WorldWideScience

Sample records for induce systemic plant

  1. Salmonella enterica Induces And Subverts The Plant Immune System

    Directory of Open Access Journals (Sweden)

    Ana Victoria Garcia

    2014-04-01

    Full Text Available Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Whereas it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs, such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI. Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, the data gathered suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity.

  2. Salmonella enterica induces and subverts the plant immune system

    KAUST Repository

    García, Ana V.

    2014-04-04

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. 2014 Garca and Hirt.

  3. Bacterial Gibberellins Induce Systemic Resistance of Plants

    Directory of Open Access Journals (Sweden)

    I. N. FEKLISTOVA

    2014-06-01

    Full Text Available It is generally agreed today that some rhizosphere bacteria can ensure induced systemic resistance to pathogens. In this paper we tested the ability of gibberellins produced by rhizosphere non-pathogenic bacteria Pseudomonas aurantiaca to induce systemic resistance to alternariosis agent – Alternaria brassicicola – in oilseed rape plants.Oilseed rape (Brássica nápus is one of the most promising oil-bearing croppers. It allows improving the supply of population with vegetable oil, animal and poultry industries with high quality vegetable protein. It is used for biofuel production as well.Gibberellin preparation was isolated from liquid culture of strain Pseudomonas aurantiaca grown in 250 mL of M9 medium (48 h, 28 °C under darkroom conditions. Gibberellins were extracted according procedure described by Tien et al. (1979. Gibberellins concentration in the medium was determined by fluorometric method.Elicitor activity of bacterial metabolites – gibberellins – was analyzed in model system of artificial inoculation of oilseed rape germs with phytopathogenic fungi Alternaria brassicicola. The elicitor action efficiency was evaluated on the 15th day of oilseed rape cultivation based on the percentage of leaf surface covered by necrotic lesions.Gibberellins were shown to induce systemic resistance resulted in decreasing of oil seed plants   vulnerability by 52.7%.It is known that under the unfavorable conditions plants synthesis the reactive oxygen intermediates   which activate destructive processes. One of the first organism reactions to stress action is the change of the lipid peroxidation level. It was shown that treatment of the soil with gibberellins resulted in decreasing of the lipid peroxidation level twofold.Gibberellins were shown to have a similar effect on permeability of cell membranes for free nucleotides. The permeability of cell membranes in leaves decreased 2.8-fold at room temperature. We suggest that gibberellins

  4. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect.

    Science.gov (United States)

    Elsen, A; Gervacio, D; Swennen, R; De Waele, D

    2008-07-01

    Although mycorrhizal colonization provides a bioprotectional effect against a broad range of soil-borne pathogens, including plant parasitic nematodes, the commercial use of arbuscular mycorrhizal fungi (AMF) as biocontrol agents is still in its infancy. One of the main reasons is the poor understanding of the modes of action. Most AMF mode of action studies focused on AMF-bacterial/fungal pathogens. Only few studies so far examined AMF-plant parasitic nematode interactions. Therefore, the aim of the study was to determine whether the AMF Glomus intraradices was able to incite systemic resistance in banana plants towards Radopholus similis and Pratylenchus coffeae, two plant parasitic nematodes using a split-root compartmental set-up. The AMF reduced both nematode species by more than 50%, even when the AMF and the plant parasitic nematodes were spatially separated. The results obtained demonstrate for the first time that AMF have the ability to induce systemic resistance against plant parasitic nematodes in a root system.

  5. Gamma ray irradiation to roots of tea-plants and induced mutant system

    International Nuclear Information System (INIS)

    Takeda, Yoshiyuki; Nekaku, Koji; Wada, Mitsumasa

    1990-01-01

    In order to utilize the useful mutation which is induced by irradiation for the breeding of tea-plants, the gamma-ray irradiation to the roots of tea-plants was carried out. The samples were the roots of tea-plants of four varieties dug up in February, 1984, and were adjusted to about 20 cm, then, put in the cold storage at 5degC for 9 months till the time of irradiation in November, 1984. However, a part of them was taken out in August, and planted in a field for 76 days to germinate, thereafter, used as the samples. The gamma-ray from a Co-60 source was irradiated in the radiation breeding laboratory of Agriculture Bioresources Research Institute at the total dose of 1, 2 and 3 kR and the dose rate of 500 R/h. The irradiated roots were planted as they are or in the state of being cut, and the rate of germination, the number of buds and the induced mutation were examined. Clear difference was not observed in the rate of germination and the number of buds between the irradiated samples and those without irradiation. The long roots were superior to the short roots regarding these items. The types of the induced mutation were mostly thin leaves, and also yellowing, mottling, fascination and so on occurred. The mutant system lacking trichomes on the back of new leaves is considered to be strong against tea anthracnose, and is valuable. (K.I.)

  6. Gamma ray irradiation to roots of tea-plants and induced mutant system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yoshiyuki; Nekaku, Koji; Wada, Mitsumasa (National Research Inst. of Vegetables, Ornamental Plants and Tea, Ano, Mie (Japan))

    1990-11-01

    In order to utilize the useful mutation which is induced by irradiation for the breeding of tea-plants, the gamma-ray irradiation to the roots of tea-plants was carried out. The samples were the roots of tea-plants of four varieties dug up in February, 1984, and were adjusted to about 20 cm, then, put in the cold storage at 5degC for 9 months till the time of irradiation in November, 1984. However, a part of them was taken out in August, and planted in a field for 76 days to germinate, thereafter, used as the samples. The gamma-ray from a Co-60 source was irradiated in the radiation breeding laboratory of Agriculture Bioresources Research Institute at the total dose of 1, 2 and 3 kR and the dose rate of 500 R/h. The irradiated roots were planted as they are or in the state of being cut, and the rate of germination, the number of buds and the induced mutation were examined. Clear difference was not observed in the rate of germination and the number of buds between the irradiated samples and those without irradiation. The long roots were superior to the short roots regarding these items. The types of the induced mutation were mostly thin leaves, and also yellowing, mottling, fascination and so on occurred. The mutant system lacking trichomes on the back of new leaves is considered to be strong against tea anthracnose, and is valuable. (K.I.).

  7. 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants.

    Science.gov (United States)

    Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2011-11-01

    The objective of this study was to establish relationship between boron induced oxidative stress and antioxidant system in Vigna radiata plants and also to investigate whether brassinosteroids will enhance the level of antioxidant system that could confer tolerance to the plants from the boron induced oxidative stress. The mung bean (V. radiata cv. T-44) plants were administered with 0.50, 1.0 and 2.0 mM boron at 6 d stage for 7 d along with nutrient solution. At 13 d stage, the seedlings were sprayed with deionized water (control) or 10(-8) M of 28-homobrassinolide and plants were harvested at 21 d stage to assess growth, leaf gas-exchange traits and biochemical parameters. The boron treatments diminished growth, water relations and photosynthetic attributes along with nitrate reductase and carbonic anhydrase activity in the concentration dependent manner whereas, it enhanced lipid peroxidation, electrolyte leakage, accumulation of H(2)O(2) as well as proline, and various antioxidant enzymes in the leaves of mung bean which were more pronounced at higher concentrations of boron. However, the follow-up application of 28-homobrassinolide to the boron stressed plants improved growth, water relations and photosynthesis and further enhanced the various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and content of proline. The elevated level of antioxidant enzymes as well as proline could have conferred tolerance to the B-stressed plants resulting in improved growth, water relations and photosynthetic attributes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Systemic resistance induced by rhizosphere bacteria

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean,

  9. Herbivore-induced blueberry volatiles and intra-plant signaling.

    Science.gov (United States)

    Rodriguez-Saona, Cesar R

    2011-12-18

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA). Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush, poplar, and lima beans. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used in my study to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and

  10. SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants.

    Science.gov (United States)

    Tripathi, Diwaker; Jiang, Yu-Lin; Kumar, Dhirendra

    2010-08-04

    Tobacco SABP2, a 29kDa protein catalyzes the conversion of methyl salicylic acid (MeSA) into salicylic acid (SA) to induce SAR. Pretreatment of plants with acibenzolar-S-methyl (ASM), a functional analog of salicylic acid induces systemic acquired resistance (SAR). Data presented in this paper suggest that SABP2 catalyzes the conversion of ASM into acibenzolar to induce SAR. Transgenic SABP2-silenced tobacco plants when treated with ASM, fail to express PR-1 proteins and do not induce robust SAR expression. When treated with acibenzolar, full SAR is induced in SABP2-silenced plants. These results show that functional SABP2 is required for ASM-mediated induction of resistance. Copyright (c) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Uterine contraction induced by Tanzanian plants used to induce abortion

    DEFF Research Database (Denmark)

    Nikolajsen, Tine; Nielsen, Frank; Rasch, Vibeke

    2011-01-01

    Women in Tanzania use plants to induce abortion. It is not known whether the plants have an effect.......Women in Tanzania use plants to induce abortion. It is not known whether the plants have an effect....

  12. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    Directory of Open Access Journals (Sweden)

    Chantal ePlanchamp

    2015-01-01

    Full Text Available Pseudomonas putida KT2440 (KT2440 rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots and systemic (leaves early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots three days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal development in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as

  13. Neonicotinoid insecticides induce salicylate-associated plant defense responses

    Science.gov (United States)

    Ford, Kevin A.; Casida, John E.; Chandran, Divya; Gulevich, Alexander G.; Okrent, Rachel A.; Durkin, Kathleen A.; Sarpong, Richmond; Bunnelle, Eric M.; Wildermuth, Mary C.

    2010-01-01

    Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance. PMID:20876120

  14. Harmonic effects of solar geomagnetically induced currents on the electrical distribution system in nuclear power plants

    International Nuclear Information System (INIS)

    Carroll, D.P.; Kasturi, S.; Subudhi, M.; Gunther, W.

    1992-01-01

    Most previous analysis on the effects of geomagnetically induced currents (GIC) on electric utility systems has steady-state phenomena, with the main interest in the generator step-up transformer and the off-site power system. This paper begins to investigate the possible effects that a GIC event might have on the power plant itself, by examining the harmonic distortion that could exist at various voltage levels in the on-site distribution system

  15. Monoterpenes Support Systemic Acquired Resistance within and between Plants.

    Science.gov (United States)

    Riedlmeier, Marlies; Ghirardo, Andrea; Wenig, Marion; Knappe, Claudia; Koch, Kerstin; Georgii, Elisabeth; Dey, Sanjukta; Parker, Jane E; Schnitzler, Jörg-Peter; Vlot, A Corina

    2017-06-01

    This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 ( AZI1 ) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1 , and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. © 2017 American Society of Plant Biologists. All rights reserved.

  16. Iron-regulated metabolites of plant growth-promoting Pseudomonas fluorescens WCS374 : Their role in induced systemic resistance

    NARCIS (Netherlands)

    Djavaheri, M.

    2007-01-01

    The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r effectively suppresses fusarium wilt in radish by induced systemic resistance (ISR). In radish, WCS374r-mediated ISR depends partly on iron-regulated metabolites. Under iron-limiting conditions, P. fluorescens WCS374r produces

  17. Linking aboveground and belowground inducible plant resistance

    NARCIS (Netherlands)

    Bezemer, T.M.

    2009-01-01

    Induced resistance of plants against pests and diseases via plant defense responses is well documented and can occur aboveground, in the leaves, and belowground in the roots. A number of recent studies have shown that soil-borne pests can also induce plant resistance aboveground and vice versa.

  18. Mutations induced in plant breeding

    International Nuclear Information System (INIS)

    Barriga B, P.

    1984-01-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented. (Author)

  19. Mutations induced in plant breeding

    Energy Technology Data Exchange (ETDEWEB)

    Barriga B, P. (Universidad Austral de Chile, Valdivia. Inst. de Produccion y Sanidad Vegetal)

    1984-10-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented.

  20. The Development of a Fault Tree Model for Balance of Plant System

    International Nuclear Information System (INIS)

    Hwang, Mee Jeong; Park, Jin Hee; Lim, Ho Gon

    2011-01-01

    In this paper, we propose a fault tree modeling method for BOP (balance of plant) system to develop a combined risk model and trip model, and the application plans of the developed model. Where, the trip means the reactor trip and turbine and generator trip. We have usually modeled the safety-related systems and their supporting systems to assess the risk analysis of a nuclear power plant. However, the BOP system.s condition change induces the risk change. That is, the BOP system.s condition is relevant to plants. performance and affects to the plant risk. The existing model for BOP systems is a simplified system model or SPV (Single-point vulnerability) evaluation model. However, these models are not effective enough to use for the plant's performance evaluation. Also, lately an integrated decision-making framework is required for risk-informed applications. The methods for monitoring the performance of a nuclear power plant differ from the purpose. For example, MSPI (mitigating system performance index) and MR (maintenance rule) use different methods and indexes to monitor the performance. Therefore, for consistent decision-making, it is necessary to develop a risk assessment model including a systems model inducing reactor trip. The system.s model inducing reactor trip and turbine/generator trip is defined as the 'trip model'

  1. Induced mutations - a tool in plant research

    International Nuclear Information System (INIS)

    1981-01-01

    These proceedings include 34 papers and 18 brief descriptions of poster presentations in the following areas as they are affected by induced mutations: advancement of genetics, plant evolution, plant physiology, plant parasites, plant symbioses, in vitro culture, gene ecology and plant breeding. Only a relatively small number of papers are of direct nuclear interest essentially in view of the mutations being induced by ionizing radiations. The papers of nuclear interest have been entered as separate and individual items of input

  2. Disease-induced assemblage of a plant-beneficial bacterial consortium

    DEFF Research Database (Denmark)

    Berendsen, Roeland L.; Vismans, Gilles; Yu, Ke

    2018-01-01

    Disease suppressive soils typically develop after a disease outbreak due to the subsequent assembly of protective microbiota in the rhizosphere. The role of the plant immune system in the assemblage of a protective rhizosphere microbiome is largely unknown. In this study, we demonstrate...... in a second population of plants growing in the same soil. Together our results indicate that plants can adjust their root microbiome upon pathogen infection and specifically recruit a group of disease resistance-inducing and growth-promoting beneficial microbes, therewith potentially maximizing the chance...

  3. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    Science.gov (United States)

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Uterine contraction induced by Ghanaian plants used to induce abortion

    DEFF Research Database (Denmark)

    Larsen, Birgitte HV; Soelberg, Jens; Kristiansen, Uffe

    2016-01-01

    Ethnomedicinal observations from the time of the Atlantic slave trade show women in Ghana historically used plants as emmenagogues (menstruation stimulants) and to induce abortion. This study investigates the effect of four of these plants on uterine contraction. The historically used plants were...

  5. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Directory of Open Access Journals (Sweden)

    Mohamed Adam

    Full Text Available The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  6. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Science.gov (United States)

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  7. Assessing Cd-induced stress from plant spectral response

    Science.gov (United States)

    Kancheva, Rumiana; Georgiev, Georgi

    2014-10-01

    Remote sensing plays a significant role in local, regional and global monitoring of land covers. Ecological concerns worldwide determine the importance of remote sensing applications for the assessment of soil conditions, vegetation health and identification of stress-induced changes. The extensive industrial growth and intensive agricultural land-use arise the serious ecological problem of environmental pollution associated with the increasing anthropogenic pressure on the environment. Soil contamination is a reason for degradation processes and temporary or permanent decrease of the productive capacity of land. Heavy metals are among the most dangerous pollutants because of their toxicity, persistent nature, easy up-take by plants and long biological half-life. This paper takes as its focus the study of crop species spectral response to Cd pollution. Ground-based experiments were performed, using alfalfa, spring barley and pea grown in Cd contaminated soils and in different hydroponic systems under varying concentrations of the heavy metal. Cd toxicity manifested itself by inhibition of plant growth and synthesis of photosynthetic pigments. Multispectral reflectance, absorbance and transmittance, as well as red and far red fluorescence were measured and examined for their suitability to detect differences in plant condition. Statistical analysis was performed and empirical relationships were established between Cd concentration, plant growth variables and spectral response Various spectral properties proved to be indicators of plant performance and quantitative estimators of the degree of the Cd-induced stress.

  8. Analysis of the stress-inducible transcription factor SsNAC23 in sugarcane plants

    Directory of Open Access Journals (Sweden)

    Renata Fava Ditt

    2011-08-01

    Full Text Available Stresses such as cold and drought can impair plant yield and induce a highly complex array of responses. Sugarcane (Saccharum spp. is cultivated in tropical and subtropical areas and is considered a cold-sensitive plant. We previously showed that cold stress induces the expression of several genes in in vitro sugarcane plantlets. Here we characterize one of those genes, SsNAC23, a member of the NAC family of plant-specific transcription factors, which are induced by low temperature and other stresses in several plant species. The expression of SsNAC23 was induced in sugarcane plants exposed to low temperatures (4ºC. With the aim of further understanding the regulatory network in response to stress, we used the yeast two-hybrid system to identify sugarcane proteins that interact with SsNAC23. Using SsNAC23 as bait, we screened a cDNA expression library of sugarcane plants submitted to 4ºC for 48 h. Several interacting partners were identified, including stress-related proteins, increasing our knowledge on how sugarcane plants respond to cold stress. One of these interacting partners, a thioredoxin h1, offers insights into the regulation of SsNAC23 activity.

  9. UV-Induced Cell Death in Plants

    Science.gov (United States)

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  10. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.

  11. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants

  12. A recombinase-mediated transcriptional induction system in transgenic plants

    DEFF Research Database (Denmark)

    Hoff, T; Schnorr, K M; Mundy, J

    2001-01-01

    We constructed and tested a Cre-loxP recombination-mediated vector system termed pCrox for use in transgenic plants. In this system, treatment of Arabidopsis under inducing conditions mediates an excision event that removes an intervening piece of DNA between a promoter and the gene to be expressed......-mediated GUS activation. Induction was shown to be possible at essentially any stage of plant growth. This single vector system circumvents the need for genetic crosses required by other, dual recombinase vector systems. The pCrox system may prove particularly useful in instances where transgene over...

  13. Induced disease resistance signaling in plants

    NARCIS (Netherlands)

    Verhagen, B.W.M.; Loon, L.C. van; Pieterse, C.M.J.

    2006-01-01

    To protect themselves from disease, plants have evolved sophisticated inducible defense mechanisms in which the signal molecules salicylic acid, jasmonic acid and ethylene often play crucial roles. Elucidation of signaling pathways controlling induced disease resistance is a major objective in

  14. Plant breeding: Induced mutation technology for crop improvement

    International Nuclear Information System (INIS)

    Novak, F.J.; Brunner, H.

    1992-01-01

    Plant breeding requires genetic variation of useful traits for crop improvement, but the desired variation is often lacking. Mutagenic agents, such as radiation and certain chemicals, can be used to induce mutations and generate genetic variations from which desirable mutants may be selected. After a brief summary of the methods currently employed in plant breeding, especially those inducing genetic engineering, this article describes the activities of the Plant Breeding Unit of the IAEA Laboratories at Seibersdorf, summarizing the research and development areas currently being pursued. The banana plant is chosen to exemplify the Laboratories' research

  15. Salmonella enterica induces and subverts the plant immune system

    KAUST Repository

    Garcí a, Ana V.; Hirt, Heribert

    2014-01-01

    ). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS

  16. Noctuidae-induced plant volatiles: current situation and prospects

    Directory of Open Access Journals (Sweden)

    Vanusa Rodrigues Horas

    2014-01-01

    Full Text Available Noctuids are phytophagous lepidopterans with some species causing significant damage to agriculture. The host plants, in turn, have developed defense mechanisms to cope with them, for instance chemical defenses. In this study we review the literature on plant volatiles induced by noctuids, and discuss the methodologies used to induce the production of volatiles that are usually employed in plant defense mechanisms. Future prospects involving this line of research in pest control are also discussed.

  17. Inducible indirect defence of plants : from mechanisms to ecological functions

    NARCIS (Netherlands)

    Dicke, M.; Poecke, van R.M.P.; Boer, de J.G.

    2003-01-01

    Inducible defences allow plants to be phenotypically plastic. Inducible indirect defence of plants by attracting carnivorous enemies of herbivorous arthropods can vary with plant species and genotype, with herbivore species or instar and potentially with other environmental conditions. So far,

  18. Chitosan Effects on Plant Systems

    Directory of Open Access Journals (Sweden)

    Massimo Malerba

    2016-06-01

    Full Text Available Chitosan (CHT is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity.

  19. Inducer pumps for liquid metal reactor plants

    International Nuclear Information System (INIS)

    Jackson, E.D.

    2002-01-01

    Pumps proposed for liquid metal reactor plants typically use centrifugal impellers as the rotating element and are required to maintain a relatively low speed to keep the suction specific speed low enough to operate at the available net positive suction head (HPSH) and to avoid cavitation damage. These low speeds of operation require that the pump diameter increase and/or multiple stages be used to achieve the design head. This frequently results in a large, heavy, complex pump design. In addition, the low speed results in a larger drive motor size so that the resultant penalty to the plant designer is multiplied. The heavier pump can also result in further complications as, e.g., the difficulty in maintaining the first critical speed sufficiently above the pump operating range to provide margin for rotor dynamic stability. To overcome some of these disadvantages, it was proposed the use of inducer pumps for Liquid Metal Fast Breeder Reactor (LMFBR) plants. This paper discusses some of the advantages of the inducer pump and the development history of designing and testing these pumps both in water and sodium. The inducer pump is seen to be a sound concept with a strong technology base derived from the aerospace and ship propulsion industries. The superior suction performance capability of the inducer offers significant system design advantages, primarily a smaller, lighter weight, less complex pump design with resulting saving in cost. Extensive testing of these pumps has been conducted in both sodium and water to demonstrate the long-life capability with no cavitation damage occurring in those designs based on Rockwell's current design criteria. These tests have utilized multiple inspection and measurement approaches to accurately assess and identify any potential for cavitation damage, and these approaches have all concluded that no damage is occurring. Therefore, it is concluded that inducer pumps can be safely designed for long life operation in sodium with

  20. Trickle water and feeding system in plant culture and light-dark cycle effects on plant growth

    Science.gov (United States)

    Takano, T.; Inada, K.; Takanashi, J.

    1987-01-01

    Rockwool, as an inert medium covered or bagged with polyethylene film, can be effectively used for plant culture in space stations. The most important machine is the pump adjusting the dripping rate in the feeding system. Hydro-aeroponics may be adaptable to a space laboratory. The shortening of the light-dark cycles inhibits plant growth and induces an abnormal morphogenesis. A photoperiod of 12 hr dark may be needed for plant growth.

  1. Chemical inducible promotor used to obtain transgenic plants with a silent marker

    Science.gov (United States)

    Chua, Nam-Hai; Aoyama, Takashi

    2000-01-01

    A chemically inducible promoter is described which may be used to transform plants with genes which are easily regulatable by adding plants or plant cells to a medium containing an inducer of the promoter or by removing the plants or plant cells from such medium. The promoter described is one which is inducible by a glucocorticoid which is not endogenous to plants. Such promoters may be used with a variety of genes such as ipt or knotted1 to induce shoot formation in the presence of a glucocorticoid. The promoter may also be used with antibiotic or herbicide resistance genes which are then regulatable by the presence or absence of inducer rather than being constitutive. Other examples of genes which may be placed under the control of the inducible promoter are also presented.

  2. Radiation-induced mutations and plant breeding

    International Nuclear Information System (INIS)

    Naqvi, S.H.M.

    1985-01-01

    Ionizing radiation could cause genetic changes in an organism and could modify gene linkages. The induction of mutation through radiation is random and the probability of getting the desired genetic change is low but can be increased by manipulating different parameters such as dose rate, physical conditions under which the material has been irradiated, etc. Induced mutations have been used as a supplement to conventional plant breeding, particularly for creating genetic variability for specific characters such as improved plant structure, pest and disease resistance, and desired changes in maturity period; more than 200 varieties of crop plants have been developed by this technique. The Pakistan Atomic Energy Commission has used this technique fruitfully to evolve better germplasm in cotton, rice, chickpea, wheat and mungbean; some of the mutants have become popular commercial varieties. This paper describes some uses of radiation induced mutations and the results achieved in Pakistan so far

  3. Anatomical Alterations in Plant Tissues Induced by Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Juan E. Palomares-Rius

    2017-11-01

    Full Text Available Plant-parasitic nematodes (PPNs interact with plants in different ways, for example, through subtle feeding behavior, migrating destructively through infected tissues, or acting as virus-vectors for nepoviruses. They are all obligate biotrophic parasites as they derive their nutrients from living cells which they modify using pharyngeal gland secretions prior to food ingestion. Some of them can also shield themselves against plant defenses to sustain a relatively long lasting interaction while feeding. This paper is centered on cell types or organs that are newly induced in plants during PPN parasitism, including recent approaches to their study based on molecular biology combined with cell biology-histopathology. This issue has already been reviewed extensively for major PPNs (i.e., root-knot or cyst nematodes, but not for other genera (viz. Nacobbus aberrans, Rotylenchulus spp.. PPNs have evolved with plants and this co-evolution process has allowed the induction of new types of plant cells necessary for their parasitism. There are four basic types of feeding cells: (i non-hypertrophied nurse cells; (ii single giant cells; (iii syncytia; and (iv coenocytes. Variations in the structure of these cells within each group are also present between some genera depending on the nematode species viz. Meloidogyne or Rotylenchulus. This variability of feeding sites may be related in some way to PPN life style (migratory ectoparasites, sedentary ectoparasites, migratory ecto-endoparasites, migratory endoparasites, or sedentary endoparasites. Apart from their co-evolution with plants, the response of plant cells and roots are closely related to feeding behavior, the anatomy of the nematode (mainly stylet size, which could reach different types of cells in the plant, and the secretory fluids produced in the pharyngeal glands. These secretory fluids are injected through the stylet into perforated cells where they modify plant cytoplasm prior to food removal

  4. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    Science.gov (United States)

    Runyon, Justin B; Mescher, Mark C

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens—notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)—also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across kingdoms. PMID:20495380

  5. Chemical inducible promoter used to obtain transgenic plants with a silent marker

    Science.gov (United States)

    Aoyama, Takashi; Zuo, Jianru; Chua, Nam-Hai

    2004-08-31

    A chemically inducible promoter is described that may be used to transform plants, including tobacco and lettuce, with genes which are easily regulatable by adding the plants or plant cells to a medium containing an inducer of the promoter or by removing the plants or plant cells from such medium. The promoter described is one that is inducible by a glucocorticoid which is not endogenous to plants. Such promoters may be used with a variety of genes such as ipt or knotted1 to induce shoot formation in the presence of a glucocorticoid. The promoter may also be used with antibiotic or herbicide resistance genes which are then regulatable by the presence or absence of inducer rather than being constitutive. Other examples of genes which may be placed under the control of the inducible promoter are also presented.

  6. Foliar application of systemic acquired resistance (SAR) inducers for ...

    African Journals Online (AJOL)

    nbuensanteai

    2013-08-14

    Aug 14, 2013 ... induced by chitosan and BTH were involved in defense mechanism, reflecting the strong direct positive effect that chitosan ... to control plant diseases based on the systemic acquired resistance ... salicylic acid (SA) as a signal molecule and is associated ... treated plants for SAR relating chemical analyses.

  7. Effects of Some Indigenous Plants of North Karnataka (India) on Cardiovascular and Glucose Regulatory Systems in Alloxan-Induced Diabetic Rats.

    Science.gov (United States)

    Das, Kusal K; Chadchan, Kailash S; Reddy, R Chandramouli; Biradar, M S; Kanthe, Pallavi S; Patil, Bheemshetty S; Ambekar, Jeevan G; Bagoji, Ishwar B; Das, Swastika

    2017-11-08

    Kenaf (Hibiscus cannabinus Linn, Pundi), Chick pea (Cicer arietinum Linn, Chana) and Prickly lettuce (Lactuca scariola Linn, Hattaraki) leaves are a few of indigenous plants which are routinely consumed by the people of north Karnataka in the diet. Studies on these plants showed some potential anti-diabetic efficacies. To examine the effect of leaves extracts of Hibiscus cannabinus Linn, Cicer arietinum Linn and Lactuca scariola Linn on cardiovascular integrity, glucose homeostasis and oxygen sensing cell signaling mechanisms in alloxan induced diabetic rats. In vitro and in vivo tests on glucose regulatory systems and molecular markers such as - NOS3, HIF- 1α and VEGF were conducted in alloxan induced diabetic rats supplemented with all the three plant extracts. Electrophysiological analysis (HRV, LF: HF ratio, baroreflex sensitivity, BRS) and histopathogy of myocardial tissues and elastic artery were evaluated in diabetic rats treated with L. scariola linn. Out of these three plant extracts, Lactuca scariola Linn supplementation showed significant beneficial effects on glucose homeostasis and oxygen sensing cell signaling pathways in alloxaninduced diabetic rats. Furthermore, effects of sub chronic supplementation of Lactuca scariola Linn aqueous extracts showed significant improvement in sympatho-vagal balance in diabetic rats by increase of Heart Rate Variability (HRV) and regaining of Baroreflex Sensitivity (BRS). These results were also corroborated with myocardial and elastic artery histopathology of Lactuca scariola Linn supplemented diabetic rats. These findings indicate an adaptive pathway for glucose homeostasis, oxygen sensing cell signaling mechanisms and cardio protective actions in alloxan - induced diabetic rats supplemented with Lactuca scariola Linn extracts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant.

    Science.gov (United States)

    Giron, David; Huguet, Elisabeth; Stone, Graham N; Body, Mélanie

    2016-01-01

    Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K

    2004-09-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-{beta}-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation.

  10. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    International Nuclear Information System (INIS)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K.

    2004-01-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-β-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation

  11. Radiation induced mutations for plant selection

    International Nuclear Information System (INIS)

    Brunner, H.

    1994-01-01

    The successful use of plant breeding for improving crops requires the existence of genetic variation of useful traits. Unfortunately, the desired variation is often lacking. However, radiation can be used to induce mutations and thereby generate genetic variation from which desired mutants may be selected. Mutation induction has become a proven way of creating variation within a crop variety. It offers the possibility of inducing desired attributes that either cannot be expressed in nature or have been lost during evolution. More than 1700 mutant cultivars of crop plants with significantly improved attributes such as increased yield, improved quality, disease and stress resistance, have been released worldwide in the last thirty years. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture has contributed to these achievements through the promotion of research and development in mutation breeding techniques using nuclear and related biotechnological methods and the provision of in plant breeding is then transferred to Member States of the IAEA and the FAO through training in mutation breeding methods and the provision of technical advice. Moreover, radiation treatment services are provided to foster applications of nuclear techniques in crop improvement programmes of member states and more specifically to render direct support to plant breeders by efficient generation of mutations. Plant materials are standardized prior to radiation exposure to warrant reproducibility of the induced effects within practical limits and a radiosensitivity test is implemented to affirm useful doses for applied objectives of a request. This review deals with irradiation methods applied at the IAEA laboratories for the efficient induction of mutations in seeds, vegetative propagules and tissue and cell cultures and the establishment of genetically variable populations upon which selection of desired traits can be based. 3 tabs., 18 refs. (author)

  12. Plant Phenotype Characterization System

    Energy Technology Data Exchange (ETDEWEB)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  13. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.

    Science.gov (United States)

    Shahid, Muhammad; Pourrut, Bertrand; Dumat, Camille; Nadeem, Muhammad; Aslam, Muhammad; Pinelli, Eric

    2014-01-01

    As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and

  14. Dynamic modelling of balance of plant systems for a pulsed DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, C., E-mail: Chris.Harrington@ccfe.ac.uk

    2015-10-15

    Highlights: • A fully dynamic model of the balance of plant systems for pulsed DEMO is presented. • An operating strategy for handling pulse/dwell transitions has been devised. • Operation of a water-cooled system without energy storage appears feasible. • Steam turbine cycling can be minimised if rotation speed is maintained. - Abstract: The current baseline concept for a European DEMO defines a pulsed reactor producing power for periods of 2–4 h at a time, interrupted by dwell periods of approximately half an hour, potentially leading to cyclic fatigue of the heat transfer system and power generation equipment. Thermal energy storage systems could mitigate pulsing issues; however, the requirements for such a system cannot be defined without first understanding the challenges for pulsed operation, while any system will simultaneously increase the cost and complexity of the balance of plant. This work therefore presents a dynamic model of the primary heat transfer system and associated steam plant for a water-cooled DEMO, without energy storage, capable of simulating pulsed plant operation. An operating regime is defined such that the primary coolant flows continuously throughout the dwell period while the secondary steam flow is reduced. Simulation results show minimised thermal and pressure transients in the primary circuit, and small thermally induced stresses on the steam turbine rotor. If the turbine can be kept spinning to also minimise mechanical cycling, pulsed operation of a water-cooled DEMO without thermal energy storage may be feasible.

  15. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles.

    Science.gov (United States)

    Farag, Mohamed A; Zhang, Huiming; Ryu, Choong-Min

    2013-07-01

    Certain plant growth-promoting rhizobacteria (PGPR) elicit induced systemic resistance (ISR) and plant growth promotion in the absence of physical contact with plants via volatile organic compound (VOC) emissions. In this article, we review the recent progess made by research into the interactions between PGPR VOCs and plants, focusing on VOC emission by PGPR strains in plants. Particular attention is given to the mechanisms by which these bacterial VOCs elicit ISR. We provide an overview of recent progress in the elucidation of PGPR VOC interactions from studies utilizing transcriptome, metabolome, and proteome analyses. By monitoring defense gene expression patterns, performing 2-dimensional electrophoresis, and studying defense signaling null mutants, salicylic acid and ethylene have been found to be key players in plant signaling pathways involved in the ISR response. Bacterial VOCs also confer induced systemic tolerance to abiotic stresses, such as drought and heavy metals. A review of current analytical approaches for PGPR volatile profiling is also provided with needed future developments emphasized. To assess potential utilization of PGPR VOCs for crop plants, volatile suspensions have been applied to pepper and cucumber roots and found to be effective at protecting plants against plant pathogens and insect pests in the field. Taken together, these studies provide further insight into the biological and ecological potential of PGPR VOCs for enhancing plant self-immunity and/or adaptation to biotic and abiotic stresses in modern agriculture.

  16. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

    Science.gov (United States)

    Yan, Liuhua; Zhai, Qingzhe; Wei, Jianing; Li, Shuyu; Wang, Bao; Huang, Tingting; Du, Minmin; Sun, Jiaqiang; Kang, Le; Li, Chang-Bao; Li, Chuanyou

    2013-01-01

    In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and

  17. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

    Directory of Open Access Journals (Sweden)

    Liuhua Yan

    Full Text Available In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs in tomato (Solanum lycopersicum provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA. The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8 mutant, which was isolated as a suppressor of (prosystemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against

  18. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes

    Directory of Open Access Journals (Sweden)

    Md. Harun-Or Rashid

    2017-10-01

    Full Text Available Soil microorganisms with growth-promoting activities in plants, including rhizobacteria and rhizofungi, can improve plant health in a variety of different ways. These beneficial microbes may confer broad-spectrum resistance to insect herbivores. Here, we provide evidence that beneficial microbes modulate plant defenses against insect herbivores. Beneficial soil microorganisms can regulate hormone signaling including the jasmonic acid, ethylene and salicylic acid pathways, thereby leading to gene expression, biosynthesis of secondary metabolites, plant defensive proteins and different enzymes and volatile compounds, that may induce defenses against leaf-chewing as well as phloem-feeding insects. In this review, we discuss how beneficial microbes trigger induced systemic resistance against insects by promoting plant growth and highlight changes in plant molecular mechanisms and biochemical profiles.

  19. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available When plants are repeatedly injured their growth is stunted and the size of organs such as leaves is greatly reduced. The basis of this effect is not well-understood however, even though it reduces yield of crops injured by herbivory, and produces dramatic effects exemplified in ornamental bonsai plants. We have investigated the genetic and physiological basis of this "bonsai effect" by repeatedly wounding leaves of the model plant Arabidopsis. This treatment stunted growth by 50% and increased the endogenous content of jasmonate (JA, a growth inhibitor, by seven-fold. Significantly, repeated wounding did not stunt the growth of the leaves of mutants unable to synthesise JA, or unable to respond to JA including coi1, jai3, myc2, but not jar1. The stunted growth did not result from reduced cell size, but resulted instead from reduced cell number, and was associated with reduced expression of CycB1;2. Wounding caused systemic disappearance of constitutively expressed JAZ1::GUS. Wounding also activates plant immunity. We show that a gene, 12-oxo-phytodienoate reductase, which catalyses a step in JA biosynthesis, and which we confirm is not required for defence, is however required for wound-induced stunting. Our data suggest that intermediates in the JA biosynthetic pathway activate defence, but a primary function of wound-induced JA is to stunt growth through the suppression of mitosis.

  20. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis.

    Science.gov (United States)

    Zhang, Yi; Turner, John G

    2008-01-01

    When plants are repeatedly injured their growth is stunted and the size of organs such as leaves is greatly reduced. The basis of this effect is not well-understood however, even though it reduces yield of crops injured by herbivory, and produces dramatic effects exemplified in ornamental bonsai plants. We have investigated the genetic and physiological basis of this "bonsai effect" by repeatedly wounding leaves of the model plant Arabidopsis. This treatment stunted growth by 50% and increased the endogenous content of jasmonate (JA), a growth inhibitor, by seven-fold. Significantly, repeated wounding did not stunt the growth of the leaves of mutants unable to synthesise JA, or unable to respond to JA including coi1, jai3, myc2, but not jar1. The stunted growth did not result from reduced cell size, but resulted instead from reduced cell number, and was associated with reduced expression of CycB1;2. Wounding caused systemic disappearance of constitutively expressed JAZ1::GUS. Wounding also activates plant immunity. We show that a gene, 12-oxo-phytodienoate reductase, which catalyses a step in JA biosynthesis, and which we confirm is not required for defence, is however required for wound-induced stunting. Our data suggest that intermediates in the JA biosynthetic pathway activate defence, but a primary function of wound-induced JA is to stunt growth through the suppression of mitosis.

  1. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review.

    Science.gov (United States)

    Shahid, Muhammad; Shamshad, Saliha; Rafiq, Marina; Khalid, Sana; Bibi, Irshad; Niazi, Nabeel Khan; Dumat, Camille; Rashid, Muhammad Imtiaz

    2017-07-01

    Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Parasitic Wasps Can Reduce Mortality of Teosinte Plants Infested With Fall Armyworm: Support for a Defensive Function of Herbivore-Induced Plant Volatiles

    Directory of Open Access Journals (Sweden)

    Elvira S. de Lange

    2018-05-01

    Full Text Available Many parasitic wasps use volatiles emitted by plants under herbivore attack to find their hosts. It has therefore been proposed that these inducible plant volatiles serve an indirect defense function by recruiting parasitoids and other natural enemies. This suggested function remains controversial because there is little evidence that, in terms of fitness, plants benefit from the actions of natural enemies, particularly parasitoids, which do not immediately kill their hosts. We aimed to address this controversy in a semi-natural field experiment in Mexico, where we used large screen tents to evaluate how parasitoids can affect plant performance. The tritrophic study system comprised teosinte (Zea spp., the ancestor of maize, Spodoptera frugiperda Smith (Lepidoptera: Noctuidae and Campoletis sonorensis Cameron (Hymenoptera: Ichneumonidae, which have a long evolutionary history together. In tents without parasitoids, S. frugiperda larvae inflicted severe damage to the plants, whereas in the presence of parasitoid wasps, leaf damage was reduced by as much as 80%. Parasitoids also mitigated herbivore-mediated mortality among young teosinte plants. Although these findings will not resolve the long-standing debate on the adaptive function of herbivore-induced plant volatiles (HIPVs, they do present strong support for the hypothesis that plants can benefit from the presence of parasitoid natural enemies of their herbivores.

  3. Root-induced decomposer growth and plant N uptake are not positively associated among a set of grassland plants

    DEFF Research Database (Denmark)

    Saj, S.; Mikola, J.; Ekelund, Flemming

    2008-01-01

    It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Base...... that plant traits such as competitive ability for soil mineral N were more important for plant uptake of litter-N than those that directly affected the growth of soil decomposers.......It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Based...... on the hypothesis that root-induced growth of soil decomposers leads to accelerated decomposition of SOM and increased plant N availability in soil, we predicted that (1) among a set of grassland plants the abundance of soil decomposers in the plant rhizosphere is positively associated with plant N uptake from soil...

  4. Laser induced fluorescence of some plant leaves

    International Nuclear Information System (INIS)

    Helmi, M.S.; Mohamed, M.M.; Amer, R.; Elshazly, O.; Elraey, M.

    1992-01-01

    Laser induced fluorescence (LIF) is successfully used as a technique for remote detection of spectral characteristics of some plants. A pulsed nitrogen laser at 337.1 nm is used to excite cotton, corn and rice leaves. The fluorescence spectrum is detected in the range from 340 nm to 820 nm. It is found that, these plant leaves have common fluorescence maxima at 440 nm, 685 nm and 740 nm. plant leaves are also found to be identifiable by the ratio of the fluorescence intensity at 440 nm to that at 685 nm. The present technique can be further used as a means of assessing, remotely, plant stresses. 5 fig

  5. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack......, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these pathways...

  6. Development of a virus-induced gene silencing (VIGS) system for Spinacia oleracea L

    DEFF Research Database (Denmark)

    Lee, Jungmin; Cao, Dang Viet; Kim, Jiwon

    2017-01-01

    Virus-induced gene silencing (VIGS) is known as a rapid and efficient system for studying functions of interesting genes in plants. Tobacco rattle virus (TRV) is widely applied for the gene silencing of many plants. Although spinach is a TRV-susceptible plant, a TRV-based VIGS system has not yet ...

  7. A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density dependent manner

    Science.gov (United States)

    1. Leaf-herbivore attack often triggers induced resistance in plants. However, certain specialist herbivores can also take advantage of the induced metabolic changes. In some cases, they even manipulate plant resistance, leading to a phenomenon called induced susceptibility. Compared to above-ground...

  8. Predatory Mite Attraction to Herbivore-induced Plant Odors is not a Consequence of Attraction to Individual Herbivore-induced Plant Volatiles

    Science.gov (United States)

    De Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2008-01-01

    Predatory mites locate herbivorous mites, their prey, by the aid of herbivore-induced plant volatiles (HIPV). These HIPV differ with plant and/or herbivore species, and it is not well understood how predators cope with this variation. We hypothesized that predators are attracted to specific compounds in HIPV, and that they can identify these compounds in odor mixtures not previously experienced. To test this, we assessed the olfactory response of Phytoseiulus persimilis, a predatory mite that preys on the highly polyphagous herbivore Tetranychus urticae. The responses of the predatory mite to a dilution series of each of 30 structurally different compounds were tested. They mites responded to most of these compounds, but usually in an aversive way. Individual HIPV were no more attractive (or less repellent) than out-group compounds, i.e., volatiles not induced in plants fed upon by spider-mites. Only three samples were significantly attractive to the mites: octan-1-ol, not involved in indirect defense, and cis-3-hexen-1-ol and methyl salicylate, which are both induced by herbivory, but not specific for the herbivore that infests the plant. Attraction to individual compounds was low compared to the full HIPV blend from Lima bean. These results indicate that individual HIPV have no a priori meaning to the mites. Hence, there is no reason why they could profit from an ability to identify individual compounds in odor mixtures. Subsequent experiments confirmed that naive predatory mites do not prefer tomato HIPV, which included the attractive compound methyl salicylate, over the odor of an uninfested bean. However, upon associating each of these odors with food over a period of 15 min, both are preferred. The memory to this association wanes within 24 hr. We conclude that P. persimilis possesses a limited ability to identify individual spider mite-induced plant volatiles in odor mixtures. We suggest that predatory mites instead learn to respond to prey

  9. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hushna Ara Naznin

    Full Text Available Volatile organic compounds (VOC were extracted and identified from plant growth-promoting fungi (PGPF, Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS. Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp. significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst. Subsequently, m-cresol and methyl benzoate (MeBA were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA or Jasmonic acid (JA/ethylene (ET signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.

  10. Identification of genes involved in rhizobacteria-mediated induced systemic resistance in Arabidopsis

    NARCIS (Netherlands)

    Léon-Kloosterziel, K.M.; Verhagen, B.W.M.; Keurentjes, J.J.B.; Loon, L.C. van; Pieterse, C.M.J.

    2002-01-01

    Different forms of biologically induced disease resistance have been identified in plants. Following attack by a necrotizing pathogen systemic acquired resistance (SAR) is induced, leading to a broad-spectrum disease resistance that is associated with an increase in salicylic acid (SA) levels

  11. FPGA-Based Plant Protection System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hee; Ha, Jae Hong; Kim, Hang Bae [KEPCO E and C, Daejeon (Korea, Republic of)

    2011-08-15

    This paper relates to a plant protection system which detects non-permissible conditions and determines initiation of protective actions for nuclear power plants (NPPs). Conventional plant protection systems were designed based on analog technologies. It is well known that existing protection systems for NPPs contain many components which are becoming obsolete at an increasing rate. Nowadays maintenance and repair for analog-based plant protection systems may be difficult as analog parts become obsolete or difficult to obtain. Accordingly, as an alternative to the analog technology, the digitalisation of the plant protection system was required. Recently digital plant protection systems which include programmable logic controllers (PLCs) and/or computers have been introduced. However PLC or computer-based plant protection systems use an operating system and application software, and so they may result in a common mode failure when a problem occurs in the operating system or application software. Field Programmable Gate Arrays (FPGAs) are highlighted as an alternative to conventional protection or control systems. The paper presents the design of a four-channel plant protection system whose protection functions are implemented in FPGAs without any central processing unit or operating system.

  12. FPGA-Based Plant Protection System

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Ha, Jae Hong; Kim, Hang Bae

    2011-01-01

    This paper relates to a plant protection system which detects non-permissible conditions and determines initiation of protective actions for nuclear power plants (NPPs). Conventional plant protection systems were designed based on analog technologies. It is well known that existing protection systems for NPPs contain many components which are becoming obsolete at an increasing rate. Nowadays maintenance and repair for analog-based plant protection systems may be difficult as analog parts become obsolete or difficult to obtain. Accordingly, as an alternative to the analog technology, the digitalisation of the plant protection system was required. Recently digital plant protection systems which include programmable logic controllers (PLCs) and/or computers have been introduced. However PLC or computer-based plant protection systems use an operating system and application software, and so they may result in a common mode failure when a problem occurs in the operating system or application software. Field Programmable Gate Arrays (FPGAs) are highlighted as an alternative to conventional protection or control systems. The paper presents the design of a four-channel plant protection system whose protection functions are implemented in FPGAs without any central processing unit or operating system

  13. Erosion/corrosion-induced pipe wall thinning in US Nuclear Power Plants

    International Nuclear Information System (INIS)

    Wu, P.C.

    1989-04-01

    Erosion/corrosion in single-phase piping systems was not clearly recognized as a potential safety issue before the pipe rupture incident at the Surry Power Station in December 1986. This incident reminded the nuclear industry and the regulators that neither the US Nuclear Regulatory Commission (NRC) nor Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code require utilities to monitor erosion/corrosion in the secondary systems of nuclear power plants. This report provides a brief review of the erosion/corrosion phenomenon and its major occurrence in nuclear power plants. In addition, efforts by the NRC, the industry, and the ASME Section XI Committee to address this issue are described. Finally, results of the survey and plant audits conducted by the NRC to assess the extent of erosion/corrosion-induced piping degradation and the status of program implementation regarding erosion/corrosion monitoring are discussed. This report will support a staff recommendation for an additional regulatory requirement concerning erosion/corrosion monitoring. 21 refs., 3 tabs

  14. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy

    Science.gov (United States)

    Interaction and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in lake systems. Thus, coagulation and fractionation of plant-derived DOM by di- and tri-valent Ca, Al, and Fe ions were investigated. Metal ion-induc...

