is the most toxic member of the aflatoxin family. A recent study reported that AFB1 can induce autophagy, but whether AFB1 can induce extracellular traps (ETs) and the relationships among innate immune responses, reactive oxygen species (ROS), and autophagy and the ETs induced by AFB1 remain unknown. Here, we demonstrated that AFB1 induced a complete autophagic process in macrophages (MΦ) (THP-1 cells and RAW264.7 cells). In addition, AFB1 induced the generation of MΦ ETs (METs) in a dose-dependent manner. In particular, the formation of METs significantly reduced the AFB1 content. Further analysis using specific inhibitors showed that the inhibition of either autophagy or ROS prevented MET formation caused by AFB1, indicating that autophagy and ROS were required for AFB1-induced MET formation. The inhibition of ROS prevented autophagy, indicating that ROS generation occurred upstream of AFB1-induced autophagy. Taken together, these data suggest that AFB1 induces ROS-mediated autophagy and ETs formation and an M1 phenotype in MΦ. PMID:28280716

  16. High efficiency diamond solar cells

    Science.gov (United States)

    Gruen, Dieter M.

    2008-05-06

    A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

  17. Designing of concrete diamond sawblade

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-he; DING Xin-yu; ZHOU Jia-xiang

    2005-01-01

    By analyzing the abrasive theory of concrete diamond sawblade, the proposal that the diamond should be selected by its function in cutting concrete is presented. The part of the big grit diamonds cut rock, and the part of the small grit diamonds improve the wearability of the matrix. The contrast tests are done with different shapes of sawbaldes in split segment, slant "U" slot segment, sandwich segment, turbo segment and three-slot segment. The special shapes of sawblades can improve the effect of cooling and the removing ability of the rock powder. The data of tests show that the efficiency of cutting and the life of sawblades are improved by designing the diamond prescription and using the especial geometry of segment.

  18. Radiation-induced defect formation in chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.I.; Filipecki, J. [Physics Institute of Pedagogical University of Czestochowa, Al. Armii Krajowej 13/15, Czestochowa 42201 (Poland); Kozdras, A. [Physics Laboratory of Opole Technical University, 75 ul. Ozimska, Opole, PL-45370 (Poland); Kavetskyy, T.S. [Lviv Scientific Research Institute of Materials of Scientific Research Company ' Carat' , Stryjska Str. 202, Lviv, UA-79031 (Ukraine)

    2003-10-01

    The modified model of native and radiation-induced microvoid-type positron traps in vitreous chalcogenide semiconductors is developed to explain compositional features of positron annihilation lifetime measurements in stoichiometric As{sub 2}S{sub 3}-GeS{sub 2} and non-stoichiometric As{sub 2}S{sub 3}-Ge{sub 2}S{sub 3} chalcogenide glasses before and after {gamma}-irradiation.

  19. Flare induced penumbra formation in the sunspot of NOAA 10838

    OpenAIRE

    Padinhatteeri, Sreejith; K., Sankarasubramanian

    2010-01-01

    We have observed formation of penumbrae on a pore in the active region NOAA10838 using Dunn Solar Telescope at NSO,Sunpot,USA. Simultaneous observations using different instruments (DLSP,UBF,Gband and CaK) provide us with vector magnetic field at photosphere, intensity images and Doppler velocity at different heights from photosphere to chromosphere. Results from our analysis of this particular data-set suggests that penumbrae are formed as a result of relaxation of magnetic field due to a fl...

  20. Polarization force-induced changes in the dust sheath formation

    Energy Technology Data Exchange (ETDEWEB)

    Mayout, Saliha; Bentabet, Karima; Tribeche, Mouloud [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, USTHB, BP 32, El Alia, Algiers 16111 (Algeria)

    2015-09-15

    The modifications arising in the dusty plasma sheath structure due to the presence of polarization forces acting on the dust grains are investigated. The corresponding appropriate Bohm criterion for sheath formation is obtained. It is found that the critical Mach number, beyond which the dusty plasma electrostatic sheath sets in, decreases whenever the polarization effects become important. In addition, when the polarization force dominates over the electrical one, the dust plasma sheath cannot set in. This happens whenever the dust grain size exceeds a critical threshold. Moreover, the sheath electrostatic potential-gradient becomes abruptly steep, and the sheath thickness becomes broader as the polarization force effects strengthen.

  1. Flow induced streamer formation in particle laden complex flows

    Science.gov (United States)

    Debnath, Nandini; Hassanpourfard, Mahtab; Ghosh, Ranajay; Trivedi, Japan; Thundat, Thomas; Kumar, Aloke

    2016-11-01

    We study the combined flow of a polyacrylamide (PAM)solution with polystyrene (PS) nanoparticles, through a microfluidic device containing an array of micropillars. The flow is characterized by a very low Reynolds number (Re= 20), PS nanoparticles localize near pillar walls to form thin slender string-like structures, which we call 'streamers' due to their morphology. Post-formation, these streamers show significant viscous behavior for short observational time-scales, and at longer observational time scales elastic response dominates. Our abiotic streamers could provide a framework for understanding similar structures that often form in biological systems. PhD student, Department of Mechanical Engineering.

  2. Diamond Anvil Cell Techniques

    Science.gov (United States)

    Piermarini, Gasper J.

    It has often been said that scientific advances are made either in a dramatic and revolutionary way, or, as in the case of the diamond anvil cell (DAC), in a slow and evolutionary manner over a period of several years. For more than 2 decades, commencing in 1958, the DAC developed stepwise from a rather crude qualitative instrument to the sophisticated quantitative research tool it is today, capable of routinely producing sustained static pressures in the multi-megabar range and readily adaptable to numerous scientific measurement techniques because of its optical accessibility, miniature size, and portability.

  3. Heteroepitaxial Diamond Growth

    Science.gov (United States)

    1993-01-12

    interstitials, respectively. The energies required for the planar to puckered distortion are 4.3 eV on Ni(l 11), 3.0 eV with the Na interstitial, 3.6 eV with H...give consideration to the crystallographic I alignment between diamond tiles to minimize dislocation densities at the " seams ". 3 Methods of checking the...crystallographic alignment (non-destructively) and assessing the dislocation densities at seams must be used to establish the viability of 3 any

  4. Development of diamond coated tool and its performance in machining Al–11%Si alloy

    Indian Academy of Sciences (India)

    B Sahoo; A K Chattopadhyay; A B Chattopadhyay

    2002-11-01

    An attempt has been made to deposit CVD diamond coating on conventional carbide tool using hot filament CVD process. ISO grade K10 turning inserts with SPGN 120308 geometry were used to deposit diamond coating. This diamond coating well covering the rake surface, cutting edges and flank surfaces could be successfully deposited. The coatings were characterized by SEM, XRD and Raman spectroscopy for coating quality, morphology etc. Performance of diamond coated tool relative to that of uncoated carbide tool was evaluated in turning Al–11%Si alloy under dry environment. The diamond coated tool outperformed the uncoated carbide tool which severely suffered from sizeable built-up edge formation leading not only to escalation of cutting forces but also poorer surface finish. In contrast, the diamond coated tool, owing to chemical inertness of diamond coating towards the work material, did not show any trace of edge built-up even in dry environment and could maintain low level of cutting forces and remarkably improved surface finish. It has been further revealed that success of the diamond coated tool depends primarily on adhesion of the diamond coating with the carbide substrate and this is strongly influenced by the pre-treatment of the carbide substrate surface before coating.

  5. Apigenin prevents ultraviolet-B radiation induced cyclobutane pyrimidine dimers formation in human dermal fibroblasts.

    Science.gov (United States)

    Britto, S Mary; Shanthakumari, D; Agilan, B; Radhiga, T; Kanimozhi, G; Prasad, N Rajendra

    2017-09-01

    Exposure to solar ultraviolet-B (UVB) radiation leads to the formation of cyclobutane pyrimidine dimers (CPDs). We investigated the protective effect of apigenin against UVB-induced CPDs formation in human dermal fibroblasts cells (HDFa). For this purpose, HDFa cells were treated with apigenin (15μM) prior to UVB irradiation (20mJ/cm(2)); DNA damage and subsequent molecular end points were observed. Exposure to UVB radiation increased significant CPDs formation in HDFa cells and the frequencies of CPDs were reduced by treatment with apigenin (15μM). UVB-induced CPDs downregulates the expression of nucleotide excision repair (NER) genes such as xeroderma pigmentosum complementation group C, B, G and F (XPC, XPB, XPG and XPF), transcription factor II human (TFIIH) and excision repair cross-complementation group 1 (ERCC1) in HDFa cells. Conversely, apigenin treatment restored UVB-induced loss of NER proteins in HDFa cells, which indicates its preventive effect against CPDs formation. Besides, single low dose UVB-exposure induced nuclear fragmentation, apoptotic frequency and apoptotic proteins expression (Bax and Caspase-3) have been prevented by the apigenin pretreatment. Furthermore, apigenin exhibits strong UV absorbance property and showed 10.08 SPF value. Thus, apigenin can protect skin cells against UVB-induced CPDs formation probably through its sunscreen effect. Hence, apigenin can be considered as an effective protective agent against UV induced skin damages. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. BMP9-Induced Osteogenetic Differentiation and Bone Formation of Muscle-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Xiang

    2012-01-01

    Full Text Available Efficient osteogenetic differentiation and bone formation from muscle-derived stem cells (MDSCs should have potential clinical applications in treating nonunion fracture healing or bone defects. Here, we investigate osteogenetic differentiation ability of MDSCs induced by bone morphogenetic protein 9 (BMP9 in vitro and bone formation ability in rabbit radius defects repairing model. Rabbit's MDSCs were extracted by type I collagenase and trypsin methods, and BMP9 was introduced into MDSCs by infection with recombinant adenovirus. Effects of BMP9-induced osteogenetic differentiation of MDSCs were identified with alkaline phosphatase (ALP activity and expression of later marker. In stem-cell implantation assay, MDSCs have also shown valuable potential bone formation ability induced by BMP9 in rabbit radius defects repairing test. Taken together, our findings suggest that MDSCs are potentiated osteogenetic stem cells which can be induced by BMP9 to treat large segmental bone defects, nonunion fracture, and/or osteoporotic fracture.

  7. Synthesis of Diamond Films with Pulsed Plasma

    Science.gov (United States)

    1992-03-01

    Diamond and Diamond-Like Films, The Electrochemical Society , Los Angeles, California, Volume 89-12, 114, May 1989. M. Aklufi and D. Brock, "Synthesis Of...Diamond Films By Microwave Generated Pulsed Plasmas," Proceedings of The Second International Symposium On Diamond Materials, The Electrochemical Society , Washington, DC, Volume 91-8, ’ 39, May 1991.

  8. Field-induced layer formation in dipolar nanofilms.

    Science.gov (United States)

    Jordanovic, Jelena; Klapp, Sabine H L

    2008-07-18

    Using molecular dynamics simulations, we demonstrate that the layering of confined colloidal particles with dipolar interactions, such as ferrofluids, in slablike geometries can be controlled by homogeneous external fields. For suitable surface separations, strong fields directed perpendicular to the film plane do not only align the particles but create additional layers in the system. The reverse effect occurs with an in-plane field which can induce a collapse of layers. Both effects are accompanied by pronounced particle rearrangements in lateral directions. Our simulation results are consistent with recent experiments of ferrofluids at surfaces.

  9. Flare induced penumbra formation in the sunspot of NOAA 10838

    CERN Document Server

    Padinhatteeri, Sreejith

    2010-01-01

    We have observed formation of penumbrae on a pore in the active region NOAA10838 using Dunn Solar Telescope at NSO,Sunpot,USA. Simultaneous observations using different instruments (DLSP,UBF,Gband and CaK) provide us with vector magnetic field at photosphere, intensity images and Doppler velocity at different heights from photosphere to chromosphere. Results from our analysis of this particular data-set suggests that penumbrae are formed as a result of relaxation of magnetic field due to a flare happening at the same time. Images in \\Halpha\\ show the flare (C 2.9 as per GOES) and vector magnetic fields show a re-orientation and reduction in the global $\\alpha$ value (a measure of twist). We feel such relaxation of loop structures due to reconnections or flare could be one of the way by which field lines fall back to the photosphere to form penumbrae.

  10. Induced sclerotium formation exposes new bioactive metabolites from Aspergillus sclerotiicarbonarius.

    Science.gov (United States)

    Petersen, Lene M; Frisvad, Jens C; Knudsen, Peter B; Rohlfs, Marko; Gotfredsen, Charlotte H; Larsen, Thomas O

    2015-10-01

    Sclerotia are known to be fungal survival structures, and induction of sclerotia may prompt production of otherwise undiscovered metabolites. Aspergillus sclerotiicarbonarius (IBT 28362) was investigated under sclerotium producing conditions, which revealed a highly altered metabolic profile. Four new compounds were isolated from cultivation under sclerotium formation conditions and their structures elucidated using different analytical techniques (HRMS, UV, 1D and 2D NMR). This included sclerolizine, an alkylated and oxidized pyrrolizine, the new emindole analog emindole SC and two new carbonarins; carbonarins I and J. We have identified the three latter as true sclerotial metabolites. All metabolites were tested for antifungal and antiinsectan activity, and sclerolizine and carbonarin I displayed antifungal activity against Candida albicans, while all four showed antiinsectan activity. These results demonstrate induction of sclerotia as an alternative way of triggering otherwise silent biosynthetic pathways in filamentous fungi for the discovery of novel bioactive secondary metabolites.

  11. Optical cryocooling of diamond

    Science.gov (United States)

    Kern, M.; Jeske, J.; Lau, D. W. M.; Greentree, A. D.; Jelezko, F.; Twamley, J.

    2017-06-01

    The cooling of solids by optical means only using anti-Stokes emission has a long history of research and achievements. Such cooling methods have many advantages ranging from no moving parts or fluids through to operation in vacuum and may have applications to cryosurgery. However, achieving large optical cryocooling powers has been difficult to manage except in certain rare-earth crystals but these are mostly toxic and not biocompatible. Through study of the emission and absorption cross sections we find that diamond, containing either nitrogen vacancy (NV) or silicon vacancy defects, shows potential for optical cryocooling and, in particular, NV doping shows promise for optical refrigeration. We study the optical cooling of doped diamond microcrystals ranging 10-250 μ m in diameter trapped either in vacuum or in water. For the vacuum case we find NV-doped microdiamond optical cooling below room temperature could exceed |Δ T |>10 K for irradiation powers of Pin<100 mW. We predict that such temperature changes should be easily observed via large alterations in the diffusion constant for optically cryocooled microdiamonds trapped in water in an optical tweezer or via spectroscopic signatures such as the zero-phonon line width or Raman line.

  12. Transmission diamond imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, John, E-mail: smedley@bnl.gov; Pinelli, Don; Gaoweia, Mengjia [Brookhaven National Laboratory, Upton, NY (United States); Muller, Erik; Ding, Wenxiang; Zhou, Tianyi [Stony Brook University, Stony Brook, NY (United States); Bohon, Jen [Case Center for Synchrotron Biosciences, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH (United States)

    2016-07-27

    Many modern synchrotron techniques are trending toward use of high flux beams and/or beams which require enhanced stability and precise understanding of beam position and intensity from the front end of the beamline all the way to the sample. For high flux beams, major challenges include heat load management in optics (including the vacuum windows) and a mechanism of real-time volumetric measurement of beam properties such as flux, position, and morphology. For beam stability in these environments, feedback from such measurements directly to control systems for optical elements or to sample positioning stages would be invaluable. To address these challenges, we are developing diamond-based instrumented vacuum windows with integrated volumetric x-ray intensity, beam profile and beam-position monitoring capabilities. A 50 µm thick single crystal diamond has been lithographically patterned to produce 60 µm pixels, creating a >1kilopixel free-standing transmission imaging detector. This device, coupled with a custom, FPGA-based readout, has been used to image both white and monochromatic x-ray beams and capture the last x-ray photons at the National Synchrotron Light Source (NSLS). This technology will form the basis for the instrumented end-station window of the x-ray footprinting beamline (XFP) at NSLS-II.

  13. Presolar Diamond in Meteorites

    CERN Document Server

    Amari, Sachiko

    2009-01-01

    Presolar diamond, the carrier of the isotopically anomalous Xe component Xe-HL, was the first mineral type of presolar dust that was isolated from meteorites. The excesses in the light, p-process only isotopes 124Xe and 126Xe, and in the heavy, r-process only isotopes 134Xe and 136Xe relative to the solar ratios indicate that Xe-HL was produced in supernovae: they are the only stellar source where these two processes are believed to take place. Although these processes occur in supernovae, their physical conditions and timeframes are completely different. Yet the excesses are always correlated in diamond separates from meteorites. Furthermore, the p-process 124Xe/126Xe inferred from Xe-L and the r-process 134Xe/136Xe from Xe-H do not agree with the p-process and r-process ratios derived from the solar system abundance, and the inferred p-process ratio does not agree with those predicted from stellar models. The 'rapid separation scenario', where the separation of Xe and its radiogenic precursors Te and I take...

  14. 自蔓延法在金刚石表面形成碳硼化铝涂层的研究%Formation of aluminum boron carbide coating on the surface of diamond by self-propagation

    Institute of Scientific and Technical Information of China (English)

    王艳芝; 梁宝岩; 张旺玺; 刘嘉霖

    2014-01-01

    采用Ti/Al/B/金刚石粉体为原料,通过自蔓延高温反应技术,制备了 Al-TiB2结合剂金刚石复合材料,在金刚石表面合成了碳硼化铝涂层。采用X射线衍射(XRD)、扫描电镜(SEM)结合能谱仪(EDS)分析试样。研究结果表明:各种原料经自蔓延高温烧结后,产物的主相为 Al、TiB2和金刚石。同时当 Al质量分数较高时(60%~80%),在金刚石表面形成了致密的碳硼化铝涂层,呈薄片状,金刚石附近也生长出许多碳硼化铝晶粒,尺寸可达到几十微米。但是当 Al 质量分数较低(40%和50%)时,金刚石会发生严重的碎裂。%Al-TiB2 boned diamond composites were fabricated by self-propagation high temperature sintering SHS from Ti Al B Diamond powders The samples were analyzed by XRD SEM and EDS It was shown that Al-TiB2 boned diamond composites were obtained by SHS The main phases of the products were Al TiB2 and diamond by SHS from every raw material Meanwhile the Al4 BC coating was formed on the face of diamond When mass fraction of Al was higher 60%~80% dense Al4 BC coating with thin flake was formed Meanwhile many Al4 BC grains also grown neighbor the diamond These grains had dozes of micron With mass fraction of Al decreasing to 40% and 50%diamond broke because of its graphitization.

  15. Ionization signals from diamond detectors in fast-neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); CIVIDEC Instrumentation, Wien (Austria); Frais-Koelbl, H. [University of Applied Sciences, Wiener Neustadt (Austria); Griesmayer, E.; Kavrigin, P. [CIVIDEC Instrumentation, Wien (Austria); Vienna University of Technology, Wien (Austria)

    2016-09-15

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes {sup 12}C and {sup 13}C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the {sup 13}C(n, α){sup 10}Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the {sup 12}C(n, α){sup 9}Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy. (orig.)

  16. Ionization signals from diamond detectors in fast-neutron fields

    Science.gov (United States)

    Weiss, C.; Frais-Kölbl, H.; Griesmayer, E.; Kavrigin, P.

    2016-09-01

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes 12 C and 13 C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the 13C(n, α)10Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the 12C(n, α)9Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy.

  17. Impact of nitrogen doping on growth and hydrogen impurity incorporation of thick nanocrystalline diamond films

    Institute of Scientific and Technical Information of China (English)

    Gu Li-Ping; Tang Chun-Jiu; Jiang Xue-Fan; J.L.Pintob

    2011-01-01

    A much larger amount of bonded hydrogen was found in thick nanocrystalline diamond (NCD) films produced by only adding 0.24% N2 into 4% CH4/H2 plasma, as compared to the high quality transparent microcrystalline diamond (MCD) films, grown using the same growth parameters except for nitrogen. These experimental results clearly evidence that defect formation and impurity incorporation (for example, N and H) impeding diamond grain growth is the main formation mechanism of NCD upon nitrogen doping and strongly support the model proposed in the literature that nitrogen competes with CHX (x = 1,2,3) growth species for adsorption sites.

  18. Microscopy of nitride layers grown on diamond

    DEFF Research Database (Denmark)

    Pécz, B.; Tóth, L.; Barna, Á.;

    2011-01-01

    are determined by selected area electron diffraction. Besides threading dislocations a high number of inversion domains (ID) were formed in some GaN films. The preparation of the diamond surface and the growth conditions proved to affect significantly the formation of crystal defects such as threading...... dislocations and IDs. Single polarity GaN films with a low density of dislocations were achieved for the optimized growth conditions. The highest quality GaN layers were grown on AlN buffer in which two crystalline variants were nucleated, but one of them was overgrown already in the thickness of the buffer...

  19. Glycation of Wild-Type Apomyoglobin Induces Formation of Highly Cytotoxic Oligomeric Species.

    Science.gov (United States)

    Iannuzzi, Clara; Carafa, Vincenzo; Altucci, Lucia; Irace, Gaetano; Borriello, Margherita; Vinciguerra, Roberto; Sirangelo, Ivana

    2015-11-01

    Protein glycation is a non-enzymatic, irreversible modification of protein amino groups by reactive carbonyl species leading to the formation of advanced glycation end products (AGEs). Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of glycation is related to the pathologies of the patients. Although it is now accepted that there is a direct correlation between AGEs formation and the development of neurodegenerative diseases related to protein misfolding and amyloid aggregation, several questions still remain unanswered: whether glycation is the triggering event or just an additional factor acting on the aggregation pathway. We have recently shown that glycation of the amyloidogenic W7FW14F apomyoglobin mutant significantly accelerates the amyloid fibrils formation providing evidence that glycation actively participates to the process. In the present study, to test if glycation can be considered also a triggering factor in amyloidosis, we evaluated the ability of different glycation agents to induce amyloid aggregation in the soluble wild-type apomyoglobin. Our results show that glycation covalently modifies apomyoglobin and induces conformational changes that lead to the formation of oligomeric species that are not implicated in amyloid aggregation. Thus, AGEs formation does not trigger amyloid aggregation in the wild-type apomyoglobin but only induce the formation of soluble oligomeric species able to affect cell viability. The molecular bases of cell toxicity induced by AGEs formed upon glycation of wild-type apomyoglobin have been also investigated.

  20. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    2013-01-01

    Full Text Available Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.

  1. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    Directory of Open Access Journals (Sweden)

    Th. F. Mentel

    2013-09-01

    Full Text Available Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4–6% yield. Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate–vegetation feedback mechanisms.

  2. Enhancement of the nucleation of smooth and dense nanocrystalline diamond films by using molybdenum seed layers

    Science.gov (United States)

    Buijnsters, J. G.; Vázquez, L.; van Dreumel, G. W. G.; ter Meulen, J. J.; van Enckevort, W. J. P.; Celis, J. P.

    2010-11-01

    A method for the nucleation enhancement of nanocrystalline diamond (NCD) films on silicon substrates at low temperature is discussed. A sputter deposition of a Mo seed layer with thickness 50 nm on Si substrates was applied followed by an ultrasonic seeding step with nanosized detonation diamond powders. Hot-filament chemical vapor deposition (HF-CVD) was used to nucleate and grow NCD films on substrates heated up at 550 °C. The nucleation of diamond and the early stages of NCD film formation were investigated at different methane percentages in methane/hydrogen gas mixtures by atomic force microscopy, micro-Raman spectroscopy, scanning electron microscopy, and grazing incidence x-ray analyses in order to gain specific insight in the nucleation process of NCD films. The nucleation kinetics of diamond on the Mo-coated Si substrates was found to be up to ten times higher than on blank Si substrates. The enhancement of the nucleation of diamond on thin Mo interlayers results from two effects, namely, (a) the nanometer rough Mo surface shows an improved embedding of ultrasonically introduced nanosized diamond seeds that act as starting points for the diamond nucleation during HF-CVD and (b) the rapid carbonization of the Mo surface causes the formation of Mo2C onto which diamond easily nucleates. The diamond nucleation density progressively increases at increasing methane percentages and is about 5×1010 cm-2 at 4.0% methane. The improved nucleation kinetics of diamond on Mo interlayers facilitates the rapid formation of NCD films possessing a very low surface roughness down to ˜6 nm, and allows a submicron thickness control.

  3. Flow-Induced Control of Pattern Formation in Chemical Systems

    Science.gov (United States)

    Berenstein, Igal; Beta, Carsten

    Since Alan Turing's seminal paper in 1952, the study of spatio-temporal patterns that arise in systems of reacting and diffusing components has grown into an immense and vibrant realm of scientific research. This field includes not only chemical systems but spans many areas of science as diverse as cell and developmental biology, ecology, geosciences, or semiconductor physics. For several decades research in this field has concentrated on the vast variety of patterns that can emerge in reaction-diffusion systems and on the underlying instabilities. In the 1990s, stimulated by the pioneering work of Ott, Grebogi and Yorke, control of pattern formation arose as a new topical focus and gradually developed into an entire new field of research. On the one hand, research interests concentrated on control and suppression of undesired dynamical states, in particular on control of chaos. On the other hand, the design and engineering of particular space-time patterns became a major focus in this field that motivates ongoing scientific effort until today...

  4. Cooling-induced structure formation and evolution in collapsars

    CERN Document Server

    Batta, Aldo

    2013-01-01

    The collapse of massive rotating stellar cores and the associated accretion onto the newborn compact object is thought to power long gamma ray bursts (GRBs). The physical scale and dynamics of the accretion disk are initially set by the angular momentum distribution in the progenitor, and the physical conditions make neutrino emission the main cooling agent in the flow. The formation and evolution of structure in these disks is potentially very relevant for the energy release and its time variability, which ultimately imprint on the observed GRB properties. To begin to characterize these, taking into account the three dimensional nature of the problem, we have carried out an initial set of calculations of the collapse of rotating polytropic cores in three dimensions, making use of a pseudo-relativistic potential and a simplified cooling prescription. We focus on the effects of self gravity and cooling on the overall morphology and evolution of the flow for a given rotation rate in the context of the collapsar...

  5. Graphene-Induced Pore Formation on Cell Membranes

    Science.gov (United States)

    Duan, Guangxin; Zhang, Yuanzhao; Luan, Binquan; Weber, Jeffrey K.; Zhou, Royce W.; Yang, Zaixing; Zhao, Lin; Xu, Jiaying; Luo, Judong; Zhou, Ruhong

    2017-01-01

    Examining interactions between nanomaterials and cell membranes can expose underlying mechanisms of nanomaterial cytotoxicity and guide the design of safer nanomedical technologies. Recently, graphene has been shown to exhibit potential toxicity to cells; however, the molecular processes driving its lethal properties have yet to be fully characterized. We here demonstrate that graphene nanosheets (both pristine and oxidized) can produce holes (pores) in the membranes of A549 and Raw264.7 cells, substantially reducing cell viability. Electron micrographs offer clear evidence of pores created on cell membranes. Our molecular dynamics simulations reveal that multiple graphene nanosheets can cooperate to extract large numbers of phospholipids from the membrane bilayer. Strong dispersion interactions between graphene and lipid-tail carbons result in greatly depleted lipid density within confined regions of the membrane, ultimately leading to the formation of water-permeable pores. This cooperative lipid extraction mechanism for membrane perforation represents another distinct process that contributes to the molecular basis of graphene cytotoxicity. PMID:28218295

  6. The LuxS based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Danielle eDuanis-Assaf

    2016-01-01

    Full Text Available Bacillus species present a major concern in the dairy industry as they can form biofilms in pipelines and on surfaces of equipment and machinery used in the entire line of production. These biofilms represent a continuous hygienic problem and can lead to serious economic losses due to food spoilage and equipment impairment. Biofilm formation by Bacillus subtilis is apparently dependent on LuxS quorum sensing (QS by Autoinducer-2 (AI-2. However, the link between sensing environmental cues and AI-2 induced biofilm formation remains largely unknown. The aim of this study is to investigate the role of lactose, the primary sugar in milk, on biofilm formation by B. subtilis and its possible link to QS processes. Our phenotypic analysis shows that lactose induces formation of biofilm bundles as well as formation of colony type biofilms. Furthermore, using reporter strain assays, we observed an increase in AI-2 production by B. subtilis in response to lactose in a dose dependent manner. Moreover, we found that expression of eps and tapA operons, responsible for extracellular matrix synthesis in B. subtilis, were notably up-regulated in response to lactose. Importantly, we also observed that LuxS is essential for B. subtilis biofilm formation in the presence of lactose. Overall, our results suggest that lactose may induce biofilm formation by B. subtilis through the LuxS pathway.

