WorldWideScience

Sample records for individual wheat leaves

  1. Silica Deposition on the Leaves of Mir- and Earth-Grown Super Dwarf Wheat

    Science.gov (United States)

    Campbell, William F.; Bubenheim, David L.; Salisbury, Frank B.; Bingham, Gail E.; McManus, William R.; Biesinger, H. D.; Strickland, D. T.; Levinskikh, Maragarita; Sytchev, Vladimir N.; Podolsky, Igor

    2000-01-01

    Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis were used to investigate the nature of crystals deposited on leaves of Mir- and Earth-grown Super Dwarf wheat (Triticum aestivum L.) plants. Leaves from these plants exhibited dense and uniformly distributed crystals on leaf abaxial surfaces when viewed by SEM. Young leaves showed that crystals initially accumulated around the stomata on the adaxial surface, but became more dense and uniformly distributed as the leaves aged. EDX microanalyses of the Balkanine (a nutrient charged clinoptilolite zeolite) medium in which the wheat plants were grown showed an elemental pattern similar to that observed on the wheat leaves. The absence of N and P in the Balkanine suggests that they were completely utilized by the plants. Only Si and O were evident in the drying agent, Sorb-it-Silica (trademark), and perhaps could have accounted for some of the Si observed on the plant tissue.

  2. The influence of altered gravity on carbohydrate metabolism in excised wheat leaves

    Science.gov (United States)

    Obenland, D. M.; Brown, C. S.

    1994-01-01

    We developed a system to study the influence of altered gravity on carbohydrate metabolism in excised wheat leaves by means of clinorotation. The use of excised leaves in our clinostat studies offered a number of advantages over the use of whole plants, most important of which were minimization of exogenous mechanical stress and a greater amount of carbohydrate accumulation during the time of treatment. We found that horizontal clinorotation of excised wheat leaves resulted in significant reductions in the accumulation of fructose, sucrose, starch and fructan relative to control, vertically clinorotated leaves. Photosynthesis, dark respiration and the extractable activities of ADP glucose pyrophosphorylase (EC 2.7.7.27), sucrose phosphate synthase (EC 2.4.4.14), sucrose sucrose fructosyltransferase (EC 2.4.1.99), and fructan hydrolase (EC 3.2.1.80) were unchanged due to altered gravity treatment.

  3. [Investigation of the hyperspectral image characteristics of wheat leaves under different stress].

    Science.gov (United States)

    Zhang, Dong-Yan; Zhang, Jing-Cheng; Zhu, Da-Zhou; Wang, Ji-Hua; Luo, Ju-Hua; Zhao, Jin-Ling; Huang, Wen-Jiang

    2011-04-01

    The diagnosis of growing status and vigor of crops under various stresses is an important step in precision agriculture. Hyperspectral imaging technology has the advantage of providing both spectral and spatial information simultaneously, and has become a research hot spot. In the present study, auto-development of the pushbroom imaging spectrometer (PIS) was utilized to collect hyperspectral images of wheat leaves which suffer from shortage of nutrient, pest and disease stress. The hyperspectral cube was processed by the method of pixel average step by step to highlight the spectral characteristics, which facilitate the analysis based on the differences of leaves reflectance. The results showed that the hyperspectra of leaves from different layers can display nutrient differences, and recognize intuitively different stress extent by imaging figures. With the 2 nanometer spectral resolution and millimeter level spatial resolution of PIS, the number of disease spot can be qualitatively calculated when crop is infected with diseases, and, the area of plant disease could also be quantitatively analyzed; when crop suffered from pest and insect, the spectral information of leaves with single aphid and aphids can be detected by PIS, which provides a new means to quantitatively detect the aphid destroying of wheat leaf. The present study demonstrated that hyperspecral imaging has a great potential in quantitative and qualitative analysis of crop growth.

  4. The influence of nitrogen - urea fertilization to leaves and chloride chlorocholine on the accumulation Cs-137 in spring wheat crops

    International Nuclear Information System (INIS)

    Hrynczuk, B.; Weber, R.

    1998-01-01

    In pot experiments were studied effects of using nitrogen urea solution to leaves and use chloride chlorocholine on the Cs-137 accumulation in spring wheat crops. The Cs-137 contamination was conducted from soil and through leaves. It has been found that use nitrogen fertilization as urea solution spray and in addition use chloride chlorocholine caused an increase of Cs-137 concentration in grain from the contaminated soil. Accumulation of Cs-137 in spring wheat grain is 2-4 times higher coming from the contaminated leaves in blooming phase in comparison to the grain of plants contaminated in spread phase. The urea solution fertilization used on leaves and addition chloride chlorocholine did not influence the Cs-137 accumulation in grain when the plants were contaminated in the early growing phase. The Cs-137 contamination brought on the plants after using chloride chlorocholine in subsequent growing phases passed early into spring wheat grain. (author)

  5. Spatially resolved sulfur K-edge XANES spectroscopy of wheat leaves infected by Puccinia triticina

    International Nuclear Information System (INIS)

    Lichtenberg, H; Prange, A; Hormes, J; Steiner, U; Oerke, E-C

    2009-01-01

    In this study, wheat leaves infected with brown rust, a plant disease of serious economic concern caused by the fungus Puccinia triticina, were investigated using spatially resolved XANES (X-ray Absorption Near Edge Structure) spectroscopy at the sulfur K-absorption edge.

  6. Spatially resolved sulfur K-edge XANES spectroscopy of wheat leaves infected by Puccinia triticina

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, H; Prange, A; Hormes, J [CAMD, Louisiana State University, 6980 Jefferson Hwy, Baton Rouge, LA 70806 (United States); Steiner, U; Oerke, E-C, E-mail: lichtenberg@lsu.ed [INRES-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn (Germany)

    2009-11-15

    In this study, wheat leaves infected with brown rust, a plant disease of serious economic concern caused by the fungus Puccinia triticina, were investigated using spatially resolved XANES (X-ray Absorption Near Edge Structure) spectroscopy at the sulfur K-absorption edge.

  7. Detection of Mycosphaerella graminicola in Wheat Leaves by a Microsatellite Dinucleotide Specific-Primer

    Directory of Open Access Journals (Sweden)

    Joseph-Alexander Verreet

    2011-01-01

    Full Text Available Early detection of infection is very important for efficient management of Mycosphaerella graminicola leaf blotch. To monitor and quantify the occurrence of this fungus during the growing season, a diagnostic method based on real-time PCR was developed. Standard and real-time PCR assays were developed using SYBR Green chemistry to quantify M. graminicola in vitro or in wheat samples. Microsatellite dinucleotide specific-primers were designed based on microsatellite repeats of sequences present in the genome of M. graminicola. Specificity was checked by analyzing DNA of 55 M. graminicola isolates obtained from different geographical origins. The method appears to be highly specific for detecting M. graminicola; no fluorescent signals were observed from 14 other closely related taxa. Primer (CT 7 G amplified a specific amplicon of 570 bp from all M. graminicola isolates. The primers did not amplify DNA extracted from 14 other fungal species. The approximate melting temperature (Tm of the (CT 7 G primer was 84.2 °C. The detection limit of the real-time PCR assay with the primer sets (CT 7 G is 10 fg/25 µL, as compared to 10 pg/25 µL using conventional PCR technology. From symptomless leaves, a PCR fragment could be generated two days after inoculation. Both conventional and real-time PCR could successfully detect the fungus from artificially inoculated wheat leaves. However, real-time PCR appeared much more sensitive than conventional PCR. The developed quantitative real-time PCR method proved to be rapid, sensitive, specific, cost-effective and reliable for the identification and quantification of M. graminicola in wheat.

  8. Accumulation of Cs, Sr into leaves and grain of winter wheat under act of N, Zn, Li, Na

    International Nuclear Information System (INIS)

    Grodzinsky, D.; Tkatchuk, K.; Zhmurko, N.; Bogdan, T.; Guralchuk, Zh.

    1998-01-01

    The experiments were carried out on cv Lutencens 7 winter wheat grown on grey forest soil. In order to study the influence of nitrogen on Cs and Sr accumulation, a background of P60 K60 added in autumn different doses of nitrogen (30, 60, 120 kg/ha) were applied in spring. The influence of micronutrients on Cs and Sr accumulation was studied by adding 3 kg/ha Zn and 2 kg/ha Li to the soil under ploughing on background of N60 P60 K60. Besides the foliar application with 0.05% Na 2 SO 4 was carried out. Cation content (Cs, Sn, Zn, Li, Na) in soil and plant organs was determined by atomic absorption spectrophotometry. The Cs, Sr content in control plant leaves made up 15.0 and 21.0 mg per g of dry matter at the early stages of plant development. As the plants aged, the content of those elements in the leaves decreased strongly (3-4 times). At early stages of plant development, nitrogen caused an 8.9-11% increase in the Cs content of the leaves. At the stages of heading to grain filling, the Cs content increase was only observed at a high nitrogen dose, whereas low nitrogen doses had no effected on Cs accumulation in leaves. In should be noted that nitrogen (N60 and N120) decreased the Cs content in grain by 32-33%. As for the Sr content of grain, this was 3 to 4-fold less than that of Cs. Nitrogen had no effected on the Sr content of grain. Zn and Li addition to soil as well as foliar nutrition with Na had a different effect on the Cs and Sr content of winter wheat leaves and grain. Addition of Li decreased the Cs and Sr content of old leaves by 13% and 25% respectively. Addition of Zn and Na decreased the Sr content of old leaves but had no effect on the Cs content. Zn, Na and Li reduced the Sr content in grain also, viz. by 16,11 and 7% respectively. Thus the research has demonstrated the possibility of regulating Cs and Sr accumulation in the above-ground organs of winter wheat plants

  9. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering.

    Directory of Open Access Journals (Sweden)

    Andrew Chen

    Full Text Available Most of the natural variation in wheat vernalization response is determined by allelic differences in the MADS-box transcription factor VERNALIZATION1 (VRN1. Extended exposures to low temperatures during the winter (vernalization induce VRN1 expression and promote the transition of the apical meristem to the reproductive phase. In contrast to its Arabidopsis homolog (APETALA1, which is mainly expressed in the apical meristem, VRN1 is also expressed at high levels in the leaves, but its function in this tissue is not well understood. Using tetraploid wheat lines with truncation mutations in the two homoeologous copies of VRN1 (henceforth vrn1-null mutants, we demonstrate that a central role of VRN1 in the leaves is to maintain low transcript levels of the VRN2 flowering repressor after vernalization. Transcript levels of VRN2 were gradually down-regulated during vernalization in both mutant and wild-type genotypes, but were up-regulated after vernalization only in the vrn1-null mutants. The up-regulation of VRN2 delayed flowering by repressing the transcription of FT, a flowering-integrator gene that encodes a mobile protein that is transported from the leaves to the apical meristem to induce flowering. The role of VRN2 in the delayed flowering of the vrn1-null mutant was confirmed using double vrn1-vrn2-null mutants, which flowered two months earlier than the vrn1-null mutants. Both mutants produced normal flowers and seeds demonstrating that VRN1 is not essential for wheat flowering, which contradicts current flowering models. This result does not diminish the importance of VRN1 in the seasonal regulation of wheat flowering. The up-regulation of VRN1 during winter is required to maintain low transcript levels of VRN2, accelerate the induction of FT in the leaves, and regulate a timely flowering in the spring. Our results also demonstrate the existence of redundant wheat flowering genes that may provide new targets for engineering wheat

  10. Stimulation effect of synthetic cytokinins on the uptake and incorporation of nitrogen-15-labelled ammonium nitrate and urea in wheat leaves

    International Nuclear Information System (INIS)

    Iglewski, S.M.; Szarvas, T.; Pozsar, B.I.

    1977-01-01

    The turnover of different labelled nitrogen sources in wheat leaves has been investigated using the isotopic tracer technique. The 15 N at.% was determined in free ammonium ion, in the nitrate and the nitrite levels, and also in the non-disintegrated urea. The accumulation and the incorporation of stable nitrogen was measured in the TCA insoluble protein fraction. According to the experimental data the intensity of incorporation of urea nitrogen is relatively higher than that of the different inorganic compounds. The utilization of ammonium ion was 76% compared with the urea, whereas that of the nitrate nitrogen was 60% in the wheat leaves. The incorporation rate of the two nitrogen atoms from ammonium nitrate was 32% lower than that of the urea nitrogen, in the leaf protein of Bezostaia-1 wheat variety. The turnover of urea through the transamination was very rapid, the amination with ammonium ion was slower, and the first phase of the nitrate reduction was relatively more retarded than the nitrite reduction. The endogenous cytokinin-like biological activity and some synthetic cytokinins (kinetin, benzyladenine) have a remarkably stimulating effect on the incorporation of the different 15 N-labelled nitrogen sources into the leaf protein fraction. (author)

  11. Changes of the laser-induced blue, green and red fluorescence signatures during greening of etiolated leaves of wheat

    International Nuclear Information System (INIS)

    Stober, F.; Lichtenthaler, H.K.

    1992-01-01

    The UV-laser-induced blue, green and red fluorescence-emission spectra were used to characterize the pigment status of etiolated leaves of wheat (Triticum aestivum L.) during a 48 h greening period under white light conditions. Upon UV-light excitation (337 nm) leaves not only show a fluorescence emission in the red spectral region between 650 and 800nm (chlorophyll fluorescence with maxima near 690nm and 735 nm), but also in the blue and green regions between 400 to 570 nm with maxima or shoulders near 450 nm (blue) and 530 nm (green). During greening of etiolated leaves the chlorophyll-fluorescence ratio F690/F735 strongly correlated with the total chlorophyll content and the ratio of the chlorophylls to the carotenoids (a+b/x+c). The ratio of the blue to the green fluorescence F450/F530 was also correlated with the total chlorophyll content and the ratio of chlorophylls to total carotenoids (a+b/x+c). Consequently, there also existed a correlation between the chlorophyll-fluorescence ratio F690/F735 and the ratio of the blue to green fluorescence F450/F530. In contrast, the ratios of the blue to red fluorescences F450/F690 and F450/F735 did not show clear relations to the pigment content of the investigated plants. The particular shape of the UV-laser-induced-fluorescence emission spectra of wheat leaves as well as the dependencies of the fluorescence ratios on the pigment content are due to a partial and differential reabsorption of the emitted fluorescences by the photosynthetic pigments

  12. Compositional Study for Improving Wheat Flour with Functional Ingredients

    Directory of Open Access Journals (Sweden)

    Livia Apostol

    2015-11-01

    Full Text Available Helianthus tuberosus L. is cultivated widely across for its edible tuber. As a source of inulin with aperient, cholagogue and tonic effects, its tubers have been used for the treatment of diabetes. Also, the leaves of Helianthus tuberosus L. show antipyretic, analgesic effects and are therefore used for the treatment of bone fracture, skin wound and pain. The main aim of this study is to establish the optimum dose from rheological and nutritional point of view of Helianthus tuberosus L. tuber flour and leaves flour used as functional ingredient in bakery products industry. The types of mixtures of flours used in this study was: P1–100% wheat flour; P2-93% wheat flour + 7% Helianthus tuberosus (5% tuber + 2% leaves; P3-92% wheat flour + 8% Helianthus tuberosus (5% tuber + 3% leaves; P4- 90% wheat flour + 10%  Helianthus tuberosus (5% tuber + 5% leaves; P5 -100% Helianthus tuber; P6- Helianthus leaves. The potential functional of wheat flour enriched with the Helianthus tuberosus, in different proportions, was evaluated concerning chemical composition and rheological behaviour of the doughs. Adding of the Helianthus tuberosus L. tuber and leaves provoked an effect increasing the levels of inulin, minerals and fiber in wheat flour. The rheological properties of dough showed that P2, kept the rheological parameters for the technological behavior in order to obtain an acceptable quality of the bakery products. 

  13. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum.

    Directory of Open Access Journals (Sweden)

    Hui Liu

    Full Text Available To determine the proteomic-level responses of drought tolerant wild wheat (Triticum boeoticum, physiological and comparative proteomic analyses were conducted using the roots and the leaves of control and short term drought-stressed plants. Drought stress was imposed by transferring hydroponically grown seedlings at the 3-leaf stage into 1/2 Hoagland solution containing 20% PEG-6000 for 48 h. Root and leaf samples were separately collected at 0 (control, 24, and 48 h of drought treatment for analysis. Physiological analysis indicated that abscisic acid (ABA level was greatly increased in the drought-treated plants, but the increase was greater and more rapid in the leaves than in the roots. The net photosynthetic rate of the wild wheat leaves was significantly decreased under short-term drought stress. The deleterious effects of drought on the studied traits mainly targeted photosynthesis. Comparative proteomic analysis identified 98 and 85 differently changed protein spots (DEPs (corresponding to 87 and 80 unique proteins, respectively in the leaves and the roots, respectively, with only 6 mutual unique proteins in the both organs. An impressive 86% of the DEPs were implicated in detoxification and defense, carbon metabolism, amino acid and nitrogen metabolism, proteins metabolism, chaperones, transcription and translation, photosynthesis, nucleotide metabolism, and signal transduction. Further analysis revealed some mutual and tissue-specific responses to short-term drought in the leaves and the roots. The differences of drought-response between the roots and the leaves mainly included that signal sensing and transduction-associated proteins were greatly up-regulated in the roots. Photosynthesis and carbon fixation ability were decreased in the leaves. Glycolysis was down-regulated but PPP pathway enhanced in the roots, resulting in occurrence of complex changes in energy metabolism and establishment of a new homeostasis. Protein metabolism

  14. Carpel size, grain filling, and morphology determine individual grain weight in wheat

    OpenAIRE

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L.

    2015-01-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)?spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulat...

  15. Comparative studies about the influence of salicylic and acetylsalicilic acid on content of assimilatory pigments in the primary leaves of wheat (Triticum aestivum plantlets

    Directory of Open Access Journals (Sweden)

    Cornelia PURCAREA

    2007-05-01

    Full Text Available Salicylic acid (SA and some of its derivates are phenolic compounds recently recognized as plant growth regulators involved in many physiological processes including photosynthesis. One of the important derivates of Salicylic Acid is the Acetylsalicylic Acid. In the present investigation we studied the influence of exogenous Acetylsalicylic and Salicylic acid with different concentrations on the assimilatory pigments contents of the primary leaves of wheat seedlings in comparison with the same parameters of the control lots which were treated with water. The wheat seedlings were soaked for 6 hours in 0.01mM; 0.1mM; 0.5mM and 1 mM SA or ASA solutions and in water for the control lot, germinated for 7 days on filter paper moistened with water. After that, we planted the plantlets in sand and sprayed their coleoptiles and primary leaves, each day for an additional 7 days, with water. In the 14th days of germination we determined the content of assimilatory pigments extracted with N,N-dimethylformamide (DMF. The results showed that exogenous 0.01 mM, 0.1mM, 0.5 mM or 1.0 mM SA solution treatments cause more significant increases in the assimilatory pigments contents in leaves of wheat plantlets than treatments with ASA solutions of the same concentrations do.

  16. Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Fernández, Juan Olivares; Rosenqvist, Eva

    2014-01-01

    The genotypic response of wheat cultivars as affected by two methods of heat stress treatment (treatment of intact plants in growth chambers versus treatment of detached leaves in test tubes) in a temperature controlled water bath were compared to investigate how such different methods of heat...... to high temperatures. Further, the results suggest that genetic factors associated with cultivar differences are different for the two methods of heat treatment........ The responses of the same cultivars to heat stress were compared between the two methods of heat treatment. The results showed that in detached leaves, all of the fluorescence parameters remained almost unaffected in control (20°C at all durations tested), indicating that the detachment itself did not affect...

  17. Part-time sick leave as a treatment method for individuals with musculoskeletal disorders.

    Science.gov (United States)

    Andrén, Daniela; Svensson, Mikael

    2012-09-01

    There is increasing evidence that staying active is an important part of a recovery process for individuals on sick leave due to musculoskeletal disorders (MSDs). It has been suggested that using part-time sick-leave rather than full-time sick leave will enhance the possibility of full recovery to the workforce, and several countries actively favor this policy. The aim of this paper is to examine if it is beneficial for individuals on sick leave due to MSDs to be on part-time sick leave compared to full-time sick leave. A sample of 1,170 employees from the RFV-LS (register) database of the Social Insurance Agency of Sweden is used. The effect of being on part-time sick leave compared to full-time sick leave is estimated for the probability of returning to work with full recovery of lost work capacity. A two-stage recursive bivariate probit model is used to deal with the endogeneity problem. The results indicate that employees assigned to part-time sick leave do recover to full work capacity with a higher probability than those assigned to full-time sick leave. The average treatment effect of part-time sick leave is 25 percentage points. Considering that part-time sick leave may also be less expensive than assigning individuals to full-time sick leave, this would imply efficiency improvements from assigning individuals, when possible, to part-time sick leave.

  18. Metabolite Profiles in Leaves and Spikes of Wheat under Constrasting Field-growing Environments Are Derived from Hyperspectral Readings

    Science.gov (United States)

    Vergara-Diaz, O.; Obata, T., Sr.; Kefauver, S. C.; Fernie, A., Sr.; Araus, J. L.

    2017-12-01

    The advance on metabolomics has led to a better understanding of plant-environment interactions and how the levels of specific metabolites may be used as indicators of plant performance. In cereals, the accumulation of certain metabolites -such as proline and sugars- has been related with water stress and drought tolerance/susceptibility, even revealing significant relationships with yield. On the other hand, recent studies relating plant biochemicals with spectral reflectance open the door to a deep assessment of plant status which would have implications on plant breeding and ecosystem studies. In this study, we investigated in durum wheat the relationship between the reflectance in the visible and near infrared regions (400-2500 µm wavelength) of the spectrum of the flag leaf, the ears and canopy levels with their respective metabolite profiles as well as its relationship with yield. To this aim, five durum wheat genotypes grown in four environments in the field were examined. PLS regression models indicated a strong determination of yield by using the spectrum of either leaves, ears and canopy. Additionally, grain yield was strongly predicted by the metabolite content of leaves and ears with multivariate regression analysis. Further preliminary results showed a promising performance of hyperspectral remote-proximal sensing for the calibration of plant metabolite content.

  19. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves.

    Science.gov (United States)

    Rosati, A; Dejong, T M

    2003-06-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, 'daily' photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthesis was estimated from the photosynthetic responses to photosynthetically active radiation (PAR) and from the incident PAR measured on individual leaves during clear and overcast days. Plants were grown with either abundant or scarce N fertilization. Both net and gross daily photosynthesis of leaves were linearly related to daily incident PAR exposure of individual leaves, which implies constant PhRUE over a day throughout the canopy. The slope of these relationships (i.e. PhRUE) increased with N fertilization. When the relationship was calculated for hourly instead of daily periods, the regressions were curvilinear, implying that PhRUE changed with time of the day and incident radiation. Thus, linearity (i.e. constant PhRUE) was achieved only when data were integrated over the entire day. Using average PAR in place of instantaneous incident PAR increased the slope of the relationship between daily photosynthesis and incident PAR of individual leaves, and the regression became curvilinear. The slope of the relationship between daily gross photosynthesis and incident PAR of individual leaves increased for an overcast compared with a clear day, but the slope remained constant for net photosynthesis. This suggests that net PhRUE of all leaves (and thus of the whole canopy) may be constant when integrated over a day, not only when the incident PAR changes with depth in the canopy, but also when it varies on the same leaf owing to changes in daily incident PAR above the canopy. The

  20. Spatiotemporal Variation and Networks in the Mycobiome of the Wheat Canopy

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Jørgensen, Lise Nistrup; Nicolaisen, Mogens

    2017-01-01

    the wheat mycobiome by using metabarcoding of the fungal ITS1 region. Leaf samples were taken from four cultivars grown at two locations in Denmark. Samples were taken from the three uppermost leaves and at three growth stages to better understand spatiotemporal variation of the mycobiome. Analysis of read...... was relatively constant between individual samples, suggesting that fast growing fungi rapidly occupy empty space in the phyllosphere....

  1. Biochemical and Physiological Studies on the Effects of Senescence Leaves of Populus deltoides on Triticum vulgare

    Directory of Open Access Journals (Sweden)

    Tejinder Pal Khaket

    2014-01-01

    Full Text Available Triticum vulgare (Wheat based products are the major dietary source of food in developing countries. In India, it grows in association with boundary plantations of Populus deltoids (poplar. During winter, poplar enters in dormancy which cause a heavy leaf fall at the time of wheat seed germination. Large number of poplar senescence leaves may adversely affect the wheat. Therefore, the present study was performed to examine the effect of senescence poplar leaves on wheat germ and some other biochemical parameters. Seed’s germination rate was determined by measuring root and shoot lengths, percent germination, germination index, and inhibition percentage. Biochemical parameters, namely, pigment, carbohydrate, protein, and phenol content, were estimated. Activities of catalase and polyphenol oxidase which are stress marker enzymes were also measured. Results revealed that germination and other biochemical parameters of wheat were severely affected by senescence poplar leaves even at very low concentration. So, intercropping of poplar along with wheat may be chosen carefully as wheat is the major dietary staple.

  2. Anatomical Peculiarities in Wheat (Triticum Aestivum L.) varieties Under Copper Stress

    International Nuclear Information System (INIS)

    Atabayeva, S.; Nurmahanova, A.; Akhmetova, A.; Narmuratova, M.; Asrandina, S.; Alybayeva, R.

    2016-01-01

    The effect of different concentrations (0.25 mM, 0.5 mM) of Cu/sup 2+/ on anatomical parameters of leaves and roots was investigated in hydroponically grown five wheat (Triticum aestivum L.) varieties (Kazakhstanskaya rannaya, Kazakhstanskaya-3, Melturn, Kaiyr and Shagala). The results showed that wheat varieties exposed to 0.5 mM Cu/sup 2+/ exhibited significant alterations in anatomical structure of leaves and roots. The thickness of the upper and lower epidermis, diameter of vascular bundles of leaves of almost all varieties showed a tendency to decrease under copper stress. Our experiments showed an activation of defense responses in the root anatomical structure like exodermis thickening in some varieties in the presence of copper in growth medium as compared to the control. This indicates that copper ions increase the thickness of exodermis, which reduce the absorption of toxic elements by root cells. Copper stress caused a decrease in the thickness of the lower and upper epidermis to varying degrees and reduction in the diameter of vascular bundles of wheat leaves. Copper stress caused a reduction in endodermis thickness thereby decreasing the diameter of the central cylinder of wheat roots. (author)

  3. Dryland wheat domestication changed the development of aboveground architecture for a well-structured canopy.

    Directory of Open Access Journals (Sweden)

    Pu-Fang Li

    Full Text Available We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUE(i. Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.

  4. Effect of fortification with parsley (Petroselinum crispum Mill.) leaves on the nutraceutical and nutritional quality of wheat pasta.

    Science.gov (United States)

    Sęczyk, Łukasz; Świeca, Michał; Gawlik-Dziki, Urszula; Luty, Marcin; Czyż, Jarosław

    2016-01-01

    This study examines the nutraceutical (phenolics content, antioxidant activity, biological activity) and nutritional potential (starch and protein digestibility) of wheat pasta supplemented with 1-4% of powdered parsley leaves. Compared to the control, the potentially bioaccessible fraction of pasta fortified with 4% parsley leaves was characterized by 67% increased phenolics content, a 146% higher antiradical ability and 220% additional reducing power. Elevation of these parameters in fortified pasta was accompanied by an augmentation of its antiproliferative effect on carcinoma cells, which confirms their biological relevance. Supplementation of pasta had no significant effect on starch digestibility, while negatively affecting protein digestibility (a reduction by about 20% for pasta with a 4% supplement). Electrophoretic and chromatographic analyses indicated the presence of phenolic interactions with proteins and/or digestive enzymes. Fortification improved the nutraceutical and nutritional potential of the studied pasta; however, the final effect is made by many factors, including phenolics-food matrix interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The production of Pleurotus sajor-caju in peach palm leaves (Bactris gasipaes and evaluation of its use to enrich wheat flour

    Directory of Open Access Journals (Sweden)

    Paula Fernanda Bomfim Oliveira Cogorni

    2014-06-01

    Full Text Available The aim of this study was to evaluate of Pleurotus sajor-caju production in peach palm leaves and the addition of different fractions of mushroom powder to wheat flour to increase its nutritional value without changing its characteristics. The best yield (48.4%, biologic efficiency (4.5%, and Pr (0.36 g/day values were obtained using 20% inoculum fraction and 10% rice bran fraction. The Pleurotus sajor-caju fruiting body cultivated under these conditions had the following composition in 100 g: 29.91 g (carbohydrates, 42.92 g (proteins, 1.24 g (lipids, 15.93 g (fibers, 7.42 g (ashes, 1.6 g (phosphorus, 2.7 g (potassium, 8.73 mg (iron, 23.75 mg (sodium, 0.34 mg (thiamine, and 0.57 mg (riboflavin. The wheat flour with mushroom powder had reduced sugar content, but it did not have increased fat content. The fiber, protein, phosphorus, potassium, iron, and riboflavin contents were increased mainly when 10% mushroom powder was added to the wheat flour. Furthermore, this flour does not undergo drastic alterations in its physicochemical characteristics such as in moisture, wet gluten, color, and falling number.

  6. Part-time sick leave as a treatment method for individuals with musculoskeletal disorders

    OpenAIRE

    Andrén, Daniela; Svensson, Mikael

    2009-01-01

    There is increasing evidence that staying active is an important part of a recovery process for individuals on sick leave due to musculoskeletal disorders (MSDs). It has been suggested that using part-time sick-leave rather than full-time sick leave will enhance the possibility of full recovery to the workforce, and several countries actively favor this policy. However, to date only few studies have estimated the effect of using part-time sick leave in contrast to full-time sick leave. In thi...

  7. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress.

    Science.gov (United States)

    Ozfidan-Konakci, Ceyda; Yildiztugay, Evren; Bahtiyar, Mustafa; Kucukoduk, Mustafa

    2018-07-15

    The using of bio-stimulant in plants grown under stress conditions for enhancing nutrition efficiency and crop quality traits is an effective approach. One of the bio-stimulants, humus material, is defined as humic acid (HA). HA application as a promotion of plant growth to plants grown in the heavy metals-contaminated soils has promised hope in terms of effects on plants but the its limiting effect is the application dose. Therefore, the wheat seedlings were grown in hydroponic culture for 21 d and the various concentrations of humic acid (HA; 750 or 1500 mg L -1 ) were treated alone or in combination with cadmium (Cd) stress (100 or 200 μM) for 7 d. The results showed that after Cd stress treatment, water content (RWC), osmotic potential (Ψ Π ) and chlorophyll fluorescence parameters decreased and proline content (Pro) increased for 7 d. In spite of activated peroxidase (POX) and ascorbate peroxidase (APX), stress induced the toxic levels of hydrogen peroxide (H 2 O 2 ) accumulation. Cd stress triggered lipid peroxidation (TBARS content). HA application successfully eliminated the negative effects of stress on RWC, Ψ Π and photosynthetic parameters. In the presence of HA under stress, the increased activation of superoxide dismutase (SOD), catalase (CAT) and NADPH-oxidase (NOX) enzymes and ascorbate, glutathione and GSH/GSSG ratio observed. Only 750 mg L -1 HA under stress conditions induced the activities of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), and dehydroascorbate (DHA) content. After the combined application of HA and Cd stress, the low contents of H 2 O 2 and TBARS maintained in wheat leaves. Hence, HA successfully eliminated the toxicity of Cd stress by modulating the water status, photosynthetic apparatus and antioxidant activity in wheat leaves. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    African Journals Online (AJOL)

    Administrator

    2007-02-19

    Feb 19, 2007 ... Key words: Agaricus bisporus, wheat straw, waste tea leaves, wheat chaff, pin head formation, compost temperature .... kg then filled into plastic bags as 7 kg wet weight basis. ..... substrate environment for mushroom growing.

  9. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    Science.gov (United States)

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Alterations in wheat pollen lipidome during high day and night temperature stress.

    Science.gov (United States)

    Narayanan, Sruthi; Prasad, P V Vara; Welti, Ruth

    2018-01-26

    Understanding the adaptive changes in wheat pollen lipidome under high temperature (HT) stress is critical to improving seed set and developing HT tolerant wheat varieties. We measured 89 pollen lipid species under optimum and high day and/or night temperatures using electrospray ionization-tandem mass spectrometry in wheat plants. The pollen lipidome had a distinct composition compared with that of leaves. Unlike in leaves, 34:3 and 36:6 species dominated the composition of extraplastidic phospholipids in pollen under optimum and HT conditions. The most HT-responsive lipids were extraplastidic phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol, phosphatidic acid, and phosphatidylserine. The unsaturation levels of the extraplastidic phospholipids decreased through the decreases in the levels of 18:3 and increases in the levels of 16:0, 18:0, 18:1, and 18:2 acyl chains. PC and PE were negatively correlated. Higher PC:PE at HT indicated possible PE-to-PC conversion, lower PE formation, or increased PE degradation, relative to PC. Correlation analysis revealed lipids experiencing coordinated metabolism under HT and confirmed the HT responsiveness of extraplastidic phospholipids. Comparison of the present results on wheat pollen with results of our previous research on wheat leaves suggests that similar lipid changes contribute to HT adaptation in both leaves and pollen, though the lipidomes have inherently distinct compositions. © 2018 John Wiley & Sons Ltd.

  11. Induced spherococcoid hard wheat

    International Nuclear Information System (INIS)

    Yanev, Sh.

    1981-01-01

    A mutant has been obtained - a spheroccocoid line -through irradiation of hard wheat seed with fast neutrons. It is distinguished by semispherical glumes and smaller grain; the plants have low stem with erect leaves but with shorter spikes and with lesser number of spikelets than those of the initial cultivar. Good productive tillering and resistance to lodging contributed to 23.5% higher yield. The line was superior to the standard and the initial cultivars by 14.2% as regards protein content, and by up to 22.8% - as to flour gluten. It has been successfully used in hybridization producing high-yielding hard wheat lines resistant to lodging, with good technological and other indicators. The possibility stated is of obtaining a spherococcoid mutant in tetraploid (hard) wheat out of the D-genome as well as its being suited to hard wheat breeding to enhance protein content, resistance to lodging, etc. (author)

  12. In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation

    Directory of Open Access Journals (Sweden)

    Chunlei Xia

    2015-08-01

    Full Text Available In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions.

  13. Genome wide identification of wheat and Brachypodium type one protein phosphatases and functional characterization of durum wheat TdPP1a.

    Directory of Open Access Journals (Sweden)

    Mariem Bradai

    Full Text Available Reversible phosphorylation is an essential mechanism regulating signal transduction during development and environmental stress responses. An important number of dephosphorylation events in the cell are catalyzed by type one protein phosphatases (PP1, which catalytic activity is driven by the binding of regulatory proteins that control their substrate specificity or subcellular localization. Plants harbor several PP1 isoforms accounting for large functional redundancies. While animal PP1s were reported to play relevant roles in controlling multiple cellular processes, plant orthologs remain poorly studied. To decipher the role of plant PP1s, we compared PP1 genes from three monocot species, Brachypodium, common wheat and rice at the genomic and transcriptomic levels. To gain more insight into the wheat PP1 proteins, we identified and characterized TdPP1a, the first wheat type one protein phosphatase from a Tunisian durum wheat variety Oum Rabiaa3. TdPP1a is highly conserved in sequence and structure when compared to mammalian, yeast and other plant PP1s. We demonstrate that TdPP1a is an active, metallo-dependent phosphatase in vitro and is able to interact with AtI2, a typical regulator of PP1 functions. Also, TdPP1a is capable to complement the heat stress sensitivity of the yeast mutant indicating that TdPP1a is functional also in vivo. Moreover, transient expression of TdPP1a::GFP in tobacco leaves revealed that it is ubiquitously distributed within the cell, with a strong accumulation in the nucleus. Finally, transcriptional analyses showed similar expression levels in roots and leaves of durum wheat seedlings. Interestingly, the expression in leaves is significantly induced following salinity stress, suggesting a potential role of TdPP1a in wheat salt stress response.

  14. Application of Near-Infrared Spectroscopy to Quantitatively Determine Relative Content of Puccnia striiformis f. sp. tritici DNA in Wheat Leaves in Incubation Period

    Directory of Open Access Journals (Sweden)

    Yaqiong Zhao

    2017-01-01

    Full Text Available Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst is a devastating wheat disease worldwide. Potential application of near-infrared spectroscopy (NIRS in detection of pathogen amounts in latently Pst-infected wheat leaves was investigated for disease prediction and control. A total of 300 near-infrared spectra were acquired from the Pst-infected leaf samples in an incubation period, and relative contents of Pst DNA in the samples were obtained using duplex TaqMan real-time PCR arrays. Determination models of the relative contents of Pst DNA in the samples were built using quantitative partial least squares (QPLS, support vector regression (SVR, and a method integrated with QPLS and SVR. The results showed that the kQPLS-SVR model built with a ratio of training set to testing set equal to 3 : 1 based on the original spectra, when the number of the randomly selected wavelength points was 700, the number of principal components was 8, and the number of the built QPLS models was 5, was the best. The results indicated that quantitative detection of Pst DNA in leaves in the incubation period could be implemented using NIRS. A novel method for determination of latent infection levels of Pst and early detection of stripe rust was provided.

  15. Pilot Study: Comparison of Sourdough Wheat Bread and Yeast-Fermented Wheat Bread in Individuals with Wheat Sensitivity and Irritable Bowel Syndrome

    OpenAIRE

    Laatikainen, Reijo; Koskenpato, Jari; Hongisto, Sanna-Maria; Loponen, Jussi; Poussa, Tuija; Huang, Xin; Sontag-Strohm, Tuula; Salmenkari, Hanne; Korpela, Riitta

    2017-01-01

    Many patients suspect wheat as being a major trigger of their irritable bowel syndrome (IBS) symptoms. Our aim was to evaluate whether sourdough wheat bread baked without baking improvers and using a long dough fermentation time (>12 h), would result in lower quantities of alpha-amylase/trypsin inhibitors (ATIs) and Fermentable, Oligo-, Di-, Mono-saccharides and Polyols (FODMAPs), and would be better tolerated than yeast-fermented wheat bread for subjects with IBS who have a poor subjectiv...

  16. Reflectance measurements of leaves for detecting visible and non-visible ozon damage to crops

    International Nuclear Information System (INIS)

    Kraft, M.; Weigel, H.-J.; Mejer, G.-J.; Brandes, F.

    1996-01-01

    Spring wheat (Triticum aestivum cv. Turbo), white clover (Trifolium repens cv. Karina) and maize (Zea mays cv. Bonny) plants were exposed for 20–30 days in open top chambers to charcoal-filtered air (CF, control) and CF air supplied with O 3 for 8–12 h/per day in the concentration range of 180–240 μg O 3 /m 3 (8–12 h/day treatment mean). At the end of the O 3 treatment spectral reflectance measurements were made on single leaves of all 3 species and on canopies of wheat and clover using a CCD (Charged Coupled Device) camera and wavelength filters with 11 wavelength bands ranging from 450 nm to 950 nm. Different vegetation indices such as the normalized difference vegetation index (NDVI) and the ≪main inflection point≫ (MIP) were calculated. Based on these results it was shown that visible O 3 damages were correlated to the spectral reflectance changes: Both leaves and canopies showed an increased reflectance of visible light after ozone treatment. While clover and maize leaves as well as clover and wheat canopies showed a decreased near infrared (NIR) reflectance, the NIR reflectance of wheat leaves did not change, even if the leaves had visible symptoms. A decreased infrared reflectance was detectable for all clover leaves after O 3 treatment although for part of the leaves no visible foliar damage symptoms could be observed

  17. Effects of Cd2+ on chlorophyll content in flag and grain yield of wheats

    International Nuclear Information System (INIS)

    Zhu Zhiyong; Li Youjun; Liu Yingjie; Duan Youqiang; Li Qiang; Hao Yufen; Guo Jia

    2011-01-01

    A field experiment was conducted with wheat cultivars Luohan 6 and Yumai 18 to investigate the effects of Cd 2+ stress on chlorophyll contents in flag leaves, flag leave area, thousand kernel weight, kernel filling velocity and yield of wheat. Results indicated that, under low Cd 2+ stress (10 mg/kg), the average contents of chlorophyll a + b of Luohan 6 reduced by 1.6%, however, its average area of flag leave and yield increased by 3.8% and 1.6%, respectively. At the same time, the average content of chlorophyll a + b, area of flag leave yield of Yumai 18 reduced 8.0%, 9.6% and 5.4%. Under high Cd 2+ stress (100 mg/kg), the average contents of chlorophyll a + b, areas of flag leaves and yields of Luohan 6 and Yumai 18 reduced by 29.2% and 30.5%, 6.3% and 17.4%, 16.7% and 36.7%, respectively. The results demonstrated that Cd 2+ restrained synthesis and accumulation of chlorophyll and its components. This study even showed that within a range of Cd 2+ concentration could promote the growth of flag leaves, and it also had an equal positive effect on yield of wheat if the Cd 2+ concentration in grains were not out of limit. The growth of flag leave and yield of wheat would be limited when Cd 2+ concentration exceed that range. Overall, Yumai 18 bore more poison from Cd 2+ than Luohan 6. (authors)

  18. Positive and negative consequences of sick leave for the individual, with special focus on part-time sick leave.

    Science.gov (United States)

    Sieurin, Leif; Josephson, Malin; Vingård, Eva

    2009-01-01

    To describe the consequences of long-term sick leave (>28 days) on working situation, health and lifestyle among employees from the public sector in Sweden. Employees in four county councils and two municipalities on long term sick leave on 1 November 2005 (n = 1,128) answered a questionnaire in February 2006. The response rate was 71.7%. Eighty seven per cent were still on sick leave when the questionnaire was answered: 54% part time and 33% full time. Reporting positive consequences was rare but reporting negative consequences, such as effects on the development of salary, the possibilities of pursuing a career or to change to another job were common. Sick leave seemed to lead to a considerable loss of zest for work, even if the respondents were back in work full time. Regardless of the negative consequences at work, 92% of those on part-time sick leave believed that the part-time sick leave was good for them even if many thought it had negative consequences for employer and colleagues. Long-term sick leave has negative consequences for the individual in work situations, even for those back at work full time. The development of salary and career seem to be most affected. The attitude towards part-time sick leave was positive and this result indicates that there is a potential for an increased degree of partial return to work in the group of people on long-term sick leave.

  19. BRS 331 – Early cycle double-haploid wheat cultivar

    Directory of Open Access Journals (Sweden)

    Pedro Luiz Scheeren

    2016-12-01

    Full Text Available The wheat cultivar ‘BRS 331’ was developed by Embrapa. It results from an interspecific cross between wheat and maize by double-hapolid method. ‘BRS 331’ shows solid stem in the base of the plant, short leaves and super-early cycle to maturity. It is classified as bread wheat in all of the regions that is recommended in the States of Rio Grande do Sul, Paraná and Santa Catarina, Brazil.

  20. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    African Journals Online (AJOL)

    This study was designed to determine the pin head formation time and yield values of Agaricus bisporus on some casing materials. Composts were prepared basically from wheat straw and waste tea leaves by using wheat chaff as activator substance. Temperatures of the compost formulas were measured during ...

  1. Pilot Study: Comparison of Sourdough Wheat Bread and Yeast-Fermented Wheat Bread in Individuals with Wheat Sensitivity and Irritable Bowel Syndrome

    Directory of Open Access Journals (Sweden)

    Reijo Laatikainen

    2017-11-01

    Full Text Available Many patients suspect wheat as being a major trigger of their irritable bowel syndrome (IBS symptoms. Our aim was to evaluate whether sourdough wheat bread baked without baking improvers and using a long dough fermentation time (>12 h, would result in lower quantities of alpha-amylase/trypsin inhibitors (ATIs and Fermentable, Oligo-, Di-, Mono-saccharides and Polyols (FODMAPs, and would be better tolerated than yeast-fermented wheat bread for subjects with IBS who have a poor subjective tolerance to wheat. The study was conducted as a randomised double-blind controlled 7-day study (n = 26. Tetrameric ATI structures were unravelled in both breads vs. baking flour, but the overall reduction in ATIs to their monomeric form was higher in the sourdough bread group. Sourdough bread was also lower in FODMAPs. However, no significant differences in gastrointestinal symptoms and markers of low-grade inflammation were found between the study breads. There were significantly more feelings of tiredness, joint symptoms, and decreased alertness when the participants ate the sourdough bread (p ≤ 0.03, but these results should be interpreted with caution. Our novel finding was that sourdough baking reduces the quantities of both ATIs and FODMAPs found in wheat. Nonetheless, the sourdough bread was not tolerated better than the yeast-fermented bread.

  2. Apoplastic Sugar Extraction and Quantification from Wheat Leaves Infected with Biotrophic Fungi.

    Science.gov (United States)

    Roman-Reyna, Veronica; Rathjen, John P

    2017-01-01

    Biotrophic fungi such as rusts modify the nutrient status of their hosts by extracting sugars. Hemibiotrophic and biotrophic fungi obtain nutrients from the cytoplasm of host cells and/or the apoplastic spaces. Uptake of nutrients from the cytoplasm is via intracellular hyphae or more complex structures such as haustoria. Apoplastic nutrients are taken up by intercellular hyphae. Overall the infection creates a sink causing remobilization of nutrients from local and distal tissues. The main mobile sugar in plants is sucrose which is absorbed via plant or fungal transporters once unloaded into the cytoplasm or the apoplast. Infection by fungal pathogens alters the apoplastic sugar contents and stimulates the influx of nutrients towards the site of infection as the host tissue transitions to sink. Quantification of solutes in the apoplast can help to understand the allocation of nutrients during infection. However, separation of apoplastic fluids from whole tissue is not straightforward and leakage from damaged cells can alter the results of the extraction. Here, we describe how variation in cytoplasmic contamination and infiltrated leaf volumes must be controlled when extracting apoplastic fluids from healthy and rust-infected wheat leaves. We show the importance of correcting the data for these parameters to measure sugar concentrations accurately.

  3. Phytotoxic potential of young leaves from Blepharocalyx salicifolius (Kunth O. Berg (Myrtaceae

    Directory of Open Access Journals (Sweden)

    E. Habermann

    Full Text Available Abstract The loss of leaves by plant species found in the Cerrado (Brazilian savanna is an energetically expensive process due to adverse environmental conditions and predation by herbivory. The mature leaves have adaptations which minimize these events. However, the young individuals lack these structures and produce high leaf concentrations of secondary metabolites as a form of protection. These compounds can be used in bioprospection of natural herbicides. Thus, this study aimed to evaluate the phytotoxicity of hexane, ethyl acetate and aqueous extracts of young leaves from Blepharocalyx salicifolius (Kunth O. Berg on the elongation of wheat coleoptiles (Triticum aestivum L. and evaluate the potential phytotoxic of ethyl acetate extract on germination, growth and cell size of metaxylem of sesame (Sesamum indicum L. seedlings. The hexane and ethyl acetate extracts inhibited the elongation of wheat coleoptiles at all concentrations; however, the most promising results were observed in coleoptile fragments treated with the ethyl acetate extract. This treatment changed the mean germination time and the synchrony of sesame seeds, inhibited the growth of shoots and roots, reduced the dry weight of seedlings, led to abnormalities in the seedlings and reduced the length of the metaxylem cells in the sesame seedlings. These results demonstrated the phytotoxic potential of young leaf extracts of B. salicifolius and the high phytotoxicity of the ethyl acetate extract in the initial development of S. indicum.

  4. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    Science.gov (United States)

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright

  5. The effects of vernalization and different photoperiods on the translocation of 14C-assimilates in wheat

    International Nuclear Information System (INIS)

    Joubert, G.D.; De Villiers, O.T.; Laubscher, E.W.