  15. Induced Systemic Tolerance to Multiple Stresses Including Biotic and Abiotic Factors by Rhizobacteria

    Directory of Open Access Journals (Sweden)

    Sung-Je Yoo

    2017-06-01

    Full Text Available Recently, global warming and drastic climate change are the greatest threat to the world. The climate change can affect plant productivity by reducing plant adaptation to diverse environments including frequent high temperature; worsen drought condition and increased pathogen transmission and infection. Plants have to survive in this condition with a variety of biotic (pathogen/pest attack and abiotic stress (salt, high/low temperature, drought. Plants can interact with beneficial microbes including plant growth-promoting rhizobacteria, which help plant mitigate biotic and abiotic stress. This overview presents that rhizobacteria plays an important role in induced systemic resistance (ISR to biotic stress or induced systemic tolerance (IST to abiotic stress condition; bacterial determinants related to ISR and/or IST. In addition, we describe effects of rhizobacteria on defense/tolerance related signal pathway in plants. We also review recent information including plant resistance or tolerance against multiple stresses (bioticabiotic. We desire that this review contribute to expand understanding and knowledge on the microbial application in a constantly varying agroecosystem, and suggest beneficial microbes as one of alternative environment-friendly application to alleviate multiple stresses.

  16. Information flow a data bank preparation in nuclear power plant reliability information system

    International Nuclear Information System (INIS)

    Kolesa, K.; Vejvodova, I.

    1983-01-01

    In the year 1981 the reliability information system for nuclear power plants (ISS-JE) was established. The objective of the system is to make a statistical evaluation of the operation of nuclear power plants and to obtain information on the reliability of the equipment of nuclear power plants and the transmission of this information to manufacturers with the aim of inducing them to take corrective measures. The HP 1000 computer with the data base system IMAGE 100 is used which allows to process single queries and periodical outputs. The content of periodical outputs designed for various groups of subcontractors is briefly described and trends of the further development of the system indicated. (Ha)

  17. Plant air systems safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-05-01

    The Portsmouth Gaseous Diffusion Plant Air System facilities and operations are reviewed for potential safety problems not covered by standard industrial safety procedures. Information is presented under the following section headings: facility and process description (general); air plant equipment; air distribution system; safety systems; accident analysis; plant air system safety overview; and conclusion

  18. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants.

    Science.gov (United States)

    Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T; Wu, Jianqiang

    2017-08-08

    Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta , and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta -connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts.

  19. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium.

    Science.gov (United States)

    Bledsoe, C S

    1978-11-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [(14)C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [(14)C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [(14)C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable (14)C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated (14)C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments.

  20. Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers.

    Science.gov (United States)

    Shiojiri, Kaori; Karban, Richard

    2006-08-01

    Plants progress through a series of distinct stages during development, although the role of plant ontogeny in their defenses against herbivores is poorly understood. Recent work indicates that many plants activate systemic induced resistance after herbivore attack, although the relationship between resistance and ontogeny has not been a focus of this work. In addition, for sagebrush and a few other species, individuals near neighbors that experience simulated herbivory become more resistant to subsequent attack. Volatile, airborne cues are required for both systemic induced resistance among branches and for communication among individuals. We conducted experiments in stands of sagebrush of mixed ages to determine effects of plant age on volatile signaling between branches and individuals. Young and old control plants did not differ in levels of chewing damage that they experienced. Systemic induced resistance among branches was only observed for young plants. Young plants showed strong evidence of systemic resistance only if airflow was permitted among branches; plants with only vascular connections showed no systemic resistance. We also found evidence for volatile communication between individuals. For airborne communication, young plants were more effective emitters of cues as well as more responsive receivers of volatile cues.

  1. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  2. An Indirect Defence Trait Mediated through Egg-Induced Maize Volatiles from Neighbouring Plants.

    Directory of Open Access Journals (Sweden)

    Daniel M Mutyambai

    Full Text Available Attack of plants by herbivorous arthropods may result in considerable changes to the plant's chemical phenotype with respect to emission of herbivore-induced plant volatiles (HIPVs. These HIPVs have been shown to act as repellents to the attacking insects as well as attractants for the insects antagonistic to these herbivores. Plants can also respond to HIPV signals from other plants that warn them of impending attack. Recent investigations have shown that certain maize varieties are able to emit volatiles following stemborer egg deposition. These volatiles attract the herbivore's parasitoids and directly deter further oviposition. However, it was not known whether these oviposition-induced maize (Zea mays, L. volatiles can mediate chemical phenotypic changes in neighbouring unattacked maize plants. Therefore, this study sought to investigate the effect of oviposition-induced maize volatiles on intact neighbouring maize plants in 'Nyamula', a landrace known to respond to oviposition, and a standard commercial hybrid, HB515, that did not. Headspace volatile samples were collected from maize plants exposed to Chilo partellus (Swinhoe (Lepidoptera: Crambidae egg deposition and unoviposited neighbouring plants as well as from control plants kept away from the volatile emitting ones. Behavioural bioassays were carried out in a four-arm olfactometer using egg (Trichogramma bournieri Pintureau & Babault (Hymenoptera: Trichogrammatidae and larval (Cotesia sesamiae Cameron (Hymenoptera: Braconidae parasitoids. Coupled Gas Chromatography-Mass Spectrometry (GC-MS was used for volatile analysis. For the 'Nyamula' landrace, GC-MS analysis revealed HIPV production not only in the oviposited plants but also in neighbouring plants not exposed to insect eggs. Higher amounts of EAG-active biogenic volatiles such as (E-4,8-dimethyl-1,3,7-nonatriene were emitted from these plants compared to control plants. Subsequent behavioural assays with female T. bournieri and

  3. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  4. Penicillium sp. mitigates Fusarium-induced biotic stress in sesame plants.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Pae, Suk-Bok; Shim, Kang-Bo; Baek, In-Youl

    2013-07-01

    Fusarium-infected sesame plants have significantly higher contents of amino acids (Asp, Thr, Ser, Asn, Glu, Gly, Ala, Val, Met, Ile, Leu, Tyr, Phe, Lys, His, Try, Arg, and Pro), compared with their respective levels in the healthy control. These higher levels of amino acids induced by Fusarium infection were decreased when Penicillium was co-inoculated with Fusarium. Compared with the control, Fusarium-infected plants showed higher contents of palmitic (8%), stearic (8%), oleic (7%), and linolenic acids (4%), and lower contents of oil (4%) and linoleic acid (11%). Co-inoculation with Penicillium mitigated the Fusarium-induced changes in fatty acids. The total chlorophyll content was lower in Fusarium- and Penicillium-infected plants than in the healthy control. The accumulation of carotenoids and γ-amino butyric acid in Fusarium-infected plants was slightly decreased by co-inoculation with Penicillium. Sesamin and sesamolin contents were higher in Penicillium- and Fusarium- infected plants than in the control. To clarify the mechanism of the biocontrol effect of Penicillium against Fusarium by evaluating changes in primary and secondary metabolite contents in sesame plants.

  5. A three-component gene expression system and its application for inducible flavonoid overproduction in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Feng, Yue; Cao, Cong-Mei; Vikram, Meenu; Park, Sunghun; Kim, Hye Jin; Hong, Jong Chan; Cisneros-Zevallos, Luis; Koiwa, Hisashi

    2011-03-08

    Inducible gene expression is a powerful tool to study and engineer genes whose overexpression could be detrimental for the host organisms. However, only limited systems have been adopted in plant biotechnology. We have developed an osmotically inducible system using three components of plant origin, RD29a (Responsive to Dehydration 29A) promoter, CBF3 (C-repeat Binding Factor 3) transcription factor and cpl1-2 (CTD phosphatase-like 1) mutation. The osmotic stress responsible RD29a promoter contains the CBF3 binding sites and thus RD29A-CBF3 feedforward cassette enhances induction of RD29a promoter under stress. The cpl1-2 mutation in a host repressor CPL1 promotes stress responsible RD29a promoter expression. The efficacy of this system was tested using PAP1 (Production of Anthocyanin Pigment 1) transgene, a model transcription factor that regulates the anthocyanin pathway in Arabidopsis. While transgenic plants with only one or two of three components did not reproducibly accumulate anthocyanin pigments above the control level, transgenic cpl1 plants containing homozygous RD29a-PAP1 and RD29a-CBF3 transgenes produced 30-fold higher level of total anthocyanins than control plants upon cold treatment. Growth retardation and phytochemical production of transgenic plants were minimum under normal conditions. The flavonoid profile in cold-induced transgenic plants was determined by LC/MS/MS, which resembled that of previously reported pap1-D plants but enriched for kaempferol derivatives. These results establish the functionality of the inducible three-component gene expression system in plant metabolic engineering. Furthermore, we show that PAP1 and environmental signals synergistically regulate the flavonoid pathway to produce a unique flavonoid blend that has not been produced by PAP1 overexpression or cold treatment alone.

  6. A three-component gene expression system and its application for inducible flavonoid overproduction in transgenic Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yue Feng

    Full Text Available Inducible gene expression is a powerful tool to study and engineer genes whose overexpression could be detrimental for the host organisms. However, only limited systems have been adopted in plant biotechnology. We have developed an osmotically inducible system using three components of plant origin, RD29a (Responsive to Dehydration 29A promoter, CBF3 (C-repeat Binding Factor 3 transcription factor and cpl1-2 (CTD phosphatase-like 1 mutation. The osmotic stress responsible RD29a promoter contains the CBF3 binding sites and thus RD29A-CBF3 feedforward cassette enhances induction of RD29a promoter under stress. The cpl1-2 mutation in a host repressor CPL1 promotes stress responsible RD29a promoter expression. The efficacy of this system was tested using PAP1 (Production of Anthocyanin Pigment 1 transgene, a model transcription factor that regulates the anthocyanin pathway in Arabidopsis. While transgenic plants with only one or two of three components did not reproducibly accumulate anthocyanin pigments above the control level, transgenic cpl1 plants containing homozygous RD29a-PAP1 and RD29a-CBF3 transgenes produced 30-fold higher level of total anthocyanins than control plants upon cold treatment. Growth retardation and phytochemical production of transgenic plants were minimum under normal conditions. The flavonoid profile in cold-induced transgenic plants was determined by LC/MS/MS, which resembled that of previously reported pap1-D plants but enriched for kaempferol derivatives. These results establish the functionality of the inducible three-component gene expression system in plant metabolic engineering. Furthermore, we show that PAP1 and environmental signals synergistically regulate the flavonoid pathway to produce a unique flavonoid blend that has not been produced by PAP1 overexpression or cold treatment alone.

  7. The inducible CAM plants in putative lunar lander experiments

    Science.gov (United States)

    Burlak, Olexii; Zaetz, Iryna; Soldatkin, Olexii; Rogutskyy, Ivan; Danilchenko, Boris; Mikheev, Olexander; de Vera, Jean-Pierre; Vidmachenko, Anatolii; Foing, Bernard H.; Kozyrovska, Natalia

    Precursory lunar lander experiments on growing plants in locker-based chambers will increase our understanding of effect of lunar conditions on plant physiology. The inducible CAM (Cras-sulacean Acid Metabolism)-plants are reasonable model for a study of relationships between environmental challenges and changes in plant/bacteria gene expression. In inducible CAM-plants the enzymatic machinery for the environmentally activated CAM switches on from a C3-to a full-CAM mode of photosynthesis in response to any stresses (Winter et al., 2008). In our study, Kalanchoe spp. are shown to be promising candidates for putative lunar experiments as resistant to irradiation and desiccation, especially after inoculation with a bacterial consortium (Boorlak et al., 2010). Within frames of the experiment we expect to get information about the functional activity of CAM-plants, in particular, its organogenesis, photosystem, the circadian regulation of plant metabolism on the base of data gaining with instrumental indications from expression of the reporter genes fused to any genes involved in vital functions of the plant (Kozyrovska et al., 2009). References 1. Winter K., Garcia M., Holtum J. (2008) J. Exp. Bot. 59(7):1829-1840 2. Bourlak O., Lar O., Rogutskyy I., Mikheev A., Zaets I., Chervatyuk N., de Vera J.-P., Danilchenko A.B. Foing B.H., zyrovska N. (2010) Space Sci. Technol. 3. Kozyrovska N.O., Vidmachenko A.P., Foing B.H. et al. Exploration/call/estec/ESA. 2009.

  8. Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells

    Science.gov (United States)

    Máthé, Csaba; M-Hamvas, Márta; Vasas, Gábor

    2013-01-01

    Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs) are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS) and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization. PMID:24084787

  9. Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells

    Directory of Open Access Journals (Sweden)

    Gábor Vasas

    2013-09-01

    Full Text Available Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs, a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN, an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization.

  10. An Automated and Continuous Plant Weight Measurement System for Plant Factory.

    Science.gov (United States)

    Chen, Wei-Tai; Yeh, Yu-Hui F; Liu, Ting-Yu; Lin, Ta-Te

    2016-01-01

    In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications.

  11. An Automated and Continuous Plant Weight Measurement System for Plant Factory

    Directory of Open Access Journals (Sweden)

    Wei-Tai eChen

    2016-03-01

    Full Text Available In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analogue electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications.

  12. Plant training for induced defense against insect pests: a promising tool for integrated pest management in cotton.

    Science.gov (United States)

    Llandres, Ana L; Almohamad, Raki; Brévault, Thierry; Renou, Alain; Téréta, Idrissa; Jean, Janine; Goebel, François-Regis

    2018-04-17

    Enhancing cotton pest management using plant natural defenses has been described as a promising way to improve the management of crop pests. We here reviewed different studies on cotton growing systems to illustrate how an ancient technique called plant training, which includes plant topping and pruning, may contribute to this goal. Based on examples from cotton crops, we show how trained plants could be promoted to a state of enhanced defense that causes faster and more robust activation of their defense responses. We revisit agricultural benefits associated to this technique in cotton crops, with a focus on its potential as a supplementary tool for Integrated Pest Management (IPM). Particularly, we examine its role in mediating plant interactions with conspecific neighboring plants, pests and associated natural enemies. We propose a new IPM tool, plant training for induced defense, which involves inducing plant defense by artificial injuries. Experimental evidence from various studies shows that cotton training is a promising technique, particularly for smallholders, which can be used as part of an IPM program to significantly reduce insecticide use and to improve productivity in cotton farming. This article is protected by copyright. All rights reserved.

  13. Nuclear power plant safe operation principles and some topics concerning systems reliability analysis

    International Nuclear Information System (INIS)

    Borsky, M.; Kreim, R.; Stanicek, J.

    1997-01-01

    General safety criteria are specified, and nuclear power plant equipment is classified into systems either important or unimportant for nuclear safety. The former class is subdivided into safety systems and safety related systems. The safety requirements concern earthquakes, storms, fires, floods, man-induced events, and equipment failures. The actual state of systems important for safety is described. (M.D.)

  14. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  15. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens.

    Science.gov (United States)

    Collonnier, Cécile; Guyon-Debast, Anouchka; Maclot, François; Mara, Kostlend; Charlot, Florence; Nogué, Fabien

    2017-05-15

    Beyond its predominant role in human and animal therapy, the CRISPR-Cas9 system has also become an essential tool for plant research and plant breeding. Agronomic applications rely on the mastery of gene inactivation and gene modification. However, if the knock-out of genes by non-homologous end-joining (NHEJ)-mediated repair of the targeted double-strand breaks (DSBs) induced by the CRISPR-Cas9 system is rather well mastered, the knock-in of genes by homology-driven repair or end-joining remains difficult to perform efficiently in higher plants. In this review, we describe the different approaches that can be tested to improve the efficiency of CRISPR-induced gene modification in plants, which include the use of optimal transformation and regeneration protocols, the design of appropriate guide RNAs and donor templates and the choice of nucleases and means of delivery. We also present what can be done to orient DNA repair pathways in the target cells, and we show how the moss Physcomitrella patens can be used as a model plant to better understand what DNA repair mechanisms are involved, and how this knowledge could eventually be used to define more performant strategies of CRISPR-induced gene knock-in. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    Directory of Open Access Journals (Sweden)

    Nur Shafika Mohd Sairazi

    2015-01-01

    Full Text Available Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS. In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA. KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.

  17. Experimentally studied laser fluorescence method for remote sensing of plant stress situation induced by improper plants watering

    Directory of Open Access Journals (Sweden)

    Yu. V. Fedotov

    2014-01-01

    Full Text Available Stressful situations of plants can be caused by a lack of nutrients; mechanical damages; diseases; low or high temperatures; lack of illumination; insufficient or excess humidity of the soil; soil salinization; soil pollution by oil products or heavy metals; the increased acidity of the soil; use of pesticides, herbicides, insecticides, etc.At early stages it is often difficult to detect seemingly that the plants are in stressful situations caused by adverse external factors. However, the fluorescent analysis potentially allows detection of the stressful situations of plants by deformation of laser-induced fluorescence spectra. The paper conducts experimental investigations to learn the capabilities of the laser fluorescent method to monitor plant situations at 532nm wavelength of fluorescence excitation in the stressful situations induced by improper watering (at excess of moisture in the soil and at a lack of moisture.Researches of fluorescence spectra have been conducted using a created laboratory installation. As a source to excite fluorescence radiation the second harmonica of YAG:Nd laser is used. The subsystem to record fluorescence radiation is designed using a polychromator and a highly sensitive matrix detector with the amplifier of brightness.Experimental investigations have been conducted for fast-growing and unpretentious species of plants, namely different sorts of salad.Experimental studies of laser-induced fluorescence spectra of plants for 532nm excitement wavelength show that the impact of stressful factors on a plant due to the improper watering, significantly distorts a fluorescence spectrum of plants. Influence of a stressful factor can be shown as a changing profile of a fluorescence spectrum (an identifying factor, here, is a relationship of fluorescence intensities at two wavelengths, namely 685 nm and 740 nm or (and as a changing level of fluorescence that can be the basis for the laser method for monitoring the plant

  18. The design and partial analysis of RNAseIII anti-PVS antisense complex system to induce plant resistance

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Schubert, J.; Kuchař, M.; Dědič, P.; Ptáček, J.; Vrba, Lukáš; Lichtenstein, C. P.

    2001-01-01

    Roč. 33, - (2001), s. 381-394 ISSN 0323-5408 R&D Projects: GA ČR GA521/96/1308; GA MZe(CZ) EP9111; GA MŠk ME 463 Grant - others:NAZV(CZ) EP9111 Program:EP Keywords : Plant genetic * induced resistance Subject RIV: EB - Genetics ; Molecular Biology

  19. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium 1

    Science.gov (United States)

    Bledsoe, Caroline S.; Ross, Cleon W.

    1978-01-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [14C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [14C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [14C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable 14C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated 14C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments. ImagesFig. 1 PMID:16660583

  20. Bio-based resistance inducers for sustainable plant protection against pathogens

    Czech Academy of Sciences Publication Activity Database

    Burketová, Lenka; Trdá, Lucie; Ott, P.G.; Valentová, O.

    2015-01-01

    Roč. 33, č. 6 (2015), s. 994-1004 ISSN 0734-9750 R&D Projects: GA MŠk(CZ) LD14056 Institutional support: RVO:61389030 Keywords : Induced resistance * Elicitor * Chitosan Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 9.848, year: 2015

  1. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales

    NARCIS (Netherlands)

    Aartsma, Y.S.Y.; Bianchi, F.J.J.A.; Werf, van der W.; Poelman, E.H.; Dicke, M.

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger

  2. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp.

    NARCIS (Netherlands)

    Alizadeh, H.; Behboudi, K.; Amadzadeh, M.; Javan-Nikkhah, M.; Zamioudis, C; Pieterse, C.M.J.; Bakker, P.A.H.M.

    2013-01-01

    Trichoderma species and fluorescent Pseudomonas spp. have been reported to induce systemic resistance in plants. In this study the effectiveness of a combination of these biological control agents on the efficacy of induced resistance was investigated in cucumber and the model plant Arabidopsis

  3. Plant monitor system

    International Nuclear Information System (INIS)

    Scarola, K.; Jamison, D.; Manazir, R.; Rescori, R.; Harmon, D.

    1991-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system which is nuclear qualified for rapid response to changes in plant parameters and a component control system which together provide a discrete monitoring and control capability at a panel in the control room. A separate data processing system, which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs and a large, overhead integrated process status overview board. The discrete indicator and alarm system and the data processing system receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the main machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof. (author)

  4. Plant-inducible virulence promoter of the Agrobacterium tumefaciens Ti plasmid

    NARCIS (Netherlands)

    Okker, Robert J.H.; Spaink, Herman; Hille, Jacques; Brussel, Ton A.N. van; Lugtenberg, Ben; Schilperoort, Rob A.

    1984-01-01

    Agrobacterium tumefaciens is the causative agent of crown gall, a plant tumour that can arise on most species of dicotyledonous plants. The tumour-inducing capacity of the bacterium requires the presence of a large plasmid, designated the Ti plasmid, which itself contains two regions essential for

  5. Combined Effects of Medicinal Plants on Induced Upper ...

    African Journals Online (AJOL)

    Combined Effects of Medicinal Plants on Induced Upper Gastrointestinal Tract Injury ... treated in different doses of single and combined extracts of Allium sativum, ... was no visible sign of ulceration or perforation observed on the stomach and ...

  6. The application of plant information system on third Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Liu Wangtian

    2005-01-01

    Plant overall control has been applied in Qinshan Nuclear Power Plant, which enhances the security of plant operation, but it is not enough to improve the technical administration level. In order to integrate the overall information and to improve the technical administration level more. Third Qinshan Nuclear Power Plant applies the plant information system. This thesis introduces the application of plant information system in Third Qinshan Nuclear Power Plant and the effect to the plant after the system is carried into execution, in addition, it does more analysis and exceptions for application of plant information system in the future. (authors)

  7. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions.

    Science.gov (United States)

    Bellés, José M; Garro, Rafael; Pallás, Vicente; Fayos, Joaquín; Rodrigo, Ismael; Conejero, Vicente

    2006-02-01

    In the present work we have studied the accumulation of gentisic acid (2,5-dihydroxybenzoic acid, a metabolic derivative of salicylic acid, SA) in the plant-pathogen systems, Cucumis sativus and Gynura aurantiaca, infected with either prunus necrotic ringspot virus (PNRSV) or the exocortis viroid (CEVd), respectively. Both pathogens produced systemic infections and accumulated large amounts of the intermediary signal molecule gentisic acid as ascertained by electrospray ionization mass spectrometry (ESI-MS) coupled on line with high performance liquid chromatography (HPLC). The compound was found mostly in a conjugated (beta-glucoside) form. Gentisic acid has also been found to accumulate (although at lower levels) in cucumber inoculated with low doses of Pseudomonas syringae pv. tomato, producing a nonnecrotic reaction. In contrast, when cucumber was inoculated with high doses of this pathogen, a hypersensitive reaction occurred, but no gentisic-acid signal was induced. This is consistent with our results supporting the idea that gentisic-acid signaling may be restricted to nonnecrotizing reactions of the host plant (Bellés et al. in Mol Plant-Microbe Interact 12:227-235, 1999). In cucumber and Gynura plants, the activity of gentisic acid as inducing signal was different to that of SA, thus confirming the data found for tomato. Exogenously supplied gentisic acid was able to induce peroxidase activity in both Gynura and cucumber plants in a similar way as SA or pathogens. However, gentisic-acid treatments strongly induced polyphenol oxidase activity in cucumber, whereas pathogen infection or SA treatment resulted in a lower induction of this enzyme. Nevertheless, gentisic acid did not induce other defensive proteins which are induced by SA in these plants. This indicates that gentisic acid could act as an additional signal to SA for the activation of plant defenses in cucumber and Gynura plants.

  8. International symposium on induced mutations in plants (ISIM). Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The year 2008 will mark the 80th anniversary of mutation induction in crop plants. The application of mutation techniques, i.e. gamma rays and other physical and chemical mutagens, has generated a vast amount of genetic variability and has played a significant role in plant breeding and genetic studies. The widespread use of induced mutants in plant breeding programmes throughout the world has led to the official release of more than 2600 mutant crop varieties. A large number of these varieties (including cereals, pulses, oil, root and tuber crops, and ornamentals) have been released in developing countries, resulting in enormous positive economic impacts. The International Symposium on Induced Mutations in Plants (ISIM) will be the eighth in the Joint FAO/IAEA Programme's Symposium series dedicated exclusively to harnessing and disseminating information on current trends in induced mutagenesis in plants, the first of which was held in 1969 and the last in 1995. These previous symposia dealt with themes relating to the development of efficient protocols for induced mutagenesis and their role in the enhancement of quality traits, as well as resistance to biotic and abiotic stresses in crops and the integration of in vitro and molecular genetic techniques in mutation induction. Since 1995, there has been an increased interest within the scientific community, not only in the use of induced mutations for developing improved crop varieties and for the discovery of genes controlling important traits and in the understanding the functions and mechanisms of actions of these genes, but also in deciphering the biological nature of DNA damage, repair and mutagenesis. A symposium that brings together the key players in basic research, as well as in the development and application of technologies relating to the efficient use of induced mutations for crop improvement and empirical genetic studies, is therefore justified and necessary. Topics addressed at the symposium

  9. Trophic complexity and the adaptive value of damage-induced plant volatiles.

    Directory of Open Access Journals (Sweden)

    Ian Kaplan

    Full Text Available Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants "call for help" to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops.

  10. ITER plant systems

    International Nuclear Information System (INIS)

    Kolbasov, B.; Barnes, C.; Blevins, J.

    1991-01-01

    As part of a series of documents published by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this publication describes the conceptual design of the ITER plant systems, in particular (i) the heat transport system, (ii) the electrical distribution system, (iii) the requirements for radioactive equipment handling, the hot cell, and waste management, (iv) the supply system for fluids and operational chemicals, (v) the qualitative analyses of failure scenarios and methods of burn stability control and emergency shutdown control, (vi) analyses of tokamak building functions and design requirements, (vii) a plant layout, and (viii) site requirements. Refs, figs and tabs

  11. Study of the behavior of thermal shield support system for the French CPO series plants

    International Nuclear Information System (INIS)

    Bellet, S.; Roux, P.; Bhandari, D.R.; Schwirian, R.E.; Yu, C.; Matarazzo, J.C.; Singleton, N.R.

    1996-01-01

    Degradation/failure of thermal shield support system in PWRs has been observed in the US as well as in foreign plants. In almost all the cases, remedial actions were put in place at very high economic costs to the utilities only after the failures had occurred. This paper presents the results of a comprehensive study to predict the long term behavior of a thermal shield support system due to flow-induced vibratory loads and thermal transients. Excellent agreement from the system finite model between the measured plant test data on the barrel/thermal shield beam and shell mode frequencies and the flexure strains confirms the basic structural behavior and physics of the flow induced vibrations. Loads and stresses on the support bolts and the flexures were determined to predict the fatigue life of the components

  12. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum

    NARCIS (Netherlands)

    Snoeren, T.A.L.; Mumm, R.; Poelman, E.H.; Yang, Y.; Pichersky, E.; Dicke, M.

    2010-01-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced

  13. Development of plant maintenance systems

    International Nuclear Information System (INIS)

    Tomita, Jinji; Ike, Masae; Nakayama, Kenji; Kato, Hisatomo

    1989-01-01

    Toshiba is making active efforts for the continuing improvement of reliability and maintainability of operating nuclear power plants. As a part of these efforts, the company has developed new maintenance administration systems, diagnostic monitoring facilities for plant equipments, computer-aided expert systems, and remote-controlled machines for maintenance work. The maintenance administration systems provide efficient work plans and data acquisition capabilities for the management of personnel and equipments involved in nuclear power plant maintenance. The plant diagnostic facilities monitor and diagnose plant conditions for preventive maintenance, as well as enabling rapid countermeasures to be carried out should they be required. Expert systems utilizing artificial intelligence (AI) technology are also employed. The newly developed remote-controlled machines are useful tools for the maintenance inspection of equipment which can not be easily accessed. (author)

  14. Elicitin-induced distal systemic resistance in plants is mediated through the protein-protein interactions influenced by selected lysine residues

    Directory of Open Access Journals (Sweden)

    Hana eUhlíková

    2016-02-01

    Full Text Available Elicitins are a family of small proteins with sterol-binding activity that are secreted by Phytophthora and Pythium spp. classified as oomycete PAMPs. Although alfa- and beta-elicitins bind with the same affinity to one high affinity binding site on the plasma membrane, beta-elicitins (possessing 6-7 lysine residues are generally 50- to 100-fold more active at inducing distal HR and systemic resistance than the alfa-isoforms (with only 1-3 lysine residues.To examine the role of lysine residues in elicitin biological activity, we employed site-directed mutagenesis to prepare a series of beta-elicitin cryptogein variants with mutations on specific lysine residues. In contrast to direct infiltration of protein into leaves, application to the stem revealed a rough correlation between protein’s charge and biological activity, resulting in protection against Phytophthora parasitica. A detailed analysis of proteins’ movement in plants showed no substantial differences in distribution through phloem indicating differences in consequent apoplastic or symplastic transport. In this process, an important role of homodimer formation together with the ability to form a heterodimer with potential partner represented by endogenous plants LTPs is suggested. Our work demonstrates a key role of selected lysine residues in these interactions and stresses the importance of processes preceding elicitin recognition responsible for induction of distal systemic resistance.

  15. Transcriptome Analysis of Induced Systemic Drought Tolerance Elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Song-Mi Cho

    2013-06-01

    Full Text Available Root colonization by Pseudomonas chlororaphis O6 induces systemic drought tolerance in Arabidopsis thaliana. Microarray analysis was performed using the 22,800-gene Affymetrix GeneChips to identify differentially-expressed genes from plants colonized with or without P. chlororaphis O6 under drought stressed conditions or normal growth conditions. Root colonization in plants grown under regular irrigation condition increased transcript accumulation from genes associated with defense, response to reactive oxygen species, and auxin- and jasmonic acid-responsive genes, but decreased transcription factors associated with ethylene and abscisic acid signaling. The cluster of genes involved in plant disease resistance were up-regulated, but the set of drought signaling response genes were down-regulated in the P. chlororaphis O6-colonized under drought stress plants compared to those of the drought stressed plants without bacterial treatment. Transcripts of the jasmonic acid-marker genes, VSP1 and pdf-1.2, the salicylic acid regulated gene, PR-1, and the ethylene-response gene, HEL, also were up-regulated in plants colonized by P. chlororaphis O6, but differed in their responsiveness to drought stress. These data show how gene expression in plants lacking adequate water can be remarkably influenced by microbial colonization leading to plant protection, and the activation of the plant defense signal pathway induced by root colonization of P. chlororaphis O6 might be a key element for induced systemic tolerance by microbes.

  16. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J.; Jung, Sabine C.; Pascual, Jose A.; Pozo, María J.

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development. PMID:23805146

  17. New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.

    Science.gov (United States)

    Rodriguez-Saona, Cesar R; Frost, Christopher J

    2010-01-01

    A diverse, often species-specific, array of herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. Although research in the last 3 decades indicates a multi-functional role of these HIPVs, the evolutionary rationale underpinning HIPV emissions remains an open question. Many studies have documented that HIPVs can attract natural enemies, and some studies indicate that neighboring plants may eavesdrop their undamaged neighbors and induce or prime their own defenses prior to herbivore attack. Both of these ecological roles for HIPVs are risky strategies for the emitting plant. In a recent paper, we reported that most branches within a blueberry bush share limited vascular connectivity, which restricts the systemic movement of internal signals. Blueberry branches circumvent this limitation by responding to HIPVs emitted from neighboring branches of the same plant: exposure to HIPVs increases levels of defensive signaling hormones, changes their defensive status, and makes undamaged branches more resistant to herbivores. Similar findings have been reported recently for sagebrush, poplar and lima beans, where intra-plant communication played a role in activating or priming defenses against herbivores. Thus, there is increasing evidence that intra-plant communication occurs in a wide range of taxonomically unrelated plant species. While the degree to which this phenomenon increases a plant's fitness remains to be determined in most cases, we here argue that within-plant signaling provides more adaptive benefit for HIPV emissions than does between-plant signaling or attraction of predators. That is, the emission of HIPVs might have evolved primarily to protect undamaged parts of the plant against potential enemies, and neighboring plants and predators of herbivores later co-opted such HIPV signals for their own benefit.

  18. [Effects of azadirachtin on rice plant volatiles induced by Nilaparvata lugens].

    Science.gov (United States)

    Lu, Hai-Yan; Liu, Fang; Zhu, Shu-De; Zhang, Qing

    2010-01-01

    With the method of solid phase microextraction (SPME), a total of twenty-five volatiles were collected from rice plants induced by Nilaparvata lugens, and after applying azadirachtin fourteen of them were qualitatively identified by gas chromatography coupled by mass spectrometry (GC-MS), mainly of nine kinds of sesquiterpenes. Comparing with healthy rice plants, the plants attacked by N. lugens had more kinds of volatiles, including limonene, linalool, methyl salicylate, unknown 6, unknown 7, zingiberene, nerolidol, and hexadecane. Applying azadirachtin did not result in the production of new kind volatiles, but affected the relative concentrations of the volatiles induced by N. lugens. The proportions of limonene, linalool, methyl salicylate, unknown 6, zingiberene, and hexadecane changed obviously with the concentration of applied azadirachtin, while those of methyl salicylate, unknown 6, unknown 7, zingiberene, and nerolidol changed significantly with the days after azadirachtin application. Azadirachtin concentration, rice variety, and N. lugens density had significant interactions on the relative concentrations of all test N. lugens-induced volatiles.

  19. Integration of computerized operation support systems on a nuclear power plant environment

    Energy Technology Data Exchange (ETDEWEB)

    Jaime, Guilherme D.G.; Almeida, Jose C.S.; Oliveira, Mauro V., E-mail: gdjaime@ien.gov.br, E-mail: jcsa@ien.gov.br, E-mail: mvitor@ien.gov.br [Instituto Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Servico de Sistemas Complexos. Divisao de Engenharia Nuclear

    2015-07-01

    Automation of certain tasks in a Nuclear Power Plant (NPP) control room is expected to result in reduced operators' mental workload, which may induce other benefits such as enhanced situation awareness and improved system performance. The final goal should be higher level of operational safety. Thus, recent works are increasingly assessing automation. The LABIHS compact NPP simulator, though, still operates under strictly manual printed hard-copy procedures, despite of the fact that the simulator incorporates several advancements in design of digitalized Human-Interfaces (HSIs). This work presents the development, implementation and integration of selected components to achieve increased level of computerized/automated operation of the LABIHS compact NPP simulator. Specifically, we discuss three components: (I) Automatic Plant Mode Detection, (II) Automatic Alarm Filtering, and (III) Computerized Procedures. Each one of these components has to be carefully designed/integrated so that one can avoid the undesired effects of some known implementations of automated systems on NPP, such as the reduction in the operator's system awareness, an increase in monitoring workload, and the degradation in manual skills, which could lead to automation-induced system failures. (author)

  20. Integration of computerized operation support systems on a nuclear power plant environment

    International Nuclear Information System (INIS)

    Jaime, Guilherme D.G.; Almeida, Jose C.S.; Oliveira, Mauro V.

    2015-01-01

    Automation of certain tasks in a Nuclear Power Plant (NPP) control room is expected to result in reduced operators' mental workload, which may induce other benefits such as enhanced situation awareness and improved system performance. The final goal should be higher level of operational safety. Thus, recent works are increasingly assessing automation. The LABIHS compact NPP simulator, though, still operates under strictly manual printed hard-copy procedures, despite of the fact that the simulator incorporates several advancements in design of digitalized Human-Interfaces (HSIs). This work presents the development, implementation and integration of selected components to achieve increased level of computerized/automated operation of the LABIHS compact NPP simulator. Specifically, we discuss three components: (I) Automatic Plant Mode Detection, (II) Automatic Alarm Filtering, and (III) Computerized Procedures. Each one of these components has to be carefully designed/integrated so that one can avoid the undesired effects of some known implementations of automated systems on NPP, such as the reduction in the operator's system awareness, an increase in monitoring workload, and the degradation in manual skills, which could lead to automation-induced system failures. (author)

  1. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  2. The System 80+ Standard Plant Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    Turk, R.S.; Bryan, R.E. [ABB Combuions Engineering Nuclear Systems (United States)

    1998-07-01

    Historically, electric nuclear power plant owners, following the completion of construction and startup, have been left with a mountain of hard-copy documents and drawings. Hundreds of thousands of hours are spent searching for relevant documents and, in most cases, the documents found require many other documents and drawings to fully understand the design basis. All too often the information is incomplete, and eventually becomes obsolete. In the U.S., utilities spend millions of dollars to discover design basis information and update as-built data for each plant. This information must then be stored in an easily accessed usable form to assist satisfy regulatory requirements and to improve plant operating efficiency. ABB Combustion Engineering Nuclear Systems (ABB-CE) has an active program to develop a state-of-the-art Plant Information Management System (IMS) for its advanced light water reactor, the System 80+TM Standard Plant Design. This program is supported by ABB's Product Data Management (PDM) and Computer Aided Engineering (CAE) efforts world wide. This paper describes the System 80+ plant IMS and how it will be used during the entire life cycle of the plant. (author)

  3. The System 80+ Standard Plant Information Management System

    International Nuclear Information System (INIS)

    Turk, R.S.; Bryan, R.E.

    1998-01-01

    Historically, electric nuclear power plant owners, following the completion of construction and startup, have been left with a mountain of hard-copy documents and drawings. Hundreds of thousands of hours are spent searching for relevant documents and, in most cases, the documents found require many other documents and drawings to fully understand the design basis. All too often the information is incomplete, and eventually becomes obsolete. In the U.S., utilities spend millions of dollars to discover design basis information and update as-built data for each plant. This information must then be stored in an easily accessed usable form to assist satisfy regulatory requirements and to improve plant operating efficiency. ABB Combustion Engineering Nuclear Systems (ABB-CE) has an active program to develop a state-of-the-art Plant Information Management System (IMS) for its advanced light water reactor, the System 80+TM Standard Plant Design. This program is supported by ABB's Product Data Management (PDM) and Computer Aided Engineering (CAE) efforts world wide. This paper describes the System 80+ plant IMS and how it will be used during the entire life cycle of the plant. (author)

  4. External man-induced events in relation to nuclear power plant design

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide deals with the basic design requirements for nuclear power plants, and presents a general design approach for protection against the effects of man-induced events. Section 2 discusses the general design approach. Section 3 outlines the development of the basic information necessary for an evaluation of the adequacy of a design against the effects of aircraft crashes, fires, explosions, and the release of toxic gases or corrosive substances. Section 4 outlines the design logic for protection against external man-induced events. It indicates possible methods of ensuring overall plant safety, including protection against possible secondary effects. Included for each event are: a methodology for calculating the design input parameters from the data generated in the siting study, system protection considerations from the effects of this man-induced event, and criteria for judging the adequacy of the protection provided. Specific design guidance related to acts of sabotage is not provided in this Guide. It should be recognized, however, that for certain situations such acts can be important to safety and could constitute the controlling postulated initiating event for design. The list of events covered is not necessarily complete. However, important events on which enough work has already been done in various Member States to enable their effects to be converted into generally accepted design parameters are included. In addition, other man-induced events such as dam ruptures, ship collisions, construction accidents and the like are identified but no general guidelines for design can be specified for these at present. These events need to be considered on an ad hoc basis, in order to arrive at design input parameters for them

  5. A landscape simulation system for power plants

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Yoshida, Miki; Usami, Yoshiaki.

    1997-01-01

    As scenes of power plants give many influences to environments, the plants that harmonized with the environments are demanded. We developed a landscape simulation system for the plants by using computer graphics technologies. This system has functions to generate realistic images about plant buildings and environments. Since the system contains information of ridge lines in addition to usual terrain data, the terrain shapes are expressed more precisely. Because the system enables users to visualize plant construction plans, the advance evaluations of plant scenes become possible. We regard this system as useful for environmental assessment of power plants. (author)

  6. Design of the monitoring system at the Sant'Alessio induced riverbank filtration plant (Lucca, Italy)

    Science.gov (United States)

    Rossetto, Rudy; Barbagli, Alessio; Borsi, Iacopo; Mazzanti, Giorgio; Picciaia, Daniele; Vienken, Thomas; Bonari, Enrico

    2015-04-01

    In Managed Aquifer Recharge (MAR) schemes the monitoring system, for both water quality and quantity issues, plays a key role in assuring that a groundwater recharge plant is really managed. Considering induced Riverbank Filtration (RBF) schemes, while the effect of the augmented filtration consists in an improvement of the quality and quantity of the water infiltrating the aquifer, there is in turn the risk for groundwater contamination, as surface water bodies are highly susceptible to contamination. Within the framework of the MARSOL (2014) EU FPVII-ENV-2013 project, an experimental monitoring system has been designed and will be set in place at the Sant'Alessio RBF well field (Lucca, Italy) to demonstrate the sustainability and the benefits of managing induced RBF versus the unmanaged option. The RBF scheme in Sant'Alessio (Borsi et al. 2014) allows abstraction of an overall amount of about 0,5 m3/s groundwater providing drinking water for about 300000 people of the coastal Tuscany. Water is derived by ten vertical wells set along the Serchio River embankments inducing river water filtration into a high yield (10-2m2/s transmissivity) sand and gravel aquifer. Prior to the monitoring system design, a detailed site characterization has been completed taking advantage of previous and new investigations, the latter performed by means of MOSAIC on-site investigation platform (UFZ). A monitoring network has been set in place in the well field area using existing wells. There groundwater head and the main physico-chemical parameters (temperature, pH, dissolved oxygen, electrical conductivity and redox potential) are routinely monitored. Major geochemical compounds along with a large set of emerging pollutants are analysed (in cooperation with IWW Zentrum Wasser, Germany) both in surface-water and ground-water. The experimental monitoring system (including sensors in surface- and ground-water) has been designed focusing on managing abstraction efficiency and safety at

  7. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14

    NARCIS (Netherlands)

    Alizadeh, H.; Behboudi, K.; Ahmadzadeh, M.; Javan-Nikkhah, M.; Zamioudis, C.; Pieterse, C.M.J.; Bakker, P.A.H.M.

    2013-01-01

    Trichoderma species and fluorescent Pseudomonas spp. have been reported to induce systemic resistance in plants. In this study the effectiveness of a combination of these biological control agents on the efficacy of induced resistance was investigated in cucumber and the model plant Arabidopsis

  8. Plant growth and gas balance in a plant and mushroom cultivation system

    Science.gov (United States)

    Kitaya, Y.; Tani, A.; Kiyota, M.; Aiga, I.

    1994-11-01

    In order to obtain basic data for construction of a plant cultivation system incorporating a mushroom cultivation subsystem in the CELSS, plant growth and atmospheric CO2 balance in the system were investigated. The plant growth was promoted by a high level of CO2 which resulted from the respiration of the mushroom mycelium in the system. The atmospheric CO2 concentration inside the system changed significantly due to the slight change in the net photosynthetic rate of plants and/or the respiration rate of the mushroom when the plant cultivation system combined directly with the mushroom cultivation subsystem.

  9. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  10. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  11. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  12. Basic Safety Considerations for Nuclear Power Plant Dealing with External Human Induced Events

    Energy Technology Data Exchange (ETDEWEB)

    Salem, W., E-mail: wafaasalem21@yahoo.com [Nuclear and Radiological Regulatory Authority (Egypt)

    2014-10-15

    Facilities and human activities in the region in which a nuclear power plant is located may under some conditions affect its safety. The potential sources of human induced events external to the plant should be identified and the severity of the possible resulting hazard phenomena should be evaluated to derive the appropriate design bases for the plant. They should also be monitored and periodically assessed over the lifetime of the plant to ensure that consistency with the design assumptions is maintained. External human induced events that could affect safety should be investigated in the site evaluation stage for every nuclear power plant site. The region is required to be examined for facilities and human activities that have the potential, under certain conditions, to endanger the nuclear power plant over its entire lifetime. Each relevant potential source is required to be identified and assessed to determine the potential interactions with personnel and plant items important to safety. (author)

  13. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    Science.gov (United States)

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  14. Brassinosteroids-Induced Systemic Stress Tolerance was Associated with Increased Transcripts of Several Defence-Related Genes in the Phloem in Cucumis sativus.

    Directory of Open Access Journals (Sweden)

    Pingfang Li

    Full Text Available Brassinosteroids (BRs, a group of naturally occurring plant steroidal compounds, are essential for plant growth, development and stress tolerance. Recent studies showed that BRs could induce systemic tolerance to biotic and abiotic stresses; however, the molecular mechanisms by which BRs signals lead to responses in the whole plant are largely unknown. In this study, 24-epibrassinosteroid (EBR-induced systemic tolerance in Cucumis sativus L. cv. Jinyan No. 4 was analyzed through the assessment of symptoms of photooxidative stress by chlorophyll fluorescence imaging pulse amplitude modulation. Expression of defense/stress related genes were induced in both treated local leaves and untreated systemic leaves by local EBR application. With the suppressive subtractive hybridization (SSH library using cDNA from the phloem sap of EBR-treated plants as the tester and distilled water (DW-treated plants as the driver, 14 transcripts out of 260 clones were identified. Quantitative Real Time-Polymerase Chain Reaction (RT-qPCR validated the specific up-regulation of these transcripts. Of the differentially expressed transcripts with known functions, transcripts for the selected four cDNAs, which encode an auxin-responsive protein (IAA14, a putative ankyrin-repeat protein, an F-box protein (PP2, and a major latex, pathogenesis-related (MLP-like protein, were induced in local leaves, systemic leaves and roots after foliar application of EBR onto mature leaves. Our results demonstrated that EBR-induced systemic tolerance is accompanied with increased transcript of genes in the defense response in other organs. The potential role of phloem mRNAs as signaling components in mediating BR-regulated systemic resistance is discussed.

  15. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum.

    Science.gov (United States)

    Snoeren, Tjeerd A L; Mumm, Roland; Poelman, Erik H; Yang, Yue; Pichersky, Eran; Dicke, Marcel

    2010-05-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA.

  16. Effect of four medicinal plants on Amyloid-β induced neurotoxicity in ...

    African Journals Online (AJOL)

    Amyloid-beta peptide (Aâ) is implicated in the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder. This study was designed to determine the effect of four medicinal plants used to treat neurodegenerative diseases on Aâ-induced cell death. Cytotoxicity of the ethanol extracts of the plants was ...

  17. Proceedings: Power Plant Electric Auxiliary Systems Workshop

    International Nuclear Information System (INIS)

    1992-06-01

    The EPRI Power Plant Electric Auxiliary Systems Workshop, held April 24--25, 1991, in Princeton, New Jersey, brought together utilities, architect/engineers, and equipment suppliers to discuss common problems with power plant auxiliary systems. Workshop participants presented papers on monitoring, identifying, and solving problems with auxiliary systems. Panel discussions focused on improving systems and existing and future plants. The solutions presented to common auxiliary system problems focused on practical ideas that can enhance plant availability, reduce maintenance costs, and simplify the engineering process. The 13 papers in these proceedings include: Tutorials on auxiliary electrical systems and motors; descriptions of evaluations, software development, and new technologies used recently by electric utilities; an analysis of historical performance losses caused by power plant auxiliary systems; innovative design concepts for improving auxiliary system performance in future power plants

  18. Irradiation-induced mutation experiments with eiploid and tetraploid tomato plants

    International Nuclear Information System (INIS)

    Boda, J.