  7. Size dependent phase stability of nano-diamond

    Institute of Scientific and Technical Information of China (English)

    JIANG Qing; LU Hai-ming; ZHENG Wei-Tao

    2005-01-01

    The transition between nano-diamond(n-D) and nano-graphite(n-G) were modeled based on the extrapolation of the bulk diamond-graphite equilibrium phase boundary in the temperature-pressure diagram to the nano-size region. It is found that in comparison with n-G, the stability of n-D increases as size and temperature decrease.However, n-D is not the most stable phase in comparison with fullerenes(C60) at the nanoscale by considering the heat of formation.

  8. Transforming graphite to nanoscale diamonds by a femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Nueske, R.; Jurgilaitis, A.; Enquist, H.; Harb, M.; Larsson, J. [Atomic Physics Division, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Fang, Y.; Haakanson, U. [Division of Solid State Physics/Nanometer Structure Consortium at Lund University, P.O. Box 118, S-221 00 Lund (Sweden); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603-146, 100190 Beijing (China)

    2012-01-23

    Formation of cubic diamond from graphite following irradiation by a single, intense, ultra-short laser pulse has been observed. Highly oriented pyrolytic graphite (HOPG) samples were irradiated by a 100 fs pulse with a center wavelength of 800 nm. Following laser exposure, the HOPG samples were studied using Raman spectroscopy of the sample surface. In the laser-irradiated areas, nanoscale cubic diamond crystals have been formed. The exposed areas were also studied using grazing incidence x-ray powder diffraction showing a restacking of planes from hexagonal graphite to rhombohedral graphite.

  9. Tailoring nanocrystalline diamond film properties

    Science.gov (United States)

    Gruen, Dieter M.; McCauley, Thomas G.; Zhou, Dan; Krauss, Alan R.

    2003-07-15

    A method for controlling the crystallite size and growth rate of plasma-deposited diamond films. A plasma is established at a pressure in excess of about 55 Torr with controlled concentrations of hydrogen up to about 98% by volume, of unsubstituted hydrocarbons up to about 3% by volume and an inert gas of one or more of the noble gases and nitrogen up to about 98% by volume. The volume ratio of inert gas to hydrogen is preferably maintained at greater than about 4, to deposit a diamond film on a suitable substrate. The diamond film is deposited with a predetermined crystallite size and at a predetermined growth rate.

  10. Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation

    Directory of Open Access Journals (Sweden)

    Patricia Ros-Tárraga

    2016-09-01

    Full Text Available This aim of this research was to develop a novel ceramic scaffold to evaluate the response of bone after ceramic implantation in New Zealand (NZ rabbits. Ceramics were prepared by the polymer replication method and inserted into NZ rabbits. Macroporous scaffolds with interconnected round-shaped pores (0.5–1.5 mm = were prepared. The scaffold acted as a physical support where cells with osteoblastic capability were found to migrate, develop processes, and newly immature and mature bone tissue colonized on the surface (initially and in the material’s interior. The new ceramic induced about 62.18% ± 2.28% of new bone and almost complete degradation after six healing months. An elemental analysis showed that the gradual diffusion of Ca and Si ions from scaffolds into newly formed bone formed part of the biomaterial’s resorption process. Histological and radiological studies demonstrated that this porous ceramic scaffold showed biocompatibility and excellent osteointegration and osteoinductive capacity, with no interposition of fibrous tissue between the implanted material and the hematopoietic bone marrow interphase, nor any immune response after six months of implantation. No histological changes were observed in the various organs studied (para-aortic lymph nodes, liver, kidney and lung as a result of degradation products being released.

  11. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles; Ioneninduzierte Umwandlung von Polymerschichten zu diamantaehnlichem Kohlenstoff mit darin enthaltenen Silber-Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Florian P.

    2010-03-26

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  12. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation

    CERN Document Server

    Kafka, K R P; Li, H; Yi, A; Cheng, J; Chowdhury, E A

    2015-01-01

    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form sequentially outward from the groove edge, with the first one forming after 50 ps. A 1-D analytical model of electron heating and surface plasmon polariton (SPP) excitation induced by the interaction of incoming laser pulse with the groove edge qualitatively explains the time-evloution of LIPSS formation.

  13. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro.

    Science.gov (United States)

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao; Skovmand, Astrid; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2015-07-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A-DEP) for 24h to study lipid droplet formation and possible mechanisms. The results show that A-DEP did not induce cytotoxicity. The production of reactive oxygen species was only significantly increased after exposure for 3h, but not 24h. Intracellular level of reduced glutathione was increased after 24h exposure. These results combined indicate an adaptive response to oxidative stress. Exposure to A-DEP was associated with significantly increased formation of lipid droplets, as well as changes in lysosomal function, assessed as reduced LysoTracker staining. In conclusion, these results indicated that exposure to A-DEP may induce formation of lipid droplets in macrophages in vitro possibly via lysosomal dysfunction.

  14. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    Science.gov (United States)

    Shan, Tzu-Ray; Thompson, Aidan P.

    2014-05-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N2 and H2O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  15. Electrochemical behavior of nitrogen gas species adsorbed onto boron-doped diamond (BDD) electrodes.

    Science.gov (United States)

    Manzo-Robledo, A; Lévy-Clément, C; Alonso-Vante, N

    2007-11-06

    The adsorption of nitrogen species, in neutral electrolyte solutions, onto boron-doped diamond (BDD) electrode surfaces from dissolved NO2, NO, and N2O gases was induced at 0 V/SCE. Modified BDD electrode surfaces showed a different electrochemical response toward the hydrogen evolution reaction than did a nonmodified electrode surface in electrolyte base solution. The formation of molecular hydrogen and nitrogen gaseous species was confirmed by the online differential electrochemical mass spectrometry (DEMS) technique. Among the three nitrogen oxides gases, NO2 substantially modifies the electrolyte via hydrolysis leading to the formation of NO3- and its adsorption on the BDD electrode surface. The BDD/(NO3-) interface was the only N2O and N2 species generating system.

  16. Synthesis and characterization of a nanocrystalline diamond aerogel.

    Science.gov (United States)

    Pauzauskie, Peter J; Crowhurst, Jonathan C; Worsley, Marcus A; Laurence, Ted A; Kilcoyne, A L David; Wang, Yinmin; Willey, Trevor M; Visbeck, Kenneth S; Fakra, Sirine C; Evans, William J; Zaug, Joseph M; Satcher, Joe H

    2011-05-24

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  17. Synthesis and characterization of a nanocrystalline diamond aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  18. Large gem diamonds from metallic liquid in Earth's deep mantle.

    Science.gov (United States)

    Smith, Evan M; Shirey, Steven B; Nestola, Fabrizio; Bullock, Emma S; Wang, Jianhua; Richardson, Stephen H; Wang, Wuyi

    2016-12-16

    The redox state of Earth's convecting mantle, masked by the lithospheric plates and basaltic magmatism of plate tectonics, is a key unknown in the evolutionary history of our planet. Here we report that large, exceptional gem diamonds like the Cullinan, Constellation, and Koh-i-Noor carry direct evidence of crystallization from a redox-sensitive metallic liquid phase in the deep mantle. These sublithospheric diamonds contain inclusions of solidified iron-nickel-carbon-sulfur melt, accompanied by a thin fluid layer of methane ± hydrogen, and sometimes majoritic garnet or former calcium silicate perovskite. The metal-dominated mineral assemblages and reduced volatiles in large gem diamonds indicate formation under metal-saturated conditions. We verify previous predictions that Earth has highly reducing deep mantle regions capable of precipitating a metallic iron phase that contains dissolved carbon and hydrogen.

  19. Correlated carbon and oxygen isotope signatures in eclogitic diamonds with coesite inclusions: A SIMS investigation of diamonds from Guaniamo, Argyle and Orapa mines

    Science.gov (United States)

    Schulze, D. J.; Page, Z.; Harte, B.; Valley, J.; Channer, D.; Jaques, L.

    2006-12-01

    Using ion microprobes and secondary-ion mass spectrometry we have analyzed the carbon and oxygen isotopic composition of eclogite-suite diamonds and their coesite inclusions, respectively, from three suites of diamonds of Proterozoic age. Extremely high (for the mantle) oxygen isotope values (delta 18O of +10.2 to +16.9 per mil VSMOW) are preserved in coesites included in eclogitic diamonds from Guaniamo, Venezuela (Schulze et al., Nature, 2003), providing compelling evidence for an origin of their eclogite hosts by subduction of sea water altered ocean floor basalts. In situ SIMS analyses of their host diamonds yield carbon isotope values (delta 13C) of -12 to -18 per mil PDB. SIMS analyses of coesite inclusions from Argyle, Australia diamonds previously analyzed by combustion methods for d13C composition (Jaques et al., Proc. 4th Kimb. Conf, 1989), also yield anomalously high d18O values (+6.8 to +16.0 per mil VSMOW), that correlate with the anomalously low carbon isotope values (-10.3 to -14.1 per mil PDB). One coesite-bearing diamond from Orapa, Botswana analyzed in situ by SIMS has a d18O value of the coesite of +8.5 per mil VSMOW and a d13C value of the adjacent diamond host of -9.0 per mil PDB. A second Orapa stone has a SIMS carbon isotope compositional range of d13C = -14 to -16 per mil PDB, but the coesite is too small for ion probe analysis. At each of these localities, carbon isotope values of coesite-bearing diamonds that are lower than typical of mantle carbon are correlated with oxygen isotope compositions of included coesites that are substantially above the common mantle oxygen isotope range. Such results are not in accord with diamond genesis models involving formation of eclogitic diamonds from igneous melts undergoing fractionation in the mantle or by crystallization from primordial inhomogeneities in Earth's mantle. By analogy with the oxygen isotope compositions of altered ocean floor basalts and Alpine (subduction zone) eclogites they are

  20. The Diamond Standard Vodka酒

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    对于酒的品味不仅仅在酒本身所散发出的醉人魅力,自古以来,拥有艺术品般精湛做工、华美造犁的盛酒器皿也和酒一样流传千古。The Diamond Standard Vodka以“奢侈”、“豪华”作为卖点,除了散发着北欧风格的高贵气质外,由原产自奥地利的施华洛廿奇水晶制成25mm的瓶身更让它身价倍增。以钻石命名的它使用了钻石过滤专利系统,

  1. Anodic oxidation with doped diamond electrodes: a new advanced oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Alexander; Stadelmann, Manuela; Blaschke, Manfred

    2003-10-31

    Boron-doped diamond anodes allow to directly produce OH{center_dot} radicals from water electrolysis with very high current efficiencies. This has been explained by the very high overvoltage for oxygen production and many other anodic electrode processes on diamond anodes. Additionally, the boron-doped diamond electrodes exhibit a high mechanical and chemical stability. Anodic oxidation with diamond anodes is a new advanced oxidation process (AOP) with many advantages compared to other known chemical and photochemical AOPs. The present work reports on the use of diamond anodes for the chemical oxygen demand (COD) removal from several industrial wastewaters and from two synthetic wastewaters with malic acid and ethylenediaminetetraacetic (EDTA) acid. Current efficiencies for the COD removal between 85 and 100% have been found. The formation and subsequent removal of by-products of the COD oxidation has been investigated for the first time. Economical considerations of this new AOP are included.

  2. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A. [Institute of Materials, Lvov (Ukraine)

    1997-12-01

    Processes of formation and annihilation of coordination defects in As{sub 2}Se{sub 3}Bi{sub y} and (As{sub 2}Se{sub 3})(Bi{sub 2}Se{sub 3}){sub y} amorphous chalcogenide semiconductors induced by influence of Co{sup 60} gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As{sub 2}Se{sub 3}Bi{sub y} glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs.

  3. Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.

    Science.gov (United States)

    Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao

    2013-12-01

    DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation.

  4. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tobias Dörr

    2010-02-01

    Full Text Available Bacteria induce stress responses that protect the cell from lethal factors such as DNA-damaging agents. Bacterial populations also form persisters, dormant cells that are highly tolerant to antibiotics and play an important role in recalcitrance of biofilm infections. Stress response and dormancy appear to represent alternative strategies of cell survival. The mechanism of persister formation is unknown, but isolated persisters show increased levels of toxin/antitoxin (TA transcripts. We have found previously that one or more components of the SOS response induce persister formation after exposure to a DNA-damaging antibiotic. The SOS response induces several TA genes in Escherichia coli. Here, we show that a knockout of a particular SOS-TA locus, tisAB/istR, had a sharply decreased level of persisters tolerant to ciprofloxacin, an antibiotic that causes DNA damage. Step-wise administration of ciprofloxacin induced persister formation in a tisAB-dependent manner, and cells producing TisB toxin were tolerant to multiple antibiotics. TisB is a membrane peptide that was shown to decrease proton motive force and ATP levels, consistent with its role in forming dormant cells. These results suggest that a DNA damage-induced toxin controls production of multidrug tolerant cells and thus provide a model of persister formation.

  5. IBIC characterization of an ion-beam-micromachined multi-electrode diamond detector

    CERN Document Server

    Forneris, J; Jaksic, M; Giudice, A Lo; Olivero, P; Picollo, F; Skukan, N; Verona, C; Verona-Rinati, G; Vittone, E

    2016-01-01

    Deep Ion Beam Lithography (DIBL) has been used for the direct writing of buried graphitic regions in monocrystalline diamond with micrometric resolution. Aiming at the development and the characterization of a fully ion-beam-micromachined solid state ionization chamber, a device with interdigitated electrodes was fabricated by using a 1.8 MeV He+ ion microbeam scanning on a homoepitaxial, grown by chemical vapour deposition (CVD). In order to evaluate the ionizing-radiation-detection performance of the device, charge collection efficiency (CCE) maps were extracted from Ion Beam Induced Charge (IBIC) measurements carried out by probing different arrangements of buried microelectrodes. The analysis of the CCE maps allowed for an exhaustive evaluation of the detector features, in particular the individuation of the different role played by electrons and holes in the formation of the induced charge pulses. Finally, a comparison of the performances of the detector with buried graphitic electrodes with those releva...

  6. Helium and carbon isotopes in Indian diamonds

    Science.gov (United States)

    Wiens, R.; Lal, D.; Craig, H.

    1990-09-01

    Helium and carbon isotope measurements in Indian diamonds (from Andhra Pradesh) were carried out using samples that included mined diamonds from primary kimberlite source rocks and alluvial diamonds from river gravel. The He and C isotope concentrations in diamonds from these two sources were compared, and the Indian diamonds were compared to those from other regions. Results indicate that most of the He-3 in the alluvial diamonds is of cosmogenic origin and that the alluvial diamonds may also have a significant He-4 component due to alpha particles implanted during storage in a secondary matrix. One diamond, a mined kimberlite specimen, was found to have the lowest He-4 content (0.018 microcc/g) so far recorded in diamonds.

  7. Study on the Formation of Urea or Salt Induced Vesicles in Built-system Surfactant

    Institute of Scientific and Technical Information of China (English)

    Chang Gang HU; Hui XIE; Gan Zuo LI; Ya AN; Zhong Ni WANG; Xiao Yi ZHANG; Jing Ping TIAN

    2005-01-01

    The spontaneous formation of vesicles in the aqueous of cationic surfactant phosphate(PTA) and anionic surfactant sodium dodecyl sulfate (SDS) at certain mixing ratios have obtained1.The addition of urea or NaI will expand the range of spontaneous vesicle formation. The fact is demonstrated by negative-staining transmission electron microscope(TEM) and dynamic light scattering(DLS) methods. The phenomenon especially in the part of urea is reported by us at first.Mechanism of urea/NaI-induced vesicles formation is discussed from the viewpoint of the molecular geometry packing parameter f, conformation and interaction.

  8. Mechanism and prediction of failure of diamond films deposited on various substrates by HFCVD

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ling-ping; SUN Xin-yuan; LI Shao-lu; LI De-yi; CHEN Xiao-hua

    2004-01-01

    Diamond films were deposited on the WC-Co cemented carbide and Si3N4 ceramic cutting tool substrates by hot-filament-assisted chemical vapour deposition. The adherence property of diamond films was estimated using the critical load (Pcr) in the indentation test. The adhesive strength of diamond films is related to the intermediate layer between the film and the substrate. Poor adhesion of diamond films to polished cemented carbide substrate is owing to the formation of graphite phase in the interface. The adhesion of diamond films deposited on acid etched cemented carbide substrate is improved, and the peeling-off of the films often happens in the loosen layer of WC particles where the cobalt element is nearly removed. The diamond films' adhesion to cemented carbide substrate whose surface layer is decarbonizated is strengthened dramatically because WC phase forms by reaction between the deposited carbon and tungsten in the surface layer of substrates during the deposition of diamond, which results in chemical combination in the film-substrate interface. The adhesion of diamond films to silicon nitride substrate is the firmest due to the formation of chemical combination of the SiC intermediate layer in the interfaces. In the piston-turning application, the diamond-coated Si3N4 ceramic and the cemented carbide cutting tools usually fail in the form of collapsing of edge and cracking or flaking respectively. They have no built-up edge(BUE) as long as coating is intact.As it wears through, BUE develops and the cutting force on it increases 1 - 3 times than that prior to failure. This can predict the failure of diamond-coated cutting tools.

  9. Biphasic function of focal adhesion kinase in endothelial tube formation induced by fibril-forming collagens.

    Science.gov (United States)

    Nakamura, Junko; Shigematsu, Satoshi; Yamauchi, Keishi; Takeda, Teiji; Yamazaki, Masanori; Kakizawa, Tomoko; Hashizume, Kiyoshi

    2008-10-03

    Migration and tube formation of endothelial cells are important in angiogenesis and require a coordinated response to the extra-cellular matrix (ECM) and growth factor. Since focal adhesion kinase (FAK) integrates signals from both ECM and growth factor, we investigated its role in angiogenesis. Type I and II collagens are fibril-forming collagens and stimulate human umbilical vein endothelial cells (HUVECs) to form tube structure. Although knockdown of FAK restrained cell motility and resulted in inhibition of tube formation, FAK degradation and tube formation occurred simultaneously after incubation with fibril-forming collagens. The compensation for the FAK degradation by a calpain inhibitor or transient over-expression of FAK resulted in disturbance of tube formation. These phenomena are specific to fibril-forming collagens and mediated via alpha2beta1 integrin. In conclusion, our data indicate that FAK is functioning in cell migration, but fibril-forming collagen-induced FAK degradation is necessary for endothelial tube formation.

  10. Quantum photonic networks in diamond

    KAUST Repository

    Lončar, Marko

    2013-02-01

    Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has emerged as a powerful interface between optical elements such as optical fibers and lenses, and solid-state quantum objects such as luminescent color centers in diamond that can be used effectively to manipulate quantum information. While quantum science and technology has been the main driving force behind recent interest in diamond nanophotonics, such a platform would have many applications that go well beyond the quantum realm. For example, diamond\\'s transparency over a wide wavelength range, large third-order nonlinearity, and excellent thermal properties are of great interest for the implementation of frequency combs and integrated Raman lasers. Diamond is also an inert material that makes it well suited for biological applications and for devices that must operate in harsh environments. Copyright © Materials Research Society 2013.

  11. Refractive Index Change and Color Center Formation in LiYF_4 Crystal Induced by a Femtosecond Laser

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The refractive index change and color centers formation in LiYF4 crystal at room temperature are induced by a femtosecond laser irradiation. A mechanism for refractive index change and color centers formation is proposed.

  12. Refractive Index Change and Color Center Formation in LiYF4 Crystal Induced by a Femtosecond Laser

    Institute of Scientific and Technical Information of China (English)

    Quanzhong Zhao; Jianrong Qiu; Lüyun Yang; Xiongwei Jiang; Congshan Zhu

    2003-01-01

    The refractive index change and color centers formation in LiYF4 crystal at room temperature are induced by a femtosecond laser irradiation. A mechanism for refractive index change and color centers formation is proposed.

  13. Optical properties of femtosecond laser-treated diamond

    Science.gov (United States)

    Calvani, P.; Bellucci, A.; Girolami, M.; Orlando, S.; Valentini, V.; Lettino, A.; Trucchi, D. M.

    2014-10-01

    A laser-induced periodic surface structure (LIPSS) has been fabricated on polycrystalline diamond by an ultrashort Ti:Sapphire pulsed laser source ( λ = 800 nm, P = 3 mJ, 100 fs) in a high vacuum chamber (LIPSS with a ripple period of about 170 nm, shorter than the laser wavelength. Raman spectra of processed sample do not point out any evident sp 2 content, and diamond peak presents a right shift, indicating a compressive stress. The investigation of optical properties of fs-laser surface textured diamond is reported. Spectral photometry in the range 200/2,000 nm wavelength shows a significant increase of visible and infrared absorption (more than 80 %) compared to untreated specimens (less than 40 %). The analysis of optical characterization data highlights a close relationship between fabricated LIPSS and absorption properties, confirming the optical effectiveness of such a treatment as a light-trapping structure for diamond: these properties, reported for the first time, open the path for new applications of CVD diamond.

  14. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Remes, Zdenek [Institute of Physics ASCR v.v.i., Cukrovarnicka 10, 162 00 Prague 6 (Czech Republic); Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Varga, Marian [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Chou, Hsiung [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University of Education, Pingtung 900, Taiwan (China); Kromka, Alexander [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Horak, Pavel [Nuclear Physics Institute, 250 68 Rez (Czech Republic)

    2015-11-15

    The nanocrystalline diamond films turn to be ferromagnetic after implanting various nitrogen doses on them. Through this research, we confirm that the room-temperature ferromagnetism of the implanted samples is derived from the measurements of magnetic circular dichroism (MCD) and superconducting quantum interference device (SQUID). Samples with larger crystalline grains as well as higher implanted doses present more robust ferromagnetic signals at room temperature. Raman spectra indicate that the small grain-sized samples are much more disordered than the large grain-sized ones. We propose that a slightly large saturated ferromagnetism could be observed at low temperature, because the increased localization effects have a significant impact on more disordered structure. - Highlights: • Nitrogen implanted nanocrystalline diamond films exhibit ferromagnetism at room temperature. • Nitrogen implants made a Raman deviation from the typical nanocrystalline diamond films. • The ferromagnetism induced from the structure distortion is dominant at low temperature.

  15. Investigation on the priming effect of a CVD diamond microdosimeter

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    CVD diamond microdosimeter is an ideal substitute of common Si.GaAs detector for extremely strong radiation experimental environment due to its high band gap energy, fast charge collection, low dielectric constant and hardness. In order to improve its character, a CVD diamond microdosimeter was irradiated by a proton dose of 46 Gy, and a lateral micro-ion beam induced charge (IBIC) technique was utilized to characterize it in low beam current (~fA). It was clearly shown that charge collection efficiency and energy resolution were greatly improved after proton irradiation of that dose. Moreover, the homogeneities of both its counting performance and collection efficiency were enhanced. Proton irradiation of 46 Gy has been proved to be an effective way to prime a CVD diamond.

  16. Investigation on the priming effect of a CVD diamond microdosimeter

    CERN Document Server

    Lu Rong Rong; Jiang Da; Li Xiao Lin; Zhu Jie Qing

    2002-01-01

    CVD diamond microdosimeter is an ideal substitute of common Si, GaAs detector for extremely strong radiation experimental environmental due to its high band gap energy, fast charge collection, low dielectric constant and hardness. In order to improve its character, a CVD diamond microdosimeter was irradiated by a proton dose of 46 Gy, and a lateral micro-ion beam induced charge (IBIC) technique was utilized to characterize it in low beam current (approx fA). It was clearly shown that charge collection efficiency and energy resolution were greatly improved after proton irradiation of that dose. Moreover, the homogeneities of both its counting performance and collection efficiency were enhanced. Proton irradiation of 46 Gy has been proved to be an effective way to prime a CVD diamond

  17. A role for muscarinic receptors in neutrophil extracellular trap formation and levamisole-induced autoimmunity

    Science.gov (United States)

    Carmona-Rivera, Carmelo; Purmalek, Monica M.; Moore, Erica; Waldman, Meryl; Walter, Peter J.; Garraffo, H. Martin; Phillips, Karran A.; Preston, Kenzie L.; Graf, Jonathan; Grayson, Peter C.

    2017-01-01

    Levamisole, an anthelmintic drug with cholinergic properties, has been implicated in cases of drug-induced vasculitis when added to cocaine for profit purposes. Neutrophil extracellular trap (NET) formation is a cell death mechanism characterized by extrusion of chromatin decorated with granule proteins. Aberrant NET formation and degradation have been implicated in idiopathic autoimmune diseases that share features with levamisole-induced autoimmunity as well as in drug-induced autoimmunity. This study’s objective was to determine how levamisole modulates neutrophil biology and its putative effects on the vasculature. Murine and human neutrophils exposed to levamisole demonstrated enhanced NET formation through engagement of muscarinic subtype 3 receptor. Levamisole-induced NETosis required activation of Akt and the RAF/MEK/ERK pathway, ROS induction through the nicotinamide adenine dinucleotide phosphate oxidase, and peptidylarginine deiminase activation. Sera from two cohorts of patients actively using levamisole-adulterated cocaine displayed autoantibodies against NET components. Cutaneous biopsy material obtained from individuals exposed to levamisole suggests that neutrophils produce NETs in areas of vasculitic inflammation and thrombosis. NETs generated by levamisole were toxic to endothelial cells and impaired endothelium-dependent vasorelaxation. Stimulation of muscarinic receptors on neutrophils by cholinergic agonists may contribute to the pathophysiology observed in drug-induced autoimmunity through the induction of inflammatory responses and neutrophil-induced vascular damage. PMID:28194438

  18. A role for muscarinic receptors in neutrophil extracellular trap formation and levamisole-induced autoimmunity.

    Science.gov (United States)

    Carmona-Rivera, Carmelo; Purmalek, Monica M; Moore, Erica; Waldman, Meryl; Walter, Peter J; Garraffo, H Martin; Phillips, Karran A; Preston, Kenzie L; Graf, Jonathan; Kaplan, Mariana J; Grayson, Peter C

    2017-02-09

    Levamisole, an anthelmintic drug with cholinergic properties, has been implicated in cases of drug-induced vasculitis when added to cocaine for profit purposes. Neutrophil extracellular trap (NET) formation is a cell death mechanism characterized by extrusion of chromatin decorated with granule proteins. Aberrant NET formation and degradation have been implicated in idiopathic autoimmune diseases that share features with levamisole-induced autoimmunity as well as in drug-induced autoimmunity. This study's objective was to determine how levamisole modulates neutrophil biology and its putative effects on the vasculature. Murine and human neutrophils exposed to levamisole demonstrated enhanced NET formation through engagement of muscarinic subtype 3 receptor. Levamisole-induced NETosis required activation of Akt and the RAF/MEK/ERK pathway, ROS induction through the nicotinamide adenine dinucleotide phosphate oxidase, and peptidylarginine deiminase activation. Sera from two cohorts of patients actively using levamisole-adulterated cocaine displayed autoantibodies against NET components. Cutaneous biopsy material obtained from individuals exposed to levamisole suggests that neutrophils produce NETs in areas of vasculitic inflammation and thrombosis. NETs generated by levamisole were toxic to endothelial cells and impaired endothelium-dependent vasorelaxation. Stimulation of muscarinic receptors on neutrophils by cholinergic agonists may contribute to the pathophysiology observed in drug-induced autoimmunity through the induction of inflammatory responses and neutrophil-induced vascular damage.