    1977-01-01

    The translocation of photosynthetically fixed 14 C from individual leaves to the ears of Inia wheat was studied during the period before ear emergence until anthesis. Three weeks before ear emergence 14 C assimilated by the flag leaf was distributed throughout the plant; about one week before ear emergence almost all the 14 C remained in the flag leaf or was transported to the stem and developing ear. Translocation of 14 C under a 16 hour photoperiod was far more effective than that under 12 hours light (with a lightbreak during the dark period) during the period before ear emergence; the reverse was observed during anthesis. In general, vernalization of the seed resulted in a decrease in the amount of 14 C-assimilates transported from the leaves to the ears. The export pattern of 14 C-assimilates from individual leaves to the ears varied with the stage of development. Prior to ear emergence, assimilates from the first two leaves were transported entirely upwards to the grain and those from the third and fourth leaves towards the roots. During anthesis only the flag leaf exported 14 C to the ear [af

  6. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat.

    Science.gov (United States)

    Song, Jiancheng; Jiang, Lijun; Jameson, Paula Elizabeth

    2012-06-06

    As the global population continues to expand, increasing yield in bread wheat is of critical importance as 20% of the world's food supply is sourced from this cereal. Several recent studies of the molecular basis of grain yield indicate that the cytokinins are a key factor in determining grain yield. In this study, cytokinin gene family members in bread wheat were isolated from four multigene families which regulate cytokinin synthesis and metabolism, the isopentenyl transferases (IPT), cytokinin oxidases (CKX), zeatin O-glucosyltransferases (ZOG), and β-glucosidases (GLU). As bread wheat is hexaploid, each gene family is also likely to be represented on the A, B and D genomes. By using a novel strategy of qRT-PCR with locus-specific primers shared among the three homoeologues of each family member, detailed expression profiles are provided of family members of these multigene families expressed during leaf, spike and seed development. The expression patterns of individual members of the IPT, CKX, ZOG, and GLU multigene families in wheat are shown to be tissue- and developmentally-specific. For instance, TaIPT2 and TaCKX1 were the most highly expressed family members during early seed development, with relative expression levels of up to 90- and 900-fold higher, respectively, than those in the lowest expressed samples. The expression of two cis-ZOG genes was sharply increased in older leaves, while an extremely high mRNA level of TaGLU1-1 was detected in young leaves. Key genes with tissue- and developmentally-specific expression have been identified which would be prime targets for genetic manipulation towards yield improvement in bread wheat breeding programmes, utilising TILLING and MAS strategies.

  7. The effect of cassava and corn flour utilization on the physicochemical characteristics of cassava leaves snack

    Science.gov (United States)

    Ambarsari, I.; Endrasari, R.; Oktaningrum, G. N.

    2018-01-01

    Cassava leaves are nutritious vegetable, but often regarded as an inferior commodity. One of the efforts increasing in the benefit of cassava leaves is through processing it into snack. In order to support the food diversification program and to reduce the dependence on imported commodities, the development of cassava leaves snack could be accompanied by optimizing the use of local materials to minimize the use of wheat flour. The aim of this assessment was to learn the effects of cassava and corn flour substitution on the physicochemical characteristics of cassava-leaves snack. The substitution of local flour (cassava and corn) on the snack production was carried on three levels at 15, 30, and 45%. A control treatment was using 100% wheat flour. The results showed that cassava and corn flour were potential to substitute wheat flour for making cassava-leaves snack. The substitution of cassava and corn flour as much as 45% was able to produce crispy products with a brighter color. The substitution of corn flour was resulting in snacks with the lower content of lipid than the other substitution snacks.

  8. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici.

    Directory of Open Access Journals (Sweden)

    Yuheng Yang

    Full Text Available Glycerol-3-phosphate (G3P is a proposed regulator of plant defense signaling in basal resistance and systemic acquired resistance (SAR. The GLY1-encoded glycerol-3-phosphate dehydrogenase (G3PDH and GLI1-encoded glycerol kinase (GK are two key enzymes involved in the G3P biosynthesis in plants. However, their physiological importance in wheat defense against pathogens remains unclear. In this study, quantification analysis revealed that G3P levels were significantly induced in wheat leaves challenged by the avirulent Puccinia striiformis f. sp. tritici (Pst race CYR23. The transcriptional levels of TaGLY1 and TaGLI1 were likewise significantly induced by avirulent Pst infection. Furthermore, knocking down TaGLY1 and TaGLI1 individually or simultaneously with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS inhibited G3P accumulation and compromised the resistance in the wheat cultivar Suwon 11, whereas the accumulation of salicylic acid (SA and the expression of the SA-induced marker gene TaPR1 in plant leaves were altered significantly after gene silencing. These results suggested that G3P contributes to wheat systemic acquired resistance (SAR against stripe rust, and provided evidence that the G3P function as a signaling molecule is conserved in dicots and monocots. Meanwhile, the simultaneous co-silencing of multiple genes by the VIGS system proved to be a powerful tool for multi-gene functional analysis in plants.

  9. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat

    KAUST Repository

    Byrt, Caitlin Siobhan

    2014-10-01

    Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K+/Na+ ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na+-selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na+ concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na+ from the xylem vessels in the root and has an important role in restricting the transport of Na+ from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na+ exclusion and is critical in maintaining a high K+/Na+ ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes.

  10. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat

    KAUST Repository

    Byrt, Caitlin Siobhan; Xu, Bo; Krishnan, Mahima; Lightfoot, Damien; Athman, Asmini; Jacobs, Andrew Keith; Watson-Haigh, Nathan S.; Plett, Darren; Munns, Rana; Tester, Mark A.; Gilliham, Matthew

    2014-01-01

    Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K+/Na+ ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na+-selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na+ concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na+ from the xylem vessels in the root and has an important role in restricting the transport of Na+ from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na+ exclusion and is critical in maintaining a high K+/Na+ ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes.

  11. Effects of the inoculations using bacteria producing ACC deaminase on ethylene metabolism and growth of wheat grown under different soil water contents.

    Science.gov (United States)

    Zhang, Guozhuang; Sun, Yonglin; Sheng, Hao; Li, Haichao; Liu, Xiping

    2018-04-01

    Crop growth and productivity are often impacted by the increased ethylene content induced by adverse environmental conditions such drought. Inoculations with bacteria producing ACC deaminase is considered as a potential biological approach to improve the growth and tolerance of stressed plants by lowering endogenous ethylene level. In this study, germinated wheat seeds were inoculated using three species of the rhizobacteria, which were isolated from the rhizosphere of wheat growing in dryland, and sown in pots. After three weeks, wheat seedlings were exposed to non-limiting water condition, medium drought and severe drought, respectively, for six weeks. The results showed that, irrespective of rhizobacterial inoculations, decreased soil water contents stimulated wheat ethylene metabolism, which was reflected by the significantly increased activity of ACC synthetase and ACC oxidase, besides an increased content of ACC both in the roots and leaves, and an enhanced capacity of leaves to release ethylene, concomitant with a significant decline in shoot and roots biomass. The inoculations of all three rhizobacterial species under each water condition reduced ACC content in wheat leaves, but effects of the inoculations on ACC synthase and ACC oxidase activity in the leaves and roots, ACC content in the roots, the capacity of leaves to release ethylene, and wheat growth varied with water conditions and bacterial species. Hence, both soil water conditions and rhizobacterial inoculations acted on all the processes of ethylene metabolism, with the former being dominant. The inoculations under non-limiting water condition and medium drought promoted shoot and root growth of wheat plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Identification and Severity Determination of Wheat Stripe Rust and Wheat Leaf Rust Based on Hyperspectral Data Acquired Using a Black-Paper-Based Measuring Method

    Science.gov (United States)

    Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang

    2016-01-01

    It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies. PMID:27128464

  13. Identification and Severity Determination of Wheat Stripe Rust and Wheat Leaf Rust Based on Hyperspectral Data Acquired Using a Black-Paper-Based Measuring Method.

    Science.gov (United States)

    Wang, Hui; Qin, Feng; Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang

    2016-01-01

    It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies.

  14. Yield response of mushroom ( Agaricus bisporus ) on wheat straw ...

    African Journals Online (AJOL)

    Yield response of mushroom ( Agaricus bisporus ) on wheat straw and waste tea leaves based composts using supplements of some locally available peats and their mixture with some secondary casing materials.

  15. Estimating Photosynthetic Radiation Use Efficiency Using Incident Light and Photosynthesis of Individual Leaves

    OpenAIRE

    ROSATI, A.; DEJONG, T. M.

    2003-01-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, ‘daily’ photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthes...

  16. Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum).

    Science.gov (United States)

    Weiner, Jacob; Du, Yan-Lei; Zhang, Cong; Qin, Xiao-Liang; Li, Feng-Min

    2017-09-01

    Although the importance of group selection in nature is highly controversial, several researchers have argued that plant breeding for agriculture should be based on group selection, because the goal in agriculture is to optimize population production, not individual fitness. A core hypothesis behind this claim is that crop genotypes with the highest individual fitness in a mixture of genotypes will not produce the highest population yield, because fitness is often increased by "selfish" behaviors, which reduce population performance. We tested this hypothesis by growing 35 cultivars of spring wheat (Triticum aestivum L.) in mixtures and monocultures, and analyzing the relationship between population yield in monoculture and individual yield in mixture. The relationship was unimodal, as predicted. The highest-yielding populations were from cultivars that had intermediate fitness, and these produced, on average, 35% higher yields than cultivars with the highest fitness. It is unlikely that plant breeding or genetic engineering can improve traits that natural selection has been optimizing for millions of years, but there is unutilized potential in traits that increase crop yield by decreasing individual fitness. © 2017 by the Ecological Society of America.

  17. Identification of Leaf Promoters for Use in Transgenic Wheat

    Directory of Open Access Journals (Sweden)

    Saqer S. Alotaibi

    2018-03-01

    Full Text Available Wheat yields have plateaued in recent years and given the growing global population there is a pressing need to develop higher yielding varieties to meet future demand. Genetic manipulation of photosynthesis in elite wheat varieties offers the opportunity to significantly increase yields. However, the absence of a well-defined molecular tool-box of promoters to manipulate leaf processes in wheat hinders advancements in this area. Two promoters, one driving the expression of sedoheptulose-1,7-bisphosphatase (SBPase and the other fructose-1,6-bisphosphate aldolase (FBPA from Brachypodium distachyon were identified and cloned into a vector in front of the GUS reporter gene. Both promoters were shown to be functionally active in wheat in both transient assays and in stably transformed wheat plants. Analysis of the stable transformants of wheat (cv. Cadenza showed that both promoters controlled gus expression throughout leaf development as well as in other green tissues. The availability of these promoters provides new tools for the expression of genes in transgenic wheat leaves and also paves the way for multigene manipulation of photosynthesis to improve yields.

  18. The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress.

    Science.gov (United States)

    Shan, Changjuan; Zhang, Shengli; Ou, Xingqi

    2018-01-25

    This paper investigated the roles of hydrogen sulfide (H 2 S) and hydrogen peroxide (H 2 O 2 ) and the possible relationship between them in regulating the AsA-GSH cycle in wheat leaves under drought stress (DS). Results showed that DS markedly increased the production of H 2 S and H 2 O 2 , the transcript levels and activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR); malondialdehyde (MDA) content; and electrolyte leakage (EL). Meanwhile, DS markedly reduced plant height and biomass. Above increases induced by drought stress except MDA content and EL were all suppressed by pretreatments with H 2 S synthesis inhibitor aminooxyaceticacid (AOA) and H 2 O 2 synthesis inhibitor diphenylene iodonium (DPI). Besides, pretreatments with AOA and DPI further significantly increased MDA content and EL and significantly reduced plant height and biomass under DS. DPI reduced the production of H 2 O 2 and H 2 S induced by DS. AOA also reduced the production of H 2 S and H 2 O 2 induced by DS. Pretreatments with NaHS + AOA and H 2 O 2 + DPI reversed above effects of AOA and DPI. Our results suggested that H 2 S and H 2 O 2 all participated in the up-regulation of AsA-GSH cycle in wheat leaves by DS and possibly affected each other.

  19. Carpel size, grain filling, and morphology determine individual grain weight in wheat.

    Science.gov (United States)

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L

    2015-11-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    African Journals Online (AJOL)

    Cultivation of Agaricus bisporus on wheat straw and waste tea leaves based composts and locally available casing materials Part III: Dry matter, protein, and carbohydrate contents of Agaricus bisporus.

  1. Parental Leave and Work Adaptation at the Transition to Parenthood: Individual, Marital, and Social Correlates

    Science.gov (United States)

    Feldman, Ruth; Sussman, Amy L.; Zigler, Edward

    2004-01-01

    This study examined individual, marital, and social--contextual factors associated with the length of maternity and paternity leave and the parents' work adaptation at the transition to parenthood. Ninety-eight dual-earner parents of 3- to 5-month-old infants were surveyed following the mother's return to work. A shorter maternity leave (less than…

  2. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun

    2018-04-01

    QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.

  3. Genetics of flowering time in bread wheat Triticum aestivum ...

    Indian Academy of Sciences (India)

    2012-04-17

    Apr 17, 2012 ... in response to vernalization (Flood and Halloran 1984;. Goncharov ... ering signal (florigen) that moves from leaves to apices and induces .... Weeding was done man- ually. ...... gene action for vernalization response in wheat.

  4. Shiitake Medicinal Mushroom, Lentinus edodes (Higher Basidiomycetes) Productivity and Lignocellulolytic Enzyme Profiles during Wheat Straw and Tree Leaf Bioconversion.

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Asatiani, Mikheil D

    2015-01-01

    Two commercial strains of Lentinus edodes have been comparatively evaluated for their productivity and lignocellulolytic enzyme profiles in mushroom cultivation using wheat straw or tree leaves as the growth substrates. Both substrates are profitable for recycling into shiitake fruit bodies. L. edodes 3715 gave the lowest yield of mushroom during tree leaves bioconversion with the biological efficiency (BE) 74.8% while the L. edodes 3721 BE achieved 83.4%. Cultivation of shiitake on wheat straw, especially in the presence of additional nitrogen source, increased the L. edodes 3721 BE to 92-95.3% owing to the high hydrolases activity and favorable conditions. Despite the quantitative variations, each strain of L. edodes had a similar pattern for secreting enzymes into the wheat straw and tree leaves. The mushrooms laccase and MnP activities were high during substrate colonization and declined rapidly during primordia appearance and fruit body development. While oxidase activity decreased, during the same period cellulases and xylanase activity raised sharply. Both cellulase and xylanase activity peaked at the mature fruit body stage. When mushrooms again shifted to the vegetative growth, oxidase activity gradually increased, whereas the hydrolases activity dropped rapidly. The MnP, CMCase, and FP activities of L. edodes 3721 during cultivation on wheat straw were higher than those during mushroom growth on tree leaves whereas the laccase activity was rather higher in fermentation of tree leaves. Enrichment of wheat straw with an additional nitrogen source rather favored to laccase, MnP, and FPA secretion during the vegetative stage of the L. edodes 3721 growth.

  5. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    Science.gov (United States)

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat.

    Science.gov (United States)

    Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika

    2018-01-01

    Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene), and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase), and DMAS (2'-deoxymugineic acid synthase) in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement. At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.

  7. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat.

    Directory of Open Access Journals (Sweden)

    Paresh Deshpande

    Full Text Available Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear.Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene, and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe-regulated transporter-like protein (ZIP family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase, and DMAS (2'-deoxymugineic acid synthase in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement.At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.

  8. Residual, direct and cumulative effect of zinc application on wheat and rice yield under rice-wheat syst

    Directory of Open Access Journals (Sweden)

    R. Khan

    2009-05-01

    Full Text Available Zinc (Zn deficiency is prevalent particularly on calcareous soils of arid and semiarid region. A field experiment was conducted to investigate the direct, residual and cumulative effect of zinc on the yield of wheat and rice in permanent layout for two consecutive years, 2004-05 and 2005-06 at Arid Zone Research Institute D.I. Khan. Soil under study was deficient in Zn (0.8 mg kg-1. Effect of Zn on yield, Zn concentrations in leaf and soils were assessed using wheat variety Naseer-2000 and rice variety IRRI-6. Three rates of Zn, ranging from 0 to 10 kg ha-1 in soil, were applied as zinc sulphate (ZnSO4. 7H2O along with basal dose fertilization of nitrogen, phosphorus and potassium. Mature leaf and soil samples were collected at panicle initiation stage. The results showed that grain yield of wheat and rice was significantly increased by the direct application of 5 and 10 kg Zn ha-1. Highest grain yield of wheat (5467 kg ha-1 was recorded with the direct application of 10 kg Zn ha-1 while 4994 kg ha-1 was recorded with the cumulative application of 10 kg Zn ha-1 but the yield increase due to residual effect of Zn was statistically lower than the cumulative effect of Zn. Maximum paddy yield was recorded with the cumulative application ofZn followed by residual and direct applied 10 and 5 kg Zn kg ha-1, respectively. Zn concentration in soils ranged from 0.3 to 1.5 mg kg-1 in wheat and 0.24 to 2.40 mg kg-1 in rice, while in leaves it ranged from 18-48 mg kg-1 in wheat and 15-52 mg kg-1 in rice. The concentration of Zn in soil and leaves increased due to the treatments in the order; cumulative > residual > direct effect > control (without Zn. The yield attributes like 1000- grain weight, number of spikes, spike length and plant height were increased by the residual, direct and cumulative effect of Zn levels; however, the magnitude of increase was higher in cumulative effect than residual and direct effect of Zn, respectively. Under Zn-deficient soil

  9. Chlorophyll meter for estimating nitrogen status of irrigated wheat

    International Nuclear Information System (INIS)

    Schepers, J.S.

    2000-01-01

    Chlorophyll-meter readings, generated from the leaves of irrigated wheat at particular growth stages, were normalized to the data obtained with locally recommended rates of fertilizer N, in Chile China, India and Mexico. Normalizing permitted comparisons of crop-N status across growth stages, locations, cultivars, and years. Relative yields and meter readings at growth-stage Z-50 are presented; they revealed similar trends for India, China, and Chile, however, for Mexico, the combination of soil, wheat cultivar, and climate resulted in much less response to N fertilization in the meter data. The implications are discussed. The SPAD meter proved to be a good tool to monitor and evaluate the N status of irrigated wheat. (author)

  10. Lime and gypsum application on the wheat crop

    Directory of Open Access Journals (Sweden)

    Caires Eduardo Fávero

    2002-01-01

    Full Text Available Root growth and crop yield can be affected by chemical modifications of the soil profile owing to lime and gypsum applications. A field trial was carried out on a dystrophic Clayey Rhodic Hapludox at Ponta Grossa, PR, Brazil, aiming to evaluate lime (without or with incorporation into the soil and gypsum effects on root growth, mineral nutrition and grain yield of wheat (cv. OR 1. A randomized complete block design was used, with three replications, in a split-plot experiment. Treatments with dolomitic limestone (without lime and 4.5 t ha-1 of lime applied on the surface, in total rate and 1/3 of the requirement per year during 3 years, or incorporated into the soil were applied in July 1998 (main plots and the rates of gypsum (0, 3, 6 and 9 t ha-1 in October 1998 (subplots. Wheat was evaluated in the 2000 winter season. In conditions of water deficit absence, there was no limitation in root growth in depth, for exchangeable Ca of 6 mmol c dm-3. Lime incorporation of lime increased the Mg concentration in the leaves, but wheat yield was not influenced by the correction of soil acidity through liming treatments. Gypsum increased the concentrations of Ca and S in wheat leaves, with significant effects on grain yield. The critical level of S-SO4(2- in the 0-20 cm soil layer, extracted by ammonium acetate 0.5 mol L-1 in acetic acid 0.25 mol L-1, was 25.8 mg dm-3.

  11. Psychoeducation to facilitate return to work in individuals on sick leave and at risk of having a mental disorder

    DEFF Research Database (Denmark)

    Pedersen, Pernille; Søgaard, Hans Jørgen; Yde, Bjarne Frostholm

    2014-01-01

    by psychiatric nurses, a psychologist, a social worker, a physiotherapist and a person who had previously been on sick leave due to mental health problems. The sessions focused on stress and work life, and the purpose was to provide individuals on sick leave the skills to understand and improve their mental......BACKGROUND: Sickness absence due to poor mental health is a common problem in many Western countries. To facilitate return to work, it may be important to identify individuals on sick leave and at risk of having a mental disorder and subsequently to offer appropriate treatment. Psychoeducation...... alone has not previously been used as a return to work intervention, but may be a promising tool to facilitate return to work. Therefore, the aim of the study is to evaluate the effectiveness of psychoeducation designed specifically to facilitate return to work for individuals on sick leave and at risk...

  12. Effects of allelopathic chemicals extracted from various plant leaves on weed control and wheat crop productivity

    International Nuclear Information System (INIS)

    Khan, E.A.; Khakwani, A.A.; Ghazanfarullah, A.

    2015-01-01

    A study on allelopathic effect of leaf water extracts of Eucalyptus, Acacia, Sorghum, Shishum, Sunflower, Poplar, Tobacco and Congress grass on weeds control and growth of wheat cv. Hashim-8 was conducted at Faculty of Agriculture, Gomal University, Dera Ismail Khan during 2012-2013. The findings of this study revealed that allelopathic chemicals in leaf water extracts of these plants significantly suppressed weeds growth by reducing weed density, fresh and dry weed biomass, and encouraged wheat yield and yield components such as days to 50% heading, plant height, tillers m-2, grain spike-1, 1000-gain weight, biological and grain yield. Even though minimum fresh and dry weed biomass and highest wheat grain yield and yield related components were observed in twice hand weeding treatment which is economically less feasible on large scale. However, our findings showed an alternative allelopathic technique to minimize weed infestation and boost wheat growth and yield using natural plant material. On the basis of present results, it is recommended that leaf water extracts of Sorghum, Sunflower and Congress grass can be applied twice (30 and 60 DAS) during the growing season to control weeds and to enhance wheat grain yield. (author)

  13. Effect of foliar fertilizer and fungicidal protection against leaf spot diseases on winter wheat

    Directory of Open Access Journals (Sweden)

    Agnieszka Mączyńska

    2012-12-01

    Full Text Available Field experiments were carried out in the seasons 2000/2001 and 2001/2002 in Plant Protection Institute, Sooenicowice Branch to assess the influence of foliar fertilizers such as Ekolist PK 1, Ekolist Mg, Mikrosol Z and Urea on healthiness of winter wheat. Foliar fertilizers were mixed with fungicides. The fungicides were applied at full or half recommended doses. The effect of the disease on wheat leaves was evaluated three times in each vegetation season. Remaining green leaf area (GLA of leaves was also determined. GLA of the leaves F-1 was not significantly different for each combination with different fertilization and different levels of chemical treatment. The application of foliar fertilizer only had no effect on green leaf area (GLA. The results indicate that foliar fertilization of all experimental plots improved leaf condition and therefore halted the development of wheat leaf diseases. The increases of 1000 grain mass and yield was high for each plot where a fertilizer and a full or half dose of a fungicide was applied. Foliar fertilizing with no chemical control had no proven effect on studied parameters.

  14. Developmental, nutritional and hormonal anomalies of weightlessness-grown wheat

    Science.gov (United States)

    Carman, J. G.; Hole, P.; Salisbury, F. B.; Bingham, G. E.

    2015-07-01

    The behavior of water in weightlessness, as occurs in orbiting spacecraft, presents multiple challenges for plant growth. Soils remain saturated, impeding aeration, and leaf surfaces remain wet, impeding gas exchange. Herein we report developmental and biochemical anomalies of "Super Dwarf" wheat (Triticum aestivum L.) grown aboard Space Station Mir during the 1996-97 "Greenhouse 2" experiment. Leaves of Mir-grown wheat were hyperhydric, senesced precociously and accumulated aromatic and branched-chain amino acids typical of tissues experiencing oxidative stress. The highest levels of stress-specific amino acids occurred in precociously-senescing leaves. Our results suggest that the leaf ventilation system of the Svet Greenhouse failed to remove sufficient boundary layer water, thus leading to poor gas exchange and onset of oxidative stress. As oxidative stress in plants has been observed in recent space-flight experiments, we recommend that percentage water content in apoplast free-spaces of leaves be used to evaluate leaf ventilation effectiveness. Mir-grown plants also tillered excessively. Crowns and culms of these plants contained low levels of abscisic acid but high levels of cytokinins. High ethylene levels may have suppressed abscisic acid synthesis, thus permitting cytokinins to accumulate and tillering to occur.

  15. [Phytopathogenic bacteria of couch-grass in the crops of wheat].

    Science.gov (United States)

    Iakovleva, L M; Patyka, V F; Gvozdiak, R I; Shcherbina, T N

    2009-01-01

    Bacterialdiseases of weeds in the crops of wheat on the fields of Kyiv and Vinnytsya regions of Ukraine Elytrigia repens (L.) Nevski Agropyrum repens L. were revealed. The following symptoms of bacterial affections: the leaves wither, oval or hatched necrotic spots on green leaves, necroses on the stalks, empty-ears, partial blackening of the ear axes, awns, caryopsises, scales, water-soaked or dark brown with violet shade spots on the rhizomes were found. During the vegetation period bacteria were isolated from the affected plants which caused pathological process in the couch-grass and wheat. The pathogenic bacteria were identified as Pseudomonas syringae, P. viridiflava, Pseudomonas sp., Erwinia carotovora pv. carotovora, Pantoea agglomerans, the part of yellow-pigmentary isolates were not identified. Some Psyringae were isolated from the rhizomes during winterthawing. The paper is presented in Ukrainian.

  16. New mechanism for the control of sodium transport in wheat

    International Nuclear Information System (INIS)

    James, R.A.; Munns, R.; Huang, C.X.

    2002-01-01

    Full text: Durum and other tetraploid wheats are typically very salt-sensitive compared to hexaploid bread wheats. This is primarily due to high rates of Na + accumulation in the leaves in tetraploid wheat. Recently, we have discovered a durum landrace with low Na + accumulation and enhanced K + /Na + discrimination, much lower than current durum cultivars and similar to bread wheat. We have identified 3 different mechanisms for the control of Na + transport to the leaves in this landrace, 1) control of Na + uptake at the epidermis of the root, 2) control of Na + loading into the xylem and 3) partitioning of Na + into the leaf sheath. The low Na + durum landrace had 3-4 fold lower Na + uptake rates than durum cultivars. Using X ray microanalysis on snap-frozen root sections, we found Na + to be high in the epidermis, a decreasing gradient through the cortex, low in the endodermis and again high in the stele (pencycle and xylem parenchyma), indicative of control points at the epidermis and in the stele. Partitioning of Na + between shoot and root was at least 5 times lower in the durum landrace, suggestive of greater control of Na + transport at the site of xylem loading. A third and novel control mechanism was found in the leaf sheath. Short and long term salinity treatments showed that Na + was partitioned preferentially into the sheaths of the low Na + durum landrace, keeping leaf blade Na + levels very low and similar to that of bread wheat Na + partitioned in the leaf sheath was stored primarily in the parenchyma cells and Cl - in the epidermal cells. Collectively, these data show that we have identified germplasm that has the potential to increase the salt tolerance of durum wheat. Additionally, as bread wheat does not contain the mechanism for partitioning Na + into the sheath, this trait may be useful for further increasing the salt tolerance of this species

  17. High-definition infrared thermography of ice nucleation and propagation in wheat under natural frost conditions and controlled freezing.

    Science.gov (United States)

    Livingston, David P; Tuong, Tan D; Murphy, J Paul; Gusta, Lawrence V; Willick, Ian; Wisniewski, Micheal E

    2018-04-01

    An extremely high resolution infrared camera demonstrated various freezing events in wheat under natural conditions. Many of those events shed light on years of misunderstanding regarding freezing in small grains. Infrared thermography has enhanced our knowledge of ice nucleation and propagation in plants through visualization of the freezing process. The majority of infrared analyses have been conducted under controlled conditions and often on individual organs instead of whole plants. In the present study, high-definition (1280 × 720 pixel resolution) infrared thermography was used under natural conditions to visualize the freezing process of wheat plants during freezing events in 2016 and 2017. Plants within plots were found to freeze one at a time throughout the night and in an apparently random manner. Leaves on each plant also froze one at a time in an age-dependent pattern with oldest leaves freezing first. Contrary to a common assumption that freezing begins in the upper parts of leaves; freezing began at the base of the plant and spread upwards. The high resolution camera used was able to verify that a two stage sequence of freezing began within vascular bundles. Neither of the two stages was lethal to leaves, but a third stage was demonstrated at colder temperatures that was lethal and was likely a result of dehydration stress; this stage of freezing was not detectable by infrared. These results underscore the complexity of the freezing process in small grains and indicate that comprehensive observational studies are essential to identifying and selecting freezing tolerance traits in grain crops.

  18. Organic farming increases richness of fungal taxa in the wheat phyllosphere.

    Science.gov (United States)

    Karlsson, Ida; Friberg, Hanna; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula

    2017-07-01

    Organic farming is often advocated as an approach to mitigate biodiversity loss on agricultural land. The phyllosphere provides a habitat for diverse fungal communities that are important for plant health and productivity. However, it is still unknown how organic farming affects the diversity of phyllosphere fungi in major crops. We sampled wheat leaves from 22 organically and conventionally cultivated fields in Sweden, paired based on their geographical location and wheat cultivar. Fungal communities were described using amplicon sequencing and real-time PCR. Species richness was higher on wheat leaves from organically managed fields, with a mean of 54 operational taxonomic units (OTUs) compared with 40 OTUs for conventionally managed fields. The main components of the fungal community were similar throughout the 350-km-long sampling area, and seven OTUs were present in all fields: Zymoseptoria, Dioszegia fristingensis, Cladosporium, Dioszegia hungarica, Cryptococcus, Ascochyta and Dioszegia. Fungal abundance was highly variable between fields, 10 3 -10 5 internal transcribed spacer copies per ng wheat DNA, but did not differ between cropping systems. Further analyses showed that weed biomass was the strongest explanatory variable for fungal community composition and OTU richness. These findings help provide a more comprehensive understanding of the effect of organic farming on the diversity of organism groups in different habitats within the agroecosystem. © 2017 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.

  19. Cadmium accumulation and antioxidative defenses in leaves of ...

    African Journals Online (AJOL)

    Corn (Zea Mays L.) and wheat (Triticum aestivum L. ) seedlings were grown in four cadmium (Cd) concentration levels (0 - 1 mg/l) in a hydroponic system to analyze the antioxidant enzyme system, Cd concentration in the shoots and roots of plants, proline contents, growth responses and chlorophyll contents in the leaves of ...

  20. The effect of radiation on growth and abscisic acid in wheat seedlings

    International Nuclear Information System (INIS)

    Degani, N.; Itai, C.

    1978-01-01

    Irradiation of dry wheat grains with various doses (10, 30, 70 krads) of gamma rays, increased abscisic acid (ABA) concentrations in roots and leaves of 5 day old seedlings. The ABA concentration was higher in leaves than in roots. Growth inhibition was proportional to irradiation dose and ABA concentration, and roots were more inhibited than leaves. When irradiation (1 and 2 krads) were applied 24 hr after initiation of germination, ABA concentration was higher in roots than in leaves. It is suggested that radiation-induced ABA may upset the hormonal balance during germination, which may affect growth. (author)

  1. Anatomical features of leaves of three cultivars of winter wheat (Triticum aestivum L. and settling the plants by cereal leaf beetles, Oulema spp. (Coleoptera, Chrysomelidae

    Directory of Open Access Journals (Sweden)

    Elżbieta Weryszko-Chmielewska

    2013-12-01

    Full Text Available Investigations of flag leaves anatomy of three winter wheat cultivars: Almari, Gama and Weneda were carried out as it was state that there are great differences in the intensity of cereal leaf beetle feeding on the leaves. In order to determine the features conditioning the differentiated resistance of these cultivars following parameters were measured: the thickness of leaf blade, the length of trichomes and their density in the adaxial epidermis, the number of silicon cells in 1 mm2 epidermis and the thickness of the external cell walls of epidermis. The observations of cross section of the leaves were made in a light microscope and that of surface of the adaxial epidermis in a scanning electron microscope. In this study it was shown that Gama cv. distinguishes of the shortest trichomes with poor density, the lowest number of the silicon cells in 1 mm2 and epidermis cells with the thinest walls. This features indicate a poor resistance of Gama cv. against feeding of the pests and give reasons for the presence a much higher number of the cereal leaf beetle larvae (about 100% than at the extant two cultivars. Dependence between the thickness of leaf blades and the number of larvae of the infesting pests has not been stated.

  2. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat.

    Science.gov (United States)

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J; Carmo-Silva, Elizabete; Parry, Martin A J; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (Ptranspiration rate (Ptranspiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate that TaER could be exploitable for manipulating important agronomical traits in wheat improvement.

  3. Fumonisin B1 and beauvericin accumulation in wheat kernels after seed-borne infection with Fusarium proliferatum

    Directory of Open Access Journals (Sweden)

    Zhiqing Guo

    2016-08-01

    Full Text Available Fusarium proliferatum is a fungal pathogen causing ear rot of maize. The fungus infects a range of other plants but the economic impact of these diseases has not been established. Recently, F. proliferatum and its mycotoxin fumonisin were found in wheat grains. Here we report that seed-borne infection of wheat with F. proliferatum resulted in systemic colonization of wheat plants and contamination of wheat grains with fumonisins and beauvericin. F. proliferatum strains originating from different hosts were able to infect wheat via seeds. Colonization of wheat plants with the fungus was highest in the stems, followed by leaves; one third of the strains reached kernels, causing accumulation of fumonisins and beauvericin to 15–55 µg kg-1. The results show that seed-borne infection of wheat with F. proliferatum can lead to contamination of wheat kernels with mycotoxins fumonisins and beauvericin.  

  4. Accumulation, transfer, and potential sources of mercury in the soil-wheat system under field conditions over the Loess Plateau, northwest China

    International Nuclear Information System (INIS)

    Wang, Shengli; Nan, Zhongren; Prete, Daniel; Ma, Jianmin; Liao, Qin; Zhang, Qian

    2016-01-01

    There is limited information on accumulation, transfer, and source of mercury in wheats under field conditions over the Loess Plateau, northwest China. The present study collected 26 pairs of topsoil and whole wheat samples (roots, stems, leaves, shells, and grains) from Dongdagou stream watershed and upper Xidagou stream watershed, Baiyin City, northwest China. Hg concentrations from these samples were used to identify their relationships with soil properties, interactions with other metals, localization of Hg in the different wheat tissues, bio-concentration and transfer of Hg, and major sources of Hg in wheat. Results show that Hg levels in 11 out of 26 sampled soils (42.3% of soil samples) exceeded Hg limit of grade II soil environmental quality standards in China (1.0 mg·kg"− "1). Likewise, it was also found that Hg in over 50% of wheat grain samples reached or exceeded the maximum permissible food safety levels (0.02 mg·kg"− "1) according to the General Standard of Contaminants in Food in China (GB 2762-2012). The spatial distribution pattern of Hg in wheats grains was different from that in the sampled soils. Hg concentrations in different wheat tissues were highest in roots, followed by leaves, stalks, shells, and grains, respectively. Bio-concentration factors (BCF) of Hg in almost all grains samples were one or two orders of magnitude lower than that in roots, except for two wheat samples. The translocation factors (TF) of Hg in wheat tissues on average were leaves > stems > shells > grains. The spatial distribution of Hg and its correlation with other heavy metal detected simultaneously in the soil samples suggested that the Hg soil contamination was probably caused by past sewage irrigation practices and atmospheric deposition. Correlation analysis revealed that the principle source of Hg in wheat roots was very likely from Hg contaminated soils. - Highlights: • Hg concentrations in wheats and corresponding soils from loess plateau, northwest

  5. Accumulation, transfer, and potential sources of mercury in the soil-wheat system under field conditions over the Loess Plateau, northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengli [Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Western China' s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Nan, Zhongren, E-mail: nanzhongren@lzu.edu.cn [Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Western China' s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Prete, Daniel [Department of Chemistry and Biology, Ryerson University, Toronto M5B 2K3 (Canada); Ma, Jianmin; Liao, Qin; Zhang, Qian [Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China)

    2016-10-15

    There is limited information on accumulation, transfer, and source of mercury in wheats under field conditions over the Loess Plateau, northwest China. The present study collected 26 pairs of topsoil and whole wheat samples (roots, stems, leaves, shells, and grains) from Dongdagou stream watershed and upper Xidagou stream watershed, Baiyin City, northwest China. Hg concentrations from these samples were used to identify their relationships with soil properties, interactions with other metals, localization of Hg in the different wheat tissues, bio-concentration and transfer of Hg, and major sources of Hg in wheat. Results show that Hg levels in 11 out of 26 sampled soils (42.3% of soil samples) exceeded Hg limit of grade II soil environmental quality standards in China (1.0 mg·kg{sup −} {sup 1}). Likewise, it was also found that Hg in over 50% of wheat grain samples reached or exceeded the maximum permissible food safety levels (0.02 mg·kg{sup −} {sup 1}) according to the General Standard of Contaminants in Food in China (GB 2762-2012). The spatial distribution pattern of Hg in wheats grains was different from that in the sampled soils. Hg concentrations in different wheat tissues were highest in roots, followed by leaves, stalks, shells, and grains, respectively. Bio-concentration factors (BCF) of Hg in almost all grains samples were one or two orders of magnitude lower than that in roots, except for two wheat samples. The translocation factors (TF) of Hg in wheat tissues on average were leaves > stems > shells > grains. The spatial distribution of Hg and its correlation with other heavy metal detected simultaneously in the soil samples suggested that the Hg soil contamination was probably caused by past sewage irrigation practices and atmospheric deposition. Correlation analysis revealed that the principle source of Hg in wheat roots was very likely from Hg contaminated soils. - Highlights: • Hg concentrations in wheats and corresponding soils from loess

  6. Does part-time sick leave help individuals with mental disorders recover lost work capacity?

    Science.gov (United States)

    Andrén, Daniela

    2014-06-01

    This paper aims to answer the question whether combining sick leave with some hours of work can help employees diagnosed with a mental disorder (MD) increase their probability of returning to work. Given the available data, this paper analyzes the impact of part-time sick leave (PTSL) on the probability of fully recovering lost work capacity for employees diagnosed with an MD. The effects of PTSL on the probability of fully recovering lost work capacity are estimated by a discrete choice one-factor model using data on a nationally representative sample extracted from the register of the National Agency of Social Insurance in Sweden and supplemented with information from questionnaires. All individuals in the sample were 20-64 years old and started a sickness spell of at least 15 days between 1 and 16 February 2001. We selected all employed individuals diagnosed with an MD, with a final sample of 629 individuals. The results show that PTSL is associated with a low likelihood of full recovery, yet the timing of the assignment is important. PTSL's effect is relatively low (0.015) when it is assigned in the beginning of the spell but relatively high (0.387), and statistically significant, when assigned after 60 days of full-time sick leave (FTSL). This suggests efficiency improvements from assigning employees with an MD diagnosis, when possible, to PTSL. The employment gains will be enhanced if employees with an MD diagnosis are encouraged to return to work part-time after 60 days or more of FTSL.

  7. Effects of salicylic acid elicitor against aphids on wheat and detection of infestation using infrared thermal imaging technique in Ismailia, Egypt

    Directory of Open Access Journals (Sweden)

    Mahmoud Farag Mahmoud

    2015-04-01

    Full Text Available Wheat (Triticum sativum L. is one of the most important cereal crops in Egypt. Insect pests, such as aphids, are major threats in terms of yield reduction. Induced resistance in wheat using salicylic acid as a foliar application was tested on the farm of the Faculty of Agriculture, Suez Canal University during 2012/2013 and 2013/2014 seasons. Three wheat cultivars, Gemeza 9, Sakha 93 and Giza 168, were sprayed three times with two concentrations of salicylic acid (SA, 200 mg/l and 100 mg/l, after early detection of aphid infestation by infrared thermal imaging. The infrared thermal imaging technique is based on significant differences in surface temperature between infested and healthy leaves. Imaging data are digital, and a computer program can be used to detect infestation rapidly. The results showed that aphid infestation raised the temperature of infested leaves, compared to healthy leaves. The range temperature difference between maximum and minimum temperatures (At was 1.1 ºC in healthy leaves and 3.9 ºC in infected leaves. The results of SA application showed significant differences in the mean number of aphids and in reduction of infestation among treatments and cultivars. The higher of the two SA rates (200 mg/l gave higher efficacy in the three cultivars than the lower rate (100 mg/l over the five weeks of trial. The highest efficacy against aphids was reached one week after application (86.28% for Giza, 85.89% for Gemesa and 70.54% for Sakha. Moreover, SA treatment enhanced the wheat yield of all three cultivars, compared with control plants. The three cultivars (Giza, Gemesa and Sakha produced higher yields than the control when sprayed with 200 mg/l SA. Their grain yield was 2,491.5, 2,455.0, and 2,327.25 kg/feddan (1 fed = 0.42 ha, respectively. In conclusion, infrared thermal imaging can be employed in identification of infected leaves. Also, the application of SA on wheat induced plant resistance to aphids.

  8. Wheat Yield Trend and Soil Fertility Status in Long Term Rice-Rice-Wheat Cropping System

    Directory of Open Access Journals (Sweden)

    Nabin Rawal

    2015-12-01

    Full Text Available A long-term soil fertility experiment under rice-rice-wheat system was performed to evaluate the long term effects of inorganic fertilizer and manure applications on soil properties and grain yield of wheat. The experiment began since 1978 was laid out in randomized complete block design with 9 treatments replicated 3 times. From 1990 onwards, periodic modifications have been made in all the treatments splitting the plots in two equal halves of 4 x 3 m2 leaving one half as original. In the original treatments, recent data revealed that the use of Farm Yard Manure (FYM @10 t ha-1 gave significantly (P≤0.05 higher yield of 2.3 t ha-1 in wheat, whereas control plot gave the lowest grain yield of 277 kg ha-1. Similarly, in the modified treatments, the use of FYM @10 t ha-1 along with inorganic Nitrogen (N and Potassium oxide (K2O @ 50 kg ha-1 produced significantly (P≤0.05 the highest yield of 2.4 t/ha in wheat. The control plot with an indigenous nutrient supply only produced wheat yield of 277 kg ha-1 after 35th year completion of rice-rice-wheat system. A sharp decline in wheat yields was noted in minus N, phosphorus (P, Potassium (K treatments during recent years. Yields were consistently higher in the N:P2O5:K2O and FYM treatments than in treatments, where one or more nutrients were lacking. The application of P2O5 and K2O caused a partial recovery of yield in P and K deficient plots. There was significant (P≤0.05 effect of use of chemical fertilizers and manure on soil properties. The soil analysis data showed an improvement in soil pH (7.8, soil organic matter (4.1%, total N content (0.16%, available P (503.5 kg P2O5 ha-1 and exchangeable K (137.5 kg K2O ha-1 in FYM applied treatments over all other treatments. The findings showed that the productivity of the wheat can be increased and sustained by improving nutrient through the integrated use of organic and inorganic manures in long term.

  9. The relationship between growth and development of above ground organs with roots of winter wheat using 32P tracer

    International Nuclear Information System (INIS)

    Wang Zhifen; Chen Xueliu; Yu Meiyan

    1997-01-01

    The relationship of growth and development between above ground organs and roots of winter wheat, Lumai-14, was studied using 32 P tracer. The results showed that before the spike formation, dry matter accumulation in roots, stems and leaves were synchronous, and after that they were asynchronous. The dry matter accumulation in stems and leaves were significantly related to that of roots throughout the whole growing period of winter wheat. After the spike formation, the dry matter accumulation in spikes was not related to that of roots. The 32 P distribution in stems and leaves were related to that of roots significantly, however, the relationship between spikes and roots was not obviously related, which was consistent with the dry matter accumulations in various organs. The metabolic activities of stems, leaves and spike were significantly related to that of roots respectively

  10. Functional quality, sensorial and shelf life characteristics of Agathi (Sesbania grandiflora (L.Poir leaves enriched breads

    Directory of Open Access Journals (Sweden)

    Aruna Mesa

    2017-05-01

    Full Text Available Background: In our modern life, theburdensof non-communicable diseases such as obesity, cancer, cardiovasculardisease,and type-2 diabetes haveincreased. By contrast, life expectancy and also cost of healthcare has increased. Therefore, individuals search other ways to improve or maintain their well-being. Inthis regard, food and pharmaceutical industriesoffer functional foods (FFs with health promotingand disease-preventing properties.Sesbania grandifloraL.Poiris a small, loosely branching tree alsoknown as the local name,Agathi. Agathibelongs to the Fabaceaefamily, and is one of the most popular green vegetables andtraditional medicinal plantsof India.The chemical analysis of Sesbania grandifloraleaves reveal it to be a rich source of nutrientsand beneficial bioactive compounds,such as antioxidants and polyphenols.Bread has been regarded as one of the most popular foodfor centuries, as agood source of calories and othernutrients. Bread is traditionally made from wheat flour.The addition of Agathi leaves led to the enhancementof functionality of common bread.Objective: Against the background of thisinformation, the present investigation was undertaken withaclear objective of evaluatingthe effects of the additionof Agathi leaves on the sensory, textural, andbaking characteristics,byexamining their microbial quality on a 5-daystorage period,at an ambient temperature,in different packaging materials, and assessingthe improvement, if any, in their antioxidant content.Methods: Shade dried Agathi leaf powder was analysedfor proximate,mineral,and phytochemical composition. Bread samples were prepared with ingredients such as yeast, salt, sugar, water,shortening, baking time,temperature using straight dough process,and varying levels ofshade dried Agathi leaves.Physical parameters such as loaf weight, loaf volume,and color values were recorded. Breads were subjected to a sensory evaluation, andin vitroanti-oxidant capacitywas evaluated. Results

  11. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae.

    Science.gov (United States)

    Islam, M Tofazzal; Croll, Daniel; Gladieux, Pierre; Soanes, Darren M; Persoons, Antoine; Bhattacharjee, Pallab; Hossain, Md Shaid; Gupta, Dipali Rani; Rahman, Md Mahbubur; Mahboob, M Golam; Cook, Nicola; Salam, Moin U; Surovy, Musrat Zahan; Sancho, Vanessa Bueno; Maciel, João Leodato Nunes; NhaniJúnior, Antonio; Castroagudín, Vanina Lilián; Reges, Juliana T de Assis; Ceresini, Paulo Cezar; Ravel, Sebastien; Kellner, Ronny; Fournier, Elisabeth; Tharreau, Didier; Lebrun, Marc-Henri; McDonald, Bruce A; Stitt, Timothy; Swan, Daniel; Talbot, Nicholas J; Saunders, Diane G O; Win, Joe; Kamoun, Sophien

    2016-10-03

    In February 2016, a new fungal disease was spotted in wheat fields across eight districts in Bangladesh. The epidemic spread to an estimated 15,000 hectares, about 16 % of the cultivated wheat area in Bangladesh, with yield losses reaching up to 100 %. Within weeks of the onset of the epidemic, we performed transcriptome sequencing of symptomatic leaf samples collected directly from Bangladeshi fields. Reinoculation of seedlings with strains isolated from infected wheat grains showed wheat blast symptoms on leaves of wheat but not rice. Our phylogenomic and population genomic analyses revealed that the wheat blast outbreak in Bangladesh was most likely caused by a wheat-infecting South American lineage of the blast fungus Magnaporthe oryzae. Our findings suggest that genomic surveillance can be rapidly applied to monitor plant disease outbreaks and provide valuable information regarding the identity and origin of the infectious agent.

  12. Studies on translocation of tritiated assimilates into potatoes and wheat grains

    International Nuclear Information System (INIS)

    Mueller, J.; Diabate, S.; Strack, S.; Raskob, W.