    1979-01-01

    Tomato mutation experiments are described. The tomatoes used in the experiment were the diploid Reziszta and its autotetraploid variety. The experimental plants were exposed to an irradiation of 5000 rsd for 1-2 days, and after transplantation into the gamma field, to chronic irradiation during the whole growing season. The chronic treatment heavily reduced fertility in the generations of tetraploid tomato plants. Recurrent treatment of tetraploid led to further deterioration in fertility. Several berries were formed with few seeds or with no seeds at all. After three irradiations, the chlorophyll mutation frequency increased in the diploid and tetraploid tomato plants. For diploids, treatment applied at the seedling stage gave a lower chlorophyll mutation frequency. With tetraploids the same treatment induced similar chlorophyll mutation frequency. As regards to phenotypic variability of quantitative characteristics in diploid and tetraploid tomatoes, the single and repeated chronic irradiation induced no increase in the variability of properties like flowering time, weight, height etc. (author)

  19. Research on operation and maintenance support system adaptive to human recognition and understanding in human-centered plant

    International Nuclear Information System (INIS)

    Numano, Masayoshi; Matsuoka, Takeshi; Mitomo, N.

    2004-01-01

    As a human-centered plant, advanced nuclear power plant needs appropriate role sharing between human and mobile intelligent agents. Human-machine cooperation for plant operation and maintenance activities is also required with an advanced interface. Plant's maintenance is programmed using mobile robots working under the radiation environments instead of human beings. Operation and maintenance support system adaptive to human recognition and understanding should be developed to establish adequate human and machine interface so as to induce human capabilities to the full and enable human to take responsibility for plan's operation. Plant's operation and maintenance can be cooperative activities between human and intelligent automonous agents having surveillance and control functions. Infrastructure of multi-agent simulation system for the support system has been investigated and developed based on work plans derived from the scheduler. (T. Tanaka)

  20. How predictable are the behavioral responses of insects to herbivore induced changes in plants? Responses of two congeneric thrips to induced cotton plants.

    Directory of Open Access Journals (Sweden)

    Rehan Silva

    Full Text Available Changes in plants following insect attack are referred to as induced responses. These responses are widely viewed as a form of defence against further insect attack. In the current study we explore whether it is possible to make generalizations about induced plant responses given the unpredictability and variability observed in insect-plant interactions. Experiments were conducted to test for consistency in the responses of two congeneric thrips, Frankliniella schultzei Trybom and Frankliniella occidentalis Pergrande (Thysanoptera: Thripidae to cotton seedlings (Gossypium hirsutum Linneaus (Malvales: Malvaceae damaged by various insect herbivores. In dual-choice experiments that compared intact and damaged cotton seedlings, F. schultzei was attracted to seedlings damaged by Helicoverpa armigera (Hübner (Lepidoptera: Noctuidae, Tetranychus urticae (Koch (Trombidiforms: Tetranychidae, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae, F. schultzei and F. occidentalis but not to mechanically damaged seedlings. In similar tests, F. occidentalis was attracted to undamaged cotton seedlings when simultaneously exposed to seedlings damaged by H. armigera, T. molitor or F. occidentalis. However, when exposed to F. schultzei or T. urticae damaged plants, F. occidentalis was more attracted towards damaged plants. A quantitative relationship was also apparent, F. schultzei showed increased attraction to damaged seedlings as the density of T. urticae or F. schultzei increased. In contrast, although F. occidentalis demonstrated increased attraction to plants damaged by higher densities of T. urticae, there was a negative relationship between attraction and the density of damaging conspecifics. Both species showed greater attraction to T. urticae damaged seedlings than to seedlings damaged by conspecifics. Results demonstrate that the responses of both species of thrips were context dependent, making generalizations difficult to formulate.

  1. Plant host finding by parasitic plants: a new perspective on plant to plant communication.

    Science.gov (United States)

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-11-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much debated. To date, nearly all studies of volatile-mediated interactions among plant species have focused on the reception of herbivore-induced volatiles by neighboring plants. We recently documented volatile effects in another system, demonstrating that the parasitic plant Cuscuta pentagona uses volatile cues to locate its hosts. This finding may broaden the discussion regarding plant-to-plant communication, and suggests that new classes of volatile-meditated interactions among plant species await discovery.

  2. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato.

    Science.gov (United States)

    Coppola, Mariangela; Cascone, Pasquale; Madonna, Valentina; Di Lelio, Ilaria; Esposito, Francesco; Avitabile, Concetta; Romanelli, Alessandra; Guerrieri, Emilio; Vitiello, Alessia; Pennacchio, Francesco; Rao, Rosa; Corrado, Giandomenico

    2017-11-14

    Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant-to-plant communication allows specific neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were significantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream effects of this class of molecules to intraspecific plant-to-plant communication.

  3. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants.

    Science.gov (United States)

    MacLean, Allyson M; Sugio, Akiko; Makarova, Olga V; Findlay, Kim C; Grieve, Victoria M; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A

    2011-10-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches' Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches' broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host.

  4. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring.

    Science.gov (United States)

    Ataide, Livia M S; Pappas, Maria L; Schimmel, Bernardus C J; Lopez-Orenes, Antonio; Alba, Juan M; Duarte, Marcus V A; Pallini, Angelo; Schuurink, Robert C; Kant, Merijn R

    2016-11-01

    Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las, affects host preference behavior of its psyllid (Diaphorina citri Kuwayama vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of

  6. Promises in intelligent plant control systems

    International Nuclear Information System (INIS)

    Otaduy, P.J.

    1987-01-01

    The control system is the brain of a power plant. The traditional goal of control systems has been productivity. However, in nuclear power plants the potential for disaster requires safety to be the dominant concern, and the worldwide political climate demands trustworthiness for nuclear power plants. To keep nuclear generation as a viable option for power in the future, trust is the essential critical goal which encompasses all others. In most of today's nuclear plants the control system is a hybrid of analog, digital, and human components that focuses on productivity and operates under the protective umbrella of an independent engineered safety system. Operation of the plant is complex, and frequent challenges to the safety system occur which impact on their trustworthiness. Advances in nuclear reactor design, computer sciences, and control theory, and in related technological areas such as electronics and communications as well as in data storage, retrieval, display, and analysis have opened a promise for control systems with more acceptable human brain-like capabilities to pursue the required goals. This paper elaborates on the promise of futuristic nuclear power plants with intelligent control systems and addresses design requirements and implementation approaches

  7. Plant operator performance evaluation system

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Fukuda, Mitsuko; Kubota, Ryuji.

    1989-01-01

    A plant operator performance evaluation system to analyze plant operation records during accident training and to identify and classify operator errors has been developed for the purpose of supporting realization of a training and education system for plant operators. A knowledge engineering technique was applied to evaluation of operator behavior by both even-based and symptom-based procedures, in various situations including event transition due to multiple failures or operational errors. The system classifies the identified errors as to their single and double types based on Swain's error classification and the error levels reflecting Rasmussen's cognitive level, and it also evaluates the effect of errors on plant state and then classifies error influence, using 'knowledge for phenomena and operations', as represented by frames. It has additional functions for analysis of error statistics and knowledge acquisition support of 'knowledge for operations'. The system was applied to a training analysis for a scram event in a BWR plant, and its error analysis function was confirmed to be effective by operational experts. (author)

  8. The plant-window system

    International Nuclear Information System (INIS)

    Wood, R.T.; Mullens, J.A.; Naser, J.A.

    1995-01-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The increasing use of computer technology in the U.S. nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. However, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and used, to the proper users throughout the plant. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National Laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed On Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications (e.g., monitoring, analysis, diagnosis, and control applications) within a common environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces to define a flexible computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades

  9. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    Directory of Open Access Journals (Sweden)

    Tatsuya eKon

    2014-11-01

    Full Text Available Apple latent spherical virus (ALSV is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the CaMV 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation 0 plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification.

  10. Radiation-induced cell death in embryogenic cells of coniferous plants

    International Nuclear Information System (INIS)

    Watanabe, Yoshito; Homma-Takeda, Shino; Yukawa, Masae; Nishimura, Yoshikazu; Sasamoto, Hamako; Takahagi, Masahiko

    2004-01-01

    Reproductive processes are particularly radiosensitive in plant development, which was clearly illustrated in reduction of seed formation in native coniferous plants around Chernobyl after the nuclear accident. For the purpose to investigate the effects of ionizing radiation on embryonic formation in coniferous plants, we used an embryo-derived embryogenic cell culture of a Japanese native coniferous plant, Japanese cedar (Cryplomeria japonica). The embryogenic cells were so radiosensitive that most of the cells died by X-ray irradiation of 5 Gy. This indicated that the embryogenic cells are as radiosensitive as some mammalian cells including lymphocytes. We considered that this type of radiosensitive cell death in the embryogenic cells should be responsible for reproductive damages of coniferous plants by low dose of ionizing radiation. The cell death of the embryogenic cells was characteristic of nuclear DNA fragmentation, which is typically observed in radiation-induced programmed cell death, i.e. apoptosis, in mammalian cells. On the other hand, cell death with nuclear DNA fragmentation did not develop by X-ray irradiation in vegetative cells including meristematic cells of Japanese cedar. This suggests that an apoptosis-like programmed cell death should develop cell-specifically in embryogenic cells by ionizing radiation. The abortion of embryogenic cells may work to prevent transmission of radiation-induced genetic damages to the descendants. (author)

  11. Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity

    NARCIS (Netherlands)

    Dobnik, David; Lazar, Ana; Stare, Tjaša; Gruden, Kristina; Vleeshouwers, Vivianne G.A.A.; Žel, Jana

    2016-01-01

    Background: Virus-induced gene silencing (VIGS) is an optimal tool for functional analysis of genes in plants, as the viral vector spreads throughout the plant and causes reduced expression of selected gene over the whole plant. Potato (Solanum tuberosum) is one of the most important food crops,

  12. Application of expert system to nuclear power plant operation and guidance system

    International Nuclear Information System (INIS)

    Goto, M.; Takada, Y.

    1990-01-01

    For a nuclear power plant, it is important that an expert system supplies useful information to the operator to meet the increasing demand for high-level plant operation. It is difficult to build a user-friendly expert system that supplies useful information in real time using existing general-purpose expert system shells. Therefore a domain-specific expert system shell with a useful knowledge representation for problem-solving in nuclear power plant operation was selected. The Plant Table (P/T) representation format was developed for description of a production system for nuclear power plant operation knowledge. The P/T consists of plant condition representation designed to process multiple inputs and single output. A large number of operation inputs for several plant conditions are divided into 'timing conditions', 'preconditions' and 'completion conditions' to facilitate knowledge-base build-up. An expert system for a Nuclear Power Plant Operation and Guidance System utilizing the P/T was developed to assist automatic plant operation and surveillance test operation. In these systems, automatic plant operation signals to the plant equipment and operation guidance messages to the operators are both output based on the processing and assessment of plant operation conditions by the P/T. A surveillance test procedure guide for major safety-related systems, such as those for emergency core cooling systems, is displayed on a CRT (Cathode Ray Tube) and test results are printed out. The expert system for a Nuclear Power Plant Operation and Guidance System has already been successfully applied to Japanese BWR plants

  13. NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation.

    Science.gov (United States)

    Fernández-Crespo, Emma; Scalschi, Loredana; Llorens, Eugenio; García-Agustín, Pilar; Camañes, Gemma

    2015-11-01

    NH4 (+) nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 (+) nutrition (N-NH4 (+))-induced resistance (NH4 (+)-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 (+) plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 (+) toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 (+) plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 (+)-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 (+)-IR. The metabolic profile revealed that infected N-NH4 (+) plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 (+) nutrition) and resistance to subsequent Pst infection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Chapter 15. Plant pathology and managing wildland plant disease systems

    Science.gov (United States)

    David L. Nelson

    2004-01-01

    Obtaining specific, reliable knowledge on plant diseases is essential in wildland shrub resource management. However, plant disease is one of the most neglected areas of wildland resources experimental research. This section is a discussion of plant pathology and how to use it in managing plant disease systems.

  15. A Hydroponic Co-cultivation System for Simultaneous and Systematic Analysis of Plant/Microbe Molecular Interactions and Signaling.

    Science.gov (United States)

    Nathoo, Naeem; Bernards, Mark A; MacDonald, Jacqueline; Yuan, Ze-Chun

    2017-07-22

    An experimental design mimicking natural plant-microbe interactions is very important to delineate the complex plant-microbe signaling processes. Arabidopsis thaliana-Agrobacterium tumefaciens provides an excellent model system to study bacterial pathogenesis and plant interactions. Previous studies of plant-Agrobacterium interactions have largely relied on plant cell suspension cultures, the artificial wounding of plants, or the artificial induction of microbial virulence factors or plant defenses by synthetic chemicals. However, these methods are distinct from the natural signaling in planta, where plants and microbes recognize and respond in spatial and temporal manners. This work presents a hydroponic cocultivation system where intact plants are supported by metal mesh screens and cocultivated with Agrobacterium. In this cocultivation system, no synthetic phytohormone or chemical that induces microbial virulence or plant defense is supplemented. The hydroponic cocultivation system closely resembles natural plant-microbe interactions and signaling homeostasis in planta. Plant roots can be separated from the medium containing Agrobacterium, and the signaling and responses of both the plant hosts and the interacting microbes can be investigated simultaneously and systematically. At any given timepoint/interval, plant tissues or bacteria can be harvested separately for various "omics" analyses, demonstrating the power and efficacy of this system. The hydroponic cocultivation system can be easily adapted to study: 1) the reciprocal signaling of diverse plant-microbe systems, 2) signaling between a plant host and multiple microbial species (i.e. microbial consortia or microbiomes), 3) how nutrients and chemicals are implicated in plant-microbe signaling, and 4) how microbes interact with plant hosts and contribute to plant tolerance to biotic or abiotic stresses.

  16. Use of ionizing radiation induced mutation in the genetic development of plants

    International Nuclear Information System (INIS)

    Barragan, Raul; Rubio, Santiago

    1993-01-01

    The objective of this article is to present a general focus on the use of induced mutations in the improvement of plants. This article describes some basic aspects that must be well known by the breeder that hopes to incorporate in his programm the technique of induced mutation by radiations. In this paper are included the results of two trials done by the researchers of the department of plant breeding so that it can be used as reference to determinate the importance of this technique

  17. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride.

    Science.gov (United States)

    Medeiros, Hugo Agripino de; Araújo Filho, Jerônimo Vieira de; Freitas, Leandro Grassi de; Castillo, Pablo; Rubio, María Belén; Hermosa, Rosa; Monte, Enrique

    2017-01-10

    Root-knot nematodes (RKN) are major crop pathogens worldwide. Trichoderma genus fungi are recognized biocontrol agents and a direct activity of Trichoderma atroviride (Ta) against the RKN Meloidogyne javanica (Mj), in terms of 42% reduction of number of galls (NG), 60% of number of egg masses and 90% of number of adult nematodes inside the roots, has been observed in tomato grown under greenhouse conditions. An in vivo split-root designed experiment served to demonstrate that Ta induces systemic resistance towards Mj, without the need for the organisms to be in direct contact, and significantly reduces NG (20%) and adult nematodes inside tomato roots (87%). The first generation (F1) of Ta-primed tomato plants inherited resistance to RKN; although, the induction of defenses occurred through different mechanisms, and in varying degrees, depending on the Ta-Mj interaction. Plant growth promotion induced by Ta was inherited without compromising the level of resistance to Mj, as the progeny of Ta-primed plants displayed increased size and resistance to Mj without fitness costs. Gene expression results from the defense inductions in the offspring of Ta-primed plants, suggested that an auxin-induced reactive oxygen species production promoted by Ta may act as a major defense strategy during plant growth.

  18. Piping benchmark problems for the ABB/CE System 80+ Standardized Plant

    International Nuclear Information System (INIS)

    Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.

    1994-07-01

    To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for the ABB/Combustion Engineering System 80+ Standardized Plant, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the System 80+ standard design. It will be required that the combined license licensees demonstrate that their solution to these problems are in agreement with the benchmark problem set. The first System 80+ piping benchmark is a uniform support motion response spectrum solution for one section of the feedwater piping subjected to safe shutdown seismic loads. The second System 80+ piping benchmark is a time history solution for the feedwater piping subjected to the transient loading induced by a water hammer. The third System 80+ piping benchmark is a time history solution of the pressurizer surge line subjected to the accelerations induced by a main steam line pipe break. The System 80+ reactor is an advanced PWR type

  19. Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules

    Directory of Open Access Journals (Sweden)

    Pilar eMartínez-Hidalgo

    2015-09-01

    Full Text Available Micromonospora is a Gram positive bacterium that can be isolated from nitrogen fixing nodules from healthy leguminous plants, where they could be beneficial to the plant. Their plant growth promoting activity in legume and non-legume plants has been previously demonstrated. The present study explores the ability of Micromonospora strains to control fungal pathogens and to stimulate plant immunity. Micromonospora strains isolated from surface sterilized nodules of alfalfa showed in vitro antifungal activity against several pathogenic fungi. Moreover, root inoculation of tomato plants with these Micromonospora strains effectively reduced leaf infection by the fungal pathogen Botrytis cinerea, despite spatial separation between both microorganisms. This induced systemic resistance, confirmed in different tomato cultivars, is long lasting. Gene expression analyses evidenced that Micromonospora stimulates the plant capacity to activate defense mechanisms upon pathogen attack. The defensive response of tomato plants inoculated with Micromonospora spp. differs from that of non-inoculated plants, showing a stronger induction of jasmonate-regulated defenses when the plant is challenged with a pathogen. The hypothesis of jasmonates playing a key role in this defense priming effect was confirmed using defense-impaired tomato mutants, since the JA-deficient line def1 was unable to display a long term induced resistance upon Micromonospora spp. inoculation.In conclusion, nodule isolated Micromonospora strains should be considered excellent candidates as biocontrol agents as they combine both direct antifungal activity against plant pathogens and the ability to prime plant immunity.

  20. System identification of the Arabidopsis plant circadian system

    Science.gov (United States)

    Foo, Mathias; Somers, David E.; Kim, Pan-Jun

    2015-02-01

    The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

  1. UV-induced N2O emission from plants

    Science.gov (United States)

    Bruhn, Dan; Albert, Kristian R.; Mikkelsen, Teis N.; Ambus, Per

    2014-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone-depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2h-1, mostly due to the UV component. The emission response to UV-A is of the same magnitude as that to UV-B. Therefore, UV-A is more important than UV-B given the natural UV-spectrum at Earth's surface. Plants also emitted N2O in darkness, although at reduced rates. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  2. Plant growth-promoting rhizobacteria (PGPR: their potential as antagonists and biocontrol agents

    Directory of Open Access Journals (Sweden)

    Anelise Beneduzi

    2012-01-01

    Full Text Available Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR. PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR in plants resembles pathogen-induced systemic acquired resistance (SAR under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems.

  3. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance.

    Science.gov (United States)

    Park, Sang-Wook; Kaimoyo, Evans; Kumar, Dhirendra; Mosher, Stephen; Klessig, Daniel F

    2007-10-05

    In plants, the mobile signal for systemic acquired resistance (SAR), an organism-wide state of enhanced defense to subsequent infections, has been elusive. By stimulating immune responses in mosaic tobacco plants created by grafting different genetic backgrounds, we showed that the methyl salicylate (MeSA) esterase activity of salicylic acid-binding protein 2 (SABP2), which converts MeSA into salicylic acid (SA), is required for SAR signal perception in systemic tissue, the tissue that does not receive the primary (initial) infection. Moreover, in plants expressing mutant SABP2 with unregulated MeSA esterase activity in SAR signal-generating, primary infected leaves, SAR was compromised and the associated increase in MeSA levels was suppressed in primary infected leaves, their phloem exudates, and systemic leaves. SAR was also blocked when SA methyl transferase (which converts SA to MeSA) was silenced in primary infected leaves, and MeSA treatment of lower leaves induced SAR in upper untreated leaves. Therefore, we conclude that MeSA is a SAR signal in tobacco.

  4. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?

    Science.gov (United States)

    Röder, Gregory; Rahier, Martine; Naisbit, Russell E

    2011-05-04

    Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae) that possesses constitutive chemical defence (pyrrolizidine alkaloids) and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae). Plants were induced in the field using chemical elicitors of the jasmonic acid (JA) and salicylic acid (SA) pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.

  5. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?

    Directory of Open Access Journals (Sweden)

    Gregory Röder

    2011-05-01

    Full Text Available Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae that possesses constitutive chemical defence (pyrrolizidine alkaloids and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae. Plants were induced in the field using chemical elicitors of the jasmonic acid (JA and salicylic acid (SA pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.

  6. Developments in power plant cooling systems

    International Nuclear Information System (INIS)

    Agarwal, N.K.

    1993-01-01

    A number of cooling systems are used in the power plants. The condenser cooling water system is one of the most important cooling systems in the plant. The system comprises a number of equipment. Plants using sea water for cooling are designed for the very high corrosion effects due to sea water. Developments are taking place in the design, materials of construction as well as protection philosophies for the various equipment. Power optimisation of the cycle needs to be done in order to design an economical system. Environmental (Protection) Act places certain limitations on the effluents from the plant. An attempt has been made in this paper to outline the developing trends in the various equipment in the condenser cooling water systems used at the inland as well as coastal locations. (author). 5 refs., 6 refs

  7. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    Science.gov (United States)

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  8. External main-induced events in relation to nuclear power plant siting

    International Nuclear Information System (INIS)

    1981-01-01

    This safety Guide recomments procedures and provides information for use in implementing that part of the code of safety in Nuclear Power Plant Siting (IAEA Safety Series No. 50-C-S) which concerns man-induced events external to the plant, up to the evaluation of corresponding design basis parameters. Like the code, the Guide forms part of the IAEA's programme, referred to as the NUSS programme, for establishing codes of practice and safety Guides relating to land-based stationary thermal neutron power plants

  9. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    Science.gov (United States)

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    Science.gov (United States)

    Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  11. Aquatic food production modules in bioregenerative life support systems based on higher plants

    Science.gov (United States)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  12. Plant Water Content is the Best Predictor of Drought-induced Mortality

    Science.gov (United States)

    Sapes, G.; Roskilly, B.; Dobrowski, S.; Sala, A.

    2017-12-01

    Predicting drought-induced forest mortality remains extremely challenging. Recent research has shown that both plant hydraulics and stored non-structural carbohydrates (NSC) interact during drought-induced mortality. The strong interaction between these two variables and the fact that they are both difficult to measure render drought-induced plant mortality extremely difficult to monitor and predict. A variable that is easier to measure and that integrates hydraulic transport and carbohydrate dynamics may, therefore, improve our ability to monitor and predict mortality. Here, we tested whether plant water content is such an integrator variable and, therefore, a better predictor of mortality under drought. We subjected 250 two-year-old ponderosa pine seedlings to drought until they died in a greenhouse experiment. Periodically during the dry down, we measured percent loss of hydraulic conductivity (PLC), NSC concentration (starch and soluble sugars), and tissue volumetric water content (VWC) in roots, stems and leaves. At each measurement time, a separate set of seedlings were re-watered to estimate the probability of mortality at the population level. Linear models were used to explore whether PLC and NSC were linked to VWC and to determine which of the three variables predicted mortality the best. As expected, plants lost hydraulic conductivity in stems and roots during the dry down. Starch concentrations also decreased in all organs as the drought proceeded. In contrast, soluble sugars increased in stems and roots, consistent with the conversion of stored NSCs into osmotically active compounds. Models containing both PLC and NSC concentrations as predictors of VWC were highly significant in all organs and at the whole plant level, indicating that water content is influenced by both PLC and NSCs. PLC, NSC, and VWC explained mortality across organs and at the whole plant level, but VWC was the best predictor (R2 = 0.99). Our results indicate that plant water

  13. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV)

    Science.gov (United States)

    Wuriyanghan, Hada; Falk, Bryce W.

    2013-01-01

    The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will

  14. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  15. Analysis of a Plant Transcriptional Regulatory Network Using Transient Expression Systems.

    Science.gov (United States)

    Díaz-Triviño, Sara; Long, Yuchen; Scheres, Ben; Blilou, Ikram

    2017-01-01

    In plant biology, transient expression systems have become valuable approaches used routinely to rapidly study protein expression, subcellular localization, protein-protein interactions, and transcriptional activity prior to in vivo studies. When studying transcriptional regulation, luciferase reporter assays offer a sensitive readout for assaying promoter behavior in response to different regulators or environmental contexts and to confirm and assess the functional relevance of predicted binding sites in target promoters. This chapter aims to provide detailed methods for using luciferase reporter system as a rapid, efficient, and versatile assay to analyze transcriptional regulation of target genes by transcriptional regulators. We describe a series of optimized transient expression systems consisting of Arabidopsis thaliana protoplasts, infiltrated Nicotiana benthamiana leaves, and human HeLa cells to study the transcriptional regulations of two well-characterized transcriptional regulators SCARECROW (SCR) and SHORT-ROOT (SHR) on one of their targets, CYCLIN D6 (CYCD6).Here, we illustrate similarities and differences in outcomes when using different systems. The plant-based systems revealed that the SCR-SHR complex enhances CYCD6 transcription, while analysis in HeLa cells showed that the complex is not sufficient to strongly induce CYCD6 transcription, suggesting that additional, plant-specific regulators are required for full activation. These results highlight the importance of the system and suggest that including heterologous systems, such as HeLa cells, can provide a more comprehensive analysis of a complex gene regulatory network.

  16. Development of A Plant Navigation System

    International Nuclear Information System (INIS)

    Furuta, Tomihiko; Nakagawa, Tsuneo; Kubota, Ryuji; Ikeda, Kouji

    1998-01-01

    A 'Plant Navigation System (PNS)' is under development to assist nuclear power plant (NPP) operators by automatically displaying the plant situation and plant operational procedures on a CRT screen when abnormalities occur. The operation procedures given in a symptom-oriented manual are expressed in a tree - type flowchart (modified PAD). The optimum operation procedure for an NPP is selected automatically using built-in diagnostic logics based on the current status of the NPP. Concerning the plant situation, the PNS displays important information only on the current status of the NPP. A prototype PNS system is being constructed. (authors)

  17. Plant natriuretic peptides: Systemic regulators of plant homeostasis and defense that can affect cardiomyoblasts

    KAUST Repository

    Gehring, Christoph A.

    2010-09-01

    Immunologic evidence has suggested the presence of biologically active natriuretic peptide (NPs) hormones in plants because antiatrial NP antibodies affinity purify biologically active plant NPs (PNP). In the model plant, an Arabidopsis thaliana PNP (AtPNP-A) has been identified and characterized. AtPNP-A belongs to a novel class of molecules that share some similarity with the cell wall loosening expansins but do not contain the carbohydrate-binding wall anchor thus suggesting that PNPs and atrial natriuretic peptides are heterologs. AtPNP-A acts systemically, and this is consistent with its localization in the apoplastic extracellular space and the conductive tissue. Furthermore, AtPNP-A signals via the second messenger cyclic guanosine 3′,5′-monophosphate and modulates ion and water transport and homeostasis. It also plays a critical role in host defense against pathogens. AtPNP-A can be classified as novel paracrine plant hormone because it is secreted into the apoplastic space in response to stress and can enhance its own expression. Interestingly, purified recombinant PNP induces apo-ptosis in a dose-dependent manner and was most effective on cardiac myoblast cell lines. Because PNP is mimicking the effect of ANP in some instances, PNP may prove to provide useful leads for development of novel therapeutic NPs. Copyright © 2013 by The American Federation for Medical Research.

  18. Plant natriuretic peptides: Systemic regulators of plant homeostasis and defense that can affect cardiomyoblasts

    KAUST Repository

    Gehring, Christoph A; Irving, Helen R.

    2010-01-01

    Immunologic evidence has suggested the presence of biologically active natriuretic peptide (NPs) hormones in plants because antiatrial NP antibodies affinity purify biologically active plant NPs (PNP). In the model plant, an Arabidopsis thaliana PNP (AtPNP-A) has been identified and characterized. AtPNP-A belongs to a novel class of molecules that share some similarity with the cell wall loosening expansins but do not contain the carbohydrate-binding wall anchor thus suggesting that PNPs and atrial natriuretic peptides are heterologs. AtPNP-A acts systemically, and this is consistent with its localization in the apoplastic extracellular space and the conductive tissue. Furthermore, AtPNP-A signals via the second messenger cyclic guanosine 3′,5′-monophosphate and modulates ion and water transport and homeostasis. It also plays a critical role in host defense against pathogens. AtPNP-A can be classified as novel paracrine plant hormone because it is secreted into the apoplastic space in response to stress and can enhance its own expression. Interestingly, purified recombinant PNP induces apo-ptosis in a dose-dependent manner and was most effective on cardiac myoblast cell lines. Because PNP is mimicking the effect of ANP in some instances, PNP may prove to provide useful leads for development of novel therapeutic NPs. Copyright © 2013 by The American Federation for Medical Research.

  19. Analysis of Piping Systems for Life Extension of Heavy Water Plants in India

    International Nuclear Information System (INIS)

    Mishra, Rajesh K.; Soni, R.S.; Kushwaha, H.S.; Raj, V. Venkat

    2002-01-01

    Heavy water production in India has achieved many milestones in the past. Two of the successfully running heavy water plants are on the verge of completion of their design life in the near future. One of these two plants, situated at Kota, is a hydrogen sulfide based plant and the other one at Tuticorin is an ammonia-based plant. Various exercises have been planned with an aim to assess the fatigue usage for the various components of these plants in order to extend their life. Considering the process parameters and the past history of the plant performance, critical piping systems and equipment are identified. Analyses have been carried out for these critical piping systems for mainly two kinds of loading, viz. sustained loads and the expansion loads. Static analysis has been carried out to find the induced stress levels due to sustained as well as thermal expansion loading as per the design code ANSI B31.3. Due consideration has been given to the design corrosion allowance while evaluating the stresses due to sustained loads. At the locations where the induced stresses (S L ) due to the sustained loads are exceeding the allowable limits (S h ), exercises have been carried out considering the reduced corrosion allowance value. This strategy is adopted in view of the fact that the thickness measurements carried out at site at various critical locations show a very low rate of corrosion. It has been possible to qualify the system with reduced corrosion allowance values however, it is recommended to keep that location under periodic monitoring. The strategy adopted for carrying out analysis for thermal expansion loading is to qualify the system as per the code allowable value (S a ). If the stresses are more than the allowable value, credit of liberal allowable value as suggested in the code i.e., with the addition of the term (S h -S L ) to the term 0.25 S h , has been taken. However, if at any location, it is found that thermal stress is high, fatigue analysis has

  20. Design and simulation of a plant control system for a GCFR demonstration plant

    International Nuclear Information System (INIS)

    Estrine, E.A.; Greiner, H.G.

    1980-02-01

    A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations

  1. Monitoring support system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashikawa, Yuichi; Kubota, Rhuji; Tanaka, Keiji; Takano, Yoshiyuki

    1996-01-01

    The nuclear power plants in Japan reach to 49 plants and supply 41.19 million kW in their installed capacities, which is equal to about 31% of total electric power generation and has occupied an important situation as a stable energy supplying source. As an aim to keeping safe operation and working rate of the power plants, various monitoring support systems using computer technology, optical information technology and robot technology each advanced rapidly in recent year have been developed to apply to the actual plants for a plant state monitoring system of operators in normal operation. Furthermore, introduction of the emergent support system supposed on accidental formation of abnormal state of the power plants is also investigated. In this paper, as a monitoring system in the recent nuclear power plants, design of control panel of recent central control room, introduction to its actual plant and monitoring support system in development were described in viewpoints of improvement of human interface, upgrade of sensor and signal processing techniques, and promotion of information service technique. And, trend of research and development of portable miniature detector and emergent monitoring support system are also introduced in a viewpoint of labor saving and upgrade of the operating field. (G.K.)

  2. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses

    NARCIS (Netherlands)

    Jansen, J.J.; Van Dam, N.M.; Hoefsloot, H.C.J.; Smilde, A.K.

    2009-01-01

    Background Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their

  3. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses

    NARCIS (Netherlands)

    Jansen, J.J.; van Dam, N.M.; Hoefsloot, H.C.J.; Smilde, A.K.

    2009-01-01

    Background: Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their

  4. Using a plant health system framework to assess plant clinic performance in Uganda

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Matsiko, Frank B.

    2016-01-01

    and expand, new analytical frameworks and tools are needed to identify factors influencing performance of services and systems in specific contexts, and to guide interventions. In this paper we apply a plant health system framework to assess plant clinic performance, using Uganda as a case study...... factors, influenced by basic operational and financial concerns, inter-institutional relations and public sector policies. Overall, there was a fairly close match between the plant health system attributes and plant clinic performance, suggesting that the framework can help explain system functioning....... A comparative study of plant clinics was carried out between July 2010 and September 2011 in the 12 districts where plant clinics were operating at that time. The framework enabled us to organise multiple issues and identify key features that affected the plant clinics. Clinic performance was, among other...

  5. Plant introduction system applying virtual reality

    International Nuclear Information System (INIS)

    Kasai, Yasusuke; Tanaka, Kazuo; Kimura, Katsumi; Nakakosi, Tetsuhiro

    1995-01-01

    We developed the prototype of the introduction system for nuclear power plant applying 3D-CAD data and the virtual reality (V.R) technologies. For the purpose of the public acceptance (PA), the use of the V.R technologies, such as CG stereographic, will be interesting for the public. Also, it is very important to introduce the components of the plant in detail, which will become easy by using the 3D-CAD data of the nuclear plant. We made a prototype system for introducing the main portion of the nuclear power plant, such as main control room, containment vessel or turbine building, applying CG stereographic by plant 3D data and artificial voice guidance for the explanations. We have exhibited this system in two local festivals at the plant sites. It has been efficient for creating plant scene by using 3D-CAD from the viewpoint of cost, and stereographic has been much attractive to the resident. The detail scenario must be investigated from the viewpoint of PA effect. Also the performance of the graphics workstation should be increased to promote the quality of the CG movie. But we think that this system will have much effective by its novelty and flexibility. (author)

  6. Information management systems improve advanced plant design

    International Nuclear Information System (INIS)

    Turk, R.S.; Serafin, S.A.; Leckley, J.B.

    1994-01-01

    Computer-aided engineering tools are proving invaluable in both the design and operation of nuclear power plants. ABB Combustion Engineering's Advanced Light Water Reactor (ALWR) features a computerized Information Management System (IMS) as an integral part of the design. The System 80+IMS represents the most powerful information management tool for Nuclear Power Plants commercially available today. Developed by Duke Power Company specifically for use by nuclear power plant owner operators, the IMS consists of appropriate hardware and software to manage and control information flow for all plant related work or tasks in a systematic, consistent, coordinated and informative manner. A significant feature of this IMS is that it is primarily based on plant data. The principal design tool, PASCE (Plant Application and Systems from Combustion Engineering), is comprised of intelligent databases that describe the design and from which accurate plant drawings are created. Additionally the IMS includes, at its hub, a relational database management system and an associated document management system. The data-based approach and applications associated with the IMS were developed, and have proven highly effective, for plant modifications, configuration management, and operations and maintenance applications at Duke Power Company's operating nuclear plants. This paper presents its major features and benefits. 4 refs

  7. Interaction of Plant Extracts with Central Nervous System Receptors

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2017-02-01

    Full Text Available Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the

  8. Surveillance system for nuclear power plants

    International Nuclear Information System (INIS)

    Mizeracki, M.T.

    1981-01-01

    This paper describes an integrated surveillance system for nuclear power plant application. The author explores an expanded role for closed circuit television, with remotely located cameras and infrared scanners as the basic elements. The video system, integrated with voice communication, can enhance the safe and efficient operation of the plant, by improving the operator's knowledge of plant conditions. 7 refs

  9. The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death.

    Science.gov (United States)

    Yu, Xiaoli; Tang, Junli; Wang, Qunqing; Ye, Wenwu; Tao, Kai; Duan, Shuyi; Lu, Chenchen; Yang, Xinyu; Dong, Suomeng; Zheng, Xiaobo; Wang, Yuanchao

    2012-10-01

    • The Phytophthora sojae genome encodes hundreds of RxLR effectors predicted to manipulate various plant defense responses, but the molecular mechanisms involved are largely unknown. Here we have characterized in detail the P. sojae RxLR effector Avh241. • To determine the function and localization of Avh241, we transiently expressed it on different plants. Silencing of Avh241 in P. sojae, we determined its virulence during infection. Through the assay of promoting infection by Phytophthora capsici to Nicotiana benthamiana, we further confirmed this virulence role. • Avh241 induced cell death in several different plants and localized to the plant plasma membrane. An N-terminal motif within Avh241 was important for membrane localization and cell death-inducing activity. Two mitogen-activated protein kinases, NbMEK2 and NbWIPK, were required for the cell death triggered by Avh241 in N. benthamiana. Avh241 was important for the pathogen's full virulence on soybean. Avh241 could also promote infection by P. capsici and the membrane localization motif was not required to promote infection. • This work suggests that Avh241 interacts with the plant immune system via at least two different mechanisms, one recognized by plants dependent on subcellular localization and one promoting infection independent on membrane localization. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  10. The Responses of Antioxidant System against the Heavy Metal-Induced Stress in Tomato

    Directory of Open Access Journals (Sweden)

    Dursun KISA

    2017-12-01

    Full Text Available Plants maintain their life cycles under the various environmental conditions such as oxidative stress induced by heavy metals. Accumulation of metal ions in plants causes the formation of free radicals and stimulates the antioxidative defense systems. In this study, the activities of APX, POD, and SOD are investigated in the leaves and roots of tomato cultivated under the heavy metal-induced stress. The activities of APX, POD, and SOD exhibited remarkable induction with the treatment of Cd, Cu and Pb (10, 20 and 50 ppm in the leaves of tomato compared to control plants except for 50 ppm Pb. In roots, APX activity changed depending on the heavy metal types and concentrations, while Cd clearly increased it with stress conditions, but Cu decreased in tomato compared to control. The activity of POD clearly exhibited that the all doses of heavy metals reduced the enzyme activity in roots polluted with heavy metals. The treatment of Cd (10, 20 and 50 ppm significantly increased the activity of SOD, however, Cu showed the opposite effect which significantly decreased with increasing doses in roots compared to uncontaminated plants. Also, roots from plants grown on the high concentration of Pb (20 and 50 ppm induced the activity of SOD. Briefly, it is clear responses which Cd significantly raised the activities of APX and SOD in leaves and roots of tomato. The decreases caused by these metals in the activity of POD and Cu in the activities of APX and SOD in roots of tomato can be clarified by the result of heavy metal-induced the over production of free radical.

  11. Plant growth-promoting Methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogens.

    Science.gov (United States)

    Madhaiyan, M; Suresh Reddy, B V; Anandham, R; Senthilkumar, M; Poonguzhali, S; Sundaram, S P; Sa, Tongmin

    2006-10-01

    This study, framed in two different phases, studied the plant-growth promotion and the induction of systemic resistance in groundnut by Methylobacterium. Seed imbibition with Methylobacterium sp. increased germination by 19.5% compared with controls. Combined inoculation of Methylobacterium sp. with Rhizobium sp. also significantly increased plant growth, nodulation, and yield attributes in groundnut compared with individual inoculation of Rhizobium sp. Methylobacterium sp. challenge-inoculated with Aspergillus niger/Sclerotium rolfsii in groundnut significantly enhanced germination percentage and seedling vigour and showed increased phenylalanine ammonia lyase (PAL), beta-1,3-glucanase, and peroxidase (PO) activities. Under pot-culture conditions, in Methylobacterium sp. seed-treated groundnut plants challenge-inoculated with A. niger/S. rolfsii through foliar sprays on day 30, the activities of enzymes PO, PAL, and beta-1,3-glucanase increased constantly from 24 to 72 hours, after which decreased activity was noted. Five isozymes of polyphenol oxidase and PO could be detected in Methylobacterium-treated plants challenged with A. niger/S. rolfsii. Induced systemic resistance activity in groundnut against rot pathogens in response to methylotrophic bacteria suggests the possibility that pink-pigmented facultative methylotrophic bacteria might be used as a means of biologic disease control.

  12. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    International Nuclear Information System (INIS)

    Subudhi, M.; Carroll, D.P.; Kasturi, S.

    1994-01-01

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant's electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant's protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well

  13. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant.

    Science.gov (United States)

    Zhang, Li; Lilley, Catherine J; Imren, Mustafa; Knox, J Paul; Urwin, Peter E

    2017-01-01

    Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida , Heterodera glycines , Heterodera avenae and Heterodera filipjevi , in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  14. Multi-variable systems in nuclear power plant

    International Nuclear Information System (INIS)

    Collins, G.B.; Howell, J.

    1982-01-01

    Nuclear power plant are complex multi-variable dynamically interactive systems which employ many facets of systems and control theory in their analysis and design. Whole plant mathematical models must be developed and validated and in addition to their obvious role in control system synthesis and design, they are also widely used for operational constraint and plant malfunction analysis. The need for and scope of an integrated power plant control system is discussed and, as a specific example, the design of an integrated feedwater regulator is reviewed. The multi-variable frequency response analysis employed in the design is described in detail. (author)

  15. Research highlights on: the use of induced mutations for plant improvement in Malaysia

    International Nuclear Information System (INIS)

    1998-01-01

    Nuclear techniques play an increasingly valuable role in agricultural research and development. The collaborative work of IAEA and FAO has been instrumental to the progress. The nuclear techniques are now used in a wide range of applications including crop improvement. In the initial years, many plant breeders had difficulty in believing that induced mutations through radiation had any relevance to their conventional procedures. But attitudes have greatly changed, in great part due to the Joint Division's programmes. The result was a high number of improved new varieties bred to date with the help of induced mutations, including some in this country. This publication is intended primarily to gather and put in order all information on the research and work on the use of induced mutations for plant breeding in the country. Its main purpose is to see if ensuing research efforts could be better coordinated, focused and enhanced in order to supplement the plant improvement programmes in the country. The task of collating the relevant information was not without difficulty since many of the work had been carried out long time ago; their objectives generally were quite broad; and the results essentially not published, with some exceptions. Section I begins with thefntroduction, giving a brief account of the developments of induced mutations in Malaysia, the facilities available in various institutions and the role played by the National Committee on the Use of Mutations in Plant Breeding. The collaborative efforts of IAEA and IFNCC are also briefly described here, together with all the activates which they had supported in the past. Section 11 briefly describes the induced mutations and how they are produced and utilised in the plant improvement programmes, taking into consideration the safety precautions required, and the requirements of different crop species. Section III describes in greater details all the research that had been carried out in the country. The

  16. Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.

    Science.gov (United States)

    Li, Tao; Blande, James D

    2017-04-01

    Plant volatiles play crucial roles in signaling between plants and their associated community members, but their role in within-plant signaling remains largely unexplored, particularly under field conditions. Using a system comprising the hybrid aspen (Populus tremula x tremuloides) and the specialized herbivorous leaf beetle (Phratora laticollis) and, combining field, greenhouse and laboratory experiments, we examined whether local damage triggered systemic responses in undamaged branches that lack vascular connection to the damaged branches, and to what extent this was caused by airborne volatile signals versus internal signals. An experiment tracing dye through the vasculature of saplings revealed no downward movement of the dye from upper to lower branches, suggesting a lack of vascular connectivity among branches. However, we found under both field and laboratory conditions that herbivore feeding on upper branches elicited volatile emissions by undamaged lower branches. Greenhouse experiments manipulating air contact between damaged and undamaged branches showed that systemic induction of volatiles was almost eliminated when air contact was interrupted. Our findings clearly demonstrate that herbivore-induced volatiles overcome vascular constraints and mediate within-plant signaling. Further, we found that volatile signaling led to induction of different classes of volatiles under field and environment controlled conditions, with a weaker response observed in the field. This difference not only reflects the dose- and time-dependent nature of volatile signaling, but also points out that future studies should focus more on field observations to better understand the ecological role of volatile-mediated within-plant signaling.

  17. A plant-based chemical genomics screen for the identification of flowering inducers.

    Science.gov (United States)

    Fiers, Martijn; Hoogenboom, Jorin; Brunazzi, Alice; Wennekes, Tom; Angenent, Gerco C; Immink, Richard G H

    2017-01-01

    Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to influence this process. We aimed to discover novel compounds that are able to induce flowering in the model plant Arabidopsis. For this purpose we developed a plant-based screening platform that can be used in a chemical genomics study. Here we describe the set-up of the screening platform and various issues and pitfalls that need to be addressed in order to perform a chemical genomics screening on Arabidopsis plantlets. We describe the choice for a molecular marker, in combination with a sensitive reporter that's active in plants and is sufficiently sensitive for detection. In this particular screen, the firefly Luciferase marker was used, fused to the regulatory sequences of the floral meristem identity gene APETALA1 (AP1) , which is an early marker for flowering. Using this screening platform almost 9000 compounds were screened, in triplicate, in 96-well plates at a concentration of 25 µM. One of the identified potential flowering inducing compounds was studied in more detail and named Flowering1 (F1). F1 turned out to be an analogue of the plant hormone Salicylic acid (SA) and appeared to be more potent than SA in the induction of flowering. The effect could be confirmed by watering Arabidopsis plants with SA or F1, in which F1 gave a significant reduction in time to flowering in comparison to SA treatment or the control. In this study a chemical genomics screening platform was developed to discover compounds that can induce flowering in Arabidopsis. This platform was used successfully, to identify a compound that can speed-up flowering in Arabidopsis.

  18. Plant control system upgrades in the context of industry trends towards plant life-extension

    International Nuclear Information System (INIS)

    De Grosbois, J.; Basso, R.; Hepburn, A.; Kumar, V.

    2002-01-01

    Domestic CANDU nuclear plants were brought online between 1972 and 1986. Over the next decade, most of these stations will be nearing the end of their designed operating life. Effort has traditionally been placed on ensuring that the existing installed plant control system equipment could operate reliably until the end of this design life. Until recently, little attention has been given to plant control system upgrades or replacements to meet the expected requirement for 30+ years of additional plant operation following potential plant refurbishments. Industry developments are changing this thinking. The combination of expected increases in electricity demand (and prices), and the many recent successful turnaround stories of U.S. nuclear power plants has resulted in new interest in plant life improvement and plant life extension programs. Plant control system upgrade decisions are now being driven by the need to replace or upgrade these systems to support plant life extension. This article is the first of several that investigate aspects of plant control system upgrades or replacement, specifically in the context of the CANDU station digital control computers (DCCs). It sets the context for the discussion in the subsequent articles by providing a brief review of industry trends favouring plant refurbishment, by outlining the basic issues of aging and obsolescence of control system equipment, by establishing the need for upgrades and replacements, and by introducing some of the basic challenges to be addressed by the industry as it moves forward. (author)

  19. Plant-wide integrated equipment monitoring and analysis system

    International Nuclear Information System (INIS)

    Morimoto, C.N.; Hunter, T.A.; Chiang, S.C.