  19. A multilayer innovative solution to improve the adhesion of nanocrystalline diamond coatings

    Energy Technology Data Exchange (ETDEWEB)

    Poulon-Quintin, A., E-mail: poulon@icmcb-bordeaux.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Faure, C.; Teulé-Gay, L.; Manaud, J.P. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2015-03-15

    Highlights: • Improvement of the NCD adhesion on WC-12%Co substrates for tooling applications using a multi-interlayer additional system. • Reduction of the graphite layer thickness and continuity at the interface with the diamond. • Transmission electron microscopy study for a better understanding of the diffusion phenomena occurring at the interfaces. - Abstract: Nano-crystalline diamond (NCD) films grown under negative biased substrates by chemical vapor deposition (CVD) are widely used as surface overlay coating onto cermet WC-Co cutting tools to get better performances. To improve the diamond adhesion to the cermet substrate, suitable multi-layer systems have been added. They are composed of a cobalt diffusion barrier close to the substrate (single and sequenced nitrides layers) coated with a nucleation extra layer to improve the nucleus density of diamond during CVD processing. For all systems, before and after diamond deposition, transmission electron microscopy (TEM) has been performed for a better understanding of the diffusion phenomena occurring at the interfaces and to evaluate the presence of graphitic species at the interface with the diamond. Innovative multilayer system dedicated to the regulation of cobalt diffusion coated with a bilayer system optimized for the carbon diffusion control, is shown as an efficient solution to significantly reduce the graphite layer formation at the interface with the diamond down to 10 nm thick and to increase the adhesion of NCD diamond layer as scratch-tests confirm.

  20. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.

    Science.gov (United States)

    Halpern, Jeffrey M; Martin, Heidi B

    2014-02-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp(2) carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes.

  1. Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato.

    Science.gov (United States)

    Fang, Tao; Cao, Zeyu; Li, Jiale; Shen, Wenbiao; Huang, Liqin

    2014-03-01

    Similar to auxin, hydrogen sulfide (H2S), mainly produced by l-cysteine desulfhydrase (DES; EC 4.4.1.1) in plants, could induce lateral root formation. The objective of this study was to test whether H2S is also involved in auxin-induced lateral root development in tomato (Solanum lycopersicum L.) seedlings. We observed that auxin depletion-induced down-regulation of transcripts of SlDES1, decreased DES activity and endogenous H2S contents, and the inhibition of lateral root formation were rescued by sodium hydrosulfide (NaHS, an H2S donor). However, No additive effects were observed when naphthalene acetic acid (NAA) was co-treated with NaHS (lower than 10 mM) in the induction of lateral root formation. Subsequent work revealed that a treatment with NAA or NaHS could simultaneously induce transcripts of SlDES1, DES activity and endogenous H2S contents, and thereafter the stimulation of lateral root formation. It was further confirmed that H2S or HS(-), not the other sulfur-containing components derived from NaHS, was attributed to the stimulative action. The inhibition of lateral root formation and decreased of H2S metabolism caused by an H2S scavenger hypotaurine (HT) were reversed by NaHS, but not NAA. Molecular evidence revealed that both NaHS- or NAA-induced modulation of some cell cycle regulatory genes, including the up-regulation of SlCDKA;1, SlCYCA2;1, together with simultaneous down-regulation of SlKRP2, were differentially reversed by HT pretreatment. To summarize, above results clearly suggested that H2S might, at least partially, act as a downstream component of auxin signaling to trigger lateral root formation.

  2. ANA deficiency enhances bone morphogenetic protein-induced ectopic bone formation via transcriptional events.

    Science.gov (United States)

    Miyai, Kentaro; Yoneda, Mitsuhiro; Hasegawa, Urara; Toita, Sayaka; Izu, Yayoi; Hemmi, Hiroaki; Hayata, Tadayoshi; Ezura, Yoichi; Mizutani, Shuki; Miyazono, Kohei; Akiyoshi, Kazunari; Yamamoto, Tadashi; Noda, Masaki

    2009-04-17

    Ectopic bone formation after joint replacement or brain injury in humans is a serious complication that causes immobility of joints and severe pain. However, mechanisms underlying such ectopic bone formation are not fully understood. Bone morphogenetic protein (BMPs) are defined as inducers of ectopic bone formation, and they are regulated by several types of inhibitors. ANA is an antiproliferative molecule that belongs to Tob/BTG family, but its activity in bone metabolism has not been known. Here, we examined the role of ANA on ectopic bone formation activity of BMP. In ANA-deficient and wild-type mice, BMP2 was implanted to induce ectopic bone formation in muscle. ANA deficiency increased mass of newly formed bone in vivo compared with wild-type based on 3D-muCT analyses. ANA mRNA was expressed in bone in vivo as well as in osteoblastic cells in vitro. Such ANA mRNA levels were increased by BMP2 treatment in MC3T3-E1 osteoblastic cells. Overexpression of ANA suppressed BMP-induced expression of luciferase reporter gene linked to BMP response elements in these cells. Conversely, ANA mRNA knockdown by small interference RNA enhanced the BMP-dependent BMP response element reporter expression. It also enhanced BMP-induced osteoblastic differentiation in muscle-derived C2C12 cells. Immunoprecipitation assay indicated that ANA interacts with Smad8. Thus, ANA is a suppressor of ectopic bone formation induced by BMP, and this inhibitory ANA activity is a part of the negative feedback regulation of BMP function.

  3. Mosaic diamond based detector for MIPs detection, T0 determination and triggering in HADES

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszko, Jerzy; Koenig, Wolfgang [GSI Helmholtzzentum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Collaboration: HADES-Collaboration

    2015-07-01

    The CVD based diamond detectors were successfully used for HI detection in HADES already in 2001. In the following experiments the polycrystalline diamond material showed very good performance (time resolution below 50 ps sigma) and stable long term operation. Detection of the minimum ionising particles (MIPs) by means of the diamond detectors is a challenging task mainly because of very small energy deposit in the diamond material. In this case the single crystalline CVD diamond material has to be used which is well known for its excellent charge collection efficiency (almost 100 %) and for its very good timing properties. For pion induced experiments at HADES a large area, segmented, position sensitive, operated in vacuum detector was developed. The construction of the detector is presented along with the requirements and the obtained performance.

  4. Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides

    Science.gov (United States)

    Schukraft, M.; Zheng, J.; Schröder, T.; Mouradian, S. L.; Walsh, M.; Trusheim, M. E.; Bakhru, H.; Englund, D. R.

    2016-05-01

    We demonstrate a self-aligned lithographic technique for precision generation of nitrogen vacancy (NV) centers within photonic nanostructures on bulk diamond substrates. The process relies on a lithographic mask with nanoscale implantation apertures for NV creation, together with larger features for producing waveguides and photonic nanocavities. This mask allows targeted nitrogen ion implantation, and precision dry etching of nanostructures on bulk diamond. We demonstrate high-yield generation of single NVs at pre-determined nanoscale target regions on suspended diamond waveguides. We report implantation into the mode maximum of diamond photonic crystal nanocavities with a single-NV per cavity yield of ˜26% and Purcell induced intensity enhancement of the zero-phonon line. The generation of NV centers aligned with diamond photonic structures marks an important tool for scalable production of optically coupled spin memories.

  5. Regular growth combined with lateral etching in diamond deposited over silicon substrate by using hot filament chemical vapor deposition technique

    Science.gov (United States)

    Ali, M.; Ürgen, M.

    2013-05-01

    Hot filament chemical vapor deposition has proved to be an attractive method for growing diamond films with good quality and higher growth rate. Diamond films were produced at deposition parameters under which, it is possible to have regular growth combined with lateral etching (RGCLE). Fracture cross-section SEM images showed that RGCLE initiated over polycrystalline diamond film and proceeded by the growth of consecutive steps in each crystallite, which terminated with square/rectangle shaped facets. All the diamond films exhibit RGCLE but with different type of growth behavior. Present work discusses the cyclic formation of the steps in diamond crystallites and RGCLE modes. RGCLE in diamond film may find important applications where heat absorption and dissipation are key issues.

  6. Gentamicin induces efaA expression and biofilm formation in Enterococcus faecalis.

    Science.gov (United States)

    Kafil, Hossein Samadi; Mobarez, Ashraf Mohabati; Moghadam, Mehdi Forouzandeh; Hashemi, Zahra Sadat; Yousefi, Mehdi

    2016-03-01

    Enterococci have been ranked among the leading causes of nosocomial bacteremia and urinary tract infection. This study aimed to investigate the effect of ampicillin, vancomycin, gentamicin and ceftizoxime on biofilm formation and gene expression of colonization factors on Enterococcus faecalis. Twelve clinical isolates of E. faecalis were used to investigate the effect of antibiotics on biofilm formation and gene expression of efaA, asa1, ebpA, esp and ace. Flow system assay and Microtiter plates were used for biofilm assay. Two hundred clinical isolates were used for confirming the effect of antibiotics on biofilm formation. Ampicillin, vancomycin and ceftizoxime did not have any significant effect on biofilm formation, but gentamicin induced biofilm formation in 89% of isolates. In twelve selected isolate gentamicin increased expression of esp (+50.9%) and efaA (+33.9%) genes and reduced or maintained expression of others (asa1:-47.4%, ebpA: 0, ace:-19.2%). Vancomycin increased expression of esp (+89.1%) but reduced the others (asa1: -34.9%, ebpA:-11%, ace:-30%, efaA:-60%). Ceftizoxime increased slightly ebpA (+19.7%) and reduced others (asa1:-66.2%, esp:-35%, ace:-28.1%, efaA:-38.4%). and ampicillin strongly increased expression of ace (+231%), esp (+131%) and ebpA (+83%) but reduced others (asa1:-85.5%, efaA:-47.4%). The findings of the present study showed that antibiotics may have a role in biofilm formation and sustainability of enterococci, especially in case of gentamicin. efaA gene may have an important role, especially in antibiotic induced biofilm formation by gentamicin. Experiments with efaA mutants are needed to investigate the exact effect of efaA on biofilm formation with antibiotic induced cells.

  7. Hydrogenated Black Diamond: An Electrical Study

    Energy Technology Data Exchange (ETDEWEB)

    Williams, O.A.; Jackman, R.B. [Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Nebel, C.E. [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, 85748 Garching (Germany)

    2002-10-16

    Hydrogen surface conductivity has been a controversial subject since its discovery. Initial plasma treatments on single crystal diamond and polycrystalline diamond have lead to the widespread use of this material in active electronics. However, ''Black'' polycrystalline diamond, usually termed ''Thermal Management Grade'', shows carrier concentration and mobility values similar to both white polycrystalline diamond and single crystal material. Schottky contacts have also been fabricated and show promising characteristics. Black diamond can be grown considerably faster than white diamond and is hence much cheaper. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  8. Autophagy is induced by anti-neutrophil cytoplasmic Abs and promotes neutrophil extracellular traps formation.

    Science.gov (United States)

    Sha, Li-Li; Wang, Huan; Wang, Chen; Peng, Hong-Ying; Chen, Min; Zhao, Ming-Hui

    2016-11-01

    Dysregulated neutrophil extracellular traps (NETs) formation contributes to the pathogenesis of anti-neutrophil cytoplasmic Ab (ANCA)-associated vasculitis (AAV). Increasing evidence indicates that autophagy is involved in the process of NETs formation. In this study, we aimed to investigate whether ANCA could induce autophagy in the process of NETs formation. Autophagy was detected using live cell imaging, microtubule-associated protein light chain 3B (LC3B) accumulation and Western blotting. The results showed that autophagy vacuolization was detected in neutrophils treated with ANCA-positive IgG by live cell imaging. This effect was enhanced by rapamycin, the autophagy inducer, and weakened by 3-methyladenine (3-MA), the autophagy inhibitor. In line with these results, the autophagy marker, LC3B, showed a punctate distribution pattern in the neutrophils stimulated with ANCA-positive IgG. In the presence of rapamycin, LC3B accumulation was further increased; however, this effect was attenuated by 3-MA. Moreover, incubated with ANCA-positive IgG, the NETosis rate significantly increased compared with the unstimulated group. And, the rate significantly increased or decreased in the neutrophils pretreated with rapamycin or 3-MA, respectively, as compared with the cells incubated with ANCA-positive IgG. Overall, this study demonstrates that autophagy is induced by ANCA and promotes ANCA-induced NETs formation.

  9. Heat-Induced Gel Formation by Soy Proteins at Neutral pH

    NARCIS (Netherlands)

    Renkema, J.M.S.; Vliet, van T.

    2002-01-01

    Heat-induced gel formation by soy protein isolate at pH 7 is discussed. Different heating and cooling rates, heating times, and heating temperatures were used to elucidate the various processes that occur and to study the relative role of covalent and noncovalent protein interactions therein. Gel fo

  10. Superoxide Induces Neutrophil Extracellular Trap Formation in a TLR-4 and NOX-Dependent Mechanism

    Science.gov (United States)

    Al-Khafaji, Ahmed B; Tohme, Samer; Yazdani, Hamza Obaid; Miller, David; Huang, Hai; Tsung, Allan

    2016-01-01

    Neutrophils constitute the early innate immune response to perceived infectious and sterile threats. Neutrophil extracellular traps (NETs) are a novel mechanism to counter pathogenic invasion and sequelae of ischemia, including cell death and oxidative stress. Superoxide is a radical intermediate of oxygen metabolism produced by parenchymal and nonparenchymal hepatic cells, and is a hallmark of oxidative stress after liver ischemia-reperfusion (I/R). While extracellular superoxide recruits neutrophils to the liver and initiates sterile inflammatory injury, it is unknown whether superoxide induces the formation of NETs. We hypothesize that superoxide induces NET formation through a signaling cascade involving Toll-like receptor 4 (TLR-4) and neutrophil NADPH oxidase (NOX). We treated neutrophils with extracellular superoxide and observed NET DNA release, histone H3 citrullination and increased levels of MPO-DNA complexes occurring in a TLR-4–dependent manner. Inhibition of superoxide generation by allopurinol and inhibition of NOX by diphenyleneiodonium prevented NET formation. When mice were subjected to warm liver I/R, we found significant NET formation associated with liver necrosis and increased serum ALT in TLR-4 WT but not TLR-4 KO mice. To reduce circulating superoxide, we pretreated mice undergoing I/R with allopurinol and N-acetylcysteine, which resulted in decreased NETs and ameliorated liver injury. Our study demonstrates a requirement for TLR-4 and NOX in superoxide-induced NETs, and suggests involvement of superoxide-induced NETs in pathophysiologic settings. PMID:27453505

  11. The formation of light-induced gratings in the rigid eosine K solution in gelatin

    Science.gov (United States)

    Vorob'ev, A. A.; Kolchanova, S. A.; Sizykh, A. G.; Sul'Kis, I. G.

    1992-03-01

    The mechanism of the formation of light-induced amplitude gratings in the rigid eosine K solution in gelatin is investigated. It is shown that spatial modulation of the absorptance of the recording medium is caused by the transformation of the dye into a colorless form in the process of photosensitized proton transfer from gelatin to the eosine.

  12. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation

    NARCIS (Netherlands)

    Bolder, S.G.; Vasbinder, A.; Sagis, L.M.C.; Linden, van der E.

    2007-01-01

    Fibril formation of individual pure whey proteins and whey protein isolate (WPI) was studied. The heat-induced conversion of WPI monomers into fibrils at pH 2 and low ionic strength increased with heating time and protein concentration. Previous studies, using a precipitation method, size-exclusion

  13. Transient Substrate-Induced Catalyst Formation in a Dynamic Molecular Network

    NARCIS (Netherlands)

    Fanlo-Virgos, Hugo; Alba, Andrea-Nekane R.; Hamieh, Saleh; Colomb-Delsuc, Mathieu; Otto, Sijbren

    2014-01-01

    In biology enzyme concentrations are continuously regulated, yet for synthetic catalytic systems such regulatory mechanisms are underdeveloped. We now report how a substrate of a chemical reaction induces the formation of its own catalyst from a dynamic molecular network. After complete conversion

  14. Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation

    Science.gov (United States)

    Gurevich, Evgeny L.

    2016-06-01

    Here we analyze the formation of laser-induced periodic surface structures (LIPSS) on metal surfaces upon single femtosecond laser pulses. Most of the existing models of the femtosecond LIPSS formation discuss only the appearance of a periodic modulation of the electron and ion temperatures. However the mechanism how the inhomogeneous surface temperature distribution induces the periodically-modulated surface profile under the conditions corresponding to ultrashort-pulse laser ablation is still not clear. Estimations made on the basis of different hydrodynamic instabilities allow to sort out mechanisms, which can bridge the gap between the temperature modulation and the LIPSS. The proposed theory shows that the periodic structures can be generated by single ultrashort laser pulses due to ablative instabilities. The Marangoni and Rayleigh-Bénard convection on the contrary cannot cause the LIPSS formation.

  15. Auxin effectively induces the formation of the secondary abscission zone in Bryophyllum calycinum Salisb. (Crassulaceae

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2016-05-01

    Full Text Available We have found that auxin, indole-3-acetic acid (IAA substantially induces the formation of the secondary abscission zone in stem and petiole explants and in decapitated stem and petiole after excision of blade in intact plants of Bryophyllum calycinum when IAA at a concentration of 0.1% as lanolin paste was applied in the middle of these organs. The secondary abscission zone was formed at a few mm above of the treatment with IAA, and senescence of the part above abscission zone was observed. IAA additionally applied on the top of explants or top of the dacapitated stem or the debladed petiole totally prevented the secondary abscission zone formation and senescence induced by IAA applied in the middle of these organs. Possible mechanisms of the formation of the secondary abscission zone are discussed in terms of the interaction of auxin and ethylene.

  16. A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans

    Science.gov (United States)

    Neal, Scott J.; Park, JiSoo; DiTirro, Danielle; Yoon, Jason; Shibuya, Mayumi; Choi, Woochan; Schroeder, Frank C.; Butcher, Rebecca A.; Kim, Kyuhyung; Sengupta, Piali

    2016-01-01

    Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer) mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation. PMID:26976437

  17. A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Scott J. Neal

    2016-05-01

    Full Text Available Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation.

  18. A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans.

    Science.gov (United States)

    Neal, Scott J; Park, JiSoo; DiTirro, Danielle; Yoon, Jason; Shibuya, Mayumi; Choi, Woochan; Schroeder, Frank C; Butcher, Rebecca A; Kim, Kyuhyung; Sengupta, Piali

    2016-05-03

    Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer) mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation.

  19. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  20. Impact of keV-energy argon clusters on diamond and graphite

    DEFF Research Database (Denmark)

    Popok, Vladimir; Samela, Juha; Nordlund, Kai

    2012-01-01

    Impact of keV-energy size-selected Arn (n = 16, 27, 41) cluster ions on diamond and graphite is studied both experimentally and by molecular dynamics simulations. For the case of diamond, relatively high cluster kinetic energies (above certain threshold) are required to produce severe radiation...... damage and originate crater formation on the surface. This is related to very strong chemical bonds and both the melting (or sublimation) point and thermal conductivity of diamond being the highest among the solids. For the case of graphite, which is layered material with weak van der Waals bonds between...

  1. Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique

    Science.gov (United States)

    Kononenko, Vitali V.; Vlasov, Igor I.; Gololobov, Viktor M.; Kononenko, Taras V.; Semenov, Timur A.; Khomich, Andrej A.; Shershulin, Vladimir A.; Krivobok, Vladimir S.; Konov, Vitaly I.

    2017-08-01

    A strategy for nitrogen-vacancy (NV) center production in diamond under its irradiation by 266-nm femtosecond laser pulses is suggested: NV centers can be effectively and controllably created in the regime of nanoablation of a diamond surface. The NV concentration was found to increase logarithmically with the laser pulse number in the nanoablation regime, which is realized at a laser fluence of tool to produce the requisite number of vacancies near the diamond surface and, hence, to manage the formation of NV complexes.

  2. Are diamond nanoparticles cytotoxic?

    Science.gov (United States)

    Schrand, Amanda M; Huang, Houjin; Carlson, Cataleya; Schlager, John J; Omacr Sawa, Eiji; Hussain, Saber M; Dai, Liming

    2007-01-11

    Finely divided carbon particles, including charcoal, lampblack, and diamond particles, have been used for ornamental and official tattoos since ancient times. With the recent development in nanoscience and nanotechnology, carbon-based nanomaterials (e.g., fullerenes, nanotubes, nanodiamonds) attract a great deal of interest. Owing to their low chemical reactivity and unique physical properties, nanodiamonds could be useful in a variety of biological applications such as carriers for drugs, genes, or proteins; novel imaging techniques; coatings for implantable materials; and biosensors and biomedical nanorobots. Therefore, it is essential to ascertain the possible hazards of nanodiamonds to humans and other biological systems. We have, for the first time, assessed the cytotoxicity of nanodiamonds ranging in size from 2 to 10 nm. Assays of cell viability such as mitochondrial function (MTT) and luminescent ATP production showed that nanodiamonds were not toxic to a variety of cell types. Furthermore, nanodiamonds did not produce significant reactive oxygen species. Cells can grow on nanodiamond-coated substrates without morphological changes compared to controls. These results suggest that nanodiamonds could be ideal for many biological applications in a diverse range of cell types.

  3. Integrated diamond networks for quantum nanophotonics

    CERN Document Server

    Hausmann, Birgit J M; Quan, Qimin; Maletinsky, Patrick; McCutcheon, Murray; Choy, Jennifer T; Babinec, Tom M; Kubanek, Alexander; Yacoby, Amir; Lukin, Mikhail D; Loncar, Marko

    2011-01-01

    Diamond is a unique material with exceptional physical and chemical properties that offers potential for the realization of high-performance devices with novel functionalities. For example diamond's high refractive index, transparency over wide wavelength range, and large Raman gain are of interest for the implementation of novel photonic devices. Recently, atom-like impurities in diamond emerged as an exceptional system for quantum information processing, quantum sensing and quantum networks. For these and other applications, it is essential to develop an integrated nanophotonic platform based on diamond. Here, we report on the realization of such an integrated diamond photonic platform, diamond on insulator (DOI), consisting of a thin single crystal diamond film on top of an insulating silicon dioxide/silicon substrate. Using this approach, we demonstrate diamond ring resonators that operate in a wide wavelength range, including the visible (630nm) and near-infrared (1,550nm). Finally, we demonstrate an int...

  4. The Design of Diamond Compton Telescope

    CERN Document Server

    Hibino, Kinya; Okuno, Shoji; Yajima, Kaori; Uchihori, Yukio; Kitamura, Hisashi; Takashima, Takeshi; Yokota, Mamoru; Yoshida, Kenji

    2007-01-01

    We have developed radiation detectors using the new synthetic diamonds. The diamond detector has an advantage for observations of "low/medium" energy gamma rays as a Compton telescope. The primary advantage of the diamond detector can reduce the photoelectric effect in the low energy range, which is background noise for tracking of the Compton recoil electron. A concept of the Diamond Compton Telescope (DCT) consists of position sensitive layers of diamond-striped detector and calorimeter layer of CdTe detector. The key part of the DCT is diamond-striped detectors with a higher positional resolution and a wider energy range from 10 keV to 10 MeV. However, the diamond-striped detector is under development. We describe the performance of prototype diamond detector and the design of a possible DCT evaluated by Monte Carlo simulations.

  5. Anodic bonding of diamond to glass

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, R. [Materials and Technologies Corp., Poughkeepsie, NY (United States); Trolio, L.M. [Geo-Centers, Inc., Fort Washington, MD (United States); Butler, J.E. [Naval Research Lab., Washington, DC (United States)

    1995-12-31

    A method is described for anodically bonding smooth nanocrystalline diamond films to glass substrates to form extremely flat diamond membranes with the smoothest side available of patterning absorber structures to form masks for proximity focused x-ray lithography.

  6. A new route to process diamond wires

    Directory of Open Access Journals (Sweden)

    Marcello Filgueira

    2003-06-01

    Full Text Available We propose an original route to process diamond wires, denominated In Situ Technology, whose fabrication involves mechanical conformation processes, such as rotary forging, copper tubes restacking, and thermal treatments, such as sintering and recrystallisation of a bronze 4 wt.% diamond composite. Tensile tests were performed, reaching an ultimate tensile strength (UTS of 230 MPa for the diameter of Æ = 1.84 mm. Scanning electron microscopy showed the diamond crystals distribution along the composite rope during its manufacture, as well as the diamond adhesion to the bronze matrix. Cutting tests were carried out with the processed wire, showing a probable performance 4 times higher than the diamond sawing discs, however its probable performance was about 5 to 8 times less than the conventional diamond wires (pearl system due to the low abrasion resistance of the bronze matrix, and low adhesion between the pair bronze-diamond due to the use of not metallised diamond single crystals.

  7. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  8. Ohmic contacts to semiconducting diamond

    Science.gov (United States)

    Zeidler, James R.; Taylor, M. J.; Zeisse, Carl R.; Hewett, C. A.; Delahoussaye, Paul R.

    1990-10-01

    Work was carried out to improve the electron beam evaporation system in order to achieve better deposited films. The basic system is an ion pumped vacuum chamber, with a three-hearth, single-gun e-beam evaporator. Four improvements were made to the system. The system was thoroughly cleaned and new ion pump elements, an e-gun beam adjust unit, and a more accurate crystal monitor were installed. The system now has a base pressure of 3 X 10(exp -9) Torr, and can easily deposit high-melting-temperature metals such as Ta with an accurately controlled thickness. Improved shadow masks were also fabricated for better alignment and control of corner contacts for electrical transport measurements. Appendices include: A Thermally Activated Solid State Reaction Process for Fabricating Ohmic Contacts to Semiconducting Diamond; Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process; Metallization of Semiconducting Diamond: Mo, Mo/Au, and Mo/Ni/Au; Specific Contact Resistance Measurements of Ohmic Contracts to Diamond; and Electrical Activation of Boron Implanted into Diamond.

  9. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.

    Science.gov (United States)

    Noya, Eva G; Vega, Carlos; Doye, Jonathan P K; Louis, Ard A

    2010-06-21

    The phase diagram of model anisotropic particles with four attractive patches in a tetrahedral arrangement has been computed at two different values of the range of the potential, with the aim of investigating the conditions under which a diamond crystal can be formed. We find that the diamond phase is never stable for our longer-ranged potential. At low temperatures and pressures, the fluid freezes into a body-centered-cubic solid that can be viewed as two interpenetrating diamond lattices with a weak interaction between the two sublattices. Upon compression, an orientationally ordered face-centered-cubic crystal becomes more stable than the body-centered-cubic crystal, and at higher temperatures, a plastic face-centered-cubic phase is stabilized by the increased entropy due to orientational disorder. A similar phase diagram is found for the shorter-ranged potential, but at low temperatures and pressures, we also find a region over which the diamond phase is thermodynamically favored over the body-centered-cubic phase. The higher vibrational entropy of the diamond structure with respect to the body-centered-cubic solid explains why it is stable even though the enthalpy of the latter phase is lower. Some preliminary studies on the growth of the diamond structure starting from a crystal seed were performed. Even though the diamond phase is never thermodynamically stable for the longer-ranged model, direct coexistence simulations of the interface between the fluid and the body-centered-cubic crystal and between the fluid and the diamond crystal show that at sufficiently low pressures, it is quite probable that in both cases the solid grows into a diamond crystal, albeit involving some defects. These results highlight the importance of kinetic effects in the formation of diamond crystals in systems of patchy particles.