    1993-01-01

    Tritium released in the enviroment may be converted to organically bound tritium (OBT), mainly by photosynthesis in green leaves. Tritiated assimilates can be translocated from leaves to storage organs of crop plants. This should be considered in models calculating the dose due to the ingestion pathway. This paper describes experiments with wheat and potatoes, which have been designed to study the translocation of tritiated assimilates. Additionally, gas exchange measurements have been performed with the leaves of those plants. A model has been developed to estimate the generation of OBT and the translocation of tritiated assimilates into edible plant parts. (orig.) [de

  13. Spatiotemporal Variation and Networks in the Mycobiome of the Wheat Canopy

    Directory of Open Access Journals (Sweden)

    Rumakanta Sapkota

    2017-08-01

    Full Text Available The phyllosphere is an important habitat for a diverse microbiome and an important entry point for many pathogens. Factors that shape the phyllosphere microbiome and also the co-existence among members and how they affect disease development are largely understudied. In this study we examined the wheat mycobiome by using metabarcoding of the fungal ITS1 region. Leaf samples were taken from four cultivars grown at two locations in Denmark. Samples were taken from the three uppermost leaves and at three growth stages to better understand spatiotemporal variation of the mycobiome. Analysis of read abundances showed that geographical location had a major effect in shaping the mycobiome in the total dataset, but also leaf position, growth stage and cultivar were important drivers of fungal communities. Cultivar was most important in explaining variation in older leaves whereas location better explained the variation in younger leaves, suggesting that communities are shaped over time by the leaf environment. Network analysis revealed negative co-existence between Zymoseptoria tritici and the yeasts Sporobolomyces, Dioszegia, and Cystofilobasidiaceae. The relative abundance of Z. tritici and the yeasts was relatively constant between individual samples, suggesting that fast growing fungi rapidly occupy empty space in the phyllosphere.

  14. Cloning and Functional Analysis of MADS-box Genes, TaAG-A and TaAG-B, from a Wheat K-type Cytoplasmic Male Sterile Line

    Directory of Open Access Journals (Sweden)

    Wenlong Yang

    2017-06-01

    Full Text Available Wheat (Triticum aestivum L. is a major crop worldwide. The utilization of heterosis is a promising approach to improve the yield and quality of wheat. Although there have been many studies on wheat cytoplasmic male sterility, its mechanism remains unclear. In this study, we identified two MADS-box genes from a wheat K-type cytoplasmic male sterile (CMS line using homology-based cloning. These genes were localized on wheat chromosomes 3A and 3B and named TaAG-A and TaAG-B, respectively. Analysis of TaAG-A and TaAG-B expression patterns in leaves, spikes, roots, and stems of Chinese Spring wheat determined using quantitative RT-PCR revealed different expression levels in different tissues. TaAG-A had relatively high expression levels in leaves and spikes, but low levels in roots, while TaAG-B had relatively high expression levels in spikes and lower expression in roots, stems, and leaves. Both genes showed downregulation during the mononucleate to trinucleate stages of pollen development in the maintainer line. In contrast, upregulation of TaAG-B was observed in the CMS line. The transcript levels of the two genes were clearly higher in the CMS line compared to the maintainer line at the trinucleate stage. Overexpression of TaAG-A and TaAG-B in Arabidopsis resulted in phenotypes with earlier reproductive development, premature mortality, and abnormal buds, stamens, and stigmas. Overexpression of TaAG-A and TaAG-B gives rise to mutants with many deformities. Silencing TaAG-A and TaAG-B in a fertile wheat line using the virus-induced gene silencing (VIGS method resulted in plants with green and yellow striped leaves, emaciated spikes, and decreased selfing seed set rates. These results demonstrate that TaAG-A and TaAG-B may play a role in male sterility in the wheat CMS line.

  15. Wheat Ammonium Transporter (AMT) Gene Family: Diversity and Possible Role in Host-Pathogen Interaction with Stem Rust.

    Science.gov (United States)

    Li, Tianya; Liao, Kai; Xu, Xiaofeng; Gao, Yue; Wang, Ziyuan; Zhu, Xiaofeng; Jia, Baolei; Xuan, Yuanhu

    2017-01-01

    Ammonium transporter (AMT) proteins have been reported in many plants, but no comprehensive analysis was performed in wheat. In this study, we identified 23 AMT members (hereafter TaAMTs) using a protein homology search in wheat genome. Tissue-specific expression analysis showed that TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a were relatively more highly expressed in comparison with other TaAMTs . TaAMT1;1a, TaAMT1;1b, and TaAMT1;3a-GFP were localized in the plasma membrane in tobacco leaves, and TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a successfully complemented a yeast 31019b strain in which ammonium uptake was deficient. In addition, the expression of TaAMT1;1b in an Arabidopsis AMT quadruple mutant ( qko ) successfully restored [Formula: see text] uptake ability. Resupply of [Formula: see text] rapidly increased cellular [Formula: see text] contents and suppressed expression of TaAMT1;3a , but not of TaAMT;1;1a and TaAMT1;1b expressions. Expression of TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a was not changed in leaves after [Formula: see text] resupply. In contrast, nitrogen (N) deprivation induced TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a gene expressions in the roots and leaves. Expression analysis in the leaves of the stem rust-susceptible wheat line "Little Club" and the rust-tolerant strain "Mini 2761" revealed that TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a were specifically induced in the former but not in the latter. Rust-susceptible wheat plants grown under N-free conditions exhibited a lower disease index than plants grown with [Formula: see text] as the sole N source in the medium after infection with Puccinia graminis f. sp. tritici , suggesting that [Formula: see text] and its transport may facilitate the infection of wheat stem rust disease. Our findings may be important for understanding the potential function TaAMTs in wheat plants.

  16. Molecular markers associated with salt tolerance in Egyptian wheats ...

    African Journals Online (AJOL)

    Salinity affects plant growth by the osmotic stress of the salt around the roots, as well as by toxicity caused by excessive accumulation of salt in leaves. In the present study, seven common (Triticum aestivum) and two durum (T. turgidum ssp. Durum) wheat genotypes were subjected to salt stress for 2 weeks. Salt stress ...

  17. Identification of Proteins Using iTRAQ and Virus-Induced Gene Silencing Reveals Three Bread Wheat Proteins Involved in the Response to Combined Osmotic-Cold Stress.

    Science.gov (United States)

    Zhang, Ning; Zhang, Lingran; Shi, Chaonan; Zhao, Lei; Cui, Dangqun; Chen, Feng

    2018-05-25

    Crops are often subjected to a combination of stresses in the field. To date, studies on the physiological and molecular responses of common wheat to a combination of osmotic and cold stresses, however, remain unknown. In this study, wheat seedlings exposed to osmotic-cold stress for 24 h showed inhibited growth, as well as increased lipid peroxidation, relative electrolyte leakage, and soluble sugar contents. iTRAQ-based quantitative proteome method was employed to determine the proteomic profiles of the roots and leaves of wheat seedlings exposed to osmotic-cold stress conditions. A total of 250 and 258 proteins with significantly altered abundance in the roots and leaves were identified, respectively, and the majority of these proteins displayed differential abundance, thereby revealing organ-specific differences in adaptation to osmotic-cold stress. Yeast two hybrid assay examined five pairs of stress/defense-related protein-protein interactions in the predicted protein interaction network. Furthermore, quantitative real-time PCR analysis indicated that abiotic stresses increased the expression of three candidate protein genes, i.e., TaGRP2, CDCP, and Wcor410c in wheat leaves. Virus-induced gene silencing indicated that three genes TaGRP2, CDCP, and Wcor410c were involved in modulating osmotic-cold stress in common wheat. Our study provides useful information for the elucidation of molecular and genetics bases of osmotic-cold combined stress in bread wheat.

  18. Evaluation of Cd effects on growth and some oxidative stress parameters of wheat cultivars during seedling stage

    Directory of Open Access Journals (Sweden)

    Ezatollah Esfandiari

    2016-03-01

    S-transferase, catalase and ascorbate peroxidase enzymes are probably the main reasons of the lipid peroxidation increase in Kohdasht cultivar. However, there was no damage on membranes of Izengran and Pishtase cultivars, which indicates the balance between production and scavenging of damaging factors of these cultivars. Generally, it can be stated that available Cd in medium was adsorbed and accumulated in wheat leaves resulting in reduction in dry matter of different parts and whole seedling of wheat which is due to susebtability of different cultivars to Cd. However, there were no oxidative stresses in leaves of Gaskogen, Agosta and MV17 cultivars due to their better defense mechanisms.

  19. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    Science.gov (United States)

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Accelerated Senescence and Enhanced Disease Resistance in Hybrid Chlorosis Lines Derived from Interspecific Crosses between Tetraploid Wheat and Aegilops tauschii

    Science.gov (United States)

    Tosa, Yukio; Yoshida, Kentaro; Park, Pyoyun; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions. PMID:25806790

  1. Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Directory of Open Access Journals (Sweden)

    Hiroki Nakano

    Full Text Available Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions.

  2. Saved Leave Scheme (SLS) : Simplified procedure for the transfer of leave to saved leave accounts

    CERN Multimedia

    HR Division

    2001-01-01

    As part of the process of streamlining procedures, the HR and AS Divisions have jointly developed a system whereby annual and compensatory leave will henceforth be automatically transferred1) to saved leave accounts. Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'2) annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No. 22 B) can be transferred to the saved leave account at the end of the leave year (30 September). Previously, every person taking part in the scheme has been individually issued with a form for the purposes of requesting the transfer of leave to the leave account and the transfer has then had to be done manually by HR Division. To streamline the procedure, unused leave of all those taking part in the saved leave scheme at the closure of of the leave-year accounts will henceforth be transferred automatically to the saved leave account on that date. This simplification is in the ...

  3. Variation in chlorophyll content per unit leaf area in spring wheat and implications for selection in segregating material.

    Directory of Open Access Journals (Sweden)

    John Hamblin

    Full Text Available Reduced levels of leaf chlorophyll content per unit leaf area in crops may be of advantage in the search for higher yields. Possible reasons include better light distribution in the crop canopy and less photochemical damage to leaves absorbing more light energy than required for maximum photosynthesis. Reduced chlorophyll may also reduce the heat load at the top of canopy, reducing water requirements to cool leaves. Chloroplasts are nutrient rich and reducing their number may increase available nutrients for growth and development. To determine whether this hypothesis has any validity in spring wheat requires an understanding of genotypic differences in leaf chlorophyll content per unit area in diverse germplasm. This was measured with a SPAD 502 as SPAD units. The study was conducted in series of environments involving up to 28 genotypes, mainly spring wheat. In general, substantial and repeatable genotypic variation was observed. Consistent SPAD readings were recorded for different sampling positions on leaves, between different leaves on single plant, between different plants of the same genotype, and between different genotypes grown in the same or different environments. Plant nutrition affected SPAD units in nutrient poor environments. Wheat genotypes DBW 10 and Transfer were identified as having consistent and contrasting high and low average SPAD readings of 52 and 32 units, respectively, and a methodology to allow selection in segregating populations has been developed.

  4. The relationship of sick leave benefits, employment patterns, and individual characteristics to radiation therapy-related fatigue.

    Science.gov (United States)

    Poirier, Patricia

    2006-05-03

    To examine the relationship among sick leave benefits, employment patterns, individual characteristics, and fatigue in patients receiving radiation therapy. Prospective, longitudinal design. A community hospital radiation oncology department. 77 patients receiving radiation therapy to the breast, chest, head and neck, pelvis, or prostate. All were employed at the time of diagnosis. The Piper Integrated Fatigue Model guided the study. The Revised Piper Fatigue Scale (PFS), Brief Fatigue Inventory, and a single-item scale were used to measure five dimensions of subjective fatigue. Sick leave, employment, individual characteristics, and fatigue were measured at baseline, weekly during treatment, and at one month post-treatment. Employment patterns, availability of sick leave benefits, and fatigue. Mean total fatigue scores on the PFS ranged from 0-4.77 at baseline (mean = 0.46, SD = 0.93), 0-8.77 at the completion of treatment (mean = 2.84, SD = 2.40), and 0-4.82 at one month post-treatment (mean = 0.77, SD = 1.20). Side effects, education, living situation, age, treatment site, and work were associated with fatigue along the trajectory of radiation therapy. Study participants who were working at the end of radiation had lower fatigue scores than those who were not. Availability of sick leave benefits was associated with employment patterns during treatment. Work may have benefits during radiation therapy but may be affected by radiation therapy-related fatigue. Management of treatment side effects, including fatigue, may help patients remain in the workforce during radiation.

  5. Simple measurement of light-interception by individual leaves in fruit vegetables by using an integrated solarimeter film

    International Nuclear Information System (INIS)

    Watanabe, S.; Nakano, Y.; Okano, K.

    2001-01-01

    Applicability of the integrated solarimeter film (Taisei Chemical Co. Ltd., Optleaf R-2D) for the measurement of amount of light-interception by individual leaves in fruit vegetables was investigated The fading rate of the film was highly correlated with the values measured by an integrated solarimeter at an open field, though the rate was depended on the air temperature during the measurement. Integrated solar radiation in a glasshouse could be estimated by the film as well as at an open field. Amount of light-interception by individual leaves of vertically trained watermelon plants could be measured by the film and light-interception characteristics of the plants could be expressed numerically. The integrated solarimeter film would be useful for analyzing light-interception characteristics in fruit vegetables

  6. [Effects of nitrogen application rate on nitrate reductase activity, nitric oxide content and gas exchange in winter wheat leaves].

    Science.gov (United States)

    Shangguan, Zhou-Ping

    2007-07-01

    In this paper, the effects of different nitrogen application rates on the nitrate reductase (NR) activity, nitric oxide (NO) content and gas exchange parameters in winter wheat (Triticum aestivum L.) leaves from tillering stage to heading stage and on grain yield were studied. The results showed that the photosynthetic rate (P(n)), transpiration rate (T(r)) and instantaneous water use efficiency (IWUE) of leaves as well as the grain yield were increased with increasing nitrogen application rate first but decreased then, with the values of all these parameters reached the highest in treatment N180. The NR activity increased with increasing nitrogen application rate, and there was a significant linear correlation between NR activity and NO content at tillering and jointing stages (R2 > or = 0.68, n = 15). NO content had a quadratic positive correlation with stomatal conductance (G(s)) (R2 > or = 0.43, n = 15). The lower NO content produced by lower NR activity under lower nitrogen application rate promoted the stoma opened, while the higher NO content produced by higher NR activity under higher nitrogen application rate induced the stoma closed. Although the leaf NO content had a quadratic positive correlation with stomatal conductance (R2 > or = 0.36, n = 15), no remarkable correlation was observed between NR activity and NO content at heading stage, suggesting that nitrogen fertilization could not affect leaf NO content through promoting NR activity, and further more, regulate the stomatal action. Under appropriate nitrogen application the leaf NR activity and NO content were lower, G(s), T(r) and IWUE were higher, and thus, the crop had a better drought-resistant ability, higher P(n), and higher grain yield.

  7. Studies on tritium incorporation into wheat plants after short-term exposure to atmospheric tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.; Raskob, W.

    1996-01-01

    The paper summarizes the results of a series of laboratory experiments to study the uptake, loss, conversion and translocation of tritium in wheat plants following a short-term exposure to atmospheric tritiated water vapour (HTO) under laboratory conditions. The experiments were accompanied by the development of a Plant-OBT-Model to calculate the tritium behaviour in wheat. Exposures of potted plants were carried out between anthesis and maturity, under day conditions at two different light intensities (900 μmol m -2 s -1 and 120 μmol m -2 s -1 photosynthetic active radiation) and under night conditions. In leaves, the tritium uptake into tissue water tritium (TWT) was about four times lower under night conditions than day conditions. Organically bound tritium (OBT) was generated in leaves, stems and ears under day as well as under night conditions. The initial relative OBT concentrations in leaves observed under night conditions were about 50% of those under day conditions. OBT was translocated into the grain in dependence on the growth rate of the grain. Due to incorporation of new organic matter with lower OBT concentration into the grain, the specific OBT concentrations decreased slightly until harvest but the total OBT was rather constant. Once translocation to grain has taken place, OBT is lost only slowly. The growth of the plants has been calibrated with the measured growth data of winter wheat and spring wheat. Subsequently, the tritium incorporation was calibrated using the results of the exposure experiments in the same year. The final OBT concentration in the grain can be predicted with sufficient precision. However, the modelling of the OBT formation and turnover processes right after exposure to tritium needs improvement. A comprehensive validation of the model with independent data sets is still necessary. (J.P.N.)

  8. Species- and age-dependent sensitivity to ozone in young plants of pea, wheat and spinach. Effects on acyl lipid and pigment content and metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, A.S.; Wallin, G.; Sandelius, A.S.

    1996-11-01

    Acyl lipids and pigments were analyzed in young plants of garden pea, spring wheat and spinach exposed to < 5 or 65 nl l{sup -1} ozone 12 h per day for 5 days, in one set of experiments, the plants were exposed to {sup 14}CO{sub 2} for 2 h 3 days prior to ozone exposure. The plants responded differently to the moderately enhanced level of ozone used. Spinach was not at all sensitive while in both pea and wheat, leaves of different ages differed in ozone sensitivity. In pea, ozone sensitivity increased with leaf age. In the second and third oldest leaves, the amounts of galactolipids per leaf area and the proportions of 18:3 of the total lipid extract and of phosphatidylglycerol decreased. In the second oldest leaf, ozone also caused a decreased proportion of 18:3 of monogalactosyldiacylglycerol. In the fourth oldest leaf, lipid composition and galactolipid unsaturation was unaffected, but ozone caused decreased leaf expansion resulting in increased acyl lipid content per leaf area. In both the first and second leaves of wheat, ozone fumigation caused a marked decrease in the content of monogalactosyldiacylglycerol and in the first leaf, the contents of phosphatidylcholine and phosphatidylethanolamine increased. The proportion of 18:3 in phosphatidylcholine was larger in ozone-fumigated than in control plants, while the reverse applied for phosphatidylglycerol. In the oldest sampled leaves of pea and wheat, ozone caused an increase in the radioactivity associated with {beta}-carotene, indicting increased turnover. Thus, while spinach was unaffected, in both pea and whet ozone caused a decrease in the proportion of chloroplast membrane lipids to non-chloroplast membrane lipids in older leaves while younger leaves were less sensitive. (au) 21 refs.

  9. Phytotoxic activity of crude aqueous extracts and fractions of young leaves of Sapindus saponaria L. (Sapindaceae

    Directory of Open Access Journals (Sweden)

    Patrícia Umeda Grisi

    2013-03-01

    Full Text Available The aim of this study was to evaluate the phytotoxic potential of aqueous extract of young leaves of Sapindus saponaria L. (soapberry on the diaspore germination and seedling growth Lactuca sativa L. (lettuce and Allium cepa L. (onion, as well as to determine, by bioassay-guided fractioning, whether the fractionated extracts of those leaves are phytotoxic to Triticum aestivum L. (wheat coleoptiles. The aqueous extract was prepared using 100 g of dried plant material dissolved in 1000 ml of distilled water, resulting in a concentration of 10.0%. Distilled water was added in order to obtain dilutions of 7.5%, 5.0%, and 2.5%. The extraction was carried out with young leaves (in powder form and organic solvents of various polarities. We fractioned the ethyl acetate extract using column chromatography. The phytotoxic potential of the aqueous extract of young leaves S. saponaria varied according to the receiving species and the concentration-dependent inhibitory effect. The ethyl acetate extract, specifically fraction 6 (57-70, had the greatest inhibitory effect on the elongation of wheat coleoptiles, indicating that the compounds responsible for the phytotoxic effect reside within this fraction.

  10. Differential sensitivity of light-harnessing photosynthetic events in wheat and sunflower to exogenously applied ionic and nanoparticulate silver.

    Science.gov (United States)

    Pardha-Saradhi, P; Shabnam, Nisha; Sharmila, P; Ganguli, Ashok K; Kim, Hyunook

    2018-03-01

    Potential impacts of inevitable leaks of silver nanoparticles (AgNPs) into environment on human beings need attention. Owing to the vitality of photosynthesis in maintaining life and ecosystem functioning, impacts of exogenously applied nanoparticulate and Ag + on photosystem (PS)II function, which governs overall photosynthesis, in wheat and sunflower were evaluated. PSII efficiency and related Chl a fluorescence kinetics of these two plants remained unaffected by AgNPs. However, Ag + caused a significant decline in the PSII activity and related fluorescence steps in wheat, but not in sunflower. Electron flow between Q A and PQ pool was found most sensitive to Ag + . Number of active reaction centers, electron transport, trapping of absorbed light for photochemistry, and performance index declined, while dissipation of absorbed light energy as heat significantly increased in wheat exposed to Ag + . Total antioxidant activity in sunflower was least affected by both Ag and AgNPs. In contrast, in the case of wheat, the antioxidant activity was declined by Ag + but not by AgNPs. Further, the amount of silver absorbed by plants exposed to Ag + was higher than that absorbed by plants exposed to AgNPs. While wheat retained majority of Ag in its roots, sunflower showed major Ag accumulation in stem. Photosynthetic events in sunflower, unlike wheat, were least affected as no detectable Ag levels was recorded in their leaves. Our findings revealed that AgNPs seemed non/less-toxic to light harnessing photosynthetic machinery of wheat, compared to Ag + . Photosynthetic events in sunflower were not affected by Ag + , either, as its translocation to leaves was restricted. Copyright © 2017. Published by Elsevier Ltd.

  11. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali

    2011-06-26

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  12. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali; Eissa, Hala F.; El-Domyati, Fotouh M.; Saleh, Osama Mesilhy; Ibrahim, Nasser E.; Salama, M. I.; Mahfouz, Magdy M.; Bahieldin, Ahmed M.

    2011-01-01

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  13. Induction of resistance by silicon in wheat plants to alate and apterous morphs of Sitobion avenae (Hemiptera: Aphididae).

    Science.gov (United States)

    Dias, P A S; Sampaio, M V; Rodrigues, M P; Korndörfer, A P; Oliveira, R S; Ferreira, S E; Korndörfer, G H

    2014-08-01

    Despite the knowledge about the effects of silicon augmenting antibiosis and nonpreference of plants by apterous aphids, few studies exist on such effects with alate aphids. This study evaluated the effects of silicon fertilization on the biology of alate and apterous morphs of Sitobion avenae (F.) (Hemiptera: Aphididae), and the effect on nonpreference by S. avenae alates for wheat plants with or without silicon fertilization. A method for rearing aphids on detached leaves was evaluated comparing the biology of apterous aphids reared on wheat leaf sections and on whole plants with and without silicon fertilization. Because the use of detached leaves was a reliable method, the effect of silicon fertilization on the biology of apterous and alate S. avenae was assessed using wheat leaf sections. Biological data of aphids were used to calculate a fertility life table. Finally, the effect of silicon fertilization on the nonpreference of alate aphids was carried out for both vegetative and reproductive phases of wheat. Thirty alate aphids were released in the center of a cage, and the number of aphids per whole plant with or without silicon fertilization was observed. Silicon fertilization induced antibiosis resistance in wheat plants to apterous morphs as shown by reduced fecundity, reproductive period, longevity, intrinsic rate of increase, and net reproductive rate; however, alates were unaffected. Plants that received silicon fertilization had fewer alate aphids in both the vegetative and reproductive phases. Thus, silicon fertilization can reduce colonization by alates, enhancing nonpreference resistance, and population growth of apterous S. avenae in wheat plants.

  14. REMINDER Saved Leave Scheme (SLS) : Simplified procedure for the transfer of leave to saved leave accounts

    CERN Multimedia

    HR Division

    2001-01-01

    As part of the process of streamlining procedures, the HR and AS Divisions have jointly developed a system whereby annual and compensatory leave will henceforth be automatically transferred1) to saved leave accounts. Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'2)Previously, every person taking part in the scheme has been individually issued with a form for the purposes of requesting the transfer of leave to the leave account and the transfer has then had to be done manually by HR Division. To streamline the procedure, unused leave of all those taking part in the saved leave scheme at the closure of the leave-year accounts will henceforth be transferred automatically to the saved leave account on that date. This simplification is in the interest of all parties concerned. This automatic transfer procedure has a number of advantages for participants in the SLS scheme. First, staff members will no longer have to take any administrative steps. Secondly, the new proced...

  15. Allometric analysis of the effects of density on reproductive allocation and Harvest Index in 6 varieties of wheat (Triticum)

    DEFF Research Database (Denmark)

    Qin, Xiao-liang; Weiner, Jacob; Qi, Lin

    2013-01-01

    allocation should be analyzed and interpreted allometrically because ratios or fractions such as Reproductive Effort or Harvest Index are size dependent. We investigated reproductive allocation of individuals in 6 varieties of Triticum (wheat) grown at a wide range of densities. We harvested leaves, stems...... size. There were significant differences among the varieties in the allometric exponent (slope of log–log relationship) of grain versus vegetative mass, such that some varieties produced higher yield (and therefore had a higher Harvest Index) than others when plants were small, while others had higher...... yield at larger sizes. Thus, the Harvest Index and its rank among varieties changed with plant size, which puts into question the practice of selecting for Harvest Index when crop performance varies greatly among individuals, years or environments. Selection for a high Harvest Index when individuals...

  16. Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves.

    Science.gov (United States)

    Chen, Lin; Dodd, Ian C; Davies, William J; Wilkinson, Sally

    2013-10-01

    The mechanism of age-induced decreased stomatal sensitivity to abscisic acid (ABA) and soil drying has been explored here. Older, fully expanded leaves partly lost their ability to close stomata in response to foliar ABA sprays, and soil drying which stimulated endogenous ABA production, while young fully expanded leaves closed their stomata more fully. However, ABA- or soil drying-induced stomatal closure of older leaves was partly restored by pretreating plants with 1-methylcyclopropene (1-MCP), which can antagonize ethylene receptors, or by inoculating soil around the roots with the rhizobacterium Variovorax paradoxus 5C-2, which contains 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase. ACC (the immediate biosynthetic precursor of ethylene) sprays revealed higher sensitivity of stomata to ethylene in older leaves than younger leaves, despite no differences in endogenous ACC concentrations or ethylene emission. Taken together, these results indicate that the relative insensitivity of stomatal closure to ABA and soil drying in older leaves is likely due to altered stomatal sensitivity to ethylene, rather than ethylene production. To our knowledge, this is the first study to mechanistically explain diminished stomatal responses to soil moisture deficit in older leaves, and the associated reduction in leaf water-use efficiency. © 2013 John Wiley & Sons Ltd.

  17. Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed

    Energy Technology Data Exchange (ETDEWEB)

    Larue, Camille, E-mail: Camille.larue@cea.fr [UMR3299 CEA-CNRS, Service Interdisciplinaire des Systemes Moleculaires et Materiaux, Laboratoire Structure et Dynamique par Resonance Magnetique (LSDRM), CEA Saclay, 91191 Gif sur Yvette (France); Pinault, Mathieu, E-mail: Mathieu.pinault@cea.fr [CEA, IRAMIS, SPAM, Laboratoire Francis Perrin (CNRS URA 2453), 91191 Gif sur Yvette (France); Czarny, Bertrand, E-mail: Bertrand.czarny@cea.fr [CEA, iBiTecS SIMOPRO, CEA Saclay, 91191 Gif sur Yvette (France); Georgin, Dominique, E-mail: Dominique.georgin@cea.fr [CEA, IBiTecS, SCBM, CEA Saclay, 91191 Gif sur Yvette (France); Jaillard, Danielle, E-mail: danielle.jaillard@u-psud.fr [UMR8195 CNRS-Universite Paris-Sud, Centre Commun de Microscopie Electronique, F-91405 Orsay (France); Bendiab, Nedjma, E-mail: Nedjma.bendiab@grenoble.cnrs.fr [Institut Neel, CNRS-Universite Joseph Fourier, 25 rue des Martyrs, 38049 Grenoble Cedex 9 (France); Mayne-L' Hermite, Martine, E-mail: martine.mayne@cea.fr [CEA, IRAMIS, SPAM, Laboratoire Francis Perrin (CNRS URA 2453), 91191 Gif sur Yvette (France); Taran, Frederic, E-mail: frederic.taran@cea.fr [CEA, IBiTecS, SCBM, CEA Saclay, 91191 Gif sur Yvette (France); Dive, Vincent, E-mail: vincent.dive@cea.fr [CEA, iBiTecS SIMOPRO, CEA Saclay, 91191 Gif sur Yvette (France); and others

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Wheat and rapeseed accumulate MWCNT through root exposure, and translocate them to their leaves. Black-Right-Pointing-Pointer Transfer factor of MWCNT from hydroponic solution to leaves never exceeds 0.005 Per-Mille-Sign . Black-Right-Pointing-Pointer MWCNT majorly accumulate in the most peripheral areas and in newly developed leaves. Black-Right-Pointing-Pointer Accumulation of less than 200 ng MWCNT per g of leaf does not impact plant development and physiology. - Abstract: Environmental contamination with carbon nanotubes would lead to plant exposure and particularly exposure of agricultural crops. The only quantitative exposure data available to date which can be used for risk assessment comes from computer modeling. The aim of this study was to provide quantitative data relative to multi-walled carbon nanotube (MWCNT) uptake and distribution in agricultural crops, and to correlate accumulation data with impact on plant development and physiology. Roots of wheat and rapeseed were exposed in hydroponics to uniformly {sup 14}C-radiolabeled MWCNTs. Radioimaging, transmission electron microscopy and raman spectroscopy were used to identify CNT distribution. Radioactivity counting made it possible absolute quantification of CNT accumulation in plant leaves. Impact of CNTs on seed germination, root elongation, plant biomass, evapotranspiration, chlorophyll, thiobarbituric acid reactive species and H{sub 2}O{sub 2} contents was evaluated. We demonstrate that less than 0.005 Per-Mille-Sign of the applied MWCNT dose is taken up by plant roots and translocated to the leaves. This accumulation does not impact plant development and physiology. In addition, it does not induce any modifications in photosynthetic activity nor cause oxidative stress in plant leaves. Our results suggest that if environmental contamination occurs and MWCNTs are in the same physico-chemical state than the ones used in the present article, MWCNT transfer to

  18. Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed

    International Nuclear Information System (INIS)

    Larue, Camille; Pinault, Mathieu; Czarny, Bertrand; Georgin, Dominique; Jaillard, Danielle; Bendiab, Nedjma; Mayne-L’Hermite, Martine; Taran, Frédéric; Dive, Vincent

    2012-01-01

    Highlights: ► Wheat and rapeseed accumulate MWCNT through root exposure, and translocate them to their leaves. ► Transfer factor of MWCNT from hydroponic solution to leaves never exceeds 0.005‰. ► MWCNT majorly accumulate in the most peripheral areas and in newly developed leaves. ► Accumulation of less than 200 ng MWCNT per g of leaf does not impact plant development and physiology. - Abstract: Environmental contamination with carbon nanotubes would lead to plant exposure and particularly exposure of agricultural crops. The only quantitative exposure data available to date which can be used for risk assessment comes from computer modeling. The aim of this study was to provide quantitative data relative to multi-walled carbon nanotube (MWCNT) uptake and distribution in agricultural crops, and to correlate accumulation data with impact on plant development and physiology. Roots of wheat and rapeseed were exposed in hydroponics to uniformly 14 C-radiolabeled MWCNTs. Radioimaging, transmission electron microscopy and raman spectroscopy were used to identify CNT distribution. Radioactivity counting made it possible absolute quantification of CNT accumulation in plant leaves. Impact of CNTs on seed germination, root elongation, plant biomass, evapotranspiration, chlorophyll, thiobarbituric acid reactive species and H 2 O 2 contents was evaluated. We demonstrate that less than 0.005‰ of the applied MWCNT dose is taken up by plant roots and translocated to the leaves. This accumulation does not impact plant development and physiology. In addition, it does not induce any modifications in photosynthetic activity nor cause oxidative stress in plant leaves. Our results suggest that if environmental contamination occurs and MWCNTs are in the same physico-chemical state than the ones used in the present article, MWCNT transfer to the food chain via food crops would be very low.

  19. Joint stress of chlorimuron-ethyl and cadmium on wheat Triticum aestivum at biochemical levels

    International Nuclear Information System (INIS)

    Wang, M.-E; Zhou, Q.-X.

    2006-01-01

    Biochemical responses to joint stress of chlorimuron-ethyl and cadmium (Cd) in wheat Triticum aestivum were examined. The joint action of chlorimuron-ethyl and Cd weakened the inhibition of Cd or chlorimuron-ethyl on the formation of chlorophyll. It was deduced that wheat plants had the capability to protect themselves by increasing the activity of the antioxidant enzyme peroxidase (POD) with the exposure time. The joint effect of chlorimuron-ethyl and Cd on the superoxide dismutase (SOD) activity in leaves was additive, while the joint effect on the SOD activity in roots was determined by the interaction of chlorimuron-ethyl and Cd in wheat. It was also concluded that the change of malondialdehyde (MDA) content in wheat might not be a good biomarker in the oxidative damage by chlorimuron-ethyl, while a decrease in the soluble protein content and POD activity in roots could be considered as a biomarker in the damage of wheat by chlorimuron-ethyl and Cd. - Soluble protein content and peroxidase activity in seedlings were the biomarkers indicating joint stress of chemicals

  20. Effect of leaf and soil contaminations on heavy metals content in spring wheat crops

    International Nuclear Information System (INIS)

    Weber, R.; Hrynczuk, B.

    2000-01-01

    Glass house experiments were carried out in Wagner pots containing 6 kg of soil. The amounts were compared of Zn, Pb and Cd taken up by the crop of spring wheat from contamination introduced into the soil or upon leaves. The heavy metals were labelled with the radioactive isotopes 65 Zn, 210 Pb and 115 Cd. The experiment was performed as a series of independent analyses in four replications. The dynamics of the labelled heavy metals translocation from contaminations sprayed on the upper or bottom side of the flag leaf was also tested. The highest concentration of 65 Zn was found in the straw and gain of wheat. much higher amounts of the metals appeared to have been taken up by the plants from leaf contamination than from soil. The highest dynamics of translocation from leaves to other vegetative and generative organs of plants was that of zinc. (author)

  1. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat.

    Science.gov (United States)

    Barunawati, Nunun; Giehl, Ricardo F Hettwer; Bauer, Bernhard; von Wirén, Nicolaus

    2013-01-01

    The fortification of cereal grains with metal micronutrients is a major target to combat human malnutrition of Fe and Zn. Based on recent studies showing that N fertilization can promote Fe and Zn accumulation in cereal grains, we investigated here the influence of nitrate- or ammonium-based N fertilization on the accumulation of Fe, Zn, and Cu as well as metal chelator pools in flag leaves and grains of winter wheat. Fertilization with either N form increased the concentrations of N and of the metal chelator nicotianamine (NA) in green leaves, while 2'-deoxymugineic acid (DMA) remained unaffected. Despite the differential response to N fertilization of NA and DMA levels in flag leaves, N fertilization remained without any significant effect on the net export of these metals during flag leaf senescence, which accounted for approximately one third of the total Fe, Zn, or Cu content in leaves. The significant increase in the accumulation of Fe, Zn, and Cu found in the grains of primarily ammonium-fertilized plants was unrelated to the extent of metal retranslocation from flag leaves. These results indicate that an increased N nutritional status of flag leaves promotes the accumulation of Fe, Zn, and Cu in flag leaves, which is accompanied by an increased pool of NA but not of DMA. With regard to the far higher concentrations of DMA relative to NA in leaves and leaf exudates, DMA may be more relevant for the mobilization and retranslocation of these metals in high-yielding wheat production.

  2. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat

    Directory of Open Access Journals (Sweden)

    Nunun eBarunawati

    2013-08-01

    Full Text Available The fortification of cereal grains with metal micronutrients is a major target to combat human malnutrition of Fe and Zn. Based on recent studies showing that N fertilization can promote Fe and Zn accumulation in cereal grains, we investigated here the influence of nitrate- or ammonium-based N fertilization on the accumulation of Fe, Zn and Cu as well as metal chelator pools in flag leaves and grains of winter wheat. Fertilization with either N form increased the concentrations of N and of the metal chelator nicotianamine (NA in green leaves, while 2’-deoxymugineic acid (DMA remained unaffected. Despite the differential response to N fertilization of NA and DMA levels in flag leaves, N fertilization remained without any significant effect on the net export of these metals during flag leaf senescence, which accounted for approx. one third of the total Fe, Zn or Cu content in leaves. The significant increase in the accumulation of Fe, Zn and Cu found in the grains of primarily ammonium-fertilized plants was unrelated to the extent of metal retranslocation from flag leaves. These results indicate that an increased N nutritional status of flag leaves promotes the accumulation of Fe, Zn and Cu in flag leaves, which is accompanied by an increased pool of NA but not of DMA. With regard to the far higher concentrations of DMA relative to NA in leaves and leaf exudates, DMA may be more relevant for the mobilization and retranslocation of these metals in high-yielding wheat production.

  3. Proteomic analysis of the compatible interaction of wheat and powdery mildew (Blumeria graminis f. sp. tritici).

    Science.gov (United States)

    Li, Jie; Yang, Xiwen; Liu, Xinhao; Yu, Haibo; Du, Congyang; Li, Mengda; He, Dexian

    2017-02-01

    Proteome characteristics of wheat leaves with the powdery mildew pathogen Blumeria graminis f. sp. tritici (Bgt) infection were investigated by two-dimensional electrophoresis and tandem MALDI-TOF/TOF-MS. We identified 46 unique proteins which were differentially expressed at 24, 48, and 72 h post-inoculation. The functional classification of these proteins showed that most of them were involved in photosynthesis, carbohydrate and nitrogen metabolism, defense responses, and signal transduction. Upregulated proteins included primary metabolism pathways and defense responses, while proteins related to photosynthesis and signal transduction were mostly downregulated. As expected, more antioxidative proteins were activated at the later infection stage than the earlier stage, suggesting that the antioxidative system of host plays a role in maintaining the compatible interaction between wheat and powdery mildew. A high accumulation of 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase in infected leaves indicated the regulation of the TCA cycle and pentose phosphate pathway in parallel to the activation of host defenses. The downregulation of MAPK5 could be facilitated for the compatible interaction of wheat plants and Bgt. qRT-PCR analysis supported the data of protein expression profiles. Our results reveal the relevance of primary plant metabolism and defense responses during compatible interaction, and provide new insights into the biology of susceptible wheat in response to Bgt infection. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Genetic mapping of a novel recessive allele for non-glaucousness in wild diploid wheat Aegilops tauschii: implications for the evolution of common wheat.

    Science.gov (United States)

    Nishijima, Ryo; Tanaka, Chisa; Yoshida, Kentaro; Takumi, Shigeo

    2018-04-01

    Cuticular wax on the aerial surface of plants has a protective function against many environmental stresses. The bluish-whitish appearance of wheat leaves and stems is called glaucousness. Most modern cultivars of polyploid wheat species exhibit the glaucous phenotype, while in a wild wheat progenitor, Ae. tauschii, both glaucous and non-glaucous accessions exist. Iw2, a wax inhibitor locus on the short arm of chromosome 2D, is the main contributor to this phenotypic variation in Ae. tauschii, and the glaucous/non-glaucous phenotype of Ae. tauschii is usually inherited by synthetic hexaploid wheat. However, a few synthetic lines show the glaucous phenotype although the parental Ae. tauschii accessions are non-glaucous. Molecular marker genotypes indicate that the exceptional non-glaucous Ae. tauschii accessions share the same genotype in the Iw2 chromosomal region as glaucous accessions, suggesting that these accessions have a different causal locus for their phenotype. This locus was assigned to the long arm of chromosome 3D using an F 2 mapping population and designated W4, a novel glaucous locus in Ae. tauschii. The dominant W4 allele confers glaucousness, consistent with phenotypic observation of Ae. tauschii accessions and the derived synthetic lines. These results implied that glaucous accessions of Ae. tauschii with the W2W2iw2iw2W4W4 genotype could have been the D-genome donor of common wheat.

  5. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat.

    Science.gov (United States)

    Zou, Shenghao; Wang, Huan; Li, Yiwen; Kong, Zhaosheng; Tang, Dingzhong

    2018-04-01

    Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Leaf senescence and nutrient remobilisation in barley and wheat

    DEFF Research Database (Denmark)

    Gregersen, P L; Holm, P B; Krupinska, K

    2008-01-01

    Extensive studies have been undertaken on senescence processes in barley and wheat and their importance for the nitrogen use efficiency of these crop plants. During the senescence processes, proteins are degraded and nutrients are re-mobilised from senescing leaves to other organs, especially...... of chloroplasts is summarised. Rubisco is thought to be released from chloroplasts into vesicles containing stroma material (RCB = Rubisco-containing bodies). These vesicles may then take different routes for their degradation. Transcriptome analyses on barley and wheat senescence have identified genes involved...... in degradative, metabolic and regulatory processes that could be used in future strategies aimed at modifying the senescence process. The breeding of crops for characters related to senescence processes, e.g. higher yields and better nutrient use efficiency, is complex. Such breeding has to cope with the dilemma...

  7. Suppression of wheat TaCDK8/TaWIN1 interaction negatively affects germination of Blumeria graminis f.sp. tritici by interfering with very-long-chain aldehyde biosynthesis.

    Science.gov (United States)

    Kong, Lingyao; Chang, Cheng

    2018-01-01

    Wheat TaCDK8 interacts with TaWIN1 to regulate very-long-chain aldehyde biosynthesis required for efficient germination of Blumeria graminis f.sp. tritici. Powdery mildew caused by Blumeria graminis f.sp. tritici (Bgt) is a devastating disease of common wheat (Triticum aestivum L.). Bgt infection initiates with its conidia germination on the aerial surface of wheat. In this study, we isolated the cyclin-dependent kinase 8 (TaCDK8) from wheat cultivar Jing411 and found that silencing of TaCDK8 impeded Bgt germination. The biochemical and molecular-biological assays revealed that TaCDK8 interacts with and phosphorylates the wheat transcription factor wax inducer 1 (TaWIN1) to stimulate the TaWIN1-dependent transcription. Bgt conidia on the leaves of TaWIN1-silenced plants also showed reduced germination. Gas chromatographic analysis revealed that knockdown of TaCDK8 or TaWIN1 resulted in decreases of wax components and cutin monomers in wheat leaves. Moreover, Bgt germination on leaves of TaCDK8 or TaWIN1 silenced plants could be fully restored by application of wild-type cuticular wax. In vitro studies demonstrated that very-long-chain aldehydes absent from the cuticular wax of the TaCDK8 or TaWIN1 silenced plants were capable of chemically stimulating Bgt germination. These results implicated that the suppression of TaCDK8/TaWIN1 interaction negatively affects Bgt germination by interfering with very-long-chain aldehyde biosynthesis required for efficient fungal germination.

  8. Bacillus velezensis CC09: A Potential 'Vaccine' for Controlling Wheat Diseases.

    Science.gov (United States)

    Kang, Xingxing; Zhang, Wanling; Cai, Xunchao; Zhu, Tong; Xue, Yarong; Liu, Changhong

    2018-04-11

    Biocontrol bacteria that can act like a "vaccine", stimulating plant resistance to pathogenic diseases, are still not fully elucidated. In this study, an endophytic bacterium, Bacillus velezensis CC09, labeled with green fluorescent protein, was tested for its colonization, migration, and expression of genes encoding iturin A synthetase within wheat tissues and organs as well as for protective effects against wheat take-all and spot blotch diseases. The results showed that strain CC09 not only formed biofilm on the root surface but was also widely distributed in almost every tissue, including the epidermis, cortex, and xylem vessels, and even migrated to stems and leaves, resulting in 66.67% disease-control efficacy (DCE) of take-all and 21.64% DCE of spot blotch. Moreover, the gene cluster encoding iturin A synthase under the control of the p itu promoter is expressed in B. velezensis CC09 in wheat tissues, which indicates that iturin A might contribute to the in-vivo antifungal activity and leads to the disease control. All these data suggested that strain CC09 can act like a 'vaccine' in the control of wheat diseases, with a single treatment inoculated on roots through multiple mechanisms.

  9. Effects of exogenous phytase and xylanase, individually or in combination, and pelleting on nutrient digestibility, available energy content of wheat and performance of growing pigs fed wheat-based diets.

    Science.gov (United States)

    Yang, Y Y; Fan, Y F; Cao, Y H; Guo, P P; Dong, B; Ma, Y X

    2017-01-01

    Two experiments were conducted to determine the effects of adding exogenous phytase and xylanase, individually or in combination, as well as pelleting on nutrient digestibility, available energy content of wheat and the performance of growing pigs fed wheat-based diets. In Experiment 1, forty-eight barrows with an initial body weight of 35.9±0.6 kg were randomly assigned to a 2×4 factorial experiment with the main effects being feed form (pellet vs meal) and enzyme supplementation (none, 10,000 U/kg phytase, 4,000 U/kg xylanase or 10,000 U/kg phytase plus 4,000 U/kg xylanase). The basal diet contained 97.8% wheat. Pigs were placed in metabolic cages for a 7-d adaptation period followed by a 5-d total collection of feces and urine. Nutrient digestibility and available energy content were determined. Experiment 2 was conducted to evaluate the effects of pelleting and enzymes on performance of wheat for growing pigs. In this experiment, 180 growing pigs (35.2±9.0 kg BW) were allocated to 1 of 6 treatments according to a 2×3 factorial treatment arrangement with the main effects being feed form (meal vs pellet) and enzyme supplementation (0, 2,500 or 5,000 U/kg xylanase). In Experiment 1, there were no interactions between feed form and enzyme supplementation. Pelleting reduced the digestibility of acid detergent fiber (ADF) by 6.4 percentage units (pdigestibility of energy by 0.6 percentage units (pdigestibility of crude protein by 0.5 percentage units (p = 0.07) compared with diets in mash form. The addition of phytase improved the digestibility of phosphorus (pdigestibility of crude protein by 1.0 percentage units (p = 0.09) and increased the digestibility of neutral detergent fiber (NDF) (pdigestibility of phosphorus (pdigestibility (pdigestibility but decreased ADF digestibility. Adding xylanase increased crude protein digestibility and pig performance. Phytase increased the apparent total tract digestibility of phosphorus and calcium. The combination of

  10. Soil warming enhances the hidden shift of elemental stoichiometry by elevated CO2 in wheat.

    Science.gov (United States)

    Li, Xiangnan; Jiang, Dong; Liu, Fulai

    2016-03-22

    Increase in atmospheric CO2 concentration ([CO2]) and associated soil warming along with global climate change are expected to have large impacts on grain mineral nutrition in wheat. The effects of CO2 elevation (700 μmol l(-1)) and soil warming (+2.4 °C) on K, Ca and Mg concentrations in the xylem sap and their partitioning in different organs of wheat plant during grain filling were investigated. Results showed that the combination of elevated [CO2] and soil warming improved wheat grain yield, but decreased plant K, Ca and Mg accumulation and their concentrations in the leaves, stems, roots and grains. The reduced grain mineral concentration was attributed to the lowered mineral uptake as exemplified by both the decreased stomatal conductance and mineral concentration in the xylem sap. These findings suggest that future higher atmospheric [CO2] and warmer soil conditions may decrease the dietary availability of minerals from wheat crops. Breeding wheat cultivars possessing higher ability of mineral uptake at reduced xylem flux in exposure to climate change should be a target.

  11. Radioactive cesium deposition on rice, wheat, peach tree and soil after nuclear accident in Fukushima

    International Nuclear Information System (INIS)

    Nakanishi, T.M.; Kobayashi, N.I.; Tanoi, K.