    2004-01-01

    A nuclear power plant equipment monitoring system monitors plant equipment and reports deteriorating equipment conditions. The more advanced equipment monitoring systems can also provide information for understanding the symptoms and diagnosing the root cause of a problem. Maximizing the equipment availability and minimizing or eliminating consequential damages are the ultimate goals of equipment monitoring systems. GE Integrated Equipment Monitoring System (GEIEMS) is designed as an integrated intelligent monitoring and analysis system for plant-wide application for BWR plants. This approach reduces system maintenance efforts and equipment monitoring costs and provides information for integrated planning. This paper describes GEIEMS and how the current system is being upgraded to meet General Electric's vision for plant-wide decision support. (author)

  20. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    Science.gov (United States)

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  1. Elicitation of Induced Resistance against Pectobacterium carotovorum and Pseudomonas syringae by Specific Individual Compounds Derived from Native Korean Plant Species

    Directory of Open Access Journals (Sweden)

    Choong-Min Ryu

    2013-10-01

    Full Text Available Plants have developed general and specific defense mechanisms for protection against various enemies. Among the general defenses, induced resistance has distinct characteristics, such as broad-spectrum resistance and long-lasting effectiveness. This study evaluated over 500 specific chemical compounds derived from native Korean plant species to determine whether they triggered induced resistance against Pectobacterium carotovorum supsp. carotovorum (Pcc in tobacco (Nicotiana tabacum and Pseudomonas syringae pv. tomato (Pst in Arabidopsis thaliana. To select target compound(s with direct and indirect (volatile effects, a new Petri-dish-based in vitro disease assay system with four compartments was developed. The screening assay showed that capsaicin, fisetin hydrate, jaceosidin, and farnesiferol A reduced the disease severity significantly in tobacco. Of these four compounds, capsaicin and jaceosidin induced resistance against Pcc and Pst, which depended on both salicylic acid (SA and jasmonic acid (JA signaling, using Arabidopsis transgenic and mutant lines, including npr1 and NahG for SA signaling and jar1 for JA signaling. The upregulation of the PR2 and PDF1.2 genes after Pst challenge with capsaicin pre-treatment indicated that SA and JA signaling were primed. These results demonstrate that capsaicin and jaceosidin can be effective triggers of strong induced resistance against both necrotrophic and biotrophic plant pathogens.

  2. Building and application of the plant condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, S.

    2013-01-01

    To achieve the stable operation of nuclear power plants, we developed the plant condition monitoring system based on the heat and mass balance calculation. This system has adopted the heat balance model based on the actual plant data to find the symptoms of the disorder of the equipment by heat balance changes in the turbine system. (author)

  3. Nuclear plant data systems - some emerging directions

    International Nuclear Information System (INIS)

    Johnson, R.D.; Humphress, G.B.; McCullough, L.D.; Tashjian, B.M.

    1983-01-01

    Significant changes have occurred in recent years in the nuclear power industry to accentuate the need for data systems to support information flow and decision making. Economic conditions resulting in rapid inflation and larger investments in new and existing plants and the need to plan further ahead are primary factors. Government policies concerning environmental control, as well as minimizing risk to the public through increased nuclear safety regulations on operating plants are additional factors. The impact of computer technology on plant data systems, evolution of corporate and plant infrastructures, future plant data, system designs and benefits, and decision making capabilities and data usage support are discussed. (U.K.)

  4. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants.

    Science.gov (United States)

    Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung

    2015-06-01

    Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

  5. Development and application of the plant condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, S.

    2014-01-01

    To achieve the stable operation of nuclear power plants, we developed the plant condition monitoring system based on the heat and mass balance calculation. In this system, it is a significant feature to adopt the sophisticated heat balance model based on the actual plant data to find the symptoms of anomalies in the turbine system from heat balance changes. (author)

  6. High-temperature gas-cooled reactor steam-cycle/cogeneration lead plant. Plant Protection and Instrumentation System design description

    International Nuclear Information System (INIS)

    1983-01-01

    The Plant Protection and Instrumentation System provides plant safety system sense and command features, actuation of plant safety system execute features, preventive features which maintain safety system integrity, and safety-related instrumentation which monitors the plant and its safety systems. The primary function of the Plant Protection and Instrumentation system is to sense plant process variables to detect abnormal plant conditions and to provide input to actuation devices directly controlling equipment required to mitigate the consequences of design basis events to protect the public health and safety. The secondary functions of the Plant Protection and Instrumentation System are to provide plant preventive features, sybsystems that monitor plant safety systems status, subsystems that monitor the plant under normal operating and accident conditions, safety-related controls which allow control of reactor shutdown and cooling from a remote shutdown area

  7. Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens.

    Science.gov (United States)

    Haney, Cara H; Wiesmann, Christina L; Shapiro, Lori R; Melnyk, Ryan A; O'Sullivan, Lucy R; Khorasani, Sophie; Xiao, Li; Han, Jiatong; Bush, Jenifer; Carrillo, Juli; Pierce, Naomi E; Ausubel, Frederick M

    2017-10-31

    Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture. © 2017 John Wiley & Sons Ltd.

  8. ROS-mediated abiotic stress-induced programmed cell death in plants

    Directory of Open Access Journals (Sweden)

    Veselin ePetrov

    2015-02-01

    Full Text Available During the course of their ontogenesis, plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD. This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help to develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process.

  9. Organelle-localized potassium transport systems in plants.

    Science.gov (United States)

    Hamamoto, Shin; Uozumi, Nobuyuki

    2014-05-15

    Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. The Northeast Utilities generic plant computer system

    International Nuclear Information System (INIS)

    Spitzner, K.J.

    1980-01-01

    A variety of computer manufacturers' equipment monitors plant systems in Northeast Utilities' (NU) nuclear and fossil power plants. The hardware configuration and the application software in each of these systems are essentially one of a kind. Over the next few years these computer systems will be replaced by the NU Generic System, whose prototype is under development now for Millstone III, an 1150 Mwe Pressurized Water Reactor plant being constructed in Waterford, Connecticut. This paper discusses the Millstone III computer system design, concentrating on the special problems inherent in a distributed system configuration such as this. (auth)

  11. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent.

    Science.gov (United States)

    Elad, Yigal; David, Dalia Rav; Harel, Yael Meller; Borenshtein, Menahem; Kalifa, Hananel Ben; Silber, Avner; Graber, Ellen R

    2010-09-01

    Biochar is the solid coproduct of biomass pyrolysis, a technique used for carbon-negative production of second-generation biofuels. The biochar can be applied as a soil amendment, where it permanently sequesters carbon from the atmosphere as well as improves soil tilth, nutrient retention, and crop productivity. In addition to its other benefits in soil, we found that soil-applied biochar induces systemic resistance to the foliar fungal pathogens Botrytis cinerea (gray mold) and Leveillula taurica (powdery mildew) on pepper and tomato and to the broad mite pest (Polyphagotarsonemus latus Banks) on pepper. Levels of 1 to 5% biochar in a soil and a coconut fiber-tuff potting medium were found to be significantly effective at suppressing both diseases in leaves of different ages. In long-term tests (105 days), pepper powdery mildew was significantly less severe in the biochar-treated plants than in the plants from the unamended controls although, during the final 25 days, the rate of disease development in the treatments and controls was similar. Possible biochar-related elicitors of systemic induced resistance are discussed.

  12. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi

    Science.gov (United States)

    Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande

    2017-01-01

    Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml-1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.

  13. Nuclear plants gain integrated information systems

    International Nuclear Information System (INIS)

    Villavicencio-Ramirez, A.; Rodriquez-Alvarez, J.M.

    1994-01-01

    With the objective of simplifying the complex mesh of computing devices employed within nuclear power plants, modern technology and integration techniques are being used to form centralized (but backed up) databases and distributed processing and display networks. Benefits are immediate as a result of the integration and the use of standards. The use of a unique data acquisition and database subsystem optimizes the high costs of engineering, as this task is done only once for the life span of the system. This also contributes towards a uniform user interface and allows for graceful expansion and maintenance. This article features an integrated information system, Sistema Integral de Informacion de Proceso (SIIP). The development of this system enabled the Laguna Verde Nuclear Power plant to fully use the already existing universe of signals and its related engineering during all plant conditions, namely, start up, normal operation, transient analysis, and emergency operation. Integrated systems offer many advantages over segregated systems, and this experience should benefit similar development efforts in other electric power utilities, not only for nuclear but also for other types of generating plants

  14. Expert system for nuclear power plant feedwater system diagnosis

    International Nuclear Information System (INIS)

    Meguro, R.; Kinoshita, Y.; Sato, T.; Yokota, Y.; Yokota, M.

    1987-01-01

    The Expert System for Nuclear Power Plant Feedwater System Diagnosis has been developed to assist maintenance engineers in nuclear power plants. This system adopts the latest process computer TOSBAC G8050 and the expert system developing tool TDES2, and has a large scale knowledge base which consists of the expert knowledge and experience of engineers in many fields. The man-machine system, which has been developed exclusively for diagnosis, improves the man-machine interface and realizes the graphic displays of diagnostic process and path, stores diagnostic results and searches past reference

  15. The rare earth element (REE) lanthanum (La) induces hormesis in plants.

    Science.gov (United States)

    Agathokleous, Evgenios; Kitao, Mitsutoshi; Calabrese, Edward J

    2018-07-01

    Lanthanum is a rare earth element (REE) which has been extensively studied due to its wide application in numerous fields with a potential accumulation in the environment. It has long been known for its potential to stimulate plant growth within a hormetic-biphasic dose response framework. This article provides evidence from a series of high resolution studies published within the last two decades demonstrating a substantial and significant occurrence of lanthanum-induced hormesis in plants. These findings suggest that hormetic responses should be built into the study design of hazard assessment study protocols and included in the risk assessment process. Hormesis also offers the opportunity to substantially improve cost benefit estimates for environmental contaminants, which have the potential to induce beneficial/desirable effects at low doses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora.

    Science.gov (United States)

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan; Chen, Xin; Yang, Ching-Hong

    2013-09-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.

  17. Intelligent operation system for nuclear power plants

    International Nuclear Information System (INIS)

    Morioka, Toshihiko; Fukumoto, Akira; Suto, Osamu; Naito, Norio.

    1987-01-01

    Nuclear power plants consist of many systems and are operated by skillful operators with plenty of knowledge and experience of nuclear plants. Recently, plant automation or computerized operator support systems have come to be utilized, but the synthetic judgment of plant operation and management remains as human roles. Toshiba is of the opinion that the activities (planning, operation and maintenance) should be integrated, and man-machine interface should be human-friendly. We have begun to develop the intelligent operation system aiming at reducing the operator's role within the fundamental judgment through the use of artificial intelligence. (author)

  18. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    Directory of Open Access Journals (Sweden)

    Ainhoa eMartinez-Medina

    2013-06-01

    Full Text Available Root colonization by selected Trichoderma isolates can activate in the plant a systemic defence response that is effective against a broad spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defence signalling network that leads to the induction of systemic resistance triggered by beneficial organisms (ISR. Among them, jasmonic acid (JA and ethylene (ET signalling pathways are generally essential for ISR. However, Trichoderma ISR (TISR is believed to involve a wider variety of signalling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defence related hormones JA, ET, salicylic acid (SA and abscisic acid (ABA and the peptide prosystemin (PS evidenced the requirement of intact JA, SA and ABA signalling pathways for a functional TISR. Expression analysis of several hormone related marker genes point to the role of priming for enhanced JA-dependent defence responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against the necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development

  19. Birds exploit herbivore-induced plant volatiles to locate herbivorous prey

    NARCIS (Netherlands)

    Amo, L.; Jansen, J.J.; Dam, van N.M.; Dicke, M.; Visser, M.E.

    2013-01-01

    Arthropod herbivory induces plant volatiles that can be used by natural enemies of the herbivores to find their prey. This has been studied mainly for arthropods that prey upon or parasitise herbivorous arthropods but rarely for insectivorous birds, one of the main groups of predators of herbivorous

  20. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation

    Directory of Open Access Journals (Sweden)

    Emma Fernández-Crespo

    2017-10-01

    Full Text Available Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV and demonstrated the efficacy of hexanoic acid (Hx priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR to MNSV. Our data indicate important roles of salicylic acid (SA, 12-oxo-phytodienoic acid (OPDA, jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds.

  1. Design of comprehensive plant information system considering maintenance indicators in nuclear power plant

    International Nuclear Information System (INIS)

    Takata, Takashi; Yamaguchi, Akira; Yamamoto, Akio

    2013-01-01

    A safety of a nuclear power plant must be ensured and maintained through its entire plant life. For this plant life cycle safety (PLCS), a comprehensive plant information system, in which an each maintenance record of the plant is taken into consideration, is of importance. In this paper, a development of a plant chart, which is a part of the information system, has been developed based on a defense-in-depth concept that is one of the most important concept to ensure the plant safety. In the chart, an updated probability of loss of a component or function is used as a maintenance indicator and a probabilistic risk assessment (PRA) method is applied to quantify the plant status in the chart. (author)

  2. Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing.

    Science.gov (United States)

    Li, Jinyun; Trivedi, Pankaj; Wang, Nian

    2016-01-01

    Huanglongbing (HLB) is currently the most economically devastating disease of citrus worldwide and no established cure is available. Defense inducing compounds are able to induce plant resistance effective against various pathogens. In this study the effects of various chemical inducers on HLB diseased citrus were evaluated in four groves (three with sweet orange and one with mandarin) in Florida (United States) for two to four consecutive growing seasons. Results have demonstrated that plant defense inducers including β-aminobutyric acid (BABA), 2,1,3-benzothiadiazole (BTH), and 2,6-dichloroisonicotinic acid (INA), individually or in combination, were effective in suppressing progress of HLB disease. Ascorbic acid (AA) and the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DDG) also exhibited positive control effects on HLB. After three or four applications for each season, the treatments AA (60 to 600 µM), BABA (0.2 to 1.0 mM), BTH (1.0 mM), INA (0.1 mM), 2-DDG (100 µM), BABA (1.0 mM) plus BTH (1.0 mM), BTH (1.0 mM) plus AA (600 µM), and BTH (1.0 mM) plus 2-DDG (100 µM) slowed down the population growth in planta of 'Candidatus Liberibacter asiaticus', the putative pathogen of HLB and reduced HLB disease severity by approximately 15 to 30% compared with the nontreated control, depending on the age and initial HLB severity of infected trees. These treatments also conferred positive effect on fruit yield and quality. Altogether, these findings indicate that plant defense inducers may be a useful strategy for the management of citrus HLB.

  3. Nocturnal herbivore-induced plant volatiles attract the generalist predatory earwig Doru luteipes Scudder

    Science.gov (United States)

    Naranjo-Guevara, Natalia; Peñaflor, Maria Fernanda G. V.; Cabezas-Guerrero, Milton F.; Bento, José Maurício S.

    2017-10-01

    Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants ( Zea mays) attacked by either a stem borer ( Diatraea saccharalis) or a leaf-chewing caterpillar ( Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.

  4. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves

    Directory of Open Access Journals (Sweden)

    Flor-Henry Michel

    2004-11-01

    Full Text Available Abstract Background All living organisms emit spontaneous low-level bioluminescence, which can be increased in response to stress. Methods for imaging this ultra-weak luminescence have previously been limited by the sensitivity of the detection systems used. Results We developed a novel configuration of a cooled charge-coupled device (CCD for 2-dimensional imaging of light emission from biological material. In this study, we imaged photon emission from plant leaves. The equipment allowed short integration times for image acquisition, providing high resolution spatial and temporal information on bioluminescence. We were able to carry out time course imaging of both delayed chlorophyll fluorescence from whole leaves, and of low level wound-induced luminescence that we showed to be localised to sites of tissue damage. We found that wound-induced luminescence was chlorophyll-dependent and was enhanced at higher temperatures. Conclusions The data gathered on plant bioluminescence illustrate that the equipment described here represents an improvement in 2-dimensional luminescence imaging technology. Using this system, we identify chlorophyll as the origin of wound-induced luminescence from leaves.

  5. External human induced events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of the present Safety Guide is to provide recommendations and guidance for the examination of the region considered for site evaluation for a plant in order to identity hazardous phenomena associated with human induced events initiated by sources external to the plant. In some cases it also presents preliminary guidance for deriving values of relevant parameters for the design basis. This Safety Guide is also applicable for periodic site evaluation and site evaluation following a major human induced event, and for the design and operation of the site's environmental monitoring system. Site evaluation includes site characterization. Consideration of external events that could lead to a degradation of the safety features of the plant and cause a release of radioactive material from the plant and/or affect the dispersion of such material in the environment. And consideration of population issues and access issues significant to safety (such as the feasibility of evacuation, the population distribution and the location of resources). The process of site evaluation continues throughout the lifetime of the facility, from siting to design, construction, operation and decommissioning. The external human induced events considered in this Safety Guide are all of accidental origin. Considerations relating to the physical protection of the plant against wilful actions by third parties are outside its scope. However, the methods described herein may also have some application for the purposes of such physical protection. The present Safety Guide may also be used for events that may originate within the boundaries of the site, but from sources which are not directly involved in the operational states of the nuclear power plant units, such as fuel depots or areas for the storage of hazardous materials for the construction of other facilities at the same site. Special consideration should be given to the hazardous material handled during the construction, operation and

  6. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice

    Directory of Open Access Journals (Sweden)

    Höfte Monica M

    2009-01-01

    Full Text Available Abstract Background Induced resistance is a state of enhanced defensive capacity developed by a plant reacting to specific biotic or chemical stimuli. Over the years, several forms of induced resistance have been characterized, including systemic acquired resistance, which is induced upon localized infection by an avirulent necrotizing pathogen, and induced systemic resistance (ISR, which is elicited by selected strains of nonpathogenic rhizobacteria. However, contrary to the relative wealth of information on inducible defense responses in dicotyledoneous plants, our understanding of the molecular mechanisms underlying induced resistance phenomena in cereal crops is still in its infancy. Using a combined cytomolecular and pharmacological approach, we analyzed the host defense mechanisms associated with the establishment of ISR in rice by the rhizobacterium Serratia plymuthica IC1270. Results In a standardized soil-based assay, root treatment with IC1270 rendered foliar tissues more resistant to the hemibiotrophic pathogen Magnaporthe oryzae, causal agent of the devastating rice blast disease. Analysis of the cytological and biochemical alterations associated with restriction of fungal growth in IC1270-induced plants revealed that IC1270 primes rice for enhanced attacker-induced accumulation of reactive oxygen species (ROS and autofluorescent phenolic compounds in and near epidermal cells displaying dense cytoplasmic granulation. Similar, yet more abundant, phenotypes of hypersensitively dying cells in the vicinity of fungal hyphae were evident in a gene-for-gene interaction with an avirulent M. oryzae strain, suggesting that IC1270-inducible ISR and R protein conditioned effector-triggered immunity (ETI target similar defense mechanisms. Yet, this IC1270-inducible ISR response seems to act as a double-edged sword within the rice defense network as induced plants displayed an increased vulnerability to the necrotrophic pathogens Rhizoctonia

  7. Diablo Canyon plant information management system and integrated communication system

    International Nuclear Information System (INIS)

    Stanley, J.W.; Groff, C.

    1990-01-01

    The implementation of a comprehensive maintenance system called the plant information management system (PIMS) at the Diablo Canyon plant, together with its associated integrated communication system (ICS), is widely regarded as the most comprehensive undertaking of its kind in the nuclear industry. This paper provides an overview of the program at Diablo Canyon, an evaluation of system benefits, and highlights the future course of PIMS

  8. Diablo Canyon plant information management system and integrated communication system

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, J.W.; Groff, C.

    1990-06-01

    The implementation of a comprehensive maintenance system called the plant information management system (PIMS) at the Diablo Canyon plant, together with its associated integrated communication system (ICS), is widely regarded as the most comprehensive undertaking of its kind in the nuclear industry. This paper provides an overview of the program at Diablo Canyon, an evaluation of system benefits, and highlights the future course of PIMS.

  9. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    Science.gov (United States)

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-07-13

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.

  10. Prototype of an expert system based nuclear power plant information systems

    International Nuclear Information System (INIS)

    Vegh, J.; Bodnar, M.; Buerger, L.; Tanyi, M.; Sefesik, F.

    1994-01-01

    The components and functioning of the GPCS information system applicable for intelligent process monitoring and alarm generation in a WWER-440 type nuclear power plant are described. The prototype system has been developed by using the G2 expert system, plant measurements were simulated by a WWER-440 compact simulator and by archive replay sessions performed by the VERONA-u core monitoring system. The GPCS contains an object oriented description of the basic subsystems of the plant and concentrates on the fast evaluation/displaying of measurements and alarms. The high-level information reflecting actual plant safety status is synthesized from primary measured data, by forming global alarms and by evaluating logical diagrams. (author). 10 refs, 4 figs

  11. Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1

    Directory of Open Access Journals (Sweden)

    Dommes Jacques

    2008-11-01

    Full Text Available Abstract Background Previous studies showed the ability of Pseudomonas putida strain BTP1 to promote induced systemic resistance (ISR in different host plants. Since ISR is long-lasting and not conducive for development of resistance of the targeted pathogen, this phenomenon can take part of disease control strategies. However, in spite of the numerous examples of ISR induced by PGPR in plants, only a few biochemical studies have associated the protective effect with specific host metabolic changes. Results In this study, we showed the protective effect of this bacterium in tomato against Botrytis cinerea. Following treatment by P. putida BTP1, analyses of acid-hydrolyzed leaf extracts showed an accumulation of antifungal material after pathogen infection. The fungitoxic compounds thus mainly accumulate as conjugates from which active aglycones may be liberated through the activity of hydrolytic enzymes. These results suggest that strain BTP1 can elicit systemic phytoalexin accumulation in tomato as one defence mechanism. On another hand, we have shown that key enzymes of the lipoxygenase pathway are stimulated in plants treated with the bacteria as compared with control plants. Interestingly, this stimulation is observed only after pathogen challenge in agreement with the priming concept almost invariably associated with the ISR phenomenon. Conclusion Through the demonstration of phytoalexin accumulation and LOX pathway stimulation in tomato, this work provides new insights into the diversity of defence mechanisms that are inducible by non-pathogenic bacteria in the context of ISR.

  12. Plant dynamics studies towards design of plant protection system for PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K., E-mail: natesan@igcar.gov.in [Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kasinathan, N.; Velusamy, K.; Selvaraj, P.; Chellapandi, P. [Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Analysis of various design basis events in a fast breeder reactor towards design of plant protection system. Black-Right-Pointing-Pointer Plant dynamic modeling of a sodium cooled fast breeder reactor. Black-Right-Pointing-Pointer Selection of optimum set of plant parameters for considering best plant availability. - Abstract: Prototype fast breeder reactor (PFBR) is a 500 MWe (1250 MWt) liquid sodium cooled pool type reactor currently under construction in India. For a safe and efficient operation of the plant, it is necessary that the reactor is protected from all the transients that may occur in the plant. In order to accomplish this, adequate number of SCRAM parameters is required in the plant protection system with reliable instrumentation. For identifying the SCRAM parameters, the neutronic and thermal hydraulic responses of the plant for various possible events need to be established. Towards this, a one dimensional plant dynamics code DYANA-P has been developed with thermal hydraulic models for reactor core, hot and cold pools, intermediate heat exchangers, pipelines, steam generator, primary sodium circuits and secondary sodium circuits. The code also incorporates neutron kinetics and reactivity feedback models. By a comprehensive plant dynamics study an optimum list of SCRAM parameters and the maximum permissible response time for various instruments used for deriving them have been arrived at.

  13. Priming of cowpea volatile emissions with defense inducers enhances the plant's attractiveness to parasitoids when attacked by caterpillars.

    Science.gov (United States)

    Sobhy, Islam S; Bruce, Toby Ja; Turlings, Ted Cj

    2018-04-01

    The manipulation of herbivore-induced volatile organic compounds (HI-VOCs) via the application of the inducers benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) and laminarin (β-1,3-glucan) is known to enhance the attractiveness of caterpillar-damaged cotton and maize plants to parasitoids. To test if this is also the case for legumes, we treated cowpea (Vigna unguiculata var. unguiculata) with these inducers and studied the effects on HI-VOC emissions and the attraction of three generalist endoparasitoids. After the inducers had been applied and the plants subjected to either real or mimicked herbivory by Spodoptera littoralis caterpillars, females of the parasitoids Campoletis sonorensis and Microplitis rufiventris showed a strong preference for BTH-treated plants, whereas Cotesia females were strongly attracted to both BTH- and laminarin-treated plants with real or mimicked herbivory. Treated plants emitted more of certain HI-VOCs, but considerably less indole and linalool and less of several sesquiterpenes. Multivariate data analysis revealed that enhanced wasp attraction after treatment was correlated with high relative concentrations of nonanal, α-pinene, (E)-β-ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and with low relative concentrations of indole, (S)-linalool and (E)-β-farnesene. Inducer treatments had no significant effect on leaf consumption by the caterpillars. Our findings confirm that treating cowpea plants with inducers can enhance their attractiveness to biological control agents. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Fagopyrum tataricum (L.) Gaertn.

    Science.gov (United States)

    Wang, Lin-Jiao; Sheng, Mao-Yin; Wen, Pei-Cai; Du, Jia-Ying

    2017-12-01

    Tartary buckwheat are very popular as an important functional food material and its cultivation is very widespread in our whole world, but there obviously lack works in the researches of genetic breeding for agricultural and medicinal utilization. The aim of this study is to obtain good germplasm resources for agricultural and medicinal use of tartary buckwheat (Fagopyrum tataricum) by inducing the tetraploid plants. Four cultivars of F. tataricum, that is, Qianwei 2#, Jinku 2#, Chuanqiao 1#, and Liuqiao 1# were selected to experiment. The tips of seedlings with two true leaves were treated by 0.25% (w/v) colchicine solution for 48, 72, and 96 h, respectively. The chromosome number of treated plants was determined by metaphase chromosome counting of root tip cells and PMCs (pollen mother cells) meiosis observation. Tetraploid induction successfully occurred in all three treatments with an efficiency ranging from 12.13 to 54.55%. The chromosome number of the diploid plants was 2n = 2x = 16, and that of the induced tetraploid plants was 2n = 4x = 32. The typical morphological and physiological qualities were compared between the control diploid and corresponding induced tetraploid plants. Results showed that the induced tetraploid plants had obviously larger leaves, flowers, and seeds. Moreover, the content of seed protein and flavonoid were also increased in the tetraploid plants. The pollen diameter and capsule size of diploid plants were significantly smaller than those of tetraploid plants. Fagopyrum tataricum can be effectively induced into tetraploids by colchicines. The tetraploid induction can produce valuable germplasm resources for breeding and is a practicable breeding way in F. tataricum.

  15. Analytical technical of lightning surges induced on grounding mesh of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ikeda, I.; Tani, M.; Yonezawa, T.

    1990-01-01

    An analytical lightning surge technique is needed to make a qualitative and predictive evaluation of transient voltages induced on local grounding meshes and instrumentation cables by a lightning strike on a lightning rod in a PWR plant. This paper discusses an experiment with lightning surge impulses in a PWR plant which was setup to observe lightning caused transient voltages. Experimental data when compared with EMTP simulation results improved the simulation method. The improved method provides a good estimation of induced voltages on grounding meshes and instrumentation cables

  16. When a Plant Resistance Inducer Leaves the Lab for the Field: Integrating ASM into Routine Apple Protection Practices.

    Science.gov (United States)

    Marolleau, Brice; Gaucher, Matthieu; Heintz, Christelle; Degrave, Alexandre; Warneys, Romain; Orain, Gilles; Lemarquand, Arnaud; Brisset, Marie-Noëlle

    2017-01-01

    Plant resistance inducers, also called elicitors, could be useful to reduce the use of pesticides. However, their performance in controlling diseases in the field remains unsatisfactory due to lack of specific knowledge of how they can integrate crop protection practices. In this work, we focused on apple crop and acibenzolar- S -methyl (ASM), a well-known SAR (systemic acquired resistance) inducer of numerous plant species. We provide a protocol for orchard-effective control of apple scab due to the ascomycete fungus Venturia inaequalis , by applying ASM in combination with a light integrated pest management program. Besides we pave the way for future optimization levers by demonstrating in controlled conditions (i) the high influence of apple genotypes, (ii) the ability of ASM to prime defenses in newly formed leaves, (iii) the positive effect of repeated elicitor applications, (iv) the additive effect of a thinning fruit agent.

  17. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.

    Science.gov (United States)

    Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan

    2018-01-01

    A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.

  18. Development of 3D VR plant digital information system

    International Nuclear Information System (INIS)

    Suh, Kune Y.; Ryu, Joong W.; Kang, Myung G.; Kim, H. Y.; Cho, J. G.; Kim, D. H.; Park, J. W.

    2006-07-01

    Currently, there are many ongoing efforts to shorten the plant refueling and maintenance outage durations, and it is expected to become more active as the time goes on. Improved training and education system are required for the personnel to perform efficient inspection on time. This work is focused on establishing virtual Nuclear Power Plant system which will help train the personnel to understand the system characteristics of the plant by creating navigation enabled 3D plant mockups. Furthermore, this project is aimed at constructing information management system over the whole plant area, by integrating safety related data and combining it with web based GUI technology, to make search and management activities easy. This project spans three years. The forst year was spent in 3D mockup modeling of most part of the plant, and prototyping the web based VR plant digital information system. Plant environment, buildings, reactor structure, steam generator, pressurizer, fuel assemblies, pressurizer safety valve, main steamline safety valve, reactor coolant system, main steamline system, auxiliary and main coolant supply system were modeled into 3D mockups. Control functions such as magnification, rotation, movement, transparency, location detection, cross-cut view, full screen toggle and screen capture were implemented to facilitate manipulation of and navigation through the VR mockups. It is expected that the VR plant will serve as an effective support system for power plant regulation and inspection

  19. Plant computer system in nuclear power station

    International Nuclear Information System (INIS)

    Kato, Shinji; Fukuchi, Hiroshi

    1991-01-01

    In nuclear power stations, centrally concentrated monitoring system has been adopted, and in central control rooms, large quantity of information and operational equipments concentrate, therefore, those become the important place of communication between plants and operators. Further recently, due to the increase of the unit capacity, the strengthening of safety, the problems of man-machine interface and so on, it has become important to concentrate information, to automate machinery and equipment and to simplify them for improving the operational environment, reliability and so on. On the relation of nuclear power stations and computer system, to which attention has been paid recently as the man-machine interface, the example in Tsuruga Power Station, Japan Atomic Power Co. is shown. No.2 plant in the Tsuruga Power Station is a PWR plant with 1160 MWe output, which is a home built standardized plant, accordingly the computer system adopted here is explained. The fundamental concept of the central control board, the process computer system, the design policy, basic system configuration, reliability and maintenance, CRT display, and the computer system for No.1 BWR 357 MW plant are reported. (K.I.)

  20. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  1. Ventilation-air conditioner system in nuclear power plant

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko.

    1989-01-01

    This invention concerns a ventilation-air conditioner system which enables, upon occurrence of accidents in a nuclear power plant, continuous operation for other adjacent nuclear power plants with no effect of accidents. Air supply system and exhaust system are operated during usual operaiton. If loss of coolants accidents should occur in an adjacent nuclear power plants, operation is switched from ventilation operaiton to the operation of re-cycling system based on an AND logic of three signals, that is, a pressure HIGH signal for the reactor container, a water level LOW signal for the reactor and a radioactivity signal of the ventilation-air conditioner sytem on the side of air supply in the nuclear power plant. Thus, nuclear reactor buildings of the nuclear power plant are from the external atmosphere. Therefore, the radioactivity HIGH signal for switching to the emergency air conditioner system of the nuclear power plant is not actuated due to the loss of coolant accidents in the adjacent nuclear power plant. In addition, since the atmospheric temperature in the nuclear reactor building can be maintained by a cooling device disposed to the recycling system, reactor shutdown can be prevented. (I.S.)

  2. Advanced liquid metal reactor plant control system

    International Nuclear Information System (INIS)

    Dayal, Y.; Wagner, W.; Zizzo, D.; Carroll, D.

    1993-01-01

    The modular Advanced Liquid Metal Reactor (ALMR) power plant is controlled by an advanced state-of-the-art control system designed to facilitate plant operation, optimize availability, and protect plant investment. The control system features a high degree of automatic control and extensive amount of on-line diagnostics and operator aids. It can be built with today's control technology, and has the flexibility of adding new features that benefit plant operation and reduce O ampersand M costs as the technology matures

  3. Transfer of radionuclides in soil-plant systems following aerosol simulation of accidental release: design and first results

    International Nuclear Information System (INIS)

    Rauret, G.; Real, J.

    1995-01-01

    The behaviour of 134 Cs, 110m Ag and 85 Sr was studied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source. Characterisation of aerosol and soils, interception factors in the various growth stages, foliar and root uptake, leaching from leaves by irrigation and distribution and migration of radionuclides of soils were studied, in an attempt to understand the key factors involving radionuclide soil-to-plant transferance. (author)

  4. Transfer of radionuclides in soil-plant systems following aerosol simulation of accidental release: design and first results

    Energy Technology Data Exchange (ETDEWEB)

    Rauret, G. [Universitat de Barcelona (Spain). Dept. of Quimica Analitica; Vallejo, V.R. [Universitat de barcelona (Spain). Dept. of Biologia Vegetal; Cancio, D. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Real, J. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1995-12-31

    The behaviour of {sup 134}Cs, {sup 110m}Ag and {sup 85}Sr was studied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source. Characterisation of aerosol and soils, interception factors in the various growth stages, foliar and root uptake, leaching from leaves by irrigation and distribution and migration of radionuclides of soils were studied, in an attempt to understand the key factors involving radionuclide soil-to-plant transferance. (author).

  5. A plant control system development approach for IRIS

    International Nuclear Information System (INIS)

    Wood, R.T.; Brittain, C.R.; March-Leuba, J.A.; Conway, L.E.; Oriani, L.

    2003-01-01

    The plant control system concept for the International Reactor Innovative and Secure (IRIS) will make use of integrated control, diagnostic, and decision modules to provide a highly automated intelligent control capability. The plant control system development approach established for IRIS involves determination and verification of control strategies based on whole-plant simulation; identification of measurement, control, and diagnostic needs; development of an architectural framework in which to integrate an intelligent plant control system; and design of the necessary control and diagnostic elements for implementation and validation. This paper describes key elements of the plant control system development approach established for IRIS and presents some of the strategies and methods investigated to support the desired control capabilities. (author)

  6. Regulating plant physiology with organic electronics.

    Science.gov (United States)

    Poxson, David J; Karady, Michal; Gabrielsson, Roger; Alkattan, Aziz Y; Gustavsson, Anna; Doyle, Siamsa M; Robert, Stéphanie; Ljung, Karin; Grebe, Markus; Simon, Daniel T; Berggren, Magnus

    2017-05-02

    The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.

  7. Insect Gallers and Their Plant Hosts: From Omics Data to Systems Biology

    Directory of Open Access Journals (Sweden)

    Caryn N. Oates

    2016-11-01

    Full Text Available Gall-inducing insects are capable of exerting a high level of control over their hosts’ cellular machinery to the extent that the plant’s development, metabolism, chemistry, and physiology are all altered in favour of the insect. Many gallers are devastating pests in global agriculture and the limited understanding of their relationship with their hosts prevents the development of robust management strategies. Omics technologies are proving to be important tools in elucidating the mechanisms involved in the interaction as they facilitate analysis of plant hosts and insect effectors for which little or no prior knowledge exists. In this review, we examine the mechanisms behind insect gall development using evidence from omics-level approaches. The secretion of effector proteins and induced phytohormonal imbalances are highlighted as likely mechanisms involved in gall development. However, understanding how these components function within the system is far from complete and a number of questions need to be answered before this information can be used in the development of strategies to engineer or breed plants with enhanced resistance.

  8. Towards a systems understanding of plant-microbe interactions

    Directory of Open Access Journals (Sweden)

    Akira eMine

    2014-08-01

    Full Text Available Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant-microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial mutants is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant-microbe interactions, with a special emphasis on reconstruction strategies.

  9. Improvement on reliability of control system in power plant

    International Nuclear Information System (INIS)

    Taguchi, S.; Mizumoto, T.; Hirose, Y.; Kashiwai, J.; Takami, I.; Shono, M.; Roji, Y.; Kizaki, S.

    1985-01-01

    Studies made of Japanese PWR operating experiences have revealed that failures in the control system are the primary causes of unscheduled shutdowns. An attempt has, therefore, been made to improve the reliability of the control system in order to raise the plant reliability. The following are the procedures applied to solve the issue; study of operating experiences, fault tree analysis and failure mode and effects analysis. Improvement measures are developed for the control system whose failure threatens to cause the plant trip during the plant life. These systems are the main feedwater control system, rod control system, pressurizer control system and main steam control system in the primary control system. As a result, the plant unavailability is expected to be reduced significantly by applying the improvements. The improvements are applied to the plants under construction and the operating plants in co-operation with utilities and vendors. (author)

  10. Plant-uptake of uranium: Hydroponic and soil system studies

    Science.gov (United States)

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  11. Derepression of the plant Chromovirus LORE1 induces germline transposition in regenerated plants.

    Directory of Open Access Journals (Sweden)

    Eigo Fukai

    2010-03-01

    Full Text Available Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain chromodomains in their integrases, which suggests a preference for insertion into heterochromatin. In turn, this preference might have contributed to the patterning of heterochromatin observed in host genomes. Despite their potential importance for our understanding of plant genome dynamics and evolution, the regulatory mechanisms governing the behavior of chromoviruses and their activities remain largely uncharacterized. Here, we report a detailed analysis of the spatio-temporal activity of a plant chromovirus in the endogenous host. We examined LORE1a, a member of the endogenous chromovirus LORE1 family from the model legume Lotus japonicus. We found that this chromovirus is stochastically de-repressed in plant populations regenerated from de-differentiated cells and that LORE1a transposes in the male germline. Bisulfite sequencing of the 5' LTR and its surrounding region suggests that tissue culture induces a loss of epigenetic silencing of LORE1a. Since LTR promoter activity is pollen specific, as shown by the analysis of transgenic plants containing an LTR::GUS fusion, we conclude that male germline-specific LORE1a transposition in pollen grains is controlled transcriptionally by its own cis-elements. New insertion sites of LORE1a copies were frequently found in genic regions and show no strong insertional preferences. These distinctive novel features of LORE1 indicate that this chromovirus has considerable potential for generating genetic and epigenetic diversity in the host plant population. Our results also define conditions for the use of LORE1a as a genetic tool.

  12. Pathogen-triggered ethylene signaling mediates systemic-induced susceptibility to herbivory in Arabidopsis.

    Science.gov (United States)

    Groen, Simon C; Whiteman, Noah K; Bahrami, Adam K; Wilczek, Amity M; Cui, Jianping; Russell, Jacob A; Cibrian-Jaramillo, Angelica; Butler, Ian A; Rana, Jignasha D; Huang, Guo-Hua; Bush, Jenifer; Ausubel, Frederick M; Pierce, Naomi E

    2013-11-01

    Multicellular eukaryotic organisms are attacked by numerous parasites from diverse phyla, often simultaneously or sequentially. An outstanding question in these interactions is how hosts integrate signals induced by the attack of different parasites. We used a model system comprised of the plant host Arabidopsis thaliana, the hemibiotrophic bacterial phytopathogen Pseudomonas syringae, and herbivorous larvae of the moth Trichoplusia ni (cabbage looper) to characterize mechanisms involved in systemic-induced susceptibility (SIS) to T. ni herbivory caused by prior infection by virulent P. syringae. We uncovered a complex multilayered induction mechanism for SIS to herbivory. In this mechanism, antiherbivore defenses that depend on signaling via (1) the jasmonic acid-isoleucine conjugate (JA-Ile) and (2) other octadecanoids are suppressed by microbe-associated molecular pattern-triggered salicylic acid (SA) signaling and infection-triggered ethylene signaling, respectively. SIS to herbivory is, in turn, counteracted by a combination of the bacterial JA-Ile mimic coronatine and type III virulence-associated effectors. Our results show that SIS to herbivory involves more than antagonistic signaling between SA and JA-Ile and provide insight into the unexpectedly complex mechanisms behind a seemingly simple trade-off in plant defense against multiple enemies.

  13. Transparency and efficiency through plant operations management systems

    International Nuclear Information System (INIS)

    Ladage, L.

    2001-01-01

    Plant operations management systems, being IT application systems, provide integral support of the business processes making up plant operations management. The use of plant operations management systems improves mutually interdependent factors, such as high economic performance, high availability, and maximum safety. Since its commissioning in 1988, the Emsland nuclear power station (KKE) has been run with the IBFS plant operations management system. The work flow management system (WfMS), a module of IBFS, is described as an example of job order processing. IBFS-WfMS is to optimize all processes, thus cutting costs and ensuring that processes are run and documented reliably. Assessing the savings effect achieved through the use of IBFS-WfMS clearly reveals the savings in work/time achieved by the system. These savings are quoted as approx. 4 minutes and DM 10, respectively, per working step, which corresponds to several dozens of manyears or several million DM per annum in the KKE plant under consideration. This result can be extrapolated to other plants. (orig.) [de

  14. The assisting system for uranium enrichment plant operation

    International Nuclear Information System (INIS)

    Nakazawa, Hiroaki; Yamamoto, Fumio

    1990-01-01

    We have been developing an operation assisting system, partially supported by AI system, for uranium enrichment plant. The AI system is a proto-type system aiming a final one which can be applied to any future large uranium enrichment plant and also not only to specific operational area but also to complex and multi-phenomenon operational area. An existing AI system, for example facility diagnostic system that utilizes the result of CCT analysis as knowledge base, has weakness in flexibility and potentiality. To build AI system, we have developed the most suitable knowledge representations using deep knowledge for each facility or operation of uranium enrichment plant. This paper describes our AI proto-type system adopting several knowledge representations that can represent an uranium enrichment plant's operation with deep knowledge. (author)

  15. Carrier system for a plant extract or bioactive compound from a plant

    DEFF Research Database (Denmark)

    2018-01-01

    This invention relates to a carrier system for use in producing a beverage with a metered amount of plant extract or bioactive compound.......This invention relates to a carrier system for use in producing a beverage with a metered amount of plant extract or bioactive compound....

  16. Activity of some Mexican medicinal plant extracts on carrageenan-induced rat paw edema.

    Science.gov (United States)

    Meckes, M; David-Rivera, A D; Nava-Aguilar, V; Jimenez, A

    2004-07-01

    The extracts obtained from 14 plants of the Mexican medicinal flora were assessed for anti-inflammatory activity by carrageenan-induced rat paw edema model. The i.p. administration of the extracts at a dose of 400 mg/kg produced a high reduction of edema with 70% of the plant extracts. Oenothera rosea methanol extract, Sphaeralcea angustifolia chloroform extract, Acaciafarnesiana, Larrea tridentata and Rubus coriifolius methanol extracts as well as the aqueous extract of Chamaedora tepejilote were demonstrated to be particularly active against the induced hind-paw edema. Moderate inhibition of edema formation was also demonstrated with the methanol extracts of Astianthus viminalis, Brickellia paniculata, C. tepejilote and Justicia spicigera.

  17. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots.

    Science.gov (United States)

    Horn, Patricia; Santala, Johanna; Nielsen, Steen Lykke; Hühns, Maja; Broer, Inge; Valkonen, Jari P T

    2014-12-01

    Composite potato plants offer an extremely fast, effective and reliable system for studies on gene functions in roots using antisense or inverted-repeat but not sense constructs for gene inactivation. Composite plants, with transgenic roots on a non-transgenic shoot, can be obtained by shoot explant transformation with Agrobacterium rhizogenes. The aim of this study was to generate composite potato plants (Solanum tuberosum) to be used as a model system in future studies on root-pathogen interactions and gene silencing in the roots. The proportion of transgenic roots among the roots induced was high (80-100%) in the four potato cultivars tested (Albatros, Desirée, Sabina and Saturna). No wild-type adventitious roots were formed at mock inoculation site. All strains of A. rhizogenes tested induced phenotypically normal roots which, however, showed a reduced response to cytokinin as compared with non-transgenic roots. Nevertheless, both types of roots were infected to a similar high rate with the zoospores of Spongospora subterranea, a soilborne potato pathogen. The transgenic roots of composite potato plants expressed significantly higher amounts of β-glucuronidase (GUS) than the roots of a GUS-transgenic potato line event. Silencing of the uidA transgene (GUS) was tested by inducing roots on the GUS-transgenic cv. Albatros event with strains of A. rhizogenes over-expressing either the uidA sense or antisense transcripts, or inverted-repeat or hairpin uidA RNA. The three last mentioned constructs caused 2.5-4.0 fold reduction in the uidA mRNA expression. In contrast, over-expression of uidA resulted in over 3-fold increase in the uidA mRNA and GUS expression, indicating that sense-mediated silencing (co-suppression) was not functional in roots. The results suggest that composite plants offer a useful experimental system for potato research, which has gained little previous attention.

  18. Biochar addition induced the same plant responses as elevated CO2 in mine spoil.

    Science.gov (United States)

    Zhang, Yaling; Drigo, Barbara; Bai, Shahla Hosseini; Menke, Carl; Zhang, Manyun; Xu, Zhihong

    2018-01-01

    Nitrogen (N) limitation is one of the major constrain factors for biochar in improving plant growth, the same for elevated atmospheric carbon dioxide (CO 2 ). Hence, we hypothesized that (1) biochar would induce the same plant responses as elevated CO 2 under N-poor conditions; (2) elevated CO 2 would decrease the potential of biochar application in improving plant growth. To test these hypotheses, we assessed the effects of pinewood biochar, produced at three pyrolytic temperatures (650, 750 and 850 °C), on C and N allocation at the whole-plant level of three plant species (Austrostipa ramossissima, Dichelachne micrantha and Isolepis nodosa) grown in the N poor mine spoil under both ambient (400 μL L -1 ) and elevated (700 μL L -1 ) CO 2 concentrations. Our data showed that biochar addition (1) significantly decreased leaf total N and δ 15 N (P < 0.05); (2) decreased leaf total N and δ 15 N more pronouncedly than those of root; and (3) showed more pronounced effects on improving plant biomass under ambient CO 2 than under elevated CO 2 concentration. Hence, it remained a strong possibility that biochar addition induced the same plant physiological responses as elevated CO 2 in the N-deficient mine spoil. As expected, elevated CO 2 decreased the ability of biochar addition in improving plant growth.

  19. General digitalized system on nuclear power plants

    International Nuclear Information System (INIS)

    Akagi, Katsumi; Kadohara, Hozumi; Taniguchi, Manabu

    2000-01-01

    Hitherto, instrumentation control system in a PWR nuclear power plant has stepwisely adopted digital technology such as application of digital instrumentation control device to ordinary use (primary/secondary system control device, and so on), application of CRT display system to monitoring function, and so forth, to realize load reduction of an operator due to expansion of operation automation range, upgrading of reliability and maintenance due to self-diagnosis function, reduction of mass in cables due to multiple transfer, and upgrading of visual recognition due to information integration. In next term PWR plant instrumentation control system, under consideration of application practice of conventional digital technology, application of general digitalisation system to adopt digitalisation of overall instrumentation control system containing safety protection system, and central instrumentation system (new type of instrumentation system) and to intend to further upgrade economics, maintenance, operability/monitoring under security of reliability/safety is planned. And, together with embodiment of construction program of the next-term plant, verification at the general digitalisation proto-system aiming at establishment of basic technology on the system is carried out. Then, here was described on abstract of the general digitalisation system and characteristics of a digital type safety protection apparatus to be adopted in the next-term plant. (G.K.)

  20. Power plant cooling systems: trends and challenges

    International Nuclear Information System (INIS)

    Rittenhouse, R.C.

    1979-01-01

    A novel design for an intake and discharge system at the Belle River plant is described followed by a general discussion of water intake screens and porous dikes for screening fish and zooplankton. The intake system for the San Onofre PWR plant is described and the state regulations controlling the use of water for power plants is discussed. The use of sewage effluent as a source of cooling water is mentioned with reference to the Palo Verde plant. Progress in dry cooling and a new wet/dry tower due to be installed at the San Juan plant towards the end of this year, complete the survey

  1. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens.