  10. Critical Role of AKT Protein in Myeloma-induced Osteoclast Formation and Osteolysis*

    Science.gov (United States)

    Cao, Huiling; Zhu, Ke; Qiu, Lugui; Li, Shuai; Niu, Hanjie; Hao, Mu; Yang, Shengyong; Zhao, Zhongfang; Lai, Yumei; Anderson, Judith L.; Fan, Jie; Im, Hee-Jeong; Chen, Di; Roodman, G. David; Xiao, Guozhi

    2013-01-01

    Abnormal osteoclast formation and osteolysis are the hallmarks of multiple myeloma (MM) bone disease, yet the underlying molecular mechanisms are incompletely understood. Here, we show that the AKT pathway was up-regulated in primary bone marrow monocytes (BMM) from patients with MM, which resulted in sustained high expression of the receptor activator of NF-κB (RANK) in osteoclast precursors. The up-regulation of RANK expression and osteoclast formation in the MM BMM cultures was blocked by AKT inhibition. Conditioned media from MM cell cultures activated AKT and increased RANK expression and osteoclast formation in BMM cultures. Inhibiting AKT in cultured MM cells decreased their growth and ability to promote osteoclast formation. Of clinical significance, systemic administration of the AKT inhibitor LY294002 blocked the formation of tumor tissues in the bone marrow cavity and essentially abolished the MM-induced osteoclast formation and osteolysis in SCID mice. The level of activating transcription factor 4 (ATF4) protein was up-regulated in the BMM cultures from multiple myeloma patients. Adenoviral overexpression of ATF4 activated RANK expression in osteoclast precursors. These results demonstrate a new role of AKT in the MM promotion of osteoclast formation and bone osteolysis through, at least in part, the ATF4-dependent up-regulation of RANK expression in osteoclast precursors. PMID:24005670

  11. Development of Diamond-Coated Drills

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Compared with the sintered polycrystalline diamond, the deposited thin film diamond has the great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of their low costs for fabrication equipment and high performance on high speed machining non-ferrous metals and alloys, metal-compound materials, and hard brittle non-metals, diamond-coated drills find great potentialities in the commercial application. However, the poor adhesion of the diamond film on the substrate...

  12. Raman spectral research on MPCVD diamond film

    Institute of Scientific and Technical Information of China (English)

    YAN Yan; ZHANG Shulin; ZHAO Xinsheng; HAN Yisong; HOU Li

    2003-01-01

    Raman spectra of MPCVD diamond film have been studied. Based on the resonance size selection effect, we think that there is no nano-crystalline diamond in the sample and the Raman peak at 1145 cm-1 can not be considered as the characteristic peak of nano-crystalline diamond though it has been used as the characteristic peak of nano-crystalline diamond widely for many years.

  13. Medical applications of diamond particles & surfaces

    Directory of Open Access Journals (Sweden)

    Roger J Narayan

    2011-04-01

    Full Text Available Diamond has been considered for use in several medical applications due to its unique mechanical, chemical, optical, and biological properties. In this paper, methods for preparing synthetic diamond surfaces and particles are described. In addition, recent developments involving the use of diamond in prostheses, sensing, imaging, and drug delivery applications are reviewed. These developments suggest that diamond-containing structures will provide significant improvements in the diagnosis and treatment of medical conditions over the coming years.

  14. Kartogenin induces cartilage-like tissue formation in tendon-bone junction

    Institute of Scientific and Technical Information of China (English)

    Jianying Zhang; James H-C Wang

    2014-01-01

    Tendon-bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs.

  15. The influence of projectile ion induced chemistry on surface pattern formation

    Science.gov (United States)

    Karmakar, Prasanta; Satpati, Biswarup

    2016-07-01

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  16. DIAMOND PORT JET INTERACTION WITH SUPERSONIC FLOW

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Interaction flow field of the sonic air jet through diamond shaped orifices at different incidence angles (10 degrees, 27.5 degrees, 45 degrees and 90 degrees) and total pressures (0.10 MPa and 0. 46 MPa) with a Mach 5.0 freestream was studied experimentally. A 90 degrees circular injector was examined for comparison. Crosssection Mach number contours were acquired by a Pitot-cone five-hole pressure probe.The results indicate that the low Mach semicircular region close to the wall is the wake region. The boundary layer thinning is in the areas adjacent to the wake. For the detached case, the interaction shock extends further into the freestream, and the shock shape has more curvature, also the low-Mach upwash region is larger. The vortices of the plume and the height of the jet interaction shock increase with increasing incidence angle and jet pressure. 90 degrees diamond and circular injector have stronger plume vorticity, and for the circular injector low-Mach region is smaller than that for the diamond injector. Tapered ramp increases the plume vorticity, and the double ramp reduces the level of vorticity. The three-dimensional interaction shock shape was modeled from the surface shock shape, the center plane shock shape, and crosssectional shock shape. The shock total pressure was estimated with the normal component of the Mach number using normal shock theory. The shock induced total pressure losses decrease with decreasing jet incidence angle and injection pressure,where the largest losses are incurred by the 90 degrees, circular injector.

  17. Diamond and diamond-like films for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J.M.

    1993-01-01

    This section is a compilation of transparency templates which describe the goals of the Office of Transportation Materials (OTM) Tribology Program. The positions of personnel on the OTM are listed. The role and mission of the OTM is reviewed. The purpose of the Tribology Program is stated to be `to obtain industry input on program(s) in tribology/advanced lubricants areas of interest`. The objective addressed here is to identify opportunities for cost effective application of diamond and diamond-like carbon in transportation systems.

  18. Heme oxygenase-1 is involved in sodium hydrosulfide-induced lateral root formation in tomato seedlings.

    Science.gov (United States)

    Fang, Tao; Li, Jiale; Cao, Zeyu; Chen, Meng; Shen, Wei; Huang, Liqin

    2014-06-01

    By using pharmacological and molecular approaches, we discovered the involvement of HO-1 in NaHS-induced lateral root formation in tomato seedlings. Heme oxygenase-1 (HO-1) and hydrogen sulfide (H2S) regulate various responses to abiotic stress and root development, but their involvement in the simultaneous regulation of plant lateral root (LR) formation is poorly understood. In this report, we observed that the exogenously applied H2S donor sodium hydrosulfide (NaHS) and the HO-1 inducer hemin induce LR formation in tomato seedlings by triggering intracellular signaling events involving the induction of tomato HO-1 (SlHO-1), and the modulation of cell cycle regulatory genes, including the up-regulation of SlCDKA;1 and SlCYCA2;1, and simultaneous down-regulation of SlKRP2. The response of NaHS in the induction of LR formation was impaired by the potent inhibition of HO-1, which was further blocked when 50 % saturation of carbon monoxide (CO) aqueous solution, one of the catalytic by-products of HO-1, was added. Further molecular evidence revealed that the NaHS-modulated gene expression of cell cycle regulatory genes was sensitive to the inhibition of HO-1 and reversed by cotreatment with CO. The impairment of LR density and length as well as lateral root primordia number, the decreased tomato HO-1 gene expression and HO activity caused by an H2S scavenger hypotaurine were partially rescued by the addition of NaHS, hemin and CO (in particular). Together, these results revealed that at least in our experimental conditions, HO-1 might be involved in NaHS-induced tomato LR formation. Additionally, the use of NaHS and hemin compounds in crop root organogenesis should be explored.

  19. Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Girault, M. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Centre Lasers Intenses et Applications (CELIA), Universite de Bordeaux 1, 43 rue Pierre Noailles, Talence (France); Hallo, L., E-mail: hallo@celia.u-bordeaux1.fr [CEA CESTA, 15 Avenue des Sablieres CS 60001, 33116 Le Barp Cedex (France); Centre Lasers Intenses et Applications (CELIA), Universite de Bordeaux 1, 43 rue Pierre Noailles, Talence (France); Lavisse, L.; Lucas, M.C. Marco de [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Hebert, D. [CEA CESTA, 15 Avenue des Sablieres CS 60001, 33116 Le Barp Cedex (France); Potin, V.; Jouvard, J.-M. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Nanoparticles spatial localization in the plume induced by a pulsed laser. Black-Right-Pointing-Pointer Plasma plume obtained by laser irradiation. Black-Right-Pointing-Pointer Particles and debris formation. Black-Right-Pointing-Pointer Powder generation. Black-Right-Pointing-Pointer Conditions of formation. - Abstract: Nanoparticles formation in a laser-induced plasma plume in the ambient air has been investigated by using numerical simulations and physical models. For high irradiances, or for ultrashort laser pulses, nanoparticles are formed by condensation, as fine powders, in the expanding plasma for very high pairs of temperature and pressure. At lower irradiances, or nanosecond laser pulses, another thermodynamic paths are possible, which cross the liquid-gas transition curve while laser is still heating the target and the induced plasma. In this work, we explore the growth of nanoparticles in the plasma plume induced by nanosecond pulsed lasers as a function of the laser irradiance. Moreover, the influence of the ambient gas has also been investigated.

  20. Large piezoresistive effect in surface conductive nanocrystalline diamond

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, S. D., E-mail: stoffel.d.janssens@gmail.com; Haenen, K., E-mail: ken.haenen@uhasselt.be [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Drijkoningen, S. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium)

    2014-09-08

    Surface conductivity in hydrogen-terminated single crystal diamond is an intriguing phenomenon for fundamental reasons as well as for application driven research. Surface conductivity is also observed in hydrogen-terminated nanocrystalline diamond although the electronic transport mechanisms remain unclear. In this work, the piezoresistive properties of intrinsic surface conductive nanocrystalline diamond are investigated. A gauge factor of 35 is calculated from bulging a diamond membrane of 350 nm thick, with a diameter of 656 μm and a sheet resistance of 1.45 MΩ/sq. The large piezoresistive effect is reasoned to originate directly from strain-induced changes in the resistivity of the grain boundaries. Additionally, we ascribe a small time-dependent fraction of the piezoresistive effect to charge trapping of charge carriers at grain boundaries. In conclusion, time-dependent piezoresistive effect measurements act as a tool for deeper understanding the complex electronic transport mechanisms induced by grain boundaries in a polycrystalline material or nanocomposite.

  1. Cobalt-related impurity centers in diamond: electronic properties and hyperfine parameters

    CERN Document Server

    Larico, R; Machado, W V M; Justo, J F

    2013-01-01

    Cobalt-related impurity centers in diamond have been studied using first principles calculations. We computed the symmetry, formation and transition energies, and hyperfine parameters of cobalt impurities in isolated configurations and in complexes involving vacancies and nitrogen atoms. We found that the Co impurity in a divacant site is energetically favorable and segregates nitrogen atoms in its neighborhood. Our results were discussed in the context of the recently observed Co-related electrically active centers in synthetic diamond.

  2. Diamond Drilling Specification Manual and Course Outline.

    Science.gov (United States)

    British Columbia Dept. of Education, Victoria.

    This publication presents the standards required of a person practicing diamond drilling in western Canada and provides an outline for teaching the skills and knowledge. It is divided into two parts. The Diamond Drilling Specification Manual establishes the levels of skill and knowledge required in the four certified levels of diamond drilling.…

  3. Ultratough single crystal boron-doped diamond

    Science.gov (United States)

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  4. Direct coating adherent diamond films on Fe-based alloy substrate: the roles of Al, Cr in enhancing interfacial adhesion and promoting diamond growth.

    Science.gov (United States)

    Li, X J; He, L L; Li, Y S; Yang, Q; Hirose, A

    2013-08-14

    Direct CVD deposition of dense, continuous, and adherent diamond films on conventional Fe-based alloys has long been considered impossible. The current study demonstrates that such a deposition can be realized on Al, Cr-modified Fe-based alloy substrate (FeAl or FeCrAl). To clarify the fundamental mechanism of Al, Cr in promoting diamond growth and enhancing interfacial adhesion, fine structure and chemical analysis around the diamond film-substrate interface have been comprehensively characterized by transmission electron microscopy. An intermediate graphite layer forms on those Al-free substrates such as pure Fe and FeCr, which significantly deteriorates the interfacial adhesion of diamond. In contrast, such a graphite layer is absent on the FeAl and FeCrAl substrates, whereas a very thin Al-rich amorphous oxide sublayer is always identified between the diamond film and substrate interface. These comparative results indicate that the Al-rich interfacial oxide layer acts as an effective barrier to prevent the formation of graphite phase and consequently enhance diamond growth and adhesion. The adhesion of diamond film formed on FeCrAl is especially superior to that formed on FeAl substrate. This can be further attributed to a synergetic effect including the reduced fraction of Al and the decreased substrate thermal-expansion coefficient on FeCrAl in comparison with FeAl, and a mechanical interlocking effect due to the formation of interfacial chromium carbides. Accordingly, a mechanism model is proposed to account for the different interfacial adhesion of diamond grown on the various Fe-based substrates.

  5. Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice.

    Science.gov (United States)

    Tamarat, Radia; Silvestre, Jean-Sébastien; Huijberts, Maya; Benessiano, Joelle; Ebrahimian, Teni G; Duriez, Micheline; Wautier, Marie-Paule; Wautier, Jean Luc; Lévy, Bernard I

    2003-07-08

    We hypothesized that formation of advanced glycation end products (AGEs) associated with diabetes reduces matrix degradation by metalloproteinases (MMPs) and contributes to the impairment of ischemia-induced angiogenesis. Mice were treated or not with streptozotocin (40 mg/kg) and streptozotocin plus aminoguanidine (AGEs formation blocker, 50 mg/kg). After 8 weeks of treatment, hindlimb ischemia was induced by right femoral artery ligature. Plasma AGE levels were strongly elevated in diabetic mice when compared with control mice (579 +/- 21 versus 47 +/- 4 pmol/ml, respectively; P < 0.01). Treatment with aminoguanidine reduced AGE plasma levels when compared with untreated diabetic mice (P < 0.001). After 28 days of ischemia, ischemic/nonischemic leg angiographic score, capillary density, and laser Doppler skin-perfusion ratios were 1.4-, 1.5-, and 1.4-fold decreased in diabetic mice in reference to controls (P < 0.01). Treatment with aminoguanidine completely normalized ischemia-induced angiogenesis in diabetic mice. We next analyzed the role of proteolysis in AGE formation-induced hampered neovascularization process. After 3 days of ischemia, MMP-2 activity and MMP-3 and MMP-13 protein levels were increased in untreated and aminoguanidine-treated diabetic mice when compared with controls (P < 0.05). Despite this activation of the MMP pathway, collagenolysis was decreased in untreated diabetic mice. Conversely, treatment of diabetic mice with aminoguanidine restored collagenolysis toward levels found in control mice. In conclusion, blockade of AGE formation by aminoguanidine normalizes impaired ischemia-induced angiogenesis in diabetic mice. This effect is probably mediated by restoration of matrix degradation processes that are disturbed as a result of AGE accumulation.

  6. Diamonds at the golden point

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    Alongside the CMS Pixel Luminosity Telescope (PLT) – installed last month (see here) – lie diamond detectors. No ordinary gems, these lab-grown diamonds will be playing a vital role in Run 2: differentiating signals from collision products with those from the beam background.   The BCM detector's green "c-shaped" printed circuit board is mounted on the PLT/BCM carbon-fibre carriage ready for installation. Earlier this year, the CMS BRIL project installed beam condition monitors (BCM) at the heart of the CMS detector. Designed to measure the online luminosity and beam background as close as possible to the LHC beam pipe, the BCMs use radiation-hard diamonds to differentiate between background and collision signals. The BCM also protects the CMS silicon trackers from damaging beam losses, by aborting the beam if the signal currents measured are above an acceptable threshold. These new BCMs are designed with Run 2 bunches in mind. &ldq...

  7. Eclogitic Diamond Inclusions from the Komsomolskaya Pipe, Yakutia

    Science.gov (United States)

    Logvinova, A.; Taylor, L. A.; Sovolev, N. V.; Floss, C.

    2005-12-01

    Mineral inclusions from diamonds (DIs) provide important constraints on the conditions prevailing at the time of the diamond's formation. Diamonds from all major operating mines of Yakutia, including the Mir, Udachnaya, Sytykanskaya, and Aykhal, contain an extremely high ratio of U/P (ultramafic/peridotitic) type inclusions versus E (eclogitic) type - i.e., '99/1' for the -3+1 mm-size fraction - based upon prior study (Yefimova and Sobolev, 1977, Dokl. Akad. Nauk SSSR, 237). However, the recently developed Komsomolskaya mine has attracted special attention because of the first discovery of majoritic (Si = 3.13 pfu) E-type garnet inclusions among Yakutian diamonds, as well as for the unusually high proportion of E-type garnet DIs, reaching 15% (Sobolev et al., 2004, Lithos, 77). All the mines mentioned above have a narrow emplacement-age range within 344-365 Ma (Agashev et al., 2004, Dokl. Earth Sci., 399). We report here major- and trace-element variations in eclogitic DIs from 30 Komsomolskaya diamonds. Most of these DIs were studied in-situ, on a single polished surface of each diamond. About half of these samples contain multiple inclusions, with up to 4 grains of garnet and/or omphacite in a single diamond. Only one DI of touching grains of omphacite + coesite was detected, but another sample contains isolated coesite and omphacite DIs. Kyanite associated with high Ca-garnet was also found. Examination of the diamond polished surfaces with CL reveals relative times-of-encapsulation for the multiple DIs. All multiple DIs in a single diamond have similar major-element contents. However, between diamonds, the garnet inclusions have a wide range of 3.5 to 16.2 wt.% CaO, a span that covers practically the entire range of E-type DIs worldwide. Omphacites from 15 samples, however, possess a restricted compositional range in Na2O from 3.75 to 6.18 wt% only. Significant variations in trace elements occur in both garnets and pyroxenes in these DIs. Garnets range in Y, 24

  8. Inscription of 3D waveguides in diamond using an ultrafast laser

    CERN Document Server

    Courvoisier, Arnaud; Salter, Patrick S

    2016-01-01

    Three dimensional waveguides within the bulk of diamond are manufactured using ultrafast laser fabrication. High intensities within the focal volume of the laser cause breakdown of the diamond into a graphitic phase leading to a stress induced refractive index change in neighboring regions. Type II waveguiding is thus enabled between two adjacent graphitic tracks, but supporting just a single polarization state. We show that adaptive aberration correction during the laser processing allows the controlled fabrication of more complex structures beneath the surface of the diamond which can be used for 3D waveguide splitters and Type III waveguides which support both polarizations.

  9. Inscription of 3D waveguides in diamond using an ultrafast laser

    Science.gov (United States)

    Courvoisier, Arnaud; Booth, Martin J.; Salter, Patrick S.

    2016-07-01

    Three dimensional waveguides within the bulk of diamond are manufactured using ultrafast laser fabrication. High intensities within the focal volume of the laser cause breakdown of the diamond into a graphitic phase leading to a stress induced refractive index change in neighboring regions. Type II waveguiding is thus enabled between two adjacent graphitic tracks, but supporting just a single polarization state. We show that adaptive aberration correction during the laser processing allows the controlled fabrication of more complex structures beneath the surface of the diamond which can be used for 3D waveguide splitters and Type III waveguides which support both polarizations.

  10. Pulsed laser deposition of metallic films on the surface of diamond particles for diamond saw blades

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Chao [State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, WuHan, Hubei 430074 (China); Luo Fei [State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, WuHan, HuBei 430074 (China); Long Hua [State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Hu Shaoliu [State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Bo [State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Youqing [State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: lchwan@hust.edu.cn

    2005-06-15

    Ti or Ni films have been deposited on the diamond particle surfaces by pulsed laser deposition. Compressive resistance of the uncoated and coated diamond particles was measured, respectively, in the experiments. The compressive resistance of the Ti-coated diamonds particles was found much higher than that of the uncoated ones. It increased by 39%. The surface morphology is observed by the metallography microscope. The surface of the uncoated diamonds particles had many hollows and flaws, while the surface of Ni-coated diamond particles was flat and smooth, and the surface of Ti-coated diamond particles had some metal masses that stood out of the surface of the Ti-coated film. The components of the metallic films of diamond particles were examined by X-ray diffractometry (XRD). TiC was found formed on the Ti-coated diamond surface, which resulted in increased surface bonding strength between the diamond particles and the Ti films. Meanwhile, TiC also favored improving the bonding strength between the coated diamond particles and the binding materials. Moreover, the bending resistance of the diamond saw blade made of Ti-coated diamond was drastically higher than that of other diamond saw blades, which also played an important role in improving the blade's cutting ability and lifetime. Therefore, it was most appropriate that the diamond saw blade was made of Ti-coated diamond particles rather than other materials.

  11. Biofilm Formation by Clostridium ljungdahlii Is Induced by Sodium Chloride Stress: Experimental Evaluation and Transcriptome Analysis.

    Science.gov (United States)

    Philips, Jo; Rabaey, Korneel; Lovley, Derek R; Vargas, Madeline

    2017-01-01

    The acetogen Clostridium ljungdahlii is capable of syngas fermentation and microbial electrosynthesis. Biofilm formation could benefit both these applications, but was not yet reported for C. ljungdahlii. Biofilm formation does not occur under standard growth conditions, but attachment or aggregation could be induced by different stresses. The strongest biofilm formation was observed with the addition of sodium chloride. After 3 days of incubation, the biomass volume attached to a plastic surface was 20 times higher with than without the addition of 200 mM NaCl to the medium. The addition of NaCl also resulted in biofilm formation on glass, graphite and glassy carbon, the latter two being often used electrode materials for microbial electrosynthesis. Biofilms were composed of extracellular proteins, polysaccharides, as well as DNA, while pilus-like appendages were observed with, but not without, the addition of NaCl. A transcriptome analysis comparing planktonic (no NaCl) and biofilm (NaCl addition) cells showed that C. ljungdahlii coped with the salt stress by the upregulation of the general stress response, Na+ export and osmoprotectant accumulation. A potential role for poly-N-acetylglucosamines and D-alanine in biofilm formation was found. Flagellar motility was downregulated, while putative type IV pili biosynthesis genes were not expressed. Moreover, the gene expression analysis suggested the involvement of the transcriptional regulators LexA, Spo0A and CcpA in stress response and biofilm formation. This study showed that NaCl addition might be a valuable strategy to induce biofilm formation by C. ljungdahlii, which can improve the efficacy of syngas fermentation and microbial electrosynthesis applications.

  12. Diamonds on Diamond: structural studies at extreme conditions on the Diamond Light Source.

    Science.gov (United States)

    McMahon, M I

    2015-03-06

    Extreme conditions (EC) research investigates how the structures and physical and chemical properties of materials change when subjected to extremes of pressure and temperature. Pressures in excess of one million times atmospheric pressure can be achieved using a diamond anvil cell, and, in combination with high-energy, micro-focused radiation from a third-generation synchrotron such as Diamond, detailed structural information can be obtained using either powder or single-crystal diffraction techniques. Here, I summarize some of the research drivers behind international EC research, and then briefly describe the techniques by which high-quality diffraction data are obtained. I then highlight the breadth of EC research possible on Diamond by summarizing four examples from work conducted on the I15 and I19 beamlines, including a study which resulted in the first research paper from Diamond. Finally, I look to the future, and speculate as to the type of EC research might be conducted at Diamond over the next 10 years.

  13. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi; Zhang, Qing; Shen, Yi; Chen, Xia; Zhou, Feng; Peng, Dan, E-mail: xyeypd@163.com

    2014-07-04

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts has been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.

  14. S/Se In Sulfide Inclusion In Diamond

    Science.gov (United States)

    Thomassot, E.; Couffignal, F.; Lorand, J.; Bureau, H.; Cartigny, P.; Harris, J. W.

    2009-05-01

    Sulfides are among the most common minerals found as inclusions in diamonds. Being protected from any alteration after diamond formation, they likely represent the most pristine sulfide sample of mantle rocks. Their chemical composition in major and minor elements (mainly Ni, Cu and Cr), as determined using Electron Probe Micro Analyse (EPMA), is commonly used to determine the rock type in which the diamond formed. Here we propose to apply the same technique to the trace element abundance determination. We performed selenium (Se) on sulfide inclusion in diamonds. The S/Se value could help understanding whether the diamond formed in an eclogitic or peridotitic environment and may also constrain on the magmatic differentiation of diamonds host rock as well as provide a potential surface (hydrothermal) signature in diamond inclusions. A trace element measurement scheme has been developed by EPMA at the CAMPARIS centre (Paris). Se-abundance was obtained using a 30 kV accelerating voltage and 100nA probe current. Total counting time was 800s for peak (1.1 Å ) and 400s for background on both side of peak. Analyses were duplicated by μPIXE using the LPS nuclear microprobe facility (SIS2M CEA Saclay, France). Maps from 30x30 μm2 to 70x70 μm2 were obtained by scanning a 4x4 μm2 proton beam of 3MeV, 600 pA, (0.4 to 2 μC). The two techniques show good agreement and we conclude that EPMA is well suited for accurate and precise Se measurements. We analysed five samples; two monosulfide solid solution (MSS) (Ni>22wt%) typical of the peridotitic paragenesis (P-type), and three Ni-poor sulfides (Ni<7wt%) typical of the eclogitic paragenesis (E-type). In P-type sulfides, Se-content (260 ppm) is significantly higher than previously reported in sulfides from mantle-derived lherzolites (40-160 ppm), pyroxenites (25-45 ppm) or harzburgite. The value of S/Se in MSS is low (˜1400) compared to those of the primitive mantle reservoir (3,300; McDounough et al., 1995 Chemical Geology

  15. Swift heavy ion irradiation induced nanograin formation in CdTe thin films

    Science.gov (United States)

    Survase, Smita; Narayan, Himanshu; Sulania, I.; Thakurdesai, Madhavi

    2016-11-01

    Swift Heavy Ion (SHI) irradiation is a unique technique for nanograin formation through grain fragmentation. Contrary to the generally reported SHI irradiation induced grain growth on CdTe thin films, we report fragmentation leading to nanograin formation. Thermally evaporated polycrystalline CdTe thin films were irradiated with 100 MeV 197Au, 107Ag and 58Ni ions beams up to a fluence of 5 × 1012 ions/cm2. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were carried out for surface analysis before and after irradiation. SEM micrographs indicate that the larger grains in the as-deposited films were fragmented into smaller grains due to irradiation. The extent of fragmentation was found to increase with increasing electronic energy loss (Se). AFM pictures also supported the irradiation induced fragmentation. Structural characterization was done using X-ray Diffraction (XRD) technique. The ion induced strain and dislocation density were calculated from the XRD data. Both the strain and dislocation density were found to increase with increasing Se . The observed grain fragmentation is explained on the basis of a combined effect of strain induced disintegration of grains after the Coulomb explosion, and an 'incomplete' re-crystallization of the molten thermal spikes. Moreover, the optical band gap Eg (1.5 eV for as-deposited film), determined from UV-vis spectroscopy, increased with Se, and possibly because of ion induced strain and defect annealing.

  16. Three-dimensional cathodoluminescence imaging and electron backscatter diffraction: tools for studying the genetic nature of diamond inclusions

    Science.gov (United States)

    Wiggers de Vries, D. F.; Drury, M. R.; de Winter, D. A. M.; Bulanova, G. P.; Pearson, D. G.; Davies, G. R.

    2011-04-01

    As a step towards resolving the genesis of inclusions in diamonds, a new technique is presented. This technique combines cathodoluminescence (CL) and electron backscatter diffraction (EBSD) using a focused ion beam-scanning electron microscope (FIB-SEM) instrument with the aim of determining, in detail, the three-dimensional diamond zonation adjacent to a diamond inclusion. EBSD reveals that mineral inclusions in a single diamond have similar crystallographic orientations to the host, within ±0.4°. The chromite inclusions record a systematic change in Mg# and Cr# from core to the rim of the diamond that corresponds with a ~80°C decrease of their formation temperature as established by zinc thermometry. A chromite inclusion, positioned adjacent to a boundary between two major diamond growth zones, is multi-faceted with preferred octahedral and cubic faces. The chromite is surrounded by a volume of non-luminescent diamond (CL halo) that partially obscures any diamond growth structures. The CL halo has apparent crystallographic morphology with symmetrically oriented pointed features. The CL halo is enriched in ~200 ppm Cr and ~80 ppm Fe and is interpreted to have a secondary origin as it overprints a major primary diamond growth structure. The diamond zonation adjacent to the chromite is complex and records both syngenetic and protogenetic features based on current inclusion entrapment models. In this specific case, a syngenetic origin is favoured with the complex form of the inclusion and growth layers indicating changes of growth rates at the diamond-chromite interface. Combined EBSD and 3D-CL imaging appears an extremely useful tool in resolving the ongoing discussion about the timing of inclusion growth and the significance of diamond inclusion studies.