    2013-01-01

    We present how radioactive Cs was deposited on wheat, rice, peach tree and soil after nuclear accident in Fukushima. The deposition of radioactive Cs was found as spots at the surface of the leaves, branch or trunk of the trees, as well as in soil using one of the imaging method, autoradiography. The deposited radioactive Cs was not easily washed out, even with the treatment of acid solution. When the wheat was harvested 2 months after the accident, high radioactivity of Cs was found only on the leaves developed and expanded at the time of the accident. In the case of the rice grain, most of the radioactivity was found in bran and the radioactivity was drastically reduced in milled rice. Most of the radioactive Cs accumulation in rice plants was estimated from the absorption of the Cs ion dissolved in water, rather than Cs adsorbed in soil. (author)

  12. Have we to harvest the contaminated wheats?

    International Nuclear Information System (INIS)

    Tannenberg, P. de

    1997-01-01

    The institute of nuclear protection and safety (IPSN) has just developed a calculation method allowing to evaluate the radioactive contamination of harvesting. This tool would allow, in case of nuclear accident, to determine if the contaminated lands under cultivation are eatable or not. Two radionuclides have been chosen: cesium 137 and strontium 90. The experiments are conclusive: the experimental releases of cesium and strontium were comparable to these ones of the Chernobyl forbidden zone (between 10 and 40 millions of becquerels/m 2 ): the foliar contamination is proportional to the plants development. Wheats ready to be harvested capture more than 80% of the radioactivity that contaminates them. Leaves of young plants keep only 20 to 40 %. Second result: cesium is more easily washable than strontium. Third results: more late is the contamination more the plant will be irradiated; then,the wheats contaminated when they are just out of ground are nine times less contaminated than cereals contaminated just before the harvest. (N.C.)

  13. Radiation and nitrogen use at the leaf and canopy level by wheat and oilseed rape during the critical period for grain number definition

    International Nuclear Information System (INIS)

    Dreccer, M.F.; Schapendonk, H.C.M.; Oijen, M. van; Pot, C.S.; Rabbinge, R.

    2000-01-01

    During the critical period for grain number definition, the amount of biomass produced per unit absorbed radiation is more sensitive to nitrogen (N) supply in oilseed rape than in wheat, and reaches a higher value at high N. This response was investigated by combining experimental and modelling work. Oilseed rape and wheat were grown at three levels of N supply, combined with two levels of plant density at high N supply. Canopy photosynthesis and daytime radiation use efficiency (RUE A ) were calculated with a model based on observed N-dependent leaf photosynthesis and observed canopy vertical distribution of light and leaf N. In oilseed rape, RUE A was higher than in wheat and, in contrast to wheat, the sensitivity to canopy leaf N content increased from the start to the end of the critical period. These results were partly explained by the higher leaf photosynthesis in oilseed rape vs wheat. In addition, oilseed rape leaves were increasingly shaded by the inflorescence. Thus, RUE A increased because more leaves were operating at non-saturating light levels. In both species, the vertical distribution of leaf N was close to that optimising canopy photosynthesis. The results are discussed in relation to possibilities for improvement of N productivity in these crops. (author)

  14. Canola-Wheat Rotation versus Continuous Wheat for the Southern Plains

    OpenAIRE

    Duke, Jason C.; Epplin, Francis M.; Vitale, Jeffrey D.; Peeper, Thomas F.

    2009-01-01

    Crop rotations are not common in the wheat belt of the Southern Plains. After years of continuous wheat, weeds have become increasingly difficult and expensive to manage. Yield data were elicited from farmers and used to determine if canola-wheat-wheat rotations are economically competitive with continuous wheat in the region.

  15. A novel nitrogen-dependent gene associates with the lesion mimic trait in wheat

    Science.gov (United States)

    Lesion mimic (LM) refers to hypersensitive reaction-like (HRL) symptoms that appears on leaf tissue in the absence of plant pathogens. In a wheat line P7001, LM showed up on the leaves under the 0 g nitrogen (N) treatment, but disappeared when sufficient N was supplied, suggesting that LM is N-respo...

  16. Grinding up Wheat: a Massive Loss of Nucleotide Diversity Since Domestication

    DEFF Research Database (Denmark)

    Haudry, Anabelle; Cenci, Alberto; Ravel, Catherine

    2007-01-01

    Several demographic and selective events occurred during the domestication of wheat from the allotetraploid wild emmer (Triticum turgidum ssp. dicoccoides). Cultivated wheat has since been affected by other historical events. We analyzed nucleotide diversity at 21 loci in a sample of 101 individu...

  17. Wheat in the Mediterranean revisited--tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers.

    Science.gov (United States)

    Oliveira, Hugo R; Hagenblad, Jenny; Leino, Matti W; Leigh, Fiona J; Lister, Diane L; Penã-Chocarro, Leonor; Jones, Martin K

    2014-05-08

    Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat.

  18. Evaluation of omega-3 fatty acids content and antioxidant activity in wheat (Triticum aestivum L. leaves Avaliação do teor de ácidos graxos ômega-3 e atividade antioxidante em folhas de trigo (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Aguiar

    2011-08-01

    Full Text Available The objective of this study was to quantify alpha-linolenic acid (LNA, 18:3n-3 of dried wheat leaves, harvested at different development stages (20, 40 and 80 days, to determine the antioxidant potential and the total phenolic compounds of leaves harvested at 80 days, as well as to perform mineral analysis (Na, K, Fe, Ca, Mg, P, Zn, Cu and Mn. It was observed a predominance of polyunsaturated fatty acids (PUFA compared to saturated fatty acids (SFA in the lipid fraction of leaves. Leaves collected in all periods presented ratios of PUFA/SFA, omega-6 and omega-3 fatty acids (n-6/n-3 considered suitable for food. The highest content of LNA was found in leaves harvested at 60 days, corresponding to 2.146,72 mg 100 g-1 dried matter. The range time between 60 and 80 days showed a decline of nearly 30% in the concentration of LNA. The acetate fraction was the most effective over DPPH radical assay, showing IC50 value of 154 µg mL-1, and the phenolic compounds content was 615.4 ± 36.4 mg EAG L-1, both analyses carried out in leaves harvested at 80 days. In this development stage, wheat leaves showed significant levels of the minerals P, Zn, Cu and Mn. These results reinforce the potential of using wheat leaves in foods, according to its antioxidant content and significant levels of LNA.Conduziu-se este estudo, com o objetivo de quantificar o ácido alfa-linolênico (LNA, 18:3n-3 em folhas de trigo secas e colhidas em diferentes estádios de desenvolvimento (20, 40 e 80 dias, determinar o potencial antioxidante e o conteúdo de fenólicos totais em folhas colhidas aos 80 dias, assim como realizar a analise de minerais (Na, K, Fe, Ca, Mg, P, Zn, Cu e Mn. Foi verificada uma predominância de ácidos graxos poli-insaturados (AGPI comparado com os ácidos graxos saturados (AGS na fração lipídica das folhas. As folhas colhidas em todos os períodos apresentaram razões de AGPI/AGS e de ácidos graxos ômega-6 e ômega-3 (n-6/n-3, dentro dos valores

  19. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat.

    Science.gov (United States)

    Ma, Dongyun; Ding, Huina; Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway.

  20. 5 CFR 630.1111 - Limitation on the amount of donated annual leave received by an emergency leave recipient.

    Science.gov (United States)

    2010-01-01

    ... needs of individual emergency leave recipients, an employing agency may allow an employee to receive... annual leave received by an emergency leave recipient. 630.1111 Section 630.1111 Administrative Personnel... recipient. An emergency leave recipient may receive a maximum of 240 hours of donated annual leave at any...

  1. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    Science.gov (United States)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  2. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda, E-mail: pal.magda@agrar.mta.hu

    2014-09-15

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.

  3. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    International Nuclear Information System (INIS)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda

    2014-01-01

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress

  4. Wheat Ear Detection in Plots by Segmenting Mobile Laser Scanner Data

    Science.gov (United States)

    Velumani, K.; Oude Elberink, S.; Yang, M. Y.; Baret, F.

    2017-09-01

    The use of Light Detection and Ranging (LiDAR) to study agricultural crop traits is becoming popular. Wheat plant traits such as crop height, biomass fractions and plant population are of interest to agronomists and biologists for the assessment of a genotype's performance in the environment. Among these performance indicators, plant population in the field is still widely estimated through manual counting which is a tedious and labour intensive task. The goal of this study is to explore the suitability of LiDAR observations to automate the counting process by the individual detection of wheat ears in the agricultural field. However, this is a challenging task owing to the random cropping pattern and noisy returns present in the point cloud. The goal is achieved by first segmenting the 3D point cloud followed by the classification of segments into ears and non-ears. In this study, two segmentation techniques: a) voxel-based segmentation and b) mean shift segmentation were adapted to suit the segmentation of plant point clouds. An ear classification strategy was developed to distinguish the ear segments from leaves and stems. Finally, the ears extracted by the automatic methods were compared with reference ear segments prepared by manual segmentation. Both the methods had an average detection rate of 85 %, aggregated over different flowering stages. The voxel-based approach performed well for late flowering stages (wheat crops aged 210 days or more) with a mean percentage accuracy of 94 % and takes less than 20 seconds to process 50,000 points with an average point density of 16  points/cm2. Meanwhile, the mean shift approach showed comparatively better counting accuracy of 95% for early flowering stage (crops aged below 225 days) and takes approximately 4 minutes to process 50,000 points.

  5. The Impact of Phosphorus Supply on Selenium Uptake During Hydroponics Experiment of Winter Wheat (Triticum aestivum) in China.

    Science.gov (United States)

    Liu, Hongen; Shi, Zhiwei; Li, Jinfeng; Zhao, Peng; Qin, Shiyu; Nie, Zhaojun

    2018-01-01

    Selenium (Se) is a necessary trace element for humans and animals, and Se fertilization is an efficient way to increase Se concentration in the edible parts of crops, thus enhance the beneficiary effects of Se in human and animal health. Due to the similarity of physical and chemical properties between phosphate () and selenite (), phosphorus (P) supply often significantly impacts the absorption of Se in plants, but little is known about how P supply influences the subcellular distribution and chemical forms of Se. In this study, the effects of P supply on subcellular distribution and chemical forms of Se in winter wheat were investigated in a hydroponic trial with medium Se level (0.1 mg Se L -1 ). P was applied with three concentrations (0.31, 3.1, and 31 mg P L -1 ) in the experiment. The results showed that increasing P supply significantly decreased the concentration and accumulation of Se in the roots, stems, and leaves of winter wheat. An increase in P supply significantly inhibited Se accumulation in the root cell wall, but enhanced Se distribution in the organelles and soluble fraction of root cells. These findings suggest that increased P supply inhibited the root-to-shoot transport of Se. An increase in P supply enhanced Se accumulation in the cell wall of plant stems (both apical and axillary stem) and cell organelles of plants leaves, but inhibited Se distribution in the soluble fraction of stems and leaves. This suggests that P supply enhances Se transportation across the cell membrane in shoots of winter wheat. In addition, increased P supply also altered the chemical forms of Se in tissues of winter wheat. These findings will help in understanding of the regulation grain Se accumulation and provide a practical way to enhance Se intake for humans inform Se-enriched grains.

  6. Leaving home in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Rikke Skovgaard

    2015-01-01

    The paper focuses on ethnic differences in the timing and patterns of leaving the parental home. Leaving home is a key transition in the life course of the individual, and extensive research has been conducted on the timing and patterns of leaving it. However, ethnic differences in these patterns...... of leaving home. Results showed that while some differences disappeared when controlling for covariates, others persisted, thus indicating ethnic differences in home-leaving patterns. A strong link between leaving home and marriage was substantiated for Turks, but not for Somalis. The home-leaving patterns...... of Somalis were much more similar to those of Danes. Overall, Turkish descendants were similar to Turkish immigrants but with some differentiation. The analyses identified the existence of ethnic differences in home-leaving patterns but also found evidence of a shift towards less traditional patterns, i...

  7. A Review of Conventional PCR Assays for the Detection of Selected Phytopathogens of Wheat.

    Science.gov (United States)

    Kuzdraliński, Adam; Kot, Anna; Szczerba, Hubert; Nowak, Michał; Muszyńska, Marta

    2017-01-01

    Infection of phyllosphere (stems, leaves, husks, and grains) by pathogenic fungi reduces the wheat yield and grain quality. Detection of the main wheat pathogenic fungi provides information about species composition and allows effective and targeted plant treatment. Since conventional procedures for the detection of these organisms are unreliable and time consuming, diagnostic DNA-based methods are required. Nucleic acid amplification technologies are independent of the morphological and biochemical characteristics of fungi. Microorganisms do not need to be cultured. Therefore, a number of PCR-based methodologies have been developed for the identification of key pathogenic fungi, such as Fusarium spp., Puccinia spp., Zymoseptoria tritici, Parastagonospora nodorum, Blumeria graminis f. sp. tritici, and Pyrenophora tritici-repentis. This article reviews frequently used DNA regions for fungus identification and discusses already known PCR assays for detection of the aforementioned wheat pathogens. We demonstrate that PCR-based wheat pathogen identification assays require further research. In particular, the number of diagnostic tests for Fusarium graminearum, Puccinia spp., and P. tritici-repentis are insufficient. © 2017 S. Karger AG, Basel.

  8. Economics of wheat based cropping systems in rainfed areas of pakistan

    International Nuclear Information System (INIS)

    Khaliq, P.; Cheema, N.M.; Malik, A.; Umair, M.

    2012-01-01

    The Pothwar tract of rainfed area has enormous potential to meet incremental food grain needs of the country. However, a significant yield gap in wheat has been reported between yields of substantive and the progressive growers mainly due to poor management of soil, water and fertility issues. A field study was conducted at National Agricultural Research Centre (NARC), Islamabad and the traditional wheat-fallow-wheat (W-F-W) cropping system was evaluated with the improved wheat-maize fodder-wheat (W-MF-W) and wheat-mungbean-wheat (W-MB-W) cropping systems. Two tillage practices, i.e. shallow tillage with cultivator and deep tillage with moldboard; and four fertilizer treatments viz., control (C), recommended dose of fertilizer for each crop (F), farmyard manure (FYM) at the rate -15 tha . The recommended doses of fertilizer for individual crop with FYM (F+FYM) were also included in the study to know their impact on the crops yield in the cropping systems. Economic analysis of the data revealed that the traditional wheat-fallow-wheat cropping system could be economically replaced with wheat-maize fodder-wheat cropping system even under drought condition and there will be no economical loss of wheat yield when planted after maize fodder. Application of recommended dose of fertilizer -1 along with FYM at the rate 5 tha will enhance the yield of wheat and maize fodder. The improved cropping system of wheat-maize fodder-wheat will help the farmers to sustain productivity of these crops, stable economic benefits and improvement in soil nutrients and organic matter over time. (author)

  9. Chlorophyll fluorescence as a parameter for frost hardiness in winter wheat. A comparison with other hardiness parameters.

    NARCIS (Netherlands)

    Clement, JMAM; vanHasselt, PR

    1996-01-01

    Frost hardiness of winter wheat leaves (Triticum aestivum L. cv. Urban) was measured during an eight weeks hardening period using chlorophyll fluorescence. Determination of frost induced damage after freezing, measured as the decrease of photochemical capacity of photosystem II (F-V/F-M =

  10. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Bernard, Stéphanie M.; Møller, Anders Laurell Blom; Dionisio, Giuseppe

    2008-01-01

    ). Phylogenetic analysis showed that the wheat GS sub-families together with the GS genes from other monocotyledonous species form four distinct clades. Immunolocalisation studies in leaves, stems and rachis in plants at flowering showed GS protein to be present in parenchyma, phloem companion and perifascicular......We present the first cloning and study of glutamine synthetase (GS) genes in wheat (Triticum aestivum L.). Based on sequence analysis, phylogenetic studies and mapping data, ten GS sequences were classified into four sub-families: GS2 (a, b and c), GS1 (a, b and c), GSr (1 and 2) and GSe (1 and 2...... sheath cells. In situ localisation confirmed that GS1 transcripts were present in the perifascicular sheath cells whilst those for GSr were confined to the vascular cells. Studies of the expression and protein profiles showed that all GS sub-families were differentially expressed in the leaves, peduncle...

  11. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Türk, Hülya, E-mail: hulyaa.turk@hotmail.com [Biology Department, Science Faculty, Ataturk University, Erzurum (Turkey); East Anatolian High Technology Research and Application Center, Ataturk University, Erzurum (Turkey); Genişel, Mucip, E-mail: m.genisel@hotmail.com [Department of Crop and Animal Production, Vocational High School, Agri (Turkey); Erdal, Serkan, E-mail: serkanerdal25@hotmail.com [Biology Department, Science Faculty, Ataturk University, Erzurum (Turkey)

    2016-04-18

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K{sup +}/Na{sup +} ratio was reduced by salt stress, ALA application changed this ratio in favor of K{sup +}. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  12. Microbial correlates of Fusarium biomass and deoxynivalenol content in individual wheat seeds

    Science.gov (United States)

    Manipulating the microbiome of wheat seeds and heads may contribute to control of Fusarium head blight and mycotoxin accumulation in grain, which creates a food safety hazard. With the aim of identifying novel management targets, we looked for correlations between Fusarium biomass or deoxynivalenol ...

  13. The fate of the dry matter, carbohydrates and 14C lost from the leaves and stems of wheat during grain filling

    International Nuclear Information System (INIS)

    Austin, R.B.; Edrich, J.A.; Ford, M.A.; Blackwell, R.D.

    1977-01-01

    In a field study with six winter wheat genotypes losses of dry matter from the stems between 30 June and maturity averaged 172 g m - 2 (range 82 to 256), there being significant differences in loss between genotypes. Respiration from the stems during the same period was estimated to amount to 106 g m -2 (range 104 to 225). The amount of dry matter mobilized from the stems, calculated by difference, was estimated as 66 g m -2 . The loss of ethanol- and water-soluble carbohydrate from the stems (170 g m -2 ; range 124 to 215) was very similar to the dry weight loss. Carbon-14 labelling was used to trace the time course and the amount of the movement of assimilates from the vegetative organs to the grain. Only 14.3 per cent (range 10.3 to 21.0) of the products of photosynthesis over the period 21 May to 20 June were relocated to the grains. This relocation amounted to an average of 7 per cent (range 5.7 to 11.4) of the final grain weight. It was estimated that during the 18 days following anthesis on 20 June photosynthesis contributed 48 per cent (range 39 to 55) of the final grain dry weight. Of this, about half was translocated to the grain within 10 days of initial assimilation. The remainder appeared to be stored temporarily in the stems and leaves and translocated to the grains during the period 17 to 29 July. In general, relocation of dry matter from the vegetative organs to the grains, assessed by carbon-14 labelling, was greatest in those genotypes (Hobbit and Sportsman) which lost most dry weight from the stems and leaves. (author)

  14. The Allelopathic Effect of the Exotic Tree Acacia saligna on the Germination of Wheat and Canola

    Directory of Open Access Journals (Sweden)

    Mohamed Kamel

    2015-06-01

    Full Text Available This study was carried out to investigate the allelopathic effect of aqueous extracts derived from leaves and stems of Acacia saligna (Labill. H.L.Wendl. upon two agricultural crops, wheat and canola. Seed germination (%, shoot and root elongation, fresh and dry weight, vigor index and phytotoxicity parameters were estimated. Leaf extract exhibits higher inhibitory effect than stem extract. Wheat seeds were more tolerant to the allelopathic action of A. saligna extracts than canola. Canola germination minimized to 8.33% at concentration 10% of leaf extract but the percent of germination was 60% in the case of stem extract. At 10% leaf extract, 76.67% of wheat seeds germinated; but at 10% stem extract, 93.33% of the seeds were germinated. The other growth parameters as shoot and root length, fresh and dry weight and vigor index also showed continued decrease with the increasing of allelopathic extract concentration. Leaf extract exhibits the stronger allelopathic effect. The phytotoxic effect was stronger on the germination of canola compared with wheat. It reached up to 91.76% inhibition at concentration 10%, but reached up only 23.33% in the case of wheat, respectively

  15. Effect of dimethylsulfoxide (DMSO) in growth and zinc uptake by wheat

    International Nuclear Information System (INIS)

    Singh, M.; Singh, T.A.; Rathore, V.S.

    1977-01-01

    Greenhouse and field studies with dimethylsulfoxide (DMSO) on zinc uptake and distribution, growth parameters and yield of wheat, revealed that soil application of DMSO in the greenhouse did not affect the dry matter yield by stem and leaves. In leaves and stems, 0.1 percent DMSO application resulted in more uptake of applied Zn. Foliar application of DMSO in the greenhouse resulted in more dry matter accumulation by grains with increasing DMSO levels. Fertilizer Zn uptake by grains and straw increased with increasing DMSO levels but it remained more or less same in leaves and stems even with increasing levels of DMSO. Under field conditions, soil application of DMSO at 0.5 kg/ha level produced the highest yield (35.65 q/ha). Among the foliar sprays 0.01 percent DMSO level gave a yield of 32.45 q/ha, which was significantly better than the control. (author)

  16. TaEDS1 genes positively regulate resistance to powdery mildew in wheat.

    Science.gov (United States)

    Chen, Guiping; Wei, Bo; Li, Guoliang; Gong, Caiyan; Fan, Renchun; Zhang, Xiangqi

    2018-04-01

    Three EDS1 genes were cloned from common wheat and were demonstrated to positively regulate resistance to powdery mildew in wheat. The EDS1 proteins play important roles in plant basal resistance and TIR-NB-LRR protein-triggered resistance in dicots. Until now, there have been very few studies on EDS1 in monocots, and none in wheat. Here, we report on three common wheat orthologous genes of EDS1 family (TaEDS1-5A, 5B and 5D) and their function in powdery mildew resistance. Comparisons of these genes with their orthologs in diploid ancestors revealed that EDS1 is a conserved gene family in Triticeae. The cDNA sequence similarity among the three TaEDS1 genes was greater than 96.5%, and they shared sequence similarities of more than 99.6% with the respective orthologs from diploid ancestors. The phylogenetic analysis revealed that the EDS1 family originated prior to the differentiation of monocots and dicots, and EDS1 members have since undergone clear structural differentiation. The transcriptional levels of TaEDS1 genes in the leaves were obviously higher than those of the other organs, and they were induced by Blumeria graminis f. sp. tritici (Bgt) infection and salicylic acid (SA) treatment. The BSMV-VIGS experiments indicated that knock-down the transcriptional levels of the TaEDS1 genes in a powdery mildew-resistant variety of common wheat compromised resistance. Contrarily, transient overexpression of TaEDS1 genes in a susceptible common wheat variety significantly reduced the haustorium index and attenuated the growth of Bgt. Furthermore, the expression of TaEDS1 genes in the Arabidopsis mutant eds1-1 complemented its susceptible phenotype to powdery mildew. The above evidences strongly suggest that TaEDS1 acts as a positive regulator and confers resistance against powdery mildew in common wheat.

  17. Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat.

    Science.gov (United States)

    Bhati, Kaushal K; Sharma, Shivani; Aggarwal, Sipla; Kaur, Mandeep; Shukla, Vishnu; Kaur, Jagdeep; Mantri, Shrikant; Pandey, Ajay K

    2015-01-01

    The ABCC multidrug resistance associated proteins (ABCC-MRP), a subclass of ABC transporters are involved in multiple physiological processes that include cellular homeostasis, metal detoxification, and transport of glutathione-conjugates. Although they are well-studied in humans, yeast, and Arabidopsis, limited efforts have been made to address their possible role in crop like wheat. In the present work, 18 wheat ABCC-MRP proteins were identified that showed the uniform distribution with sub-families from rice and Arabidopsis. Organ-specific quantitative expression analysis of wheat ABCC genes indicated significantly higher accumulation in roots (TaABCC2, TaABCC3, and TaABCC11 and TaABCC12), stem (TaABCC1), leaves (TaABCC16 and TaABCC17), flag leaf (TaABCC14 and TaABCC15), and seeds (TaABCC6, TaABCC8, TaABCC12, TaABCC13, and TaABCC17) implicating their role in the respective tissues. Differential transcript expression patterns were observed for TaABCC genes during grain maturation speculating their role during seed development. Hormone treatment experiments indicated that some of the ABCC genes could be transcriptionally regulated during seed development. In the presence of Cd or hydrogen peroxide, distinct molecular expression of wheat ABCC genes was observed in the wheat seedlings, suggesting their possible role during heavy metal generated oxidative stress. Functional characterization of the wheat transporter, TaABCC13 a homolog of maize LPA1 confirms its role in glutathione-mediated detoxification pathway and is able to utilize adenine biosynthetic intermediates as a substrate. This is the first comprehensive inventory of wheat ABCC-MRP gene subfamily.

  18. Identification and Phylogenetic Analysis of a CC-NBS-LRR Encoding Gene Assigned on Chromosome 7B of Wheat

    Directory of Open Access Journals (Sweden)

    Xiangqi Zhang

    2013-07-01

    Full Text Available Hexaploid wheat displays limited genetic variation. As a direct A and B genome donor of hexaploid wheat, tetraploid wheat represents an important gene pool for cultivated bread wheat. Many disease resistant genes express conserved domains of the nucleotide-binding site and leucine-rich repeats (NBS-LRR. In this study, we isolated a CC-NBS-LRR gene locating on chromosome 7B from durum wheat variety Italy 363, and designated it TdRGA-7Ba. Its open reading frame was 4014 bp, encoding a 1337 amino acid protein with a complete NBS domain and 18 LRR repeats, sharing 44.7% identity with the PM3B protein. TdRGA-7Ba expression was continuously seen at low levels and was highest in leaves. TdRGA-7Ba has another allele TdRGA-7Bb with a 4 bp deletion at position +1892 in other cultivars of tetraploid wheat. In Ae. speltoides, as a B genome progenitor, both TdRGA-7Ba and TdRGA-7Bb were detected. In all six species of hexaploid wheats (AABBDD, only TdRGA-7Bb existed. Phylogenic analysis showed that all TdRGA-7Bb type genes were grouped in one sub-branch. We speculate that TdRGA-7Bb was derived from a TdRGA-7Ba mutation, and it happened in Ae. speltoides. Both types of TdRGA-7B participated in tetraploid wheat formation. However, only the TdRGA-7Bb was retained in hexaploid wheat.

  19. Wheat: The Whole Story.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  20. Melatonin Improves the Photosynthetic Carbon Assimilation and Antioxidant Capacity in Wheat Exposed to Nano-ZnO Stress

    Directory of Open Access Journals (Sweden)

    Zhiyu Zuo

    2017-10-01

    Full Text Available The release of nanoparticles into the environment is inevitable, which has raised global environmental concern. Melatonin is involved in various stress responses in plants. The present study investigated the effects of melatonin on photosynthetic carbon (C assimilation and plant growth in nano-ZnO stressed plants. It was found that melatonin improved the photosynthetic C assimilation in nano-ZnO stressed wheat plants, mainly due to the enhanced photosynthetic energy transport efficiency, higher chlorophyll concentration and higher activities of Rubisco and ATPases. In addition, melatonin enhanced the activities of antioxidant enzymes to protect the photosynthetic electron transport system in wheat leaves against the oxidative burst caused by nano-ZnO stress. These results suggest that melatonin could improve the tolerance of wheat plants to nano-ZnO stress.

  1. Biosynthesis of Essential Polyunsaturated Fatty Acids in Wheat Triggered by Expression of Artificial Gene

    Directory of Open Access Journals (Sweden)

    Daniel Mihálik

    2015-12-01

    Full Text Available The artificial gene D6D encoding the enzyme ∆6desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T0 and T1 generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%–0.32% (v/v of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T1 generation as well as in immature and mature grains of the T2 generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%–1.40% (v/v and 0%–1.53% (v/v from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat.

  2. Development of frost tolerance in winter wheat as modulated by differential root and shoot temperature

    NARCIS (Netherlands)

    Windt, C.W.; van Hasselt, P.R

    Winter wheat plants (Triticum aestivum L. cv. Urban), grown in nutrient solution, were exposed to differential shoot/root temperatures (i.e., 4/4, 4/20, 20/4 and 20/20 degrees C) for six weeks. Leaves grown at 4 degrees C showed an increase in frost tolerance from - 4 degrees C down to -11 degrees

  3. Catering Gluten-Free When Simultaneously Using Wheat Flour.

    Science.gov (United States)

    Miller, Kathryn; McGough, Norma; Urwin, Heidi

    2016-02-01

    A European law on gluten-free (GF) labeling came into force in 2012, covering foods sold prepacked and in food service establishments, and a similar U.S. Food and Drug Administration (FDA) regulation covers GF labeling from August 2014. Gluten is found in the grains wheat, rye, and barley. A common source of gluten in the kitchen is wheat flour. This research aimed to determine variables that have a significant effect on gluten contamination in commercial kitchens when wheat flour is in use and to establish controls necessary to assure GF production. A pilot study was used to test the following hypotheses: (i) increasing duration of exposure to wheat flour would increase gluten contamination, (ii) increasing distance between the site of preparation and the site of wheat flour would reduce gluten contamination, (iii) the use of a ventilation hood would decrease gluten contamination, and (iv) the use of a barrier segregating the site of preparation of a GF meal and the use of wheat flour would decrease gluten contamination. Petri dishes containing GF rice pudding were placed in three directions at increasing distances (0.5 to 2 m) from a site of wheat flour use. A barrier was in place between a third of samples and the site of wheat flour. After wheat flour was handled for 0.5 and 4.0 h, petri dishes were sealed and the contents were analyzed for gluten. The experiment was duplicated with the ventilation hood on and off. The pilot study revealed that a distance of 2 m from the use of wheat flour was required to control gluten contamination at ≤20 ppm if wheat flour had been in use for 4.0 h. The identified control of distance was tested in five different study sites. In each of the study sites, a test meal was prepared a minimum of 2 m away from the site of wheat flour use. Although kitchens vary and must be considered individually, the established control of a minimum 2 m distance, along with good hygiene practices, was found to be effective in preparing GF meals

  4. Effect of Low Temperature and Wheat Winter-Hardiness on Survival of Puccinia striiformis f. sp. tritici under Controlled Conditions.

    Directory of Open Access Journals (Sweden)

    Lijie Ma

    Full Text Available Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst, is one of the most important diseases of wheat worldwide. Understanding the survival of Pst during the overwintering period is critical for predicting Pst epidemics in the spring. Real-time quantitative PCR (qPCR methods quantifying Pst DNA and RNA (cDNA were developed and compared for the ability to quantify viable Pst in leaf tissues. Both qPCR of DNA and RNA can provide reliable measurement of viable Pst in plant tissues prior to the late sporulation stage for which qPCR of DNA gave a much higher estimate of fungal biomass than qPCR of RNA. The percentage of Pst biomass that was viable in detached and attached leaves under low temperatures decreased over time. Pst survived longer on attached leaves than on detached leaves. The survival of Pst in cultivars with strong winter-hardiness at 0°C and -5°C was greater than those with weak winter-hardiness. However, such differences in Pst survival among cultivars were negligible at -10, -15 and -20°C. Results indicated that Pst mycelia inside green leaves can also be killed by low temperatures rather than through death of green leaves under low temperatures. The relationship of Pst survival in attached leaves with temperature and winter-hardiness was well described by logistic models. Further field evaluation is necessary to assess whether inclusion of other factors such as moisture and snow cover could improve the model performance in predicting Pst overwintering potential, and hence the epidemic in spring.

  5. Soil warming enhances the hidden shift of elemental stoichiometry by elevated CO2 in wheat

    DEFF Research Database (Denmark)

    Li, Xiangnan; Jiang, Dong; Liu, Fulai

    2016-01-01

    sap and their partitioning in different organs of wheat plant during grain filling were investigated. Results showed that the combination of elevated [CO2] and soil warming improved wheat grain yield, but decreased plant K, Ca and Mg accumulation and their concentrations in the leaves, stems, roots......Increase in atmospheric CO2 concentration ([CO2]) and associated soil warming along with global climate change are expected to have large impacts on grain mineral nutrition in wheat. The effects of CO2 elevation (700 μmol l(-1)) and soil warming (+2.4 °C) on K, Ca and Mg concentrations in the xylem...... and grains. The reduced grain mineral concentration was attributed to the lowered mineral uptake as exemplified by both the decreased stomatal conductance and mineral concentration in the xylem sap. These findings suggest that future higher atmospheric [CO2] and warmer soil conditions may decrease...

  6. Characterization of FLOWERING LOCUS T1 (FT1 gene in Brachypodium and wheat.

    Directory of Open Access Journals (Sweden)

    Bo Lv

    Full Text Available The phase transition from vegetative to reproductive growth is a critical event in the life cycle of flowering plants. FLOWERING LOCUS T (FT plays a central role in the regulation of this transition by integrating signals from multiple flowering pathways in the leaves and transmitting them to the shoot apical meristem. In this study, we characterized FT homologs in the temperate grasses Brachypodium distachyon and polyploid wheat using transgenic and mutant approaches. Downregulation of FT1 by RNAi was associated with a significant downregulation of the FT-like genes FT2 and FT4 in Brachypodium and FT2 and FT5 in wheat. In a transgenic wheat line carrying a highly-expressed FT1 allele, FT2 and FT3 were upregulated under both long and short days. Overexpression of FT1 caused extremely early flowering during shoot regeneration in both Brachypodium and hexaploid wheat, and resulted in insufficient vegetative tissue to support the production of viable seeds. Downregulation of FT1 transcripts by RNA interference (RNAi resulted in non-flowering Brachypodium plants and late flowering plants (2-4 weeks delay in wheat. A similar delay in heading time was observed in tetraploid wheat plants carrying mutations for both FT-A1 and FT-B1. Plants homozygous only for mutations in FT-B1 flowered later than plants homozygous only for mutations in FT-A1, which corresponded with higher transcript levels of FT-B1 relative to FT-A1 in the early stages of development. Taken together, our data indicate that FT1 plays a critical role in the regulation of flowering in Brachypodium and wheat, and that this role is associated with the simultaneous regulation of other FT-like genes. The differential effects of mutations in FT-A1 and FT-B1 on wheat heading time suggest that different allelic combinations of FT1 homoeologs could be used to adjust wheat heading time to improve adaptation to changing environments.

  7. Influence of relative humidity of air on the level of aqueous tritium in corn, wheat and sunflower

    International Nuclear Information System (INIS)

    Indeka, L.

    1981-01-01

    The short-term changes in level of aqueous tritium in the leaves in relation to the air humidity were studied. The experiments were carried out on corn in which the transpiration is relatively small, on sunflower with very high transpiration and on wheat with intermediate transpiration. (M.F.W.)

  8. Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources

    Directory of Open Access Journals (Sweden)

    Zeid A. Al-Othman

    2016-11-01

    Full Text Available We describe a comparative study of the concentration of different metals (e.g., Cd, Pb, As, Ni, Cu, Zn, Mn, and Cr in various parts of wheat plants (e.g., roots, stem, leaves and seeds collected at several locations in Khyber Pukhtoon Khaw, Pakistan. The wheat crop in these areas was irrigated using different irrigation sources, including rain, tube well, river, and canal. In wheat samples, the concentration of metals was analyzed using an atomic absorption spectrophotometer. Among the various parts of the plant, the roots had the highest levels of heavy metals, followed by the vegetative parts. By comparison, the seeds and grains had the lowest levels of heavy metals. The levels of heavy metals in all of the studied areas were not significantly localized to any particular area. The general order for the accumulation of studied metals in wheat was found to be Mn > Zn > Cu > Ni > Cr > As > Pb > Cd.

  9. Improved wheat for baking.

    Science.gov (United States)

    Faridi, H; Finley, J W

    1989-01-01

    To bakers, wheat quality means the performance characteristics of the flour milled from the wheat when used in specific wheat products. The tremendous increase in the number of wheat cultivars grown in the U.S. in recent years, along with the unusual climate, new advances in milling technology, and increased automation of baking lines, have resulted in bakery production problems partly attributed to wheat flour quality. In this review various factors affecting wheat quality are explained. Concerns of bread and cookie/cracker manufacturers on deterioration of the wheat quality are discussed, and, finally, some solutions are proposed.

  10. The influence of soil type and climate on the uptake of radionuclides into wheat

    International Nuclear Information System (INIS)

    Mitchell, N.G.

    1992-03-01

    The study investigated the uptake by winter wheat of radionuclides deposited onto the soil surface following a hypothetical accidental release to atmosphere from a nuclear power station. A series of lysimeters were filled with four soil types characteristic of wheat growing areas of Europe. Four radionuclides ( 137 Cs, 144 Ce, 106 Ru, 125 Sb) were watered onto the soil surface and the subsequent contamination of winter wheat crops was monitored over two seasons. Subsidiary experiments considered: effects of ploughing and pot size on root uptake; movement of radionuclides in soil profiles; soil contamination of wheat plants and of grain leaving the field; the influence of climate on root uptake; and, the availability of radionuclides. Compared with the literature, this study found a smaller range of transfer factors appropriate to agricultural soils that predominate in the wheat growing areas of the EEC. The use of pots or tubes to investigate soil-to-plant transfer was justified. The study showed that resuspension of radionuclides bound to soil particles must be considered when assessing soil-to-plant transfer. It was demonstrated that the contribution of soil-bound activity to the radionuclide content of combine harvested grain is underestimated in existing dose assessment methodologies by at least an order of magnitude on average and by over two orders of magnitude in extreme cases. Climatic conditions simulated in a growth chamber had little impact on radionuclide transfer. The relative availability of radionuclides for extraction by ammonium acetate did not reflect percentage transfer to grain. Ploughing reduced uptake by winter wheat, resulted in different patterns of transfer between cultivation treatments and influenced the distribution of activity between grain and straw. Results of this work were used in the development of a multi-compartmental time-dependent model called WHEAT which predicts radionuclide transfer from soil to winter wheat. (author)

  11. Mechanical weed control in organic winter wheat

    Directory of Open Access Journals (Sweden)

    Euro Pannacci

    2017-12-01

    Full Text Available Three field experiments were carried out in organic winter wheat in three consecutive years (exp. 1, 2005-06; exp. 2, 2006- 07; exp. 3, 2007-08 in central Italy (42°57’ N - 12°22’ E, 165 m a.s.l. in order to evaluate the efficacy against weeds and the effects on winter wheat of two main mechanical weed control strategies: i spring tine harrowing used at three different application times (1 passage at T1, 2 passages at the time T1, 1 passage at T1 followed by 1 passage at T1 + 14 days in the crop sowed at narrow (traditional row spacing (0.15 m; and ii split-hoeing and finger-weeder, alone and combined at T1, in the crop sowed at wider row spacing (0.30 m. At the time T1 winter wheat was at tillering and weeds were at the cotyledons-2 true leaves growth stage. The experimental design was a randomized block with four replicates. Six weeks after mechanical treatments, weed ground cover (% was rated visually using the Braun-Blanquet coverabundance scale; weeds on three squares (0.6×0.5 m each one per plot were collected, counted, weighed, dried in oven at 105°C to determine weed density and weed above-ground dry biomass. At harvest, wheat ears density, grain yield, weight of 1000 seeds and hectolitre weight were recorded. Total weed flora was quite different in the three experiments. The main weed species were: Polygonum aviculare L. (exp. 1 and 2, Fallopia convolvulus (L. Á. Löve (exp. 1 and 3, Stachys annua (L. L. (exp. 1, Anagallis arvensis L. (exp. 2, Papaver rhoeas L. (exp.3, Veronica hederifolia L. (exp. 3. In the winter wheat sowed at narrow rows, 2 passages with spring-tine harrowing at the same time seems to be the best option in order to reconcile a good efficacy with the feasibility of treatment. In wider rows spacing the best weed control was obtained by split hoeing alone or combined with finger-weeder. The grain yield, on average 10% higher in narrow rows, the lower costs and the good selectivity of spring-tine harrowing

  12. The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig; Ottosen, Carl-Otto; Rosenqvist, Eva S. K.

    2013-01-01

    efficiency of photosystem II (PSII) photochemistry (Fv/Fm) and contents of pigments and carbohydrates in leaves were analysed before and during the stress treatments as well as after one day of recovery. Heat stress reduced PN and Fv/Fm in both wheat cultivars, but plants grown in elevated CO2 maintained...... higher PN and Fv/Fm in comparison to plants grown in ambient CO2. Heat stress reduced leaf chlorophyll contents and increased leaf sucrose contents in both cultivars grown at ambient and elevated CO2. The content of hexoses in the leaves increased mainly in the tolerant cultivar in response...... to the combination of elevated CO2 and heat stress. The results show that heat stress tolerance in wheat is related to cultivar origin, the phenological stage of the plants and can be alleviated by elevated CO2. This confirms the complex interrelation between environmental factors and genotypic traits that influence...

  13. Determination of Zinc in Wheat and Wheat Bran by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Ghazi Zahedi, M.; Bahrami Samani, A.; Sedaghati Zadeh, M.; Ghannadi Maragheh, M.

    2012-01-01

    The knowledge of concentration of elements in foodstuffs is of significant interest. Wheat is one of the most consumed food stuffs in Iran and zinc is also considered as one of the necessary and vital elements. Since the measurement of some trace elements is not practical by the conventional analytical methods, due to the lower detection limit, the neutron activation analysis was applied to determine the zinc in wheat and wheat bran. Food sample of roughly 50 mg was irradiated for 24 hours. After cooling, the interval samples were counted by a gamma spectrometry system. The concentration of zinc in wheat without bran and the wheat bran were 18.444±0.656 and 19.927±0.698 ppm, respectively. The amount of zinc in wheat bran was noticeable so it showed that consuming wheat with bran is more beneficial than the wheat with no bran for the human-beings body requirements.

  14. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    Science.gov (United States)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  15. The effect of soll water conditions on carbon isotope discrimination and minerals contents in spring-planted wheat

    International Nuclear Information System (INIS)

    Zhu Lin; Liang Zongsuo; Xu Xing; Li Shuhua

    2008-01-01

    Carbon isotope discrimination (triangle open 13 C) has been proposed as indirect selection criterion for transpiration efficiency and grain yield in wheat. However, because of high cost for triangle open 13 C analysis, attempts have been made to identify alternative screening criteria. Ash content (m a ) has been proposed as an alternative criterion for triangle open 13 C in wheat and barley. A pot experiment with three water treatments (45% ± 5% FC, 55% ± 5% FC and 75% ± 5%FC) was conducted and flag leaf triangle open 13 C (triangle openL a ), contents of ash, potassium (K), magnesium (Mg) and calcium (Ca) were measured to study the relationships between triangle open, mineral composition in spring planted bread wheat (Triticum aestivum L.). In the light of the results obtained in this research, the traits measured showed significant differences among the three water treatments. There were variations in triangle openL a between the genotypes derived from contrasting environments. The improved varieties or advanced lines bred in irrigated areas displayed higher triangle open 13 C values, while the improved and local varieties bred in rain-fed areas exhibited lower triangle open 13 C values Significant positive correlations were found between triangle open 13 C and m a in seedlings and second fully developed leaves at elongation stage and in flag leaves at anthesis stage in severe drought treatment (T 1 ) (r=0.790, P 13 C was negatively associated with potassium (K) content in flag leaves in T 2 (r=0.813, P 2 and T 3 (r=0.725, P 13 C and calcium (Ca) content in flag leaves in T 3 (r=0.708, P a is a possible alternative criterion of triangle open 13 C in vegetative organs especially in stressed environments. K, Mg and Ca contents in flag leaf under moderate water stress or feasible water conditions might be new predictive criteria of triangle openL a . (authors)

  16. Genome interplay in the grain transcriptome of hexaploid bread wheat.

    Science.gov (United States)

    Pfeifer, Matthias; Kugler, Karl G; Sandve, Simen R; Zhan, Bujie; Rudi, Heidi; Hvidsten, Torgeir R; Mayer, Klaus F X; Olsen, Odd-Arne

    2014-07-18

    Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome. Copyright © 2014, American Association for the Advancement of Science.

  17. The ripples of "The Big (agricultural) Bang": the spread of early wheat cultivation.

    Science.gov (United States)

    Abbo, Shahal; Gopher, Avi; Peleg, Zvi; Saranga, Yehoshua; Fahima, Tzion; Salamini, Francesco; Lev-Yadun, Simcha

    2006-08-01

    Demographic expansion and (or) migrations leave their mark in the pattern of DNA polymorphisms of the respective populations. Likewise, the spread of cultural phenomena can be traced by dating archaeological finds and reconstructing their direction and pace. A similar course of events is likely to have taken place following the "Big Bang" of the agricultural spread in the Neolithic Near East from its core area in southeastern Turkey. Thus far, no attempts have been made to track the movement of the founder genetic stocks of the first crop plants from their core area based on the genetic structure of living plants. In this minireview, we re-interpret recent wheat DNA polymorphism data to detect the genetic ripples left by the early wave of advance of Neolithic wheat farming from its core area. This methodology may help to suggest a model charting the spread of the first farming phase prior to the emergence of truly domesticated wheat types (and other such crops), thereby increasing our resolution power in studying this revolutionary period of human cultural, demographic, and social evolution.

  18. Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines

    Directory of Open Access Journals (Sweden)

    Lina Maria Aguirre-Rojas

    2017-11-01

    Full Text Available The wheat curl mite, Aceria toschiella (Keifer, and a complex of viruses vectored by A. toschiella substantially reduce wheat yields in every wheat-producing continent in the world. The development of A. toschiella-resistant wheat cultivars is a proven economically and ecologically viable method of controlling this pest. This study assessed A. toschiella resistance in wheat genotypes containing the H13, H21, H25, H26, H18 and Hdic genes for resistance to the Hessian fly, Mayetiola destructor (Say and in 94M370 wheat, which contains the Dn7 gene for resistance to the Russian wheat aphid, Diuraphis noxia (Kurdjumov. A. toschiella populations produced on plants containing Dn7 and H21 were significantly lower than those on plants of the susceptible control and no different than those on the resistant control. Dn7 resistance to D. noxia and H21 resistance to M. destructor resulted from translocations of chromatin from rye into wheat (H21—2BS/2RL, Dn7—1BL/1RS. These results provide new wheat pest management information, indicating that Dn7 and H21 constitute resources that can be used to reduce yield losses caused by A. toschiella, M. destructor, D. noxia, and wheat streak mosaic virus infection by transferring multi-pest resistance to single sources of germplasm.

  19. Quantitative determination of total and individual flavonoids in stems and leaves of Buddleja davidii and Buddleja albiflora

    OpenAIRE

    Ying, Cheng; Wan, Dingrong

    2012-01-01

    Background: Buddleja davidii and B. albiflora are two different original plants of the famous crude medicine "Diaoyangchen." Materials and Methods: An ultraviolet-visible spectrophotometric method and a HPLC method were used for the determination of total and individual flavonoids (luteolin and apigenin) contents from their stems and leaves for the first time. Results: From the comparative evaluation, remarkable differences in flavonoids contents were observed between different origins and di...

  20. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J

    2014-04-11

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution \\'nullisomic-tetrasomic\\' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  1. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J; Belfield, Eric J; Jiang, Caifu; Brown, Carly; Mithani, Aziz; Harberd, Nicholas P

    2014-01-01

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  2. An In Planta-Expressed Polyketide Synthase Produces (R)-Mellein in the Wheat Pathogen Parastagonospora nodorum

    Science.gov (United States)

    Krill, Christian; Barrow, Russell A.; Chen, Shasha; Trengove, Robert; Oliver, Richard P.; Solomon, Peter S.