    Science.gov (United States)

    Hol, W H Gera; Bezemer, T Martijn; Biere, Arjen

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) are increasingly appreciated for their contributions to primary productivity through promotion of growth and triggering of induced systemic resistance in plants. Here we focus on the beneficial effects of one particular species of PGPR (Pseudomonas fluorescens) on plants through induced plant defense. This model organism has provided much understanding of the underlying molecular mechanisms of PGPR-induced plant defense. However, this knowledge can only be appreciated at full value once we know to what extent these mechanisms also occur under more realistic, species-diverse conditions as are occurring in the plant rhizosphere. To provide the necessary ecological context, we review the literature to compare the effect of P. fluorescens on induced plant defense when it is present as a single species or in combination with other soil dwelling species. Specifically, we discuss combinations with other plant mutualists (bacterial or fungal), plant pathogens (bacterial or fungal), bacterivores (nematode or protozoa), and decomposers. Synergistic interactions between P. fluorescens and other plant mutualists are much more commonly reported than antagonistic interactions. Recent developments have enabled screenings of P. fluorescens genomes for defense traits and this could help with selection of strains with likely positive interactions on biocontrol. However, studies that examine the effects of multiple herbivores, pathogens, or herbivores and pathogens together on the effectiveness of PGPR to induce plant defenses are underrepresented and we are not aware of any study that has examined interactions between P. fluorescens and bacterivores or decomposers. As co-occurring soil organisms can enhance but also reduce the effectiveness of PGPR, a better understanding of the biotic factors modulating P. fluorescens-plant interactions will improve the effectiveness of introducing P. fluorescens to enhance plant production and defense.

  2. Trophic transfer of soil arsenate and associated toxic effects in a plant-aphid-parasitoid system

    Science.gov (United States)

    Lee, Y. S.; Wee, J.; Lee, M.; Hong, J.; Cho, K.

    2017-12-01

    Terrestrial toxic effects of soil arsenic were studied using a model system consisting of soil which artificially treated with arsenic, Capsicum annum,Myzus persicae and Aphidus colemani. We investigated the transfer of arsenic in a soil-plant-aphid system and toxic effect of elevated arsenic through a plant-aphid-parasitoid system. To remove the effect of poor plant growth on aphid performance, test concentrations which have a no effect on health plant growth were selected. Arsenic concentration of growth medium, plant tissues (root, stem, leaf) aphids were measured to observe the arsenic transfer. Correlation matrix was made with arsenic in growth medium which extracted with three extractants (aquaregia, 0.01 M CaCl2 and deionized water), arsenic in plant tissues and plant performance. Toxic effects of elevated arsenic concentrations on each species were investigated at population level. Studied plant performances were dry weight of each tissue, elongation of roots and stems, area of leaves, chlorophyll content of leaves, protein content of leaves and sugar content of leaves. Mean development time, fecundity and honeydew excretion of the aphids and host choice capacity and parasitism success of the parasitoids were examined. In addition, enzyme activities of the plants and the aphids against reactive oxygen species (ROS) induced by arsenic stress were also investigated. The results suggest that arsenic concentration in plant tissues and aphids were elevated with increased concentration of arsenic in soil. Decreased fecundity and honeydew excretion of aphids were observed and decreased eclosion rate of parasitoids were observed with increased arsenic treatment in growth medium. The results showed low concentration of arsenic in soil can transfer through food chain and can impact on higher trophic level species.

  3. Advanced chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Kobayashi, Yasuhiro; Nagasawa, Katsumi

    2000-01-01

    Chemistry control in a boiling water reactor (BWR) plant has a close relationship with radiation field buildup, fuel reliability, integrity of plant components and materials, performance of the water treatment systems and radioactive waste generation. Chemistry management in BWR plants has become more important in order to maintain and enhance plant reliability. Adequate chemistry control and management are also essential to establish, maintain, and enhance plant availability. For these reasons, we have developed the advanced chemistry management system for nuclear power plants in order to effectively collect and evaluate a large number of plant operating and chemistry data. (author)

  4. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344.

    Science.gov (United States)

    Roy, Debanjana; Panchal, Shweta; Rosa, Bruce A; Melotto, Maeli

    2013-04-01

    Consumption of fresh produce contaminated with bacterial human pathogens has resulted in various, sometimes deadly, disease outbreaks. In this study, we assessed plant defense responses induced by the fully pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium SL1344 in both Arabidopsis thaliana and lettuce (Lactuca sativa). Unlike SL1344, O157:H7 induced strong plant immunity at both pre-invasion and post-invasion steps of infection. For instance, O157:H7 triggered stomatal closure even under high relative humidity, an environmental condition that generally weakens plant defenses against bacteria in the field and laboratory conditions. SL1344 instead induced a transient stomatal immunity. We also observed that PR1 gene expression was significantly higher in Arabidopsis leaves infected with O157:H7 compared with SL1344. These results suggest that plants may recognize and respond to some human pathogens more effectively than others. Furthermore, stomatal immunity can diminish the penetration of human pathogens through the leaf epidermis, resulting in low bacterial titers in the plant apoplast and suggesting that additional control measures can be employed to prevent food contamination. The understanding of how plant responses can diminish bacterial contamination is paramount in preventing outbreaks and improving the safety of food supplies.

  5. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    Science.gov (United States)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  6. Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus

    Directory of Open Access Journals (Sweden)

    Antonella Vitti

    2016-10-01

    Full Text Available Understanding the induction of plant defenses against viruses using biocontrol agents is essential for developing new strategies against these pathogens, given the ineffectiveness of chemical treatments. The ability of Trichoderma harzianum, strain T-22 (T22 to control Cucumber mosaic virus (CMV in Solanum lycopersicum var. cerasiforme plants and the changes in the physiology of tomato treated/infected with T22/CMV were examined. Plant growth-promoting effects, photosynthetic performance, reactive oxygen species (ROS scavenging enzymes, and phytohormones were investigated. T22 improved tomato growth in terms of plant height and improved photosynthesis, total chlorophyll content and plant gas exchange. In contrast, CMV induced a negative effect on dry matter accumulation and inhibited the photosynthetic capacity. The analysis of plant hormones demonstrated that treating with T22 before or simultaneously to CMV infection, led to a systemic resistance by jasmonic acid/ethylene and salicylic acid signaling pathways. Conversely, systemic resistance was abscissic acid-dependent when T22 treatment was administered after the CMV infection. In conclusion, the data reported here indicate that the T22-based strategy may be the most effective measure against CMV.

  7. Preinspection of nuclear power plant systems

    International Nuclear Information System (INIS)

    1975-01-01

    The general plans of the systems affecting the safety of the nuclear power plants are accepted by the Institute of Radiation Protection (IRP) on the basis of the preinspection of the systems. This is the prerequisite of the preinspection of the structures and components belonging to these systems. Exceptionally, when separately agreed, the IRP may perform the preinspection of a separate structure or component, although the preinspection documentation of the whole system, e.g. the nuclear heat generating system, has not been accepted. This guide applies to the nuclear power plant systems that have been defined to be preinspected in the classification document accepted by the IRP

  8. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control

    Directory of Open Access Journals (Sweden)

    Yano Akira

    2012-11-01

    Full Text Available Abstract Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD. The average photosynthetic PFD (PPFD in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%, which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength, the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1 was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a

  9. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-06-01

    Full Text Available Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  10. Expert systems for design, operation and management of industrial plant elctrical systems

    Energy Technology Data Exchange (ETDEWEB)

    Delfino, B.; Forzano, P.; Invernizzi, M.; Massucco, S. (Genoa Univ. (Italy) Pavia Univ. (Italy) Ansaldo Industria, Genoa (Italy))

    1991-02-01

    A discussion is made of modern industrial plant requirements with regard to man-machine interfacing. Indications are then given as to the optimum hardware and software for electrical plant and process control systems. Illustrative examples are provided on the use of expert systems to aid in the design of industrial plant electrical systems and to allow safe and reliable on-line control and monitoring.

  11. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    Breeding gain in symbiotic nuclear power plant system consisting of both thermal and fast breeder reactors depends on the characteristics and the ratio of thermal and fast reactors. The composition of the symbiotic power plant systems was determined for equilibrium and plutonium deficient systems. According to natural uranium utilization, symbiotic power plant systems are not less efficient than the systems containing only fast breeders. Depleted uranium can be applied in both types of systems. Reprocessing demands of the symbiotic power plant sytems were determined. (V.N.) 23 figs.; 1 tab

  12. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    International Nuclear Information System (INIS)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do

    2015-01-01

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability

  13. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability.

  14. Getting the ecology into the interactions between plants and the plant-growth promoting bacterium Pseudomonas fluorescens

    NARCIS (Netherlands)

    Hol, W.H.G.; Bezemer, T.M.; Biere, A.

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) are increasingly appreciated for their contributions to primary productivity through promotion of growth and triggering of induced systemic resistance in plants. Here we focus on the beneficial effects of one particular species of PGPR (Pseudomonas

  15. Plant Growth Modeling Using L-System Approach and Its Visualization

    Directory of Open Access Journals (Sweden)

    Atris Suyantohadi

    2011-05-01

    Full Text Available The visualizationof plant growth modeling using computer simulation has rarely been conducted with Lindenmayer System (L-System approach. L-System generally has been used as framework for improving and designing realistic modeling on plant growth. It is one kind of tools for representing plant growth based on grammar sintax and mathematic formulation. This research aimed to design modeling and visualizing plant growth structure generated using L-System. The environment on modeling design used three dimension graphic on standart OpenGL format. The visualization on system design has been developed by some of L-System grammar, and the output graphic on three dimension reflected on plant growth as a virtual plant growth system. Using some of samples on grammar L-System rules for describing of the charaterictics of plant growth, the visualization of structure on plant growth has been resulted and demonstrated.

  16. Sophistication and integration of plant engineering CAD-CAE systems

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Hanyu, Masaharu; Ota, Yoshimi; Kobayashi, Yasuhiro.

    1995-01-01

    In respective departments in charge of basic planning, design, manufacture, inspection and construction of nuclear power plants, by the positive utilization of CAD/CAE system, efficient workings have been advanced. This time, the plant integrated CAE system wich heightens the function of these individual systems, and can make workings efficient and advanced by unifying and integrating them was developed. This system is composed of the newly developed application system and the data base system which enables the unified management of engineering data and high speed data conversion in addition to the CAD system for three-dimensional plant layout planning. On the basis of the rich experience and the proposal of improvement of designers by the application of the CAD system for three-dimensional plant layout planning to actual machines, the automation, speed increase and the visualization of input and output by graphical user interface (GUI) in the processing of respective applications were made feasible. As the advancement of plant CAE system, scenic engineering system, integrated layout CAE system, electric instrumentation design CAE system and construction planning CAE system are described. As for the integration of plant CAE systems, the integrated engineering data base, the combination of plant CAE systems, and the operation management in the dispersed environment of networks are reported. At present, Hitachi Ltd. exerts efforts for the construction of atomic energy product in formation integrated management system as the second stage of integration. (K.I.)

  17. Prey and Non-prey Arthropods Sharing a Host Plant: Effects on Induced Volatile Emission and Predator Attraction

    Science.gov (United States)

    Hordijk, Cornelis A.; Posthumus, Maarten A.; Dicke, Marcel

    2008-01-01

    It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile emissions of lima bean and cucumber plants upon multi-species herbivory by spider mites (Tetranychus urticae) and caterpillars (Spodoptera exigua) in comparison to single-species herbivory. Upon herbivory by single or multiple species, lima bean and cucumber plants emitted volatile blends that comprised mostly the same compounds. To detect additive, synergistic, or antagonistic effects, we compared the multi-species herbivory volatile blend with the sum of the volatile blends induced by each of the herbivore species feeding alone. In lima bean, the majority of compounds were more strongly induced by multi-species herbivory than expected based on the sum of volatile emissions by each of the herbivores separately, potentially caused by synergistic effects. In contrast, in cucumber, two compounds were suppressed by multi-species herbivory, suggesting the potential for antagonistic effects. We also studied the behavioral responses of the predatory mite Phytoseiulus persimilis, a specialized natural enemy of spider mites. Olfactometer experiments showed that P. persimilis preferred volatiles induced by multi-species herbivory to volatiles induced by S. exigua alone or by prey mites alone. We conclude that both lima bean and cucumber plants effectively attract predatory mites upon multi-species herbivory, but the underlying mechanisms appear different between these species. PMID:18185960

  18. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    Directory of Open Access Journals (Sweden)

    Ülo eNiinemets

    2013-07-01

    Full Text Available Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase pathway (LOX products, various C6 aldehydes, alcohols and derivatives, also called green leaf volatiles associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo- and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose-response relationships as previously demonstrated for several abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary

  19. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production.

    Directory of Open Access Journals (Sweden)

    Axel de Zélicourt

    2018-03-01

    Full Text Available Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA, known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance.

  20. Induced resistance in plants and the role of pathogenesis-related proteins

    NARCIS (Netherlands)

    Loon, L.C. van

    1997-01-01

    The nature of induced resistance Resistance, according to Agrios (1988) is the ability of an organism to exclude or overcome, completely or in some degree, the effect of a pathogen or other damaging factor. Disease resistance in plants is manifested by limited symptoms, reflecting the

  1. Plant Systems Biology at the Single-Cell Level.

    Science.gov (United States)

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Optimal planting systems for cut gladiolus and stock production

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmad

    2017-10-01

    Full Text Available A study was conducted to elucidate the effect of different planting systems, videlicet (viz. flat, ridge, and raised bed system on growth, yield and quality of gladiolus and stock. Corms of ‘Rose Supreme’ and ‘White Prosperity’ gladiolus and seedlings of ‘Cheerful White’, ‘Lucinda Dark Rose Double’ and ‘Lucinda Dark Rose Single’ stock were planted on different planting systems in individual experiments for each species. Gladiolus had similar good quality production irrespective of planting systems with numerical superiority of ridge planting, which produced longer stems with higher stem fresh weight, but delayed corm sprouting by ca. 1 d compared to raised bed or flat planting system. Among cultivars, ‘Rose Supreme’ produced higher number of florets per spike, taller stems with longer spikes, higher fresh weight of stems and higher number of cormels than ‘White Prosperity’. Stock plants grown on flat beds produced stems with greater stem length, leaf area and fresh weight of stems compared to ridge or raised bed planting systems. Plants grown on ridges produced the highest stem diameter, number of leaves per plant, total leaf chlorophyll contents, and number of flowers per spike. ‘Cheerful White’ and ‘Lucinda Dark Rose Double’ performed best by producing good quality stems in shorter period compared to ‘Lucinda Dark Rose Single’. In summary, gladiolus should be grown on ridges, while stock may be planted on flat beds for higher yields of better quality flowers.

  3. Cold plasma interactions with plants: Morphing and movements of Venus flytrap and Mimosa pudica induced by argon plasma jet.

    Science.gov (United States)

    Volkov, Alexander G; Xu, Kunning G; Kolobov, Vladimir I

    2017-12-01

    Low temperature (cold) plasma finds an increasing number of applications in biology, medicine and agriculture. In this paper, we report a new effect of plasma induced morphing and movements of Venus flytrap and Mimosa pudica. We have experimentally observed plasma activation of sensitive plant movements and morphing structures in these plants similar to stimulation of their mechanosensors in vivo. Application of an atmospheric pressure argon plasma jet to the inside or outside of a lobe, midrib, or cilia in Dionaea muscipula Ellis induces trap closing. Treatment of Mimosa pudica by plasma induces movements of pinnules and petioles similar to the effects of mechanical stimulation. We have conducted control experiments and simulations to illustrate that gas flow and UV radiation associated with plasma are not the primary reasons for the observed effects. Reactive oxygen and nitrogen species (RONS) produced by cold plasma in atmospheric air appear to be the primary reason of plasma-induced activation of phytoactuators in plants. Some of these RONS are known to be signaling molecules, which control plants' developmental processes. Understanding these mechanisms could promote plasma-based technology for plant developmental control and future use for plant protection from pathogens. Our work offers new insight into mechanisms which trigger plant morphing and movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum.

    Science.gov (United States)

    Cai, Feng; Yu, Guanghui; Wang, Ping; Wei, Zhong; Fu, Lin; Shen, Qirong; Chen, Wei

    2013-12-01

    A detailed understanding of the effect of natural products on plant growth and protection will underpin new product development for plant production. The isolation and characterization of a known secondary metabolite named harzianolide from Trichoderma harzianum strain SQR-T037 were described, and the bioactivity of the purified compound as well as the crude metabolite extract in plant growth promotion and systemic resistance induction was investigated in this study. The results showed that harzianolide significantly promoted tomato seedling growth by up to 2.5-fold (dry weight) at a concentration of 0.1 ppm compared with the control. The result of root scan suggested that Trichoderma secondary metabolites may influence the early stages of plant growth through better root development for the enhancement of root length and tips. Both of the purified harzianolide and crude metabolite extract increased the activity of some defense-related enzymes to response to oxidative stress. Examination of six defense-related gene expression by real-time reverse transcription-PCR analysis revealed that harzianolide induces the expression of genes involved in the salicylic acid (PR1 and GLU) and jasmonate/ethylene (JERF3) signaling pathways while crude metabolite extract inhibited some gene expression (CHI-II and PGIP) related to basal defense in tomato plants. Further experiment showed that a subsequent challenge of harzianolide-pretreated plants with the pathogen Sclerotinia sclerotiorum resulted in higher systemic resistance by the reduction of lesion size. These results indicate that secondary metabolites of Trichoderma spp., like harzianolide, may play a novel role in both plant growth regulation and plant defense responses. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Seismic-load-induced human errors and countermeasures using computer graphics in plant-operator communication

    International Nuclear Information System (INIS)

    Hara, Fumio

    1988-01-01

    This paper remarks the importance of seismic load-induced human errors in plant operation by delineating the characteristics of the task performance of human beings under seismic loads. It focuses on man-machine communication via multidimensional data like that conventionally displayed on large panels in a plant control room. It demonstrates a countermeasure to human errors using a computer graphics technique that conveys the global state of the plant operation to operators through cartoon-like, colored graphs in the form of faces that, with different facial expressions, show the plant safety status. (orig.)

  6. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress

    KAUST Repository

    Turek, Ilona; Marondedze, Claudius; Wheeler, Janet I.; Gehring, Christoph A; Irving, Helen R.

    2014-01-01

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms “oxidation-reduction process,” “translation” and “response to salt stress” and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions.

  7. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress

    KAUST Repository

    Turek, Ilona

    2014-11-26

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms “oxidation-reduction process,” “translation” and “response to salt stress” and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions.

  8. Salicylic acid-independent plant defence pathways

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Loon, L.C. van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are

  9. Plant type improvement of indigenous rice cultivars through induced mutations

    International Nuclear Information System (INIS)

    Kihupi, A.

    1997-01-01

    A high yielding, locally adapted cultivar 'Afaa Mwanza 1/159' of rice (Oryza sativa L.) which is tall and late in maturity, was irradiated with gamma rays at doses of 170, 210 and 250 Gy to shorten plant height and time of maturity. Twelve mutants were selected, and evaluated for yield performance in field trials from M 6 to M 9 generations. All the mutants were shorter in plant height, and gave higher mean yield than the parent. Correlation coefficient analysis showed that the number of productive tillers, number of panicles per square meter and grain filling in the panicle were important characters which influenced yield. On the other hand, panicle length had negative influence on yield. Cv. 'Supa India' and 'Salama' were also irradiated with doses of 170, 210, 240 Gy gamma rays. Analysis of M 2 populations of these cultivars indicated that mutagenesis created a lot of variation in plant height, maturity, spikelet fertility and panicle length. The induced variation shall be useful in selecting desired plant types. (author). 16 refs, 12 tabs

  10. Plant type improvement of indigenous rice cultivars through induced mutations

    Energy Technology Data Exchange (ETDEWEB)

    Kihupi, A [Department of Crop Science and Production, Sokoine Univ. of Agriculture, Morogoro (Tanzania)

    1997-07-01

    A high yielding, locally adapted cultivar `Afaa Mwanza 1/159` of rice (Oryza sativa L.) which is tall and late in maturity, was irradiated with gamma rays at doses of 170, 210 and 250 Gy to shorten plant height and time of maturity. Twelve mutants were selected, and evaluated for yield performance in field trials from M{sub 6} to M{sub 9} generations. All the mutants were shorter in plant height, and gave higher mean yield than the parent. Correlation coefficient analysis showed that the number of productive tillers, number of panicles per square meter and grain filling in the panicle were important characters which influenced yield. On the other hand, panicle length had negative influence on yield. Cv. `Supa India` and `Salama` were also irradiated with doses of 170, 210, 240 Gy gamma rays. Analysis of M{sub 2} populations of these cultivars indicated that mutagenesis created a lot of variation in plant height, maturity, spikelet fertility and panicle length. The induced variation shall be useful in selecting desired plant types. (author). 16 refs, 12 tabs.

  11. Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants.

    Science.gov (United States)

    Mohamed, Heba Ibrahim; Akladious, Samia Ageeb

    2017-10-01

    The use of fungicides for an effective control of plant diseases has become crucial in the last decades in the agriculture system. Seeds of cotton plants were treated with systemic and contact fungicides to study the efficiency of seed dressing fungicides in controlling damping off caused by Rhizoctonia solani under greenhouse conditions and its effect on plant growth and metabolism. The results showed that Mon-cut showed the highest efficiency (67.99%) while each of Tondro and Hemixet showed the lowest efficiency (31.99%) in controlling damping off. Rhizolex T, Mon-cut and Tondro fungicides caused significant decrease in plant height, dry weight of plant, phytohormones, photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids but caused significant increases in total phenols, flavonoids, antioxidant enzymes, ascorbic acid, reduced glutathione, MDA and hydrogen peroxide as compared with untreated plants. On the other hand, the other fungicides (Maxim, Hemixet and Flosan) increased all the above recorded parameters as compared with untreated plants. Our results indicated that the fungicides application could be a potential tool to increase plant growth, the antioxidative defense mechanisms and decreased infection with plant diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Laser-induced breakdown spectroscopy for analysis of plant materials: A review

    International Nuclear Information System (INIS)

    Santos, Dário; Nunes, Lidiane Cristina; Gustinelli Arantes de Carvalho, Gabriel; Gomes, Marcos da Silva; Souza, Paulino Florêncio de; Leme, Flavio de Oliveira; Gustavo Cofani dos Santos, Luis; Krug, Francisco José

    2012-01-01

    Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited. - Highlights: ► Qualitative and quantitative LIBS analysis of plant materials are reviewed. ► Fresh or dried leaves, fruits, roots and pellets can be easily interrogated by LIBS. ► LIBS is a powerful tool for plant nutrition diagnosis and elemental mapping. ► Intended LIBS users will find a survey of applications in a comprehensive table.

  13. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways.

    Science.gov (United States)

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. © 2016 American Society of Plant Biologists. All rights reserved.

  14. The condition monitoring system of turbine system components for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Shigetoshi

    2013-01-01

    The thermal and nuclear power plants have been imposed a stable supply of electricity. To certainly achieve this, we built the plant condition monitoring system based on the heat and mass balance calculation. If there are some performance changes on the turbine system components of their power plants, the heat and mass balance of the turbine system will change. This system has ability to detect the abnormal signs of their components by finding the changes of the heat and mass balance. Moreover we note that this system is built for steam turbine cycle operating with saturated steam conditions. (author)

  15. Guidelines for multipurpose data systems for nuclear power plants

    International Nuclear Information System (INIS)

    1994-07-01

    This TECDOC is intended to provide guidance on implementing a system to provide the staff and management of a nuclear power plant with data and information specific to the plant, to assist in making decisions concerning plant operation and maintenance. The guidelines do not deal with issues relating to software and hardware for database management owing to the rapid evolution in these technologies. It will be up to individual utilities to select a suitable technology to meet their data system needs. The guidelines are intended to help a utility with operating plants and/or plants under construction to implement a system which best suits its needs for the compilation of plant specific data. The plant specific data will in turn help in generating quantitative and qualitative results and insights to support decision making for optimized plant operation and maintenance. The guidelines are supplemented by examples of the data systems in use at the utilities that contributed to the preparation of the document Figs and tabs

  16. A nuclear power plant system engineering workstation

    International Nuclear Information System (INIS)

    Mason, J.H.; Crosby, J.W.

    1989-01-01

    System engineers offer an approach for effective technical support for operation and maintenance of nuclear power plants. System engineer groups are being set up by most utilities in the United States. Institute of Nuclear Power operations (INPO) and U.S. Nuclear Regulatory Commission (NRC) have endorsed the concept. The INPO Good Practice and a survey of system engineer programs in the southeastern United States provide descriptions of system engineering programs. The purpose of this paper is to describe a process for developing a design for a department-level information network of workstations for system engineering groups. The process includes the following: (1) application of a formal information engineering methodology, (2) analysis of system engineer functions and activities; (3) use of Electric Power Research Institute (EPRI) Plant Information Network (PIN) data; (4) application of the Information Engineering Workbench. The resulting design for this system engineer workstation can provide a reference for design of plant-specific systems

  17. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance.

    Science.gov (United States)

    Brunner, Kurt; Zeilinger, Susanne; Ciliento, Rosalia; Woo, Sheridian L; Lorito, Matteo; Kubicek, Christian P; Mach, Robert L

    2005-07-01

    Biocontrol agents generally do not perform well enough under field conditions to compete with chemical fungicides. We determined whether transgenic strain SJ3-4 of Trichoderma atroviride, which expresses the Aspergillus niger glucose oxidase-encoding gene, goxA, under a homologous chitinase (nag1) promoter had increased capabilities as a fungal biocontrol agent. The transgenic strain differed only slightly from the wild-type in sporulation or the growth rate. goxA expression occurred immediately after contact with the plant pathogen, and the glucose oxidase formed was secreted. SJ3-4 had significantly less N-acetylglucosaminidase and endochitinase activities than its nontransformed parent. Glucose oxidase-containing culture filtrates exhibited threefold-greater inhibition of germination of spores of Botrytis cinerea. The transgenic strain also more quickly overgrew and lysed the plant pathogens Rhizoctonia solani and Pythium ultimum. In planta, SJ3-4 had no detectable improved effect against low inoculum levels of these pathogens. Beans planted in heavily infested soil and treated with conidia of the transgenic Trichoderma strain germinated, but beans treated with wild-type spores did not germinate. SJ3-4 also was more effective in inducing systemic resistance in plants. Beans with SJ3-4 root protection were highly resistant to leaf lesions caused by the foliar pathogen B. cinerea. This work demonstrates that heterologous genes driven by pathogen-inducible promoters can increase the biocontrol and systemic resistance-inducing properties of fungal biocontrol agents, such as Trichoderma spp., and that these microbes can be used as vectors to provide plants with useful molecules (e.g., glucose oxidase) that can increase their resistance to pathogens.

  18. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  19. Control of power plants and power systems. Proceedings

    International Nuclear Information System (INIS)

    Canales-Ruiz, R.

    1996-01-01

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for the three papers relating to nuclear power plants. (UK)

  20. Plant risk status information management system

    International Nuclear Information System (INIS)

    Campbell, D.J.; Ellison, B.C.; Glynn, J.C.; Flanagan, G.F.

    1985-01-01

    The Plant Risk Status Information Management System (PRISIMS) is a PC program that presents information about a nuclear power plant's design, its operation, its technical specifications, and the results of the plant's probabilistic risk assessment (PRA) in a logically and easily accessible format. PRISIMS provides its user with unique information for integrating safety concerns into day-to-day operational decisions and/or long-range management planning

  1. Knowledge acquisition for nuclear power plant unit diagnostic system

    International Nuclear Information System (INIS)

    Li Xiaodong; Xi Shuren

    2003-01-01

    The process of acquiring knowledge and building a knowledge base is critical to realize fault diagnostic system at unit level in a nuclear power plant. It directly determines whether the diagnostic system can be applied eventually in a commercial plant. A means to acquire knowledge and its procedures was presented in this paper for fault diagnostic system in a nuclear power plant. The work can be carried out step by step and it is feasible in a commercial nuclear power plant. The knowledge base of the fault diagnostic system for a nuclear power plant can be built after the staff finish the tasks according to the framework presented in this paper

  2. Development of plant status display system for on-site educational training system

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Fujimoto, Junzo; Okamoto, Hisatake; Tsunoda, Ryohei; Watanabe, Takao; Masuko, Jiro.

    1986-01-01

    The purpose of this system is to make easy the comprehension of the facility and dynamics of nuclear power plants. This report describes the tendency and future position of how the educational training system should be, and furthermore describes the experiment. Main results are as follows. 1. The present status and the future tendency of educational training system for nuclear power plant operators. CAI (Computer Assisted Instruction) system has following characteristics. (1) It is easy to introduce plant specific characteristics to the educational training. (2) It is easy to execute the detailed training for the compensation of the full-scale simulator. 2. Plant status display system for on-site educational training system. The fundamental function of the system is as follows. (1) It has 2 CRT displays and voice output devices. (2) It has easy manupulation type of man-machine interface. (3) It has the function for the evaluation of the training results. 3. The effectiveness of this system. The effectiveness evaluation test has been carried out by using this system actually. (1) This system has been proved to be essentially effective and some improvements for the future utilization has been pointed out. (2) It should be faster when the CRT displayes are changed, and it should have the explanation function when the plant transients are displayed. (author)

  3. Computerized information system of the Mochovce nuclear power plant

    International Nuclear Information System (INIS)

    Holik, V.

    1986-01-01

    The computer-based information system for the Mochovce nuclear power plant has a hierarchic structure which incorporates SM 1804 microcomputers and SM 1420 minicomputers. With regard to operation it is divided into two levels: the information system at the level of power plant units and the information system t the level of the whole power plant. The information system of a unit provides the collection of information on the technological equipment of each unit for the operative control of the unit and documentation on unit operation. Each unit has its own independent computer information system. The actual nucleus of each unit information system consists of two computer complexes based on SM 1420 twin computers, mutually substitutional. The power plant level information system provides the processing and output of information for personnel in the central control room of the power plant and for other managerial staff. It uses preprocessed information from the unit information systems and direct information from non-unit installations and from dosimetric control rooms of the power plant units. This information system is also based on a computer complex with two SM 1420 computers. (Z.M.)

  4. Individual plant care in cropping systems

    OpenAIRE

    Griepentrog, Hans W.; Nørremark, Michael; Nielsen, Henning; Blackmore, Simon

    2003-01-01

    Individual plant care cropping systems, embodied in precision farming, may lead to new opportunities in agricultural crop management. The objective of the project was to provide high accuracy seed position mapping of a field of sugar beet. An RTK GPS was retrofitted on to a precision seeder to map the seeds as they were planted. The average error between the seed map and the actual plant map was about 32 mm to 59 mm. The results showed that the overall accuracy of the estimated plant position...

  5. Ways to integrate document management systems with industrial plant configuration management systems

    International Nuclear Information System (INIS)

    Munoz, M.

    1995-01-01

    Based on experience gained from tasks carried out for Almaraz Nuclear Power Plant, this paper describes computer platforms used both at the power plant and in the main offices of the engineering company. Subsequently, a description is given of the procedure followed for the continuous up-dating of plant documentation, in order to maintain consistency with other information stored in data bases in the Operation Management System, Maintenance System, Modification Management System, etc. The work method used for the unitary updating of all information (document images and attributes corresponding to the different data bases), following refuelling procedures is also described. Lastly, the paper describes the functions and the user interface of the system used in the power plant for document management. (Author)

  6. Expert system for maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Ito, Tetsuo; Kasahara, Takayasu; Watanabe, Takao; Matsuki, Tsutomu.

    1989-01-01

    The basic function of the expert system which supports the maintenance works such as the diagnosis of nuclear power plants and the planning of maintenance works was developed. For the maintenance of large scale plants like nuclear power plants, much manpower is required. Consequently, it has been desired to develop the system for improving the maintainability by utilizing the expertise and empirical knowledge of skilled engineers. This system comprises the subsystems for aiding plant diagnosis and maintenance work planning. The former diagnoses the contents of out of order based on the knowledge base, and thereafter, guides the method of taking measures using simulator. The latter establishes the plan by using the method of limiting branching together so that the maintenance works do not interfere mutually or do not affect the operation. Hereafter, it is intended to improve the man-machine condition and expand knowledge aiming at the practical use. The outline of the system, the constitution of subsystems, the example of plant diagnosis, the support of plant maintenance work planning and so on are reported. (K.I.)

  7. Operator support system for nuclear power plants

    International Nuclear Information System (INIS)

    Mori, Nobuyuki; Tai, Ichiro; Sudo, Osamu; Naito, Norio.

    1987-01-01

    The nuclear power generation in Japan maintains the high capacity factor, and its proportion taken in the total generated electric power exceeded 1/4, thus it has become the indispensable energy source. Recently moreover, the nuclear power plants which are harmonious with operators and easy to operate are demanded. For realizing this, the technical development such as the heightening of operation watching performance, the adoption of automation, and the improvement of various man-machine systems for reducing the burden of operators has been advanced by utilizing electronic techniques. In this paper, the trend of the man-machine systems in nuclear power plants, the positioning of operation support system, the support in the aspects of information, action and knowledge, the example of a new central control board, the operation support system using a computer, an operation support expert system and the problems hereafter are described. As the development of the man-machine system in nuclear power plants, the upgrading from a present new central control board system PODIA through A-PODIA, in which the operational function to deal with various phenomena arising in plants and safety control function are added, to 1-PODIA, in which knowledge engineering technology is adopted, is expected. (Kako, I.)

  8. The potential of virus-induced gene silencing for speeding up functional characterization of plant genes

    NARCIS (Netherlands)

    Benedito, V.A.; Visser, P.B.; Angenent, G.C.; Krens, F.A.

    2004-01-01

    Virus-induced gene silencing (VIGS) has been shown to be of great potential in plant reverse genetics. Advantages of VIGS over other approaches, such as T-DNA or transposon tagging, include the circumvention of plant transformation, methodological simplicity and robustness, and speedy results. These

  9. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  10. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis.

    Science.gov (United States)

    van der Linde, Karina; Kastner, Christine; Kumlehn, Jochen; Kahmann, Regine; Doehlemann, Gunther

    2011-01-01

    Infection of maize (Zea mays) plants with the corn smut fungus Ustilago maydis leads to the formation of large tumors on the stem, leaves and inflorescences. In this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed massive and stage-specific changes in host gene expression during disease progression. To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a virus-induced gene silencing (VIGS) system based on the brome mosaic virus (BMV) for maize. Conditions were established that allowed successful U. maydis infection of BMV-preinfected maize plants. This set-up enabled quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (qRT-PCR)-based readout. In proof-of-principle experiments, an U. maydis-induced terpene synthase was shown to negatively regulate disease development while a protein involved in cell death inhibition was required for full virulence of U. maydis. The results suggest that this system is a versatile tool for the rapid identification of maize genes that determine compatibility with U. maydis. © (2010) Max Planck Society. Journal compilation © New Phytologist Trust (2010).

  11. Hybrid intelligent monironing systems for thermal power plant trips

    Science.gov (United States)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  12. A Calcium-Dependent Protein Kinase Is Systemically Induced upon Wounding in Tomato Plants1

    Science.gov (United States)

    Chico, José Manuel; Raíces, Marcela; Téllez-Iñón, María Teresa; Ulloa, Rita María

    2002-01-01

    A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks. PMID:11788771

  13. Particle induced x-ray emission studies of some Indian medicinal plants

    International Nuclear Information System (INIS)

    Nomita Devi, K.; Nandakumar Sarma, H.; Kumar, Sanjiv

    2007-01-01

    Medicinal herbs have been used from antiquity by humanity. This paper discusses the elemental composition and concentration of ten Indian medicinal plants investigated by particle induced X-ray emission (PIXE) technique. The accuracy and precision of the technique were assured by analyzing three Certified Standard Reference Materials -cabbage- (GBW 08504, China), wheat flour (NIST-8436) and bovine liver (NIST-1577b). The element K, Ca, Mn, Fe, Cu and Zn were found to be present in all the samples in varying concentrations. No toxic heavy metals such as As, Pb and Hg were detected in the studied plants. The range of the elemental concentrations in dry weight has been found to vary from 4.69x10 4 mg/kg to 1.81 mg/kg in the plants. The results also show that these plants contain elements of vital importance in man's metabolism and that are needed for growth and developments, prevention and heating of diseases. (author)

  14. Preparation of plant and system design description documents

    International Nuclear Information System (INIS)

    1989-01-01

    This standard prescribes the purpose, scope, organization, and content of plant design requirements (PDR) documents and system design descriptions (SDDs), to provide a unified approach to their preparation and use by a project as the principal means to establish the plant design requirements and to establish, describe, and control the individual system designs from conception and throughout the lifetime of the plant. The Electric Power Research Institute's Advanced Light Water Reactor (LWR) Requirements Document should be considered for LWR plants

  15. Improvement of pulse crops through induced mutations: Reconstruction of plant type

    International Nuclear Information System (INIS)

    Rao, C.H.; Tickoo, J.L.; Ram, H.; Jain, H.K.

    1975-01-01

    Many species of grain legumes, because of their cultivation under marginal conditions for centuries, have retained a number of semi-wild characteristics, such as a bushy and spreading growth, which contribute to their adaptability but reduce their yields. The observations presented here indicate that induced mutations may prove effective in generating new plant-types in these crops, which are marked by an improvement in the harvest index and which will show a response to increased plant densities. The present report describes observations on the M 2 progenies of pigeon pea and mung bean on which work has been initiated. (author)

  16. Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices.

    Science.gov (United States)

    Perera, Handunge Kumudu Irani; Handuwalage, Charith Sandaruwan

    2015-06-09

    Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °C in the presence or absence of different concentrations of plant extracts up to 31 days. Standard glycation inhibitor aminoguanidine and other appropriate controls were included. A recently established sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) method was used to detect the products of protein cross-linking in the incubation mixtures. High molecular weight protein products representing the dimer, trimer and tetramer of lysozyme were detected in the presence of fructose. Among the nine antidiabetic plants, seven showed glycation induced protein cross-linking inhibitory effects namely Ficus racemosa (FR) stem bark, Gymnema sylvestre (GS) leaves, Musa paradisiaca (MP) yam, Phyllanthus debilis (PD) whole plant, Phyllanthus emblica (PE) fruit, Pterocarpus marsupium (PM) latex and Tinospora cordifolia (TC) leaves. Inhibition observed with Coccinia grandis (CG) leaves and Strychnos potatorum (SP) seeds were much low. Leaves of Gymnema lactiferum (GL), the plant without known antidiabetic effects showed the lowest inhibition. All three spices namely Coriandrum sativum (CS) seeds, Cinnamomum zeylanicum (CZ) bark and Syzygium aromaticum (SA) flower buds showed cross-link inhibitory effects with higher effects in CS and SA. PD, PE, PM, CS and SA showed almost complete inhibition on the formation of cross-linking with 25 μg/ml extracts. Methanol extracts of PD, PE, PM, CS and SA have shown promising inhibitory effects on glycation induced protein cross-linking.

  17. Meiosis in radiation induced triploid and tetraploid plants of pearl millet

    International Nuclear Information System (INIS)

    Singh, R.B.; Singh, B.D.; Singh, R.M.; Laxmi, V.

    1977-01-01

    A triploid and a tetraploid plant were isolated from mutagen treated populations of HB3 (Tif23AxJ104) and HBI (Tif23AxBi13B) hybrid pearl millet, respectively. The triploid plant regularly showed univalents (1 to 9 per cell) and trivalents (1 to 6 per cell) at MI. In the case of the tetraploid, only bivalents were observed which showed loose or tight secondary associations at MI; at AI bivalents separated as units (instead of chromosomes) while at AII chromosomes (instead of chromatids) moved to the opposite poles. Although the chromosome behaviour was quite regular, the plant was highly sterile (98%). It is suggested that gamma-rays had induced mutations in a number of genes, including those affecting pairing, concomitant to the induction of tetraploidy. (auth.)

  18. An integrated reliability management system for nuclear power plants

    International Nuclear Information System (INIS)

    Kimura, T.; Shimokawa, H.; Matsushima, H.

    1998-01-01

    The responsibility in the nuclear field of the Government, utilities and manufactures has increased in the past years due to the need of stable operation and great reliability of nuclear power plants. The need to improve the reliability is not only for the new plants but also for those now running. So, several measures have been taken to improve reliability. In particular, the plant manufactures have developed a reliability management system for each phase (planning, construction, maintenance and operation) and these have been integrated as a unified system. This integrated reliability management system for nuclear power plants contains information about plant performance, failures and incidents which have occurred in the plants. (author)

  19. The epiphytic fungus Pseudozyma aphidis induces jasmonic acid- and salicylic acid/nonexpressor of PR1-independent local and systemic resistance.

    Science.gov (United States)

    Buxdorf, Kobi; Rahat, Ido; Gafni, Aviva; Levy, Maggie

    2013-04-01

    Pseudozyma spp. are yeast-like fungi, classified in the Ustilaginales, which are mostly epiphytic or saprophytic and are not pathogenic to plants. Several Pseudozyma species have been reported to exhibit biological activity against powdery mildews. However, previous studies have reported that Pseudozyma aphidis, which can colonize plant surfaces, is not associated with the collapse of powdery mildew colonies. In this report, we describe a novel P. aphidis strain and study its interactions with its plant host and the plant pathogen Botrytis cinerea. This isolate was found to secrete extracellular metabolites that inhibit various fungal pathogens in vitro and significantly reduce B. cinerea infection in vivo. Moreover, P. aphidis sensitized Arabidopsis (Arabidopsis thaliana) plants' defense machinery via local and systemic induction of pathogenesis-related1 (PR1) and plant defensin1.2 (PDF1.2) expression. P. aphidis also reduced B. cinerea infection, locally and systemically, in Arabidopsis mutants impaired in jasmonic acid (JA) or salicylic acid (SA) signaling. Thus, in addition to direct inhibition, P. aphidis may inhibit B. cinerea infection via induced resistance in a manner independent of SA, JA, and Nonexpressor of PR1 (NPR1). P. aphidis primed the plant defense machinery and induced stronger activation of PDF1.2 after B. cinerea infection. Finally, P. aphidis fully or partially reconstituted PR1 and PDF1.2 expression in npr1-1 mutant and in plants with the SA hydroxylase NahG transgene, but not in a jasmonate resistant1-1 mutant, after B. cinerea infection, suggesting that P. aphidis can bypass the SA/NPR1, but not JA, pathway to activate PR genes. Thus, either partial gene activation is sufficient to induce resistance, or the resistance is not directed solely through PR1 and PDF1.2 but probably through other pathogen-resistance genes or pathways as well.

  20. Diffuse-Illumination Systems for Growing Plants

    Science.gov (United States)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  1. Plant operation state monitoring system

    International Nuclear Information System (INIS)

    Sakai, Masanori; Babuchi, Katsumi; Arato, Toshiaki

    1994-01-01

    The system of the present invention accurately monitors a plant operation state of a plant, such as a nuclear power plant and a thermal power plant by using high temperature water, based on water quality informations. That is, water quality informations for the objective portion by using an electrochemical water quality sensor disposed in the objective portion to be monitored in the plant are continuously extracted for a predetermined period of time. Water quality is evaluated based on the extracted information. Obtained results for water quality evaluation and predetermined reference values of the plant operation handling are compared. Necessary part among the results of the measurement is displayed or recorded. The predetermined period of time described above is a period that the water quality information reaches at least a predetermined value or a period that the predetermined value is estimated by the water quality information, and it is defined as a period capable of measuring the information for three months continuously. The measurement is preferably conducted continuously in a period up to each periodical inspection on about every one year. (I.S.)

  2. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    Science.gov (United States)

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  3. Nutrient supply of plants in aquaponic systems

    OpenAIRE

    Bittsánszky, András; Uzinger, Nikolett; Gyulai, Gábor; Mathis, Alex; Junge, Ranka; Villarroel, Morris; Kotzen, Benzion; Komives, Tamas

    2016-01-01

    In this preliminary article we present data on plant nutrient concentrations in aquaponic systems, and compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in aquaponic system are significantly lower for most nutrients, compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels than “standard” hydroponic solutions. This is especially true for green leafy...

  4. Influence of in-plant air pollution control measures on power plant and system operation

    International Nuclear Information System (INIS)

    Kurten, H.

    1990-01-01

    The burning of fossil fuels causes the emission of air pollutants which have harmful environmental impact. Consequently many nations have in the last few years established regulations for air pollution control and have initiated the development and deployment of air pollution control systems in power plants. The paper describes the methods used for reducing particulate, SO 2 and NO x emissions, their application as backfit systems and in new plants, the power plant capacity equipped with such systems in the Federal Republic of Germany and abroad and the additional investment and operating costs incurred. It is to be anticipated that advanced power plant designs will produce lower pollutant emissions and less waste at enhanced efficiency levels. A comparison with power generation in nuclear power plants completes the first part of the paper. This paper covers the impact of the above-mentioned air pollution control measures on unit commitment in daily operation

  5. Use of expert systems in nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1989-01-01

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs

  6. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  7. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    In equilibrium symbiotic power plant system containing both thermal reactors and fast breeders, excess plutonium produced by the fast breeders is used to enrich the fuel of the thermal reactors. In plutonium deficient symbiotic power plant system plutonium is supplied both by thermal plants and fast breeders. Mathematical models were constructed and different equations solved to characterize the fuel utilization of both systems if they contain only a single thermal type and a single fast type reactor. The more plutonium is produced in the system, the higher output ratio of thermal to fast reactors is achieved in equilibrium symbiotic power plant system. Mathematical equations were derived to calculate the doubling time and the breeding gain of the equilibrium symbiotic system. (V.N.) 2 figs.; 2 tabs

  8. Engineering Plant Immunity via CRISPR/Cas13a System

    KAUST Repository

    Aljedaani, Fatimah R.

    2018-05-01

    Viral diseases constitute a major threat to the agricultural production and food security throughout the world. Plants cope with the invading viruses by triggering immune responses and small RNA interference (RNAi) systems. In prokaryotes, CRISPR/Cas systems function as an adaptive immune system to provide bacteria with resistance against invading phages and conjugative plasmids. Interestingly, CRISPR/Cas9 system was shown to interfere with eukaryotic DNA viruses and confer resistance against plant DNA viruses. The majority of the plant viruses have RNA genomes. The aim of this study is to test the ability of the newly discovered CRISPR/Cas13a immune system, that targets and cleaves single stranded RNA (ssRNA) in prokaryotes, to provide resistance against RNA viruses in plants. Here, I employ the CRISPR/Cas13a system for molecular interference against Turnip Mosaic Virus (TuMV), a plant RNA virus. The results of this study established the CRISPR/Cas13a as a molecular interference machinery against RNA viruses in plants. Specifically, my data show that the CRISPR/Cas13a machinery is able to interfere with and degrade the TuMV (TuMV-GFP) RNA genome. In conclusion, these data indicate that the CRISPR/Cas13 systems can be employed for engineering interference and durable resistance against RNA viruses in diverse plant species.

  9. Automatic vibration monitoring system for the diagnostic inspection of the WWER-440 type nuclear power plants

    International Nuclear Information System (INIS)

    Hollo, E.; Siklossy, P.; Toth, Zs.

    1982-01-01

    In the Hungarian Research Institute for Electric Power Industry (VEIKI) an automatic vibration monitoring system for diagnostics and inspection of nuclear power plants of type WWER-440 was developed. The paper summarizes the results of this work and investigates the use of mechanical vibrations and oscillations induced by flow for fault diagnosis. The design of the hardware system, the present software possibilities, the laboratory experiments and the guidelines for future software developments are also described in detail. (A.L.)