  17. Ar + induced interfacial mixing and phase formation in the Al/Cr system

    Science.gov (United States)

    Kim, H. K.; Kim, S. O.; Song, J. H.; Kim, K. W.; Woo, J. J.; Whang, C. N.; Smith, R. J.

    1991-07-01

    Evaporated Al/Cr bilayer thin films were irradiated by 80 keV Ar + at doses in the range from 1 × 10 15 to 2 × 10 16 Ar +/cm 2 at room temperature in order to investigate the Ar + induced interfacial mixing behavior and the phase formation and transition by Ar + bombardment. Ion bombardment induces intermixing across the Al/Cr interface and mixing variance increases with increasing ion dose. Cascade and thermal spike models are found to be not adequate for the ion beam mixing mechanism at room temperature in this system. The Al 13Cr 2 phase is formed as an initial phase by ion beam mixing and then transforms into the Al 11Cr 2 or Al 4Cr phases at subsequent ion bombardment. This result is discussed in terms of the enhanced atomic mobility and the thermodynamical driving force by introducing the concept of an effective heat of formation.

  18. Dependence of ion-induced Pd-silicide formation on nuclear energy deposition density

    Energy Technology Data Exchange (ETDEWEB)

    Horino, Yuji; Matsunami, Noriaki; Itoh, Noriaki

    1986-05-01

    Pd/sub 2/Si formation at the Pd-Si interface induced by irradiation with ions having a wide range of nuclear energy of deposition density has been investigated. It is found that the thickness of the silicide layer formed by irradiation is proportional to the ion fluence for irradiation with ions having low energy-deposition densities, while it is proportional to the square root of the fluence for irradiation with ions having energy-deposition densities. The results indicate that Pd/sub 2/Si formation is reaction limited when the energy-deposition density at the interface is low and is diffusion limited when it is high. The results are compared with the phenomenological theory developed by Horino et al. and it is shown that such a dependence of the limiting processes on the energy depositon density is induced when the diffusion is thermally activated while the reaction at the interface is radiation-enhanced.

  19. Inhibition of Cariogenic Plaque Formation on Root Surface with Polydopamine-Induced-Polyethylene Glycol Coating

    Directory of Open Access Journals (Sweden)

    May Lei Mei

    2016-05-01

    Full Text Available Root caries prevention has been a challenge for clinicians due to its special anatomical location, which favors the accumulation of dental plaque. Researchers are looking for anti-biofouling material to inhibit bacterial growth on exposed root surfaces. This study aimed to develop polydopamine-induced-polyethylene glycol (PEG and to study its anti-biofouling effect against a multi-species cariogenic biofilm on the root dentine surface. Hydroxyapatite disks and human dentine blocks were divided into four groups for experiments. They received polydopamine-induced-PEG, PEG, polydopamine, or water application. Contact angle, quartz crystal microbalance, and Fourier transform infrared spectroscopy were used to study the wetting property, surface affinity, and an infrared spectrum; the results indicated that PEG was induced by polydopamine onto a hydroxyapatite disk. Salivary mucin absorption on hydroxyapatite disks with polydopamine-induced-PEG was confirmed using spectrophotometry. The growth of a multi-species cariogenic biofilm on dentine blocks with polydopamine-induced-PEG was assessed and monitored by colony-forming units, confocal laser scanning microscopy, and scanning electron microscopy. The results showed that dentine with polydopamine-induced-PEG had fewer bacteria than other groups. In conclusion, a novel polydopamine-induced-PEG coating was developed. Its anti-biofouling effect inhibited salivary mucin absorption and cariogenic biofilm formation on dentine surface and thus may be used for the prevention of root dentine caries.

  20. CVD diamond for electronic devices and sensors

    CERN Document Server

    2009-01-01

    Synthetic diamond is diamond produced by using chemical or physical processes. Like naturally occurring diamond it is composed of a three-dimensional carbon crystal. Due to its extreme physical properties, synthetic diamond is used in many industrial applications, such as drill bits and scratch-proof coatings, and has the potential to be used in many new application areas A brand new title from the respected Wiley Materials for Electronic and Optoelectronic Applications series, this title is the most up-to-date resource for diamond specialists. Beginning with an introduction to the pr

  1. Method for machining steel with diamond tools

    Science.gov (United States)

    Casstevens, John M.

    1986-01-01

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  2. Diamond Sensors for Energy Frontier Experiments

    CERN Document Server

    Schnetzer, Steve

    2014-01-01

    We discuss the use of diamond sensors in high-energy, high-i ntensity collider experiments. Re- sults from diamond sensor based beam conditions monitors in the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC) are presented and pla ns for diamond based luminosity monitors for the upcoming LHC run are described. We describe recent measurements on single crystal diamond sensors that indicate a polarization effec t that causes a reduction of charge col- lection efficiency as a function of particle flux. We conclude by describing new developments on the promising technology of 3D diamond sensors.

  3. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    performance of nanocrystalline diamond films is reviewed from an application-specific perspective, covering topics such as enhancement of cellular adhesion, anti-fouling coatings, non-thrombogenic surfaces, micropatterning of cells and proteins, and immobilization of biomolecules for bioassays. In order......Nanocrystalline diamond films, which comprise the so called nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), represent a class of biomaterials possessing outstanding mechanical, tribological, and electrical properties, which include high surface smoothness, high corrosion...... resistance, chemical inertness, superior electrochemical behavior, biocompatibility, and nontoxicity. These properties have positioned the nanocrystalline diamond films as an attractive class of materials for a range of therapeutic and diagnostic applications in the biomedical field. Consequently...

  4. Transparent nanocrystalline diamond coatings and devices

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  5. Electron Microscopy of Natural and Epitaxial Diamond

    Science.gov (United States)

    Posthill, J. B.; George, T.; Malta, D. P.; Humphreys, T. P.; Rudder, R. A.; Hudson, G. C.; Thomas, R. E.; Markunas, R. J.

    1993-01-01

    Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. Ultimately, it is preferable to use low-defect-density single crystal diamond for device fabrication. We have previously investigated polycrystalline diamond films with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and homoepitaxial films with SEM-based techniques. This contribution describes some of our most recent observations of the microstructure of natural diamond single crystals and homoepitaxial diamond thin films using TEM.

  6. Selected Bibliography II-Diamond Surface Chemistry

    Science.gov (United States)

    1993-09-30

    34Scanning Tunneling Microscopy of Polished Diamond Surfaces" JNL: Appl. Surf. Sci. REF: 62(4) (1992) 263-8 91 AUTHOR: Vazquez L., Martin -Gago J. A...Absorption in Semiconducting Synthetic Diamond" JNL: Physical Review REF: 140 (1965) A1272 AUTHOR: Keown R. TITLE: "Energy Bands in Diamond" JNL...34Determination of Optical Constant of Diamond Thin Films" JNL: Proc. SPIE-Int. Soc. Opt. Eng. REF: 1759(Diamond Opt. V) (1992) 218-23 AUTHOR: Fazzio A., Martins

  7. Diamond Ablators for Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Biener, J; Mirkarimi, P B; Tringe, J W; Baker, S L; Wang, Y M; Kucheyev, S O; Teslich, N E; Wu, K J; Hamza, A V; Wild, C; Woerner, E; Koidl, P; Bruehne, K; Fecht, H

    2005-06-21

    Diamond has a unique combination of physical properties for the inertial confinement fusion ablator application, such as appropriate optical properties, high atomic density, high yield strength, and high thermal conductivity. Here, we present a feasible concept to fabricate diamond ablator shells. The fabrication of diamond capsules is a multi-step process, which involves diamond chemical vapor deposition on silicon mandrels followed by polishing, microfabrication of holes, and removing of the silicon mandrel by an etch process. We also discuss the pros and cons of coarse-grained optical quality and nanocrystalline chemical vapor deposition diamond films for the ablator application.

  8. Vaccine-induced myositis with intramuscular sterile abscess formation: MRI and ultrasound findings

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ahmet Veysel; Bekci, Tumay; Selcuk, Mustafa Bekir [Ondokuz Mayis University, Department of Radiology, Faculty of Medicine, Samsun (Turkey); Dabak, Nevzat [Ondokuz Mayis University, Department of Orthopaedics and Traumatology, Faculty of Medicine, Samsun (Turkey); Ulu, Esra Meltem Kayahan [Samsun Medical Park Hospital, Department of Radiology, Samsun (Turkey)

    2015-12-15

    Although limb swelling is a well-known complication of vaccination, its rarity and wide band of differential diagnosis of limb swelling make it a diagnostic challenge. In this case report, we describe three cases of vaccine-induced myositis with intramuscular sterile abscess formation in patients with limb swelling and their magnetic resonance imaging and ultrasonography findings. Both radiologists and clinicians should be familiar with this rare entity, its clinical and imaging spectrum, and follow-up strategies. (orig.)

  9. Osteoclasts secrete non-bone derived signals that induce bone formation

    DEFF Research Database (Denmark)

    Karsdal, Morten A; Neutzsky-Wulff, Anita V; Dziegiel, Morten Hanefeld

    2008-01-01

    Bone turnover is a highly regulated process, where bone resorption in the normal healthy individual always is followed by bone formation in a manner referred to as coupling. Patients with osteopetrosis caused by defective acidification of the resorption lacuna have severely decreased resorption, ...... secrete non-bone derived factors, which induce preosteoblasts to form bone-like nodules, potentially explaining the imbalanced coupling seen in osteopetrotic patients....

  10. Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis.

    Science.gov (United States)

    Liu, Yongjun; Wang, Degao; Sun, Bing; Zhu, Xiaomei

    2010-09-15

    Liquid-phase decomposition of 4-nitrophenol (4-NP) and formation of hydrogen peroxide (H(2)O(2)) induced by contact glow discharge electrolysis (CGDE) were investigated. Experimental results showed that the decays of 4-NP and total organic carbon (TOC) obeyed the first-order and pseudo-first-order reaction kinetics, respectively. The major intermediate products were 4-nitrocatechol, hydroquinone, benzoquinone, hydroxyhydroquinone, organic acids and nitrite ion. The final products were carbon dioxide and nitrate ion. The initial formation rate of H(2)O(2) decreased linearly with increasing initial concentration of 4-NP. Addition of iron ions, especially ferric ion, to the solution significantly enhanced the 4-NP removal due to the additional hydroxyl radical formation through Fenton's reaction. A reaction pathway is proposed based on the degradation kinetics and the distribution of intermediate products.

  11. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria.

    Science.gov (United States)

    van Eenennaam, Justine S; Wei, Yuzhu; Grolle, Katja C F; Foekema, Edwin M; Murk, AlberTinka J

    2016-03-15

    Unusually large amounts of marine snow, including Extracellular Polymeric Substances (EPS), were formed during the 2010 Deepwater Horizon oil spill. The marine snow settled with oil and clay minerals as an oily sludge layer on the deep sea floor. This study tested the hypothesis that the unprecedented amount of chemical dispersants applied during high phytoplankton densities in the Gulf of Mexico induced high EPS formation. Two marine phytoplankton species (Dunaliella tertiolecta and Phaeodactylum tricornutum) produced EPS within days when exposed to the dispersant Corexit 9500. Phytoplankton-associated bacteria were shown to be responsible for the formation. The EPS consisted of proteins and to lesser extent polysaccharides. This study reveals an unexpected consequence of the presence of phytoplankton. This emphasizes the need to test the action of dispersants under realistic field conditions, which may seriously alter the fate of oil in the environment via increased marine snow formation.

  12. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features

    Science.gov (United States)

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.; Yalisove, Steven M.

    2014-06-01

    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vector influencing LIPSS formation on bulk surfaces.

  13. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Adams, David P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-06-09

    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vector influencing LIPSS formation on bulk surfaces.

  14. Carnosine's effect on amyloid fibril formation and induced cytotoxicity of lysozyme.

    Directory of Open Access Journals (Sweden)

    Josephine W Wu

    Full Text Available Carnosine, a common dipeptide in mammals, has previously been shown to dissemble alpha-crystallin amyloid fibrils. To date, the dipeptide's anti-fibrillogensis effect has not been thoroughly characterized in other proteins. For a more complete understanding of carnosine's mechanism of action in amyloid fibril inhibition, we have investigated the effect of the dipeptide on lysozyme fibril formation and induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Our study demonstrates a positive correlation between the concentration and inhibitory effect of carnosine against lysozyme fibril formation. Molecular docking results show carnosine's mechanism of fibrillogenesis inhibition may be initiated by binding with the aggregation-prone region of the protein. The dipeptide attenuates the amyloid fibril-induced cytotoxicity of human neuronal cells by reducing both apoptotic and necrotic cell deaths. Our study provides solid support for carnosine's amyloid fibril inhibitory property and its effect against fibril-induced cytotoxicity in SH-SY5Y cells. The additional insights gained herein may pave way to the discovery of other small molecules that may exert similar effects against amyloid fibril formation and its associated neurodegenerative diseases.

  15. THE COUNTER-JET FORMATION IN AN AIR BUBBLE INDUCED BY THE IMPACT OF SHOCK WAVES

    Institute of Scientific and Technical Information of China (English)

    BAI Li-xin; XU Wei-lin; LI Chao; GAO Yan-dong

    2011-01-01

    The interaction of an air bubble (isolated in water or attached to a boundary) with shock waves induced by electric sparks is investigated by high-speed photography.The interaction is closely related to the counter-jet induced by the impact of shock waves.The formation of a counter-jet in an air bubble is related to the liquid jet formed in the same air bubble,but the mechanism is different with that of the counter-jet formation in a collapsing cavitation bubble.The formation of a counter-jet in an air bubble is related to discharge energy,air bubble size and radius of shock wave.With a given energy of the spark discharge,the formation of a counter-jet in an air bubble is related to δ/ε (the ratio of the dimensionless bubble-bubble distance to the dimensionless air bubble radius).The counter-jet will only be produced when δ/ε is in the range of 1.2-2.2.The counter-jet in an air bubble is of an important nuclei-generating mechanism.

  16. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons.

    Science.gov (United States)

    Murphy, D D; Cole, N B; Segal, M

    1998-09-15

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons.

  17. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  18. Using Si-doped diamond plate of sandwich type for spatial profiling of laser beam

    Science.gov (United States)

    Shershulin, V. A.; Samoylenko, S. R.; Sedov, V. S.; Kudryavtsev, O. S.; Ralchenko, V. G.; Nozhkina, A. V.; Vlasov, I. I.; Konov, V. I.

    2017-02-01

    We demonstrated a laser beam profiling method based on imaging of the laser induced photoluminescence of a transparent single-crystal diamond plate. The luminescence at 738 nm is caused by silicon-vacancy color centers formed in the epitaxial diamond film by its doping with Si during CVD growth of the film. The on-line beam monitor was tested for a cw laser emitting at 660 nm wavelength.

  19. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes.

    Science.gov (United States)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R

    2012-06-22

    Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF+ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF+ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  20. Microplasma device architectures with various diamond nanostructures

    Science.gov (United States)

    Kunuku, Srinivasu; Jothiramalingam Sankaran, Kamatchi; Leou, Keh-Chyang; Lin, I.-Nan

    2017-02-01

    Diamond nanostructures (DNSs) were fabricated from three different morphological diamonds, microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films, using a reactive ion etching method. The plasma illumination (PI) behavior of microplasma devices using the DNSs and the diamond films as cathode were investigated. The Paschen curve approach revealed that the secondary electron emission coefficient (γ value) of diamond materials is similar irrespective of the microstructure (MCD, NCD, and UNCD) and geometry of the materials (DNSs and diamond films). The diamond materials show markedly larger γ-coefficient than conventional metallic cathode materials such as Mo that resulted in markedly better PI behavior for the corresponding microplasma devices. Moreover, the PI behavior, i.e. the voltage dependence of plasma current density (J pl‑V), plasma density (n e‑V), and the robustness of the devices, varied markedly with the microstructure and geometry of the cathode materials that was closely correlated to the electron field emission (EFE) properties of the cathode materials. The UNCD nanopillars, possessing good EFE properties, resulted in superior PI behavior, whereas the MCD diamond films with insufficient EFE properties led to inferior PI behavior. Consequently, enhancement of plasma characteristics is the collective effects of EFE behavior and secondary electron emission characteristics of diamond-based cathode materials.

  1. Effects of diamond magnetism on the microstructure of electrodeposited diamond composites

    Institute of Scientific and Technical Information of China (English)

    Lu Huiyang; Li Yundong; Huang Zhiwei; Go Huiyan

    2007-01-01

    Electroformed diamond tools have been used for many years in grinding and cutting fields while electrodeposited diamond composite coatings have been widely studied due to their desirable hardness, wear and corrosion resistance. This article eports the detrimental impact of diamond magnetism on the composites microstructure and gives explanations. Microstructure differences between composites that, respectively, contained no - further - treated diamond, magnetism - strengthening treated diamond and magnetism weakening treated diamond were carefully observed. It is shown that diamond magnetization treatment drastically harms the composite microstructure (e. G. , roughening the coating surface, coarsening the matrix grain, and more seriously, reducing the mechanical retention of diamond grains in the matrix) while demagnetization treatment does the opposite. All the observed facts could be explained by the electromagnetic interaction between magnetic fields produced by magnetic diamond grains and electric current (moving cations) during the electrodeposition process.

  2. High fat diet-induced obesity increases the formation of colon polyps induced by azoxymethane in mice.

    Science.gov (United States)

    Chen, Jiezhong; Huang, Xu-Feng

    2015-04-01

    Obesity has been found to be associated with colon cancer. However, the mechanism of this relationship is unclear and thus a good animal model is required. Our previous research showed that some mice developed diet-induced obesity (DIO) whilst others were diet-resistant (DR) when fed a high-fat diet. In the present study, we have tested the effects of a high-fat diet on the formation of colon polyps induced by azoxymethane (AOM) in both DIO and DR mice. We found that the DIO mice have developed 2.5 times of polyps compared to the DR mice (Pobesity-related cancer risk factors and different gene expression from DR mice. DIO mice could be used as an appropriate model for studying obesity-associated colon cancer; however DR mice are not suitable because they don't show any significant weight gains to indicate obesity.

  3. High temperature brazing of diamond tools

    Institute of Scientific and Technical Information of China (English)

    YAO Zheng-jun; SU Hong-hua; FU Yu-can; XU Hong-jun

    2005-01-01

    A new brazing technique of diamond was developed. Using this new technique optimum chemical and metallurgical bonding between the diamond grits and the carbon steel can be achieved without any thermal damages to diamond grits. The results of microanalysis and X-ray diffraction analysis reveal that a carbide layer exists between the diamond and the matrix, which consists of Cr3C2, Cr7C3 and Cr23C6. Performance tests show that the brazed diamond core-drill has excellent machining performance. In comparison with traditional electroplated diamond core-drill, the brazed diamond core-drill manufactured using the new developed technique has much higher machining efficiency and much longer operating life.

  4. FRACTURE FEATURES OF METAL BINDING WHEN DIAMOND-SPARK GRINDING

    Directory of Open Access Journals (Sweden)

    Yury GUTSALENKO

    2012-05-01

    Full Text Available The hypothesis of the influence of binding energy of metal on the processes of destruction and mass transfer at high-speed machining is considered. Some nonconventional processes of cleaning of intergranularity spaces from waste products at diamond-spark grinding are explained, the approach to assessment of metal resistance in these processes is proposed and eo ipso modern conception of processes in chip formation zone under condition of electric discharge effect is supplemented

  5. Designing shallow donors in diamond

    Science.gov (United States)

    Moussa, Jonathan

    2015-03-01

    The production of n-type semiconducting diamond has been a long-standing experimental challenge. The first-principles simulation of shallow dopants in semiconductors has been a long-standing theoretical challenge. A desirable theoretical goal is to identify impurities that will act as shallow donors in diamond and assess their experimental viability. I will discuss this identification process for the LiN4 donor complex. It builds a scientific argument from several models and computational results in the absence of computational tools that are both trustworthy and computationally tractable for this task. I will compare the theoretical assessment of viability with recent experimental efforts to co-dope diamond with lithium and nitrogen. Finally, I discuss the computational tools needed to facilitate future work on this problem and some preliminary simulations of donors near diamond surfaces. Sandia National Laboratories is a multi-program lab managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. On a remarkable composite Diamond

    NARCIS (Netherlands)

    Escher, B.G.

    1942-01-01

    In June 1937 the State Museum of Geology and Mineralogy at Leiden received from Mr. A.S. Dresden at Amsterdam a diamond crystal of a hitherto unknown shape. The crystal is colourless and transparent. Mr. J. Bolman determined its weight at 0.1698 g and its specific gravity at 3.4165.

  7. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Ted Thorbeck

    2015-08-01

    Full Text Available A long-standing mystery in the field of semiconductor quantum dots (QDs is: Why are there so many unintentional dots (also known as disorder dots which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  8. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Thorbeck, Ted, E-mail: tcthorbeck@wisc.edu [Quantum Measurement Division, NIST, Gaithersburg, Maryland (United States); Joint Quantum Institute and Dept. of Physics, University of Maryland, College Park, Maryland (United States); Zimmerman, Neil M. [Quantum Measurement Division, NIST, Gaithersburg, Maryland (United States)

    2015-08-15

    A long-standing mystery in the field of semiconductor quantum dots (QDs) is: Why are there so many unintentional dots (also known as disorder dots) which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  9. Natural occurrence of pure nano-polycrystalline diamond from impact crater.

    Science.gov (United States)

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P; Pokhilenko, Nikolai P

    2015-10-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5-50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material.

  10. Natural occurrence of pure nano-polycrystalline diamond from impact crater

    Science.gov (United States)

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.

    2015-10-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5-50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material.

  11. CVD grown diamond: A new material for high power CO{sub 2}-lasers

    Energy Technology Data Exchange (ETDEWEB)

    Massart, M.; Union, P.; Muys, P. [Radius Engineering N.V., Gent (Belgium)] [and others

    1996-12-31

    In CO{sub 2} laser engineering, combining high output power with low distortion of the laser beam is an ongoing challenge, leading to a search for optics with low absorption and high thermal conductivity. As CVD diamond has recently become available in larger sizes and with better surface quality, this material can now be assessed for use in high power CO{sub 2} laser optics. This paper presents the systematic study of diamond as a substrate material for optics at 10.6 microns. CO{sub 2}-laser calorimetry has been used for the measurement of absorption of laser power in uncoated and antireflection coated diamond optics. The bulk absorption coefficient of natural and CVD diamond is more than a magnitude higher than that of ZnSe, however, a laser window needs to be antireflection coated, and this (together with the ability to use thinner windows of diamond because of its greater strength) reduces the increase in overall absorption for the window to about a factor of three (or {approximately} 0.7%). In high power applications this is more than compensated for by the substantially higher thermal conductivity of diamond. Laser induced damage threshold (LIDT) measurements have been made on antireflection coated diamond optics. These measurements have been performed using a TEA CO{sub 2}-laser with a peak pulse width of 150 ns at 10.6 microns, and the results are reported here.

  12. Natural occurrence of pure nano-polycrystalline diamond from impact crater

    Science.gov (United States)

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.

    2015-01-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5–50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material. PMID:26424384

  13. Processing of diamond enhanced cemented tungsten carbide insert for rock drilling

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-chang; SUN You-hong; ZHANG Zu-pei

    2004-01-01

    This paper introduced the structure, component and sintering procedure of the Diamond/WC-Co composite insert fabricated by high pressure and high temper ature (HPHT) method as well as by hot pressing method. In HPHT method, to avoid breakage and delamination of the diamond layer, two transition layers were added between the most outer diamond layer and the WC-Co body. The transition layers compensate for differences in thermal expansion coefficient and elastic modulus of diamond layer and WC-Co substrate. Thus reduces the residual stress induced by cooling the inserts from sintering temperature to room temperature. In hot pressing method, to decrease sintering temperature so as to protect diamond, an active sintering process which achieved by adding nickel and phosphorus into the starting mixed powder is adopted. To increase the toughness of the inserts to resist breakage, proper amount of rare earth compound, LaNi5 and CeO2, are added into the original mixed powder, too. Laboratory tests indicated that both of the diamond enhanced inserts fabricated by HPHT method and by hot pressing method have relatively high hardness and impact toughness, while their wear resistance is about hundreds of times greater than that of conventional cemented tungsten carbide inserts. The results of field drilling test indicated that the diamond enhanced inserts can meet the demands of rotary percussion drilling.

  14. Characterization of glutamate-induced formation of N- acylphosphatidylethanolamine and N-acylethanolamine in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Lauritzen, L.; Strand, A.M.;

    1997-01-01

    Glutamate-induced formation of N-acylethanolamine (NAE) and N- acylphosphatidylethanolamine (NAPE) was studied in primary cultures of mouse neocortical neurons prelabeled with [C]ethanolamine. The formation of these two lipids was dependent on the maturity of the cell culture; i.e., no glutamate......-stimulated mouse astrocytes, rat Leydig cells and cardiomyocytes, and several other cells. These results suggest that the glutamate-induced formation of NAPE and NAE was mediated by the NMDA receptor and the formation of these lipids may be associated with neuronal death.......-quinoxaline-2,3-dione (CNQX). In 6-day-old cultures, exposure to NMDA (100 µM for 24 h) induced a linear increase in the formation of NAPE and NAE as well as a 40-50% neuronal death, as measured by a decrease in cellular formazan formation [3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT...

  15. Lateral inhibition-induced pattern formation controlled by the size and geometry of the cell.

    Science.gov (United States)

    Seirin Lee, Sungrim

    2016-09-01

    Pattern formation in development biology is one of the fundamental processes by which cells change their functions. It is based on the communication of cells via intra- and intercellular dynamics of biochemicals. Thus, the cell is directly involved in biochemical interactions. However, many theoretical approaches describing biochemical pattern formation have usually neglected the cell's role or have simplified the subcellular process without considering cellular aspects despite the cell being the environment where biochemicals interact. On the other hand, recent experimental observations suggest that a change in the physical conditions of cell-to-cell contact can result in a change in cell fate and tissue patterning in a lateral inhibition system. Here we develop a mathematical model by which biochemical dynamics can be directly observed with explicitly expressed cell structure and geometry in higher dimensions, and reconsider pattern formation by lateral inhibition of the Notch-Delta signaling pathway. We explore how the physical characteristic of cell, such as cell geometry or size, influences the biochemical pattern formation in a multi-cellular system. Our results suggest that a property based on cell geometry can be a novel mechanism for symmetry breaking inducing cell asymmetry. We show that cell volume can critically influence cell fate determination and pattern formation at the tissue level, and the surface area of the cell-to-cell contact can directly affect the spatial range of patterning.

  16. Jet-induced star formation in 3C 285 and Minkowski Object

    CERN Document Server

    Salomé, Q; Combes, F

    2014-01-01

    How efficiently star formation proceeds in galaxies is still an open question. Recent studies suggest that AGN can regulate the gas accretion and thus slow down star formation (negative feedback). However, evidence of AGN positive feedback has also been observed in a few radio galaxies (eg. Centaurus A). Here we present CO observations of 3C 285 and Minkowski Object (MO), which are examples of jet-induced star formation. A spot (named 09.6) aligned with the 3C 285 radio jet, at a projected distance of ~70 kpc from the galaxy centre, shows star formation, detected in optical emission. MO is located along the jet of NGC 541 and also shows star formation. To know the distribution of molecular gas along the jets is a way to study the physical processes at play in the AGN interaction with the intergalactic medium. We observed CO lines in 3C 285, NGC 541, 09.6 and MO with the IRAM-30m telescope. In the central galaxies, the spectra present a double-horn profile, typical of a rotation pattern, from which we are able...