    2014-01-01

    Parastagonospora nodorum is a pathogen of wheat that affects yields globally. Previous transcriptional analysis identified a partially reducing polyketide synthase (PR-PKS) gene, SNOG_00477 (SN477), in P. nodorum that is highly upregulated during infection of wheat leaves. Disruption of the corresponding SN477 gene resulted in the loss of production of two compounds, which we identified as (R)-mellein and (R)-O-methylmellein. Using a Saccharomyces cerevisiae yeast heterologous expression system, we successfully demonstrated that SN477 is the only enzyme required for the production of (R)-mellein. This is the first identification of a fungal PKS that is responsible for the synthesis of (R)-mellein. The P. nodorum ΔSN477 mutant did not show any significant difference from the wild-type strain in its virulence against wheat. However, (R)-mellein at 200 μg/ml inhibited the germination of wheat (Triticum aestivum) and barrel medic (Medicago truncatula) seeds. Comparative sequence analysis identified the presence of mellein synthase (MLNS) homologues in several Dothideomycetes and two sodariomycete genera. Phylogenetic analysis suggests that the MLNSs in fungi and bacteria evolved convergently from fungal and bacterial 6-methylsalicylic acid synthases. PMID:25326302

  3. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop

    Science.gov (United States)

    Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...

  4. The Project of ‘Psychological Capitalization’ of the Romanian Wheat

    Directory of Open Access Journals (Sweden)

    Raluca Elena Hurduzeu

    2015-09-01

    Full Text Available The issue of the price of the wheat at harvesting in connection to high speculation, which is often illegal is a serious problem, with multiple negative effects on national, local and individual level. A campaign against this activity involves a set of tools to act simultaneously. Identifying a psychological problem and differentiated features this study proposes an advertising campaign for capitalizing on the concept of wheat in the collective mentality.

  5. Prehaustorial and posthaustorial resistance to wheat leaf rust in diploid wheat

    NARCIS (Netherlands)

    Anker, C.C.

    2001-01-01

    In modern wheat cultivars, resistance to wheat leaf rust, Puccinia triticina , is either based on hypersensitivity resistance or on partial resistance. Hypersensitivity resistance in wheat is monogenic, often complete and posthaustorial: it is induced after the

  6. Responses of Russian Wheat Aphid (Homoptera: Aphididae) to Aphid Alarm Pheromone

    OpenAIRE

    Shah, P. A.; Pickett, J. A.; Vandenberg, J. D.

    2017-01-01

    In a series of laboratory tests, Russian wheat aphids, Diuraphis noxia (Mordvilko), responded to synthetic aphid alarm pheromone, (E)-β-farnesene, by removing stylets and leaving feeding sites or by crawling out of test arenas. Late instars and adults were more responsive than early instars. In dose-response assays, EC50 estimates ranged from 0.94 to 8.95 mg/ml among 3 experiments. In arenas, D. noxia also responded to the proximity of cornicle-damaged nymphs of either the green peach aphid, ...

  7. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  8. [Effects of N application on wheat powdery mildew occurrence, nitrogen accumulation and allocation in intercropping system].

    Science.gov (United States)

    Zhu, Jin Hui; Dong, Yan; Xiao, Jing Xiu; Zheng, Yi; Tang, Li

    2017-12-01

    The main objective of this field experiment was to study the effects of wheat and faba bean intercropping on occurrence of wheat powdery mildew, nitrogen content, accumulation and allocation of wheat plant at 4 nitrogen levels of N 0 (0 kg·hm -2 ), N 1 (112.5 kg·hm -2 ), N 2 (225 kg·hm -2 ), N 3 (337.5 kg·hm -2 ), and to explore the relationship between N content, accumulation, allocation and the occurrence of wheat powdery mildew. The results showed that both monocropped and intercropped wheat yields increased with nitrogen application, with the highest yields of monocropped and intercropped wheat being 4146 kg·hm -2 and 4679 kg·hm -2 at N 2 le-vel, respectively. The occurrence and development of wheat powdery mildew become more severe with the increase of N application and area under disease progression curve (AUDPC) were averagely increased by 39.6%-55.6%(calculated with disease incidence, DI) and 92.5%-217.0% (calculated with disease severity index, DSI) with N 1 , N 2 and N 3 treatments. The disease severity index was more affected by nitrogen regulation than by disease incidence. The nitrogen content and accumulation of wheat plant were significantly increased by 8.4%-51.6% and 19.7%-133.7% with nitrogen application, but there was no significant effect on N allocation ratio. Compared with monocropped wheat, yield of intercropped wheat was averagely increased by 12%, whereas, the AUDPC(DI) and AUDPC(DSI) of intercropped wheat were averagely decreased by 11.5% and 30.7%, respectively. The control effect of the disease severity index by intercropping was better than disease incidence. The nitrogen content, accumulation and nitrogen allocation ratio in intercropped wheat leaves were significantly decreased by 6.6%-12.5%, 1.4%-6.9% and 9.0%-15.5% respectively at the peak infection stage of powdery mildew. Overall findings showed that the maximum rate of nitrogen application for wheat should not exceed 225 kg·hm -2 when taking into account both disease

  9. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    Science.gov (United States)

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  10. Is part-time sick leave helping the unemployed?

    OpenAIRE

    Andrén, Daniela

    2011-01-01

    Using a discrete choice one-factor model, we estimate mean treatment parameters and distributional treatment parameters to analyze the effects of degree of sick leave on the probability of full recovery of lost work capacity for employed and unemployed individuals, respectively. Our results indicate that one year after the sick leave spell started, the average potential impact of part-time sick listing on an individual randomly chosen from the population on sick leave was positive for both gr...

  11. Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle

    Science.gov (United States)

    Asrar, G.; Kanemasu, E. T.; Yoshida, M.

    1985-01-01

    The influence of management practices and solar illumination angle on the leaf area index (LAI) was estimated from measurements of wheat canopy reflectance evaluated by two methods, a regression formula and an indirect technique. The date of planting and the time of irrigation in relation to the stage of plant growth were found to have significant effects on the development of leaves in spring wheat. A reduction in soil moisture adversely affected both the duration and magnitude of the maximum LAI for late planting dates. In general, water stress during vegetative stages resulted in a reduction in maximum LAI, while water stress during the reproductive period shortened the duration of green LAI in spring wheat. Canopy geometry and solar angle also affected the spectral properties of the canopies, and hence the estimated LAI. Increase in solar zenith angles resulted in a general increase in estimated LAI obtained from both methods.

  12. Effects legumes, Fallow and wheat on subsequent wheat production in Central Anatolia

    International Nuclear Information System (INIS)

    Halitligil, M. B.; Akin, A.; Aydin, M.

    1996-01-01

    In order to determine the Nsub 2- fixation capacities of lentil, vetch, chickpea and fodderpea in a legume-wheat rotation by using the A-value method of N 15 technique, and to assess the amount of carry-over of N to wheat from the previous legume as well as water contribution of fallow, wheat and legumes to the following wheat under rainfed Central Anatolia conditions field experiments were conducted in 1992 and 1993 at three different provinces using completely randomized block design with 5 replications. Results we obtained showed that %Ndff values among legumesdid not differ significantly neither within or between locations. Legumesvaried significantly (P<0.05) in their %Ndfa values at each location and highest values of %Ndfa were obtained at Eskisehir. In general, %Ndfa varied from59-84, and 36-85 for chickpea,lentils and vetchs. The evaluation of the yield and N data obtained in 1993 indicated that lentil (winter or summer) -wheat rotation at Ankara and Eskisehir conditions and chickpea-wheat rotation at Konya conditions should be prefered, due to the higher seed and total yields, higher N yields and higher %NUE values obtained from these rotations in comparison to the others. In order to estimate the carry-over of nitrogen from legumes to the succeeding wheat crop, % nitrogen derived from unknown (%Ndfu) were also calculated. Highest amount of carry-over from the legumesto the succeeding wheat were 31.1 kgN/ha from summer lentil at Ankara; 16.9 kgN/ha from summer lentil at Eskisehir; and 8.0 kgN/ha from chickpea at Konya. These results obtined showed that a lentil-wheat rotation at Ankara and Eskisehir and a chickpea-wheat rotation at Konya. Mean while, the evaluation of the soil and WUE data at both Eskisehir and Ankara indicated that winter lentil-wheat rotation should be prefered in these areas due to more efficient use of water by wheat crop after this rotation system

  13. The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants.

    Science.gov (United States)

    Zhai, Yiqian; Zhang, Lichao; Xia, Chuan; Fu, Silu; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying

    2016-05-13

    Although bHLH transcription factors play important roles regulating plant development and abiotic stress response and tolerance, few functional studies have been performed in wheat. In this study, we isolated and characterized a bHLH gene, TabHLH39, from wheat. The TabHLH39 gene is located on wheat chromosome 5DL, and the protein localized to the nucleus and activated transcription. TabHLH39 showed variable expression in roots, stems, leaves, glumes, pistils and stamens and was induced by polyethylene glycol, salt and cold treatments. Further analysis revealed that TabHLH39 overexpression in Arabidopsis significantly enhanced tolerance to drought, salt and freezing stress during the seedling stage, which was also demonstrated by enhanced abiotic stress-response gene expression and changes to several physiological indices. Therefore, TabHLH39 has potential in transgenic breeding applications to improve abiotic stress tolerance in crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Wheat Allergy

    Science.gov (United States)

    ... of reactions. Learn more here. Milk Egg Peanut Tree Nuts Soy Wheat Fish Shellfish Sesame Other Food ... federal law. Download our resource on how to identify wheat on food labels. Avoid foods that contain ...

  15. Food Allergy To Wheat Proteins. Diagnostic And Treatment Difficulties

    Directory of Open Access Journals (Sweden)

    E. A. Vishneva

    2015-01-01

    Full Text Available The article is dedicated to the problem of food allergy in children. The number of patients with this pathology continues to rise, which can be explained by multiple factors, which speaks for the relevance and the social importance of the matter. For food allergy, the causesignificant allergens are both simple and complex food proteins. Wheat is one of the most prevalent source of food allergens not only for children, but for adults too. The article contains the main information concerning the ley characteristics of this product; the protein content and the different roles of individual components in forming allergic reactions and cross activity are thoroughly investigated. The authors provide recommendations for the diagnostics and treatment of wheat protein allergy, and various difficulties in different clinical cases are examined. The article also contains main treatment approaches, which are relevant to the modern data. An individual approach in each case means regular monitoring of the main figures, preventing the negative consequences of an eliminative diet at wheat protein allergy through using specialized gluten-free products.

  16. Logistic Regression Analysis of the Response of Winter Wheat to Components of Artificial Freezing Episodes

    Science.gov (United States)

    Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...

  17. Eighteen cases of wheat allergy and wheat-dependent exercise-induced urticaria/anaphylaxis sensitized by hydrolyzed wheat protein in soap.

    Science.gov (United States)

    Kobayashi, Tomoko; Ito, Tomonobu; Kawakami, Hiroshi; Fuzishiro, Kanzan; Hirano, Hirofumi; Okubo, Yukari; Tsuboi, Ryoji

    2015-08-01

    Glupearl 19S, an acid-hydrolyzed wheat protein (HWP), is used widely in Japan as a moisturizing ingredient in facial soaps. Since 2010, there has been an increasing number of reports of contact urticaria and wheat allergy resulting from the use of products containing this substance. Sixty-one patients who had used HWP-containing facial soap visited our hospital. Thirty-five of these experienced urticaria or anaphylaxis after consuming wheat-containing food. Eighteen of the 35 patients tested positive to 0.01% Glupearl 19S solution. Wheat-specific IgE and serum gluten-specific IgE were higher in the patients with HWP allergy than in non-HWP allergy patients. Among the patients who tested positive to Glupearl 19S on the skin prick test, nine experienced HWP-wheat-dependent exercise-induced anaphylaxis, and four experienced food-dependent anaphylaxis. Moreover, four of these patients not only experienced food-dependent anaphylaxis but also a worsening of the symptoms during exercise. The clinical symptomology was so variable that the patients were classified into six groups. We found that patients with HWP allergy tended to manifest symptoms of both HWP-wheat-dependent exercise-induced anaphylaxis and contact urticaria. The etiology of hydrolyzed wheat protein allergy is unknown. Patients with a history of these symptoms need to be informed about the risk of consuming wheat-containing foods and the importance of excluding such items from their diet. © 2015 The International Society of Dermatology.

  18. Deoxynivalenol in wheat and wheat products from a harvest affected by fusarium head blight

    Directory of Open Access Journals (Sweden)

    Lidiane Viera MACHADO

    Full Text Available Abstract Fusarium head blight is an important disease occurring in wheat, caused mainly by the fungus Fusarium graminearum. In addition to direct damage to crops, reduced quality and yield losses, the infected grains can accumulate mycotoxins (toxic metabolites originating from prior fungal growth, especially deoxynivalenol (DON. Wheat crops harvested in 2014/2015 in southern Brazil were affected by high levels of Fusarium head blight. In this context, the aim of this study was evaluate the mycotoxicological quality of Brazilian wheat grains and wheat products (wheat flour and wheat bran for DON. DON contamination was evaluated in 1,504 wheat and wheat product samples produced in Brazil during 2014. It was determined by high performance liquid chromatograph fitted to a mass spectrometer (LC-MS / MS. The results showed that 1,000 (66.5% out of the total samples tested were positive for DON. The mean level of sample contamination was 1047 µg.kg-1, but only 242 samples (16.1% had contamination levels above the maximum permissible levels (MPL - the maximum content allowed by current Brazilian regulation. As of 2017, MPL will be stricter. Thus, research should be conducted on DON contamination of wheat and wheat products, since wheat is a raw material widely used in the food industry, and DON can cause serious harm to public health.

  19. 21 CFR 137.195 - Crushed wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the method...

  20. Water stress, CO2 and photoperiod influence hormone levels in wheat

    Science.gov (United States)

    Nan, Rubin; Carman, John G.; Salisbury, Frank B.; Campbell, W. F. (Principal Investigator)

    2002-01-01

    'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraints, to water deficit, waterlogging, high CO2 levels, and low light intensities. The plants produced many tillers, but none of them produced viable seed. Studies have been initiated to determine why the plants responded in these ways. In the present study, effects of the listed stresses on abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl adenosine ([9R]iP) levels in roots and leaves of plants grown under otherwise near optimal conditions on earth were measured. Hormones were extracted, purified by HPLC, and quantified by noncompetitive indirect ELISA. In response to water deficit, ABA levels increased in roots and leaves, IAA levels decreased in roots and leaves, and [9R]iP levels increased in leaves but decreased in roots. In response to waterlogging, ABA, IAA and [9R]iP levels briefly increased in roots and leaves and then decreased. When portions of the root system were exposed to waterlogging and/or water deficit, ABA levels in leaves increased while [9R]iP and IAA levels decreased. These responses were correlated with the percentage of the root system stressed. At a low photosynthetic photon flux (100 micromoles m-2 s-1), plants grown in continuous light had higher leaf ABA levels than plants grown using an 18 or 21 h photoperiod.

  1. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments

    Science.gov (United States)

    Levinskikh, M. A.; Veselova, T. D.; Il'ina, G. M.; Dzhalilova, Kh Kh; Sychev, V. N.; Derendiaeva, T. A.; Salisbury, F.; Cambell, W.; Bubenheim, D.; Campbell, W. (Principal Investigator)

    1998-01-01

    The Project of scientific programs MIR/SHUTTLE and MIR/NASA was allowed for studying the productional, cytoembryological, morphological, biomechanical and other characteristics of superclub wheat on cultivation in the Svet greenhouse on-board orbital complex. This work was aimed at studying the duration of the complete cycle of ontogenesis of wheat and its individual stages, the peculiarities of forming the reproductive organs, processes, fertilization and formation of the seed production while cultivating in the Svet greenhouse under terrestrial conditions. Superclub wheat has been the object of experimentation. On cultivation of superclub wheat in the Svet greenhouse at designated conditions it was found that the cycle duration "from seed to seed" was 90-97 days. The number of granules in the wheat-ears studied was quite low and ranged from 15 to 30%. Performed studies with applying the light microscopy have indicated that in superclub wheat the embryological processes occur in compliance with those regularities which are described for the other forms of soft wheat.

  2. THE IMPACT OF REFORMING WHEAT IMPORTING STATE-TRADING ENTERPRISES ON THE QUALITY OF WHEAT IMPORTED

    OpenAIRE

    Lavoie, Nathalie

    2003-01-01

    Recent surveys of wheat importers indicate that countries that import wheat via a state trader are less sensitive to quality issues in import decision making than countries that import wheat through private traders. This study examines conceptually and empirically the impact of the deregulation of wheat imports on the quality and source of wheat imports.

  3. Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies

    International Nuclear Information System (INIS)

    Condon, A.G.; Farquhar, G.D.; Richards, R.A.

    1990-01-01

    The relationship between carbon isotope discrimination, Δ, measured in plant dry matter and the ratio of intercellular to atmospheric partial pressures of CO 2 ,p i /p a , in leaves was examined in two glasshouse experiments using 14 wheat genotypes selected on the basis of variation in Δ of dry matter. Genotypic variation in Δ was similar in both experiments, with an average range of 1.8 x 10 -3 . Δ measured in dry matter and p i /p a measured in flag leaves were positively correlated. Variation among genotypes in p i /p a was attributed, approximately equally, to variation in leaf conductance and in photosynthetic capacity. The relationship between plant transpiration efficiency, W * (the amount of above-ground dry matter produced per unit water transpired) and Δ was was also examined. The results indicate that genotypic variation in Δ, measured in dry matter, should provide a reasonable measure of genotypic variation in long-term mean leaf p i /p a in wheat. 42 refs., 2 tabs., 5 figs

  4. Combined cadmium and elevated ozone affect concentrations of cadmium and antioxidant systems in wheat under fully open-air conditions

    International Nuclear Information System (INIS)

    Guo, Hongyan; Tian, Ran; Zhu, Jianguo; Zhou, Hui; Pei, Daping; Wang, Xiaorong

    2012-01-01

    Highlights: ► Combined effect of elevated O 3 and Cd levels on wheat was studied using the free-air concentration enrichment system. ► Elevated O 3 levels result in an increased concentration of Cd in wheat plants grown on Cd-contaminated soils. ► Combined cadmium and elevated O 3 have a significantly synergic effect on oxidative stress in wheat shoots. - Abstract: Pollution of the environment with both ozone (O 3 ) and heavy metals has been steadily increasing. An understanding of their combined effects on plants, especially crops, is limited. Here we studied the effects of elevated O 3 on oxidative stress and bioaccumulation of cadmium (Cd) in wheat under Cd stress using a free-air concentration enrichment (FACE) system. In this field experiment in Jiangdu (Jiangsu Province, China), wheat plants were grown in pots containing soil with various concentrations of cadmium (0, 2, and 10 mg kg −1 Cd was added to the soil) under ambient conditions and under elevated O 3 levels (50% higher than the ambient O 3 ). Present results showed that elevated O 3 led to higher concentrations of Cd in wheat tissues (shoots, husk and grains) with respect to contaminated soil. Combined exposure to Cd and elevated O 3 levels strongly affected the antioxidant isoenzymes POD, APX and CAT and accelerated oxidative stress in wheat leaves. Our results suggest that elevated O 3 levels cause a reduction in food quality and safety.

  5. Comparative effects of glyphosate and atrazine in chloroplast ultrastructure of wheat and downy brome

    International Nuclear Information System (INIS)

    Auge, R.M.; Gealy, D.R.; Ogg, A.G.; Franceschi, V.R.

    1987-01-01

    Developing and mature leaves of winter wheat (Triticum aestivum L. var. Daws) and the weed species downy brome (Bromus tectorum L.) were subjected to 10 mM (foliar application) and 1 mM (root application) herbicide solutions. Glyphosate (N-(phosphonomethyl) glycine) and atrazine (2-chloro-4-(ethyl-amino)-6-(isopropylamino)-s-triazine) were prepared in a carrier composed of 5% soybean oil concentrate, 35% acetone and 60% water. Penetration experiments with 3 H-labelled herbicides assessed what percentage of herbicide entered leaves, and microautoradiography was used to determine qualitatively how much herbicide was present in the sections viewed with TEM. Tissue was excised at 4, 18, 62 and 200 hours, and then either freeze-substituted or fixed chemically. Ultrastructural effects of each herbicide on chloroplasts from leaves of newly-germinated seedlings and of well-tillered plants are depicted and discussed. Temporal differences in response of chloroplasts to each herbicide are noted

  6. Wheat for Kids! [and] Teacher's Guide.

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the…

  7. 21 CFR 137.190 - Cracked wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested by...

  8. QTLs for seedling traits under salinity stress in hexaploid wheat

    Directory of Open Access Journals (Sweden)

    Yongzhe Ren

    2018-03-01

    Full Text Available ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs associated with salinity tolerance of wheat under 150mM NaCl concentration using a recombinant inbred line population (Xiaoyan 54×Jing 411. Values of wheat seedling traits including maximum root length (MRL, root dry weight (RDW, shoot dry weight (SDW, total dry weight (TDW and the ratio of TDW of wheat plants between salt stress and control (TDWR were evaluated or calculated. A total of 19QTLs for five traits were detected through composite interval mapping method by using QTL Cartographer version 2.5 under normal and salt stress conditions. These QTLs distributed on 12 chromosomes explained the percentage of phenotypic variation by individual QTL varying from 7.9% to 19.0%. Among them, 11 and six QTLs were detected under normal and salt stress conditions, respectively and two QTLs were detected for TDWR. Some salt tolerance related loci may be pleiotropic. Chromosome 1A, 3A and 7A may harbor crucial candidate genes associated with wheat salt tolerance. Our results would be helpful for the marker assisted selection to breed wheat varieties with improved salt tolerance.

  9. Toxic Effect of Lead on Nitrogen Contents and Enzymes in Wheat Leaves

    International Nuclear Information System (INIS)

    Rashid, Parveen; Mukherji, S.

    2005-01-01

    Application of lead nitrate solution to the foliar parts of wheat plants (Triticum aestivum L. cv. Sonalika) caused inhibition of uptake of total as well as soluble nitrogen in pre- and post-flowering stages. Maximum inhibition was recorded under the highest dose (10 mM) in both the stages. Catalase also suffered gradual reduction in the activity with the increase of concentration and a maximum reduction of 56 and 41 per cent was recoreded in pre- and post flowering stage respectively, under 10 mM dose. Peroxidase and IAA oxidase showed progressive increase in their activity proportional to the concentration of lead. In peroxidase, a maximum of 108 and 85 per cent increased activity was noted at the highest dose at pre- and post-flowering stages respectively, while in IAA oxidase highest dose resulted in 46 and 84 per cent increment in the activity from the control at pre- and post-flowering stages respectively. (authors)

  10. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease.

    Science.gov (United States)

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng

    2017-01-01

    To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae . Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae . Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.

  11. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease

    Directory of Open Access Journals (Sweden)

    Peipei Zhang

    2017-09-01

    Full Text Available To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV (most likely pathogens using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV. The full genome of WLYaV corresponds to 5,772 nucleotides (nt, with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae. Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV, but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90% in the family Luteoviridae. Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.

  12. Positive experiences of a vocational rehabilitation intervention for individuals on long-term sick leave, the Dirigo project: a qualitative study.

    Science.gov (United States)

    Andersén, Åsa; Ståhl, Christian; Anderzén, Ingrid; Kristiansson, Per; Larsson, Kjerstin

    2017-10-10

    The process of returning to work after long-term sick leave can sometimes be complex. Many factors, (e.g. cooperation between different authorities and the individual as well as individual factors such as health, emotional well-being and self-efficacy) may have an impact on an individual's ability to work. The aim of this study was to investigate clients' experiences with an individually tailored vocational rehabilitation, the Dirigo project, and encounters with professionals working on it. The Dirigo project was based on collaboration between rehabilitation authorities, individually tailored interventions and a motivational interviewing approach. A descriptive qualitative design was used with data collected through interviews. Fourteen individuals on long-term sick leave took part in individual semi-structured interviews. The interviews were analysed using content analysis. The analysis showed overall positive experience of methods and encounters with professionals in a vocational rehabilitation project. The positive experiences were based on four key factors: 1. Opportunities for receiving various dimensions of support. 2. Good overall treatment by the professionals. 3. Satisfaction with the working methods of the project, and 4. Opportunities for personal development. The main result showed that the clients had an overall positive experience of a vocational rehabilitation project and encounters with professionals who used motivational interviewing as a communication method. The overall positive experience indicated that their interactions with the different professionals may have affected their self-efficacy in general and in relation to transition to work. The knowledge is essential for the professionals working in the area of vocational rehabilitation. However, vocational rehabilitation interventions also need a societal approach to be able to offer clients opportunities for job training and real jobs.

  13. Exploiting a wheat EST database to assess genetic diversity.

    Science.gov (United States)

    Karakas, Ozge; Gurel, Filiz; Uncuoglu, Ahu Altinkut

    2010-10-01

    Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F(2) individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01.

  14. Exploiting a wheat EST database to assess genetic diversity

    Directory of Open Access Journals (Sweden)

    Ozge Karakas

    2010-01-01

    Full Text Available Expressed sequence tag (EST markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum. In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F2 individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29% contigs and 96 (10% singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs and metabolism and energy (singletons. EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725 being between Harmankaya99 and Sönmez2001, and the lowest (0.622 between Aytin98 and Izgi01.

  15. Variation in Susceptibility to Wheat dwarf virus among Wild and Domesticated Wheat

    Science.gov (United States)

    Nygren, Jim; Shad, Nadeem; Kvarnheden, Anders; Westerbergh, Anna

    2015-01-01

    We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) and Wheat dwarf virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i) continuous reduction in growth over time, ii) weak response at an early stage of plant development but a much stronger response at a later stage, and iii) remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in wheat. PMID

  16. Variation in susceptibility to Wheat dwarf virus among wild and domesticated wheat.

    Directory of Open Access Journals (Sweden)

    Jim Nygren

    Full Text Available We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp. and domesticated wheat (Triticum spp. and Wheat dwarf virus (WDV. The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i continuous reduction in growth over time, ii weak response at an early stage of plant development but a much stronger response at a later stage, and iii remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in

  17. Genetic variability in common wheat germplasm based on coefficients of parentage

    Directory of Open Access Journals (Sweden)

    Fernanda Bered

    2002-01-01

    Full Text Available The characterization of genetic variability and an estimate of the genetic relationship among varieties are essential to any breeding program, because artificial crosses among less similar parents allow a larger segregation and the combination of different favorable alleles. Genetic variability can be evaluated in different ways, including the Coefficient of Parentage (COP, which estimates the probability of two alleles in two different individuals being identical by descent. In this study, we evaluated the degree of genetic relationship among 53 wheat genotypes, and identified the ancestor genotypes which contributed the most to the current wheat germplasm, as a prediction of the width of the genetic base of this cereal. The results revealed a mean COP of 0.07 and the formation of 22 similarity groups. The ancestor genotypes Ciano 67 and Mentana were those which contributed the most to the current wheat germplasm. According to the COP analyses, the genetic base of wheat rests on a small number of ancestral genotypes.

  18. Wheat-Dependent Exercise-Induced Anaphylaxis Sensitized with Hydrolyzed Wheat Protein in Soap

    Directory of Open Access Journals (Sweden)

    Yuko Chinuki

    2012-01-01

    Full Text Available Wheat-dependent exercise-induced anaphylaxis (WDEIA is a specific form of wheat allergy typically induced by exercise after ingestion of wheat products. Wheat ω-5 gliadin is a major allergen associated with conventional WDEIA, and detection of serum immunoglobulin E (IgE specific to recombinant ω-5 gliadin is a reliable method for its diagnosis. Recently, an increased incidence of a new subtype of WDEIA, which is likely to be sensitized via a percutaneous and/or rhinoconjunctival route to hydrolyzed wheat protein (HWP, has been observed. All of the patients with this new subtype had used the same brand of soap, which contained HWP. Approximately half of these patients developed contact allergy several months later and subsequently developed WDEIA. In each of these patients, contact allergy with soap exposure preceded food ingestion-induced reactions. Other patients directly developed generalized symptoms upon ingestion of wheat products. The predominant observed symptom of the new WDEIA subtype was angioedema of the eyelids; a number of patients developed anaphylaxis. This new subtype of WDEIA has little serum ω-5 gliadin-specific serum IgE.

  19. New statement of leave format

    CERN Multimedia

    HR Department

    2009-01-01

    Following the communication of the Standing Concertation Committee published in Weekly Bulletin No. 18-19 of 27 April 2009, the current statement of leave on monthly pay slips has been replaced with the EDH Leave Transactions report that displays the up-to-date situation of individual leave balances at all times. The report is available on EDH. Additionally, the layout of the pay slip has been modernised. The new version of the pay slip will be send out from September 2009 onwards. Finance and Purchasing Department, Personnel Accounting Human Resources Department, Organisation and Procedures General Infrastructure Services Department, Administrative Information Services

  20. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

    Directory of Open Access Journals (Sweden)

    Iduna Arduini

    2016-06-01

    Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

  1. An endogenous reference gene of common and durum wheat for detection of genetically modified wheat.

    Science.gov (United States)

    Imai, Shinjiro; Tanaka, Keiko; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Matsuoka, Yasuyuki; Arami, Shin-Ichiro; Sato, Megumi; Haraguchi, Hiroyuki; Kurimoto, Youichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2012-01-01

    To develop a method for detecting GM wheat that may be marketed in the near future, we evaluated the proline-rich protein (PRP) gene as an endogenous reference gene of common wheat (Triticum aestivum L.) and durum wheat (Triticum durum L.). Real-time PCR analysis showed that only DNA of wheat was amplified and no amplification product was observed for phylogenetically related cereals, indicating that the PRP detection system is specific to wheat. The intensities of the amplification products and Ct values among all wheat samples used in this study were very similar, with no nonspecific or additional amplification, indicating that the PRP detection system has high sequence stability. The limit of detection was estimated at 5 haploid genome copies. The PRP region was demonstrated to be present as a single or double copy in the common wheat haploid genome. Furthermore, the PRP detection system showed a highly linear relationship between Ct values and the amount of plasmid DNA, indicating that an appropriate calibration curve could be constructed for quantitative detection of GM wheat. All these results indicate that the PRP gene is a suitable endogenous reference gene for PCR-based detection of GM wheat.

  2. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat

    OpenAIRE

    Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika

    2018-01-01

    Background Wheat is the staple food for most of the world’s population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Methods/Principle findings Foliar application of Zn-CNP was performed at post anthesis stages in two du...

  3. [Wheat anaphylaxis or wheat-dependent exercise-induced anaphylaxis caused by use of a soap product which contains hydrolyzed wheat proteins. -a report of 12 cases-].

    Science.gov (United States)

    Sugiyama, Akiko; Kishikawa, Reiko; Nishie, Haruko; Takeuchi, Satoshi; Shimoda, Terufumi; Iwanaga, Tomoaki; Nishima, Sankei; Furue, Masutaka

    2011-11-01

    Recently, it has become a social problem that hydrolyzed wheat protein in facial soap can induce wheat allergy including wheat-dependent exercise-induced anaphylaxis (WDEIA). We described the clinical characteristics of the patients related. We collected 12 cases who had had a medical examination from January to October in 2010. All the patients were female and mean age was 36.0± 9.9 years. All of them had had no prior symptoms history of wheat allergy, they gradually developed wheat anaphylaxis or WDEIA in an average of 2 years after they started to use a soap product in question which contains hydrolyzed wheat proteins. Most patients suffered immediate contact allergic reactions after or at the time of washing their face with the soap product. 10 of 12 patients showed a low level of IgE to CAP-recombinant ω-5-gliadin. Episodes of anaphylaxis were prevented by avoiding both intake of wheat-containing foods and usage of the soap product. We concluded that their wheat anaphylaxis is likely to be caused by epicutaneous sensitization of the hydrolyzed wheat proteins in the soap product. It was important that physicians should know the possibility of sensitization from non-dietary antigen.

  4. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance

    Directory of Open Access Journals (Sweden)

    Kristina L Ford

    2011-09-01

    Full Text Available Using a series of multiplexed experiments we studied the quantitative changes in protein abundance of three Australian bread wheat cultivars (Triticum aestivum L. in response to a drought stress. Three cultivars differing in their ability to maintain grain yield during drought, Kukri (intolerant, Excalibur (tolerant and RAC875 (tolerant, were grown in the glasshouse with cyclic drought treatment that mimicked conditions in the field. Proteins were isolated from leaves of mature plants and isobaric tags were used to follow changes in the relative protein abundance of 159 proteins. This is the first shotgun proteomics study in wheat, providing important insights into protein responses to drought as well as identifying the largest number of wheat proteins (1,299 in a single study. The changes in the three cultivars at the different time points reflected their differing physiological responses to drought, with the two drought tolerant varieties (Excalibur and RAC875 differing in their protein responses. Excalibur lacked significant changes in proteins during the initial onset of the water deficit in contrast to RAC875 that had a large number of significant changes. All three cultivars had changes consistent with an increase in oxidative stress metabolism and ROS scavenging capacity seen through increases in superoxide dismutases and catalases as well as ROS avoidance through the decreases in proteins involved in photosynthesis and the Calvin cycle.

  5. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency.

    Science.gov (United States)

    Xue, Gang-Ping; McIntyre, C Lynne; Chapman, Scott; Bower, Neil I; Way, Heather; Reverter, Antonio; Clarke, Bryan; Shorter, Ray

    2006-08-01

    High water use efficiency or transpiration efficiency (TE) in wheat is a desirable physiological trait for increasing grain yield under water-limited environments. The identification of genes associated with this trait would facilitate the selection for genotypes with higher TE using molecular markers. We performed an expression profiling (microarray) analysis of approximately 16,000 unique wheat ESTs to identify genes that were differentially expressed between wheat progeny lines with contrasting TE levels from a cross between Quarrion (high TE) and Genaro 81 (low TE). We also conducted a second microarray analysis to identify genes responsive to drought stress in wheat leaves. Ninety-three genes that were differentially expressed between high and low TE progeny lines were identified. One fifth of these genes were markedly responsive to drought stress. Several potential growth-related regulatory genes, which were down-regulated by drought, were expressed at a higher level in the high TE lines than the low TE lines and are potentially associated with a biomass production component of the Quarrion-derived high TE trait. Eighteen of the TE differentially expressed genes were further analysed using quantitative RT-PCR on a separate set of plant samples from those used for microarray analysis. The expression levels of 11 of the 18 genes were positively correlated with the high TE trait, measured as carbon isotope discrimination (Delta(13)C). These data indicate that some of these TE differentially expressed genes are candidates for investigating processes that underlie the high TE trait or for use as expression quantitative trait loci (eQTLs) for TE.

  6. Measurement of 2-carboxyarabinitol 1-phosphate in plant leaves by isotope dilution

    International Nuclear Information System (INIS)

    Moore, B.D.; Kobza, J.; Seemann, J.R.

    1991-01-01

    The level of 2-carboxyarabinitol 1-phosphate (CA1P) in leaves of 12 species was determined by an isotope dilution assay. 14 C-labeled standard was synthesized from [2- 14 C]carboxyarabinitol 1,5-bisphosphate using acid phosphatase, and was added at the initial point of leaf extraction. Leaf CA1P was purified and its specific activity determined. CA1P was found in dark-treated leaves of all species examined, including spinach (Spinacea oleracea), wheat (Triticum aestivum), Arabidopsis thaliana, and maize (Zea mays). The highest amounts were found in bean (Phaseolus vulgaris) and petunia (Petunia hybrida), which had 1.5 to 1.8 moles CA1P per mole ribulose 1,5-bisphosphate carboxylase catalytic sites. Most species had intermediate amounts of CA1P (0.2 to 0.8 mole CA1P per mole catalytic sites). Such intermediate to high levels of CA1P support the hypothesis that CA1P functions in many species as a light-dependent regulator of ribulose 1,5-bisphosphate carboxylase activity and whole leaf photosynthetic CO 2 assimilation. However, CA1P levels in spinach, wheat, and A. thaliana were particularly low (less than 0.09 mole CA1P per mole catalytic sites). In such species, CA1P does not likely have a significant role in regulating ribulose 1,5-bisphosphate carboxylase activity, but could have a different physiological role

  7. Maternity Leave Policies

    Science.gov (United States)

    Strang, Lucy; Broeks, Miriam

    2017-01-01

    Abstract Over recent years many European Union countries have made changes to the design of the maternity leave provision. These policy developments reflect calls for greater gender equality in the workforce and more equal share of childcare responsibilities. However, while research shows that long period of leave can have negative effects on women's labour market attachment and career advancements, early return to work can be seen as a factor preventing exclusive breastfeeding, and therefore, potentially having negative health impacts for babies. Indeed, the World Health Organisation recommends exclusive breastfeeding up to 6 months of age to provide babies with the nutrition for healthy growth and brain development, protection from life-threatening ailments, obesity and non-communicable diseases such as asthma and diabetes. Therefore, labour market demands on women may be at odds with the health benefits for children gained by longer periods of maternity leave. The aim of this article is to examine the relationship between leave provision and health benefits for children. We examine maternity and parental leave provision across European countries and its potential impact on the breastfeeding of very young babies (up to 6-months of age). We also consider economic factors of potential extension of maternity leave provision to 6 months, such as costs to businesses, effects on the female labour market attachment, and wider consequences (benefits and costs) for individuals, families, employers and the wider society. PMID:28983432

  8. Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens.

    Science.gov (United States)

    Cheng, Yulin; Yao, Juanni; Zhang, Hongchang; Huang, Lili; Kang, Zhensheng

    2015-07-01

    Cereal powdery mildews caused by Blumeria graminis and cereal rusts caused by Puccinia spp. are constant disease threats that limit the production of almost all important cereal crops. Rice is an intensively grown agricultural cereal that is atypical because of its immunity to all powdery mildew and rust fungi. We analyzed the nonhost interactions between rice and the wheat powdery mildew fungus B. graminis f. sp. tritici (Bgt) and the wheat leaf rust fungus Puccinia triticina (Ptr) to identify the basis of nonhost resistance (NHR) in rice against cereal powdery mildew and rust fungi at cytological and molecular levels. No visible symptoms were observed on rice leaves inoculated with Bgt or Ptr. Microscopic observations showed that both pathogens exhibited aberrant differentiation and significantly reduced penetration frequencies on rice compared to wheat. The development of Bgt and Ptr was also completely arrested at early infection stages in cases of successful penetration into rice leaves. Attempted infection of rice by Bgt and Ptr induced similar defense responses, including callose deposition, accumulation of reactive oxygen species, and hypersensitive response in rice epidermal and mesophyll cells, respectively. Furthermore, a set of defense-related genes were upregulated in rice against Bgt and Ptr infection. Rice is an excellent monocot model for genetic and molecular studies. Therefore, our results demonstrate that rice is a useful model to study the mechanisms of NHR to cereal powdery mildew and rust fungi, which provides useful information for the development of novel and durable strategies to control these important pathogens.

  9. Contrasting response of biomass and grain yield to severe drought in Cappelle Desprez and Plainsman V wheat cultivars

    Directory of Open Access Journals (Sweden)

    Kenny Paul

    2016-02-01

    Full Text Available We report a case study of natural variations and correlations of some photosynthetic parameters, green biomass and grain yield in Cappelle Desprez and Plainsman V winter wheat (Triticum aestivum L. cultivars, which are classified as being drought sensitive and tolerant, respectively. We monitored biomass accumulation from secondary leaves in the vegetative phase and grain yield from flag leaves in the grain filling period. Interestingly, we observed higher biomass production, but lower grain yield stability in the sensitive Cappelle cultivar, as compared to the tolerant Plainsman cv. Higher biomass production in the sensitive variety was correlated with enhanced water-use efficiency. Increased cyclic electron flow around PSI was also observed in the Cappelle cv. under drought stress as shown by light intensity dependence of the ratio of maximal quantum yields of Photosystem I and Photosystem II, as well by the plot of the Photosystem I electron transport rate as a function of Photosystem II electron transport rate. Higher CO2 uptake rate in flag leaves of the drought-stressed Plainsman cv. during grain filling period correlates well with its higher grain yield and prolonged transpiration rate through spikes. The increase in drought factor (DFI and performance (PI indices calculated from variable chlorophyll fluorescence parameters of secondary leaves also showed correlation with higher biomass in the Cappelle cultivar during the biomass accumulation period. However, during the grain filling period, DFI and PI parameters of the flag leaves were higher in the tolerant Plainsman V cultivar and showed correlation with grain yield stability. Our results suggest that overall biomass and grain yield may respond differentially to drought stress in different wheat cultivars and therefore phenotyping for green biomass cannot be used as a general approach to predict grain yield. We also conclude that photosynthetic efficiency of flag and secondary leaves

  10. Effects of Favorable Alleles for Water-Soluble Carbohydrates at Grain Filling on Grain Weight under Drought and Heat Stresses in Wheat

    Science.gov (United States)

    Chang, Xiaoping; Li, Runzhi; Jing, Ruilian

    2014-01-01

    Drought, heat and other abiotic stresses during grain filling can result in reductions in grain weight. Conserved water-soluble carbohydrates (WSC) at early grain filling play an important role in partial compensation of reduced carbon supply. A diverse population of 262 historical winter wheat accessions was used in the present study. There were significant correlations between 1000-grain weight (TGW) and four types of WSC, viz. (1) total WSC at the mid-grain filling stage (14 days after flowering) produced by leaves and non-leaf organs; (2) WSC contributed by current leaf assimilation during the mid-grain filling; (3) WSC in non-leaf organs at the mid-grain filling, excluding the current leaf assimilation; and (4) WSC used for respiration and remobilization during the mid-grain filling. Association and favorable allele analyses of 209 genome-wide SSR markers and the four types of WSC were conducted using a mixed linear model. Seven novel favorable WSC alleles exhibited positive individual contributions to TGW, which were verified under 16 environments. Dosage effects of pyramided favorable WSC alleles and significantly linear correlations between the number of favorable WSC alleles and TGW were observed. Our results suggested that pyramiding more favorable WSC alleles was effective for improving both WSC and grain weight in future wheat breeding programs. PMID:25036550

  11. Migration and health risks of nonylphenol and bisphenol a in soil-winter wheat systems with long-term reclaimed water irrigation.

    Science.gov (United States)

    Wang, Shiyu; Liu, Fei; Wu, Wenyong; Hu, Yaqi; Liao, Renkuan; Chen, Gaoting; Wang, Jiulong; Li, Jialin

    2018-04-12

    Reclaimed water reuse has become an important means of alleviating agricultural water shortage worldwide. However, the presence of endocrine disrupters has roused up considerable attention. Barrel test in farmland was conducted to investigate the migration of nonylphenol (NP) and bisphenol A (BPA) in soil-winter wheat system simulating reclaimed water irrigation. Additionally, the health risks on humans were assessed based on US EPA risk assessment model. The migration of NP and BPA decreased from the soil to the winter wheat; the biological concentration factors (BCFs) of NP and BPA in roots, stems, leaves, and grains all decreased with their added concentrations in soils. The BCFs of NP and BPA in roots were greatest (0.60-5.80 and 0.063-1.45, respectively). The average BCFs of NP and BPA in winter wheat showed negative exponential relations to their concentrations in soil. The amounts of NP and BPA in soil-winter wheat system accounted for 8.99-28.24% and 2.35-4.95%, respectively, of the initial amounts added into the soils. The hazard quotient (HQ) for children and adults ranged between 10 -6 and 1, so carcinogenic risks could be induced by ingesting winter wheat grains under long-term reclaimed water irrigation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. 21 CFR 184.1322 - Wheat gluten.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is obtained...

  13. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    Science.gov (United States)

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  14. Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil

    International Nuclear Information System (INIS)

    Koeleli, Nurcan; Eker, Selim; Cakmak, Ismail

    2004-01-01

    The effect of increasing application of zinc (Zn) and cadmium (Cd) on shoot dry weight and shoot concentrations of Zn and Cd was studied in bread and durum wheat cultivars. Plants were grown in severely Zn-deficient calcareous soil treated with increasing Zn (0 and 10 mg kg -1 soil) and Cd (0, 10 and 25 mg kg -1 soil) and harvested after 35 and 65 days of growth under greenhouse conditions. Growing plants without Zn fertilization caused severe depression in shoot growth, especially in durum wheat and at high Cd treatment. Cadmium treatments resulted in rapid development of necrotic patches on the base and sheath parts of the oldest leaves of both wheat cultivars, but symptoms were more severe in durum wheat and under Zn deficiency. Decreases in shoot dry weight from increasing Cd application were more severe in Zn-deficient plants. Severity of Cd toxicity symptoms in durum and bread wheat at different Zn treatments did not show any relation to the Cd concentrations in shoot. Increasing Cd application to Zn-deficient plants tended to decrease Zn concentrations in Zn-deficient plants, whereas in plants with adequate Zn, concentrations of Zn were either not affected or increased by Cd. The results show that durum wheat was more sensitive to both Zn deficiency and Cd toxicity as compared to bread wheat. Cadmium toxicity in the shoot was alleviated by Zn treatment, but this was not accompanied by a corresponding decrease in shoot concentrations of Cd. Our results are compatible with the hypothesis that Zn protects plants from Cd toxicity by improving plant defense against Cd-induced oxidative stress and by competing with Cd for binding to critical cell constituents such as enzymes and membrane protein and lipids

  15. Changes of antioxidant potential of pasta fortified with parsley (Petroselinum Crispum mill.) leaves in the light of protein-phenolics interactions.

    Science.gov (United States)

    Sęczyk, Łukasz; Świeca, Michał; Gawlik-Dziki, Urszula

    2015-01-01

    Pasta is considered as an effective carrier of prohealth ingredients in food fortification. The aim of this study was to examine the changes of antioxidant potential of wheat pasta affected by fortification with powdered parsley leaves. A special attention was paid to effectiveness of fortification in the light of proteinphenolic interactions. To improve antioxidant activity of pasta, part of wheat flour was replaced with powdered parsley leaves from 1% to 4% (w/w). The total phenolics content was determined with Folin-Ciocalteau reagent. Antioxidant capacity was evaluated using in vitro assays - abilities to scavenge free radicals (ABTS) and to reduce iron (III) (FRAP). Predicted phenolic contents and antioxidant activity were calculated. To determine the protein-phenolics interactions SE-HPLC and SDS-PAGE techniques were used. Fortification of pasta had a positive effect on its phenolic contents and antioxidant properties. The highest phenolics level and antioxidant activity of pasta were obtained by supplementation with 4% of parsley leaves. However, in most cases experimental values were significantly lower than those predicted. The protein profiles obtained after SDS-PAGE differed significantly among control and enriched pasta. Furthermore, the addition of parsley leaves to pasta resulted in increase of peaks areas obtained by SE-HPLC. Results indicate the occurrence of the protein-phenolics interactions in fortified pasta. Overall, the effectiveness of fortification and consequently biological effect is limited by many factors including interactions between phenolics and pasta proteins. In the light of this results the study of potential interaction of bioactive supplements with food matrix should be taken into account during designing new functional food products.

  16. Pirimiphos-methyl residues in stored wheat and barley, bread, burghul and parboiled wheat

    International Nuclear Information System (INIS)

    Hadjidemetriou, D.G.