  10. 12-oxo-phytodienoic acid, a plant-derived oxylipin, attenuates lipopolysaccharide-induced inflammation in microglia

    Energy Technology Data Exchange (ETDEWEB)

    Taki-Nakano, Nozomi [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505 (Japan); Kotera, Jun [Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505 (Japan); Ohta, Hiroyuki, E-mail: ohta.h.ab@m.titech.ac.jp [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan)

    2016-05-13

    Jasmonates are plant lipid–derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)–induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDA suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling. -- Highlights: •OPDA attenuates LPS-induced inflammatory cytokines such as IL-6 and TNF-α. •OPDA reduces LPS-induced iNOS expression and NO production. •OPDA suppresses NF-κB and p38 pathways and activates SOCS-1 signaling.

  11. 12-oxo-phytodienoic acid, a plant-derived oxylipin, attenuates lipopolysaccharide-induced inflammation in microglia

    International Nuclear Information System (INIS)

    Taki-Nakano, Nozomi; Kotera, Jun; Ohta, Hiroyuki

    2016-01-01

    Jasmonates are plant lipid–derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)–induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDA suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling. -- Highlights: •OPDA attenuates LPS-induced inflammatory cytokines such as IL-6 and TNF-α. •OPDA reduces LPS-induced iNOS expression and NO production. •OPDA suppresses NF-κB and p38 pathways and activates SOCS-1 signaling.

  12. System Definition and Analysis: Power Plant Design and Layout

    International Nuclear Information System (INIS)

    1996-01-01

    This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems (ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals

  13. Investigation of human system interface design in nuclear power plant

    International Nuclear Information System (INIS)

    Feng Yan; Zhang Yunbo; Wang Zhongqiu

    2012-01-01

    The paper introduces the importance of HFE in designing nuclear power plant, and introduces briefly the content and scope of HFE, discusses human system interface design of new built nuclear power plants. This paper also describes human system interface design of foreign nuclear power plant, and describes in detail human system interface design of domestic nuclear power plant. (authors)

  14. Mono- and Digalactosyldiacylglycerol Lipids Function Nonredundantly to Regulate Systemic Acquired Resistance in Plants

    Directory of Open Access Journals (Sweden)

    Qing-ming Gao

    2014-12-01

    Full Text Available Summary: The plant galactolipids monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG have been linked to the anti-inflammatory and cancer benefits of a green leafy vegetable diet in humans due to their ability to regulate the levels of free radicals like nitric oxide (NO. Here, we show that DGDG contributes to plant NO as well as salicylic acid biosynthesis and is required for the induction of systemic acquired resistance (SAR. In contrast, MGDG regulates the biosynthesis of the SAR signals azelaic acid (AzA and glycerol-3-phosphate (G3P that function downstream of NO. Interestingly, DGDG is also required for AzA-induced SAR, but MGDG is not. Notably, transgenic expression of a bacterial glucosyltransferase is unable to restore SAR in dgd1 plants even though it does rescue their morphological and fatty acid phenotypes. These results suggest that MGDG and DGDG are required at distinct steps and function exclusively in their individual roles during the induction of SAR. : The galactolipids monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG constitute ∼80% of total membrane lipids in plants. Gao et al. now show that these galactolipids function nonredundantly to regulate systemic acquired resistance (SAR. Furthermore, they show that the terminal galactose on the α-galactose-β-galactose head group of DGDG is critical for SAR.

  15. Safety regulation KTA 3901: Communication systems for nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    The regulation applies to communication systems in stationary nuclear power plants with at least one power plant unit, i.e. alarm systems, staff locator systems, communicators, and systems for external communication. The regulation determines the type and extent of staff communication systems as well as the demands to be made on layout, installation, operating systems, and testing of communication systems for nuclear power plants. (orig./HP) [de

  16. Logic verification system for power plant sequence diagrams

    International Nuclear Information System (INIS)

    Fukuda, Mitsuko; Yamada, Naoyuki; Teshima, Toshiaki; Kan, Ken-ichi; Utsunomiya, Mitsugu.

    1994-01-01

    A logic verification system for sequence diagrams of power plants has been developed. The system's main function is to verify correctness of the logic realized by sequence diagrams for power plant control systems. The verification is based on a symbolic comparison of the logic of the sequence diagrams with the logic of the corresponding IBDs (interlock Block Diagrams) in combination with reference to design knowledge. The developed system points out the sub-circuit which is responsible for any existing mismatches between the IBD logic and the logic realized by the sequence diagrams. Applications to the verification of actual sequence diagrams of power plants confirmed that the developed system is practical and effective. (author)

  17. RNA trafficking in parasitic plant systems

    Science.gov (United States)

    LeBlanc, Megan; Kim, Gunjune; Westwood, James H.

    2012-01-01

    RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs, and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host–parasite connections and the potential significance of host RNAs for the parasite. Additional research on host–parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking. PMID:22936942

  18. RNA trafficking in parasitic plant systems

    Directory of Open Access Journals (Sweden)

    Megan L LeBlanc

    2012-08-01

    Full Text Available RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host parasite connections and the potential significance of host RNAs for the parasite. Additional research on host-parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking.

  19. Study of antihyperglycaemic activity of medicinal plant extracts in alloxan induced diabetic rats.

    Science.gov (United States)

    Attanayake, Anoja P; Jayatilaka, Kamani A P W; Pathirana, Chitra; Mudduwa, Lakmini K B

    2013-04-01

    Diabetes mellitus, for a long time, has been treated with plant derived medicines in Sri Lanka. The aim of this study is to determine the efficacy and dose response of oral antihyperglycaemic activity of eight Sri Lankan medicinal plant extracts, which are used to treat diabetes in traditional medicine in diabetic rats. Medicinal plants selected for the study on the basis of documented effectiveness and wide use among traditional Ayurveda physicians in the Southern region of Sri Lanka for the treatment of diabetes mellitus. The effect of different doses of aqueous stem bark extracts of Spondias pinnata (Anacardiaceae), Kokoona zeylanica (Celastraceae), Syzygium caryophyllatum (Myrtaceae), Gmelina arborea (Verbenaceae), aerial part extracts of Scoparia dulcis (Scrophulariaceae), Sida alnifolia (Malvaceae), leaf extract of Coccinia grandis (Cucurbitaceae) and root extract of Languas galanga (Zingiberaceae) on oral glucose tolerance test was evaluated. A single dose of 0.25, 0.50, 0.75, 1.00, 1.25, 2.00 g/kg of plant extract was administered orally to alloxan induced (150 mg/kg, ip) diabetic Wistar rats (n = 6). Glibenclamide (0.50 mg/kg) was used as the standard drug. The acute effect was evaluated over a 4 h period using area under the oral glucose tolerance curve. The results were evaluated by analysis of variance followed by Dunnett's test. The eight plant extracts showed statistically significant dose dependent improvement on glucose tolerance (P dulcis, S. alnifolia, L. galanga and C. grandis possess potent acute antihyperglycaemic activity in alloxan induced diabetic rats.

  20. Semiochemicals from herbivory induced cotton plants enhance the foraging behavior of the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Magalhães, D M; Borges, M; Laumann, R A; Sujii, E R; Mayon, P; Caulfield, J C; Midega, C A O; Khan, Z R; Pickett, J A; Birkett, M A; Blassioli-Moraes, M C

    2012-12-01

    The boll weevil, Anthonomus grandis, has been monitored through deployment of traps baited with aggregation pheromone components. However, field studies have shown that the number of insects caught in these traps is significantly reduced during cotton squaring, suggesting that volatiles produced by plants at this phenological stage may be involved in attraction. Here, we evaluated the chemical profile of volatile organic compounds (VOCs) emitted by undamaged or damaged cotton plants at different phenological stages, under different infestation conditions, and determined the attractiveness of these VOCs to adults of A. grandis. In addition, we investigated whether or not VOCs released by cotton plants enhanced the attractiveness of the aggregation pheromone emitted by male boll weevils. Behavioral responses of A. grandis to VOCs from conspecific-damaged, heterospecific-damaged (Spodoptera frugiperda and Euschistus heros) and undamaged cotton plants, at different phenological stages, were assessed in Y-tube olfactometers. The results showed that volatiles emitted from reproductive cotton plants damaged by conspecifics were attractive to adults boll weevils, whereas volatiles induced by heterospecific herbivores were not as attractive. Additionally, addition of boll weevil-induced volatiles from reproductive cotton plants to aggregation pheromone gave increased attraction, relative to the pheromone alone. The VOC profiles of undamaged and mechanically damaged cotton plants, in both phenological stages, were not different. Chemical analysis showed that cotton plants produced qualitatively similar volatile profiles regardless of damage type, but the quantities produced differed according to the plant's phenological stage and the herbivore species. Notably, vegetative cotton plants released higher amounts of VOCs compared to reproductive plants. At both stages, the highest rate of VOC release was observed in A. grandis-damaged plants. Results show that A. grandis uses

  1. Nuclear plant-aging research on reactor protection systems

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed

  2. Phytoplasma Effector SAP54 Induces Indeterminate Leaf-Like Flower Development in Arabidopsis Plants1[C][W][OA

    Science.gov (United States)

    MacLean, Allyson M.; Sugio, Akiko; Makarova, Olga V.; Findlay, Kim C.; Grieve, Victoria M.; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches’ broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host. PMID:21849514

  3. Seismically induced common cause failures in PSA of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Johnson, J.J.

    1991-01-01

    In this paper, a research project on the seismically induced common cause failures in nuclear power plants performed for Toshiba Corp. is described. The objective of this research was to develop the procedure for estimating the common cause failure probabilities of different nuclear power plant components using the combination of seismic experience data, the review of sources of dependency, sensitivity studies and engineering judgement. The research project consisted of three tasks: the investigation of damage instances in past earthquakes, the analysis of multiple failures and their root causes, and the development of the methodology for assessing seismically induced common cause failures. The details of these tasks are explained. In this paper, the works carried out in the third task are described. A methodology for treating common cause failures and the correlation between component failures is formulated; it highlights the modeling of event trees taking into account common cause failures and the development of fault trees considering the correlation between component failures. The overview of seismic PSA, the quantification methods for dependent failures and Latin Hypercube sampling method are described. (K.I.)

  4. System 80+ integrated design of a complete plant

    International Nuclear Information System (INIS)

    Turk, R.S.; Stamm, S.L.; Fox, W.A.

    1992-01-01

    In 1985, ABB-Combustion Engineering Nuclear Power (ABB-CENP) and elements of Duke Power Company [now Duke Engineering ampersand Services (DE ampersand S)] joined forces under the aegis of the Electric Power Research Institute (EPRI) Advanced Light Water Reactor (ALWR) Program to develop, with the sponsoring utilities, the design requirements for the next generation of nuclear power plants. With support from the US Department of Energy, ABB-CENP and DE ampersand S again teamed up the following year to initiate a project to design and license the System 80+ standard plant design, an advanced pressurized water reactor that meets these utility requirements. A distinguishing feature of the System 80+ standard design is that it is an essentially complete plant, predesigned and prelicensed to ensure rapid and economical construction. This is in stark contrast to typical prior conduct, where the reactor vendor offered only the nuclear steam supply system and the plant was built on a design-as-you-go basis with constant pressure to release individual elements of the plant design for construction or procurement as soon as possible. Now, however, the design process can be integrated over the total plant, ensuring that the goals set for ALWRs can be met. This integrated design process is manifested in several ways: (1) broad-based participation during the design process by involving designers, analysts, suppliers, constructors, and operators; (2) use of probabilistic risk assessment (PRA) as a design tool to aid in evaluating design features on a total-plant basis; (3) application of human factors engineering methods to a total plant distributed control system to improve the human-machine interface in the design; and (4) use of computer-aided design to enhance assessment of interactions and impacts of all aspects of the total plant. Each of these aspects of integrated plant design is discussed in this paper

  5. Integration of the ITER diagnostic plant systems with CODAC

    International Nuclear Information System (INIS)

    Simrock, S.; Barnsley, R.; Bertalot, L.; Hansalia, C.; Klotz, W.D.; Makijarvi, P.; Reichle, R.; Vayakis, G.; Yonekawa, I.; Walker, C.; Wallander, A.; Walsh, M.; Winter, A.

    2011-01-01

    ITER requires extensive diagnostic systems in order to meet the requirements for machine operation, protection, plasma control and physics studies. The realization of these systems is a major challenge not only because of the harsh environment and the nuclear requirements but also with respect to Instrumentation and Control (I and C) of all the 59 diagnostics plants. The Plant Systems I and C are mostly 'in-kind', i.e. procured by the seven ITER Domestic Agencies (DAs), while the Central I and C Systems are 'in-fund', i.e. procured by ITER Organization (IO). Standardization of Plant Systems I and C is of primary importance and has been one of the highest priority tasks of CODAC. The standards are published in the Plant Control Design Handbook (PCDH) which will be followed to ensure a homogeneous design, guarantee high availability and simplify maintenance and support future upgrades. Most important for a successful commissioning and operation of the ITER facility are the concepts of interfacing the diagnostics plant systems with CODAC and the standards for instrumentation and control which must be followed all contributing parties. In this paper, we will elaborate on the concepts of interfacing the diagnostics plant systems with CODAC and the standards that must be followed for the design.

  6. Computer system for nuclear power plant parameter display

    International Nuclear Information System (INIS)

    Stritar, A.; Klobuchar, M.

    1990-01-01

    The computer system for efficient, cheap and simple presentation of data on the screen of the personal computer is described. The display is in alphanumerical or graphical form. The system can be used for the man-machine interface in the process monitoring system of the nuclear power plant. It represents the third level of the new process computer system of the Nuclear Power Plant Krsko. (author)

  7. A knowledge based system for plant diagnosis

    International Nuclear Information System (INIS)

    Motoda, H.; Yamada, N.; Yoshida, K.

    1984-01-01

    A knowledge based system for plant diagnosis is proposed in which both event-oriented and function-oriented knowledge are used. For the proposed system to be of practical use, these two types of knowledge are represented by mutually nested four frames, i.e. the component, causality, criteriality, and simulator frames, and production rules. The system provides fast inference capability for use as both a production system and a formal reasoning system, with uncertainty of knowledge taken into account in the former. Event-oriented knowledge is used in both diagnosis and guidance and function-oriented knowledge, in diagnosis only. The inference capability required is forward chaining in the former and resolution in the latter. The causality frame guides in the use of event-oriented knowledge, whereas the criteriality frame does so for function-oriented knowledge. Feedback nature of the plant requires the best first search algorithm that uses histories in the resolution process. The inference program is written in Lisp and the plant simulator and the process I/O control programs in Fortran. Fast data transfer between these two languages is realized by enhancing the memory management capability of Lisp to control the numerical data in the global memory. Simulation applications to a BWR plant demonstrated its diagnostic capability

  8. Estimation of reliability on digital plant protection system in nuclear power plants using fault simulation with self-checking

    International Nuclear Information System (INIS)

    Lee, Jun Seok; Kim, Suk Joon; Seong, Poong Hyun

    2004-01-01

    Safety-critical digital systems in nuclear power plants require high design reliability. Reliable software design and accurate prediction methods for the system reliability are important problems. In the reliability analysis, the error detection coverage of the system is one of the crucial factors, however, it is difficult to evaluate the error detection coverage of digital instrumentation and control system in nuclear power plants due to complexity of the system. To evaluate the error detection coverage for high efficiency and low cost, the simulation based fault injections with self checking are needed for digital instrumentation and control system in nuclear power plants. The target system is local coincidence logic in digital plant protection system and a simplified software modeling for this target system is used in this work. C++ based hardware description of micro computer simulator system is used to evaluate the error detection coverage of the system. From the simulation result, it is possible to estimate the error detection coverage of digital plant protection system in nuclear power plants using simulation based fault injection method with self checking. (author)

  9. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants.

    Science.gov (United States)

    Yilamujiang, Ayufu; Reichelt, Michael; Mithöfer, Axel

    2016-08-01

    Carnivorous Nepenthes plants use modified leaves forming pitfall traps to capture and digest prey, mainly insects, for additional nutrient supply. These traps, so called pitchers, contain a plant-derived fluid composed of many hydrolytic enzymes and defence-related proteins. In this study, the prey-induced induction of corresponding genes of those proteins and a role for phytohormones in this process was analysed. Tissue from insect prey-fed, chitin- and phytohormone-challenged pitchers was harvested and analysed for selected gene expressions by a quantitative PCR technique. Phytohormone levels were determined by LC-MS/MS. Nepenthesin proteolytic activities were measured in the digestive fluid using a fluorescence substrate. Insect prey in the pitchers induced the accumulation of phytohormones such as jasmonates as well as the transcription of studied genes encoding a chitinase 3 and a protease (nepenthesin I), whereas a defence-related protein (PR-1) gene was not induced. Treatment with chitin as a component of the insects' exoskeleton triggered the accumulation of jasmonates, the expression of nepenthesin I and chitinase 3 genes similar to jasmonic acid treatment, and induced protease activity in the fluid. All detectable responses were slowly induced. The results suggest that upon insect prey catch a sequence of signals is initiated: (1) insect-derived chitin, (2) jasmonate as endogenous phytohormone signal, (3) the induction of digestive gene expression and (4) protein expression. This resembles a similar hierarchy of events as described from plant pathogen/herbivore interactions, supporting the idea that carnivory evolved from plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly Pieris rapae

    NARCIS (Netherlands)

    Zheng, S.J.; Snoeren, T.A.L.; Hogewoning, S.W.; Loon, van J.J.A.; Dicke, M.

    2010-01-01

    Optical plant characteristics are important cues to plant-feeding insects. In this article, we demonstrate for the first time that silencing the phytoene desaturase (PDS) gene, encoding a key enzyme in plant carotenoid biosynthesis, affects insect oviposition site selection behaviour. Virus-induced

  11. EDGAR, a new plant radiation monitoring system

    International Nuclear Information System (INIS)

    Vuong, Q.M.; Da Costa Vieira, D.

    2004-01-01

    The EDGAR system is a new radiation monitoring system for nuclear power plant, reprocessing plant and nuclear research reactor for radioactive contamination, gamma and neutron field monitoring. Developed by French Atomic Energy Agency, this system provides not only complete functions of standard RMS, also allows spectroscopy level detection of alpha and beta particles based on a patented collimator unit. A complete computerized approach has been taken allowing full installation control in a single PC based display and communication unit. (author)

  12. Development of a knowledge-based information management system for plant maintenance

    International Nuclear Information System (INIS)

    Yim, Hyung Sang; Park, Young Jae; Lee, Sang Min; Choi, Jae Boong; Kim, Young Jin; Roh, Eun Chul; Lee, Byung Ine

    2003-01-01

    Recently, the importance of Plant Maintenance(PM) was highly raised to provide efficient plant operation which highly affects the productivity. For this reason, a number of engineering methodologies, such as Risk-Based Inspection(RBI), Fitness For Service guidelines(FFS), Plant Lifecycle Management(PLM), have been applied to improve the plant operation efficiency. Also, a network-based business operation system, which is called ERP(Enterprise Resource Planning), has been introduced in the field of plant maintenance. However, there was no attempt to connect engineering methodologies to the ERP PM system. In this paper, a knowledge-based information system for the plant operation of steel making company has been proposed. This system, which is named as K-VRS(Knowledge-based Virtual Reality System), provides a connection between ERP plant maintenance module and knowledge-based engineering methodologies, and thus, enables network-based highly effective plant maintenance process. The developed system is expected to play a great role for more efficient and safer plant maintenance

  13. Development of a knowledge-based information management system for plant maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Hyung Sang; Park, Young Jae; Lee, Sang Min; Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Roh, Eun Chul; Lee, Byung Ine [Pohang Iron and Steel Company, Pohang (Korea, Republic of)

    2003-07-01

    Recently, the importance of Plant Maintenance(PM) was highly raised to provide efficient plant operation which highly affects the productivity. For this reason, a number of engineering methodologies, such as Risk-Based Inspection(RBI), Fitness For Service guidelines(FFS), Plant Lifecycle Management(PLM), have been applied to improve the plant operation efficiency. Also, a network-based business operation system, which is called ERP(Enterprise Resource Planning), has been introduced in the field of plant maintenance. However, there was no attempt to connect engineering methodologies to the ERP PM system. In this paper, a knowledge-based information system for the plant operation of steel making company has been proposed. This system, which is named as K-VRS(Knowledge-based Virtual Reality System), provides a connection between ERP plant maintenance module and knowledge-based engineering methodologies, and thus, enables network-based highly effective plant maintenance process. The developed system is expected to play a great role for more efficient and safer plant maintenance.

  14. Chemical inducible promoter used to obtain transgenic plants with a silent marker and organisms and cells and methods of using same for screening for mutations

    Science.gov (United States)

    Zuo, Jianru [New York, NY; Chua, Nam-Hai [Scarsdale, NY

    2007-06-12

    Disclosed is a chemically inducible promoter for transforming plants or plant cells with genes which are regulatable by adding the plants or cells to a medium containing an inducer or by removing them from such medium. The promoter is inducible by a glucocorticoid, estrogen or inducer not endogenous to plants. Such promoters may be used with any plant genes that can promote shoot regeneration and development to induce shoot formation in the presence of a glucocorticoid, estrogen or inducer. The promoter may be used with antibiotic or herbicide resistance genes or other genes which are regulatable by the presence or absence of a given inducer. Also presented are organisms or cells comprising a gene wherein the natural promoter of the gene is disrupted and the gene is placed under the control of a transgenic inducible promoter. These organisms and cells and their progeny are useful for screening for conditional gain of function and loss of function mutations.

  15. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    Directory of Open Access Journals (Sweden)

    Manuella Nóbrega Dourado

    2013-12-01

    Full Text Available Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules and/or by the plant roots (e.g. flavonoids, ethanol and methanol, respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones and plant exudates (including ethanol in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF, adaptation to stressful environment (crtI, phoU and sss, to interactions with plant metabolism compounds (acdS and pathogenicity (patatin and phoU. Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization, which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.

  16. The quantitative determination of trace elements in giant unicellular plants by particle-induced X-ray emission

    International Nuclear Information System (INIS)

    Navarrete-Dominguez, V.R.; Yoshihara, K.; Tanaka, N.

    1982-01-01

    Particle-induced X-ray emission (PIXE) was applied for the determination of trace elements in biologically interesting materials, giant unicellular plants. It was found that the PIXE method had advantages in multi-element trace analysis of a single cell of the sample plant. (author)

  17. CANDU 9 operator plant display system

    International Nuclear Information System (INIS)

    Trueman, R.; Webster, A.; MacBeth, M.J.

    1997-01-01

    To meet evolving client and regulatory needs, AECL has adopted an evolutionary approach to the design of the CANDU 9 control centre. That is, the design incorporates feedback from existing stations, reflects the growing diversity in the roles and responsibilities of the operating staff, and reduces costs associated with plant capital and operations, maintenance and administration (OM and A), through the appropriate introduction of new technologies. Underlying this approach is a refined engineering design process that cost-effectively integrates operational feedback and human factors engineering to define the operating staff information and information presentation requirements. Based on this approach, the CANDU 9 control centre will provide utility operating staff with the means to achieve improved operations and reduced OM and A costs. One of the design features that will contribute to the improved operational capabilities of the control centre is a new Plant Display System (PDS) that is separate from the digital control system. The PDS will be used to implement non-safety panel, and console video display systems within the CANDU 9 main control room (MCR). This paper presents a detailed description of the CANDU 9 Plant Display System and features that provide increased operational capabilities. (author)

  18. Integrated monitoring of wind plant systems

    Science.gov (United States)

    Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong

    2008-03-01

    Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.

  19. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2‐keto‐4‐methylthiobutyric acid production

    KAUST Repository

    Zélicourt, Axel de

    2018-03-19

    Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA), known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance.

  20. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2‐keto‐4‐methylthiobutyric acid production

    Science.gov (United States)

    Xie, Yakun; Rolli, Eleonora; Guerard, Florence; Colcombet, Jean; Benhamed, Moussa; Depaepe, Thomas

    2018-01-01

    Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA), known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance. PMID:29554117

  1. Virtual medical plant modeling based on L-system | Ding | African ...

    African Journals Online (AJOL)

    ... aid of graphics and PlantVR, we implemented the plant shape and 3-D structure's reconstruction. Conclusion: Three-dimensional structure virtual plant growth model based on time- controlled L-system has been successfully established. Keywords: Drug R&D, toxicity, medical plants, fractals; L-system; quasi binary-trees.

  2. Protective effects of plant seed extracts against amyloid β-induced neurotoxicity in cultured hippocampal neurons.

    Science.gov (United States)

    Okada, Yoshinori; Okada, Mizue

    2013-04-01

    Alzheimer's disease (AD) is characterized by large deposits of amyloid β (Aβ) peptide. Aβ is known to increase reactive oxygen species (ROS) production in neurons, leading to cell death. In this study, we screened 15 plant seeds' aqueous extracts (PSAE) for inhibitory effects on Aβ (25-35)-induced cell death using hippocampus neurons (HIPN). Fifteen chosen plants were nine medical herbs (Japanese honeywort, luffa, rapeseed, Chinese colza, potherb mustard, Japanese radish, bitter melon, red shiso, corn, and kaiware radish) and six general commercial plants (common bean, komatsuna, Qing geng cai, bell pepper, kale, and lettuce). PSAE were measured for total phenolic content (TPC) with the Folin-Ciocalteu method, and the 2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging effect of each seed extract was measured. To find a protectant against Aβ-induced oxidative stress, we screened 15 PSAE using a 2', 7'-dichlorofluorescein diacetate assay. To further unravel the anti-inflammatory effects of PSAE on Aβ-induced inflammation, PSAE were added to HIPN. The neuroprotective effects of the PSAE were evaluated by Cell Counting Kit-8 assay, measuring the cell viability in Aβ-induced HIPN. TPC of 15 PSAE was in the range of 0.024-1.96 mg of chlorogenic acid equivalents/gram. The aqueous extracts showed antioxidant activities. Furthermore, intracellular ROS accumulation resulting from Aβ treatment was reduced when cells were treated with some PSAE. Kale, bitter melon, kaiware radish, red shiso, and corn inhibited tumor necrosis factor-alpha secretion by the Aβ-stimulated neurons and all samples except Japanese honeywort showed enhancement of cell survival. From these results, we suggest that some plant seed extracts offer protection against Aβ-mediated cell death.

  3. Nuclear plant engineering work and integrated management system

    International Nuclear Information System (INIS)

    Ohkubo, Y.; Obata, T.; Tanaka, K.

    1992-01-01

    The Application of computers to the design, engineering, manufacturing and construction works of nuclear power plants has greatly contributed to improvement of productivity and reliability in the nuclear power plants constructed by Mitsubishi Nuclear Group for more than ten years. However, in most cases, those systems have been developed separately and utilized independently in different computer software and hardware environments and have not been fully utilized to achieve high efficiency and reliability. In order to drastically increase the productivity and efficiency, development of NUclear power plant engineering Work and INtegrated manaGement System (NUWINGS) started in 1987 to unify and integrate various conventional and developing systems using the state-of-the-art computer technology. The NUWINGS is almost completed and is now applied to actual plant construction. (author)

  4. Diagnostic system for combine cycle power plant

    International Nuclear Information System (INIS)

    Shimizu, Yujiro; Nomura, Masumi; Tanaka, Satoshi; Ito, Ryoji; Kita, Yoshiyuki

    2000-01-01

    We developed the Diagnostic System for Combined Cycle Power Plant which enables inexperienced operators as well as experienced operators to cope with abnormal conditions of Combined Cycle Power Plant. The features of this system are the Estimate of Emergency Level for Operation and the Prediction of Subsequent Abnormality, adding to the Diagnosis of Cause and the Operation Guidance. Moreover in this system, Diagnosis of Cause was improved by using our original method and support screens can be displayed for educational means in normal condition as well. (Authors)

  5. The Development of Plant Maintenance Scheduling Via lnventory System for Sustainable Plant Operation

    Directory of Open Access Journals (Sweden)

    Masripan Roslizan

    2016-01-01

    Full Text Available Industrial sector becomes the main concern for developing country. By the time, it was increased rapidly. However, there are many problems observed such as maintenance scheduling, stock inventory and supply chain. Therefore, this research develops new inventory system to develop sustainable plant operation with a high capability to plant operation especially to stock inventory of machine component. In also required green application with minimised used on paper. This system is developed using Radio Frequency Identification (RFID for inventory control which integrated with web-based system. This system consists of several modules such as station module, item module and item request module and report of critical stock in the store. This system can be controlled from a hand-phone with internet connection or automatic alert such as Short Massage Send (SMS and email. The developed system is very effective in monitoring the stock material through the barcode, supply chain and worker performance as well as to reduce the lead time for maintenance activities of the company through sustainable plant operation.

  6. Smart plants, smart models? On adaptive responses in vegetation-soil systems

    Science.gov (United States)

    van der Ploeg, Martine; Teuling, Ryan; van Dam, Nicole; de Rooij, Gerrit

    2015-04-01

    functional type. Assigning plant functional types does not allow for local plant adaptation to be reflected in the model parameters, nor does it allow for correlations that might exist between root parameters and soil type. [1] Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences 4(2): 215-224. [2] Van der Ploeg, M.J., H.P.A. Gooren, G. Bakker, C.W. Hoogendam, C. Huiskes, L.K. Koopal, H. Kruidhof and G.H. de Rooij. 2010. Polymer tensiometers with ceramic cones: performance in drying soils and comparison with water-filled tensiometers and time domain reflectometry. Hydrol. Earth Syst. Sci. 14: 1787-1799, doi: 10.5194/hess-14-1787-2010. [3] McClintock B. The significance of responses of the genome to challenge. Science 1984; 226: 792-801 [4] Ries G, Heller W, Puchta H, Sandermann H, Seldlitz HK, Hohn B. Elevated UV-B radiation reduces genome stability in plants. Nature 2000; 406: 98-101 [5] Lucht JM, Mauch-Mani B, Steiner H-Y, Metraux J-P, Ryals, J, Hohn B. Pathogen stress increases somatic recombination frequency in Arabidopsis. Nature Genet. 2002; 30: 311-314 [6] Kovalchuk I, Kovalchuk O, Kalck V., Boyko V, Filkowski J, Heinlein M, Hohn B. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 2003; 423: 760-762 [7] Cullis C A. Mechanisms and control of rapid genomic changes in flax. Ann. Bot. (Lond.) 2005; 95: 201-206

  7. Computer-based control systems of nuclear power plants

    International Nuclear Information System (INIS)

    Kalashnikov, V.K.; Shugam, R.A.; Ol'shevsky, Yu.N.

    1975-01-01

    Computer-based control systems of nuclear power plants may be classified into those using computers for data acquisition only, those using computers for data acquisition and data processing, and those using computers for process control. In the present paper a brief review is given of the functions the systems above mentioned perform, their applications in different nuclear power plants, and some of their characteristics. The trend towards hierarchic systems using control computers with reserves already becomes clear when consideration is made of the control systems applied in the Canadian nuclear power plants that pertain to the first ones equipped with process computers. The control system being now under development for the large Soviet reactors of WWER type will also be based on the use of control computers. That part of the system concerned with controlling the reactor assembly is described in detail

  8. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores.

    NARCIS (Netherlands)

    Danner, H.; Desurmont, G.A.; Cristescu, S.M.; Dam, N.M. van

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of

  9. Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida.

    Science.gov (United States)

    Reitz, M; Rudolph, K; Schröder, I; Hoffmann-Hergarten, S; Hallmann, J; Sikora, R A

    2000-08-01

    Recent studies have shown that living and heat-killed cells of the rhizobacterium Rhizobium etli strain G12 induce in potato roots systemic resistance to infection by the potato cyst nematode Globodera pallida. To better understand the mechanisms of induced resistance, we focused on identifying the inducing agent. Since heat-stable bacterial surface carbohydrates such as exopolysaccharides (EPS) and lipopolysaccharides (LPS) are essential for recognition in the symbiotic interaction between Rhizobium and legumes, their role in the R. etli-potato interaction was studied. EPS and LPS were extracted from bacterial cultures, applied to potato roots, and tested for activity as an inducer of plant resistance to the plant-parasitic nematode. Whereas EPS did not affect G. pallida infection, LPS reduced nematode infection significantly in concentrations as low as 1 and 0.1 mg ml(-1). Split-root experiments, guaranteeing a spatial separation of inducing agent and challenging pathogen, showed that soil treatments of one half of the root system with LPS resulted in a highly significant (up to 37%) systemic induced reduction of G. pallida infection of potato roots in the other half. The results clearly showed that LPS of R. etli G12 act as the inducing agent of systemic resistance in potato roots.

  10. Plant inspection tours with mobile data logging system

    International Nuclear Information System (INIS)

    Roesser, U.

    2006-01-01

    The MDE Mobile Data Logging System has been introduced in a number of German power plants for efficient logging, evaluation, and quality-assured documentation of data recorded on plant inspection tours by means of pocket PCs instead of slips of paper. It will be installed in other nuclear power plants in the near future. The MDE system is composed of the pocket PCs for logging data during plant inspection tours, the associated docking stations installed in the respective areas of application, one PC or, if necessary, several PCs with the appropriate user software, and the associated network links. To install the software in the power plant, lists of rooms and measurement stations as well as other positions on an inspection course are transmitted to the MDE system. When the system has been commissioned, inspection tours are planned in accordance with past experience and optimized in the computer. User experience is taken into account in program updates. New functions improve user comfort and ease of evaluation. Additions to the MDE software, and applications in other areas, are tentatively planned and will be implemented as the need arises. (orig.)

  11. Biofouling of power-plant service systems by Corbicula

    International Nuclear Information System (INIS)

    Page, T.L.; Neitzel, D.A.; Simmons, M.A.; Hayes, P.F.

    1983-08-01

    Corbicula sp. foul the service water systems at nuclear power plants because the environment within these systems is compatible with the ecological requirements of the species. To reduce Corbicula fouling, components of service water systems and operating procedures that enhance the potential for fouling need to be identified. Factors important in mediating biofouling of service water systems appear to be screening potential, minimum and maximum velocities and the operational procedures employed during power plant biofoulant control and downtime. These conclusions are based on the results of a categorical model we used to correlate information from power plants with that on Corbicula life history. Power plant parameters in the model include temperature, dissolved oxygen concentration, screen and strainer size, maximum and minimum velocities, and elements of the biofouling control procedures. Parameters for Corbicula include tolerances to temperature, dissolved oxygen, biofouling control chemicals, velocity preferences, and optimal temperatures for each life stage and behavior. 13 references, 5 figures

  12. Integrating Studies on Plant-Pollinator and Plant-Herbivore Interactions

    NARCIS (Netherlands)

    Lucas-Barbosa, Dani

    2016-01-01

    Research on herbivore-induced plant defence and research on pollination ecology have had a long history of separation. Plant reproduction of most angiosperm species is mediated by pollinators, and the effects of herbivore-induced plant defences on pollinator behaviour have been largely neglected.

  13. Loose parts, vibration and leakage monitoring methods and systems to increase availability, transparency and lifetime of power plants

    International Nuclear Information System (INIS)

    Streicher, V.; Jax, P.; Ruthrof, K.

    1987-01-01

    This paper deals with three stand-alone-systems as an aid to check the mechanical integrity of the primary circuit of nuclear power plants. The main goals of these systems are early detection of faults and malfunctions, the facilitation of fault clearance, the avoidance of sequential damage and reduction of inspection time and cost. Obviously the proper application of the systems as well as the measures they induce and make possible increase the availability of the plant and contribute to lifetime extension. In order to detect, identify and pinpoint the changes in component structure such as loosened connections, broken parts or components, loose or loosened particles, fatigued materials, cracks and leaks, specialized monitoring systems were developed by KWU (Kraftwerk Union AG) during the last ten years. Requirements concerning vibration, loose parts and leakage monitoring are part of German guidelines and safety standards. Therefore systems for these applications are implemented in most of the nuclear power plants in Western Germany. This paper presents newly developed, microprocessor-based systems for loose parts monitoring, vibration monitoring and leakage monitoring and also includes specific case histories for the different topics

  14. Effects of nuclear electromagnetic pulse (EMP) on nuclear power plants

    International Nuclear Information System (INIS)

    Barnes, P.R.; Manweiler, R.W.; Davis, R.R.

    1977-09-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation consists of a transient pulse of high intensity electromagnetic fields. These intense fields induce current and voltage transients in electrical conductors. Although most nuclear power plant cables are not directly exposed to these fields, the attenuated EMP fields that propagate into the plant will couple some EMP energy to these cables. The report predicts the probable effects of the EMP transients that could be induced in critical circuits of safety-related systems. It was found that the most likely consequence of EMP for nuclear plants is an unscheduled shutdown. EMP could prolong the shutdown period by the unnecessary actuation of certain safety systems. In general, EMP could be a nuisance to nuclear power plants, but it is not considered a serious threat to plant safety

  15. Review of nuclear power plant systems

    International Nuclear Information System (INIS)

    Doehler

    1980-01-01

    This presentation starts with a brief description of the Technischer Ueberwachungs-Verein (TUeV) and its main activities in the field of technical assessments. The TUeV-organisation is in general the assessor who performs the review if nuclear power plant systems, structures and equipment. All aspects relating to the safe operation of nuclear power plants are assessed by the TUeV. This paper stresses the review of the design of nuclear power plant systems and structures. It gives an outline on the procedure of an assessment, starting with the regulatory requirements, going into the papers of the applicant and finally ending with the TUeV-appraisal. This procedure is shown using settlement measuring requirements as an example. The review of the design of mechanical structures such as pipes, valves, pump and vessels is shown in detail. (RW)

  16. Nutrient supply of plants in aquaponic systems

    Directory of Open Access Journals (Sweden)

    Andras Bittsanszky

    2016-10-01

    Full Text Available In this preliminary article we present data on plant nutrient concentrations in aquaponics systems, and we compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in the aquaponics system are significantly lower for most nutrients compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels compared to “standard” hydroponic solutions. This is especially true for green leafy vegetables that rarely need additional nutritional supplementation. It is concluded that in the highly complex system of aquaponics, special care has to be taken, via continuous monitoring of the chemical composition of the circulating water, to provide adequate concentrations and ratios of nutrients, and especially for the potentially toxic component, ammonium. If certain plants require nutrient supplementation, we consider that one based on organic substances would be most beneficial. However, protocols for the application of such nutrient amendments still need to be developed.

  17. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    Science.gov (United States)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  18. Improving CANDU plant operation and maintenance through retrofit information technology systems

    International Nuclear Information System (INIS)

    Lupton, L.R.; Judd, R.A.; MacBeth, M.J.

    1998-01-01

    CANDU plant owners are facing an increasingly competitive environment for the generation of electricity. To meet this challenge, all owners have identified that information technology offers opportunities for significant improvements in CANDU operation, maintenance and administration (OM and A) costs. Targeted information technology application areas include instrumentation and control, engineering, construction, operations and plant information management. These opportunities also pose challenges and issues that must be addressed if the full benefits of the advances in information technology are to be achieved. Key among these are system hardware and software maintenance, and obsolescence protection; AECL has been supporting CANDU stations with the initial development and evaluation of systems to improve plant performance and cost. Key initiatives that have been implemented or are in the process of being implemented in some CANDU plants to achieve operational benefits include: critical safety parameter monitor system; advanced computerized annunciation system; plant historical data system; and plant display system. Each system will be described in terms of its role in enhancing current CANDU plant performance and how they will contribute to future CANDU plant performance

  19. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chunjiang Zhao

    2016-10-01

    Full Text Available Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost.

  20. BIOREGENERATIVE LIFE SUPPORT SYSTEMS IN THE SPACE (BLSS: THE EFFECTS OF RADIATION ON PLANTS

    Directory of Open Access Journals (Sweden)

    Carmen Arena

    2012-06-01

    Full Text Available The growth of plants in Space is a fundamental issue for Space exploration. Plants play an important role in the Bioregenerative Life Support Systems (BLSS to sustain human permanence in extraterrestrial environments. Under this perspective, plants are basic elements for oxygen and fresh food production as well as air regeneration and psychological support to the crew. The potentiality of plant survival and reproduction in space is limited by the same factors that act on the earth (e.g. light, temperature and relative humidity and by additional factors such as altered gravity and ionizing radiation. This paper analyzes plant responses to space radiation which is recognized as a powerful mutagen for photosynthetic organisms thus being responsible for morpho-structural, physiological and genetic alterations. Until now, many studies have evidenced how the response to ionizing radiation is influenced by several factors associated both to plant characteristics (e.g. cultivar, species, developmental stage, tissue structure and/or radiation features (e.g. dose, quality and exposure time. The photosynthetic machinery is particularly sensitive to ionizing radiation. The severity of the damages induced by ionizing radiation on plant cell and tissues may depend on the capability of plants to adopt protection mechanisms and/or repair strategies. In this paper a selection of results from studies on the effect of ionizing radiations on plants at anatomical and eco-physiological level is reported and some aspects related to radioresistance are explored.

  1. Calcium efflux systems in stress signalling and adaptation in plants

    Directory of Open Access Journals (Sweden)

    Jayakumar eBose

    2011-12-01

    Full Text Available Transient cytosolic calcium ([Ca2+]cyt elevation is an ubiquitous denominator of the signalling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium signature that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms in shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signalling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analysed in detail. The spatial and temporal organisation of calcium signalling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarised. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modelled by using a four-component model (plasma- and endo- membrane-based Ca2+-permeable channels and efflux systems taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasising the crucial role these active efflux systems play in plant adaptive responses to environment.

  2. Development of nuclear power plant monitoring system with neutral network using on-line PWR plant simulator

    International Nuclear Information System (INIS)

    Nabeshima Kunihiko; Suzuki Katsuo; Nose, Shoichi; Kudo, Kazuhiko

    1996-01-01

    The purpose of this paper is to demonstrate a nuclear power plant monitoring system using artificial neural network (ANN). The major advantages of the monitoring system are that a multi-output process system can be modelled using measurement information without establishing any mathematical expressions. The dynamics model of reactor plant was constructed by using three layered auto-associative neural network with backpropagation learning algorithm. The basic idea of anomaly detection method is to monitor the deviation between process signals measured from actual plant and corresponding output signals from the ANN plant model. The simulator used is a self contained system designed for training. Four kinds of simulated malfunction caused by equipment failure during steady state operation were used to evaluate the capability of the neural network monitoring system. The results showed that this monitoring system detected the symptom of small anomaly earlier than the prevailing alarm system. (author). 7 refs, 7 figs, 2 tabs

  3. Development of nuclear power plant monitoring system with neutral network using on-line PWR plant simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kunihiko, Nabeshima; Katsuo, Suzuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Nose, Shoichi; Kudo, Kazuhiko [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-12-31

    The purpose of this paper is to demonstrate a nuclear power plant monitoring system using artificial neural network (ANN). The major advantages of the monitoring system are that a multi-output process system can be modelled using measurement information without establishing any mathematical expressions. The dynamics model of reactor plant was constructed by using three layered auto-associative neural network with backpropagation learning algorithm. The basic idea of anomaly detection method is to monitor the deviation between process signals measured from actual plant and corresponding output signals from the ANN plant model. The simulator used is a self contained system designed for training. Four kinds of simulated malfunction caused by equipment failure during steady state operation were used to evaluate the capability of the neural network monitoring system. The results showed that this monitoring system detected the symptom of small anomaly earlier than the prevailing alarm system. (author). 7 refs, 7 figs, 2 tabs.

  4. Improving CANDU plant operation and maintenance through retrofit information technology systems

    International Nuclear Information System (INIS)

    Lupton, L. R.; Judd, R. A.

    1998-01-01

    CANDU plant owners are facing an increasingly competitive environment for the generation of electricity. To meet this challenge, all owners have identified that information technology offers opportunities for significant improvements in CANDU operation, maintenance and administration (OM and A) costs. Targeted information technology application areas include instrumentation and control, engineering, construction, operations and plant information management. These opportunities also pose challenges and issues that must be addressed if the full benefits of the advances in information technology are to be achieved. Key among these are system hardware and software maintenance, and obsolescence protection. AECL has been supporting CANDU stations with the initial development and evaluation of systems to improve plant performance and cost. Five key initiatives that have been implemented or are in the process of being implemented in some CANDU plants to achieve cooperational benefits include: critical safety parameter monitor system; advanced computerized annunciation system; plant historical data system; plant display system; and digital protection system. Each system will be described in terms of its role in enhancing current CANDU plant performance and how they will contribute to future CANDU plant performance. (author). 8 refs., 3 figs

  5. Basis of plant accounting system

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1984-01-01

    This presentation describes in an introductory manner the accountability design approach which is used for the Model Plant in order to meet US safeguards requirements. The general requirements for the US national system are first presented. Next, the approach taken to meet each general requirement is described. This presentation introduces the general concepts and principles of the accountability system

  6. Monitoring Systems for Hydropower Plants

    Directory of Open Access Journals (Sweden)

    Damaschin Pepa

    2015-07-01

    Full Text Available One of the most important issue in hydro power industry is to determine the necessary degree of automation in order to improve the operation security. Depending upon the complexity of the system (the power plant equipment the automation specialist will build a philosophy of control following some general principals of security and operation. Helped by the modern digital equipment, today is relative easy to design a complete monitoring and supervising system including all the subparts of a hydro aggregate. A series of sensors and transducers specific for each auxiliary installation of the turbine and generator will be provided, together with a PLC or an industrial PC that will run an application software for implementing the security and control algorithms. The purpose of this paper is to offer a general view of these issues, providing a view of designing an automation & control and security system for hydro power plants of small, medium and big power.

  7. In vitropropagation in Temporary Immersion System of sugarcane plants variety `RB 872552' derived from somatic embryos

    Directory of Open Access Journals (Sweden)

    Marina Medeiros de Araújo Silva

    2015-07-01

    Full Text Available In this study, we used a temporary immersion system (TIS to multiply sugarcane (Saccharum spp. plants obtained by somatic embryogenesis (SE. SE was induced from immature leaf segments that were grown in culture medium supplemented with 2,4-D and BAP. Embryo formation occurred in 81% of the inoculated explants and 254 plants were regenerated. Ninety plants were transferred to TIS and cultured in medium supplemented with BAP. After three subcultures, 60 000 plantlets were obtained and transferred to rooting media. After 30 days of acclimatization period plantlets were well developed and exhibited a 96% survival. The results demonstrate the feasibility of the combined use of two important techniques of in vitro culture (SE and shoot multiplication in TIS to sugarcane in vitro propagation. Key words: acclimatization, 6-benzylaminopurine, Saccharum spp.

  8. Assessing nuclear power plant safety and recovery from earthquakes using a system-of-systems approach

    International Nuclear Information System (INIS)

    Ferrario, E.; Zio, E.

    2014-01-01

    We adopt a ‘system-of-systems’ framework of analysis, previously presented by the authors, to include the interdependent infrastructures which support a critical plant in the study of its safety with respect to the occurrence of an earthquake. We extend the framework to consider the recovery of the system of systems in which the plant is embedded. As a test system, we consider the impacts produced on a nuclear power plant (the critical plant) embedded in the connected power and water distribution, and transportation networks which support its operation. The Seismic Probabilistic Risk Assessment of such system of systems is carried out by Hierarchical modeling and Monte Carlo simulation. First, we perform a top-down analysis through a hierarchical model to identify the elements that at each level have most influence in restoring safety, adopting the criticality importance measure as a quantitative indicator. Then, we evaluate by Monte Carlo simulation the probability that the nuclear power plant enters in an unsafe state and the time needed to recover its safety. The results obtained allow the identification of those elements most critical for the safety and recovery of the nuclear power plant; this is relevant for determining improvements of their structural/functional responses and supporting the decision-making process on safety critical-issues. On the test system considered, under the given assumptions, the components of the external and internal water systems (i.e., pumps and pool) turn out to be the most critical for the safety and recovery of the plant. - Highlights: • We adopt a system-of-system framework to analyze the safety of a critical plant exposed to risk from external events, considering also the interdependent infrastructures that support the plant. • We develop a hierarchical modeling framework to represent the system of systems, accounting also for its recovery. • Monte Carlo simulation is used for the quantitative evaluation of the

  9. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Science.gov (United States)

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  10. Canadian CANDU plant data systems for technical surveillance and analysis

    International Nuclear Information System (INIS)

    Deverno, M.; Pothier, H.; Xian, C.; Grosbois, J. De; Bosnich, M.