  17. Numerical modelling of tooth enamel subsurface lesion formation induced by dental plaque.

    Science.gov (United States)

    Ilie, O; van Turnhout, A G; van Loosdrecht, M C M; Picioreanu, C

    2014-01-01

    Using a one-dimensional mathematical model that couples tooth demineralisation and remineralisation with metabolic processes occurring in the dental plaque, two mechanisms for subsurface lesion formation were evaluated. It was found that a subsurface lesion can develop only as the result of alternating periods of demineralisation (acid attack during sugar consumption) and remineralisation (resting period) in tooth enamel with uniform mineral composition. It was also shown that a minimum plaque thickness that can induce an enamel lesion exists. The subsurface lesion formation can also be explained by assuming the existence of a fluoride-containing layer at the tooth surface that decreases enamel solubility. A nearly constant thickness of the surface layer was obtained with both proposed mechanisms. Sensitivity analysis showed that surface layer formation is strongly dependent on the length of remineralisation and demineralisation cycles. The restoration period is very important and the numerical simulations support the observation that often consumption of sugars is a key factor in caries formation. The calculated profiles of mineral content in enamel are similar to those observed experimentally. Most probably, both studied mechanisms interact in vivo in the process of caries development, but the simplest explanation for subsurface lesion formation remains the alternation between demineralisation and remineralisation cycles without any pre-imposed gradients.

  18. Diamond/diamond-like carbon coated nanotube structures for efficient electron field emission

    Science.gov (United States)

    Dimitrijevic, Steven (Inventor); Withers, James C. (Inventor); Loutfy, Raouf O. (Inventor)

    2005-01-01

    The present invention is directed to a nanotube coated with diamond or diamond-like carbon, a field emitter cathode comprising same, and a field emitter comprising the cathode. It is also directed to a method of preventing the evaporation of carbon from a field emitter comprising a cathode comprised of nanotubes by coating the nanotube with diamond or diamond-like carbon. In another aspect, the present invention is directed to a method of preventing the evaporation of carbon from an electron field emitter comprising a cathode comprised of nanotubes, which method comprises coating the nanotubes with diamond or diamond-like carbon.

  19. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    Science.gov (United States)

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  20. Evidence of subduction and crust-mantle mixing from a single diamond

    Science.gov (United States)

    Schulze, Daniel J.; Harte, Ben; Valley, John W.; Channer, Dominic M. DeR.

    2004-09-01

    Cathodoluminescence (CL) imaging of polished sections of a diamond from the Guaniamo region of Venezuela suggests a history of the diamond involving two periods of growth separated by a period of resorption and possibly brittle deformation. In situ electron probe analysis of multiple eclogitic garnet inclusions reveals a correlation between garnet composition and location in the stone. An early-formed garnet in the diamond core has higher Ca/(Ca+Mg) and lower Mg/(Mg+Fe) values than later garnets associated with the second period of diamond growth. This variation conforms to an extensive trend of variation in the suite of eclogitic garnets extracted from Venezuelan diamonds. The diamond is zoned in carbon isotope composition (in situ secondary ion mass spectrometry, SIMS, data). The core compositions ( δ13C PDB), corresponding to the first stage of growth, average -17.7‰. The second period of growth is apparently in two sub-sets of CL zones with mean values of -13.0‰ and -7.9‰. Nitrogen contents of diamond are low (30-300 atomic ppm) and do not correlate with carbon isotope composition. Oxygen isotope ratios of the garnet inclusions are elevated substantially above those expected for "common mantle"; δ18O VSMOW of early garnet is approximately +10.5‰ and two late garnets average +8.8‰. The evolutionary trend of magnesium enrichment in garnet is unlikely to represent igneous fractionation. The stable isotope data are consistent with diamond formation in subducted meta-basic rocks that had interacted with sea water at low temperatures at or near the sea floor and contained a substantial biogenic carbon component. During or following subduction, diamonds continued to form in an evolving system that was progressively modified by interaction with mantle material.

  1. Computer simulation of the mechanism for the synthesis of carbonado diamond

    Directory of Open Access Journals (Sweden)

    João José de Assis Rangel

    2006-12-01

    Full Text Available The synthesis mechanism associated with the formation of carbonado type polycrystalline diamond has been analyzed. This analysis was performed by computer simulation of the field of temperature developed at the moment of graphite transformation into polycrystalline diamond. It was found that during the synthesis of this carbonado diamond, a strong non-steady thermal condition occurs, leading to changes in the thermodynamic equilibrium. As a consequence, a region comprising non-transformed graphite and carbonado with different characteristics is established. An experimental comparison was carried out between the carbonado hardness profile and the field of temperatures. The results show that the higher the temperature attained at local points inside the high-pressure chamber, the higher the hardness of the diamond. The simulation and experimental results indicated that concurrent mechanisms are acting during the carbonado synthesis.

  2. Study on interface between titanium-coated diamond and metal matrices

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The XRD spectrum of titanium-coated diamond showed the existence of titanium carbide on the interface between diamond and its titanium coating. The diffusions between titanium coating and metal matrices were studied by SEM. The SEM photographs revealed that titanium can interdiffuse with nickel, cobalt, copper,iron and copper-based alloy to a great extent to lead to the disappearance of pure titanium layer and the formation of titanium diffusion layer. The results from transverse-rupture strength test showed that titanium coating on diamond improved the bonding strength between diamond and metal matrices by 3.2% for Co-based segment and 4.1% for Cu-10Sn based segment respectively.

  3. Influence of brazing parameters and alloy composition on interface morphology of brazed diamond

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, Ulrich E. [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland)], E-mail: klotz@fem-online.de; Liu Chunlei [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Khalid, Fazal A. [Faculty of Metallurgy and Materials Engineering, GIK Institute, Topi, NWFP (Pakistan); Elsener, Hans-Rudolf [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2008-11-15

    Active brazing is an effective technique for joining diamond or cBN grit to metallic substrates. This technique is currently used to manufacture superabrasive, high-performance tools. The investigation of interface reactions between diamond and active brazing alloys plays an important role in understanding and improving the brazing process and the resultant tool performance. Focused ion beam (FIB) milling enabled the high resolution investigation of these extremely difficult to prepare metal-diamond joints. The interfacial nanostructure is characterized by the formation of two layers of TiC with different morphologies. First a cuboidal layer forms directly on the diamond and reaches a thickness of approximately 70 nm. Then a second layer with columnar TiC crystals grows on the first layer into the brazing filler metal by a diffusion-controlled process. The combined thickness of both TiC layers varies between 50 nm and 600 nm depending on the brazing temperature and holding time.

  4. Sub-inhibitory concentrations of penicillin G induce biofilm formation by field isolates of Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Hathroubi, S; Fontaine-Gosselin, S-È; Tremblay, Y D N; Labrie, J; Jacques, M

    2015-09-30

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium and causative agent of porcine pleuropneumonia. This is a highly contagious disease that causes important economic losses to the swine industry worldwide. Penicillins are extensively used in swine production and these antibiotics are associated with high systemic clearance and low oral bioavailability. This may expose A. pleuropneumoniae to sub-inhibitory concentrations of penicillin G when the antibiotic is administered orally. Our goal was to evaluate the effect of sub-minimum inhibitory concentration (MIC) of penicillin G on the biofilm formation of A. pleuropneumoniae. Biofilm production of 13 field isolates from serotypes 1, 5a, 7 and 15 was tested in the presence of sub-MIC of penicillin G using a polystyrene microtiter plate assay. Using microscopy techniques and enzymatic digestion, biofilm architecture and composition were also characterized after exposure to sub-MIC of penicillin G. Sub-MIC of penicillin G significantly induced biofilm formation of nine isolates. The penicillin G-induced biofilms contained more poly-N-acetyl-D-glucosamine (PGA), extracellular DNA and proteins when compared to control biofilms grown without penicillin G. Additionally, penicillin G-induced biofilms were sensitive to DNase which was not observed with the untreated controls. Furthermore, sub-MIC of penicillin G up-regulated the expression of pgaA, which encodes a protein involved in PGA synthesis, and the genes encoding the envelope-stress sensing two-component regulatory system CpxRA. In conclusion, sub-MICs of penicillin G significantly induce biofilm formation and this is likely the result of a cell envelope stress sensed by the CpxRA system resulting in an increased production of PGA and other matrix components. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Nf1+/- monocytes/macrophages induce neointima formation via CCR2 activation.

    Science.gov (United States)

    Bessler, Waylan K; Kim, Grace; Hudson, Farlyn Z; Mund, Julie A; Mali, Raghuveer; Menon, Keshav; Kapur, Reuben; Clapp, D Wade; Ingram, David A; Stansfield, Brian K

    2016-03-15

    Persons with neurofibromatosis type 1 (NF1) have a predisposition for premature and severe arterial stenosis. Mutations in the NF1 gene result in decreased expression of neurofibromin, a negative regulator of p21(Ras), and increases Ras signaling. Heterozygous Nf1 (Nf1(+/-)) mice develop a marked arterial stenosis characterized by proliferating smooth muscle cells (SMCs) and a predominance of infiltrating macrophages, which closely resembles arterial lesions from NF1 patients. Interestingly, lineage-restricted inactivation of a single Nf1 allele in monocytes/macrophages is sufficient to recapitulate the phenotype observed in Nf1(+/-) mice and to mobilize proinflammatory CCR2+ monocytes into the peripheral blood. Therefore, we hypothesized that CCR2 receptor activation by its primary ligand monocyte chemotactic protein-1 (MCP-1) is critical for monocyte infiltration into the arterial wall and neointima formation in Nf1(+/-) mice. MCP-1 induces a dose-responsive increase in Nf1(+/-) macrophage migration and proliferation that corresponds with activation of multiple Ras kinases. In addition, Nf1(+/-) SMCs, which express CCR2, demonstrate an enhanced proliferative response to MCP-1 when compared with WT SMCs. To interrogate the role of CCR2 activation on Nf1(+/-) neointima formation, we induced neointima formation by carotid artery ligation in Nf1(+/-) and WT mice with genetic deletion of either MCP1 or CCR2. Loss of MCP-1 or CCR2 expression effectively inhibited Nf1(+/-) neointima formation and reduced macrophage content in the arterial wall. Finally, administration of a CCR2 antagonist significantly reduced Nf1(+/-) neointima formation. These studies identify MCP-1 as a potent chemokine for Nf1(+/-) monocytes/macrophages and CCR2 as a viable therapeutic target for NF1 arterial stenosis.

  6. INDUCED CYTOMICTIC VARIATIONS AND SYNCYTE FORMATION DURING MICROSPOROGENESIS IN PHASEOLUS VULGARIS L.

    Science.gov (United States)

    Kumar, G; Chaudhary, N

    2016-01-01

    The intercellular translocation of chromatin material along with other cytoplasmic contents among the proximate meiocytes lying in close contact with each other commonly referred as cytomixis was reported during microsporogenesis in Phaseolus vulgaris L., a member of the family Fabaceae. The phenomenon of cytomixis was observed at three administered doses of gamma rays viz. 100, 200, 300 Gy respectively in the diploid plants of Phaseolus vulgaris L. The gamma rays irradiated plants showed the characteristic feature of inter-meiocyte chromatin/chromosomes transmigration through various means.such as channel formation, beak formation or by direct adhesion between the PMC's (Pollen mother cells). The present study also reports the first instance of syncyte formation induced via cytomictic transmigration in Phaseolus vulgaris L. Though the frequency of syncyteformation was rather low yet these could play a significant role in plant evolution. It is speculated that syncyte enhances the ploidy level of plants by forming 2n gametes and may lead to the production ofpolyploid plants. The phenomenon of cytomixis shows a gradual inclination along with the increasing treatment doses of gamma rays. The preponderance of cytomixis was more frequent during meiosis I as compared to meiosis II. An interesting feature noticed during the present study was the channel formation among the microspores and fusion among the tetrads due to cell wall dissolution. The impact of this phenomenon is also visible on the development of post-meiotic products. The formation of heterosized pollen grains; a deviation from the normal pollen grains has also been reported. The production of gametes with unbalanced chromosomes is of utmost importance and should be given more attention in future studies as they possess the capability of inducing variations at the genomic level and can be further utilized in the improvement of germplasm.

  7. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr [GREMI, UMR7344, CNRS/University of Orleans, 14 rue d' Issoudun, BP6744, 45067 Orleans Cedex 2 (France); Vayer, M. [ICMN, UMR 7374, CNRS/University of Orleans, 1b rue de la Ferollerie, CS 40059, 45071 Orleans Cedex (France); Sauldubois, A. [CME, UFR Sciences, University of Orleans, 1 Rue de Chartres, BP 6759, 45067 Orleans Cedex 2 (France)

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  8. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    Science.gov (United States)

    Huynh, T. T. D.; Vayer, M.; Sauldubois, A.; Petit, A.; Semmar, N.

    2015-11-01

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm2). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  9. Fiscal 1998 international research cooperation project. Research report on development of ultra-solid lubricant with cluster diamond; 1998 nendo kokusai kenkyu kyoroku jigyo seika hokokusho. Kurasuta diamond wo riyoshita kotai junkatsu fukugo zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Study was made on cluster diamond-dispersed composite materials to develop advanced ultra-solid lubricant. As for processing technology of such composite materials, study was made on the uniform mixing condition of cluster diamond and Cu or Cu-Sn alloy by mechanical milling. The fabricated composite powder was caked by vacuum hot compressive formation technique. The production process of composite materials composed of cluster diamond and TiO{sub 2} was also developed by using sol-gel technique. As for formation of a functional layer and development of micro- formation technology, the prototype forming equipment using radial extrusion process and the mould were designed and prepared. In the preliminary experiment only for matrix, study was made on working limit, material flow, fine recrystallization and working condition during working. The friction test result showed the antifrictional property of the cluster diamond-dispersed composite materials using Cu, Cu-Sn, Al, Al-Si as matrix. (NEDO)

  10. Formation mechanism of photo-induced nested wrinkles on siloxane-photomonomer hybrid film

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazumasa [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); International Laboratory of Materials Science and Nanotechnology (iLMNT), Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Laboratorio di Scienz (Italy); Tokudome, Yasuaki, E-mail: masa@photomater.com; Takahashi, Masahide, E-mail: masa@photomater.com [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); International Laboratory of Materials Science and Nanotechnology (iLMNT), Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2014-10-21

    Nested wrinkle structures, hierarchical surface wrinkles of different periodicities of sub-μm and tens-μm, have been fabricated on a siloxane-photomonomer hybrid film via a photo-induced surface polymerization of acrylamide. The formation mechanism of the nested wrinkle structures is examined based on a time-dependent structure observation and chemical composition analyses. In-situ observation of the evolving surface structure showed that sub-μm scale wrinkles first formed, subsequently the tens-μm scale ones did. In-situ FT-IR analysis indicated that the nested wrinkles formation took place along with the development of siloxane network of under layer. A cross sectional observation of the film revealed that the film was composed of three layers. FT-IR spectra of the film revealed that the surface and interior layers were polyacrylamide rich layer and siloxane-polymer rich layer, respectively. The intermediate layer formed as a diffusion layer by migration of acrylamide from interior to the surface. These three layers have different chemical compositions and therefore different mechanical characteristics, which allows the wrinkle formation. Shrinkage of siloxane-polymer interior layers, as a result of polycondensation of siloxane network, induced mechanical instabilities at interlayers, to form the nested wrinkle structures.

  11. Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers.

    Science.gov (United States)

    Li, Zhaoping; Henning, Susanne M; Lee, Ru-Po; Lu, Qing-Yi; Summanen, Paula H; Thames, Gail; Corbett, Karen; Downes, Julia; Tseng, Chi-Hong; Finegold, Sydney M; Heber, David

    2015-08-01

    The health benefits of pomegranate (POM) consumption are attributed to ellagitannins and their metabolites, formed and absorbed in the intestine by the microbiota. In this study twenty healthy participants consumed 1000 mg of POM extract daily for four weeks. Based on urinary and fecal content of the POM metabolite urolithin A (UA), we observed three distinct groups: (1) individuals with no baseline UA presence but induction of UA formation by POM extract consumption (n = 9); (2) baseline UA formation which was enhanced by POM extract consumption (N = 5) and (3) no baseline UA production, which was not inducible (N = 6). Compared to baseline the phylum Actinobacteria was increased and Firmicutes decreased significantly in individuals forming UA (producers). Verrucomicrobia (Akkermansia muciniphila) was 33 and 47-fold higher in stool samples of UA producers compared to non-producers at baseline and after 4 weeks, respectively. In UA producers, the genera Butyrivibrio, Enterobacter, Escherichia, Lactobacillus, Prevotella, Serratia and Veillonella were increased and Collinsella decreased significantly at week 4 compared to baseline. The consumption of pomegranate resulted in the formation of its metabolites in some but not all participants. POM extract consumption may induce health benefits secondary to changes in the microbiota.

  12. Band gap opening in strongly compressed diamond observed by x-ray energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, E. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fletcher, L. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lee, H. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); MacDonald, M. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States); Zastrau, U. [High-Energy Density Science Group, Hamburg (Germany); Gauthier, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gericke, D. O. [Univ. of Warwick (United Kingdom); Vorberger, J. [Helmholtz Association of German Research Centres, Dresden (Germany); Granados, E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, J. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-25

    The extraordinary mechanical and optical properties of diamond are the basis of numerous technical applications and make diamond anvil cells a premier device to explore the high-pressure behavior of materials. However, at applied pressures above a few hundred GPa, optical probing through the anvils becomes difficult because of the pressure-induced changes of the transmission and the excitation of a strong optical emission. Such features have been interpreted as the onset of a closure of the optical gap in diamond, and can significantly impair spectroscopy of the material inside the cell. In contrast, a comparable widening has been predicted for purely hydrostatic compressions, forming a basis for the presumed pressure stiffening of diamond and resilience to the eventual phase change to BC8. We here present the first experimental evidence of this effect at geo-planetary pressures, exceeding the highest ever reported hydrostatic compression of diamond by more than 200 GPa and any other measurement of the band gap by more than 350 GPa. We here apply laser driven-ablation to create a dynamic, high pressure state in a thin, synthetic diamond foil together with frequency-resolved x-ray scattering as a probe. The frequency shift of the inelastically scattered x-rays encodes the optical properties and, thus, the behavior of the band gap in the sample. Using the ultra-bright x-ray beam from the Linac Coherent Light Source (LCLS), we observe an increasing direct band gap in diamond up to a pressure of 370 GPa. This finding points to the enormous strains in the anvils and the impurities in natural Type Ia diamonds as the source of the observed closure of the optical window. Our results demonstrate that diamond remains an insulating solid to pressures approaching its limit strength.

  13. Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation

    Science.gov (United States)

    Kansara, Maya; Leong, Huei San; Lin, Dan Mei; Popkiss, Sophie; Pang, Puiyi; Garsed, Dale W.; Walkley, Carl R.; Cullinane, Carleen; Ellul, Jason; Haynes, Nicole M.; Hicks, Rod; Kuijjer, Marieke L.; Cleton-Jansen, Anne-Marie; Hinds, Philip W.; Smyth, Mark J.; Thomas, David M.

    2013-01-01

    Ionizing radiation (IR) and germline mutations in the retinoblastoma tumor suppressor gene (RB1) are the strongest risk factors for developing osteosarcoma. Recapitulating the human predisposition, we found that Rb1+/– mice exhibited accelerated development of IR-induced osteosarcoma, with a latency of 39 weeks. Initial exposure of osteoblasts to carcinogenic doses of IR in vitro and in vivo induced RB1-dependent senescence and the expression of a panel of proteins known as senescence-associated secretory phenotype (SASP), dominated by IL-6. RB1 expression closely correlated with that of the SASP cassette in human osteosarcomas, and low expression of both RB1 and the SASP genes was associated with poor prognosis. In vivo, IL-6 was required for IR-induced senescence, which elicited NKT cell infiltration and a host inflammatory response. Mice lacking IL-6 or NKT cells had accelerated development of IR-induced osteosarcomas. These data elucidate an important link between senescence, which is a cell-autonomous tumor suppressor response, and the activation of host-dependent cancer immunosurveillance. Our findings indicate that overcoming the immune response to senescence is a rate-limiting step in the formation of IR-induced osteosarcoma. PMID:24231354

  14. Stromal cell-derived factor-1 potentiates bone morphogenetic protein-2 induced bone formation.

    Science.gov (United States)

    Higashino, Kosaku; Viggeswarapu, Manjula; Bargouti, Maggie; Liu, Hui; Titus, Louisa; Boden, Scott D

    2011-02-01

    The mechanisms driving bone marrow stem cell mobilization are poorly understood. A recent murine study found that circulating bone marrow-derived osteoprogenitor cells (MOPCs) were recruited to the site of recombinant human bone morphogenetic protein-2 (BMP-2)-induced bone formation. Stromal cell-derived factor-1α (SDF-1α) and its cellular receptor CXCR4 have been shown to mediate the homing of stem cells to injured tissues. We hypothesized that chemokines, such as SDF-1, are also involved with mobilization of bone marrow cells. The CD45(-) fraction is a major source of MOPCs. In this report we determined that the addition of BMP-2 or SDF-1 to collagen implants increased the number of MOPCs in the peripheral blood. BMP-2-induced mobilization was blocked by CXCR4 antibody, confirming the role of SDF-1 in mobilization. We determined for the first time that addition of SDF-1 to implants containing BMP-2 enhances mobilization, homing of MOPCs to the implant, and ectopic bone formation induced by suboptimal BMP-2 doses. These results suggest that SDF-1 increases the number of osteoprogenitor cells that are mobilized from the bone marrow and then home to the implant. Thus, addition of SDF-1 to BMP-2 may improve the efficiency of BMPs in vivo, making their routine use for orthopaedic applications more affordable and available to more patients.

  15. Distinct Effects of Calorie Restriction and Resveratrol on Diet-Induced Obesity and Fatty Liver Formation

    Directory of Open Access Journals (Sweden)

    Eveliina Tauriainen

    2011-01-01

    Full Text Available The potential of resveratrol to mimic beneficial effects of calorie restriction (CR was investigated. We compared the effects of both CR (70% of ad libitum energy intake or resveratrol (2 g/kg or 4 g/kg food on high-fat diet-induced obesity and fatty liver formation in C57Bl/6J mice, and we examined their effects on calorimetry, metabolic performance, and the expressions of inflammatory genes and SIRT proteins. We found that resveratrol with 4 g/kg dose partially prevented hepatic steatosis and hepatocyte ballooning and induced skeletal muscle SIRT1 and SIRT4 expression while other examined parameter were unaffected by resveratrol. In contrast, CR provided superior protection against diet-induced obesity and fatty liver formation as compared to resveratrol, and the effects were associated with increased physical activity and ameliorated adipose tissue inflammation. CR increased expressions of SIRT3 in metabolically important tissues, suggesting that the beneficial effects of CR are mediated, at least in part, via SIRT3-dependent pathways.

  16. Ras-inducible immortalized fibroblasts: focus formation without cell cycle deregulation.

    Science.gov (United States)

    Jacobsen, Kivin; Groth, Anja; Willumsen, Berthe M

    2002-05-02

    The Ras oncogene transforms cultured murine fibroblasts into malignant, focus-forming cells, whose lack of contact inhibition is evidenced by high saturation densities. In order to investigate the reversibility of Ras transformation, as well as the kinetics of Ras-induced changes, cell lines that conditionally express oncogenic Ras were constructed. Both focus formation and increased saturation density were inducible and fully reversible. In exponentially growing cells, oncogenic Ras-expression had no effect on proliferation rates, Erk phosphorylation, or the level of cyclin D1, and Ras-induction did not confer serum-independent growth. As expected, growth to high density in uninduced cells led to quiescence with a low level of cyclin D1 and no active Erk; in this setting, Ras induction prevented full downregulation of cyclin D1 and inactivation of Erk. Our results show that Ras expression to a level sufficient for transformation leads to relatively subtle effects on known downstream targets, and that the focus formation and increased saturation density growth induced by Ras is not a result of growth factor independence.

  17. Caenorhabditis elegans star formation and negative chemotaxis induced by infection with corynebacteria.

    Science.gov (United States)

    Antunes, Camila Azevedo; Clark, Laura; Wanuske, Marie-Therès; Hacker, Elena; Ott, Lisa; Simpson-Louredo, Liliane; de Luna, Maria das Gracas; Hirata, Raphael; Mattos-Guaraldi, Ana Luíza; Hodgkin, Jonathan; Burkovski, Andreas

    2016-01-01

    Caenorhabditis elegans is one of the major model systems in biology based on advantageous properties such as short life span, transparency, genetic tractability and ease of culture using an Escherichia coli diet. In its natural habitat, compost and rotting plant material, this nematode lives on bacteria. However, C. elegans is a predator of bacteria, but can also be infected by nematopathogenic coryneform bacteria such Microbacterium and Leucobacter species, which display intriguing and diverse modes of pathogenicity. Depending on the nematode pathogen, aggregates of worms, termed worm-stars, can be formed, or severe rectal swelling, so-called Dar formation, can be induced. Using the human and animal pathogens Corynebacterium diphtheriae and Corynebacterium ulcerans as well as the non-pathogenic species Corynebacterium glutamicum, we show that these coryneform bacteria can also induce star formation slowly in worms, as well as a severe tail-swelling phenotype. While C. glutamicum had a significant, but minor influence on survival of C. elegans, nematodes were killed after infection with C. diphtheriae and C. ulcerans. The two pathogenic species were avoided by the nematodes and induced aversive learning in C. elegans.

  18. Clostridium perfringens TpeL Induces Formation of Stress Fibers via Activation of RhoA-ROCK Signaling Pathway.

    Science.gov (United States)

    Nagahama, Masahiro; Ohkubo, Akiko; Kinouchi, Yoshihito; Kobayashi, Keiko; Miyamoto, Kazuaki; Takehara, Masaya; Sakurai, Jun

    2015-01-01

    Clostridium perfringens TpeL belongs to a family of large clostridial glucosylating cytotoxins. TpeL modifies Rac1 and Ras subfamily proteins. Herein we report TpeL-induced formation of stress fibers via RhoA-Rho kinase (ROCK) signaling. A recombinant protein (TpeL1-525) derived from the TpeL N-terminal catalytic domain in the presence of streptolysin O (SLO) induced the formation of actin stress fibers in Madin-Darby canine kidney (MDCK) cells in a dose-dependent manner. The RhoA/ROCK pathway is known to control the formation of stress fibers. We examined the role of the RhoA/ROCK pathway in TpeL-induced formation of stress fibers. TpeL1-525-induced formation of stress fibers was inhibited by the ROCK inhibitor, Y27632 and Rho protein inhibitor, C3 transferase. TpeL1-525 activated RhoA and ROCK in a dose-dependent manner. C3 transferase blocked TpeL1-525-induced activation of RhoA and ROCK whereas Y27632 inhibited TpeL-induced activation of ROCK. These results demonstrate for the first time that TpeL induces the formation of stress fibers by activating the RhoA/ROCK signaling pathway.

  19. Acidosis induced by carbon dioxide insufflation decreases heparin potency: a risk factor for thrombus formation.

    Science.gov (United States)

    Gorter, Karin A M; Stehouwer, Marco C; Van Putte, Bart P; Vlot, Eline A; Urbanus, Rolf T

    2017-04-01

    Since the introduction of CO2 insufflation during open heart surgery in our hospital, we incidentally observed thrombus formation in the dissected heart, in the pericardium and in the cardiotomy reservoir of the cardiopulmonary bypass system. Furthermore, we measured very high levels of pCO2, causing severe acidosis, in stagnant blood in the pericardium and cardiotomy reservoir. In this in vitro study, we assessed the influence of acidosis and hypothermia on heparin potency and thrombin formation. We assessed heparin potency in function of pH (pH 5.0-7.4) and temperature (24-37°C) by comparing the activated partial thromboplastin time in platelet-poor plasma between samples with and without unfractionated heparin. We measured thrombin formation in platelet-poor plasma by means of fluorescent, calibrated, automated thrombography in function of pH (pH 5.0-7.4) and temperature (24-37°C). The parameters of interest were the endogenous thrombin potential and the peak amount of thrombin generation. The major finding of this study is the significant decrease in the efficiency of unfractionated heparin in delaying thrombus formation at acidotic (pH 5.0-7.0) conditions (p=0.034-0.05). Furthermore, we found that thrombin formation is significantly increased at hypothermic (24-34°C) conditions (p=acidosis may lead to a decreased heparin potency. Acidosis, as induced by CO2 insufflation, may predispose patients to incidental thrombus formation in stagnant blood in the open thorax and in the cardiotomy reservoir. Hypothermia might further increase this risk. Therefore, we recommend reconsidering the potential advantages and disadvantages of using CO2 insufflation during cardiopulmonary bypass.