    1990-01-01

    Residues of 14 C-pirimiphos-methyl in stored grain declined to 88% in wheat and 82% in barley after 12 months. Corresponding percentages with the unlabelled insecticide were 78% and 59% since only the parent chemical was determined. Surface residues, removed by washing the grain with water, decreased from 3.3 to 0.2 mg/kg for wheat and from 2.0 to 0.2 mg/kg for barley. Bound residues increased gradually with time and reached a maximum of 2.2% for wheat and 3.0% for barley in 12 months. Pirimiphos-methyl residues in flour increased from 1.1 at 0 time to 2.2 mg/kg after one year. The mean values of residues contained in the unwashed wheat grain were 81% for bran and 19% for flour. The loss in milling during preparation of wholemeal flour from prewashed grain was 7% for wheat and 6% for barley. Processed products from wheat showed residue losses ranging from 24 to 45%. (author). 16 refs, 2 figs, 2 tabs

  17. Binding of zinc and iron to wheat bread, wheat bran, and their components.

    Science.gov (United States)

    Ismail-Beigi, F; Faraji, B; Reinhold, J G

    1977-10-01

    Wholemeal wheat bread decreases the availability and intestinal absorption of divalent metals. To define this action further, binding of zinc in vitro to a wheat wholemeal bread (Tanok), dephytinized Tanok, and cellulose was determined at pH 5.0 to 7.5. Zinc binding by each was highly pH-dependent and reached a maximum at pH 6.5 to 7.5. Removal of phytate from Tanok did not reduce its binding capability. Wheat bran at pH 6.5 and 6.8 bound 72% of iron (0.5 microgram/ml of solution) and 82.5% of zinc (1.43 microgram/ml solution), respectively. Lignin and two of the hemicellulose fractions of wheat bran and high binding capabilities for zinc (85.6, 87.1, and 82.1%, respectively) whereas a third had a lower zinc-binding capability (38.7%). Binding of zinc to various celluloses and dextrans is also demonstrated. Formation of complexes of these metals with wheat fiber can explain, at least in part, the decreased availability of dietary iron and zinc in wholemeal wheat bread.

  18. Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat

    Science.gov (United States)

    Drakulic, Jassy; Ajigboye, Olubukola; Swarup, Ranjan; Bruce, Toby

    2016-01-01

    ABSTRACT Fusarium langsethiae is a fungal pathogen of cereal crops that is an increasing problem in northern Europe, but much of its epidemiology is poorly understood. The species produces the mycotoxins T-2 and HT-2, which are highly toxic. It was hypothesized that grain aphids, Sitobion avenae, may transmit F. langsethiae inoculum between wheat plants, and a series of transmission experiments and volatile chemical analyses was performed to test this. Manual translocation of aphids from inoculated to uninfected hosts resulted in pathogen DNA accumulation in hosts. However, the free movement of wingless aphids from infected to healthy plants did not. The addition of winged aphids reared on F. langsethiae-inoculated wheat seedlings to wheat plants also did not achieve successful pathogen transfer. While our data suggested that aphid transmission of the pathogen was not very efficient, we observed an increase in disease when aphids were present. After seedling inoculation, an increase in pathogen DNA accumulation in seedling leaves was observed upon treatment with aphids. Furthermore, the presence of aphids on wheat plants with F. langsethiae-inoculated ears not only led to a rise in the amount of F. langsethiae DNA in infected grain but also to an increase in the concentrations of T-2 and HT-2 toxins, with more than 3-fold higher toxin levels than diseased plants without aphids. This work highlights that aphids increase the susceptibility of wheat host plants to F. langsethiae and that aphid infestation is a risk factor for accumulating increased levels of T-2 and HT-2 in wheat products. IMPORTANCE Fusarium langsethiae is shown here to cause increased contamination levels of grain with toxins produced by fungus when aphids share the host plant. This effect has also recently been demonstrated with Fusarium graminearum, yet the two fungal species show stark differences in their effect on aphid populations. In both cases, aphids improve the ability of the pathogens to

  19. Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease

    NARCIS (Netherlands)

    Broeck, van den H.C.; Jong, de H.C.; Salentijn, E.M.J.; Dekking, L.; Bosch, H.J.; Hamer, R.J.; Gilissen, L.J.W.J.; Meer, van der I.M.; Smulders, M.J.M.

    2010-01-01

    Gluten proteins from wheat can induce celiac disease (CD) in genetically susceptible individuals. Specific gluten peptides can be presented by antigen presenting cells to gluten-sensitive T-cell lymphocytes leading to CD. During the last decades, a significant increase has been observed in the

  20. Quantitative determination of total and individual flavonoids in stems and leaves of Buddleja davidii and Buddleja albiflora.

    Science.gov (United States)

    Ying, Cheng; Wan, Dingrong

    2012-10-01

    Buddleja davidii and B. albiflora are two different original plants of the famous crude medicine "Diaoyangchen". An ultraviolet-visible spectrophotometric method and a HPLC method were used for the determination of total and individual flavonoids (luteolin and apigenin) contents from their stems and leaves for the first time. From the comparative evaluation, remarkable differences in flavonoids contents were observed between different origins and different parts of the samples. And content of specific flavonoid did not correspond to the total flavonoids contents in Buddleja davidii and Buddleja albiflora. With a better accuracy and precision, the methods had been proved simple, rapid, and reliable for quantitative determination of the total flavonoids and luteolin and apigenin in the two phytomedicines. Furthermore, our present study will pave the way of guidelines for the differentiation and standardization and exploitation of individual parts of this herb material.

  1. Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines

    Directory of Open Access Journals (Sweden)

    Jianmin Song

    2016-11-01

    Full Text Available Previous studies have shown that wheat grain yield is seriously affected by drought stress, and leaf cuticular wax is reportedly associated with drought tolerance. However, most studies have focused on cuticular wax biosynthesis and model species. The effects of cuticular wax on wheat drought tolerance have rarely been studied. The aims of the current study were to study the effects of leaf cuticular wax on wheat grain yield under drought stress using the above-mentioned wheat NILs and to discuss the possible physiological mechanism of cuticular wax on high grain yield under drought stress. Compared to water-irrigated (WI conditions, the cuticular wax content (CWC in glaucous and non-glaucous NILs under drought-stress (DS conditions both increased; mean increase values were 151.1% and 114.4%, respectively, which was corroborated by scanning electronic microscopy images of large wax particles loaded on the surfaces of flag leaves. The average yield of glaucous NILs was higher than that of non-glaucous NILs under DS conditions in 2014 and 2015; mean values were 7368.37 kg·ha-1 and 7103.51 kg·ha-1. This suggested that glaucous NILs were more drought-tolerant than non-glaucous NILs (P = 0.05, which was supported by the findings of drought tolerance indices TOL and SSI in both years, the relatively high water potential and relative water content, and the low ELWL. Furthermore, the photosynthesis rate (Pn of glaucous and non-glaucous wheat NILs under DS conditions decreased by 7.5% and 9.8%, respectively; however, glaucous NILs still had higher mean values of Pn than those of non-glaucous NILs, which perhaps resulted in the higher yield of glaucous NILs. This could be explained by the fact that glaucous NILs had a smaller Fv/Fm reduction, a smaller PI reduction and a greater ABS/RC increase than non-glaucous NILs under DS conditions. This is the first report to show that wheat cuticular wax accumulation is associated with drought tolerance. Moreover

  2. Maternal effects of the English grain aphids feeding on the wheat varieties with different resistance traits.

    Science.gov (United States)

    Hu, Xiang-Shun; Zhang, Zhan-Feng; Zhu, Tong-Yi; Song, Yue; Wu, Li-Juan; Liu, Xiao-Feng; Zhao, Hui-Yan; Liu, Tong-Xian

    2018-05-09

    The maternal effects of the English grain aphid, Sitobion avenae on offspring phenotypes and performance on wheat varieties with different resistance traits were examined. We found that both conditioning wheat varieties(the host plant for over 3 months) and transition wheat varieties affected the biological parameters of aphid offspring after they were transferred between wheat varieties with different resistance traits. The conditioning varieties affected weight gain, development time (DT), and the intrinsic rate of natural increase (r m ), whereas transition varieties affected the fecundity, r m , net reproductive rate, and fitness index. The conditioning and transition wheat varieties had significant interaction effects on the aphid offspring's DT, mean relative growth rate, and fecundity. Our results showed that there was obvious maternal effects on offspring when S. avenae transferred bwteen wheat varieties with different resistance level, and the resistance traits of wheat varieties could induce an interaction between the conditioning and transition wheat varieties to influence the growth, development, reproduction, and even population dynamics of S. avenae. The conditioning varieties affected life-history traits related to individual growth and development to a greater extent, whereas transition varieties affected fecundity and population parameters more.

  3. Wheat root length and not branching is altered in the presence of neighbours, including blackgrass.

    Directory of Open Access Journals (Sweden)

    Jessica A Finch

    Full Text Available The effect of neighbouring plants on crop root system architecture may directly interfere with water and nutrient acquisition, yet this important and interesting aspect of competition remains poorly understood. Here, the effect of the weed blackgrass (Alopecurus myosuroides Huds. on wheat (Triticum aestivum L. roots was tested, since a low density of this species (25 plants m-2 can lead to a 10% decrease in wheat yield and herbicide resistance is problematic. We used a simplified growth system based on gelled medium, to grow wheat alongside a neighbour, either another wheat plant, a blackgrass or Brachypodium dystachion individual (a model grass. A detailed analysis of wheat seminal root system architecture showed that the presence of a neighbour principally affected the root length, rather than number or diameter under a high nutrient regime. In particular, the length of first order lateral roots decreased significantly in the presence of blackgrass and Brachypodium. However, this effect was not noted when wheat plants were grown in low nutrient conditions. This suggests that wheat may be less sensitive to the presence of blackgrass when grown in low nutrient conditions. In addition, nutrient availability to the neighbour did not modulate the neighbour effect on wheat root architecture.

  4. Wheat root length and not branching is altered in the presence of neighbours, including blackgrass

    Science.gov (United States)

    Finch, Jessica A.; Guillaume, Gaëtan; French, Stephanie A.; Colaço, Renato D. D. R.; Davies, Julia M.

    2017-01-01

    The effect of neighbouring plants on crop root system architecture may directly interfere with water and nutrient acquisition, yet this important and interesting aspect of competition remains poorly understood. Here, the effect of the weed blackgrass (Alopecurus myosuroides Huds.) on wheat (Triticum aestivum L.) roots was tested, since a low density of this species (25 plants m-2) can lead to a 10% decrease in wheat yield and herbicide resistance is problematic. We used a simplified growth system based on gelled medium, to grow wheat alongside a neighbour, either another wheat plant, a blackgrass or Brachypodium dystachion individual (a model grass). A detailed analysis of wheat seminal root system architecture showed that the presence of a neighbour principally affected the root length, rather than number or diameter under a high nutrient regime. In particular, the length of first order lateral roots decreased significantly in the presence of blackgrass and Brachypodium. However, this effect was not noted when wheat plants were grown in low nutrient conditions. This suggests that wheat may be less sensitive to the presence of blackgrass when grown in low nutrient conditions. In addition, nutrient availability to the neighbour did not modulate the neighbour effect on wheat root architecture. PMID:28542446

  5. Generation and scavenging of reactive oxygen species in wheat flag leaves under combined shading and waterlogging stress

    DEFF Research Database (Denmark)

    Li, Huawei; Cai, Jian; Liu, Fulai

    2012-01-01

    Wheat (Triticum aestivum L.) plants were subjected to combined waterlogging and shading (WS) at 0–7, 8–15, 16–23 and 24–31 days after anthesis (DAA). WS at 0–7, 8–15, 16–23 and 24–31 DAA caused a yield loss of 17.18%, 14.98%, 7.93% and 7.05%, respectively. These losses were related to reductions ...

  6. Eat Wheat!

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  7. INTRODUCTION OF A NEW LEAVE MANAGEMENT SYSTEM

    CERN Document Server

    HR Division

    2000-01-01

    The introduction of new leave rules (arising from the RSL, PRP and other programmes) has made the present leave management system rather complicated and difficult to manage. It has therefore been decided to replace it with a more flexible and adaptable system, which will come into force on 1st October 2000. Henceforth, days of leave will be credited monthly instead of annually. Members of the personnel will have round-the-clock direct access to more detailed, confidential information regarding their various kinds of leave.They will also receive a personal monthly statement with their pay slips. The new system does not require any amendment of the regulations, except with respect to the frequency of leave calculations (monthly instead of annual). I. Main characteristics of the new leave system 1. The main feature of the new system is the creation of accounts to which leave will be credited or debited as appropriate. Depending on their circumstances, members of the personnel may have up to four individual leave...

  8. Individual Cognitive Social Capital and Its Relationship with Pain and Sick Leave Due to Pain in the Austrian Population

    Science.gov (United States)

    Muckenhuber, Johanna; Pollak, Lorenz; Stein, Katharina Viktoria; Dorner, Thomas Ernst

    2016-01-01

    Background Individual cognitive social capital has repeatedly been shown to be linked to health disparities in many dimensions. The aim of the study was to investigate the association between social capital and pain-related measures. Methods 15,474 subjects older than 15 years were personally interviewed on subjective health, quality of life, health behaviour, and utilisation of healthcare in the Austrian Health Interview Survey. An indicator for cognitive social capital at the individual level consisting of nine questions targeted at different social resources was built and its association with pain-related items analysed. Results Odds ratios, adjusted for age, chronic diseases, and educational level for having suffered from severe pain in the last 12 months were 2.02 (95% CI 1.77–2.03) in the lowest tertile and 1.30 (95% CI 1.14–1.47) in the middle tertile of social capital for men. The corresponding odds ratios for women were 2.28 (95% CI 2.01–2.59) and 1.30 (95% CI 1.15–1.46). In both sexes, pain intensity increased significantly with decreasing level of social capital. The proportion of subjects that have been on sick leave in the last 12 months due to pain were 16.3%, 12.0%, and 7.7% (Psocial capital in men, and 16.5%, 12.3%, and 6.7%, respectively (Psocial capital at individual level is significantly associated not only with higher prevalence of pain and higher pain intensity, but also with a higher chance for sick leave due to pain in employed subjects. PMID:27322649

  9. 21 CFR 137.200 - Whole wheat flour.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat flour. 137.200 Section 137.200 Food... Flours and Related Products § 137.200 Whole wheat flour. (a) Whole wheat flour, graham flour, entire wheat flour is the food prepared by so grinding cleaned wheat, other than durum wheat and red durum...

  10. Cultural Characteristics of Rhizoctonia cerealis Isolated from Diseased Wheat Fields and Evaluation of the Resistance of Korean Winter Cereal Crops

    Directory of Open Access Journals (Sweden)

    Eun-Sook Lee

    2011-04-01

    Full Text Available It was identified as a sharp eyespot (Rhizoctonia cerealis that the isolates from abnormal symptoms in wheat that showed yellowing leaves, necrotic spot on stem base and dead tillers. These isolates have slower growth property and fewer mycelia than Rhizoctonia solani AG-1(1A (KACC 40106. They showed binuclear cell, same media cultural and DNA characteristics to R. cerealis. They caused same symptoms on leaves and stem base appeared in artificial inoculation test, comparing to diseased wheat fields and also affect to maturing of kernels. They have optimal growth temperature and acidity on the artificial media as 20~25℃ and pH 5~7, respectively. In the investigation of varietal resistance of Korean winter cereal crops to sharp eyespot, there was no resistant in wheat cultivars that all materials infected over 20% diseased ratio. 12 cultivars including ``Anbaekmil``, however, considered to moderate resistance with 20 to 30% infection ratio. The others crops using in feeding, whole crop barley, oat, rye and triticale were resistant below 15% diseased degree except the rye that showed over 50% infection rate. It was the first evaluation to sharp eyespot resistance for the Korean feeding crop cultivars. Most tested Korean barley cultivars for malting and food were moderate and susceptible to the sharp eyespot. Only 3 hulled barley, ``Tapgolbori``, ``Albori`` and ``Seodunchalbori``, showed resistance with less than 10% diseased ratio. All tested naked barley cultivars showed susceptible response to the disease.

  11. Wheat TaRab7 GTPase is part of the signaling pathway in responses to stripe rust and abiotic stimuli.

    Directory of Open Access Journals (Sweden)

    Furong Liu

    Full Text Available Small GTP-binding proteins function as regulators of specific intercellular fundamental biological processes. In this study, a small GTP-binding protein Rab7 gene, designated as TaRab7, was identified and characterized from a cDNA library of wheat leaves infected with Puccinia striiformis f. sp. tritici (Pst the wheat stripe rust pathogen. The gene was predicted to encode a protein of 206 amino acids, with a molecular mass of 23.13 KDa and an isoeletric point (pI of 5.13. Further analysis revealed the presence of a conserved signature that is characteristic of Rab7, and phylogenetic analysis demonstrated that TaRab7 has the highest similarity to a small GTP binding protein gene (BdRab7-like from Brachypodium distachyon. Quantitative real-time PCR assays revealed that the expression of TaRab7 was higher in the early stage of the incompatible interactions between wheat and Pst than in the compatible interaction, and the transcription level of TaRab7 was also highly induced by environmental stress stimuli. Furthermore, knocking down TaRab7 expression by virus induced gene silencing enhanced the susceptibility of wheat cv. Suwon 11 to an avirulent race CYR23. These results imply that TaRab7 plays an important role in the early stage of wheat-stripe rust fungus interaction and in stress tolerance.

  12. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes

    Directory of Open Access Journals (Sweden)

    Brande B. H. Wulff

    2014-12-01

    Full Text Available The domestication of wheat in the Fertile Crescent 10,000 years ago led to a genetic bottleneck. Modern agriculture has further narrowed the genetic base by introducing extreme levels of uniformity on a vast spatial and temporal scale. This reduction in genetic complexity renders the crop vulnerable to new and emerging pests and pathogens. The wild relatives of wheat represent an important source of genetic variation for disease resistance. For nearly a century farmers, breeders, and cytogeneticists have sought to access this variation for crop improvement. Several barriers restricting interspecies hybridization and introgression have been overcome, providing the opportunity to tap an extensive reservoir of genetic diversity. Resistance has been introgressed into wheat from at least 52 species from 13 genera, demonstrating the remarkable plasticity of the wheat genome and the importance of such natural variation in wheat breeding. Two main problems hinder the effective deployment of introgressed resistance genes for crop improvement: (1 the simultaneous introduction of genetically linked deleterious traits and (2 the rapid breakdown of resistance when deployed individually. In this review we discuss how recent advances in molecular genomics are providing new opportunities to overcome these problems.

  13. IMPACT OF LIME, BIOMASS ASH AND COMPOST AS WELL AS PREPARATION OF EM APPLICATIONS ON GRAIN YIELD AND YIELD COMPONENTS OF WHEAT

    Directory of Open Access Journals (Sweden)

    Sławomir Stankowski

    2014-10-01

    Full Text Available Field experiment was conducted in 2013 in Duninowo (54o539’ N, 16o830’ E. The experimental factors were: I. factor - 6 variants of fertilization, and II. - two level of EM preparations. The aim of this study was to evaluate the impact of ash from biomass by comparing its effect with the calcium fertilizer and compost BIOTOPE in conjunction with the preparation of microbiological Effective Microorganisms (EM. The impact of ash from biomass introduced into the soil on yield and yield structure and physiological parameters of spring wheat was analyzed No significant impact of the various variants of fertilizer application on the yielding of spring wheat cv.Bombona was confirmed. As a result of the form of compost fertilizer BIOTOPE, an increase in the content of chlorophyll in leaves of wheat cv Bombona (SPAD and the size of canopy assimilation area per unit area of the field (LAI. The application of EM did not affect the physiological parameters (yield, the number of ears per area unit, SPAD, LAI characterizing the spring wheat cv. Bombona.

  14. Wheat ferritins: Improving the iron content of the wheat grain

    DEFF Research Database (Denmark)

    Borg, Søren; Brinch-Pedersen, Henrik; Tauris, Birgitte

    2012-01-01

    The characterization of the full complement of wheat ferritins show that the modern hexaploid wheat genome contains two ferritin genes, TaFer1 and TaFer2, each represented by three homeoalleles and placed on chromosome 5 and 4, respectively. The two genes are differentially regulated and expresse...

  15. REMINDER Saved Leave Scheme (SLS) : Transfer of leave to saved leave accounts

    CERN Multimedia

    HR Division

    2002-01-01

    Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'*) annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No. 22B) can be transferred to the saved leave account at the end of the leave year (30 September). We remind you that, since last year, unused leave of all those taking part in the saved leave scheme at the closure of the leave-year accounts is transferred automatically to the saved leave account on that date. Therefore, staff members have no administrative steps to take. In addition, the transfer, which eliminates the risk of omitting to request leave transfers and rules out calculation errors in transfer requests, will be clearly shown in the list of leave transactions that can be consulted in EDH from October 2002 onwards. Furthermore, this automatic leave transfer optimizes staff members' chances of benefiting from a saved leave bonus provided that they are still participants in the schem...

  16. Positive experiences of a vocational rehabilitation intervention for individuals on long-term sick leave, the Dirigo project: a qualitative study

    Directory of Open Access Journals (Sweden)

    Åsa Andersén

    2017-10-01

    Full Text Available Abstract Background The process of returning to work after long-term sick leave can sometimes be complex. Many factors, (e.g. cooperation between different authorities and the individual as well as individual factors such as health, emotional well-being and self-efficacy may have an impact on an individual’s ability to work. The aim of this study was to investigate clients’ experiences with an individually tailored vocational rehabilitation, the Dirigo project, and encounters with professionals working on it. The Dirigo project was based on collaboration between rehabilitation authorities, individually tailored interventions and a motivational interviewing approach. Methods A descriptive qualitative design was used with data collected through interviews. Fourteen individuals on long-term sick leave took part in individual semi-structured interviews. The interviews were analysed using content analysis. Results The analysis showed overall positive experience of methods and encounters with professionals in a vocational rehabilitation project. The positive experiences were based on four key factors: 1. Opportunities for receiving various dimensions of support. 2. Good overall treatment by the professionals. 3. Satisfaction with the working methods of the project, and 4. Opportunities for personal development. Conclusions The main result showed that the clients had an overall positive experience of a vocational rehabilitation project and encounters with professionals who used motivational interviewing as a communication method. The overall positive experience indicated that their interactions with the different professionals may have affected their self-efficacy in general and in relation to transition to work. The knowledge is essential for the professionals working in the area of vocational rehabilitation. However, vocational rehabilitation interventions also need a societal approach to be able to offer clients opportunities for job training

  17. Dissecting the molecular interactions between wheat and the fungal pathogen Zymoseptoria tritici

    Directory of Open Access Journals (Sweden)

    Graeme James Kettles

    2016-04-01

    Full Text Available The Dothideomycete fungus Zymoseptoria tritici (previously known as Mycosphaerella graminicola and Septoria tritici is the causative agent of Septoria tritici leaf blotch (STB disease of wheat (Triticum aestivum L.. In Europe, STB is the most economically damaging disease of wheat, with an estimated ~€1 billion per year in fungicide expenditure directed towards its control. Here, an overview of our current understanding of the molecular events that occur during Z. tritici infection of wheat leaves is presented. On the host side, this includes the contribution of (1 the pathogen-associated molecular pattern-triggered immunity (PTI layer of the plant defence, and (2 major Stb resistance loci to Z. tritici resistance. On the pathogen side of the interaction, we consolidate evidence from recent bioinformatic, transcriptomic and proteomic studies that begin to explain the contribution of Z. tritici effector proteins to the biphasic lifestyle of the fungus. This includes the discovery of chitin-binding proteins in the Z. tritici secretome, which contribute to evasion of immune surveillance by this pathogen, and the possible existence of ‘necrotrophic’ effectors from Z. tritici, which may actively stimulate host recognition in a manner similar to related necrotrophic fungal pathogens. We finish by speculating on how some of these recent fundamental discoveries might be harnessed to help improve resistance to STB in the world’s second largest food crop.

  18. Effects of shading on morphology, physiology and grain yield of winter wheat

    DEFF Research Database (Denmark)

    Li, Huawei; Jiang, Dong; Wollenweber, Bernd

    2010-01-01

    In a field experiment, winter wheat (Triticum aestivum L.) cultivars Yangmai 158 (YM 158, shading tolerant) and Yangmai 11 (YM 11, shading-sensitive) were subjected to shading between jointing and maturity. Three shading treatments were applied, i.e. 92% (S1), 85% (S2) and 77% (S3) of full...... the shading treatments applied, leaf area index, length of the peduncle internode, area of the upper leaves and content of pigments increased, which favoured efficient light capture. Shading modified light quality in the canopy as indicated by increases of diffuse- and blue light fractions and a reduction...... the flag leaf, as in most cases Pn of the third and the penultimate leaves were found to increase under shading treatments. Shading increased the redistribution of dry matter from vegetative organs into grains. The responses of the morphological and physiological traits to shading are discussed in relation...

  19. Upgrading of shamy wheat bread quality through supplement with flour of certain gamma irradiated legumes

    International Nuclear Information System (INIS)

    Nassef, A.E.

    1997-01-01

    Soybean flour,chick peas flour and lupines were irradiated at 0,5 and 10 kGy and individually used to replace 5,10 or 15% of wheat flour in shamy bread. The effect of supplementation of wheat flour with these legume flours on the major, chemical composition and nutritional quality of bread was studied. Results indicated that protein, ash and fiber contents of supplemented shamy bread were higher than the control. On the other hand, the amino acids of the shamy wheat bread supplemented irradiated legumes flour, improved the quality (water retention capacity, stailing rate and bread freshness) of bread

  20. Patterns of suspected wheat-related allergy

    DEFF Research Database (Denmark)

    Junker Christensen, Morten; Eller, Esben; Mortz, Charlotte G

    2014-01-01

    BACKGROUND: Allergy to wheat can present clinically in different forms: Sensitization to ingested wheat via the gastrointestinal tract can cause traditional food allergy or in combination with exercise, Wheat-Dependent Exercise-Induced Anaphylaxis (WDEIA). Sensitization to inhaled wheat flour may......). All children had atopic dermatitis, and most (13/15) outgrew their wheat allergy. Most children (13/15) had other food allergies. Challenge positive patients showed significantly higher levels of sIgE to wheat and significantly more were SPT positive than challenge negative. Group 2: Eleven out of 13...... of sIgE to ω-5-gliadin. The natural course is presently unknown. CONCLUSION: Wheat allergy can manifest in different disease entities, rendering a detailed case history and challenge mandatory. Patient age, occupation, concomitant allergies (food or inhalant) and atopic dermatitis are important factors...

  1. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity

    Directory of Open Access Journals (Sweden)

    Qiyan Jiang

    2014-04-01

    Full Text Available The transcription factor dehydration-responsive element binding protein (DREB is able to improve tolerance to abiotic stress in plants by regulating the expression of downstream genes involved in environmental stress resistance. The objectives of this study were to evaluate the salt tolerance of GmDREB1 transgenic wheat (Triticum aestivum L. and to evaluate its physiological and protein responses to salt stress. Compared with the wild type, the transgenic lines overexpressing GmDREB1 showed longer coleoptiles and radicles and a greater radicle number at the germination stage, as well as greater root length, fresh weight, and tiller number per plant at the seedling stage. The yield-related traits of transgenic lines were also improved compared with the wild type, indicating enhanced salt tolerance in transgenic lines overexpressing GmDREB1. Proteomics analysis revealed that osmotic- and oxidative-stress-related proteins were up-regulated in transgenic wheat leaves under salt stress conditions. Transgenic wheat had higher levels of proline and betaine and lower levels of malondialdehyde and relative electrolyte leakage than the wild type. These results suggest that GmDREB1 regulates the expression of osmotic- and oxidative-stress-related proteins that reduce the occurrence of cell injury caused by high salinity, thus improving the salt tolerance of transgenic wheat.

  2. High-yielding Wheat Varieties Harbour Superior Plant Growth Promoting-Bacterial Endophytes

    Directory of Open Access Journals (Sweden)

    Mehwish Yousaf

    2017-06-01

    Full Text Available Background and Objective: The purpose of this study was to compare the endophytic microbial flora of different wheat varieties to check whether a better yielding variety also harbours superior plant growth promoting bacteria. Such bacteria are helpful in food biotechnology as their application can enhance the yield of the crop.Material and Methods: Three wheat varieties (Seher, Faisalabad and Lasani were selected, Seher being the most superior variety. endophytic bacteria were isolated from the histosphere of the leaves and roots at different growth phases of the plants. The isolates were analyzed for plant growth promoting activities. Isolates giving best results were identified through 16S rRNA gene sequencing. Statistical analysis was done using Microsoft Excel 2013. All the experiments were conducted in triplicates.Results and Conclusion: The endophytes of Seher variety showed maximum plant growth promoting abilities. Among the shoot endophytes, the highest auxin production was shown by Seher isolate SHHP1-3 up to 51.9μg ml-1, whereas in the case of root endophytes, the highest auxin was produced by SHHR1-5 up to 36 μg ml-1. The bacteria showing significant plant growth promoting abilities were identified by 16S rRNA sequencing. Bacillus, Proteobacteria and Actinobacteria species were the dominant bacteria showing all the traits of plant growth promotion. It can be concluded that Seher variety harbours superior plant growth promoting endophytes that must be one of the reasons for its better growth and yield as compared to the other two varieties. The investigated results support possible utilization of the selected isolates in wheat growth promotion with respect to increase in agro-productivity. The application of such bacteria could be useful to enhance wheat yield and can help in food biotechnology.Conflict of interest: The authors declare no conflict of interest.

  3. Response of wheat to tillage and nitrogen fertilization in rice-wheat system

    International Nuclear Information System (INIS)

    Qamar, R.; Ehsanullah, A.; Ahmad, R.; Iqbal, M.

    2012-01-01

    In a rice-wheat system, rice stubbles remaining in the field often delay early planting of winter wheat to utilize residual soil moisture and reduce operating costs. A randomized complete block design in a split plot arrangement was conducted with four seasonal tillage methods [conventional tillage, CT; deep tillage, DT; zero tillage with zone disk tiller, ZDT; and happy seeder, HS] as main plots and five N levels [0, 75, 100, 125, and 150 kg ha/sup -1/] as subplots during 2009 to 2010 and 2010 to 2011 wheat growing seasons. Results showed that DT significantly decreased soil bulk density, penetration resistance, and volumetric moisture content compared with CT, ZDT and HS. However, wheat growth and yield parameter such as fertile tillers, plant height, root length, spike length, grain yields, and water and nutrient-use efficiency was significantly higher in DT compared with other tillage treatments. Wheat growth and yield was more increased by N fertilization at 125 kg ha/sup -1/ than other N rates. However, when the wheat plant productivity index was plotted over N rates, the non-linear relationship showed that N fertilization at 80 kg N ha-1 accounted for 85% of the variability in the plant productivity under DT and HS while ZDT had the same productivity at 120 kg N ha/sup -1/. (author)

  4. Drought priming effects on alleviating later damages of heat and drought stress in different wheat cultivars

    DEFF Research Database (Denmark)

    Mendanha, Thayna; Hyldgaard, Benita; Ottosen, Carl-Otto

    The ongoing change is climate; in particular the increase of drought and heat waves episodes are a major challenge in the prospect of food safety. Under many field conditions, plants are usually exposed to mild intermittent stress episodes rather than a terminal stress event. Previous, but limited...... studies suggest that plants subjected to early stress (primed) can be more resistant to future stress exposure than those not stressed during seedling stage. In our experiment we aimed to test if repeated mild drought stresses could improve heat and drought tolerance during anthesis heat and drought...... stresses in wheat cultivars. Two wheat cultivars, Gladius and Paragon, were grown in a fully controlled gravimetric platform and subjected to either no stress (control) or two (P) drought cycles during seedling stage, at three and five complete developed leaves. Each cycle consisted of withholding water...

  5. Postprandial glucose metabolism and SCFA after consuming wholegrain rye bread and wheat bread enriched with bioprocessed rye bran in individuals with mild gastrointestinal symptoms

    DEFF Research Database (Denmark)

    Lappi, J; Mykkänen, H; Knudsen, Knud Erik Bach

    2014-01-01

    BackgroundRye bread benefits glucose metabolism. It is unknown whether the same effect is achieved by rye bran-enriched wheat bread. We tested whether white wheat bread enriched with bioprocessed rye bran (BRB + WW) and sourdough wholegrain rye bread (WGR) have similar effects on glucose metabolism...... and plasma level of short chain fatty acids (SCFAs).  MethodsTwenty-one (12 women) of 23 recruited subjects completed an intervention with a four-week run-in and two four-week test periods in cross-over design. White wheat bread (WW; 3% fibre) was consumed during the run-in, and WGR and BRB + WW (10% fibre.......05) and propionate (p = 0.009) at 30 min increased during both rye bread periods.ConclusionsBeneficial effects of WGR over white wheat bread on glucose and SCFA production were confirmed. The enrichment of the white wheat bread with bioprocessed rye bran (BRB + WW) yielded similar but not as pronounced effects than...

  6. Effects of long-term individual and combined water and temperature stress on the growth of rice, wheat and maize: relationship with morphological and physiological acclimation.

    Science.gov (United States)

    Perdomo, Juan Alejandro; Conesa, Miquel À; Medrano, Hipólito; Ribas-Carbó, Miquel; Galmés, Jeroni

    2015-10-01

    This study evaluates the long-term individual and combined effects of high temperature (HT) and water deficit (WD) stress on plant growth, leaf gas-exchange and water use efficiency in cultivars of the three most important crops worldwide, rice, wheat and maize. Total plant biomass (B t ) accumulation decreased under all treatments, being the combined HT-WD treatment the most detrimental in all three species. Although decreases in B t correlated with adjustments in biomass allocation patterns (i.e. the leaf area ratio), most of the variation observed in B t was explained by changes in leaf gas exchange parameters. Thus, integrated values of leaf carbon balance obtained from daily course measurements of photosynthesis and respiration were better predictors of plant growth than the instantaneous measurements of leaf gas exchange. Leaf water use efficiency, assessed both by gas exchange and carbon isotope measurements, was negatively correlated with B t under WD, but not under the combined WD and HT treatment. A comparative analysis of the negative effects of single and combined stresses on the main parameters showed an additive component for WD and HT in rice and maize, in contrast to wheat. Overall, the results of the specific cultivars included in the study suggest that the species native climate plays a role shaping the species acclimation potential to the applied stresses. In this regard, wheat, originated in a cold climate, was the most affected species, which foretells a higher affectation of this crop due to climate change. © 2014 Scandinavian Plant Physiology Society.

  7. 7 CFR 810.2201 - Definition of wheat.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  8. The expression of light-related leaf functional traits depends on the location of individual leaves within the crown of isolated Olea europaea trees.

    Science.gov (United States)

    Escribano-Rocafort, Adrián G; Ventre-Lespiaucq, Agustina B; Granado-Yela, Carlos; Rubio de Casas, Rafael; Delgado, Juan A; Balaguer, Luis

    2016-04-01

    The spatial arrangement and expression of foliar syndromes within tree crowns can reflect the coupling between crown form and function in a given environment. Isolated trees subjected to high irradiance and concomitant stress may adjust leaf phenotypes to cope with environmental gradients that are heterogeneous in space and time within the tree crown. The distinct expression of leaf phenotypes among crown positions could lead to complementary patterns in light interception at the crown scale. We quantified eight light-related leaf traits across 12 crown positions of ten isolated Olea europaea trees in the field. Specifically, we investigated whether the phenotypic expression of foliar traits differed among crown sectors and layers and five periods of the day from sunrise to sunset. We investigated the consequences in terms of the exposed area of the leaves at the tree scale during a single day. All traits differed among crown positions except the length-to-width ratio of the leaves. We found a strong complementarity in the patterns of the potential exposed area of the leaves among day periods as a result of a non-random distribution of leaf angles across the crown. Leaf exposure at the outer layer was below 60 % of the displayed surface, reaching maximum interception during morning periods. Daily interception increased towards the inner layer, achieving consecutive maximization from east to west positions within the crown, matching the sun's trajectory. The expression of leaf traits within isolated trees of O. europaea varies continuously through the crown in a gradient of leaf morphotypes and leaf angles depending on the exposure and location of individual leaves. The distribution of light-related traits within the crown and the complementarity in the potential exposure patterns of the leaves during the day challenges the assumption of low trait variability within individuals. © The Author 2016. Published by Oxford University Press on behalf of the Annals of

  9. Salt tolerance in wheat - an overview. (abstract)

    International Nuclear Information System (INIS)

    Ashraf, M.

    2005-01-01

    Considerable efforts have been made during the past few years to overcome the problem of salinity through the development of salt tolerant lines of important crop species using screening, breeding and molecular biology techniques. In view of considerable importance of spring wheat as a major staple food crop of many countries, plant scientists have directed there attention to identify and develop salt tolerant genotypes that can be of direct use on salt-affected soils. Although considerable progress in understanding individual phenomenon and genes involved in plant response to salinity stress has been made over the past few years, underlying physiological mechanisms producing salt tolerant plants is still unclear. It has been suggested that salt tolerance of plants could be improved by defining genes or characters. Twenty years ago, it was suggested that genes located on the D genome of bread wheat confer salinity tolerance to hexaploid wheat by reducing Na/sup +/ accumulation in the leaf tissue and increasing discrimination in favour of K/sup +/. However, recently, low Na/sup +/ accumulation and high K/sup +/Na/sup +/ discrimination, of similar magnitude to bread wheat, in several selections of durum wheat has been observed, supporting the notion that salt tolerance is controlled by multiple genes, which are distributed throughout the entire set of chromosomes. In addition, various physiological selection criteria such as compatible osmolytes (glycinebetaine, proline, trehalose, mannitol etc.), antioxidants, carbon discrimination, high K/sup +//Na/sup +/ ratio etc. have been discussed. Although tolerance to salinity is known to have a multigenic inheritance, mediated by a large number of genes, knowledge of heritability and the genetic mode of salinity tolerance is still lacking because few studies have yet been conducted in these areas. Indeed, genetic information is lagging behind the physiological information. Modern methods such as recombinant DNA technology

  10. Wheat biotechnology: A minireview

    OpenAIRE

    Patnaik, Debasis; Khurana, Paramjit

    2001-01-01

    Due to the inherent difficulties associated with gene delivery into regenerable explants and recovery of plantlets with the introduced transgene, wheat was the last among cereals to be genetically transformed. This review attempts to summarize different efforts in the direction of achieving genetic transformation of wheat by various methods. Particle bombardment is the most widely employed procedure for the introduction of marker genes and also for the generation of transformed wheat with int...

  11. INTRODUCTION OF A NEW LEAVE MANAGEMENT SYSTEM

    CERN Multimedia

    DIVISION HR

    2000-01-01

    The introduction of new leave rules (arising from the RSL, PRP and other programs) has made the present leave management system rather complicated and difficult to manage. It has therefore been decided to replace it with a more flexible and adaptable system, which will come into force on 1st October 2000. Henceforth, days of leave will be credited monthly instead of annually. Members of the personnel will have round-the-clock direct access to more detailed, confidential information regarding their various kinds of leave. They will also receive a personal monthly statement with their pay slips. The new system does not require any amendment of the regulations, except with respect to the frequency of leave calculations (monthly instead of annual). I. Main characteristics of the new leave system1. The main feature of the new system is the creation of accounts to which leave will be credited or debited as appropriate. Depending on their circumstances, members of the personnel may have up to four individual leave a...

  12. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources

    Directory of Open Access Journals (Sweden)

    Waugh Robbie

    2010-12-01

    Full Text Available Abstract Background Because of its size, allohexaploid nature and high repeat content, the wheat genome has always been perceived as too complex for efficient molecular studies. We recently constructed the first physical map of a wheat chromosome (3B. However gene mapping is still laborious in wheat because of high redundancy between the three homoeologous genomes. In contrast, in the closely related diploid species, barley, numerous gene-based markers have been developed. This study aims at combining the unique genomic resources developed in wheat and barley to decipher the organisation of gene space on wheat chromosome 3B. Results Three dimensional pools of the minimal tiling path of wheat chromosome 3B physical map were hybridised to a barley Agilent 15K expression microarray. This led to the fine mapping of 738 barley orthologous genes on wheat chromosome 3B. In addition, comparative analyses revealed that 68% of the genes identified were syntenic between the wheat chromosome 3B and barley chromosome 3 H and 59% between wheat chromosome 3B and rice chromosome 1, together with some wheat-specific rearrangements. Finally, it indicated an increasing gradient of gene density from the centromere to the telomeres positively correlated with the number of genes clustered in islands on wheat chromosome 3B. Conclusion Our study shows that novel structural genomics resources now available in wheat and barley can be combined efficiently to overcome specific problems of genetic anchoring of physical contigs in wheat and to perform high-resolution comparative analyses with rice for deciphering the organisation of the wheat gene space.

  13. Individual Cognitive Social Capital and Its Relationship with Pain and Sick Leave Due to Pain in the Austrian Population.

    Directory of Open Access Journals (Sweden)

    Johanna Muckenhuber

    Full Text Available Individual cognitive social capital has repeatedly been shown to be linked to health disparities in many dimensions. The aim of the study was to investigate the association between social capital and pain-related measures.15,474 subjects older than 15 years were personally interviewed on subjective health, quality of life, health behaviour, and utilisation of healthcare in the Austrian Health Interview Survey. An indicator for cognitive social capital at the individual level consisting of nine questions targeted at different social resources was built and its association with pain-related items analysed.Odds ratios, adjusted for age, chronic diseases, and educational level for having suffered from severe pain in the last 12 months were 2.02 (95% CI 1.77-2.03 in the lowest tertile and 1.30 (95% CI 1.14-1.47 in the middle tertile of social capital for men. The corresponding odds ratios for women were 2.28 (95% CI 2.01-2.59 and 1.30 (95% CI 1.15-1.46. In both sexes, pain intensity increased significantly with decreasing level of social capital. The proportion of subjects that have been on sick leave in the last 12 months due to pain were 16.3%, 12.0%, and 7.7% (P<0.001 from lowest to highest tertile of social capital in men, and 16.5%, 12.3%, and 6.7%, respectively (P<0.001 in women.Our findings indicate that low cognitive social capital at individual level is significantly associated not only with higher prevalence of pain and higher pain intensity, but also with a higher chance for sick leave due to pain in employed subjects.

  14. POTENTIAL IMPACTS OF GM WHEAT ON UNITED STATES AND NORTHERN PLAINS WHEAT TRADE

    OpenAIRE

    Taylor, Richard D.; DeVuyst, Eric A.; Koo, Won W.

    2003-01-01

    The potential introduction of genetically modified (GM) wheat has both supporters and opponents waging battle in the popular press and scholarly research. Supporters highlight the benefits to producers, while the opponents highlight the unknown safety factors for consumers. The topic is very important to the United States, as a large portion of the wheat production is exported overseas. Consumer groups in some countries are resisting GM wheat. This study utilizes a spatial equilibrium model t...

  15. Effect of different irrigated conditions on some morphological traits of wheat genotypes grown in Saudi Arabia

    International Nuclear Information System (INIS)

    Albokari, A. A.; Majeed, A.; Almuwalid, A.

    2016-01-01

    The Kingdom of Saudi Arabia being one of the driest countries globally needs drought tolerant wheat varieties. Breeding studies were conducted to determine the effects of different irrigation levels on some morphological traits of 4 wheat varieties. A pot-house experiment was conducted in split plot design using two different irrigations (well-watered and partial moisture stress) levels. Presently, the study was laid on different traits viz. plant height (cm), tiller number/plant, number of leaves/plant, leaf length (cm), flowering time (days), maturity time (days), 1000-grain weight (g) and grain yield/plant (g). The mean square from pooled analysis of variance revealed that the genotypes, treatments and genotype x treatment interaction were highly significant (p>0.05) for the traits leaf length, plant height, maturity time,1000-grain weight, grain yield per plot; however, number of leaves, number of tillers/plant, flowering time and 1000-grain weight showed non-significant difference. Similarly, genotype x reading interaction was also highly significant (p>0.05) leaf length, number of tillers per plant and plant height. The varieties Nukrat Zahran, Samrra Najran and Halba Najran and showed better performance for grain yield and maximum 1000-grain weight under both environments. Plant height showed highly significant positive correlation with number of leaves per plant and number of tillers per plant. At partial stress, 1000-grain weight showed highly significant (p>0.01) correlation (r=0.8608) with grain yield and maturity time (r=0.9948). The knowledge obtained through this research will be helpful while selection of best varieties with better tolerance to environmental stresses. (author)

  16. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Directory of Open Access Journals (Sweden)

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  17. Oxylipins discriminate between whole grain wheat and wheat aleurone intake: a metabolomics study on pig plasma

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Hedemann, Mette Skou; Theil, Peter Kappel

    2013-01-01

    were also found in the flour and the bread consumed by pigs. Since the germ is part of the whole grain flour, the germ is most likely responsible for the elevated level of oxylipins in plasma after whole grain wheat consumption. This finding may also point towards bioactive compounds, which can be used......A pig model was used to investigate the difference in metabolic response of plasma between whole grain wheat and wheat aleurone. Six pigs were fed in a cross-over design iso dietary fiber (DF) breads prepared from whole grain wheat and wheat aleurone and with a wash-out diet based on bread produced...

  18. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR.

    Science.gov (United States)

    Sonnante, Gabriella; Montemurro, Cinzia; Morgese, Anita; Sabetta, Wilma; Blanco, Antonio; Pasqualone, Antonella

    2009-11-11

    Italian industrial pasta and durum wheat typical breads must be prepared using exclusively durum wheat semolina. Previously, a microsatellite sequence specific of the wheat D-genome had been chosen for traceability of soft wheat in semolina and bread samples, using qualitative and quantitative Sybr green-based real-time experiments. In this work, we describe an improved method based on the same soft wheat genomic region by means of a quantitative real-time PCR using a dual-labeled probe. Standard curves based on dilutions of 100% soft wheat flour, pasta, or bread were constructed. Durum wheat semolina, pasta, and bread samples were prepared with increasing amounts of soft wheat to verify the accuracy of the method. Results show that reliable quantifications were obtained especially for the samples containing a lower amount of soft wheat DNA, fulfilling the need to verify labeling of pasta and typical durum wheat breads.

  19. DEVELOPMENT OF A FUNCTIONAL PURPOSE WHIPPED BREAD WHOLE GRAIN WHEAT, RYE AND WHEAT BRAN

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2015-01-01

    Full Text Available The article discusses the development of whipped bakery products enriched with dietary fiber, minerals, vitamins retinol, tocopherol, group, polyunsaturated fatty acids through the use of rye and wheat bran and flour of wholegrain wheat. The main raw material for enrichment whipped bakery products used wheat bran and rye. Choice of rye and wheat bran as supplementation prepared whipped bread is explained not only from the point of view of the rationality of the use of this secondary raw materials, but also its rich vitamin and mineral composition. Wheat bran contain the necessary man of b vitamins, including B1, B2, B6, PP and others. Found provitamin a (carotene and vitamin E (tocopherol. Bran is rich in mineral substances. Among them potassium, magnesium, chromium, zinc, copper, selenium and other trace elements. Thanks to this composition bran are essential dietary product. They are rich in insoluble fiber and can be useful to reduce the risk of developing colon cancer. Rye bran contain dietary fiber, tocopherol E, thiamin B1, Riboflavin B2, Pantothenic acid B5, B4 (choline, nicotinic acid B3, etc. In the bran rich set of microelements and macroelements such as iron, calcium, magnesium, phosphorus, potassium, zinc, iodine, selenium, chromium, etc. the Introduction in the diet, bran rye contribute to the prevention and treatment of atherosclerosis, diabetes and anemia. They restore blood pressure, reduce blood sugar levels and improve the cardiovascular system. Flour from wholegrain wheat is the main supplier of bread protein and starch, while preserving the maximum of the original nutritional value of the grain, enriched whipped bread macro - and micronutrients. The analysis of the chemical composition of flour from wholegrain wheat, rye and wheat bran leads to the conclusion that the choice of these types of materials suitable for making the recipe whipped bakery products, because their use can increase the content in bread is not only the

  20. Expression of Pinellia pedatisecta Lectin Gene in Transgenic Wheat Enhances Resistance to Wheat Aphids

    Directory of Open Access Journals (Sweden)

    Xiaoliang Duan

    2018-03-01

    Full Text Available Wheat aphids are major pests during the seed filling stage of wheat. Plant lectins are toxic to sap-sucking pests such as wheat aphids. In this study, Pinellia pedatisecta agglutinin (ppa, a gene encoding mannose binding lectin, was cloned, and it shared 92.69% nucleotide similarity and 94% amino acid similarity with Pinellia ternata agglutinin (pta. The ppa gene, driven by the constitutive and phloem-specific ribulose bisphosphate carboxylase small subunit gene (rbcs promoter in pBAC-rbcs-ppa expression vector, was transferred into the wheat cultivar Baofeng104 (BF104 by particle bombardment transformation. Fifty-four T0 transgenic plants were generated. The inheritance and expression of the ppa gene were confirmed by PCR and RT-PCR analysis respectively, and seven homozygous transgenic lines were obtained. An aphid bioassay on detached leaf segments revealed that seven ppa transgenic wheat lines had lower aphid growth rates and higher inhibition rates than BF104. Furthermore, two-year aphid bioassays in isolated fields showed that aphid numbers per tiller of transgenic lines were significantly decreased, compared with wild type BF104. Therefore, ppa could be a strong biotechnological candidate to produce aphid-resistant wheat.