    1996-01-01

    Plant data systems are emerging as a critical plant support system technology. In particular, plant-wide Historical Data Systems (HDS) are pivotal to the successful implementation of technical surveillance and analysis programs supporting plant operations, maintenance, safety, and licensing activities. In partnership with Canadian CANDU utility and design organizations, AECL has conducted a review of current Canadian CANDU HDS approaches with emphasis on understanding the existing functionality and uses of plant historical data systems, their future needs and benefits. The results is a vision of a plant-wide HDS providing seamless access to both near real-time and historical data, user tool-kits for data visualization and analysis, and data management of the large volume of data acquired during the life of a plant. The successful implementation of the HDS vision will lead to higher capability and capacity factors while minimizing Operations, Maintenance, and Administration (OM and A) costs. (author). 5 refs, 3 figs

  11. Canadian CANDU plant data systems for technical surveillance and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Deverno, M; Pothier, H; Xian, C [Atomic Energy of Canada Ltd., Control Centre Technology Branch, Fredericton, NB (Canada); Grosbois, J De; Bosnich, M [Atomic Energy of Canada Ltd., Control Centre Technology Branch, Chalk River, ON (Canada). Chalk River Labs.

    1997-12-31

    Plant data systems are emerging as a critical plant support system technology. In particular, plant-wide Historical Data Systems (HDS) are pivotal to the successful implementation of technical surveillance and analysis programs supporting plant operations, maintenance, safety, and licensing activities. In partnership with Canadian CANDU utility and design organizations, AECL has conducted a review of current Canadian CANDU HDS approaches with emphasis on understanding the existing functionality and uses of plant historical data systems, their future needs and benefits. The results is a vision of a plant-wide HDS providing seamless access to both near real-time and historical data, user tool-kits for data visualization and analysis, and data management of the large volume of data acquired during the life of a plant. The successful implementation of the HDS vision will lead to higher capability and capacity factors while minimizing Operations, Maintenance, and Administration (OM and A) costs. (author). 5 refs, 3 figs.

  12. Control system security in nuclear power plant

    International Nuclear Information System (INIS)

    Li Jianghai; Huang Xiaojin

    2012-01-01

    The digitalization and networking of control systems in nuclear power plants has brought significant improvements in system control, operation and maintenance. However, the highly digitalized control system also introduces additional security vulnerabilities. Moreover, the replacement of conventional proprietary systems with common protocols, software and devices makes these vulnerabilities easy to be exploited. Through the interaction between control systems and the physical world, security issues in control systems impose high risks on health, safety and environment. These security issues may even cause damages of critical infrastructures and threaten national security. The importance of control system security by reviewing several control system security incidents that happened in nuclear power plants was showed in recent years. Several key difficulties in addressing these security issues were described. Finally, existing researches on control system security and propose several promising research directions were reviewed. (authors)

  13. A study on expert system applications for nuclear power plant

    International Nuclear Information System (INIS)

    Huh, Young Hwan; Kim, Yeong Jin; Park, Nam Seog; Dong, In Sook; Choi, In Seon

    1987-12-01

    The application of artificial intelligence techniques to nuclear power plants such as expert systems is rapidly emerging. expert systems can contribute significantly to the availability and the improved operation and safety of nuclear power plants. The objective of the project is to develop an expert system in a selected application area in the nuclear power plants. This project will last for 3 years. The first year's tasks are: - Information collection and literature survey on expert systems. - Analysis of several applicable areas for applying AI technologies to the nuclear power plants. - Conceptual design of a few selected domains. - Selection of hardware and software tools for the development of the expert system

  14. Communications interface for plant monitoring system

    International Nuclear Information System (INIS)

    Lee, K.L.; Morgan, F.A.

    1988-01-01

    This paper presents the communications interface for an intelligent color graphic system which PSE and G developed as part of a plant monitoring system. The intelligent graphic system is designed to off-load traditional host functions such as dynamic graphic updates, keyboard handling and alarm display. The distributed system's data and synchronization problems and their solutions are discussed

  15. Reduced program of inspection by induced currents for condenser of Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Obrutsky, L.; Mendonca, H.

    1986-01-01

    In this work it's presented a reduced inspection in service program by the technique of induced currents to the turbine condenser of Embalse's Power Plant (Cordoba). The authors based its elaboration on the results obtained in the exam of a small number of tubes and on experience obtained through four inspections in the condensers of Atucha I Power Plant, through mathematical models of oxygen and ammoniac distribution in both Power Plants, and its experimental verification in the case of Atucha I. This program improves the quality of inspection thereby reducing time, equipment and personnel employed. (C.M.) [pt

  16. Structured Light-Based 3D Reconstruction System for Plants

    Directory of Open Access Journals (Sweden)

    Thuy Tuong Nguyen

    2015-07-01

    Full Text Available Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces and software algorithms (including the proposed 3D point cloud registration and plant feature measurement. This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  17. Tele-maintenance 'intelligent' system for technical plants result management

    International Nuclear Information System (INIS)

    Concetti, Massimo; Cuccioletta, Roberto; Fedele, Lorenzo; Mercuri, Giampiero

    2009-01-01

    The management of technical plant for productivity and safety is generally a complex activity, particularly when many plants distributed in the territory are considered (i.e. the more and more frequent case of outsourced plants maintenance by specialized companies), granted quality and cost results are required (i.e. the case of some rather innovative contract solutions) and the technology involved is heterogeneous and innovative (i.e. electro-mechanical plants). In order to efficiently achieve the above aims an 'intelligent' maintenance-management system for the distant monitoring and controlling by a remote control center has been developed. The so-called GrAMS (granted availability management system) system is conceived to give to organizations involved in technical-industrial plants management the possibility to tend to a 'well-known availability' and 'zero-failures' management. In particular, this study deals with the diagnostic aspects and safety level of technical plants (such as elevators, thermo-technical plants, etc.), and with the involvement of ad hoc designed software analysis tools based on neural networks and reliability indicators. Part of the research dealing with the tele-maintenance intelligent system has been financed by the Italian High Institute for Safety (ISPESL) and led to the development of a pre-industrial prototype whose realization and testing is here described

  18. Structured Light-Based 3D Reconstruction System for Plants.

    Science.gov (United States)

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  19. ChemAND - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Dundar, Y.; Bergeron, M.; Laporte, R. [Hydro-Quebec, Groupe Chimie, Centrale Nucleaire Gentilly-2, Gentilly, Quebec (Canada)

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  20. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchell, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-01-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display-it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  1. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  2. Applications of modern control systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, H [Brown, Boveri und Cie A.G., Mannheim (Germany, F.R.). Abt. GK/TE

    1980-10-01

    A new generation of automation and control systems are currently becoming commercially available in the power plant market which, because of their incorporation of microprocessors and bus data transmission systems, represent a major step forward in innovation. The application of these systems meets today's requirements and solutions, for the number of measurements to be performed has increased five or sixfold in the past few years, and the number of drive systems to be controlled has doubled or even tripled. Requirements to be met by process management systems have become vastly more complicated: peak load operation, short startup times, improved communication, and rising safety and reliability requirements, especially in nuclear power plants. Control concepts have been developed for the area relevant to reactor safety and for the whole of the plant, which make full use of the possibilities offered by plant systems. More stringent demands must be met especially in the areas of handling, communication, testing capability, improved function, and flexibility and modular design in the safety sector.

  3. Improvement of some ornamental plants by induced somatic mutations at National Botanical Research Institute

    International Nuclear Information System (INIS)

    Gupta, M.N.

    1980-01-01

    Research work on improvement of some ornamental plants by induced somatic mutations has been in progress at the National Botanical Research Institute, Lucknow, since 1964. The methods of treatments with gamma rays, detection, isolation and multiplication of induced somatic mutations have been given for Bougainvillea, Chrysanthemum, perennial Portulaca, rose and tuberose. During the last 15 years, a total of 38 new cultivars of different ornamentals evolved by gamna induced somatic mutations have been released. They include Bougainvillea 1; Chrysanthemum 28; perennial portulaca 6; rose 1 and tuberose 2. Descriptions of the original cultivars and their gamma induced mutants are given along with other pertinent details. (author)

  4. Protective effects of plant seed extracts against amyloid β-induced neurotoxicity in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Yoshinori Okada

    2013-01-01

    Full Text Available Aim: Alzheimer′s disease (AD is characterized by large deposits of amyloid β (Aβ peptide. Aβ is known to increase reactive oxygen species (ROS production in neurons, leading to cell death. In this study, we screened 15 plant seeds′ aqueous extracts (PSAE for inhibitory effects on Aβ (25-35-induced cell death using hippocampus neurons (HIPN. Materials and Methods: Fifteen chosen plants were nine medical herbs (Japanese honeywort, luffa, rapeseed, Chinese colza, potherb mustard, Japanese radish, bitter melon, red shiso, corn, and kaiware radish and six general commercial plants (common bean, komatsuna, Qing geng cai, bell pepper, kale, and lettuce. PSAE were measured for total phenolic content (TPC with the Folin-Ciocalteu method, and the 2-diphenyl-1-picryl-hydrazyl (DPPH radical scavenging effect of each seed extract was measured. To find a protectant against Aβ-induced oxidative stress, we screened 15 PSAE using a 2′, 7′-dichlorofluorescein diacetate assay. To further unravel the anti-inflammatory effects of PSAE on Aβ-induced inflammation, PSAE were added to HIPN. The neuroprotective effects of the PSAE were evaluated by Cell Counting Kit-8 assay, measuring the cell viability in Aβ-induced HIPN. Results: TPC of 15 PSAE was in the range of 0.024-1.96 mg of chlorogenic acid equivalents/gram. The aqueous extracts showed antioxidant activities. Furthermore, intracellular ROS accumulation resulting from Aβ treatment was reduced when cells were treated with some PSAE. Kale, bitter melon, kaiware radish, red shiso, and corn inhibited tumor necrosis factor-alpha secretion by the Aβ-stimulated neurons and all samples except Japanese honeywort showed enhancement of cell survival. Conclusion: From these results, we suggest that some plant seed extracts offer protection against Aβ-mediated cell death.

  5. IAEA activity on operator support systems in nuclear power plants

    International Nuclear Information System (INIS)

    Dounaev, V.; Fujita, Y.; Juslin, K.; Haugset, K.; Lux, I.; Naser, J.

    1994-01-01

    Various operator support systems for nuclear power plants are already operational or under development in the IAEA Member States. Operator support systems are based on intelligent data processing and, in addition to plant operation, they are also becoming more important for safety. A key feature of operator support systems is their availability to restructure data to increase its relevance for a given situation. This can improve the user's ability to identify plant mode, system state, and component state and to identify and diagnose faults. Operator support systems can also assist the user in planning and implementing corrective actions to improve the nuclear power plant's availability and safety. In September 1991, the IAEA Committee for Contractual Scientific Services approved the Co-ordinated Research Programme (CRP) on ''Operator Support Systems in Nuclear Power Plants'' in the framework of the Project ''Man-Machine Interface Studies''. The main objective of this programme is to provide guidance and technology transfer for the development and implementation of operator support systems. This includes the experience with human-machine interfaces and closely related issues such as instrumentation and control, the use of computers in nuclear power plants, and operator qualification. (author)

  6. Development of nuclear power plants database system, (2)

    International Nuclear Information System (INIS)

    Izumi, Fumio; Ichikawa, Michio

    1984-06-01

    A nuclear power plant data base system has been developed. The data base involves a large amount of safety design informations for nuclear power plants on operating and planning stage in Japan. The informations, if necessary, can be searched for at high speed by use of this system. The present report is an user's guide for access to the informations utilizing display unit of the JAERI computer network system. (author)

  7. The software safety analysis based on SFTA for reactor power regulating system in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Zhaohui; Yang Xiaohua; Liao Longtao; Wu Zhiqiang

    2015-01-01

    The digitalized Instrumentation and Control (I and C) system of Nuclear power plants can provide many advantages. However, digital control systems induce new failure modes that differ from those of analog control systems. While the cost effectiveness and flexibility of software is widely recognized, it is very difficult to achieve and prove high levels of dependability and safety assurance for the functions performed by process control software, due to the very flexibility and potential complexity of the software itself. Software safety analysis (SSA) was one way to improve the software safety by identify the system hazards caused by software failure. This paper describes the application of a software fault tree analysis (SFTA) at the software design phase. At first, we evaluate all the software modules of the reactor power regulating system in nuclear power plant and identify various hazards. The SFTA was applied to some critical modules selected from the previous step. At last, we get some new hazards that had not been identified in the prior processes of the document evaluation which were helpful for our design. (author)

  8. Adapting a reactor safety assessment system for specific plants

    International Nuclear Information System (INIS)

    Ballard, T.L.; Cordes, G.A.

    1991-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system being developed by the Idaho National Engineering Laboratory, the University of Maryland (UofM) and US Nuclear Regulatory Commission (NRC) for use in the NRC Operations center. RSAS is designed to help the Reactor Safety Team monitor and project core status during an emergency at a licensed nuclear power plant. Analysis uses a hierarchical plant model based on equipment availability and automatically input parametric plant information. There are 3 families of designs of pressurized water reactors and 75 plants using modified versions of the basic design. In order to make an RSAS model for each power plant, a generic model for a given plant type is used with differences being specified by plant specific files. Graphical displays of this knowledge are flexible enough to handle any plant configuration. A variety of tools have been implemented to make it easy to modify a design to fit a given plant while minimizing chance for error. 3 refs., 4 figs

  9. The effect of plant water storage on water fluxes within the coupled soil-plant system.

    Science.gov (United States)

    Huang, Cheng-Wei; Domec, Jean-Christophe; Ward, Eric J; Duman, Tomer; Manoli, Gabriele; Parolari, Anthony J; Katul, Gabriel G

    2017-02-01

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Assessment of root-associated paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper.

    Science.gov (United States)

    Phi, Quyet-Tien; Park, Yu-Mi; Seul, Keyung-Jo; Ryu, Choong-Min; Park, Seung-Hwan; Kim, Jong-Guk; Ghim, Sa-Youl

    2010-12-01

    Twenty-nine P. polymyxa strains isolated from rhizospheres of various crops were clustered into five genotypic groups on the basis of BOX-PCR analysis. The characteristics of several plant growth-promoting factors among the isolates revealed the distinct attributes in each allocated group. Under gnotobiotic conditions, inoculation of pepper roots with P. polymyxa isolates significantly increased the biomass in 17 of total 29 treated plants with untreated plants. Experiments on induced systemic resistance (ISR) against bacterial spot pathogen Xanthomonas axonopodis pv. vesicatoria in pepper by P. polymyxa strains were conducted and only one isolate (KNUC265) was selected. Further studies into ISR mediation by the KNUC265 strain against the soft-rot pathogen Erwinia carotovora subsp. carotovora in tobacco demonstrated that the tobacco seedlings exposed to either bacterial volatiles or diffusible metabolites exhibited a reduction in disease severity. In conclusion, ISR and plant growth promotion triggered by P. polymyxa isolates were systemically investigated on pepper for the first time. The P. polymyxa KNUC265 strain, which elicited both ISR and plant growth promotion, could be potentially used in improving the yield of pepper and possibly of other crops.

  11. Distributed control system for CANDU 9 nuclear power plant

    International Nuclear Information System (INIS)

    Harber, J.E.; Kattan, M.K.; Macbeth, M.J.

    1996-01-01

    Canadian designed CANDU pressurized heavy water nuclear reactors have been world leaders in electrical power generation. The CANDU 9 project is AECL's next reactor design. The CANDU 9 plant monitoring, annunciation, and control functions are implemented in two evolutionary systems; the distributed control system (DCS) and the plant display system (PDS). The CDS implements most of the plant control functions in a single hardware platform. The DCS communicates with the PDS to provide the main operator interface and annunciation capabilities of the previous control computer designs along with human interface enhancements required in a modern control system. (author)

  12. Analysis and Design of the Logistics System for Rope Manufacturing Plant

    Directory of Open Access Journals (Sweden)

    Sun Xue

    2017-01-01

    Full Text Available In order to promote logistics system for manufacturing plant, this paper proposed a new design for the logistics system of a rope manufacturing plant. Through the analysis in the aspects of workshop facility layout, material handling and inventory management, the original logistics system of the plant is optimized. According to the comparison of the simulation results between original and optimized design, the optimized model has the higher productive efficiency. This can provide the references for the other manufacturing plant in analysis and design of the logistics system to improve plant efficiency.

  13. Distributed and hierarchical control techniques for large-scale power plant systems

    International Nuclear Information System (INIS)

    Raju, G.V.S.; Kisner, R.A.

    1985-08-01

    In large-scale systems, integrated and coordinated control functions are required to maximize plant availability, to allow maneuverability through various power levels, and to meet externally imposed regulatory limitations. Nuclear power plants are large-scale systems. Prime subsystems are those that contribute directly to the behavior of the plant's ultimate output. The prime subsystems in a nuclear power plant include reactor, primary and intermediate heat transport, steam generator, turbine generator, and feedwater system. This paper describes and discusses the continuous-variable control system developed to supervise prime plant subsystems for optimal control and coordination

  14. Replacement of the control and instrumentation system with the microprocessor based systems in Japanese PWR plants

    International Nuclear Information System (INIS)

    Hayashi, N.

    1998-01-01

    In Ohi Units 3 and 4, Ikata Unit 3, and Genkai Units 3 and 4, the latest of PWR plants now under operation in Japan, the reactor control system and turbine control system employ the microprocessor base digital control systems with a view to improving reliability, operability and maintainability. In the next stage plants, another application of such digital system is also planned for the instrumentation rack for the reactor protection system for further improvement. On the other hand, in Mihama Unit 1, the first of domestic PWR plants, and later plants except for the latest 5 plants, analog control systems are employed for the instrumentation racks. For the analog control systems of these plants, FOXBORO H-Line instruments, equivalent domestic box type instruments or WH7300 Series card type instruments were initially employed, and later replaced with domestic card type control systems after 10-15 year operation. However, 8-12 years have passed since these replacements, so the 15th year generally quoted as an interval for replacing C and I systems is near at hand. This is the time to consider next replacement. This replacement will be based on the latest digital technology. However, it is not practical way for the existing plants to apply the same integrated digital C and I system configuration for the next stage plants, because it requires the drastic change of the C and I system configuration and significant cost-up. Therefore, we must investigate the optimum digital C and I system configuration for the existing system. (author)

  15. Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory.

    Science.gov (United States)

    de Langre, Emmanuel

    2012-03-15

    The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.

  16. Impact of large beam-induced heat loads on the transient operation of the beam screens and the cryogenic plants of the Future Circular Collider (FCC)

    Science.gov (United States)

    Correia Rodrigues, H.; Tavian, L.

    2017-12-01

    The Future Circular Collider (FCC) under study at CERN will produce 50-TeV high-energy proton beams. The high-energy particle beams are bent by 16-T superconducting dipole magnets operating at 1.9 K and distributed over a circumference of 80 km. The circulating beams induce 5 MW of dynamic heat loads by several processes such as synchrotron radiation, resistive dissipation of beam image currents and electron clouds. These beam-induced heat loads will be intercepted by beam screens operating between 40 and 60 K and induce transients during beam injection. Energy ramp-up and beam dumping on the distributed beam-screen cooling loops, the sector cryogenic plants and the dedicated circulators. Based on the current baseline parameters, numerical simulations of the fluid flow in the cryogenic distribution system during a beam operation cycle were performed. The effects of the thermal inertia of the headers on the helium flow temperature at the cryogenic plant inlet as well as the temperature gradient experienced by the beam screen has been assessed. Additionally, this work enabled a thorough exergetic analysis of different cryogenic plant configurations and laid the building-block for establishing design specification of cold and warm circulators.

  17. Effects of the peculiar compositions in tea plant on free radicals induced by radiation

    International Nuclear Information System (INIS)

    Yang Yuehua; Lin Shuqi; Sun Tao; Cheng Qikun

    1994-01-01

    Effects of the peculiar compositions in tea plant on free radicals induced by radiation was investigated. Results showed that the contents of free radicals in aborescence large-leaf varieties were more than that in shrubby middle-small leaf varieties under the same irradiation dose. Dose-effect curve for free radical contents in tea varieties could be described with an exponential equation. The contents of free radical and the radiosensitivities were related to the contents of catechin, tea polyphenols, flavone glycoside and caffeine. The main factor that affected free radical content in tea plant was catechin. Results also showed that there was a quantitative effect between (-)-EGCG and free radical: (-)-EGCG could induce the increase of free radical contents in tea at low concentration but scavenge free radicals at high concentration

  18. Nuclear power plant alarm systems: Problems and issues

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs

  19. Nuclear power plant alarm systems: Problems and issues

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs.

  20. The plant expert system (PLEXSYS) development environment

    International Nuclear Information System (INIS)

    Hashemi, S.; Patterson, L.; Jeffery, M.; Delashmutt, L.

    1989-06-01

    The PLEXSYS software engineering tool provides an environment with which utility engineers can build and use expert systems for power plant applications. PLEXSYS provides the engineer with access to many powerful Artificial Intelligence methodologies, while retaining an engineering frame of reference and minimizing the need for a formal background in computer science. The principle concept is that the description and understanding of power plant systems centers on graphical forms such as piping and instrumentation diagrams and electrical line diagrams, which define a graphics-based model of plant knowledge that is common to many applications. PLEXSYS provides a model editor that allows the user to construct and modify models of hydraulic, electrical, and information systems in terms of elementary components and their interconnections. Analysis of the resulting schematic models is provided by several functions that perform network analysis, schematic browsing, mathematical modeling and customization of the user interface. 41 figs., 1 tab

  1. Island phytophagy: explaining the remarkable diversity of plant-feeding insects.

    Science.gov (United States)

    Joy, Jeffrey B; Crespi, Bernard J

    2012-08-22

    Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.

  2. Plant experience with check valves in passive systems

    Energy Technology Data Exchange (ETDEWEB)

    Pahladsingh, R R [GKN Joint Nuclear Power Plant, Dodewaard (Netherlands)

    1996-12-01

    In the design of the advanced nuclear reactors there is a tendency to introduce more passive safety systems. The 25 year old design of the GKN nuclear reactor is different from the present BWR reactors because of some special features, such as the Natural Circulation - and the Passive Isolation Condenser system. When reviewing the design, one can conclude that the plant has 25 years of experience with check valves in passive systems and as passive components in systems. The result of this experience has been modeled in a plant-specific ``living PSA`` for the plant. A data-analysis has been performed on components which are related to the safety systems in the plant. As part of this study also the check valves have been taken in consideration. At GKN, the check valves have shown to be reliable components in the systems and no catastrophic failures have been experienced during the 25 years of operation. Especially the Isolation Condenser with its operation experience can contribute substantially to the insight of check valves in stand-by position at reactor pressure and operating by gravity under different pressure conditions. With the introduction of several passive systems in the SBWR-600 design, such as the Isolation Condensers, Gravity Driven Cooling, and Suppression Pool Cooling System, the issue of reliability of check valves in these systems is actual. Some critical aspects for study in connection with check valves are: What is the reliability of a check valve in a system at reactor pressure, to open on demand; what is the reliability of a check valve in a system at low pressure (gravity), to open on demand; what is the reliability of a check valve to open/close when the stand-by check wave is at zero differential pressure. The plant experience with check valves in a few essential safety systems is described and a brief introduction will be made about the application of check valves in the design of the new generation reactors is given. (author). 6 figs, 1 tab.

  3. In Plant Activation: An Inducible, Hyperexpression Platform for Recombinant Protein Production in Plants[W][OPEN

    Science.gov (United States)

    Dugdale, Benjamin; Mortimer, Cara L.; Kato, Maiko; James, Tess A.; Harding, Robert M.; Dale, James L.

    2013-01-01

    In this study, we describe a novel protein production platform that provides both activation and amplification of transgene expression in planta. The In Plant Activation (INPACT) system is based on the replication machinery of tobacco yellow dwarf mastrevirus (TYDV) and is essentially transient gene expression from a stably transformed plant, thus combining the advantages of both means of expression. The INPACT cassette is uniquely arranged such that the gene of interest is split and only reconstituted in the presence of the TYDV-encoded Rep/RepA proteins. Rep/RepA expression is placed under the control of the AlcA:AlcR gene switch, which is responsive to trace levels of ethanol. Transgenic tobacco (Nicotiana tabacum cv Samsun) plants containing an INPACT cassette encoding the β-glucuronidase (GUS) reporter had negligible background expression but accumulated very high GUS levels (up to 10% total soluble protein) throughout the plant, within 3 d of a 1% ethanol application. The GUS reporter was replaced with a gene encoding a lethal ribonuclease, barnase, demonstrating that the INPACT system provides exquisite control of transgene expression and can be adapted to potentially toxic or inhibitory compounds. The INPACT gene expression platform is scalable, not host-limited, and has been used to express both a therapeutic and an industrial protein. PMID:23839786

  4. From the tumor-inducing principle to plant biotechnology and its importance for society.

    Science.gov (United States)

    Angenon, Geert; Van Lijsebettens, Mieke; Van Montagu, Marc

    2013-01-01

    This dialogue was held between the Guest Editors of the Special Issue on "Plant Transgenesis" of the Int. J. Dev. Biol. and Marc Van Montagu. Research in the group of Marc Van Montagu and Jeff Schell in the 1970s was essential to reveal how the phytopathogenic bacterium Agrobacterium tumefaciens transfers DNA to host plants to cause crown gall disease. Knowledge of the molecular mechanism underlying gene transfer, subsequently led to the development of plant transgene technology, an indispensable tool in fundamental plant research and plant improvement. In the early 1980s, Marc Van Montagu founded a start-up company, Plant Genetic Systems, which successfully developed insect-resistant plants, herbicide-tolerant plants and a hybrid seed production system based on nuclear male sterility. Even before the first transgenic plant had been produced, Marc Van Montagu realized that the less developed countries might benefit most from plant biotechnology and throughout his subsequent career, this remained a focus of his efforts. After becoming emeritus professor, he founded the Institute of Plant Biotechnology Outreach (IPBO), which aims to raise awareness of the major role that plant biotechnology can play in sustainable agricultural systems, especially in less developed countries. Marc Van Montagu has been honored with many prizes and awards, the most recent being the prestigious World Food Prize 2013. In this paper, we look to the past and present of plant biotechnology and to the promises this technology holds for the future, on the basis of the personal perspective of Marc Van Montagu.

  5. Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants.

    Science.gov (United States)

    de Zélicourt, Axel; Letousey, Patricia; Thoiron, Séverine; Campion, Claire; Simoneau, Philippe; Elmorjani, Khalil; Marion, Didier; Simier, Philippe; Delavault, Philippe

    2007-08-01

    Plant defensins are small basic peptides of 5-10 kDa and most of them exhibit antifungal activity. In a sunflower resistant to broomrape, among the three defensin encoding cDNA identified, SF18, SD2 and HaDef1, only HaDef1 presented a preferential root expression pattern and was induced upon infection by the root parasitic plant Orobanche cumana. The amino acid sequence deduced from HaDef1 coding sequence was composed of an endoplasmic reticulum signal sequence of 28 amino acids, a standard defensin domain of 50 amino-acid residues and an unusual C-terminal domain of 30 amino acids with a net positive charge. A 5.8 kDa recombinant mature Ha-DEF1 corresponding to the defensin domain was produced in Escherichia coli and was purified by means of a two-step chromatography procedure, Immobilized Metal Affinity Chromatography (IMAC) and Ion Exchange Chromatography. Investigation of in vitro antifungal activity of Ha-DEF1 showed a strong inhibition on Saccharomyces cerevisiae growth linked to a membrane permeabilization, and a morphogenetic activity on Alternaria brassicicola germ tube development, as already reported for some other plant defensins. Bioassays also revealed that Ha-DEF1 rapidly induced browning symptoms at the radicle apex of Orobanche seedlings but not of another parasitic plant, Striga hermonthica, nor of Arabidopsis thaliana. FDA vital staining showed that these browning areas corresponded to dead cells. These results demonstrate for the first time a lethal effect of defensins on plant cells. The potent mode of action of defensin in Orobanche cell death and the possible involvement in sunflower resistance are discussed.

  6. Design of the reactor coolant system and associated systems in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. The basic requirements for the design of safety systems for nuclear power plants are established in the Safety Requirements publication, Safety Standards Series No. NS-R-1 on Safety of Nuclear Power Plants: Design, which it supplements. This Safety Guide describes how the requirements for the design of the reactor coolant system (RCS) and associated systems in nuclear power plants should be met. 1.2. This publication is a revision and combination of two previous Safety Guides, Safety Series No. 50-SG-D6 on Ultimate Heat Sink and Directly Associated Heat Transport Systems for Nuclear Power Plants (1981), and Safety Series No. 50-SG-D13 on Reactor Coolant and Associated Systems in Nuclear Power Plants (1986), which are superseded by this new Safety Guide. 1.3. The revision takes account of developments in the design of the RCS and associated systems in nuclear power plants since the earlier Safety Guides were published in 1981 and 1986, respectively. The other objectives of the revision are to ensure consistency with Ref., issued in 2000, and to update the technical content. In addition, an appendix on pressurized heavy water reactors (PHWRs) has been included

  7. Ferulic Acid, But Not All Hydroxycinnamic Acids, Is a Novel T3SS Inducer of Ralstonia solanacearum and Promotes Its Infection Process in Host Plants under Hydroponic Condition

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-09-01

    Full Text Available Hydroxycinnamic acids (HCAs are typical monocyclic phenylpropanoids, including cinnamic acid (Cin, coumaric acid (Cou, caffeic acid (Caf, ferulic acid (FA and their isomers, and involved in the interactions between pathogens and host plants. Here, we focused on the impact of HCAs on expression of type III secretion system (T3SS in Ralstonia solanacearum. FA significantly induced the expression of the T3SS and some type III effectors (T3Es genes in hrp-inducing medium, while did not the other HCAs. However, exogenously supplemented FA did not affect the T3SS expression in planta and the elicitation of the hypersensitive response (HR in tobacco leaves. Consistent with its central roles in pathogenicity, the FA-induced expression of the T3SS led to significant promotion on infection process of R. solanacearum in tomato plants under hydroponics cultivation. Moreover, the FA-induced expression of the T3SS was specifically mediated by the well-characterized signaling cascade PrhA-prhI/R-PrhJ-HrpG-HrpB, independent of the other known regulatory pathways. In summary, our results demonstrated that FA, a novel inducer of the T3SS in R. solanacearum, was able to promote its infection process in host plants under hydroponics condition.

  8. Prey and non-prey arthropods sharing a host plant : Effects on induced volatile emission and predator attraction

    NARCIS (Netherlands)

    de Boer, Jetske G.; Hordijk, Cornelis A.; Posthumus, Maarten A.; Dicke, Marcel

    It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile

  9. INFORMATION SYSTEM SALES OF INDOOR AND OUTDOOR ORNAMENTAL PLANTS-BASED ONLINE

    Directory of Open Access Journals (Sweden)

    Sutedi Sutedi

    2017-05-01

    Full Text Available Ornamental plants have fairly high commercial value and much sought after by various circles. The prospect is in the business of ornamental plants can be said very brilliant and profitable. Where is in the business of ornamental plants can bring about advantages not the least. The business struggled with ornamental plants can have very favorable prospects for the long term. There are an awful lot of various kinds of ornamental plants that we can choose to use as ornaments to beautify residential home. The ornamental plants can be used as indoor ornamental plants placed in homes or can also be used as outdoor ornamental plants grown in the garden. Ornamental plants while more popular community-wide information system for ornamental plant however is currently designed specifically and not many people who know the information on price and specs or type of indoor and outdoor ornamental plants so that the need for sales information system of indoor and outdoor ornamental plants-based online. With the sales information system of Indoor and Outdoor ornamental plants-based online is expected to facilitate the customers, business processes that occur in the company's units, unit – units that exist within the system a functioning production units as the unit working on/produce ornamental plants. With the utilization of the system marketing media, promoting, finding new customers, the sales process, recapitulation payment of ornamental plants, control the conditions of stock products, development and delivery of products to customers including convincing the product gets to the customer

  10. Experimental Studies of Laser-Induced Fluorescence Spectra of Plants Immunity to the Kind of Ground

    Directory of Open Access Journals (Sweden)

    Yu. V. Fedotov

    2015-01-01

    Full Text Available Various external factors (pollutants available in the soil, a lack or insufficient amount of water and nutrients, etc. lead to stressful conditions of plants and impossibility of their normal development. At the early stages it is difficult to identify visually the stressful situations of plants. Therefore development of methods and devices to detect stressful states is important.A method of the laser-induced fluorescence is one of perspective methods for detection of stressful conditions of plants.In spite of quite a great number of work presenting results of the pilot studies of fluorescence spectra of vegetation, there are some important issues, which are unclear.The paper gives results of pilot studies of stability of a spectrum form of the laser-induced fluorescence of plants for different types of soil at the wavelength of excitation fluorescence of 532 nm.Results of processing fluorescence spectra of plants show:- fluorescence spectra of plants grown up under similar conditions have good repeatability of a spectra form for different samples of plants and different measurement time for each type of studied soil. The ratio value R of the fluorescence intensity at the wavelength of 685 nm to the fluorescence intensity at the wavelength of 740 nm has high stability. The standard deviation in sampling of the ratio R of different samples of a plant for one type of soil (for width of spectral ranges of recording fluorescent radiation of 10 nm lies in the range ~ 0.055 - ~ 0.12;- a difference in plant fluorescence spectra between themselves for different types of soil has the same order as a difference in fluorescence spectra of different samples of a plant for one type of soil. Difference in average value of the ratio R for different types of soil lies in the range ~ 0.01 - ~ 0.15.Thus, the value of the ratio R is steady against a type of soil and can be used to control a condition of plants.

  11. Expert System Control of Plant Growth in an Enclosed Space

    Science.gov (United States)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  12. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  13. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  14. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  15. The Use of Grafting to Study Systemic Signaling in Plants.

    Science.gov (United States)

    Tsutsui, Hiroki; Notaguchi, Michitaka

    2017-08-01

    Grafting has long been an important technique in agriculture. Nowadays, grafting is a widely used technique also to study systemic long-distance signaling in plants. Plants respond to their surrounding environment, and at that time many aspects of their physiology are regulated systemically; these start from local input signals and are followed by the transmission of information to the rest of the plant. For example, soil nutrient conditions, light/photoperiod, and biotic and abiotic stresses affect plants heterogeneously, and plants perceive such information in specific plant tissues or organs. Such environmental cues are crucial determinants of plant growth and development, and plants drastically change their morphology and physiology to adapt to various events in their life. Hitherto, intensive studies have been conducted to understand systemic signaling in plants, and grafting techniques have permitted advances in this field. The breakthrough technique of micrografting in Arabidopsis thaliana was established in 2002 and led to the development of molecular genetic tools in this field. Thereafter, various phenomena of systemic signaling have been identified at the molecular level, including nutrient fixation, flowering, circadian clock and defense against pathogens. The significance of grafting is that it can clarify the transmission of the stimulus and molecules. At present, many micro- and macromolecules have been identified as mobile signals, which are transported through plant vascular tissues to co-ordinate their physiology and development. In this review, we introduce the various grafting techniques that have been developed, we report on the recent advances in the field of plant systemic signaling where grafting techniques have been applied and provide insights for the future. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.

    Science.gov (United States)

    Ma, Xingliang; Zhu, Qinlong; Chen, Yuanling; Liu, Yao-Guang

    2016-07-06

    The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein9 (Cas9) genome editing system (CRISPR/Cas9) is adapted from the prokaryotic type II adaptive immunity system. The CRISPR/Cas9 tool surpasses other programmable nucleases, such as ZFNs and TALENs, for its simplicity and high efficiency. Various plant-specific CRISPR/Cas9 vector systems have been established for adaption of this technology to many plant species. In this review, we present an overview of current advances on applications of this technology in plants, emphasizing general considerations for establishment of CRISPR/Cas9 vector platforms, strategies for multiplex editing, methods for analyzing the induced mutations, factors affecting editing efficiency and specificity, and features of the induced mutations and applications of the CRISPR/Cas9 system in plants. In addition, we provide a perspective on the challenges of CRISPR/Cas9 technology and its significance for basic plant research and crop genetic improvement. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  17. Distributed Control Systems in New Nuclear Power Plants

    International Nuclear Information System (INIS)

    Doerfler, Joseph

    2008-01-01

    With the growing demand for energy many countries have expressed interest in constructing new plants over the next 15 to 20 years. These expectations have presented a challenge to the nuclear industry to provide a high volume of construction. A key strategy to meet this challenge is developing an advanced nuclear power plant design that allows for a modular construction, a high level of standardization, passive safety features, reduced number of components, and a short bid-to-build time. In addition, the implementation of the plant control system has evolved as new technologies emerge to support these goals. The purpose of this paper is to discuss the ways that the distributed control and information systems in the new generation of nuclear power plants will differ from those currently in service. The new designs provide opportunities to improve overall performance through the use of bus technology, a video display driven Human System Interface, enhanced diagnostics and improved maintenance features. However, the new technologies must fully address requirements for cyber security and high reliability. This paper will give an overview of new technology, improvements, as well as emerging issues in new plant design. (authors)

  18. Distributed Control Systems in New Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Doerfler, Joseph [Westinghouse Electric Company, 4350 Northern Pike, Monroeville, PA 15146 (United States)

    2008-07-01

    With the growing demand for energy many countries have expressed interest in constructing new plants over the next 15 to 20 years. These expectations have presented a challenge to the nuclear industry to provide a high volume of construction. A key strategy to meet this challenge is developing an advanced nuclear power plant design that allows for a modular construction, a high level of standardization, passive safety features, reduced number of components, and a short bid-to-build time. In addition, the implementation of the plant control system has evolved as new technologies emerge to support these goals. The purpose of this paper is to discuss the ways that the distributed control and information systems in the new generation of nuclear power plants will differ from those currently in service. The new designs provide opportunities to improve overall performance through the use of bus technology, a video display driven Human System Interface, enhanced diagnostics and improved maintenance features. However, the new technologies must fully address requirements for cyber security and high reliability. This paper will give an overview of new technology, improvements, as well as emerging issues in new plant design. (authors)

  19. Safety classification of nuclear power plant systems, structures and components

    International Nuclear Information System (INIS)

    1992-01-01

    The Safety Classification principles used for the systems, structures and components of a nuclear power plant are detailed in the guide. For classification, the nuclear power plant is divided into structural and operational units called systems. Every structure and component under control is included into some system. The Safety Classes are 1, 2 and 3 and the Class EYT (non-nuclear). Instructions how to assign each system, structure and component to an appropriate safety class are given in the guide. The guide applies to new nuclear power plants and to the safety classification of systems, structures and components designed for the refitting of old nuclear power plants. The classification principles and procedures applying to the classification document are also given

  20. Applications of modern control systems in nuclear power plants

    International Nuclear Information System (INIS)

    Wilhelm, H.

    1980-01-01

    A new generation of automation and control systems are currently becoming commercially available in the power plant market which, because of their incorporation of microprocessors and bus data transmission systems, represent a major step forward in innovation. The application of these systems meets today's requirements and solutions, for the number of measurements to be performed has increased five or sixfold in the past few years, and the number of drive systems to be controlled has doubled or even tripled. Requirements to be met by process management systems have become vastly more complicated: peak load operation, short startup times, improved communication, and rising safety and reliability requirements, especially in nuclear power plants. Control concepts have been developed for the area relevant to reactor safety and for the whole of the plant, which make full use of the possibilities offered by plant systems. More stringent demands must be met especially in the areas of handling, communication, testing capability, improved function, and flexibility and modular design in the safety sector. (orig.) [de

  1. Arsenic-induced stress activates sulfur metabolism in different organs of garlic (Allium sativum L.) plants accompanied by a general decline of the NADPH-generating systems in roots.

    Science.gov (United States)

    Ruíz-Torres, Carmelo; Feriche-Linares, Rafael; Rodríguez-Ruíz, Marta; Palma, José M; Corpas, Francisco J

    2017-04-01

    Arsenic (As) contamination is a major environmental problem which affects most living organisms from plants to animals. This metalloid poses a health risk for humans through its accumulation in crops and water. Using garlic (Allium sativum L.) plants as model crop exposed to 200μM arsenate, a comparative study among their main organs (roots and shoots) was made. The analysis of arsenic, glutathione (GSH), phytochelatins (PCs) and lipid peroxidation contents with the activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate-glutathione cycle), and the main components of the NADPH-generating system, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH) was carried out. Data showed a correlation among arsenic accumulation in the different organs, PCs content and the antioxidative response, with a general decline of the NADPH-generating systems in roots. Overall, our results demonstrate that there are clear connections between arsenic uptake, increase of their As-chelating capacity in roots and a decline of antioxidative enzyme activities (catalase and the ascorbate peroxidase) whose alteration provoked As-induced oxidative stress. Thus, the data suggest that roots act as barrier of arsenic mediated by a prominent sulfur metabolism which is characterized by the biosynthesis of high amount of PCs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Application of fatigue monitoring system in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Piao Lei

    2014-01-01

    Fatigue failure is one form of equipment failure of nuclear power plant, influencing equipment lifetime and lifetime extension. Fatigue monitoring system can track real thermal transient at fatigue sensitive components, establish a basis for fatigue analyses based on realistic operating loads, identify unexpected operational transients, optimize the plant behavior by improved operating modes, provide supporting data for lifetime management, enhance security of plant and reduce economical loss. Fatigue monitoring system has been applied in many plants and is required to be applied in Generation-III nuclear power plant. It is necessary to develop the fatigue monitoring system with independent intellectual property rights and improve the competitiveness of domestic Generation-III nuclear power technology. (author)

  3. ChemANDTM - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Balakrishnan, P.V.; Tosello, G.

    1999-07-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation and feeds these parameters to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently has two analytical models developed for the balance-of-plant. CHEMSOLV calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information will be used by operations personnel to evaluate the potential for SG tube corrosion in the crevice region. CHEMSOLV also calculates chemistry conditions throughout the steam-cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. A second model, SLUDGE, calculates the deposit loading in the SG as a function of time, based on concentrations of corrosion product in the final feedwater and plant operating conditions. Operations personnel can use this information to predict where to inspect and when to clean. In a future development, SLUDGE will track deposit loading arising from start-up crud bursts and will be used in conjunction with the thermohydraulics code, THIRST, to predict

  4. Nitrogen-system safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-07-01

    The Department of Energy has primary responsibility for the safety of operations at DOE-owned nuclear facilities. The guidelines for the analysis of credible accidents are outlined in DOE Order 5481.1. DOE has requested that existing plant facilities and operations be reviewed for potential safety problems not covered by standard industrial safety procedures. This review is being conducted by investigating individual facilities and documenting the results in Safety Study Reports which will be compiled to form the Existing Plant Final Safety Analysis Report which is scheduled for completion in September, 1984. This Safety Study documents the review of the Plant Nitrogen System facilities and operations and consists of Section 4.0, Facility and Process Description, and Section 5.0, Accident Analysis, of the Final Safety Analysis Report format. The existing nitrogen system consists of a Superior Air Products Company Type D Nitrogen Plant, nitrogen storage facilities, vaporization facilities and a distribution system. The system is designed to generate and distribute nitrogen gas used in the cascade for seal feed, buffer systems, and for servicing equipment when exceptionally low dew points are required. Gaseous nitrogen is also distributed to various process auxiliary buildings. The average usage is approximately 130,000 standard cubic feet per day

  5. Backfitting of the nuclear plant V1 power control system

    International Nuclear Information System (INIS)

    Karpeta, C.; Rubek, J.; Stirsky, P.

    1985-01-01

    The paper deals with some aspects of implementation of modifications into the Czechoslovak nuclear plant V1 control system as called for on the basis of experience gained during the first period of the plant operation. Brief description of the plant power control system and its main functions is given. Some deficiencies in the system performance during abnormal conditions are outlined and measures taken to overcome them are presented. (author)

  6. The System 80+ Standard Plant design control document. Volume 19

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains five technical specification bases that are part of Appendix 16 A of the ADM Design and Analysis. They are: TS B3.3 Instrumentation Bases; TS B3.4 RCS Bases; TS B3.5 ECCS Bases; TS B3.6 Containment Systems Bases; and TS B3.7 Plant Systems Bases

  7. Three-dimensional computer aided design system for plant layout

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Kiguchi, Takashi; Tokumasu, Shinji; Kumamoto, Kenjiro.

    1986-01-01

    The CAD system for three-dimensional plant layout planning, with which the layout of pipings, cable trays, air conditioning ducts and so on in nuclear power plants can be planned and designed effectively in a short period is reported. This system comprises the automatic routing system by storing the rich experience and know-how of designers in a computer as the knowledge, and deciding the layout automatically following the predetermined sequence by using these, the interactive layout system for reviewing the routing results from higher level and modifying to the optimum layout, the layout evaluation system for synthetically evaluating the layout from the viewpoint of the operability such as checkup and maintenance, and the data base system which enables these effective planning and design. In this report, the total constitution of this system and the technical features and effects of the individual subsystems are outlined. In this CAD system for three-dimensional plant layout planning, knowledge engineering, CAD/CAM, computer graphics and other latest technology were introduced, accordingly by applying this system to plant design, the design can be performed quickly, various case studies can be carried out at planning stage, and systematic and optimum layout planning becomes possible. (Kako, I.)

  8. The development of an automatic classification system of nuclear power plant states

    International Nuclear Information System (INIS)

    Mitomo, Nobuo; Matsuoka, Takeshi

    2000-01-01

    For the future autonomous plant, automatic control and diagnostics are being incorporated and operators are mainly engaged in the high levels of diagnosis and decision-making in emergencies. Therefore these matters will be performed through the Man-Machine Interface(MMI). Ship Research Institute has been carrying out the research on the MMI system for autonomous power plants. The automatic classification system of plant states is one of the functions of this MMI and the system utilizes COBWEB, which is known as a way of clustering data to acquire concepts. In this paper, many plant states produced by a plant simulator we examined in order to confirm the effectiveness of this system. The system has well classified plant states produced by a plant simulator. (author)

  9. Analysis on Single Point Vulnerabilities of Plant Control System

    International Nuclear Information System (INIS)

    Chi, Moon Goo; Lee, Eun Chan; Bae, Yeon Kyoung

    2011-01-01

    The Plant Control System (PCS) is a system that controls pumps, valves, dampers, etc. in nuclear power plants with an OPR-1000 design. When there is a failure or spurious actuation of the critical components in the PCS, it can result in unexpected plant trips or transients. From this viewpoint, single point vulnerabilities are evaluated in detail using failure mode effect analyses (FMEA) and fault tree analyses (FTA). This evaluation demonstrates that the PCS has many vulnerable components and the analysis results are provided for OPR-1000 plants for reliability improvements that can reduce their vulnerabilities

  10. Analysis on Single Point Vulnerabilities of Plant Control System

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Moon Goo; Lee, Eun Chan; Bae, Yeon Kyoung [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2011-08-15

    The Plant Control System (PCS) is a system that controls pumps, valves, dampers, etc. in nuclear power plants with an OPR-1000 design. When there is a failure or spurious actuation of the critical components in the PCS, it can result in unexpected plant trips or transients. From this viewpoint, single point vulnerabilities are evaluated in detail using failure mode effect analyses (FMEA) and fault tree analyses (FTA). This evaluation demonstrates that the PCS has many vulnerable components and the analysis results are provided for OPR-1000 plants for reliability improvements that can reduce their vulnerabilities.