  20. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles

    Science.gov (United States)

    Chesnutt, Jennifer K. W.; Han, Hai-Chao

    2013-10-01

    Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD) and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD and arteriole tortuosity play important roles in platelet activation and thrombus formation.

  1. Electrical transport measurements and emission properties of freestanding single crystalline CVD diamond samples

    Energy Technology Data Exchange (ETDEWEB)

    Deferme, W.; Bogdan, A.; Bogdan, G. [Hasselt University, Institute for Materials Research (IMO), Diepenbeek (Belgium); Haenen, K.; Ceuninck, W. de [Hasselt University, Institute for Materials Research (IMO), Diepenbeek (Belgium); IMEC vzw, Division IMOMEC, Diepenbeek (Belgium); Nesladek, M. [Hasselt University, Institute for Materials Research (IMO), Diepenbeek (Belgium); IMEC vzw, Division IMOMEC, Diepenbeek (Belgium); CEA/Saclay, LIST (CEA-Recherche Technologique)/DETECS/SSTM/LTD, Gif-sur-Yvette (France)

    2007-09-15

    In this work time-of-flight (TOF) measurements are performed on freestanding single crystalline (100) CVD diamond layers with different surface terminations. The transit properties and electron and hole mobility are measured for completely oxidised and completely hydrogenated diamonds. The results clearly show that the different terminations of the diamond surface have an influence on the electrical transport properties. Furthermore, evidence is given that oxygen-induced surface states influence the TOF spectra. Light emission at 235 nm and around 430 nm is observed when applying a pulsed electric field on the diamond. The small peak at 235 nm is attributed to free exciton recombination while the broad band at 430 nm is contributed to A-band luminescence. Emission spectra at voltages as high as 1.4 V/{mu}m are given and compared. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Clique Separator Decomposition of Hole- and Diamond-Free Graphs and Algorithmic Consequences

    CERN Document Server

    Brandstädt, Andreas

    2011-01-01

    Clique separator decomposition introduced by Tarjan and Whitesides is one of the most important graph decompositions. A graph is an {\\em atom} if it has no clique separator. A {\\em hole} is a chordless cycle with at least five vertices, and an {\\em antihole} is the complement graph of a hole. A graph is {\\em weakly chordal} if it is hole- and antihole-free. $K_4-e$ is also called {\\em diamond}. {\\em Paraglider} has five vertices four of which induce a diamond, and the fifth vertex sees exactly the two vertices of degree two in the diamond. In this paper we show that atoms of hole- and diamond-free graphs (of hole- and paraglider-free graphs, respectively) are either weakly chordal or of a very specific structure. Hole- and paraglider-free graphs are perfect graphs. The structure of their atoms leads to efficient algorithms for various problems.

  3. Relationship between texture and residual macro-strain in CVD diamond films based on phenomenological analysis

    Institute of Scientific and Technical Information of China (English)

    Weimin Mao; Hongxi Zhu; Leng Chen; Huiping Feng

    2008-01-01

    The relationship between texture and elastic properties of chemical vapor deposition (CVD) diamond films was analyzed based on the phenomenological theory, which reveals the influence of crystalline orientation and texture on the residual macro-strain and macro-stress. The phenomenological calculations indicated that the difference in Young's modulus could be 15% in single dia- mond crystals and 5% in diamond films with homogeneously distributed strong fiber texture. The experimentally measured residual strains of free-standing CVD diamond films were in good agreement with the correspondingly calculated Young's modulus in con- nection with the multi-fiber textures in the fills, though the difference in Young's modulus induced by texture was only around 1%. It is believed that texture should be one of the important factors influencing the residual stress and strain of CVD diamond films.

  4. A Hydrogel's Formation Device for Quick Analysis of Liquid Samples Using Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Guo, Guangmeng; Wang, Jie; Bian, Fang; Tian, Di; Fan, Qingwen

    2016-06-01

    The laser-induced breakdown spectroscopy technique has irreplaceable advantages in the field of detection due to its multi-phase specimen detection ability. The development of the LIBS technique for liquid analysis is obstructed by its inherent drawbacks like the surface ripples and extinction of emitted intensity, which make it unpractical. In this work, an in-situ hydrogel formation sampling device was designed and used the hydrogel as the detection phase of LIBS for Cu, Cr and Al in an aqueous solution. With the measured amount of resin placed in the device, the formed hydrogel could be obtained within 20 s after putting the device into water solution. The formed hydrogel could be directly analyzed by LIBS and reflect the elemental information of the water sample. The prominent performance made this hydrogel's formation device especially suitable for quick in-situ environmental liquid analysis using LIBS.

  5. Editing VEGFR2 Blocks VEGF-Induced Activation of Akt and Tube Formation

    Science.gov (United States)

    Huang, Xionggao; Zhou, Guohong; Wu, Wenyi; Ma, Gaoen; D'Amore, Patricia A.; Mukai, Shizuo; Lei, Hetian

    2017-01-01

    Purpose Vascular endothelial growth factor receptor 2 (VEGFR2) plays a key role in VEGF-induced angiogenesis. The goal of this project was to test the hypothesis that editing genomic VEGFR2 loci using the technology of clustered regularly interspaced palindromic repeats (CRISPR)-associated DNA endonuclease (Cas)9 in Streptococcus pyogenes (SpCas9) was able to block VEGF-induced activation of Akt and tube formation. Methods Four 20 nucleotides for synthesizing single-guide RNAs based on human genomic VEGFR2 exon 3 loci were selected and cloned into a lentiCRISPR v2 vector, respectively. The DNA fragments from the genomic VEGFR2 exon 3 of transduced primary human retinal microvascular endothelial cells (HRECs) were analyzed by Sanger DNA sequencing, surveyor nuclease assay, and next-generation sequencing (NGS). In the transduced cells, expression of VEGFR2 and VEGF-stimulated signaling events (e.g., Akt phosphorylation) were determined by Western blot analyses; VEGF-induced cellular responses (proliferation, migration, and tube formation) were examined. Results In the VEGFR2-sgRNA/SpCas9–transduced HRECs, Sanger DNA sequencing indicated that there were mutations, and NGS demonstrated that there were 83.57% insertion and deletions in the genomic VEGFR2 locus; expression of VEGFR2 was depleted in the VEGFR2-sgRNA/SpCas9–transduced HRECs. In addition, there were lower levels of Akt phosphorylation in HRECs with VEGFR2-sgRNA/SpCas9 than those with LacZ-sgRNA/SpCas9, and there was less VEGF-stimulated Akt activation, proliferation, migration, or tube formation in the VEGFR2-depleted HRECs than those treated with aflibercept or ranibizumab. Conclusions The CRISPR-SpCas9 technology is a potential novel approach to prevention of pathologic angiogenesis. PMID:28241310

  6. Melatonin Reduces Cataract Formation and Aldose Reductase Activity in Lenses of Streptozotocin-induced Diabetic Rat

    Directory of Open Access Journals (Sweden)

    Marjan Khorsand

    2016-07-01

    Full Text Available Background: The relationship between the high activity of aldose reductase (AR and diabetic cataract formation has been previously investigated. The purpose of the present study was to determine the preventing effect of melatonin on streptozotocin (STZ-induced diabetic cataract in rats. Methods: 34 adult healthy male Sprague-Dawely rats were divided into four groups. Diabetic control and diabetic+melatonin received a single dose of STZ (50 mg/kg, intraperitoneally, whereas the normal control and normal+melatonin received vehicle. The melatonin groups were gavaged with melatonin (5 mg/kg daily for a period of 8 weeks, whereas the rats in the normal control and diabetic control groups received only the vehicle. The rats’ eyes were examined every week and cataract formation scores (0-4 were determined by slit-lamp microscope. At the end of the eighth week, the rats were sacrificed and markers of the polyol pathway and antioxidative (Glutathione, GSH in their lens were determined. The levels of blood glucose, HbA1c and plasma malondialdhyde (MDA, as a marker of lipid peroxidation, were also measured. Results: Melatonin prevented STZ-induced hyperglycemia by decreased blood glucose and HbA1c levels. Slit lamp examination indicated that melatonin delayed cataract progression in diabetic rats. The results revealed that melatonin feeding increased the GSH levels, decreased the activities of AR and sorbitol dehydrogenase (SDH and sorbitol formation in catractous lenses as well as plasma MDA content. Conclusion: In summary, for the first time we demonstrated that melatonin delayed the formation and progression of cataract in diabetic rat lenses.

  7. Ketoprofen-induced formation of amino acid photoadducts: possible explanation for photocontact allergy to ketoprofen.

    Science.gov (United States)

    Karlsson, Isabella; Persson, Elin; Ekebergh, Andreas; Mårtensson, Jerker; Börje, Anna

    2014-07-21

    Photocontact allergy is a well-known side effect of topical preparations of the nonsteroidal anti-inflammatory drug ketoprofen. Photocontact allergy to ketoprofen appears to induce a large number of photocross allergies to both structurally similar and structurally unrelated compounds. Contact and photocontact allergies are explained by structural modification of skin proteins by the allergen. This complex is recognized by the immune system, which initiates an immune response. We have studied ketoprofen's interaction with amino acids to better understand ketoprofen's photoallergenic ability. Irradiation of ketoprofen and amino acid analogues resulted in four different ketoprofen photodecarboxylation products (6-9) together with a fifth photoproduct (5). Dihydroquinazoline 5 was shown to be a reaction product between the indole moiety of 3-methylindole (Trp analogue) and the primary amine benzylamine (Lys analogue). In presence of air, dihydroquinazoline 5 quickly degrades into stable quinazolinone 12. The corresponding quinazolinone (17) was formed upon irradiation of ketoprofen and the amino acids N-acetyl-l-Trp ethyl ester and l-Lys ethyl ester. The formation of these models of an immunogenic complex starts with the ketoprofen-sensitized formation of singlet oxygen, which reacts with the indole moiety of Trp. The formed intermediate subsequently reacts with the primary amino functionality of Lys, or its analogue, to form a Trp-Lys adduct or a mimic thereof. The formation of a specific immunogenic complex that does not contain the allergen but that can still induce photocontact allergy would explain the large number of photocross allergies with ketoprofen. These allergens do not have to be structurally similar as long as they can generate singlet oxygen. To the best of our knowledge, there is no other suggested explanation for ketoprofen's photoallergenic properties that can account for the observed photocross allergies. The formation of a specific immunogenic

  8. Mechanical stress induces bone formation in the maxillary sinus in a short-term mouse model.

    Science.gov (United States)

    Kuroda, Shingo; Wazen, Rima; Moffatt, Pierre; Tanaka, Eiji; Nanci, Antonio

    2013-01-01

    Clinicians occasionally face the challenge of moving a tooth through the maxillary sinus. The objective of this study was to evaluate tissue remodeling during tooth movement into the maxillary sinus, more specifically as regards to bone formation. The maxillary first molar of 20 male mice was moved toward the palatal side by a nickel-titanium super elastic wire for 1 to 14 days, and the bone remodeling around the root was evaluated using histomorphometry and immunodetection of bone-restricted Ifitm-like (Bril) protein, a novel marker of active bone formation. When mechanical stress was applied to the tooth, the periodontal ligament on the palatal side was immediately compressed to approximately half of its original width by the tipping movement of the tooth. At the same time, osteoblasts deposited new bone on the wall of the maxillary sinus prior to bone resorption by osteoclasts on the periodontal side, as evidenced by the high level of expression of Bril at this site. As a result of these sequential processes, bone on the sinus side maintained a consistent thickness during the entire observation period. No root resorption was observed. Bone formation on the surface of the maxillary sinus was evoked by mechanotransduction of mechanical stress applied to a tooth over a 2-week period, and was induced ahead of bone resorption on the periodontal ligament side. Mechanical stress can be exploited to induce bone formation in the maxillary sinus so that teeth can be moved into the sinus without losing bone or causing root damage.

  9. Diamonds from the Coromandel Area, West Minas Gerais State, Brazil: an update and new data on surface sources and origin

    Directory of Open Access Journals (Sweden)

    Joachim Karfunkel

    Full Text Available Important diamond deposits southeast of Coromandel and the local geology have been studied in an attempt to understand what surface source provided the stones. River gravels of Pleistocene to Recent age from this region have supplied most of Brazil's large diamonds over 100 ct. The upper cretaceous Capacete Formation of the Mata da Corda Group, composed of mafic volcanoclastic, pyroclastic and epiclastic material, has been worked locally for diamonds, nevertheless considered non-economic. The authors present results of their study of a deactivated small mine, representing the first report with description and analyses of two gem diamonds washed from this material. Hundreds of kimberlites, discovered in the last half century in the region, are sterile or non-economic. We propose that the surface source of the diamonds is the Capacete "conglomerado". The volume of this material is enormous representing a potential resource for large-scale mining. The authors suggest detailed studies of the volcanic facies of this unit focusing on the genesis, distribution and diamond content. As to the question concerning the origin of these diamondiferous pyroclastic rocks, the authors exclude the kimberlites and point towards the large Serra Negra and Salitre alkaline complexes which are considered the primary source for the pyroclastic units of the Mata da Corda Group. They propose that early eruptive phases of this alkaline complex brought diamonds from a mantle source to the surface, much as happens with traditional kimberlites, to explain the association of such huge carbonatite complexes and diamonds.

  10. Oligo-lysine Induced Formation of Silica Particles in Neutral Silicate Solution

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Oligo-(lysine)n (n = 1-4) containing different numbers of lysine residues was used to induce the condensation of silicic acid to form silica particles in neutral silicate solution. It was found that the condensation rate and the formation of silica particles are dependent on the number of lysine residues in an oligo-lysine. Oligo-lysine with more lysine residues can link more silicic acid together to form a matrix that promotes the effective aggregation of the condensed silica pieces to form large silica particles.

  11. New observations on formation of thermally induced martensite in Fe–30%Ni–1%Pd alloy

    Indian Academy of Sciences (India)

    Gokcen Yildiz; Yasin Gokturk Yildiz; Saffet Nezir

    2013-02-01

    Kinetical, morphological, crystallographical and thermal characteristics of thermally induced martensite in an Fe–30%Ni–1%Pd alloy has been studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and X-ray diffraction method. Kinetics of transformation was found to be as athermal. SEM and TEM observations and X-ray method revealed ' () martensite formation in the austenite phase of alloy by thermal effect. The crystallographic orientation relationship between austenite and ' () martensite was found to be having Kurdjumov–Sachs (K–S) type relationship. In addition, the lattice parameters of austenite and martensite phases were calculated from X-ray diffraction patterns.

  12. Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation.

    Science.gov (United States)

    Mangoni, M E; Aumelas, A; Charnet, P; Roumestand, C; Chiche, L; Despaux, E; Grassy, G; Calas, B; Chavanieu, A

    1996-03-25

    Protegrin 1 (PG-1) is a naturally occurring cationic antimicrobial peptide that is 18 residues long, has an aminated carboxy terminus and contains two disulphide bridges. Here, we investigated the antimicrobial activity of PG-1 and three linear analogues. Then, the membrane permeabilisation induced by these peptides was studied upon Xenopus laevis oocytes by electrophysiological methods. From the results obtained, we concluded that protegrin is able to form anion channels. Moreover, it seems clear that the presence of disulphide bridges is a prerequisite for the pore formation at the membrane level and not for the antimicrobial activity.

  13. Auxin effectively induces the formation of the secondary abscission zone in Bryophyllum calycinum Salisb. (Crassulaceae)

    OpenAIRE

    Marian Saniewski; Justyna Góraj-Koniarska; Eleonora Gabryszewska; Kensuke Miyamoto; Junichi Ueda

    2016-01-01

    We have found that auxin, indole-3-acetic acid (IAA) substantially induces the formation of the secondary abscission zone in stem and petiole explants and in decapitated stem and petiole after excision of blade in intact plants of Bryophyllum calycinum when IAA at a concentration of 0.1% as lanolin paste was applied in the middle of these organs. The secondary abscission zone was formed at a few mm above of the treatment with IAA, and senescence of the part above abscission zone was observed....

  14. Ultrananocrystalline diamond contacts for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Smedley, John; Muller, Erik

    2016-11-01

    A method of forming electrical contacts on a diamond substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The mixture of gases include a source of a p-type or an n-type dopant. The plasma ball is disposed at a first distance from the diamond substrate. The diamond substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the diamond substrate for a first time, and a UNCD film, which is doped with at least one of a p-type dopant and an n-type dopant, is disposed on the diamond substrate. The doped UNCD film is patterned to define UNCD electrical contacts on the diamond substrate.

  15. Copper-micrometer-sized diamond nanostructured composites

    Science.gov (United States)

    Nunes, D.; Livramento, V.; Shohoji, N.; Fernandes, H.; Silva, C.; Correia, J. B.; Carvalho, P. A.

    2011-12-01

    Reinforcement of a copper matrix with diamond enables tailoring the properties demanded for thermal management applications at high temperature, such as the ones required for heat sink materials in low activated nuclear fusion reactors. For an optimum compromise between thermal conductivity and mechanical properties, a novel approach based on multiscale diamond dispersions is proposed: a Cu-nanodiamond composite produced by milling is used as a nanostructured matrix for further dispersion of micrometer-sized diamondDiamond). A series of Cu-nanodiamond mixtures have been milled to establish a suitable nanodiamond fraction. A refined matrix with homogeneously dispersed nanoparticles was obtained with 4 at.% μDiamond for posterior mixture with microdiamond and subsequent consolidation. Preliminary consolidation by hot extrusion of a mixture of pure copper and μDiamond has been carried out to define optimal processing parameters. The materials produced were characterized by x-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.

  16. Microwave-induced formation of platinum nanostructured networks with superior electrochemical activity and stability.

    Science.gov (United States)

    Jia, Falong; Wang, Fangfang; Lin, Yun; Zhang, Lizhi

    2011-12-16

    Platinum nanostructured networks (PNNs) can be synthesized through the chemical reduction of H(2)PtCl(6) by benzyl alcohol under microwave irradiation without the introduction of any surfactants, templates, or seeds. The synthesis route utilizes benzyl alcohol as both the reductant and the structure-directing agent, and thus, the process is particularly simple and highly repeatable. The formation of the PNN structure was ascribed to the collision-induced fusion of Pt nanocrystals owing to the cooperative functions of microwave irradiation and benzyl alcohol. Compared with a commercial Pt/C catalyst, the as-prepared PNNs possessed superior electrochemical activity and stability on the oxidation of methanol because of the unique 3D nanostructured networks and abundant defects formed during the assembly process. This study may provide a facile microwave-induced approach for the synthesis of other 3D nanostructured noble metals or their alloys.

  17. Tolerogenic nanoparticles to induce immunologic tolerance: Prevention and reversal of FVIII inhibitor formation.

    Science.gov (United States)

    Zhang, Ai-Hong; Rossi, Robert J; Yoon, Jeongheon; Wang, Hong; Scott, David W

    2016-03-01

    The immune response of hemophilia A patients to administered FVIII is a major complication that obviates this very therapy. We have recently described the use of synthetic, biodegradable nanoparticles carrying rapamycin and FVIII peptide antigens, to induce antigen-specific tolerance. Herein we test the tolerogenicity of nanoparticles that contains full length FVIII protein in hemophilia A mice, focusing on anti-FVIII humoral immune response. As expected, recipients of tolerogenic nanoparticles remained unresponsive to FVIII despite multiple challenges for up to 6 months. Furthermore, therapeutic treatments in FVIII-immunized mice with pre-existing anti-FVIII antibodies resulted in diminished antibody titers, albeit efficacy required longer therapy with the tolerogenic nanoparticles. Interestingly, durable FVIII-specific tolerance was also achieved in animals co-administered with FVIII admixed with nanoparticles encapsulating rapamycin alone. These results suggest that nanoparticles carrying rapamycin and FVIII can be employed to induce specific tolerance to prevent and even reverse inhibitor formation.

  18. Valproic Acid-Induced Severe Acute Pancreatitis with Pseudocyst Formation: Report of a Case.

    Science.gov (United States)

    Ray, Sukanta; Khamrui, Sujan; Kataria, Mohnish; Biswas, Jayanta; Saha, Suman

    2015-08-01

    Valproic acid is the most widely used anti-epilep-tic drug in children, and it is probably the most frequent cause of drug-induced acute pancreatitis. Outcomes for patients with valproic acid-associated pancreatitis vary from full recovery after discontinuation of the drug to severe acute pancreatitis and death. Here, we present a case of valproic acid-induced severe acute pancreatitis with pseudocyst formation in a 10-year-old girl with cerebral palsy and generalized tonic-clonic seizure. There was no resolution of the pseudocyst after discontinuation of valproic acid. The patient became symptomatic with a progressive increase in the size of the pseudocyst. She was successfully treated with cystogastrostomy and was well at 12-month follow-up.

  19. Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis

    Science.gov (United States)

    Dubey, Kriti; Anand, Bibin G.; Shekhawat, Dolat Singh; Kar, Karunakar

    2017-02-01

    Eugenol has attracted considerable attention because of its potential for many pharmaceutical applications including anti-inflammatory, anti-tumorigenic and anti-oxidant properties. Here, we have investigated the effect of eugenol on amyloid formation of selected globular proteins. We find that both spontaneous and seed-induced aggregation processes of insulin and serum albumin (BSA) are significantly suppressed in the presence of eugenol. Isothermal titration calorimetric data predict a single binding site for eugenol-insulin complex confirming the affinity of eugenol for native soluble insulin species. We also find that eugenol suppresses amyloid-induced hemolysis. Our findings reveal the inherent ability of eugenol to stabilize native proteins and to delay the conversion of protein species of native conformation into β-sheet assembled mature fibrils, which seems to be crucial for its inhibitory effect.

  20. Diamonds and the african lithosphere.

    Science.gov (United States)

    Boyd, F R; Gurney, J J

    1986-04-25

    Data and inferences drawn from studies of diamond inclusions, xenocrysts, and xenoliths in the kimberlites of southern Africa are combined to characterize the structure of that portion of the Kaapvaal craton that lies within the mantle. The craton has a root composed in large part of peridotites that are strongly depleted in basaltic components. The asthenosphere boundary shelves from depths of 170 to 190 kilometers beneath the craton to approximately 140 kilometers beneath the mobile belts bordering the craton on the south and west. The root formed earlier than 3 billion years ago, and at that time ambient temperatures in it were 900 degrees to 1200 degrees C; these temperatures are near those estimated from data for xenoliths erupted in the Late Cretaceous or from present-day heat-flow measurements. Many of the diamonds in southern Africa are believed to have crystallized in this root in Archean time and were xenocrysts in the kimberlites that brought them to the surface.

  1. Diamond turning machine controller implementation

    Energy Technology Data Exchange (ETDEWEB)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  2. Hippocampal signaling pathways are involved in stress-induced impairment of memory formation in rats.

    Science.gov (United States)

    Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba

    2015-11-02

    Stress is a potent modulator of hippocampal-dependent memory formation. The aim of the present study was to assess the role of hippocampal signaling pathways in stress-induced memory impairment in male Wistar rats. The animals were exposed to acute elevated platform (EP) stress and memory formation was measured by a step-through type passive avoidance task. The results indicated that post-training or pre-test exposure to EP stress impaired memory consolidation or retrieval respectively. Using western blot analysis, it was found that memory retrieval was associated with the increase in the levels of phosphorylated cAMP-responsive element binding protein (P-CREB), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and its downstream targets in the hippocampus. In contrast, the stress exposure decreased the hippocampal levels of these proteins. In addition, stress-induced impairment of memory consolidation or retrieval was associated with the decrease in the P-CREB/CREB ratio and the PGC-1α level in the hippocampus. On the other hand, the hippocampal level of nuclear factor E2-related factor 2 (Nrf2) and gamma-glutamylcysteine synthetase (γ-GCS) which are the master regulators of defense system were decreased by the stress exposure. The increased hippocampal levels of Nrf2 and it׳s downstream was observed during memory retrieval, while stress-induced impairment of memory consolidation or retrieval inhibited this hippocampal signaling pathway. Overall, these findings suggest that down-regulation of CREB/PGC-1α signaling cascade and Nrf2 antioxidant pathways in the hippocampus may be associated with memory impairment induced by stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Conductive diamond electrodes for water purification

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2007-12-01

    Full Text Available Nowadays, synthetic diamond has been studied for its application in wastewater treatment, electroanalysis, organic synthesis and sensor areas; however, its use in the water disinfection/purification is its most relevant application. The new electrochemistry applications of diamond electrodes open new perspectives for an easy, effective, and chemical free water treatment. This article highlights and summarizes the results of a selection of papers dealing with electrochemical disinfection using synthetic diamond films.

  4. Nanotwinned diamond with unprecedented hardness and stability.

    Science.gov (United States)

    Huang, Quan; Yu, Dongli; Xu, Bo; Hu, Wentao; Ma, Yanming; Wang, Yanbin; Zhao, Zhisheng; Wen, Bin; He, Julong; Liu, Zhongyuan; Tian, Yongjun

    2014-06-12

    Although diamond is the hardest material for cutting tools, poor thermal stability has limited its applications, especially at high temperatures. Simultaneous improvement of the hardness and thermal stability of diamond has long been desirable. According to the Hall-Petch effect, the hardness of diamond can be enhanced by nanostructuring (by means of nanograined and nanotwinned microstructures), as shown in previous studies. However, for well-sintered nanograined diamonds, the grain sizes are technically limited to 10-30 nm (ref. 3), with degraded thermal stability compared with that of natural diamond. Recent success in synthesizing nanotwinned cubic boron nitride (nt-cBN) with a twin thickness down to ∼3.8 nm makes it feasible to simultaneously achieve smaller nanosize, ultrahardness and superior thermal stability. At present, nanotwinned diamond (nt-diamond) has not been fabricated successfully through direct conversions of various carbon precursors (such as graphite, amorphous carbon, glassy carbon and C60). Here we report the direct synthesis of nt-diamond with an average twin thickness of ∼5 nm, using a precursor of onion carbon nanoparticles at high pressure and high temperature, and the observation of a new monoclinic crystalline form of diamond coexisting with nt-diamond. The pure synthetic bulk nt-diamond material shows unprecedented hardness and thermal stability, with Vickers hardness up to ∼200 GPa and an in-air oxidization temperature more than 200 °C higher than that of natural diamond. The creation of nanotwinned microstructures offers a general pathway for manufacturing new advanced carbon-based materials with exceptional thermal stability and mechanical properties.

  5. Diamond Light Source: status and perspectives

    OpenAIRE

    Materlik, Gerhard; Rayment, Trevor; Stuart, David I.

    2015-01-01

    Diamond Light Source, a third-generation synchrotron radiation (SR) facility in the UK, celebrated its 10th anniversary in 2012. A private limited company was set up in April 2002 to plan, construct and operate the new user-oriented SR facility, called in brief Diamond. It succeeded the Synchrotron Radiation Source in Daresbury, a second-generation synchrotron that opened in 1980 as the world's first dedicated X-ray-providing facility, closing finally in 2008, by which time Diamond's accelera...

  6. Diamond-silicon carbide composite and method

    Science.gov (United States)

    Zhao, Yusheng

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  7. Entanglement, holography and causal diamonds

    Science.gov (United States)

    de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.

    2016-08-01

    We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  8. Diamond Detectors as Beam Monitors

    CERN Document Server

    Dehning, B; Dobos, D; Pernegger, H; Griesmayer, E

    2010-01-01

    CVD diamond particle detectors are already in use in the CERN experiments ATLAS, CMS, LHCb and ALICE and at various particle accelerator laboratories in USA and Japan. This is a proven technology with high radiation tolerance and very fast signal read-out. It can be used for measuring single-particles as well as for high-intensity particle cascades, for timing measurements on the nanosecond scale and for beam protection systems. The radiation tolerance is specified with 10 MGy.