  1. Effect of proquinazid and copper hydroxide on homeostasis of anions in winter wheat plants in generative phase of development

    Directory of Open Access Journals (Sweden)

    M. E. Riazanova

    2015-03-01

    Full Text Available The study deals with the effect of proquinazid and copper oxide application on structural characteristics and resistance of wheat to powdery mildew, as well as remobilisation and redistribution of anions pools at generative stage of development. The trial series was conducted in the experimental agricultural production of the Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine. Field experiments were carried out with Smuglyanka variety of winter wheat. The trial series included the application of fungicides such as Talius (proquinazid, 200 g/L 0,25 L/ha and Kocide 2000 (copper hydroxide, 350 g/kg 150 and 300 g/ha, and combination of both fungicides. Sprays were applied at tillering stage in autumn in the first trial series and at tillering-booting stage in spring in the second one. Assessment of affected plants by powdery mildew was carried out visually in points. Anion concentration was determined with the use of ion chromatography. Application of fungicides at tillering stage increases the amount of productive stems in wheat plants. The highest effect was recorded for application of copper hydroxide at dose of 300 g/ha in autumn. Analysis of plants affected by powdery mildew shows that application of proquinazid and its composition with copper hydroxide provides sustained protection against Blumeria graminis (DC Speer. Application of fungicides at tillering stage contributes to increase of the pool of free nitrogen, phosphorus and sulfur anions in leaf tissues compared to control. These changes in anion composition may be caused by fungicide effect on activity of N, P, S transporters, as well as internal regulatory mechanisms of elements’ uptake by plants. Comparing the results of the autumn and spring application of fungicides should note the increase in concentration of free phosphates in wheat leaves in the 2nd trial with proquinazid and its composition with copper hydroxide. Accumulation of nitrogen in the

  2. Ammonium as sole N source improves grain quality in wheat.

    Science.gov (United States)

    Fuertes-Mendizábal, Teresa; González-Torralba, Jon; Arregui, Luis M; González-Murua, Carmen; González-Moro, M Begoña; Estavillo, José M

    2013-07-01

    The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs. ammonium), and splitting it into two or three amendments during the wheat life cycle, on grain yield and quality under irrigated conditions. This experiment demonstrates that Cezanne wheat plants growing with ammonium as exclusive N source are able to achieve the same yield as plants growing with nitrate and that individual wheat plants grown in irrigated pots can efficiently use late N applied in GS37. Ammonium nutrition increased both types of grain reserve proteins (gliadins and glutenins) and also increased the ratio gli/glu with respect to nitrate nutrition. The splitting of the N rate enhanced the ammonium effect on grain protein composition. The application of ammonium N source, especially when split into three amendments, has an analogous effect on grain protein content and composition to applications at a higher N rate, leading to higher N use efficiency. © 2012 Society of Chemical Industry.

  3. Cultivation of oyster mushroom Pleurotus ostreatus on date-palm leaves mixed with other agro-wastes in Saudi Arabia.

    Science.gov (United States)

    Alananbeh, Kholoud M; Bouqellah, Nahla A; Al Kaff, Nadia S

    2014-12-01

    Promoting the use of agricultural waste is one of the newly prepared water and environment friendly agriculture strategies in the Kingdom of Saudi Arabia (KSA). The objective of this research was to study the efficiency of cultivating oyster mushroom (Pleurotus ostreatus) on date palm wastes mixed with other agricultural wastes available in KSA. Four agricultural wastes were mixed with date palm leaves at different ratios, with two supplements and three spawn rates were used. Wheat straw mixed with date palm at ratio of 25 (date palm): 75 (agro-waste) showed the best results in most of the parameters measured. Corn meal was superior over wheat bran as a supplement in all treatments. Parameter values increased with the increase of the spawn rate of P. ostreatus. Treatments with date palm leave wastes contained higher carbohydrates and fibers. No significant differences were found among the fruiting bodies produced on the different agro-wastes studied for the different proximates analyzed. Analyses of metal concentration showed that potassium was the highest in all the treatments tested followed by Na, Mg, Ca, and Zn. This is the first study that reported the success of growing oyster mushroom on date palm leaf wastes mixed with other agro-wastes obtainable in KSA.

  4. Identification of Fusarium damaged wheat kernels using image analysis

    Directory of Open Access Journals (Sweden)

    Ondřej Jirsa

    2011-01-01

    Full Text Available Visual evaluation of kernels damaged by Fusarium spp. pathogens is labour intensive and due to a subjective approach, it can lead to inconsistencies. Digital imaging technology combined with appropriate statistical methods can provide much faster and more accurate evaluation of the visually scabby kernels proportion. The aim of the present study was to develop a discrimination model to identify wheat kernels infected by Fusarium spp. using digital image analysis and statistical methods. Winter wheat kernels from field experiments were evaluated visually as healthy or damaged. Deoxynivalenol (DON content was determined in individual kernels using an ELISA method. Images of individual kernels were produced using a digital camera on dark background. Colour and shape descriptors were obtained by image analysis from the area representing the kernel. Healthy and damaged kernels differed significantly in DON content and kernel weight. Various combinations of individual shape and colour descriptors were examined during the development of the model using linear discriminant analysis. In addition to basic descriptors of the RGB colour model (red, green, blue, very good classification was also obtained using hue from the HSL colour model (hue, saturation, luminance. The accuracy of classification using the developed discrimination model based on RGBH descriptors was 85 %. The shape descriptors themselves were not specific enough to distinguish individual kernels.

  5. Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: A structural basis.

    Science.gov (United States)

    Wang, Shujun; Wang, Jinrong; Yu, Jinglin; Wang, Shuo

    2016-01-01

    The effects of three saturated fatty acids on functional properties of normal wheat and waxy wheat starches were investigated. The complexing index (CI) of normal wheat starch-fatty acid complexes decreased with increasing carbon chain length. In contrast, waxy wheat starch-fatty acid complexes presented much lower CI. V-type crystalline polymorphs were formed between normal wheat starch and three fatty acids, with shorter chain fatty acids producing more crystalline structure. FTIR and Raman spectroscopy presented the similar results with XRD. The formation of amylose-fatty acid complex inhibited granule swelling, gelatinization progression, retrogradation and pasting development of normal wheat starch, with longer chain fatty acids showing greater inhibition. Amylopectin can also form complexes with fatty acids, but the amount of complex was too little to be detected by XRD, FTIR, Raman and DSC. As a consequence, small changes were observed in the functional properties of waxy wheat starch with the addition of fatty acids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Do ancient types of wheat have health benefits compared with modern bread wheat?

    Science.gov (United States)

    Shewry, Peter R

    2018-01-01

    A number of studies have suggested that ancient wheats have health benefits compared with modern bread wheat. However, the mechanisms are unclear and limited numbers of genotypes have been studied, with a particular focus on Kamut ® (Khorasan wheat). This is important because published analyses have shown wide variation in composition between genotypes, with further effects of growth conditions. The present article therefore critically reviews published comparisons of the health benefits of ancient and modern wheats, in relation to the selection and growth of the lines, including dietary interventions and comparisons of adverse effects (allergy, intolerance, sensitivity). It is concluded that further studies are urgently required, particularly from a wider range of research groups, but also on a wider range of genotypes of ancient and modern wheat species. Furthermore, although most published studies have made efforts to ensure the comparability of material in terms of growth conditions and processing, it is essential that these are standardised in future studies and this should perhaps be a condition of publication.

  7. Immunofluorescent determination of wheat protein in meat products

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2014-02-01

    Full Text Available In food industry nowadays, there are various plant-origin protein additives which are meant for production of meat products. Among the most frequent additives of this type there are different kinds of flour, starch, fiber, and plant-origin proteins. Their usage at present is limited by the existing legislation not to prevent consumer deception but also for reasons of possible influence on consumer health. Therefore, this problem is paid a lot of attention not only in the Czech Republic but also all over the world. The main risk is seen in the impossibility to choose a suitable foodstuff for an individual prone to allergic reactions. Potential allergens are also often plant-origin raw materials which are added into foodstuffs for their technological qualities and low price. Wheat is widely cultivated cereal as well as an important source of proteins. After ingestion or inhalation, wheat proteins may cause adverse reactions. These adverse effects include a wide range of disorders which are dependent on the method of contact with wheat protein. These adverse effects can then take the form of various clinical manifestations, such as celiac disease, T-cell mediated inflammatory bowel disease, dermatitis, skin rash, breathing difficulties, allergy to pollen or to wheat flour or food allergy to foodstuffs containing gluten. The only possible protection against adverse immune reactions for those with food allergies is strictly excluding the allergen from their diet. Although the number of studies dealing with the reduction or loss of allergenicity is increasing, yet these practices are not common. Most of the population suffering from food allergies is thus still dependent on strict exclusion of foodstuffs causing adverse allergic reactions from their diet. In order to avoid misleading consumers and also to protect allergic consumers, analytical methods applicable to all types of foodstuffs have been developed. Unfortunately, detection of allergens in

  8. Role of phytohormones under induced drought stress in wheat

    International Nuclear Information System (INIS)

    Bano, A.; Yasmeen, S.

    2010-01-01

    The performance of plants (grown in pots) was studied for drought induced at critical stages of grain filling. Furthermore, the effect of abscisic acid (ABA) and benzyladenine (BA), were also studied on the physiology of plants during grain filling. Seeds of two wheat varieties cv Margalla-99 (cv1) and cv Manthar-2003 (cv2) were sown in pots. Stress treatments were imposed immediately after anthesis. Drought stress resulted in maximum decrease in IAA and GA content but proline and ABA content of leaves showed maximum increase at hard dough stage in cv1. With decrease in soil moisture content under induced drought stress, the percentage decrease in IAA and GA and increase in proline and ABA was greater in leaves and spikes of potted plants. All parameters showed greater decrease in cv2 than in cv1. Application of both ABA and BA, each at 10-6 M applied at anthesis stage, was involved in osmoregulation by the production of proline. The adverse effect of drought started at anthesis stage reaching maximum at hard dough stage. ABA was more effective at the later stages of grain filling whereas, BA was more effective at early stages. (author)

  9. Toxicology of isoproturon to the food crop wheat as affected by salicylic acid.

    Science.gov (United States)

    Liang, Lu; Lu, Yan Li; Yang, Hong

    2012-07-01

    Isoproturon, a herbicide belonging to the phenylurea family, is widely used to kill weeds in soils. Recent study indicated that isoproturon has become a contaminant in ecosystems due to its intensive use, thus bringing environmental risks to crop production safety. Salicylic acid (SA) is one of the components in plant defense signaling pathways and regulates diverse physiological responses to biotic and environmental stresses. The purpose of the study is to help to understand how SA mediates the biological process in wheat under isoproturon stress. Wheat seeds (Triticum aestivum, cv. Yangmai 13) were surface-sterilized and placed on moist filter paper for germination. After 24 h, the germinating seeds were placed on a plastic pot (1 L) containing 1,120 g soil mixed with isoproturon at 4 mg kg(-1) soil. After 4 days, wheat leaves were sprayed with 5 mg L(-1) SA. The SA treatment was undertaken once a day and lasted for 6 days, when the third true leaf was well developed. For control seedlings, only water was sprayed. Seedlings were grown under a light intensity of 300 µmol m(-2) s(-1) with a light/dark cycle of 12/12 h at 25°C, and watered to keep 70% relative water content in soils. We investigated the role of SA in alleviating isoproturon-induced toxicity in the food crop wheat (T. aestivum). Plants exposed to 4 mg kg(-1) isoproturon showed growth stunt and oxidative damage, but concomitant treatment with 5 mg L(-1) SA was able to attenuate the toxic effect. Isoproturon in soils was readily accumulated by wheat, but such accumulation can be blocked significantly by SA application. Treatment with SA decreased the abundance of O(2) (.-) and H(2)O(2), as well as activities of antioxidant enzymes, and increased activities of catalase in isoproturon-exposed plants. The enzyme activities were confirmed by the native polyacrylamide gel electrophoresis. Further, an RT-PCR-based assay was performed to show that several transcripts coding antioxidant enzymes were

  10. ``From seed-to-seed'' experiment with wheat plants under space-flight conditions

    Science.gov (United States)

    Mashinsky, A.; Ivanova, I.; Derendyaeva, T.; Nechitailo, G.; Salisbury, F.

    1994-11-01

    An important goal with plant experiments in microgravity is to achieve a complete life cycle, the ``seed-to-seed experiment''. Some Soviet attempts to reach this goal are described, notably an experiment with the tiny mustard, Arabidopsis thaliana, in the Phyton 3 device on Salyut 7. Normal seeds were produced although yields were reduced and development was delayed. Several other experiments have shown abnormalities in plants grown in space. In recent work, plants of wheat (Triticum aestivum) were studied on the ground and then in a preliminary experiment in space. Biometric indices of vegetative space plants were 2 to 2.5 times lower than those of controls, levels of chlorophyll a and b were reduced (no change in the ratio of the two pigments), carotenoids were reduced, there was a serious imbalance in major minerals, and membrane lipids were reduced (no obvious change in lipid patterns). Following the preliminary studies, an attempt was made with the Svetoblock-M growth unit to grow a super-dwarf wheat cultivar through a life cycle. The experiment lasted 167 d on Mir. Growth halted from about day 40 to day 100, when new shoots appeared. Three heads had appeared in the boot (surrounded by leaves) when plants were returned to earth. One head was sterile, but 28 seeds matured on earth, and most of these have since produced normal plants and seeds. In principle, a seed-to-seed experiment with wheat should be successful in microgravity.

  11. Leaf absorption of atmospheric ammonia emitted from pig slurry applied beneath the canopy of winter wheat

    International Nuclear Information System (INIS)

    Gjedde Sommer, S.; Jensen, E.S.; Kofoed Schjoerring, J.

    1993-01-01

    Absorption of volatilized ammonia after application of slurry onto the soil surface (sand) between rows of a wheat crop was studied in two experiments. The slurry was labelled with 15 N-NH 4 . During seven days the accumulated gaseous N loss from the slurry varied from 6.9 to 11.1 g N m -2 . In April ammonia losses from slurry applied beneath a 5 cm high wheat crop were equal to losses from slurry applied to a fallow, but 2.2% of the lost atmospheric ammonia was taken up by the leaves. In May ammonia loss from slurry applied between the rows of a 43 cm high crop was reduced by 6% compared to the loss from fallow, because of a reduced transfer of ammonia from the slurry to the air. Of the emitted ammonia 3.3% was absorbed by the canopy. (au)

  12. Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age.

    Science.gov (United States)

    Fischer, Ravit; Nitzan, Nadav; Chaimovitsh, David; Rubin, Baruch; Dudai, Nativ

    2011-05-11

    The aroma in sweet basil is a factor affecting the commercial value of the crop. In previous studies leaf age was considered to be a factor that influences the composition of essential oil (EO). In this study it was hypothesized that a single observation of the EO content in leaves from different positions on the main stem (young vs old) could predict the developmental changes in the plant during its life cycle. Plants harvested at week 16 demonstrated an exponential increase (R(2) = 0.92) in EO concentration in leaves on the main stem and lateral shoots, indicating higher EO concentrations in younger than in older leaves. Eugenol and methyleugenol predominated (28-77%) in the extract. Eugenol levels were higher in younger leaves (∼53%), and methyl-eugenol levels predominated in older leaves (∼68%). Linalool was lower in mature leaves than in younger leaves. This suggested that eugenol converted into methyleugenol and linalool decreased as leaf mature. However, in weekly monitored plants, the levels of these compounds in the EO had limited variation in the maturing leaf regardless of its position on the stem. This proposed that the EO composition in an individual leaf is mostly affected by the leaf position on the stem and not by its maturation process. Because leaf position is related to plant development, it is probable that the plant's physiological age at the time of leaf formation from the primordial tissue is the factor affecting the EO composition. It was concluded that interpretation of scientific observations should be carried out with caution and that hypotheses should be tested utilizing multifaceted approaches.

  13. Influence of Leaf Tolerance Mechanisms and Rain on Boron Toxicity in Barley and Wheat1[C

    Science.gov (United States)

    Reid, Rob; Fitzpatrick, Kate

    2009-01-01

    Boron (B) toxicity is common in many areas of the world. Plant tolerance to high B varies widely and has previously been attributed to reduced uptake of B, most commonly as a result of B efflux from roots. In this study, it is shown that the expression of genes encoding B efflux transporters in leaves of wheat (Triticum aestivum) and barley (Hordeum vulgare) is associated with an ability of leaf tissues to withstand higher concentrations of B. In tolerant cultivars, necrosis in leaves occurred at B concentrations more than 2-fold higher than in sensitive cultivars. It is hypothesized that this leaf tolerance is achieved via redistribution of B by efflux transporters from sensitive symplastic compartments into the leaf apoplast. Measurements of B concentrations in leaf protoplasts, and of B released following infiltration of leaves, support this hypothesis. It was also shown that under B-toxic conditions, leaching of B from leaves by rain had a strong positive effect on growth of both roots and shoots. Measurements of rates of guttation and the concentration of B in guttation droplets indicated that the impact of guttation on the alleviation of B toxicity would be small. PMID:19625636

  14. Discrimination of volatiles of refined and whole wheat bread containing red and white wheat bran using an electronic nose.

    Science.gov (United States)

    Sapirstein, Harry D; Siddhu, Silvi; Aliani, Michel

    2012-11-01

    The principal objective of this study was to evaluate the capability of electronic (E) nose technology to discriminate refined and whole wheat bread made with white or red wheat bran according to their headspace volatiles. Whole wheat flour was formulated with a common refined flour from hard red spring wheat, blended at the 15% replacement level with bran milled from representative samples of one hard red and 2 hard white wheats. A commercial formula was used for breadmaking. Results varied according to the nature of the sample, that is, crust, crumb, or whole slices. Bread crust and crumb were completely discriminated. Crumb of whole wheat bread made with red bran was distinct from other bread types. When misclassified, whole wheat bread crumb with white bran was almost invariably identified as refined flour bread crumb. Using crust as the basis for comparisons, the largest difference in volatiles was between refined flour bread and whole wheat bread as a group. When refined flour bread crust was misclassified, samples tended to be confused with whole white wheat crust. Samples prepared from whole bread slices were poorly discriminated in general. E-nose results indicated that whole wheat bread formulated with white bran was more similar in volatile makeup to refined flour bread compared to whole wheat bread made with red bran. The E-nose appears to be very capable to accommodate differentiation of bread volatiles whose composition varies due to differences in flour or bran type. Consumer preference of bread made using refined flour in contrast to whole wheat flour is partly due to the different aroma of whole wheat bread. This study used an electronic nose to analyze bread volatiles, and showed that whole wheat bread incorporating white bran was different from counterpart bread made using red bran, and was closer in volatile makeup to "white" bread made without bran. Commercial millers and bakers can take advantage of these results to formulate whole wheat flour

  15. [Photosynthetic gas exchange and water utilization of flag leaf of spring wheat with bunch sowing and field plastic mulching below soil on semi-arid rain-fed area.

    Science.gov (United States)

    Yang, Wen Xiong; Liu, Na; Liu, Xiao Hua; Zhang, Xue Ting; Wang, Shi Hong; Yuan, Jun Xiu; Zhang, Xu Cheng

    2016-07-01

    Based on the field experiment which was conducted in Dingxi County of Gansu Province, and involved in the three treatments: (1) plastic mulching on entire land with soil coverage and bunching (PMS), (2) plastic mulching on entire land and bunching (PM), and (3) direct bunching without mulching (CK). The parameters of SPAD values, chlorophyll fluorescence parameters, photosynthetic gas exchange parameters, as well as leaf area index (LAI), yield, evapotranspiration, and water use efficiency in flag leaves of spring wheat were recorded and analyzed from 2012 to 2013 continuously. The results showed that SPAD values of wheat flag leaves increased in PMS by 10.0%-21.5% and 3.2%-21.6% compared to PM and CK in post-flowering stage, respectively. The maximum photochemical efficiency (F v /F m ) , actual photochemical efficiency (Φ PS 2 ) of photosystem 2 (PS2), and photochemical quenching coefficient (q P ) of PMS were higher than those of PM and CK, the maximum increment values were 6.1%, 9.6% and 30.9% as compared with PM, and significant differences were observed in filling stage (P<0.05). The values of q N in PMS were lowest among the three treatments, and it decreased significantly by 23.8% and 15.4% in heading stage in 2012 and 2013 respectively, as compared with PM. The stoma conductance (g s ) of wheat flag leaves in PMS was higher than that of PM and CK, with significant difference being observed in filling stage, and it increased by 17.1% and 21.1% in 2012 and 2013 respectively, as compared with PM. The transpiration rate (T r ), net photosynthetic rate (P n ), and leaf instantaneous water use efficiency (WUE i ) except heading stage in 2013 of PMS increased by 5.4%-16.7%, 11.2%-23.7%, and 5.6%-7.2%, respectively, as compared with PM, and significant difference of WUE i was observed in flowering stage in 2012. The leaf area index (LAI) of PMS was higher than that of PM and CK, especially, it differed significantly in seasonal drought of 2013. Consequently

  16. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Directory of Open Access Journals (Sweden)

    McGuire Patrick E

    2010-12-01

    Full Text Available Abstract Background A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. Results Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. Conclusions In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large

  17. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    Science.gov (United States)

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  18. Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars

    DEFF Research Database (Denmark)

    Wang, Xiao; Dinler, Burcu Seckin; Vignjevic, Marija

    2015-01-01

    compared to sensitive cultivars under heat stress. The tolerant cv. '810' and the sensitive cv. '1039' were selected for further proteome analysis of leaves. Proteins related to photosynthesis, glycolysis, stress defence, heat shock and ATP production were differently expressed in leaves of the tolerant...... and sensitive cultivar under heat stress in relation to the corresponding control. The abundance of proteins related to signal transduction, heat shock, photosynthesis, and antioxidants increased, while the abundance of proteins related to nitrogen metabolism decreased in the tolerant cv. '810' under heat......Experiments to explore physiological and biochemical differences of the effects of heat stress in ten wheat (Triticum aestivum L) cultivars have been performed. Based on the response of photosynthesis rates, cell membrane lipid peroxide concentrations and grain yield to heat, six cultivars were...

  19. Tissue specific responses alter the biomass accumulation in wheat under gradual and sudden salt stress

    Directory of Open Access Journals (Sweden)

    Yumurtaci A.

    2012-11-01

    Full Text Available Salinity is one the major limiting environmental factors which has negative side effects on crop production. The purpose of this study was to investigate the differences between the gradual and sudden salt stress effects on biomass accumulation associated with whole plant development in three different tissues of two wheat species ( Triticum aestivum and Triticum durum under hydroponic conditions in the long term. Considering the effects of sudden and gradual stress for biomass accumulation, while importance of salinity x genotype interaction for fresh weights was 5%, association for salinity x tissue type was found as 1% important. Interestingly, root branching and development of lateral roots were much more negatively affected by gradual stress rather than sudden salt application. Our results demonstrated that root and leaf were both critical tissues to test the salt tolerance by physiologically but sheath tissue might be used as an alternative source of variation for solving the interactions between root and leaves in wheat.

  20. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    Science.gov (United States)

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.

  1. Rehabilitation of mental illness and chronic pain: The impact on sick leave and health

    OpenAIRE

    Hägglund, Pathric; Johansson, Per-Olov; Laun, Lisa

    2015-01-01

    This paper exploits a government initiative to analyze the effect of cognitive behavioral therapy (CBT) for individuals with mild or moderate mental illness and multidisciplinary treatment (MDT) for individuals with pain in back and shoulders. We employ a propensity score matching approach to study the effects on sick leave, health care consumption and drug prescriptions. We find that CBT improved health and prevented sick leave for individuals who were not on sick leave when treatment was in...

  2. Determination of oxidative stress in wheat leaves as influenced by boron toxicity and NaCl stress.

    Science.gov (United States)

    Masood, Sajid; Saleh, Livia; Witzel, Katja; Plieth, Christoph; Mühling, Karl H

    2012-07-01

    Boron (B) toxicity symptoms are visible in the form of necrotic spots and may worsen the oxidative stress caused by salinity. Hence, the interactive effects of combined salinity and B toxicity stress on antioxidative activities (TAC, LUPO, SOSA, CAT, and GR) were investigated by novel luminescence assays and standard photometric procedures. Wheat plants grown under hydroponic conditions were treated with 2.5 μM H₃BO₃ (control), 75 mM NaCl, 200 μM H₃BO₃, or 75 mM NaCl + 200 μM H₃BO₃, and analysed 6 weeks after germination. Shoot fresh weight (FW), shoot dry weight (DW), and relative water content (RWC) were significantly reduced, whereas the antioxidative activity of all enzymes was increased under salinity compared with the control. High B application led to necrotic leaf spots but did not influence growth parameters. Following NaCl + B treatment, shoot DW, RWC, SOSA, GR, and CAT activities remained the same compared with NaCl alone, whereas the TAC and LUPO activities were increased under the combined stress compared with NaCl alone. However, shoot FW was significantly reduced under NaCl + B compared with NaCl alone, as an additive effect of combined stress. Thus, we found an adjustment of antioxidative enzyme activity to the interactive effects of NaCl and high B. The stress factor "salt" mainly produced more oxidative stress than that of the factor "high B". Furthermore, addition of higher B in the presence of NaCl increases TAC and LUPO demonstrating that increased LUPO activity is an important physiological response in wheat plants against multiple stresses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  3. Strategies to reduce or prevent wheat coeliacimmunogenicity and wheat sensitivity through food

    NARCIS (Netherlands)

    Gilissen, L.J.W.J.; Meer, van der I.M.; Smulders, M.J.M.

    2016-01-01

    Cereals are among the oldest foods of humans. Wheat is one of these. In present times,several syndromes are, whether true or false, increasingly attributed to the consumption of wheat, with increasing costs for medical care and decreasing turnover for the food industry, especially the bakery sector.

  4. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3.

    Science.gov (United States)

    Hurni, Severine; Brunner, Susanne; Stirnweis, Daniel; Herren, Gerhard; Peditto, David; McIntosh, Robert A; Keller, Beat

    2014-09-01

    The powdery mildew resistance gene Pm8 derived from rye is located on a 1BL.1RS chromosome translocation in wheat. However, some wheat lines with this translocation do not show resistance to isolates of the wheat powdery mildew pathogen avirulent to Pm8 due to an unknown genetically dominant suppression mechanism. Here we show that lines with suppressed Pm8 activity contain an intact and expressed Pm8 gene. Therefore, the absence of Pm8 function in certain 1BL.1RS-containing wheat lines is not the result of gene loss or mutation but is based on suppression. The wheat gene Pm3, an ortholog of rye Pm8, suppressed Pm8-mediated powdery mildew resistance in lines containing Pm8 in a transient single-cell expression assay. This result was further confirmed in transgenic lines with combined Pm8 and Pm3 transgenes. Expression analysis revealed that suppression is not the result of gene silencing, either in wheat 1BL.1RS translocation lines carrying Pm8 or in transgenic genotypes with both Pm8 and Pm3 alleles. In addition, a similar abundance of the PM8 and PM3 proteins in single or double homozygous transgenic lines suggested that a post-translational mechanism is involved in suppression of Pm8. Co-expression of Pm8 and Pm3 genes in Nicotiana benthamiana leaves followed by co-immunoprecipitation analysis showed that the two proteins interact. Therefore, the formation of a heteromeric protein complex might result in inefficient or absent signal transmission for the defense reaction. These data provide a molecular explanation for the suppression of resistance genes in certain genetic backgrounds and suggest ways to circumvent it in future plant breeding. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  5. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-09-30

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. They investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) an efficient combine-based threshing system for separating the intermodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  6. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    Energy Technology Data Exchange (ETDEWEB)

    Hess, J.R

    2005-01-31

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. We investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) An efficient combine-based threshing system for separating the internodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  7. Career effects of taking up parental leave. Evidence from a Dutch University

    NARCIS (Netherlands)

    Vlasblom, J.D.; Plantenga, J.

    2010-01-01

    In this paper we study the effect of parental leave on individual careers. We use individual registration data of a Dutch non-profit firm (Utrecht University). Our outcomes show that even with a short period of flexible leave there are career effects. More specifically, these effects are not

  8. Epistatic determinism of durum wheat resistance to the wheat spindle streak mosaic virus.

    Science.gov (United States)

    Holtz, Yan; Bonnefoy, Michel; Viader, Véronique; Ardisson, Morgane; Rode, Nicolas O; Poux, Gérard; Roumet, Pierre; Marie-Jeanne, Véronique; Ranwez, Vincent; Santoni, Sylvain; Gouache, David; David, Jacques L

    2017-07-01

    The resistance of durum wheat to the Wheat spindle streak mosaic virus (WSSMV) is controlled by two main QTLs on chromosomes 7A and 7B, with a huge epistatic effect. Wheat spindle streak mosaic virus (WSSMV) is a major disease of durum wheat in Europe and North America. Breeding WSSMV-resistant cultivars is currently the only way to control the virus since no treatment is available. This paper reports studies of the inheritance of WSSMV resistance using two related durum wheat populations obtained by crossing two elite cultivars with a WSSMV-resistant emmer cultivar. In 2012 and 2015, 354 recombinant inbred lines (RIL) were phenotyped using visual notations, ELISA and qPCR and genotyped using locus targeted capture and sequencing. This allowed us to build a consensus genetic map of 8568 markers and identify three chromosomal regions involved in WSSMV resistance. Two major regions (located on chromosomes 7A and 7B) jointly explain, on the basis of epistatic interactions, up to 43% of the phenotypic variation. Flanking sequences of our genetic markers are provided to facilitate future marker-assisted selection of WSSMV-resistant cultivars.

  9. Deoxynivalenol. Derivation of concentration limits in wheat and wheat containing food products

    NARCIS (Netherlands)

    Pieters MN; Fiolet DCM; Baars AJ; CSR

    1999-01-01

    The mycotoxin deoxynivalenol (DON) produced by fungi of the Fusarium genus may occur in various cereal crops. A provisional TDI of 1.1 ug per kg body weight was derived to calculate concentration limits for the mycotoxin, deoxynivalenol (DON), in wheat and wheat food products. Children (1-4 years

  10. Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon.

    Science.gov (United States)

    Yin, Xiao Le; Jiang, Lei; Song, Ning Hui; Yang, Hong

    2008-06-25

    The herbicide isoproturon is widely used for controlling weed/grass in agricultural practice. However, the side effect of isoproturon as contaminants on crops is unknown. In this study, we investigated isoproturon-induced oxidative stress in wheat ( Triticum aestivum). The plants were grown in soils with isoproturon at 0-20 mg/kg and showed negative biological responses. The growth of wheat seedlings with isoproturon was inhibited. Chlorophyll content significantly decreased at the low concentration of isoproturon (2 mg/kg), suggesting that chlorophyll was rather sensitive to isoproturon exposure. The level of thiobarbituric acid reactive substances (TBARS), an indicator of cellular peroxidation, showed an increase, indicating oxidative damage to plants. The isoproturon-induced oxidative stress resulted in a substantial change in activities of the majority of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). Activities of the antioxidant enzymes showed a general increase at low isoproturon concentrations and a decrease at high isoproturon concentrations. Activities of CAT in leaves showed progressive suppression under the isoproturon exposure. Analysis of nondenaturing polyacrylamide gel electrophoresis (PAGE) confirmed these results. We also tested the activity of glutathione S-transferase (GST) and observed the activity stimulated by isoproturon at 2-10 mg/kg.

  11. Aroma of wheat porridge and bread-crumb is influenced by the wheat variety

    DEFF Research Database (Denmark)

    Starr, Gerrard; Hansen, Åse Solvej; Petersen, Mikael Agerlin

    2015-01-01

    evaluation, from these eight were selected for bread evaluation. Porridge and bread results were compared. Variations were found in both evaluations. Five odour- and nine flavour descriptors were found to be common to both wheat porridge and bread. The results for two descriptors: "cocoa" and "oat porridge......" were correlated between the wheat porridge and bread samples. Analysis of whole-meal and low-extraction samples revealed that the descriptors "malt", "oat-porridge", "øllebrød", "cocoa" and "grain" mostly characterized wheat bran, while descriptors for "maize", "bean-shoots", "chamomile", "umami...

  12. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    Science.gov (United States)

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.

  13. Mapping the glaucousness suppressor Iw1 from wild emmer wheat “PI 481521”

    Institute of Scientific and Technical Information of China (English)

    Zongchang; Xu; Cuiling; Yuan; Jirui; Wang; Daolin; Fu; Jiajie; Wu

    2015-01-01

    Many species of Triticeae display a glaucous phenotype. In wheat, glaucousness/waxiness on spikes, leaves and shoots is controlled by wax production genes(W loci) and epistatic inhibitors(Iw loci). In this study, a suppressor of glaucousness from wild emmer wheat(Triticum turgidum ssp. dicoccoides) accession "PI 481521" was investigated in a pair of durum(T. turgidum ssp. durum cv. "Langdon", LDN)—wild emmer wheat chromosome substitution lines, LDN and "LDNDIC521-2B". Genetic analysis revealed that the non-glaucous phenotype of LDNDIC521-2Bwas controlled by the dominant glaucous suppressor Iw1 on the short arm of chromosome 2B. In total, 371 2B-specific marker differences were identified between LDN and LDNDIC521-2B. The location of the Iw1 gene was mapped using an F2 population that stemmed from LDN and LDNDIC521-2B, generating a partial linkage map that included 19 simple sequence repeats(SSR) and ten gene-based markers. On the current map, the Iw1 gene was located within the Xgwm614–BE498111 interval, and cosegregated with BQ788707,CD893659, CD927782, CD938589, and Xbarc35. Mapping of Iw1 in LDNDIC521-2B, a publically accessible and widely distributed line, will provide valuable information for marker-assisted selection of the agronomically important trait of glaucousness.

  14. Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System

    Directory of Open Access Journals (Sweden)

    Dengpan Xiao

    2018-04-01

    Full Text Available With regard to global climate change due to increasing concentration in greenhouse gases, particularly carbon dioxide (CO2, it is important to examine its potential impact on crop development and production. We used statistically-downscaled climate data from 28 Global Climate Models (GCMs and the Agricultural Production Systems sIMulator (APSIM–Wheat model to simulate the impact of future climate change on wheat production. Two future scenarios (RCP4.5 and RCP8.5 were used for atmospheric greenhouse gas concentrations during two different future periods (2031–2060 referred to as 40S and 2071–2100 referred to as 80S. Relative to the baseline period (1981–2010, the trends in mean daily temperature and radiation significantly increased across all stations under the future scenarios. Furthermore, the trends in precipitation increased under future climate scenarios. Due to climate change, the trend in wheat phenology significantly advanced. The early flowering and maturity dates shortened both the vegetative growth stage (VGP and the whole growth period (WGP. As the advance in the days of maturity was more than that in flowering, the length of the reproductive growth stage (RGP of spring wheat was shortened. However, as the advance in the date of maturity was less than that of flowering, the RGP of winter wheat was extended. When the increase in CO2 concentration under future climate scenarios was not considered, the trend in change in wheat production for the baseline declined. In contrast, under increased CO2 concentration, the trend in wheat yield increased for most of the stations (except for Nangong station under future climatic conditions. Winter wheat and spring wheat evapotranspiration (ET decreased across all stations under the two future climate scenarios. As wheat yield increased with decreasing water consumption (as ET under the future climatic conditions, water use efficiency (WUE significantly improved in the future period.

  15. Expression of Pinellia pedatisecta Lectin Gene in Transgenic Wheat Enhances Resistance to Wheat Aphids

    OpenAIRE

    Xiaoliang Duan; Qiling Hou; Guoyu Liu; Xiaomeng Pang; Zhenli Niu; Xiao Wang; Yufeng Zhang; Baoyun Li; Rongqi Liang

    2018-01-01

    Wheat aphids are major pests during the seed filling stage of wheat. Plant lectins are toxic to sap-sucking pests such as wheat aphids. In this study, Pinellia pedatisecta agglutinin (ppa), a gene encoding mannose binding lectin, was cloned, and it shared 92.69% nucleotide similarity and 94% amino acid similarity with Pinellia ternata agglutinin (pta). The ppa gene, driven by the constitutive and phloem-specific ribulose bisphosphate carboxylase small subunit gene (rbcs) promoter in pBAC-rbcs...

  16. Activation of glycolysis and inhibition of glucose transport into leaves by fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Lustinec, J; Pokorna, V; Ruzicka, J

    1962-01-01

    During stimulation of wheat leaf respiration by fluoride at 100 to 200 ppM fluorine in dry tissue the ratio of radioactivities of /sup 14/CO/sub 2/ released from glucose-6-/sup 14/C and that released from glucose-1-/sup 14/C (C/sub 6//C/sub 1/) increases due especially to an increased output of 6-/sup 14/CO/sub 2/ which suggests an activation of glycolysis. The absolute values of radioactivity of /sup 14/CO/sub 2/, however, are decreased by the action of fluoride due to its inhibition of the transport of glucose into leaves. 15 references, 2 figures, 2 tables.

  17. Translocation, accumulation and distribution of 137Cs in spring wheat after foliage contamination

    International Nuclear Information System (INIS)

    Fan Zhongxue; Xu Shiming; Zhao Wenhu; Hou Lanxin; Li Xia

    1995-05-01

    The foliage absorption of 137 Cs by spring wheat and the accumulation and distribution of 137 Cs in non-contaminated parts of the plant were studied. The results showed that there was a linear relationship between the content of 137 Cs and the amount of the contamination in each part of the plant. The distribution of 137 Cs in each part of the plant was related with the phyllotaxis of the contaminated leaf, but the majority of 137 Cs in the ear was distributed in the husk. The accumulation of 137 Cs in non-contaminated leaves gradually decrease with the increasing of the relative phyllotaxy distance between non-contaminated leaves and the contaminated leaf. The order of the specific activity of 137 Cs is the leaf>the stem>the ear in the tillering. The translocation rate of 137 Cs to seeds is in direct proportion to physiological metabolic activity of the treated leaf and is also related to its phyllotaxis. (11 tabs., 4 figs.)

  18. Pelletizing properties of torrefied wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Nielsen, Niels Peter; Hansen, Hans Ove

    2013-01-01

    of wheat straw have been analyzed. Laboratory equipment has been used to investigate the pelletizing properties of wheat straw torrefied at temperatures between 150 and 300 °C. IR spectroscopy and chemical analyses have shown that high torrefaction temperatures change the chemical properties of the wheat...

  19. Soft durum wheat - a paradigm shift

    Science.gov (United States)

    Two traits define most aspects of wheat quality and utilization: kernel texture (hardness) and gluten. The former is far simpler genetically and is controlled by two genes, Puroindoline a and Puroindoline b. Durum wheat lacks puroindolines and has very hard kernels. As such, durum wheat when milled ...

  20. Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains.

    Science.gov (United States)

    Collins, Nicholas C; Parent, Boris

    2017-01-09

    There is a growing consensus in the literature that rising temperatures influence the rate of biomass accumulation by shortening the development of plant organs and the whole plant and by altering rates of respiration and photosynthesis. A model describing the net effects of these processes on biomass would be useful, but would need to reconcile reported differences in the effects of night and day temperature on plant productivity. In this study, the working hypothesis was that the temperature responses of CO 2 assimilation and plant development rates were divergent, and that their net effects could explain observed differences in biomass accumulation. In wheat (Triticum aestivum) plants, we followed the temperature responses of photosynthesis, respiration and leaf elongation, and confirmed that their responses diverged. We measured the amount of carbon assimilated per "unit of plant development" in each scenario and compared it to the biomass that accumulated in growing leaves and grains. Our results suggested that, up to a temperature optimum, the rate of any developmental process increased with temperature more rapidly than that of CO 2 assimilation and that this discrepancy, summarised by the CO 2 assimilation rate per unit of plant development, could explain the observed reductions in biomass accumulation in plant organs under high temperatures. The model described the effects of night and day temperature equally well, and offers a simple framework for describing the effects of temperature on plant growth. Published by Oxford University Press on behalf of the Annals of Botany Company.

  1. Identification of RAPD markers linked to salinity tolerance in wheat ...

    African Journals Online (AJOL)

    Genetic diversity can be measured by a number of ways, including pedigree, phenotype and allelic diversity at loci controlling phenotypes of interest. A DNA marker for root length in wheat (Triticum aestivum L.) was identified. The individual plants from F2 population segregation for salinity tolerance and the parents (S-24 ...

  2. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. METHODOLOGY/PRINCIPAL FINDINGS: Octoploid triticale was derived from common wheat T. aestivum L. 'Mianyang11'×rye S. cereale L. 'Kustro' and some progeny were obtained by the controlled backcrossing of triticale with 'Mianyang11' followed by self-fertilization. Genomic in situ hybridization (GISH using rye genomic DNA and fluorescence in situ hybridization (FISH using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in 'Mianyang11'. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. CONCLUSIONS/SIGNIFICANCE: These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat.

  3. Quality of shear fractionated wheat gluten – comparison to commercial vital wheat gluten

    NARCIS (Netherlands)

    Zalm, van der E.E.J.; Goot, van der A.J.; Boom, R.M.

    2011-01-01

    The functional properties of gluten obtained with a shear-induced separation process, recently proposed by Peighambardoust et al. (2008), are compared with a commercially available vital wheat gluten. Two tests were performed. First, a relatively strong wheat flour, Soissons, was enriched with

  4. Weed Dynamics and Management in Wheat

    DEFF Research Database (Denmark)

    Jabran, Khawar; Mahmood, Khalid; Melander, Bo

    2017-01-01

    ) chemical weed control; and (vi) integrated weed management strategy in wheat. A critical analysis of recent literature indicated that broadleaved weeds are the most common group of weeds in wheat fields followed by grass weeds, while sedges were rarely noted in wheat fields. Across the globe, the most...

  5. Growth of higher fungi on wheat straw and their impact on the digestibility of the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Moyson, E.; Verachtert, H. (Catholic Univ. of Leuven (Belgium). Faculty of Agriculture)

    1991-12-01

    The influence of the growth of three higher fungi on the composition of wheat straw was investigated. Pleurotus pulmonarius, P. sajor-caju and Lentinus edodes grew very well on lignocellulosic substrates, breaking down a considerable amount of lignin. The initial lignin concentration of straw was halved after 12 weeks of fungal growth, doubling the enzymic digestibility. Together with lignin, the higher fungi consumed half of the amount of hemicellulose (i.e. 15%), leaving cellulose fairly intact, which should remain as an energy source for ruminants. (orig.).

  6. WHEAT PATHOGEN RESISTANCE AND CHITINASE PROFILE

    Directory of Open Access Journals (Sweden)

    Zuzana Gregorová

    2015-02-01

    Full Text Available The powdery mildew and leaf rust caused by Blumeria graminis and Puccinia recondita (respectively are common diseases of wheat throughout the world. These fungal diseases greatly affect crop productivity. Incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. We have evaluated resistance of four bread wheat (Triticum aestivum and four spelt wheat (Triticum spelta cultivars. Chitinases occurrence as well as their activity was determined in leaf tissues. There was no correlation between resistance rating and activity of chitinase. The pattern of chitinases reveals four isoforms with different size in eight wheat cultivars. A detailed understanding of the molecular events that take place during a plant–pathogen interaction is an essential goal for disease control in the future.

  7. Significance of Herbaspirillum seropedicae inoculation and/or straw amendment on growth and dinitrogen fixation of wheat using 15N-dilution method.

    Science.gov (United States)

    el-Komy, H M; Saad, O A; Hetta, A M

    2003-01-01

    The effect of Herbaspirillum seropedicae inoculation and/or maize straw (0, 5 and 10 Mg/hm2) amendment on the growth and N2 fixation of wheat was determined in pot experiments using 15N-dilution method. Inoculation resulted in accumulation of fixed nitrogen, and % N from atmosphere being 24.6 and 26.5% in wheat shoot and grain, respectively. Straw amendment reduced % Natm to 16.1 and 20.2% at high straw level (10 Mg/hm2). Rational nitrogen fertilization (180 kg N/hm2) completely inhibited N2 fixation by H. seropedicae inoculation. Bacterial inoculation increased dry shoot and grain yield up to 23 and 31%, respectively. The highest levels of shoot and grain dry mass (46.5 and 42.4%) were obtained by N-fertilization in both inoculated and uninoculated plants. Total shoot and grain N-yield increased irrespective of organic matter amendment by inoculation up to 9 and 25%, respectively. N-fertilized plants recorded a maximum increase in N-yield (57 and 51%). H. seropedicae was reisolated from inoculated wheat histosphere after harvesting (90 d from sowing). Neither organic matter nor mineral nitrogen applications had any marked effect on bacterial total counts colonizing wheat histosphere. Moreover, no symptoms of mottled stripe disease were observed on leaves and stems of inoculated plants.

  8. Wheat streak mosaic virus coat protein is a determinant for vector transmission by the wheat curl mite

    Science.gov (United States)

    Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae), is transmitted by the wheat curl mite (Aceria tosichella Keifer). The requirement of coat protein (CP) for WSMV transmission by the wheat curl mite was examined using a series of viable deletion and point mutations. Mite trans...

  9. Dissection of the multigenic wheat stem rust resistance present in the Montenegrin spring wheat accession PI 362698

    Science.gov (United States)

    Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 ...

  10. Cargill: Biotechnology and Value Creation in Wheat

    OpenAIRE

    Boland, Michael A.

    2003-01-01

    About 40 percent of the world's food supply came from rice and wheat-based foods. The genome of wheat (a genome is a set of chromosomes) was much larger than those of other crops such as rice. Deciphering the wheat genome was a much more complex process. Wheat had six DNA strands (e.g., humans have only a double-helix DNA strand) and almost twice as many genes as humans. GM wheat would be available for production by 2004. The objective of this case is to describe: segregation and identity-pre...

  11. Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants

    Science.gov (United States)

    Franke, Jonas; Menz, Gunter; Oerke, Erich-Christian; Rascher, Uwe

    2005-10-01

    In the context of precision agriculture, several recent studies have focused on detecting crop stress caused by pathogenic fungi. For this purpose, several sensor systems have been used to develop in-field-detection systems or to test possible applications of remote sensing. The objective of this research was to evaluate the potential of different sensor systems for multitemporal monitoring of leaf rust (puccinia recondita) infected wheat crops, with the aim of early detection of infected stands. A comparison between a hyperspectral (120 spectral bands) and a multispectral (3 spectral bands) imaging system shows the benefits and limitations of each approach. Reflectance data of leaf rust infected and fungicide treated control wheat stand boxes (1sqm each) were collected before and until 17 days after inoculation. Plants were grown under controlled conditions in the greenhouse and measurements were taken under consistent illumination conditions. The results of mixture tuned matched filtering analysis showed the suitability of hyperspectral data for early discrimination of leaf rust infected wheat crops due to their higher spectral sensitivity. Five days after inoculation leaf rust infected leaves were detected, although only slight visual symptoms appeared. A clear discrimination between infected and control stands was possible. Multispectral data showed a higher sensitivity to external factors like illumination conditions, causing poor classification accuracy. Nevertheless, if these factors could get under control, even multispectral data may serve a good indicator for infection severity.