  11. Supervisory monitoring system in nuclear power plants

    International Nuclear Information System (INIS)

    Ciftcioglu, O.; Turkcan, E.

    1997-01-01

    Monitoring of a power plant is one of the essential tasks during operation and the computer-based implementations are nowadays seemingly quite mature. However, presently these are still not satisfactory enough to meet the high standards to the licensing requirements and they are mostly not truly integrated to the plant's design-based monitoring system. This is basically due to the robustness problem as the majority of the methods are not robust enough for the monitoring of the safety parameter set in a plant or intelligent supervision. Therefore, a supervisory monitoring system (SMS) in a plant is necessary to supervise the monitoring tasks: determining the objectives to be obtained and finding the means to support them. SMS deals with the changing plant status and the coordination of the information flow among the monitoring subunits. By means of these robustness and consistency in monitoring is achieved. The paper will give the guidelines of knowledge and data management techniques in a framework of robust comprehensive and coordinated monitoring which is presented as supervisory monitoring. Such a high level monitoring serves for consistent and immediate actions in fault situations while this particularly has vital importance in preventing imminent severe accidents next to the issues of recognition of the monitoring procedures for licensing and enhanced plant safety. (author). 8 refs, 5 figs

  12. anti-inflammatory activity of selected nigerian medicinal plants

    African Journals Online (AJOL)

    Extracts of nineteen plant species from an inventory of Nigerian medicinal plants were screened for activity in two in vitro anti-inflammatory model test systems, inhibition of prostaglandin biosynthesis and PAF-induced elastase release from neutrophilis. Anacardium occidentale and Acalipha hispida were active in both test ...

  13. Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential.

    Science.gov (United States)

    Turlings, Ted C J; Erb, Matthias

    2018-01-07

    Tritrophic interactions between plants, herbivores, and their natural enemies are an integral part of all terrestrial ecosystems. Herbivore-induced plant volatiles (HIPVs) play a key role in these interactions, as they can attract predators and parasitoids to herbivore-attacked plants. Thirty years after this discovery, the ecological importance of the phenomena is widely recognized. However, the primary function of HIPVs is still subject to much debate, as is the possibility of using these plant-produced cues in crop protection. In this review, we summarize the current knowledge on the role of HIPVs in tritrophic interactions from an ecological as well as a mechanistic perspective. This overview focuses on the main gaps in our knowledge of tritrophic interactions, and we argue that filling these gaps will greatly facilitate efforts to exploit HIPVs for pest control.

  14. Retrofitting Trojan Nuclear Plant's spent resin transfer system

    International Nuclear Information System (INIS)

    Pierce, R.E.

    1979-01-01

    The spent resin slurry transport system at the Trojan Nuclear Plant operated by Portland General Electric Company is one of the most advanced systems of its type in the nuclear industry today. The new system affords the plant's operators safe remote sonic indication for spent resin and cover water levels, manual remote dewatering and watering capability to establish desirable resin-to-water volumetric ratios, reliable non-mechanical resin agitation utilizing fixed spargers, and controllable process flow utilizing a variable speed recessed impeller pump

  15. Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis

    Czech Academy of Sciences Publication Activity Database

    Rossini, P. M.; Nedbal, L.; Guanter, L.; Ač, Alexander; Alonso, L.; Burkart, A.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Hanuš, Jan; Janoutová, Růžena; Julitta, T.; Kokkalis, P.; Moreno, J.; Novotný, Jan; Panigada, C.; Pinto, F.; Schickling, A.; Schuettemeyer, D.; Zemek, František; Rascher, U.

    2015-01-01

    Roč. 42, č. 6 (2015), s. 1632-1639 ISSN 0094-8276 Institutional support: RVO:67179843 Keywords : sun-induced fluorescence * remote sensing * stress detection * airborne images * HyPlant Subject RIV: EH - Ecology, Behaviour Impact factor: 4.212, year: 2015

  16. Self-control system in storage unit of PV plants

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shaban, Saad; Mohmoud, Ali [Hadhramout Univ. of Science and Technology, Faculty of Engineering, Mukalla (Yemen)

    2000-04-01

    A new system for self-controlling of storage batteries being charged by PV plants has been developed. This provides enhanced system reliability, lower system cost, and simpler operation for the user. In this system, the only requirement is to design and select PV panels so that their voltage-sensitive region (on the I-V curve) coincides with that required for a simpler remote PV plant and for long periods. (Author)

  17. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants.

    Science.gov (United States)

    Anawar, Hossain M; Rengel, Zed; Damon, Paul; Tibbett, Mark

    2018-02-01

    High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Optimization of control area ventilation systems for Japanese PWR plants

    International Nuclear Information System (INIS)

    Naitoh, T.; Nakahara, Y.

    1987-01-01

    The nuclear power plant has been required to reduce the cost for the purpose of making the low-cost energy since several years ago in Japan. The Heating, Ventilating and Air Conditioning system in the nuclear power plant has been also required to reduce its cost. On the other hand the ventilation system should add the improvable function according to the advanced plant design. In response to these different requirements, the ventilation criteria and the design of the ventilation system have been evaluated and optimized in Japanese PWR Plant design. This paper presents the findings of the authors' study

  19. Retrofit of safety and control systems in nuclear power plants

    International Nuclear Information System (INIS)

    Keiper, J.T.; Fassett, G.B.

    1986-01-01

    The modularity, compactness, compatibility, and licensability of the microcontrol system make it a cost-effective approach to obtain the benefits of digital control technology in the retrofit of nuclear power plants. Retrofit of individual loops or complete systems can be scheduled to meet the operational needs of the plant. The existing racks, panels, and cable systems can be utilized to the maximum extent to minimize the installed cost. Future expansion to total plant control or plant management is supported by the network communication module or gateway. The microcontrol module provides benefits now in improved operation, and future benefits in planned, controlled upgrading

  20. Liposome-Based Delivery Systems in Plant Polysaccharides

    International Nuclear Information System (INIS)

    Meiwan, C.; Yitao, W.; Yanfang, Z.; Xinsheng, P.; Jingjing, H.; Ping, Z.

    2012-01-01

    Plant polysaccharides consist of many monosaccharide by α or β glycosidic bond which can be extracted by the water, alcohol, lipophile liquid from a variety of plants including Cordyceps sinensis, astragalus, and mushrooms. Recently, many evidences illustrate that natural plant polysaccharides possess various biological activities including strengthening immunity, lowering blood sugar, regulating lipid metabolism, anti oxidation, anti aging, and antitumour. Plant polysaccharides have been widely used in the medical field due to their special features and low toxicity. As an important drug delivery system, liposomes can not only encapsulate small-molecule compound but also big-molecule drug; therefore, they present great promise for the application of plant polysaccharides with unique physical and chemical properties and make remarkable successes. This paper summarized the current progress in plant polysaccharides liposomes, gave an overview on their experiment design method, preparation, and formulation, characterization and quality control, as well as in vivo and in vitro studies. Moreover, the potential application of plant polysaccharides liposomes was prospected as well.

  1. Proceedings: Distributed digital systems, plant process computers, and networks

    International Nuclear Information System (INIS)

    1995-03-01

    These are the proceedings of a workshop on Distributed Digital Systems, Plant Process Computers, and Networks held in Charlotte, North Carolina on August 16--18, 1994. The purpose of the workshop was to provide a forum for technology transfer, technical information exchange, and education. The workshop was attended by more than 100 representatives of electric utilities, equipment manufacturers, engineering service organizations, and government agencies. The workshop consisted of three days of presentations, exhibitions, a panel discussion and attendee interactions. Original plant process computers at the nuclear power plants are becoming obsolete resulting in increasing difficulties in their effectiveness to support plant operations and maintenance. Some utilities have already replaced their plant process computers by more powerful modern computers while many other utilities intend to replace their aging plant process computers in the future. Information on recent and planned implementations are presented. Choosing an appropriate communications and computing network architecture facilitates integrating new systems and provides functional modularity for both hardware and software. Control room improvements such as CRT-based distributed monitoring and control, as well as digital decision and diagnostic aids, can improve plant operations. Commercially available digital products connected to the plant communications system are now readily available to provide distributed processing where needed. Plant operations, maintenance activities, and engineering analyses can be supported in a cost-effective manner. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  2. Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vector

    Directory of Open Access Journals (Sweden)

    Xavier eMartini

    2014-05-01

    Full Text Available Interactions between plant pathogens and arthropods have been predominantly studied through the prism of herbivorous arthropods. Currently, little is known about the effect of plant pathogens on the third trophic level. This question is particularly interesting in cases where pathogens manipulate host phenotype to increase vector attraction and presumably increase their own proliferation. Indeed, a predator or a parasitoid of a vector may take advantage of this manipulated phenotype to increase its foraging performance. We explored the case of a bacterial pathogen, Candidatus Liberibacter asiaticus (Las, which modifies the odors released by its host plant (citrus trees to attract its vector, the psyllid Diaphorina citri. We found that the specialist parasitoid of D. citri, Tamarixia radiata, was attracted more toward Las-infected than uninfected plants. We demonstrated that this attractiveness was due to the release of methyl salicylate. Parasitization of D. citri nymphs on Las-infected plants was higher than on uninfected controls. Also, parasitization was higher on uninfected plants baited with methyl salicylate than on non-baited controls. This is the first report of a parasitoid ‘eavesdropping’ on a plant volatile induced by bacterial pathogen infection, which also increases effectiveness of host seeking behavior of its herbivorous vector.

  3. Three-Step Test System for the Identification of Novel GABAA Receptor Modulating Food Plants.

    Science.gov (United States)

    Sahin, Sümeyye; Eulenburg, Volker; Kreis, Wolfgang; Villmann, Carmen; Pischetsrieder, Monika

    2016-12-01

    Potentiation of γ-amino butyric acid (GABA)-induced GABA A receptor (GABA A R) activation is a common pathway to achieve sedative, sleep-enhancing, anxiolytic, and antidepressant effects. Presently, a three-component test system was established for the identification of novel GABA A R modulating food plants. In the first step, potentiation of GABA-induced response of the GABA A R was analysed by two-electrode voltage clamp (TEVC) for activity on human α1β2-GABA A R expressed in Xenopus laevis oocytes. Positively tested food plants were then subjected to quantification of GABA content by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) to exclude test foods, which evoke a TEVC-response by endogenous GABA. In the third step, specificity of GABA A -modulating activity was assessed by TEVC analysis of Xenopus laevis oocytes expressing the homologous glycine receptor (GlyR). The three-component test was then applied to screen 10 aqueous extracts of food plants for their GABA A R activity. Thus, hop cones (Humulus lupulus) and Sideritis sipylea were identified as the most potent specific GABA A R modulators eliciting significant potentiation of the current by 182 ± 27 and 172 ± 19 %, respectively, at the lowest concentration of 0.5 μg/mL. The extracts can now be further evaluated by in vivo studies and by structural evaluation of the active components.

  4. Plant experience with an expert system for alarm diagnosis

    International Nuclear Information System (INIS)

    Gimmy, K.L.

    1986-01-01

    An expert system called Diagnosis of Multiple Alarms (DMA) is in routine use at four nuclear reactors operated by the DuPont Company. The system is wired to plant alarm annunciators and does event-tree analysis to see if a pattern exists. Any diagnosis is displayed to the plant operator and the corrective procedure to be followed is also identified. The display is automatically superseded if a higher priority diagnosis is made. The system is integrated with operator training and procedures. Operating results have been positive. DMA has diagnosed several hard-to-locate small leaks. There have been some false diagnosis, and realistic plant environments must be considered in such expert systems. 2 refs., 5 figs

  5. A cold-induced myo-inositol transporter-like gene confers tolerance to multiple abiotic stresses in transgenic tobacco plants.

    Science.gov (United States)

    Sambe, Mame Abdou Nahr; He, Xueying; Tu, Qinghua; Guo, Zhenfei

    2015-03-01

    A full length cDNA encoding a myo-inositol transporter-like protein, named as MfINT-like, was cloned from Medicago sativa subsp. falcata (herein falcata), a species with greater cold tolerance than alfalfa (M. sativa subsp. sativa). MfINT-like is located on plasma membranes. MfINT-like transcript was induced 2-4 h after exogenous myo-inositol treatment, 24-96 h with cold, and 96 h by salinity. Given that myo-inositol accumulates higher in falcata after 24 h of cold treatment, myo-inositol is proposed to be involved in cold-induced expression of MfINT-like. Higher levels of myo-inositol was observed in leaves of transgenic tobacco plants overexpressing MfINT-like than the wild-type but not in the roots of plants grown on myo-inositol containing medium, suggesting that transgenic plants had higher myo-inositol transport activity than the wild-type. Transgenic plants survived better to freezing temperature, and had lower ion leakage and higher maximal photochemical efficiency of photosystem II (Fv /Fm ) after chilling treatment. In addition, greater plant fresh weight was observed in transgenic plants as compared with the wild-type when plants were grown under drought or salinity stress. The results suggest that MfINT-like mediated transport of myo-inositol is associated with plant tolerance to abiotic stresses. © 2014 Scandinavian Plant Physiology Society.

  6. Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant.

    Science.gov (United States)

    Rascher, U; Alonso, L; Burkart, A; Cilia, C; Cogliati, S; Colombo, R; Damm, A; Drusch, M; Guanter, L; Hanus, J; Hyvärinen, T; Julitta, T; Jussila, J; Kataja, K; Kokkalis, P; Kraft, S; Kraska, T; Matveeva, M; Moreno, J; Muller, O; Panigada, C; Pikl, M; Pinto, F; Prey, L; Pude, R; Rossini, M; Schickling, A; Schurr, U; Schüttemeyer, D; Verrelst, J; Zemek, F

    2015-12-01

    Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun-induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun-induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun-induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun-induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress. © 2015 John Wiley & Sons Ltd.

  7. Software V ampersand V methods for digital plant protection system

    International Nuclear Information System (INIS)

    Kim, Hung-Jun; Han, Jai-Bok; Chun, Chong-Son; Kim, Sung; Kim, Kern-Joong.

    1997-01-01

    Careful thought must be given to software design in the development of digital based systems that play a critical role in the successful operation of nuclear power plants. To evaluate the software verification and validation methods as well as to verify its system performance capabilities for the upgrade instrumentation and control system in the Korean future nuclear power plants, the prototype Digital Plant, Protection System (DPPS) based on the Programmable Logic Controller (PLC) has been constructed. The system design description and features are briefly presented, and the software design and software verification and validation methods are focused. 6 refs., 2 figs

  8. Pattern-recognition system application to EBR-II plant-life extension

    International Nuclear Information System (INIS)

    King, R.W.; Radtke, W.H.; Mott, J.E.

    1988-01-01

    A computer-based pattern-recognition system, the System State Analyzer (SSA), is being used as part of the EBR-II plant-life extension program for detection of degradation and other abnormalities in plant systems. The SSA is used for surveillance of the EBR-II primary system instrumentation, primary sodium pumps, and plant heat balances. Early results of this surveillance indicate that the SSA can detect instrumentation degradation and system performance degradation over varying time intervals, and can provide derived signal values to replace signals from failed critical sensors. These results are being used in planning for extended-life operation of EBR-II

  9. The System 80+ standard plant design reduces operations and maintenance costs

    International Nuclear Information System (INIS)

    Chari, D.R.; Robertson, J.E.

    1998-01-01

    To be cost-competitive, nuclear power plants must maximize plant availability and minimize operations and maintenance (O and M) costs. A plant whose design supports these goals will generate more power at less cost and thereby have a lower unit generating cost. The ABB Combustion Engineering Nuclear Systems (ABB-CE) System 80+ Standard Nuclear Power Plant, rated at 1400 megawatts electric (MWe), is designed for high availability at reduced cost. To demonstrate that the duration of refueling outages, the major contributor to plant unavailability, can be shortened, ABB-CE developed a detailed plan that shows a System 80+ plant can safely perform a refueling and maintenance outage in 18 days. This is a significant reduction from the average current U.S. plant outages of 45 days, and is possible due to a two-part outage strategy: use System 80+ advanced system design features and relaxed technical specification (TS) time limits to shift some maintenance from outages to operating periods: and, use System 80+ structural, system, and component features, such as the larger operating floor, permanent pool seal, integral reactor head area cable tray system and missile shield, and longer life reactor coolant pump seals, to reduce the scope and duration of outage maintenance activities. Plant staffing level is the major variable, or controllable contributor to operations costs. ABB-CE worked with the Institute of Nuclear Power Operations (INPO) to perform detailed staffing analyses that show a System 80+ plant can be operated reliably with 30 percent less staff than currently operating nuclear plants of similar size. Safety was not sacrificed when ABB-CE developed the System 80+ refueling outage plan and staffing level. The outage plan was developed utilizing a defense-in-depth concept for shutdown safety. The defense in-depth concept is implemented via systematic control of outage risk evaluation (SCORE) cards. The SCORE cards identify primary and alternate means of

  10. Detection of bacterial infection of agave plants by laser-induced fluorescence

    Science.gov (United States)

    Cervantes-Martinez, Jesus; Flores-Hernandez, Ricardo; Rodriguez-Garay, Benjamin; Santacruz-Ruvalcaba, Fernando

    2002-05-01

    Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor beta-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660-790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.

  11. The System 80+ Standard Plant design control document. Volume 18

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains the following technical specifications of section 16 (Technical Specifications) of the ADM Design and Analysis: TS 3.3 Instrumentation; TS 3.4 Reactor Coolant System; TS 3.5 Emergency Core Cooling System; TS 3.6 Containment Systems; TS 3.7 Plant Systems; TS 3.8 Electrical Power Systems; TS 3.9 Refueling Operations; TS 4.0 Design Features; TS 5.0 Administrative Controls. Appendix 16 A Tech Spec Bases is also included. It contains the following: TS B2.0 Safety Limits Bases; TS B3.0 LCO Applicability Bases; TS B3.1 Reactivity Control Bases; TS B3.2 Power Distribution Bases

  12. Design and analysis of heat recovery system in bioprocess plant

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar; Rašković, Predrag; Guzović, Zvonimir

    2015-01-01

    Highlights: • Heat integration of a bioprocess plant is studied. • Bioprocess plant produces yeast and ethyl-alcohol. • The design of a heat recovery system is performed by batch pinch analysis. • Direct and indirect heat integration approaches are used in process design. • The heat recovery system without a heat storage opportunity is more profitable. - Abstract: The paper deals with the heat integration of a bioprocess plant which produces yeast and ethyl-alcohol. The referent plant is considered to be a multiproduct batch plant which operates in a semi-continuous mode. The design of a heat recovery system is performed by batch pinch analysis and by the use of the Time slice model. The results obtained by direct and indirect heat integration approaches are presented in the form of cost-optimal heat exchanger networks and evaluated by different thermodynamic and economic indicators. They signify that the heat recovery system without a heat storage opportunity can be considered to be a more profitable solution for the energy efficiency increase in a plant

  13. DDTs-induced antioxidant responses in plants and their influence on phytoremediation process.

    Science.gov (United States)

    Mitton, Francesca M; Gonzalez, Mariana; Monserrat, José M; Miglioranza, Karina S B

    2018-01-01

    Phytoremediation is a low cost technology based on the use of plants to remove a wide range of pollutants from the environment, including the insecticide DDT. However, some pollutants are known to enhance generation of reactive oxygen species (ROS), which can generate toxic effects on plants affecting the phytoremediation efficiency. This study aims to analyze the potential use of antioxidant responses as a measure of tolerance to select plants for phytoremediation purposes. Tomato and zucchini plants were grown for 15 days in soils contaminated with DDTs (DDT + DDE + DDD). Protein content, glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT) activities were measured in plant tissues. Exposure to DDTs did not affect protein content or CAT activity in any of the species. GST, GR and GPx activity showed different responses in exposed and control tomato plants. After DDTs exposure, tomato showed increased GR and GPX activity in stems and leaves, respectively, and a decrease in the GST activity in roots. As no effects were observed in zucchini, results suggest different susceptibility and/or defense mechanisms involved after pesticide exposure. Finally, both species differed also in terms of DDTs uptake and translocation. The knowledge about antioxidant responses induced by pesticides exposure could be helpful for planning phytoremediation strategies and for the selection of tolerant species according to particular scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Water system integration of a chemical plant

    International Nuclear Information System (INIS)

    Zheng Pingyou; Feng Xiao; Qian Feng; Cao Dianliang

    2006-01-01

    Water system integration can minimize both the freshwater consumption and the wastewater discharge of a plant. In industrial applications, it is the key to determine reasonably the contaminants and the limiting concentrations, which will decide the freshwater consumption and wastewater discharge of the system. In this paper, some rules to determine the contaminants and the limiting concentrations are proposed. As a case study, the water system in a chemical plant that produces sodium hydroxide and PVC (polyvinyl chloride) is integrated. The plant consumes a large amount of freshwater and discharges a large amount of wastewater, so minimization of both the freshwater consumption and the wastewater discharge is very important to it. According to the requirements of each water using process on the water used in it, the contaminants and the limiting concentrations are determined. Then, the optimal water reuse scheme is firstly studied based on the water network with internal water mains. To reduce the freshwater consumption and the wastewater discharge further, decentralized regeneration recycling is considered. The water using network is simplified by mixing some of the used water. After the water system integration, the freshwater consumption is reduced 25.5%, and the wastewater discharge is reduced 48%

  15. UCH 3 and 4 plant computer system I/O point summary

    International Nuclear Information System (INIS)

    Sohn, Kwang Young; Lee, Tae Hoon; Lee, Soon Sung; Lee, Byung Chae; Yoon, Jong Keon; Park, Jeong Suk; Baek, Seung Min; Shin, Hyun Kook

    1996-05-01

    This technical report summarizes the UCN 3 and 4 I/O database points and is expected to be an important for many disciplines. There are several kind of plant tests before the commercial operation such as Preoperational Test, Cold Hydro Test (CHT), Hot Functional Test (HFT), and Power Ascension Test (PAT). Those are performed in a manner that the validity of the sensor inputs got to the Plant Computer System (PCS) and operational integrity of plant are determined by monitoring the addressable I/O point identification (PID) on the Plant Computer System operator console. For better performance of activities like Emergency Operating Procedure (EOP) computerization, Safety Parameter Display System (SPDS) development, and organizing integrated database for NSSS, referencing the past plant information about I/O database is highly expected. What's more, it is inevitable material for plant system research and general design document work to be done in future. So we present this report based on UCN database for better understanding of plant computer system. 5 refs. (Author) .new

  16. UCH 3 and 4 plant computer system I/O point summary

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Kwang Young; Lee, Tae Hoon; Lee, Soon Sung; Lee, Byung Chae; Yoon, Jong Keon; Park, Jeong Suk; Baek, Seung Min; Shin, Hyun Kook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-05-01

    This technical report summarizes the UCN 3 and 4 I/O database points and is expected to be an important for many disciplines. There are several kind of plant tests before the commercial operation such as Preoperational Test, Cold Hydro Test (CHT), Hot Functional Test (HFT), and Power Ascension Test (PAT). Those are performed in a manner that the validity of the sensor inputs got to the Plant Computer System (PCS) and operational integrity of plant are determined by monitoring the addressable I/O point identification (PID) on the Plant Computer System operator console. For better performance of activities like Emergency Operating Procedure (EOP) computerization, Safety Parameter Display System (SPDS) development, and organizing integrated database for NSSS, referencing the past plant information about I/O database is highly expected. What`s more, it is inevitable material for plant system research and general design document work to be done in future. So we present this report based on UCN database for better understanding of plant computer system. 5 refs. (Author) .new.

  17. Expert systems to assist plant operation

    International Nuclear Information System (INIS)

    Matsumoto, Yoshihiro; Mori, Nobuyuki; Wada, Norio

    1985-01-01

    Large-scale real-time process control systems, such as those for electric power dispatching, large thermal and nuclear power stations, steel mill plants and manufacturing automation systems, need expert systems to assist operator's decision. The expert systems newly developed to fulfill the requirement are founded on OKBS (object oriented knowledge based system). OKBS provides various object types: fuzzy logic type, production rule type, frame type, state transition type, abstract data type and input/output transformation type. (author)

  18. A modular approach to modeling power plant systems

    International Nuclear Information System (INIS)

    Yee, N.S.

    1990-01-01

    This paper reports on power plants which are large, non-linear systems with numerous interactions between its component parts. In the analysis of such complex systems, dynamic simulation is recognized as a powerful method of keeping track of the myriad of interactions. A simulation can be used to answer the what if questions that are asked when replacing components, changing operational procedures, or training operators. While there are many applications for the simulation of power plant components and systems, its use is often discouraged because it can be difficult and expensive. Power plant engineering is itself a multi-disciplinary field involving fluid mechanics, heat transfer, thermodynamics, chemical engineering, nuclear engineering, and electrical engineering. Simulation requires, in addition, knowledge in model formulation, computer programming and numerical solution of differential equations

  19. Plant operator selection system for evaluating employment candidates' potential for success in electric power plant operations positions

    International Nuclear Information System (INIS)

    Dunnette, M.D.

    1982-01-01

    The Plant Operator Selection System is a battery of tests and questionnaires that can be administered to job candidates in less than three hours. Various components of the battery measure what a job candidate has accomplished in previous educational and work situations, how well a candidate compares with others on a number of important aptitudes or abilities, and whether or not a candidate possesses the kind of personal stability required in power plant operations positions. A job candidate's answers to the tests and questionnaires of the Plant Operator Selection System are scored and converted to an OVERALL POTENTIAL INDEX. Values of the OVERALL POTENTIAL INDEX [OPI] range between 0 and 15. Candidates with high OPI values are much more likely to become effective and successful plant operators than candidates with low OPI values. It is possible to estimate the financial advantages to a company of using the Plant Operator Selection System in evaluating candidates for plant operations jobs

  20. Identification of Systemic Acquired Resistance–Related Volatile Organic Compounds and their Role in Plant Immunity

    OpenAIRE

    Bichlmeier, Marlies

    2017-01-01

    Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), which is essential for SAR signalling. In contrast to SAR, local resistance remains intact in Arabidopsis (Arabidopsis thaliana) eds1-2 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. I utilized the SAR-specific phenotype of the eds1-2 mutant to identify volatile organic compounds (VOCs) related to SAR. To this end, SAR was indu...

  1. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.

    Science.gov (United States)

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-07

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.

  2. Bioelectric potentials in the soil-plant system

    Science.gov (United States)

    Pozdnyakov, A. I.

    2013-07-01

    A detailed study of the electric potentials in the soil-plant system was performed. It was found that the electric potential depends on the plant species and the soil properties. A theoretical interpretation of the obtained data was given. All the plants, independently from their species and their state, always had a negative electric potential relative to the soil. The electric potential of the herbaceous plants largely depended on the leaf area. In some plants, such as burdock ( Arctium lappa) and hogweed ( Heracleum sosnowskyi), the absolute values of the negative electric potential exceeded 100 mV. The electric potential was clearly differentiated by the plant organs: in the flowers, it was lower than in the leaves; in the leaves, it was usually lower than in the leaf rosettes and stems. The electric potentials displayed seasonal dynamics. As a rule, the higher the soil water content, the lower the electric potential of the plants. However, an inverse relationship was observed for dandelions ( Taraxacum officinale). It can be supposed that the electric potential between the soil and the plant characterizes the vital energy of the plant.

  3. Gravisensitivity of various host plant -virus systems in simulated microgravity

    Science.gov (United States)

    Mishchenko, Lidiya; Taran, Oksana; Gordejchyk, Olga

    In spite of considerable achievements in the study of gravity effects on plant development, some issues of gravitropism, like species-specificity and gravitation response remain unclear. The so-lution of such problems is connected with the aspects of life supply, in piloted space expeditions. The role of microgravity remains practically unstudied in the development of relations in the system host plant-virus, which are important for biotechnologies in crop production. It is ev-ident that the conditions of space flight can act as stressors, and the stress inducted by them favors the reactivation of latest herpes viruses in humans (satish et al., 2009) Viral infections of plants, which also can be in a latest state at certain stages of plant organism development, cause great damage to the growth and development of a host plant. Space flight conditions may cause both reactivation of latent viral infection in plants and its elimination, as it has been found by us for the system WSMW -wheat (Mishchenko et al., 2004). Our further research activities were concentrated on the identification of gravisensitivity in the system virus -potato plant to find out whether there was any species -related specificity of the reaction. In our research we used potato plants of Krymska Rosa, Zhuravushka, Agave, Belarosa, Kupalinka, and Zdubytok varieties. Simulated microgravity was ensured by clinostats KG-8 and Cycle -2. Gravisensitiv-ity has been studied the systems including PVX, PVM and PVY. Virus concentrations have been determined by ELISA using LOEWE reagents (placecountry-regionGermany). Virus iden-tification by morphological features were done by electron microscopy. For the system PVX -potato plant, we found the reduction in virus antigens content with prolonged clinostating. On the 18th day of cultivation, the plants showed a high level of X-virus antigen content on both stationary (control) and clinostated variants. On 36th and 47th day, depending plant variety, clinostated

  4. Seismic qualification of PWR plant auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Lu, S.C.; Tsai, N.C.

    1983-08-01

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14

  5. Knowledge based system for fouling assessment of power plant boiler

    International Nuclear Information System (INIS)

    Afgan, N.H.; He, X.; Carvalho, M.G.; Azevedo, J.L.T.

    1999-01-01

    The paper presents the design of an expert system for fouling assessment in power plant boilers. It is an on-line expert system based on selected criteria for the fouling assessment. Using criteria for fouling assessment based on 'clean' and 'not-clean' radiation heat flux measurements, the diagnostic variable are defined for the boiler heat transfer surface. The development of the prototype knowledge-based system for fouling assessment in power plants boiler comprise the integrations of the elements including knowledge base, inference procedure and prototype configuration. Demonstration of the prototype knowledge-based system for fouling assessment was performed on the Sines power plant. It is a 300 MW coal fired power plant. 12 fields are used with 3 on each side of boiler

  6. Operation status display and monitoring system for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Wakabayashi, Yasuo; Hayakawa, Hiroyasu; Kawamura, Atsuo; Kaneda, Mitsunori.

    1982-01-01

    Lately, the development of the system has been made for BWR plants, which monitors the operating status not only in normal operation but also in abnormal state and also for plant safety. Recently, the improvement of man-machine interface has been tried through the practical use of technique which displays data collectively on a CRT screen relating them mutually. As one of those results, the practical use of an electronic computer and color CRT display for No. 1 unit in the Fukushima No. 2 Nuclear Power Station (2F-1), Tokyo Electric Power Co., is described. Also, new centralized control panels containing such systems were used for the 1100 MWe BWR nuclear power plants now under construction, No. 3 unit of the Fukushima No. 2 Power Station and No. 1 unit of Kashiwazaki-Kariwa Nuclear Power Station (2F-3 and K-1, respectively). The display and monitoring system in 2F-1 plant is the first one in which a computer and color CRTs were practically employed for a BWR plant in Japan, and already in commercial operation. The advanced operating status monitoring system, to which the result of evaluation of the above system was added, was incorporated in the new centralized control panels presently under production for 2F-3 and K-1 plants. The outline of the system, the functions of an electronic computer, plant operating status monitor, surveillance test guide, the automation of plant operation and auxiliary operation guide are reported for these advanced monitoring system. It was confirmed that these systems are useful means to improve the man-machine communication for plant operation minitoring. (Wakatsuki, Y.)

  7. The System 80+ Standard Plant design control document. Volume 2

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers the following information of the CDM: (2.8) Steam and power conversion; (2.9) Radioactive waste management; (2.10) Tech Support Center; (2.11) Initial test program; (2.12) Human factors; and sections 3, 4, and 5. Also covered in this volume are parts 1--6 of section 1 (General Plant Description) of the ADM Design and Analysis

  8. Nuclear power plant personnel training process management system

    International Nuclear Information System (INIS)

    Arjona Vazquez, Orison; Venegas Bernal, Maria del Carmen; Armeteros Lopez, Ana L.

    1996-01-01

    The system in charge the management of the training process personnel from a nuclear power plant was designed taking into account all the requirements stated in the training guide for nuclear power plant personnel and their evaluation, which were prepared by the IAEA in 1995 in order to implement the SAT in the training programs for nuclear plant personnel. In the preparations of formats and elements that shape the system, account has been taken of the views expressed in such a guide, in some other bibliography that was consulted, and in the authors own opinion mainly with regard to those issues which the guide does not go deeper into

  9. Nuclear plant requirements during power system restoration

    International Nuclear Information System (INIS)

    Adamski, G.; Jenkins, R.; Gill, P.

    1995-01-01

    This paper is one of a series presented on behalf of the System Operation Subcommittee with the intent of focusing industry attention on power system restoration issues. This paper discusses a number of nuclear power plant requirements that require special attention during power system restoration

  10. Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants

    International Nuclear Information System (INIS)

    Christou, Anastasis; Antoniou, Chrystalla; Christodoulou, Charalampia; Hapeshi, Evroula; Stavrou, Ioannis; Michael, Costas; Fatta-Kassinos, Despo; Fotopoulos, Vasileios

    2016-01-01

    Pharmaceutically active compounds (PhACs) have been recently shown to exert phytotoxic effects. The present study explores the uptake, systemic translocation, and abiotic stress responses and detoxification mechanisms induced by the exposure of alfalfa plants grown in sand under greenhouse conditions to four common, individually applied PhACs (10 μg L −1 ) (diclofenac, sulfamethoxazole, trimethoprim, 17a-ethinylestradiol) and their mixture. Stress physiology markers (lipid peroxidation, proline, H 2 O 2 and NO content, antioxidant activity assays) and gene expression levels of key plant detoxification components (including glutathione S-transferases, GST7, GST17; superoxide dismutases, CuZnSOD, FeSOD; proton pump, H + -ATP, and cytochrome c oxidase, CytcOx), were evaluated. PhACs were detected in significantly higher concentrations in roots compared with leaves. Stress related effects, manifested via membrane lipid peroxidation and oxidative burst, were local (roots) rather than systemic (leaves), and exacerbated when the tested PhACs were applied in mixture. Systemic accumulation of H 2 O 2 in leaves suggests its involvement in signal transduction and detoxification responses. Increased antioxidant enzymatic activities, as well as upregulated transcript levels of GST7, GST17, H + -ATPase and CytcOx, propose their role in the detoxification of the selected PhACs in plants. The current findings provide novel biochemical and molecular evidence highlighting the studied PhACs as an emerging abiotic stress factor, and point the need for further research on wastewater flows under natural agricultural environments. - Highlights: • PhACs were detected in higher concentrations in roots compared with leaves. • Stress effects were local and exacerbated when PhACs were applied in mixture. • H 2 O 2 may be involved in signal transduction and detoxification responses. • GSTs, H + -ATPase and CytcOx contribute to the detoxification of PhACs in plants. • Results

  11. Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants

    Energy Technology Data Exchange (ETDEWEB)

    Christou, Anastasis [Agricultural Research Institute, P.O. Box 22016, 1516 Nicosia (Cyprus); Antoniou, Chrystalla; Christodoulou, Charalampia [Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos (Cyprus); Hapeshi, Evroula; Stavrou, Ioannis; Michael, Costas [NIREAS-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Fatta-Kassinos, Despo [Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); NIREAS-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Fotopoulos, Vasileios, E-mail: vassilis.fotopoulos@cut.ac.cy [Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos (Cyprus)

    2016-07-01

    Pharmaceutically active compounds (PhACs) have been recently shown to exert phytotoxic effects. The present study explores the uptake, systemic translocation, and abiotic stress responses and detoxification mechanisms induced by the exposure of alfalfa plants grown in sand under greenhouse conditions to four common, individually applied PhACs (10 μg L{sup −1}) (diclofenac, sulfamethoxazole, trimethoprim, 17a-ethinylestradiol) and their mixture. Stress physiology markers (lipid peroxidation, proline, H{sub 2}O{sub 2} and NO content, antioxidant activity assays) and gene expression levels of key plant detoxification components (including glutathione S-transferases, GST7, GST17; superoxide dismutases, CuZnSOD, FeSOD; proton pump, H{sup +}-ATP, and cytochrome c oxidase, CytcOx), were evaluated. PhACs were detected in significantly higher concentrations in roots compared with leaves. Stress related effects, manifested via membrane lipid peroxidation and oxidative burst, were local (roots) rather than systemic (leaves), and exacerbated when the tested PhACs were applied in mixture. Systemic accumulation of H{sub 2}O{sub 2} in leaves suggests its involvement in signal transduction and detoxification responses. Increased antioxidant enzymatic activities, as well as upregulated transcript levels of GST7, GST17, H{sup +}-ATPase and CytcOx, propose their role in the detoxification of the selected PhACs in plants. The current findings provide novel biochemical and molecular evidence highlighting the studied PhACs as an emerging abiotic stress factor, and point the need for further research on wastewater flows under natural agricultural environments. - Highlights: • PhACs were detected in higher concentrations in roots compared with leaves. • Stress effects were local and exacerbated when PhACs were applied in mixture. • H{sub 2}O{sub 2} may be involved in signal transduction and detoxification responses. • GSTs, H{sup +}-ATPase and CytcOx contribute to the

  12. HVAC systems and nuclear plant safety. Final report, May 1992

    International Nuclear Information System (INIS)

    1992-05-01

    The primary objective of this study was to provide perspective on the overall risk impact of heating, ventilating, and air conditioning (HVAC) system problems. Industry experience with HVAC system problems is documented and analyzed. In addition, the results of 10 plant-specific probabilistic risk assessments (PRA) were reviewed to determine the contribution of HVAC systems to the risk of core damage. The PRAs included in this review cover a broad range of plant types and operating conditions. The review found that the impact of HVAC systems on risk is plant specific. These results exhibit a broad range of frequencies for HVAC contribution to risk, and the percentage of total core damage due to HVAC problems also had a wide variability. Plant-specific differences in design, environment, operation, and maintenance are the primary factors in determining the risk contribution of HVAC systems. (author)

  13. Sea water pumping-up power plant system combined with nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Tanaka, Masayuki.

    1991-01-01

    It is difficult to find a site suitable to construction for a sea water pumping-up power plant at a place relatively near the electric power consumption area. Then, a nuclear power plant is set at the sea bottom or the land portion of a sea shore near the power consumption area. A cavity is excavated underground or at the bottom of the sea in the vicinity of the power plant to form a lower pond, and the bottom of the sea, as an upper pond and the lower pond are connected by a water pressure pipe and a water discharge pipe. A pump water turbine is disposed therebetween, to which electric power generator is connected. In addition, an ordinary or emergency cooling facility in the nuclear power plant is constituted such that sea water in the cavity is supplied by a sea water pump. Accordingly, the sea water pumping-up plant system in combination with the nuclear power plant is constituted with no injuring from salts to animals and plants on land in the suburbs of a large city. The cost for facilities for supplying power from a remote power plant to large city areas and power loss are decreased and stable electric power can be supplied. (N.H.)

  14. Induced Plant Accumulation of Lithium

    Directory of Open Access Journals (Sweden)

    Laurence Kavanagh

    2018-02-01

    Full Text Available Lithium’s (Li value has grown exponentially since the development of Li-ion batteries. It is usually accessed in one of two ways: hard rock mineral mining or extraction from mineral-rich brines. Both methods are expensive and require a rich source of Li. This paper examines the potential of agro-mining as an environmentally friendly, economically viable process for extracting Li from low grade ore. Agro-mining exploits an ability found in few plant species, to accumulate substantial amounts of metals in the above ground parts of the plant. Phyto-mined metals are then retrieved from the incinerated plants. Although the actual amount of metal collected from a crop may be low, the process has been shown to be profitable. We have investigated the suitability of several plant species including: Brassica napus and Helianthus annuus, as Li-accumulators under controlled conditions. Large plant trials were carried out with/without chelating agents to encourage Li accumulation. The question we sought to answer was, can any of the plant species investigated accumulate Li at levels high enough to justify using them to agro-mine Li. Results show maximum accumulated levels of >4000 mg/kg Li in some species. Our data suggests that agro-mining of Li is a potentially viable process.

  15. The Epiphytic Fungus Pseudozyma aphidis Induces Jasmonic Acid- and Salicylic Acid/Nonexpressor of PR1-Independent Local and Systemic Resistance1[C][W

    Science.gov (United States)

    Buxdorf, Kobi; Rahat, Ido; Gafni, Aviva; Levy, Maggie

    2013-01-01

    Pseudozyma spp. are yeast-like fungi, classified in the Ustilaginales, which are mostly epiphytic or saprophytic and are not pathogenic to plants. Several Pseudozyma species have been reported to exhibit biological activity against powdery mildews. However, previous studies have reported that Pseudozyma aphidis, which can colonize plant surfaces, is not associated with the ‎‎collapse of powdery ‎mildew colonies. In this report, we describe a novel P. aphidis strain and study its interactions with its plant host and the plant pathogen Botrytis cinerea. This isolate was found to secrete extracellular metabolites that inhibit various fungal pathogens in vitro and significantly reduce B. cinerea infection in vivo. Moreover, P. aphidis sensitized Arabidopsis (Arabidopsis thaliana) plants’ defense machinery via local and systemic induction of PATHOGENESIS-RELATED1 (PR1) and PLANT DEFENSIN1.2 (PDF1.2) expression. P. aphidis also reduced B. cinerea infection, locally and systemically, in Arabidopsis mutants impaired in jasmonic acid (JA) or salicylic acid (SA) signaling. Thus, in addition to direct inhibition, P. aphidis may inhibit B. cinerea infection via induced resistance in a manner independent of SA, JA, and Nonexpressor of PR1 (NPR1). P. aphidis primed the plant defense machinery and induced stronger activation of PDF1.2 after B. cinerea infection. Finally, P. aphidis fully or partially reconstituted PR1 and PDF1.2 expression in npr1-1 mutant and in plants with the SA hydroxylase NahG transgene, but not in a jasmonate resistant1-1 mutant, after B. cinerea infection, suggesting that P. aphidis can bypass the SA/NPR1, but not JA, pathway to activate PR genes. Thus, either partial gene activation is sufficient to induce resistance, or the resistance is not directed solely through PR1 and PDF1.2 but probably through other pathogen-resistance genes or pathways as well. PMID:23388119

  16. Protective effects of some medicinal plants from Lamiaceae family against beta-amyloid induced toxicity in PC12 cell

    Directory of Open Access Journals (Sweden)

    Balali P

    2012-10-01

    Full Text Available Background: Excessive accumulation of beta-amyliod peptide (Aβ, the major component of senile plaques in Alzheimer's disease (AD, causes neuronal cell death through induction of oxidative stress. Therefore, antioxidants may be of use in the treatment of AD. The medicinal plants from the Lamiaceae family have been widely used in Iranian traditional medicine. These plants contain compounds with antioxidant activity and some species in this family have been reported to have neuroprotective properties. In the present study, methanolic extract of seven plants from salvia and satureja species were evaluated for their protective effects against beta-amyloid induced neurotoxicity.Methods: Aerial parts of the plants were extracted with ethyl acetate and methanol, respectively, by percolation at room temperature and subsequently, methanolic extracts of the plants were prepared. PC12 cells were incubated with different concentrations of the extracts in culture medium 1h prior to incubation with Aβ. Cell toxicity was assessed 24h after addition of Aβ by MTT assay.Results: Satureja bachtiarica, Salvia officinalis and Salvia macrosiphon methanolic extracts exhibited high protective effects against Aβ induced toxicity (P<0.001. Protective effects of Satureja bachtiarica and Salvia officinalis were dose-dependent.Conclusion: The main constituents of these extracts are polyphenolic and flavonoid compounds such as rosmarinic acid, naringenin, apigenin and luteolin which have antioxidant properties and may have a role in neuroprotection. Based on neuroprotective effect of these plants against Aβ induced toxicity, we recommend greater attention to their use in the treatment of Alzheimer disease.

  17. A fault diagnosis system for nuclear power plant operation

    International Nuclear Information System (INIS)

    Ohga, Yukiharu; Hayashi, Yoshiharu; Yuchi, Hiroyuki; Utena, Shunsuke; Maeda, Akihiko

    2002-01-01

    A fault diagnosis system has been developed to support operators in nuclear power plants. In the system various methods are combined to get a diagnosis result which provides better detection sensitivity and result reliability. The system is composed of an anomaly detection part with diagnosis modules, an integration part which obtains the diagnosis result by combining results from each diagnosis module, and a prediction part with state prediction and estimation modules. For the anomaly detection part, three kinds of modules are prepared: plant signal processing, early fault detection and event identification modules. The plant signal processing module uses wavelet transform and chaos technologies as well as fast Fourier transform (FFT) to analyze vibration sensor signals and to detect signal anomaly. The early fault detection module uses the neural network model of a plant subprocess to estimate the process variable values assuming normal conditions, and to detect an anomaly by comparing the measured and estimated values. The event identification module identifies the kind of occurring event by using the neural network and knowledge processing. In the integration part the diagnosis is performed by using knowledge processing. The knowledge for diagnosis is structured based on the means-ends abstraction hierarchy to simplify knowledge input and maintenance. In the prediction part, the prediction module predicts the future changes of process variables and plant interlock statuses and the estimation module estimates the values of unmeasurable variables. A prototype system has been developed and the system performance was evaluated. The evaluation results show that the developed technologies are effective to improve the human-machine system for plant operation. (author)

  18. Instar-specific sensitivity of specialist Manduca sexta larvae to induced defences in their host plant Nicotiana attenuata

    NARCIS (Netherlands)

    Van Dam, N.M.; Hermenau, U.; Baldwin, I.T.

    2001-01-01

    1. The time delay associated with the activation of induced defences is thought to be a liability for this type of defence because it allows herbivores to remove biomass before the defence is fully induced. When defences are costly and plants grow with competitors, however, it may be more

  19. Systems for harvesting and handling cotton plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [Univ. of Arizona, Tucson, AZ (United States)

    1993-12-31

    In the warmer regions of the United States, cotton plant residue must be buried to prevent it from serving as an overwintering site for insect pests such as the pink bollworm. Most of the field operations used to bury the residue are high energy consumers and tend to degrade soil structure, thereby increasing the potential for erosion. The residue is of little value as a soil amendment and consequently is considered a negative value biomass. A commercial system to harvest cotton plant residue would be of both economic and environmental benefit to cotton producers. Research has been underway at the University of Arizona since the spring of 1991 to develop a commercially viable system for harvesting cotton plant residue. Equipment durability, degree of densification, energy required, cleanliness of the harvested material, and ease of product handling and transport are some of the performance variables which have been measured. Two systems have proven superior. In both, the plants are pulled from the ground using an implement developed specifically for the purpose. In one system, the stalks are baled using a large round baler, while in the other the stalks are chopped with a forage harvester, and then made into packages using a cotton module maker. Field capacities, energy requirements, package density and durability, and ease of handling with commercially available equipment have been measured for both systems. Selection of an optimum system for a specific operation depends upon end use of the product, and upon equipment availability.

  20. How to design electrical systems with central control capability for industrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Cigolini, S.; Galati, G.; Lionetto, P.F.; Stiz, M. (Siemens, Milan (Italy) Centro Elettrotecnico Sperimentale Italiano, Milan (Italy))

    1991-12-01

    The modern centralized control system, incorporating microprocessors, constitutes an extremely efficacious instrument for the management of an industrial plant's electrical system and provides the performance, reliability, flexibility and safety features required by today's technologically advanced plant processes. The use of intelligent centralized control systems, capable of autonomous operation and dialoguing with industrial plant electrical systems, simplifies the design of the overall plant. This paper reviews the main design criteria for the automated systems and gives examples of some suitable commercially available intelligent systems.