  9. CZ: Multiple Inheritance Without Diamonds

    Science.gov (United States)

    2008-12-01

    be solved by allowing renaming (e.g., Eiffel [24]) or by linearizing the class hierarchy [33, 32]. However, there is still no satisfactory solution to...desirable semantics; it is supported in languages such as Scala, Eiffel , and C++ (the last through virtual inheritance) [28, 24, 18]. Next, diamond...Languages that attempt to solve the object initialization problem include Eiffel [24], C++ [18], Scala [28] and Smalltalk with stateful traits [8

  10. Nonclassical radiation from diamond nanocrystals

    CERN Document Server

    Beveratos, A; Gacoin, T; Poizat, J P; Grangier, P; Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Poizat, Jean-Philippe; Grangier, Philippe

    2001-01-01

    The quantum properties of the fluorescence light emitted by diamond nanocrystals containing a single nitrogen-vacancy (NV) colored center is investigated. We have observed photon antibunching with very low background light. This system is therefore a very good candidate for the production of single photon on demand. In addition, we have measured larger NV center lifetime in nanocrystals than in the bulk, in good agreement with a simple quantum electrodynamical model.

  11. Thermal Conductivity of Diamond Composites

    Directory of Open Access Journals (Sweden)

    Fedor M. Shakhov

    2009-12-01

    Full Text Available A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K and 400 W/(m·K, respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon; one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K. Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  12. Diamond turning of thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  13. Elastic-plastic finite element simulation for diamond turning process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Using general commercial software, a coupled thermo-mechanieal plane strain larger deformation orthogonal cutting model is developed on the basis of updated Lagrangian formulation in this paper. The workpiece is oxygen free high conductivity copper ( OFHC copper), its flow stress is considered as a function of strain, strain rate and temperature to reflect its realistic changes in physical properties. In order to take into account the cutting edge radius effects of the single crystal diamond tool, rezoning technology is introduced into this simulation model. Diamond turning process is simulated from the initial stage to the steady stage of chip formation, and the distribution of temperature, equivalent stress, residual stress, strain rate and shear angle are obtained. The simulated principal force is compared with published experiment data and they are found to be in good agreement with each other, but poor for thrust force due to no consideration of elastic recovery for machined surface in the elastic-plastic material model.

  14. Field electron emission of diamond films on nanocrystalline diamond coating by CVD method

    Institute of Scientific and Technical Information of China (English)

    CAI Rangqi; CHEN Guanghua; SONG Xuemei; XING Guangjian; FENG Zhenjian; HE Deyan

    2003-01-01

    The preparation process, structure feature and field electron emission characteristic of diamond films on nanocyrstalline diamond coating by the CVD method were studied. The field electron emission measurements on the samples showed that the diamond films have lower turn-on voltage and higher field emission current density. A further detailed theory explanation to the results was given.

  15. Mechanisms of suppressing secondary nucleation for low-power and low-temperature microwave plasma self-bias-enhanced growth of diamond films in argon diluted methane

    Directory of Open Access Journals (Sweden)

    Ji-heng Jiang

    2011-12-01

    Full Text Available We report on mechanisms for suppressing diamond secondary nucleation in microwave plasma self-bias-enhanced growth (SBEG of diamond films in methane diluted by argon. High-density plasma at a small distance from the substrate induces a floating potential which promotes high-flux, low-energy ion bombardment on diamond growing surfaces along with an equal flux of electrons. Increased atomic hydrogen generated by electron impact dissociation of methane and low-energy ion bombardment help remove hydrocarbon coatings on diamond grains in favor of continuous grain growth and, therefore, the suppression of secondary diamond nucleation. Energetic meta-stable excited argon, abundant C2 dimers, and enhanced effective surface temperature due to low-energy ion bombardment further promote the diamond grain growth resulting in the deposition of a diamond film with columnar diamond grains of much larger grain sizes and a much lower density of grain boundaries than ultrananocrystalline diamond (UNCD films grown under similar conditions without optimized plasma-substrate interactions. SEM, XRD, PL, and Raman scattering help confirm the deposition of diamond films with columnar grains.

  16. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  17. Electromagnetic Radiation Hardness of Diamond Detectors

    CERN Document Server

    Behnke, T; Ghodbane, N; Imhof, A; Martínez, C; Zeuner, W

    2002-01-01

    The behavior of artificially grown CVD diamond films under intense electromagnetic radiation has been studied. The properties of irradiated diamond samples have been investigated using the method of thermally stimulated current and by studying their charge collection properties. Diamonds have been found to remain unaffected after doses of 6.8 MGy of 10 keV photons and 10 MGy of MeV-range photons. This observation makes diamond an attractive detector material for a calorimeter in the very forward region of the proposed TESLA detector.

  18. Generation of microdischarges in diamond substrates

    Science.gov (United States)

    Mitea, S.; Zeleznik, M.; Bowden, M. D.; May, P. W.; Fox, N. A.; Hart, J. N.; Fowler, C.; Stevens, R.; StJ Braithwaite, N.

    2012-04-01

    We report the generation of microdischarges in devices composed of microcrystalline diamond. Discharges were generated in device structures with microhollow cathode discharge geometries. One structure consisted of an insulating diamond wafer coated with boron-doped diamond layers on both sides. A second structure consisted of an insulating diamond wafer coated with metal layers on both sides. In each case, a single sub-millimetre hole was machined through the conductor-insulator-conductor structure. The discharges were generated in a helium atmosphere. Breakdown voltages were around 500 V and discharge currents in the range 0.1-2.5 mA were maintained by a sustaining dc voltage of 300 V.

  19. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    Science.gov (United States)

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Deciphering How Pore Formation Causes Strain-Induced Membrane Lysis of Lipid Vesicles.

    Science.gov (United States)

    Jackman, Joshua A; Goh, Haw Zan; Zhdanov, Vladimir P; Knoll, Wolfgang; Cho, Nam-Joon

    2016-02-01

    Pore formation by membrane-active antimicrobial peptides is a classic strategy of pathogen inactivation through disruption of membrane biochemical gradients. It remains unknown why some membrane-active peptides also inhibit enveloped viruses, which do not depend on biochemical gradients. Here, we employ a label-free biosensing approach based on simultaneous quartz crystal microbalance-dissipation and ellipsometry measurements in order to investigate how a pore-forming, virucidal peptide destabilizes lipid vesicles in a surface-based experimental configuration. A key advantage of the approach is that it enables direct kinetic measurement of the surface-bound peptide-to-lipid (P:L) ratio. Comprehensive experiments involving different bulk peptide concentrations and biologically relevant membrane compositions support a unified model that membrane lysis occurs at or above a critical P:L ratio, which is at least several-fold greater than the value corresponding to the onset of pore formation. That is consistent with peptide-induced pores causing additional membrane strain that leads to lysis of highly curved membranes. Collectively, the work presents a new model that describes how peptide-induced pores may destabilize lipid membranes through a membrane strain-related lytic process, and this knowledge has important implications for the design and application of membrane-active peptides.

  1. [Effect of dexamethasone on indomethacin-induced gastric erosion formation upon duration of the hormonal action].

    Science.gov (United States)

    Podvigina, T T; Morozova, O Iu; Bagaeva, T R; Filaretova, L P

    2009-07-01

    The aim of the study was to verify a dependence of dexamethasone effect on the gastric erosion formation upon duration of the hormonal action. Gastric erosions were induced by indometha cin (35 mg/kg, sc) in male rats after 24-hour fasting. The rats were given a single injection of dexamethasone at a dose of 1 mg/kg and they underwent the ulcerogenic stimulus (indomethacin) at va rious time points after the hormonal injection (1, 6, 12, 18, 24 hours as well as 3, 5, 7 days). The control rats were given dexamethasone vehicle. In 4 hours after indomethacin injection gastric erosions, corticosterone and blood glucose levels, as well as body and thymus weights were examined. The results obtained demonstrate a dependence ofdexamethasone effect on the gastric erosion formation upon duration of its action: dexamethasone attenuated or aggravated indomethacin-induced gastric erosions depending on the time of its injection. Gastroprotective action of dexamethasone was observed in the case of its injection 1, 6, and 12 hours before indomethacin. The further increase in the time interval caused transformation of gastroprotective action of dexamethasone against ulcerogenic effect. The data obtained suggest that a disturbance of carbohydrate regulation accompanied with the signs of catabolic effects of the glucocorticoid may be responsible for the ulcerogenic action of dexamethasone.

  2. Diamonds from the iridium-rich K-T boundary layer at Arroyo el Mimbral, Tamaulipas, Mexico

    Science.gov (United States)

    Hough, R. M.; Gilmour, I.; Pillinger, C. T.; Langenhorst, F.; Montanari, A.

    1997-11-01

    Diamonds, up to 30 μm in size, were found in the iridium-rich layer from the K-T boundary site at Arroyo El Mimbral and the spherule bed from Arroyo El Peñon, northeastern Mexico. Stepped heating experiments indicate two or more isotopically distinct diamond components with carbon isotopic compositions characteristic of a mixture of carbon sources. The diamonds' crystal form is cubic—not the hexagonal polymorph of diamond, lonsdaleite, which has been used previously to infer formation due to shock transformation of graphite. The size, crystallography, and mineralogic associations of K-T diamonds are similar to those of impact-produced diamonds from the Ries crater in Germany where both shock transformation of graphite and a mode of formation by condensation from a vapor plume have been inferred. The discovery of impact-produced diamonds in association with high Ir contents for these sediments supports their impact origin, K-T age, and the inference that their source was from the buried impact crater of Chicxulub on the Yucatan peninsula, Mexico.

  3. All diamond self-aligned thin film transistor

    Science.gov (United States)

    Gerbi, Jennifer [Champaign, IL

    2008-07-01

    A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.

  4. Complexes of silicon, vacancy, and hydrogen in diamond: A density functional study

    Science.gov (United States)

    Thiering, Gergő; Gali, Adam

    2015-10-01

    Paramagnetic luminescent point defects in diamond are increasingly important candidates for quantum information processing applications. Recently, the coherent manipulation of single silicon-vacancy defect spins has been demonstrated in chemical vapor deposited diamond samples where silicon may be introduced as a contamination in the growth process. Hydrogen impurity may simultaneously enter diamond too and form complexes with silicon-vacancy defects. However, relatively little is known about these complexes in diamond. Here we report plane-wave supercell density functional theory results on various complexes of silicon vacancy and hydrogen in diamond. We found a family of complexes of silicon, vacancies, and hydrogen atoms that are thermally stable in diamond with relatively low formation energies that might form yet unobserved or unidentified silicon-related defects. These complexes often show infrared optical transitions and are paramagnetic. We tentatively assign one of these complexes to a recently reported but yet unidentified infrared absorber center. We show that this center has a metastable triplet state and might exhibit a spin-selective decay to the ground state, thus it is an interesting candidate for quantum information processing applications. We also discuss here methodology aspects of calculating hyperfine parameters and intradefect level excitations in systems with notoriously complex electron states within hybrid density functional approach. We also demonstrate that a simplified approach using ab initio data can be very powerful to predict the relative intensities of the phonon replica associated with quasilocal vibration modes in the photoexcitation spectrum.

  5. Characterization of Growth Hillocks on the Surface of High-Pressure Synthetic Diamond

    Institute of Scientific and Technical Information of China (English)

    尹龙卫; 李木森; 袁泉; 许斌; 郝兆印

    2002-01-01

    Diamond crystals, with dimensions of about 0.5-0.6mm, were synthesized in the presence of Fe-Ni and Fe-Ni Si catalyst solvents under high-pressure-high-temperature (HPHT) conditions. The as-known dendritic pattern was clearly seen on the (111) or (100) planes of diamond single crystals grown using Fe-Ni as a catalyst solvent.However, the conventional dendritic pattern was not observed in diamonds grown in the presence of Fe-Ni-Si alloy catalyst. Trigonal-type, pyramid-type, polygonal-type and rectangular-type growth hillocks were clearly observed on the (111) and (100) surfaces of diamonds grown from the Fe-Ni-Si-C system, and the density of the hillocks is very high at some positions. Clear successive growth layers can also be found on the (111) planes of the high-pressure diamond single crystals grown in the presence of Fe-Ni-Si alloy catalyst. The growth hillocks distributed on the (111) and (100) planes of the diamonds generally occur on or near growth steps, and some of the hillocks terminate at certain solid inclusions and voids. Growth hillocks on the (111) and (100) surfaces directly indicate the spiral growth mechanism under HPHT. A possible formation process for growth hillocks is proposed.

  6. Effect of radiation-induced emission of Schottky defects on the formation of colloids in alkali halides

    NARCIS (Netherlands)

    Dubinko, [No Value; Vainshtein, DI; Den Hartog, HW

    2003-01-01

    Formation of vacancy clusters in irradiated crystals is considered taking into account radiation-induced Schottky defect emission (RSDE) from extended defects. RSDE acts in the opposite direction compared with Frenkel pair production, and it results in the radiation-induced recovery processes. In th

  7. Surface Nanostructure Formations in an AISI 316L Stainless Steel Induced by Pulsed Electron Beam Treatment

    Directory of Open Access Journals (Sweden)

    Yang Cai

    2015-01-01

    Full Text Available High current pulsed electron beam (HCPEB is an efficient technique for surface modifications of metallic materials. In the present work, the formations of surface nanostructures in an AISI 316L stainless steel induced by direct HCPEB treatment and HCPEB alloying have been investigated. After HCPEB Ti alloying, the sample surface contained a mixture of the ferrite and austenite phases with an average grain size of about 90 nm, because the addition of Ti favors the formation of ferrite. In contrast, electron backscattered diffraction (EBSD analyses revealed no structural refinement on the direct HCPEB treated sample. However, transmission electron microscope (TEM observations showed that fine cells having an average size of 150 nm without misorientations, as well as nanosized carbide particles, were formed in the surface layer after the direct HCPEB treatment. The formation of nanostructures in the 316L stainless steel is therefore attributed to the rapid solidification and the generation of different phases other than the steel substrate in the melted layer.

  8. Ion beam induced single phase nanocrystalline TiO{sub 2} formation

    Energy Technology Data Exchange (ETDEWEB)

    Rukade, Deepti A. [Department of Physics, University of Mumbai, Mumbai 400098 (India); Tribedi, L.C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Bhattacharyya, Varsha, E-mail: varsha.b1.physics@gmail.com [Department of Physics, University of Mumbai, Mumbai 400098 (India)

    2014-06-15

    Single phase TiO{sub 2} nanostructures are fabricated by oxygen ion implantation (60 keV) at fluence ranging from 1×10{sup 16} ions/cm{sup 2} to 1×10{sup 17} ions/cm{sup 2} in titanium thin films deposited on fused silica substrate and subsequent thermal annealing in argon atmosphere. GAXRD and Raman spectroscopy study reveals formation of single rutile phases of TiO{sub 2}. Particle size is found to vary from 29 nm to 35 nm, establishing nanostructure formation. Nanostructure formation is also confirmed by the quantum confinement effect manifested by the blueshift of the UV–vis absorption spectra. Photoluminescence spectra show peaks corresponding to TiO{sub 2} rutile phase and reveal the presence of oxygen defects due to implantation. The controlled synthesis of single phase nanostructure is attributed to ion induced defects and post-implantation annealing. It is observed that the size of the nanostructures formed is strongly dependent on the ion fluence.

  9. Ionic liquid-induced formation of the α-helical structure of β-lactoglobulin.

    Science.gov (United States)

    Takekiyo, Takahiro; Koyama, Yoshihiro; Yamazaki, Kumiko; Abe, Hiroshi; Yoshimura, Yukihiro

    2013-09-01

    Structural modification of bovine milk β-lactoglobulin (β-LG) in aqueous 1-butyl-3-methylimidazolium nitrate ([bmim][NO3]) and ethylammonium nitrate ([EAN][NO3]) solutions has been investigated by Fourier transform infrared and circular dichroism spectroscopy. Remarkably, high ionic liquid (IL) concentrations (>15 mol %IL) caused formation of a non-native α-helical structure of β-LG and disruption of its tertiary structure. Furthermore, while [bmim][NO3] promoted protein aggregation, [EAN][NO3] inhibited it probably owing to differences in the unique solution structure (nanoheterogeneity) of the ILs by the different cationic species. The IL-induced α-helical formation of β-LG shows a behavior similar to the alcohol denaturation, but a disordered structure-rich state was observed in the β-α transition process by adding IL, in contrast to the case of an aqueous alcohol solution of protein. We propose that the molten salt-like property of aqueous IL solutions strongly support α-helical formation of proteins.

  10. Heat-induced structure formation in metal films generated by single ultrashort laser pulses

    Science.gov (United States)

    Koch, Jürgen; Unger, Claudia; Chichkov, Boris N.

    2012-03-01

    Ultrashort pulsed lasers are increasingly used in micromachining applications. Their short pulse lengths lead to well defined thresholds for the onset of material ablation and to the formation of only very small heat affected zones, which can be practically neglected in the majority of cases. Structure sizes down to the sub-micron range are possible in almost all materials - including heat sensitive materials. Ultrashort pulse laser ablation - even though called "cold ablation" - in fact is a heat driven process. Ablation takes place after a strong and fast temperature increase carrying away most of the heat with the ablated particles. This type of heat convection is not possible when reducing the laser fluence slightly below the ablation threshold. In this case temperature decreases slower giving rise to heat-induced material deformations and melt dynamics. After cooling down protruding structures can remain - ablation-free laser surface structuring is possible. Structure formation is boosted on thin metal films and offers best reproducibility and broadest processing windows for metals with high ductility and weak electron phonon coupling strength. All approaches to understand the process formation are currently based only on images of the final structures. The pump-probe imaging investigations presented here lead to a better process understanding.

  11. Core–shell formation in self-induced InAlN nanorods

    Science.gov (United States)

    Palisaitis, J.; Hsiao, C.-L.; Hultman, L.; Birch, J.; Persson, P. O. Å.

    2017-03-01

    We have examined the early stages of self-induced InAlN core–shell nanorod (NR) formation processes on amorphous carbon substrates in plan-view geometry by means of transmission electron microscopy methods. The results show that the grown structure phase separates during the initial moments of deposition into a majority of Al-rich InAlN and a minority of In-enriched InAlN islands. The islands possess polygonal shapes and are mainly oriented along a crystallographic c-axis. The growth proceeds with densification and coalescence of the In-enriched islands, resulting in a base for the In-enriched NR cores with shape transformation to hexagonal. The Al-rich shell formation around such early cores is observed at this stage. The matured core–shell structure grows axially and radially, eventually reaching a steady growth state which is dominated by the axial NR growth. We discuss the NR formation mechanism by considering the adatom surface kinetics, island surface energy, phase separation of InAlN alloys, and incoming flux directions during dual magnetron sputter epitaxy.

  12. THE CONCENTRATION OF DIAMONDS INFLUENCES THE WEAR OF BEADS IN SAWING DIMENSION STONE WITH DIAMOND WIRE SAWING PLANT

    Directory of Open Access Journals (Sweden)

    Siniša Dunda

    1993-12-01

    Full Text Available The influence of diamond concentration to the wear or diamond layer and to the life time of the diamond wire has experimentally tested. The changes of the diamond concentration were achieved by changing the beads' pace per m' of diamond wire. Upon the obtained results of the experiment, the optimal concentration of diamonds has been established, also considering the least cost, per square meter of sawing (the paper is published in Croatian.

  13. Gravity-induced modification of auxin transport and distribution for peg formation in cucumber seedlings

    Science.gov (United States)

    Kamada, M.; Fujii, N.; Higashitani, A.; Takahashi, H.

    Cucumber seedlings grown in microgravity developed a peg on each side of the transition zone between hypocotyl and root, whereas seedlings grown in a horizontal position on the ground developed a peg on the concave (lower) side of the gravitropically bending transition zone. Using an auxin-inducible gene, CS-IAA1, we showed that upon gravistimulation the auxin concentration on the upper side of the horizontally placed transition zone is reduced to a level below the threshold necessary for peg formation. In this study, to elucidate the role of auxin in the lateral placement of peg formation, we measured the contents of endogenous auxin in the transition zone. The content of free IAA was lower and conjugated IAA was more abundant on the upper side of the transition zone of the gravistimulated seedlings compared with the lower side. These results support the idea that a decrease in auxin level due to a modification of auxin transport or metabolism causes the suppression of peg formation on the upper side of the transition zone in a horizontal position. Cucumber seedlings treated with auxin transport inhibitors exhibited agravitropic growth and developed a peg on each side of the transition zone. Application of auxin transport inhibitors caused an increase in CS-IAA1 mRNA (an auxin-inducible gene) at the transition zone. To analyze auxin transport system for peg formation, we isolated auxin influx carrier, CS-AUX1, and auxin efflux carrier, CS-PIN1, from cucumber plants. The accumulation of CS-AUX1 and CS-PIN1 mRNAs was observed at vascular tissue and epidermis in the transition zone. The level of CS-AUX1 mRNA was lower on the upper side of the transition zone in a horizontal position. The results suggest that the transition zone is an additional source of auxin, and that both influx and efflux of auxin in the cells of the transition zone control cytoplasmic concentration of auxin for peg formation.

  14. Retinol induces morphological alterations and proliferative focus formation through free radicalmediated activation of multiple signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Daniel Pens GELAIN; Matheus Augusto de Bittencourt PASQUALI; Fernanda Freitas CAREGNATO; Mauro Antonio Alves CASTRO; José Claudio Fonseca MOREIRA

    2012-01-01

    Aim:Toxicity of retinol (vitamin A)has been previously associated with apoptosis and/or cell malignant transformation.Thus,we investigated the pathways involved in the induction of proliferation,deformation and proliferative focus formation by retinol in cultured Sertoli cells of rats.Methods:Sertoli cells were isolated from immature rats and cultured.The cells were subjected to a 24-h treatment with different concentrations of retinol.Parameters of oxidative stress and cytotoxicity were analyzed.The effects of the p38 inhibitor SB203580(10 μmol/L),the JNK inhibitor SP600125 (10 μmol/L),the Akt inhibitor LY294002 (10 μmol/L),the ERK inhibitor U0126 (10 μmol/L)the pan-PKC inhibitor G(O)6983 (10 μmol/L)and the PKA inhibitor H89 (1 μmol/L)on morphological and proliferative/transformationassociated modifications were studied.Results:Retinol (7 and 14 μmol/L)significantly increases the reactive species production in Sertoli cells,inhibition of p38,JNK,ERK1/2,Akt,and PKA suppressed retinol-induced[3H]dT incorporation into the cells,while PKC inhibition had no effect.ERK1/2 and p38 inhibition also blocked retinol-induced proliferative focus formation in the cells,while Akt and JNK inhibition partially decreased focus formation.ERK1/2 and p38 inhibition hindered transformation-associated deformation in retinol-treated cells,while other treatments had no effect.Conclusion:Our results suggest that activation of multiple kinases is responsible for morphological and proliferative changes associated to malignancy development in Sertoli cells by retinol at the concentrations higher than physiological level.

  15. ROLE OF ENDOGENOUS CARBON MONOXIDE IN NEOINTIMAL FORMATION INDUCED BY BALLOON-INJURY IN RAT AORTA

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective.The present study investigated the role of endogenous carbon monoxide(CO)in the pathogenesis of neointimal formation induced by balloon injury in rat.Method.Endothelial denudation of the left common carotid artery of rat was carried out by three passages of a Fogarty 2F balloon catheter.DNA,collagen and elastin contents of each intima-media were estimated;and heme oxygenase(HO)activity and CO production in vascular smooth muscle cell(VSMC)were measured after administration of HO inhibitor.Result.Our data showed that neointima occurred in the rat on day 7 and day 21 after balloon injury,and at the same time HO activity and CO production in VSMC were markedly increased.Administration of HO inhibitor,zinc deuteroporphyrin 2,4-bisglycol(ZnDPBG),could effectively inhibit HO activity and CO production,significantly enhance neointimal formation(aortic intima/media ratio were 21.4±1.8% vs 17.6±2.0%,P<0.05 on day 7;and 30.5±2.4% vs 23.0±2.2%,P<0.01 on day 21,respectively,compared with balloon alone group).Conclusion.We concluded that 1)inhibition of CO production may enhance neointimal formation induced by endothelial denudation,implying endogenous CO play an protective role in response to vascular injury,and 2)induction of HO activity may be applied clinically for preventing restenosis after angioplasty.

  16. Fano factor evaluation of diamond detectors for alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Tsubota, Masakatsu; Shimmyo, Hiroaki [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Sato, Yuki [Naraha Remote Technology Development Center, Japan Atomic Energy Agency, Naraha-machi, Futaba-gun, Fukushima, 979-0513 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Mokuno, Yoshiaki [Advanced Power Electronics Research Center, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577 (Japan); Watanabe, Hideyuki [Research Institute for Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, 305-8565 (Japan)

    2016-10-15

    This report is the first describing experimental evaluation of Fano factor for diamond detectors. High-quality self-standing chemical vapor deposited diamond samples were produced using lift-off method. Alpha-particle induced charge measurements were taken for three samples. A 13.1 ±0.07 eV of the average electron-hole pair creation energy and excellent energy resolution of approximately 0.3% were found for 5.486 MeV alpha particles from an {sup 241}Am radioactive source. The best Fano factor for 5.486 MeV alpha particles, calculated from experimentally obtained epsilon values and the detector intrinsic energy resolution, was 0.382 ± 0.007. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Comparative Energy Dependence of Proton and Pion Degradation in Diamond

    CERN Document Server

    Lazanu, Ionel

    1999-01-01

    A comparative theoretical study of the damages produced by protons and pions, in the energy range 50 MeV - 50 GeV, in diamond, is presented. The concentration of primary defects (CPD) induced by hadron irradiation is used to describe material degradation. The CPD has very different behaviours for protons and pions: the proton degradation is important at low energies and is higher than the pion one in the whole energy range investigated, with the exception of the Delta33 resonance region, where a large maximum of the degradation exists for pions. In comparison with silicon, the most investigated and the most studied material for detectors, diamond theoretically proves to be one order of magnitude more resistant, both to proton and pion irradiation.

  18. Adhesion at WC/diamond interfaces - A theoretical study

    Science.gov (United States)

    Padmanabhan, Haricharan; Rao, M. S. Ramachandra; Nanda, B. R. K.

    2015-06-01

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m-2 and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. From electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface.

  19. Adhesion at WC/diamond interfaces - A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Haricharan [Department of Engineering Design, Indian Institute of Technology Madras, Chennai – 600036 (India); Rao, M. S. Ramachandra [Department of Physics and Nano-Functional Materials Technology Centre, Indian Institute of Technology Madras, Chennai – 600036 (India); Nanda, B. R. K., E-mail: nandab@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai – 600036 (India)

    2015-06-24

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m{sup −2} and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. From electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface.

  20. Ion-induced Processing of Cosmic Silicates: A Possible Formation Pathway to GEMS

    Science.gov (United States)

    Jäger, C.; Sabri, T.; Wendler, E.; Henning, Th.

    2016-11-01

    Ion-induced processing of dust grains in the interstellar medium and in protoplanetary and planetary disks plays an important role in the entire dust cycle. We have studied the ion-induced processing of amorphous MgFeSiO4 and Mg2SiO4 grains by 10 and 20 keV protons and 90 keV Ar+ ions. The Ar+ ions were used to compare the significance of the light protons with that of heavier, but chemically inert projectiles. The bombardment was performed in a two-beam irradiation chamber for in situ ion-implantation at temperatures of 15 and 300 K and Rutherford Backscattering Spectroscopy to monitor the alteration of the silicate composition under ion irradiation. A depletion of oxygen from the silicate structure by selective sputtering of oxygen from the surface of the grains was observed in both samples. The silicate particles kept their amorphous structure, but the loss of oxygen caused the reduction of ferrous (Fe2+) ions and the formation of iron inclusions in the MgFeSiO4 grains. A few Si inclusions were produced in the iron-free magnesium silicate sample pointing to a much less efficient reduction of Si4+ and formation of metallic Si inclusions. Consequently, ion-induced processing of magnesium-iron silicates can produce grains that are very similar to the glassy grains with embedded metals and sulfides frequently observed in interplanetary dust particles and meteorites. The metallic iron inclusions are strong absorbers in the NIR range and therefore a ubiquitous requirement to increase the temperature of silicate dust grains in IR-dominated astrophysical environments such as circumstellar shells or protoplanetary disks.