  12. Improvement of wheat for resistance to Russian Wheat Aphid

    International Nuclear Information System (INIS)

    Kinyua, M.; Malinga, J.N.; Wanyama, J.; Karanja, L.; Njau, P.; Leo, T.; Alomba, E.

    2001-01-01

    Breeding for resistance against Russian wheat aphid in Kenya is reported. Results of six of the lines were found to have high to moderate resistance to Russian wheat aphid. Popular lines were susceptible in the greenhouse when subjected to aphid pressure but showed moderate susceptibility when screened under field conditions, indicating that in years or location with low aphid pressure farmers may still get a crop. However in areas of high aphid pressure or bad years they may lose their crop. Consequently, developing resistant/torerant varieties is urgent

  13. Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars

    Directory of Open Access Journals (Sweden)

    Lianne eMerchuk-Ovnat

    2016-04-01

    Full Text Available Wild emmer wheat (Triticum turgidum ssp. dicoccoides is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum and bread (T. aestivum wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4 were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm and water-limited (290–320 mm conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS, and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS. In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass - specifically under drought (7AS QTL in cv. Bar Nir background, under both treatments (2BS QTL, and a greater stability across treatments (1BL QTL. The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.

  14. Diversity of Endophytic Actinomycetes from Wheat and its Potential as Plant Growth Promoting and Biocontrol Agents

    Directory of Open Access Journals (Sweden)

    M. Gangwar

    2012-01-01

    Full Text Available A total of 35 endophytic actinomycetes strains was isolated from the roots, stems and leaves tissues of healthy wheat plants and identified as Streptomyces sp. (24, Actinopolyspora sp. (3, Nocardia sp. (4, Saccharopolyspora sp. (2 Pseudonocardia (1 and Micromonospora sp. (1. Seventeen endophytic actinomycetes isolate showed abilities to solubilize phosphate and produce IAA in the range of 5 to 42mg/100ml and 18-42µg/ml respectively. Nineteen isolates produced catechol-type of siderophore ranging between 1.3-20.32µg/ml. Also, hydroxamate-type siderophore produced by 9 isolates in the range of 13.33-50.66µg/ml. Maximum catechol-type of siderophore production was observed in Streptomyces roseosporus W9 (20.32µg/ml which was also displaying maximum antagonistic activity against ten different pathogenic fungi. The results indicated that internal tissues of healthy wheat plants exhibited endophytic actinomycetes diversity not only in terms of different types of isolates but also in terms of functional diversity.

  15. Elasticities for U.S. Wheat Food Use by Class

    OpenAIRE

    Marsh, Thomas L.

    2003-01-01

    We conceptualize wheat for food use as an input into flour production and derive demand functions to quantify price responsiveness and economic substitutability across wheat classes. Cost, price, and substitution elasticities are estimated for hard red winter, hard red spring, soft red wheat, soft white winter, and durum wheat. In general, hard red winter and spring wheat varieties are much more responsive to their own price than are soft wheat varieties and durum wheat. Morishima elasticitie...

  16. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan

    2016-05-01

    Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies. © 2016 John Wiley & Sons Ltd.

  17. Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae

    Science.gov (United States)

    Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian

    2016-01-01

    The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the ‘Amigo’ variety had the lowest palatability to S. avenae alatae of all varieties. ‘Tm’ (Triticum monococcum), ‘Astron,’ ‘Xanthus,’ ‘Ww2730,’ and ‘Batis’ varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, ‘Amigo,’ ‘Xiaoyan22,’ and some ‘186Tm’ samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for ‘98-10-35,’ ‘Xiaoyan22,’ ‘Tp,’ ‘Tam200,’ ‘PI high,’ and other ‘186Tm’ samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to ‘Xinong1376,’ because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of

  18. Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat

    Czech Academy of Sciences Publication Activity Database

    Šafář, Jan; Bartoš, Jan; Janda, Jaroslav; Bellec, A.; Kubaláková, Marie; Valárik, Miroslav; Pateyron, S.; Weiserová, Jitka; Tušková, Radka; Čihalíková, Jarmila; Vrána, Jan; Šimková, Hana; Faivre-Rampant, P.; Sourdille, P.; Caboche, M.; Bernard, M.; Doležel, Jaroslav; Chalhoub, B.

    2004-01-01

    Roč. 39, - (2004), s. 960-968 ISSN 0960-7412 R&D Projects: GA ČR GA522/03/0354; GA ČR GA521/04/0607; GA MZe QC1336 Institutional research plan: CEZ:AV0Z5038910 Keywords : wheat * flow sorting * DNA library Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.367, year: 2004

  19. Comparable efficiency of different extraction protocols for wheat and rye prolamins

    Directory of Open Access Journals (Sweden)

    Peter Socha

    2016-01-01

    Full Text Available The identification and quantification of cereal storage proteins is of interest of many researchers. Their structural or functional properties are usually affected by the way how they are extracted. The efficiency of extraction process depends on the cereal source and working conditions. Here, we described various commonly used extraction protocols differing in the extraction conditions (pre-extraction of albumins/globulins, sequential extraction of individual protein fractions or co-extraction of gluten proteins, heating or non-heating, reducing or non-reducing conditions. The total protein content of all fractions extracted from commercially available wheat and rye flours was measured by the Bradford method. Tris-Tricine SDS-PAGE was used to determine the molecular weights of wheat gliadins, rye secalins and high-molecular weight glutelins which are the main triggering factors causing celiac disease. Moreover, we were able to distinguish individual subunits (α/β-, γ-, ω-gliadins and 40k-γ-, 75k-γ-, ω-secalins of wheat/rye prolamins. Generally, modified extraction protocols against classical Osborne procedure were more effective and yields higher protein content in all protein fractions. Bradford measurement led into underestimation of results in three extraction procedures, while all protein fractions were clearly identified on SDS-PAGE gels. Co-extraction of gluten proteins resulted in appearance of both, low-molecular weight fractions (wheat gliadins and rye secalins as well as high-molecular weight glutelins which means that is not necessary to extract gluten proteins separately. The two of three extraction protocols showed high technical reproducibility with coefficient of variation less than 20%. Carefully optimized extraction protocol can be advantageous for further analyses of cereal prolamins.  Normal 0 21 false false false SK X-NONE X-NONE

  20. Paid Family Leave, Fathers' Leave-Taking, and Leave-Sharing in Dual-Earner Households.

    Science.gov (United States)

    Bartel, Anne P; Rossin-Slater, Maya; Ruhm, Christopher J; Stearns, Jenna; Waldfogel, Jane

    Using difference-in-difference and difference-in-difference-in-difference designs, we study California's Paid Family Leave (CA-PFL) program, the first source of government-provided paid parental leave available to fathers in the Unites States. Relative to the pre-treatment mean, fathers of infants in California are 46 percent more likely to be on leave when CA-PFL is available. In households where both parents work, we find suggestive evidence that CA-PFL increases both father-only leave-taking (i.e., father on leave while mother is at work) and joint leave-taking (i.e., both parents on leave at the same time). Effects are larger for fathers of first-born children than for fathers of later-born children.

  1. Using transcription of six Puccinia triticina races to identify the effective secretome during infection of wheat.

    Directory of Open Access Journals (Sweden)

    Myron eBruce

    2014-01-01

    Full Text Available Wheat leaf rust, caused by the basidiomycete Puccinia triticina, can cause yield losses of up to 20% in wheat producing regions. During infection, the fungus forms haustoria that secrete proteins into the plant cell and effect changes in plant transcription, metabolism and defense. It is hypothesized that new races emerge as a result of overcoming plant resistance via changes in the secreted effector proteins. To understand gene expression during infection and find genetic differences associated with races, RNA from wheat leaves infected with six different rust races, at six days post inoculation, was sequenced using Illumina. As P. triticina is an obligate biotroph, RNA from both the host and fungi were present and separated by alignment to the P. triticina genome and a wheat EST reference. A total of 222,571 rust contigs were assembled from 165 million reads. An examination of the resulting contigs revealed 532 predicted secreted proteins among the transcripts. Of these, 456 were found in all races. Fifteen genes were found with amino acid changes, corresponding to putative avirulence effectors potentially recognized by 11 different leaf rust resistance (Lr genes. Thirteen of the potential avirulence effectors have no homology to known genes. One gene had significant similarity to cerato-platanin, a known fungal elicitor, and another showed similarity to fungal tyrosinase, an enzyme involved in melanin synthesis. Temporal expression profiles were developed for these genes by qRT-PCR and show that the 15 genes share similar expression patterns from infection initiation to just prior to spore eruption.

  2. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    Science.gov (United States)

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  3. Cereal Crops Are not Created Equal: Wheat Consumption Associated with Obesity Prevalence Globally and Regionally

    Directory of Open Access Journals (Sweden)

    Wenpeng You

    2016-05-01

    Full Text Available Background: Cereals have been extensively advocated as the beneficial food group in terms of body weight management, but each staple cereal crop may contribute in different ways. Studies of the association between wheat availability and risk of obesity are controversial. This study aimed to test the global and regional association between wheat availability as reported by FAO and obesity prevalence at a population level. FAO does not distinguish between whole grain wheat and refined wheat. Methods: Population-specific data from 170 countries on prevalence of obesity, availabilities of mixed cereals, wheat, rice, maize, meat, sugar, fat, soy and calories and GDP are obtained from the UN agencies. All variables were measured as per capita per day (or per year. Each country is treated as an individual subject. SPSS v. 22 is used to analyse these data for all the 170 countries and official country groupings (regions using non parametric and parametric correlations, including partial correlation analysis. Results: Pearson’s correlation coefficient analysis showed that obesity prevalence is positively associated with wheat availability (r = 0.500, p < 0.001, but is inversely associated with availabilities of total cereals (r = -0.132, p = 0.087, rice (r = -0.405, p < 0.001 and maize (r = -0.227, p = 0.004. These associations remain in partial correlation model when we keep availabilities of meat, fat, sugar, soy, caloric intake and GDP statistically constant. Overall, positive associations between wheat availability and obesity prevalence remain in different regions. Maize and mixed cereal availabilities do not show independent associations with the obesity prevalence. Conclusions: Our study suggests that wheat availability is an independent predictor of the obesity prevalence both worldwide and with special regard to the regions of Africa, Americas and Asia. Future studies should distinguish between possible influence of whole grain and ultra

  4. Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes.

    Science.gov (United States)

    Gyalai-Korpos, Miklós; Mangel, Réka; Alvira, Pablo; Dienes, Dóra; Ballesteros, Mercedes; Réczey, Kati

    2011-07-01

    Pretreatment is a necessary step in the biomass-to-ethanol conversion process. The side stream of the pretreatment step is the liquid fraction, also referred to as the hydrolyzate, which arises after the separation of the pretreated solid and is composed of valuable carbohydrates along with compounds that are potentially toxic to microbes (mainly furfural, acetic acid, and formic acid). The aim of our study was to utilize the liquid fraction from steam-exploded wheat straw as a carbon source for cellulase production by Trichoderma reesei RUT C30. Results showed that without detoxification, the fungus failed to utilize any dilution of the hydrolyzate; however, after a two-step detoxification process, it was able to grow on a fourfold dilution of the treated liquid fraction. Supplementation of the fourfold-diluted, treated liquid fraction with washed pretreated wheat straw or ground wheat grain led to enhanced cellulase (filter paper) activity. Produced enzymes were tested in hydrolysis of washed pretreated wheat straw. Supplementation with ground wheat grain provided a more efficient enzyme mixture for the hydrolysis by means of the near-doubled β-glucosidase activity obtained.

  5. Pushing Wheat

    DEFF Research Database (Denmark)

    Sharp, Paul Richard

    This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between these varia......This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between...

  6. Growing Wheat. People on the Farm.

    Science.gov (United States)

    Department of Agriculture, Washington, DC. Office of Governmental and Public Affairs.

    This booklet, one in a series about life on modern farms, describes the daily life of the Don Riffel family, wheat farmers in Kansas. Beginning with early morning, the booklet traces the family's activities through a typical harvesting day in July, while explaining how a wheat farm is run. The booklet also briefly describes the wheat growing…

  7. The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici.

    Directory of Open Access Journals (Sweden)

    Junjuan Wang

    Full Text Available WRKY transcription factors (TFs play crucial roles in plant resistance responses to pathogens. Wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst, is a destructive disease of wheat (Triticum aestivum worldwide. In this study, the two WRKY genes TaWRKY49 and TaWRKY62 were originally identified in association with high-temperature seedling-plant resistance to Pst (HTSP resistance in wheat cultivar Xiaoyan 6 by RNA-seq. Interestingly, the expression levels of TaWRKY49 and TaWRKY62 were down- and up-regulated, respectively, during HTSP resistance in response to Pst. Silencing of TaWRKY49 enhanced whereas silencing TaWRKY62 reduced HTSP resistance. The enhanced resistance observed on leaves following the silencing of TaWRKY49 was coupled with increased expression of salicylic acid (SA- and jasmonic acid (JA-responsive genes TaPR1.1 and TaAOS, as well as reactive oxygen species (ROS-associated genes TaCAT and TaPOD; whereas the ethylene (ET-responsive gene TaPIE1 was suppressed. The decreased resistance observed on leaves following TaWRKY62 silencing was associated with increased expression of TaPR1.1 and TaPOD, and suppression of TaAOS and TaPIE1. Furthermore, SA, ET, MeJA (methyl jasmonate, hydrogen peroxide (H2O2 and abscisic acid (ABA treatments increased TaWRKY62 expression. On the other hand, MeJA did not affect the expression of TaWRKY49, and H2O2 reduced TaWRKY49 expression. In conclusion, TaWRKY49 negatively regulates while TaWRKY62 positively regulates wheat HTSP resistance to Pst by differential regulation of SA-, JA-, ET and ROS-mediated signaling.

  8. Paid Family Leave, Fathers' Leave-Taking, and Leave-Sharing in Dual-Earner Households

    OpenAIRE

    Bartel, Ann P.; Rossin-Slater, Maya; Ruhm, Christopher J.; Stearns, Jenna; Waldfogel, Jane

    2015-01-01

    This paper provides quasi-experimental evidence on the impact of paid leave legislation on fathers' leave-taking, as well as on the division of leave between mothers and fathers in dual-earner households. Using difference-in-difference and difference-in-difference-in-difference designs, we study California's Paid Family Leave (CA-PFL) program, which is the first source of government-provided paid parental leave available to fathers in the United States. Our results show that fathers in Califo...

  9. Effect of Silicon on the Tolerance of Wheat (Triticum aestivum L.) to Salt Stress at Different Growth Stages: Case Study for the Management of Irrigation Water.

    Science.gov (United States)

    A M, Daoud; M M, Hemada; N, Saber; A A, El-Araby; L, Moussa

    2018-04-03

    This paper aims to determine the most tolerant growth stage(s) of wheat to salinity stress with the addition of silicon. The aim was to investigate whether saline water could be used instead of good quality water for irrigation without implicating a greater risk to crop production. Local wheat cv. Gimmiza 11 was germinated and grown in sand cultures. Four different NaCl salinity levels were used as treatments: 0, 60, 90 and 120 mM. This was in the presence of 0 and 0.78 mM Si which added as sodium meta- silicate (Na₂SiO₃·9H₂O). Both the NaCl and Si treatments were carried out using a full strength nutrient solution that was adjusted at pH 6.0 and used for irrigation in four replications. The application of Si with the saline nutrient media significantly enhanced superoxide dismutase (SOD) and catalase (CAT) activities in plant leaves at the booting stage compared to the other stages. This was associated with a marked decline in the H₂O₂ content. At the booting stage, the Si treatment promoted CAT activity in 120 mM NaCl-stressed leaves compared to the leaves treated with only 120 mM NaCl solution. SOD showed greater prevalence at the booting stage when Si was added into the saline media, and it also revealed maximum activity at the milky stage with salinity stress. This was associated with a smaller reduction in shoot fresh and dry weights, greater reduction in the leaf Na⁺ content and an increase in the K⁺ content, which ultimately increased the cytosolic K⁺/Na⁺ ratio. Chlorophyll a and b and carotenoid (total photosynthetic pigments) were also higher at the booting stage of salt-stressed plants treated with Si compared to other stages. Accordingly, Si application enhanced the salt tolerance of wheat and reduced the inhibitory effect of Na⁺ and oxidative stress damage as growth proceeded towards maturity, particularly at the booting stage. This shows that saline water can be used for wheat irrigation at the booting stage (much water is

  10. Effect of Silicon on the Tolerance of Wheat (Triticum aestivum L. to Salt Stress at Different Growth Stages: Case Study for the Management of Irrigation Water

    Directory of Open Access Journals (Sweden)

    Daoud A.M.

    2018-04-01

    Full Text Available This paper aims to determine the most tolerant growth stage(s of wheat to salinity stress with the addition of silicon. The aim was to investigate whether saline water could be used instead of good quality water for irrigation without implicating a greater risk to crop production. Local wheat cv. Gimmiza 11 was germinated and grown in sand cultures. Four different NaCl salinity levels were used as treatments: 0, 60, 90 and 120 mM. This was in the presence of 0 and 0.78 mM Si which added as sodium meta- silicate (Na2SiO3·9H2O. Both the NaCl and Si treatments were carried out using a full strength nutrient solution that was adjusted at pH 6.0 and used for irrigation in four replications. The application of Si with the saline nutrient media significantly enhanced superoxide dismutase (SOD and catalase (CAT activities in plant leaves at the booting stage compared to the other stages. This was associated with a marked decline in the H2O2 content. At the booting stage, the Si treatment promoted CAT activity in 120 mM NaCl-stressed leaves compared to the leaves treated with only 120 mM NaCl solution. SOD showed greater prevalence at the booting stage when Si was added into the saline media, and it also revealed maximum activity at the milky stage with salinity stress. This was associated with a smaller reduction in shoot fresh and dry weights, greater reduction in the leaf Na+ content and an increase in the K+ content, which ultimately increased the cytosolic K+/Na+ ratio. Chlorophyll a and b and carotenoid (total photosynthetic pigments were also higher at the booting stage of salt-stressed plants treated with Si compared to other stages. Accordingly, Si application enhanced the salt tolerance of wheat and reduced the inhibitory effect of Na+ and oxidative stress damage as growth proceeded towards maturity, particularly at the booting stage. This shows that saline water can be used for wheat irrigation at the booting stage (much water is consumed

  11. Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization.

    Science.gov (United States)

    Zhang, Lianquan; Liu, Dengcai; Yan, Zehong; Zheng, Youliang

    2005-10-01

    Polyploidy has been found to be common in plants. Bread or common wheat (Triticum aestivum L., 2n=42) is a good example of allopolyploid made up of three diploid genomes A, B and D. In recent years, by the study of mimicking the origination of common wheat, it was found that changes of DNA sequence and gene expression occurred at the early stages of artificial allohexaploid between tetraploid wheat and Aegilops tauschii, which was probably favorable to genetic diploidization of new synthetic hexaploid wheat. Common wheat 99L2 is a new line stable in genetic, which was derived from the early self-pollinated generation of wide hybrids between common wheat and rye. In this study, it was found that at least two rye DNA segments had been introgressed into 99L2. This result suggested that a mechanism of alien DNA introgression may exist, which was different from the traditional mechanism of chromosome pairing and DNA recombination between wheat and alien species. Meanwhile, during the introgression process of alien rye DNA segments, the changes in DNA sequences of wheat itself occurred.

  12. Levels of trace elements in different varieties of wheat determined by Atomic Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Mohamed, A.E.; Taha, G.M.

    2003-01-01

    Trace elements Ag, Au, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in six wheat samples purchased from the open market in different localities (Egypt, Saudi Arabia, Yemen, Oman, Dubai and Australia). The dried powdered samples were decomposed in HNO3-HClO4 acids mixtures and elements were determined using recording atomic absorption spectrophotometer. The results were within the safety baseline of all the assayed elements. Certified biological standards, Brown's Kale (BK), Orchard Leaves (OL) and tomato leaves (TOML) were used to assure the accuracy of results. However, Co, Pb and Sr were absent from samples except the Egyptian samples. The obtained databases were statistically treated. Several significant and strong positive correlation coefficients (r=0.506-1.00) between the groups of elements were observed. On the other hand, strong negative correlations (r=0.492-0.873) between another group of elements were also shown. (author)

  13. Investigation of seed damaging pathogens associated with wheat crop in bhimber azad kashmir, pakistan and their managements

    International Nuclear Information System (INIS)

    Hussain, T.; Ishtiaq, M.; Azam, S.; Maqbool, M.; Mushtaq, W.

    2017-01-01

    Mycopathogens were explored from wheat germplasm cultivars from District Bhimber of Azad Kashmir. In this study, 10 different seed-borne pathogens were isolated from District of Bhimber, Azad Jammu and Kashmir, Pakistan. The Agar Plate Method (APM) and Towel Paper Method (TPM) were used for detection of seed borne pathogens. The disease incidence (percentage) and disease severity of fungi varied with respect to type of pathogen and seed sampling sites. Kernel bunt caused by Tilletia indica showed highest incidence (67.25%) and severity (7.0) on 0-9 rating scale. Fusarium graminearum showed the highest infection rate in three sub-divisions of district Bhimber as compared to others. The fungal attacking pathogens on wheat crop were control through fungicides treatment and treatments with plant extracts. Maximum germination rates were calculated in three sub-divisions of Bhimber after treatment of Tilt fungicide. As 86% germination rate in Samahni, 87.5% in Bhimber and 84.5% in Bernala was calculated. Antifungal activity of five plant extracts (Acacia nilotica L., Azadirachta indica L. Juss., Eucalyptus citriodora Hook, Ficus bengalensis L. and Allium sativum L.) were evaluated in four different solvents. Highest minimum inhibitory concentration (MIC) was calculated of all plants in methanolic extracts. Maximum MIC (57.38 mcg/ml) exhibited by extracts of Acacia nilotica leaves against ten fungi. Azadirachta indica extracts in different solvents against wheat-seed fungal pathogens was shown more antimicrobial activity as compared to other four plants. Azadirachta indica extract in methanol showed the highest mean of antifungal activity (62.20 mcg/ml) against ten different fungal pathogens. Antimicrobial activity (MIC) of Ficus bengalensis in different solvents against nine wheat-seed fungal pathogens was also investigated. Highest MIC was measured against B. graminis (57.50 mcg/ml) and S. macrospora (57.00 mcg/ml) by using methanolic extract of Ficus bengalensis

  14. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress.

    Science.gov (United States)

    Guo, Rui; Yang, Zongze; Li, Feng; Yan, Changrong; Zhong, Xiuli; Liu, Qi; Xia, Xu; Li, Haoru; Zhao, Long

    2015-07-07

    It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.

  15. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat.

    Science.gov (United States)

    Zhu, Xiuliang; Li, Zhao; Xu, Huijun; Zhou, Miaoping; Du, Lipu; Zhang, Zengyan

    2012-08-01

    The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.

  16. The Wheat Bax Inhibitor-1 Protein Interacts with an Aquaporin TaPIP1 and Enhances Disease Resistance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Pan-Pan Lu

    2018-01-01

    Full Text Available Bax inhibitor-1 (BI-1 is an endoplasmic reticulum (ER-resident cell death suppressor evolutionarily conserved in eukaryotes. The ability of BI-1 to inhibit the biotic and abiotic stresses have been well-studied in Arabidopsis, while the functions of wheat BI-1 are largely unknown. In this study, the wheat BI-1 gene TaBI-1.1 was isolated by an RNA-seq analysis of Fusarium graminearum (Fg-treated wheat. TaBI-1.1 expression was induced by a salicylic acid (SA treatment and down-regulated by an abscisic acid (ABA treatment. Based on β-glucuronidase (GUS staining, TaBI-1.1 was expressed in mature leaves and roots but not in the hypocotyl or young leaves. Constitutive expression of TaBI-1.1 in Arabidopsis enhanced its resistance to Pseudomonas syringae pv. Tomato (Pst DC3000 infection and induced SA-related gene expression. Additionally, TaBI-1.1 transgenic Arabidopsis exhibited an alleviation of damage caused by high concentrations of SA and decreased the sensitivity to ABA. Consistent with the phenotype, the RNA-seq analysis of 35S::TaBI-1.1 and Col-0 plants showed that TaBI-1.1 was involved in biotic stresses. These results suggested that TaBI-1.1 positively regulates SA signals and plays important roles in the response to biotic stresses. In addition, TaBI-1.1 interacted with the aquaporin TaPIP1, and both them were localized to ER membrane. Furthermore, we demonstrated that TaPIP1 was up-regulated by SA treatment and TaPIP1 transgenic Arabidopsis enhanced the resistance to Pst DC3000 infection. Thus, the interaction between TaBI-1.1 and TaPIP1 on the ER membrane probably occurs in response to SA signals and defense response.

  17. Male use of parental leave in Luxembourg : empirical analysis of administrative records

    NARCIS (Netherlands)

    Zhelyazkova, N.

    2013-01-01

    The study investigates the decisions of fathers to use parental leave at the individual level. The focus is on the opportunity cost fathers would face for using the leave. Opportunity cost is measured in two ways: as the difference between the parental leave benefit and the salary of the father and

  18. Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust

    Directory of Open Access Journals (Sweden)

    Melanie Sanders

    2016-04-01

    Full Text Available A sample preparation method was developed for the screening of deoxynivalenol (DON in wheat and wheat dust. Extraction was carried out with water and was successful due to the polar character of DON. For detection, an enzyme-linked immunosorbent assay (ELISA was compared to the sensor-based techniques of surface plasmon resonance (SPR and biolayer interferometry (BLI in terms of sensitivity, affinity and matrix effect. The matrix effects from wheat and wheat dust using SPR were too high to further use this screenings method. The preferred ELISA and BLI methods were validated according to the criteria established in Commission Regulation 519/2014/EC and Commission Decision 2002/657/EC. A small survey was executed on 16 wheat lots and their corresponding dust samples using the validated ELISA method. A linear correlation (r = 0.889 was found for the DON concentration in dust versus the DON concentration in wheat (LOD wheat: 233 μg/kg, LOD wheat dust: 458 μg/kg.

  19. Polymorphism of proteins in selected slovak winter wheat genotypes using SDS-PAGE

    Directory of Open Access Journals (Sweden)

    Dana Miháliková

    2016-12-01

    Full Text Available Winter wheat is especially used for bread-making. The specific composition of the grain storage proteins and the representation of individual subunits determines the baking quality of wheat. The aim of this study was to analyze 15 slovak varieties of the winter wheat (Triticum aestivum L. based on protein polymorphism and to predict their technological quality. SDS-PAGE method by ISTA was used to separate glutenin protein subunits. Glutenins were separated into HMW-GS (15.13% and LMW-GS (65.89% on the basis of molecular weight in SDS-PAGE. At the locus Glu-A1 was found allele Null (53% of genotypes and allele 1 (47% of genotypes. The locus Glu-B1 was represented by the HMW-GS subunits 6+8 (33% of genotypes, 7+8 (27% of genotypes, 7+9 (40% of genotypes. At the locus Glu-D1 were detected two subunits, 2+12 (33% of genotypes and 5+10 (67% of genotypes which is correlated with good bread-making properties. The Glu – score was ranged from 4 (genotype Viglanka to 10 (genotypes Viola, Vladarka. According to the representation of individual glutenin subunits in samples, the dendrogram of genetic similarity was constructed. By the prediction of quality the results showed that the best technological quality was significant in the varieties Viola and Vladarka which are suitable for use in food processing.

  20. End-use quality of soft kernel durum wheat

    Science.gov (United States)

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...

  1. 21 CFR 137.205 - Bromated whole wheat flour.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bromated whole wheat flour. 137.205 Section 137... Cereal Flours and Related Products § 137.205 Bromated whole wheat flour. Bromated whole wheat flour... of ingredients, prescribed for whole wheat flour by § 137.200, except that potassium bromate is added...

  2. Wheat yield dynamics: a structural econometric analysis.

    Science.gov (United States)

    Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin

    2007-10-15

    In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.

  3. Assessment of the Allergenic Potential of Transgenic Wheat (Triticum aestivum) with Reduced Levels of ω5-Gliadins, the Major Sensitizing Allergen in Wheat-Dependent Exercise-Induced Anaphylaxis.

    Science.gov (United States)

    Altenbach, Susan B; Tanaka, Charlene K; Pineau, Florence; Lupi, Roberta; Drouet, Martine; Beaudouin, Etienne; Morisset, Martine; Denery-Papini, Sandra

    2015-10-28

    The ω5-gliadins are the major sensitizing allergens in wheat-dependent exercise-induced anaphylaxis (WDEIA). In this study, two-dimensional immunoblot analysis was used to assess the allergenic potential of two transgenic wheat lines in which ω5-gliadin genes were silenced by RNA interference. Sera from 7 of 11 WDEIA patients showed greatly reduced levels of immunoglobulin E (IgE) reactivity to ω5-gliadins in both transgenic lines. However, these sera also showed low levels of reactivity to other gluten proteins. Sera from three patients showed the greatest reactivity to proteins other than ω5-gliadins, either high-molecular-weight glutenin subunits (HMW-GSs), α-gliadins, or non-gluten proteins. The complexity of immunological responses among these patients suggests that flour from the transgenic lines would not be suitable for individuals already diagnosed with WDEIA. However, the introduction of wheat lacking ω5-gliadins could reduce the number of people sensitized to these proteins and thereby decrease the overall incidence of this serious food allergy.

  4. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    NARCIS (Netherlands)

    Martre, P.; Reynolds, M.P.; Asseng, S.; Ewert, F.; Alderman, P.D.; Cammarano, D.; Maiorano, Andrea; Ruane, A.C.; Aggarwal, P.K.; Anothai, J.; Supit, I.; Wolf, J.

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during

  5. Effect of the down-regulation of the high Grain Protein Content (GPC) genes on the wheat transcriptome during monocarpic senescence

    DEFF Research Database (Denmark)

    Cantu, Dario; Pearce, Stephen P; Distelfeld, Assaf

    2011-01-01

    Background: Increasing the nutrient concentration of wheat grains is important to ameliorate nutritional deficiencies in many parts of the world. Proteins and nutrients in the wheat grain are largely derived from the remobilization of degraded leaf molecules during monocarpic senescence. The down....... At this early stage of senescence GPC transcript levels are significantly lower in transgenic GPC-RNAi plants than in the wild type, but there are still no visible phenotypic differences between genotypes. Results: We generated 1.4 million 454 reads from early senescing flag leaves (average ~350 nt......) and assembled 1.2 million into 30,497 contigs that were used as a reference to map 145 million Illumina reads from three wild type and four GPC-RNAi plants. Following normalization and statistical testing, we identified a set of 691 genes differentially regulated by GPC (431 ≥ 2-fold change). Transcript level...

  6. Taking Leave?

    CERN Multimedia

    2000-01-01

    Planning a holiday? Then if you're a member of the personnel, you'll need to use the Laboratory's new leave system that will be put in place on 1 October. Leave allocations don't change - you are entitled to just as much holiday as before - but instead of being credited annually, your leave will be credited on a monthly basis, and this information will be communicated on your salary slip. The reason for the change is that with the various new leave schemes such as Recruitment by Saved Leave (RSL) and the Progressive Retirement Programme (PRP), a streamlined procedure was required for dealing with all kinds of leave. In the new system, each member of the personnel will have leave accounts to which leave will be credited monthly from the payroll and debited each time an absence is registered in the CERN Electronic Document Handling system (EDH). Leave balances will appear on monthly pay slips, and full details of leave transactions and balances will be available through EDH at all times. As the leave will be c...

  7. Sensibility of different wheat varieties (strains) to Ar+ implantation

    International Nuclear Information System (INIS)

    Cui Huanhu; Jing Hua; Ma Aiping; Kang Xiuli; Yang Liping; Huang Mingjing; Ma Buzhou; Shanxi Academy of Agricultural Sciences, Taiyuan

    2005-01-01

    The sensibility of different wheat varieties (strains) to Ar + implantation was studied. The results showed that the survival rate of 21 wheat varieties (strains) at the dose of 6 x 10 16 Ar + /cm 2 could be divided into five groups: surplus sensitive varieties (strains), sensitive varieties (strains), transitional varieties (strains), obtuse varieties (strains) and surplus obtuse varieties (strains). The sensibility of wheat varieties (strains) to Ar + injection is high-moisture-fertility wheat varieties (strains) > medium-moisture-fertility wheat varieties (strains) > dry land wheat varieties (strains). The study has provided theoretical basis in induced mutation medial lethal dose of different wheat varieties (strains) to Ar + implantation. (authors)

  8. Variations in the stable carbon isotope compositions of individual lipids from the leaves of modern angiosperms: implications for the study of higher land plant-derived sedimentary organic matter

    International Nuclear Information System (INIS)

    Lockheart, M.J.; Bergen, P.F. van; Evershed, R.P.

    1997-01-01

    Seasonal changes in δ 13 C values for individual lipids from the leaves of several species of tree have been studied in order to provide essential background information for use in future investigations of the isotopic signatures of terrigenous sedimentary organic matter. The n-alkanes of Betula ermanii, Quercus castaneifolia and Fagus japonica revealed increased δ 13 C in autumn leaves compared with leaves sampled at the start of the growing season. Samples taken from Q. castaneifolia and F. sylvatica at monthly intervals showed gradual depletion of 13 C in bulk tissues and n-alkanes through the growing season. This may be a consequence of either recycling of depleted internal carbon in order to replace weathered waxes, or increased fractionation against 13 C by the enzyme ribulose 1,5-bisphosphate carboxylase in response to increasing summer temperatures. Sitosterol exhibited similar isotopic trends as the n-alkanes in F. sylvatica, but showed the opposite behaviour in Q. castaneifolia. The effect of sunlight intensity on δ 13 C was investigated in foliage sampled at different compass positions around two trees, Q. robur and F. sylvatica. Bulk tissue and lipids from inner shade leaves were consistently more depleted in 13 C than those from the corresponding sun leaf. The leaves receiving the highest sunlight irradiance on average, i.e. southern foliage, exhibited the lowest δ 13 C in lipids and bulk tissues. The variability of δ 13 C values with irradiance level may be due to changes in photosynthetic assimilation rates and the adaptation of the leaf epidermis and stomata in response to its light environment. Lipids and bulk tissues from leaves of Quercus species were found to possess slightly more depleted δ 13 C values than those in Fagus species, although interspecies variability was quite large. This study has important implications for the study of terrestrially derived organic matter preserved in ancient sediments. The results demonstrate the

  9. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior

    Energy Technology Data Exchange (ETDEWEB)

    López-Luna, J., E-mail: jlol_24@hotmail.com [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Silva-Silva, M.J. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Martinez-Vargas, S. [Facultad de Ingeniería, Universidad Autónoma del Carmen, Ciudad del Carmen 24115, Campeche (Mexico); Mijangos-Ricardez, O.F. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); González-Chávez, M.C. [Colegio de Postgraduados en Ciencias Agrícolas, Carr. México–Texcoco km 36.5, Montecillo 56230, Estado de México (Mexico); Solís-Domínguez, F.A. [Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Baja California Norte (Mexico); Cuevas-Díaz, M.C. [Facultad de Ciencias Químicas, Universidad Veracruzana, Coatzacoalcos 96535, Veracruz (Mexico)

    2016-09-15

    The aim of this work was to assess the uptake of citrate-coated magnetite nanoparticles (NPs) by wheat plants and its effect on the bioaccumulation and toxicity of individual and joint Cd{sup 2+} and Cr{sup 6+} levels. Seven-day assays were conducted using quartz sand as the plant growth substrate. The endpoints measured were seed germination, root and shoot lengths, and heavy metal accumulation. Magnetite exhibited very low toxicity, regardless of the wheat seedling NP uptake and distribution into roots and shoots. The seed germination and shoot length were not sensitive enough, while the root length was a more sensitive toxicity endpoint. The root length of wheat seedlings exposed to individual metals decreased by 50% at 2.67 mg Cd{sup 2+} kg{sup −1} and 5.53 mg Cr{sup 6+} kg{sup −1}. However, when magnetite NPs (1000 mg kg{sup −1}) were added, the root length of the plants increased by 25 and 50%. Cd{sup 2+} and Cr{sup 6+} showed similar and noninteractive joint action, but strongly impaired the wheat seedlings. In contrast, an interactive infra-additive or antagonistic effect was observed upon adding magnetite NPs. Thus, cadmium and chromium accumulation in vegetable tissues was considerately diminished and the toxicity alleviated. - Highlights: • We assessed the effect of nanomagnetite on heavy metal toxicity in wheat plants. • Citrate-coated magnetite nanoparticles (NPs) exerted very low toxicity to plants. • Cadmium was more toxic than chromium and toxicity was mitigated by magnetite NPs. • Cadmium and chromium had a similar and noninteractive joint action on plants. • Metals showed an interactive infra-additive joint effect by adding magnetite NPs.

  10. Biotechnology in wheat improvement in Kenya

    International Nuclear Information System (INIS)

    Karanja, L.; Kinyua, M.G.; Njau, P.N.; Maling'a, J.

    2001-01-01

    Use of double haploid (DH) and mutation techniques in breeding wheat lines and varieties tolerant to drought, acid soils and resistant to Russian Wheat Aphid (RWA) at the National Plant Breeding Research Center in the last 4 years, is reported. The wheat variety, ''Pasa'' irradiated in 1996 is reported to have undergone selection process through yield trials in 1999-2000. Work done in the year 2000 is mainly described

  11. Genetic effects of feeding irradiated wheat to mice

    International Nuclear Information System (INIS)

    Vijayalaxmi

    1976-01-01

    The effects of feeding irradiated wheat in mice on bone marrow and testis chromosomes, germ cell numbers and dominant lethal mutations were investigated. Feeding of freshly irradiated wheat resulted in significantly increased incidence of polyploid cells in bone marrow, aneuploid cells in testis, reduction in number of spermatogonia of types A, B and resting primary spermatocytes as well as a higher mutagenic index. Such a response was not observed when mice were fed stored irradiated wheat. Also there was no difference between the mice fed un-irradiated wheat and stored irradiated wheat. (author)

  12. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?

    Science.gov (United States)

    Meyer, Joana Beatrice; Song-Wilson, Yi; Foetzki, Andrea; Luginbühl, Carolin; Winzeler, Michael; Kneubühler, Yvan; Matasci, Caterina; Mascher-Frutschi, Fabio; Kalinina, Olena; Boller, Thomas; Keel, Christoph; Maurhofer, Monika

    2013-01-01

    This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE) method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.

  13. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?

    Directory of Open Access Journals (Sweden)

    Joana Beatrice Meyer

    Full Text Available This study aimed to evaluate the impact of genetically modified (GM wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF. Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.

  14. Mostly Plants. Individualized Biology Activities on: I. Investigating Bread Mold; II. Transpiration; III. Botany Project; IV. Collecting/Preserving/Identifying Leaves; [and] V. Student Science Laboratory Write-Ups.

    Science.gov (United States)

    Gibson, Paul R.

    Individualized biology activities for secondary students are presented in this teaching guide. The guide is divided into five sections: (1) investigating bread mold; (2) investigating transpiration; (3) completing a botany project; (4) collecting, preserving, and identifying leaves; and (5) writing up science laboratory investigations. The…

  15. Durum wheat quality prediction in Mediterranean environments

    DEFF Research Database (Denmark)

    Toscano, P.; Gioli, B.; Genesio, L.

    2014-01-01

    Durum wheat is one of the most important agricultural crops in the Mediterranean area. In addition to yield, grain quality is very important in wheat markets because of the demand for high-quality end products such as pasta, couscous and bulgur wheat. Grain quality is directly affected by several...

  16. [Effects of different fertilization regimes on weed communities in wheat fields under rice-wheat cropping system].

    Science.gov (United States)

    Yuan, Fang; Li, Yong; Li, Fen-hua; Sun, Guo-jun; Han, Min; Zhang, Hai-yan; Ji, Zhong; Wu, Chen-yu

    2016-01-01

    To reveal the effects of different fertilization regimes on weed communities in wheat fields under a rice-wheat rotation system, a survey was conducted before wheat harvest in 2014 after a 4-year long-term recurrent fertilization scheme. Weed species types, density, height and diversity index under different fertilization and straw-returning schemes in wheat fields were studied and complemented with a canonical correspondence analysis on weed community distribution and soil nutrient factors. Twenty weed species were recorded among 36 wheat fields belonging to 19 genera and 11 families. Beckmannia syzigachne, Hemistepta lyrata, Malachium aquaticum and Cnidium monnieri were widely distributed throughout the sampled area. Long-term fertilization appeared to reduce weed species richness and density, particularly for broadleaf weeds, but increased weed height. Diversity and evenness indices of weed communities were lower and dominance indices were higher in fields where chemical fertilizers were applied alone or combined with organic fertilizers, especially, where organic-inorganic compound fertilizer was used, in which it readily caused the outbreak of a dominant species and severe damage. Conversely, diversity and evenness indices of weed communities were higher and dominance indices were lower when the straw was returned to the field combined with chemical or organic fertilizers, in which weed community structures were complex and stable with lower weed density. Under these conditions weeds only caused slight reduction of wheat growth.

  17. 5 CFR 630.1204 - Intermittent leave or reduced leave schedule.

    Science.gov (United States)

    2010-01-01

    ... insurance, health benefits, retirement coverage, and leave accrual). (e) The agency shall determine the... REGULATIONS ABSENCE AND LEAVE Family and Medical Leave § 630.1204 Intermittent leave or reduced leave schedule... reduced leave schedule unless the employee and the agency agree to do so. (b) Leave under § 630.1203(a) (3...

  18. Evaluation of alternative planting strategies to reduce wheat stem sawfly (Hymenoptera: Cephidae) damage to spring wheat in the northern Great Plains.

    Science.gov (United States)

    Beres, B L; Cárcamo, H A; Bremer, E

    2009-12-01

    Wheat, Triticum aestivum L., producers are often reluctant to use solid-stemmed wheat cultivars resistant to wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), due to concerns regarding yield, efficacy or market opportunities. We evaluated the impact of several planting strategies on wheat yield and quality and wheat stem sawfly infestation at two locations over a three-year period. Experimental units consisted of large plots (50 by 200 m) located on commercial farms adjacent to wheat stem sawfly-infested fields. Compared with a monoculture of a hollow-stemmed cultivar ('AC Barrie'), planting a monoculture of a solid-stemmed cultivar ('AC Eatonia') increased yield by an average of 16% (0.4 mg ha(-1)) and increased the grade of wheat by one unit at the two most heavily infested site-years. Planting a 1:1 blend of AC Eatonia and AC Barrie increased yield by an average of 11%, whereas planting 20- or 40-m plot margins to AC Eatonia increased yield by an average of 8%. High wheat stem sawfly pressure limited the effectiveness of using resistant cultivars in field margins because plants were often infested beyond the plot margin, with uniform infestation down the length of the plots at the two most heavily infested site-years. The effectiveness of AC Eatonia to reduce wheat stem sawfly survivorship was modest in this study, probably due to weather-related factors influencing pith expression and to the high abundance of wheat stem sawfly. Greater benefits from planting field margins to resistant cultivars or planting a blend of resistant and susceptible cultivars might be achievable under lower wheat stem sawfly pressure.

  19. [Population dynamics of ground carabid beetles and spiders in a wheat field along the wheat-alfalfa interface and their response to alfalfa mowing].

    Science.gov (United States)

    Liu, Wen-Hui; Hu, Yi-Jun; Hu, Wen-Chao; Hong, Bo; Guan, Xiao-Qing; Ma, Shi-Yu; He, Da-Han

    2014-09-01

    Taking the wheat-alfalfa and wheat-wheat interfaces as model systems, sampling points were set by the method of pitfall trapping in the wheat field at the distances of 3 m, 6 m, 9 m, 12 m, 15 m, 18 m, 21 m, 24 m, and 27 m from the interface. The species composition and abundance of ground carabid beetles and spiders captured in pitfalls were investigated. The results showed that, to some extent there was an edge effect on species diversity and abundance of ground carabid beetles and spiders along the two interfaces. A marked edge effect was observed between 15 m and 18 m along the alfalfa-wheat interface, while no edge effect was found at a distance over 20 m. The edge effect along the wheat-wheat interface was weaker in comparison to the alfalfa-wheat interface. Alfalfa mowing resulted in the migration of a large number of ground carabid beetles and spiders to the adjacent wheat filed. During ten days since mowing, both species and abundance of ground carabid beetles and spiders increased in wheat filed within the distance of 20 m along the alfalfa-wheat interface. The spatial distribution of species diversity of ground beetles and spiders, together with the population abundance of the dominant Chlaenius pallipes and Pardosa astrigera, were depicted, which could directly indicate the migrating process of natural enemy from alfalfa to wheat field.

  20. Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns

    Directory of Open Access Journals (Sweden)

    Hayashizaki Yoshihide

    2009-06-01

    Full Text Available Abstract Background Wheat is an allopolyploid plant that harbors a huge, complex genome. Therefore, accumulation of expressed sequence tags (ESTs for wheat is becoming particularly important for functional genomics and molecular breeding. We prepared a comprehensive collection of ESTs from the various tissues that develop during the wheat life cycle and from tissues subjected to stress. We also examined their expression profiles in silico. As full-length cDNAs are indispensable to certify the collected ESTs and annotate the genes in the wheat genome, we performed a systematic survey and sequencing of the full-length cDNA clones. This sequence information is a valuable genetic resource for functional genomics and will enable carrying out comparative genomics in cereals. Results As part of the functional genomics and development of genomic wheat resources, we have generated a collection of full-length cDNAs from common wheat. By grouping the ESTs of recombinant clones randomly selected from the full-length cDNA library, we were able to sequence 6,162 independent clones with high accuracy. About 10% of the clones were wheat-unique genes, without any counterparts within the DNA database. Wheat clones that showed high homology to those of rice were selected in order to investigate their expression patterns in various tissues throughout the wheat life cycle and in response to abiotic-stress treatments. To assess the variability of genes that have evolved differently in wheat and rice, we calculated the substitution rate (Ka/Ks of the counterparts in wheat and rice. Genes that were preferentially expressed in certain tissues or treatments had higher Ka/Ks values than those in other tissues and treatments, which suggests that the genes with the higher variability expressed in these tissues is under adaptive selection. Conclusion We have generated a high-quality full-length cDNA resource for common wheat, which is essential for continuation of the

  1. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    Science.gov (United States)

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  2. The pangenome of hexaploid bread wheat.

    Science.gov (United States)

    Montenegro, Juan D; Golicz, Agnieszka A; Bayer, Philipp E; Hurgobin, Bhavna; Lee, HueyTyng; Chan, Chon-Kit Kenneth; Visendi, Paul; Lai, Kaitao; Doležel, Jaroslav; Batley, Jacqueline; Edwards, David

    2017-06-01

    There is an increasing understanding that variation in gene presence-absence plays an important role in the heritability of agronomic traits; however, there have been relatively few studies on variation in gene presence-absence in crop species. Hexaploid wheat is one of the most important food crops in the world and intensive breeding has reduced the genetic diversity of elite cultivars. Major efforts have produced draft genome assemblies for the cultivar Chinese Spring, but it is unknown how well this represents the genome diversity found in current modern elite cultivars. In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140 500 ± 102 genes, a core genome of 81 070 ± 1631 genes and an average of 128 656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to variation in gene presence, more than 36 million intervarietal single nucleotide polymorphisms were identified across the pangenome. This study of the wheat pangenome provides insight into genome diversity in elite wheat as a basis for genomics-based improvement of this important crop. A wheat pangenome, GBrowse, is available at http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/, and data are available to download from http://wheatgenome.info/wheat_genome_databases.php. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. Lipase inactivation in wheat germ by gamma irradiation

    International Nuclear Information System (INIS)

    Jha, Pankaj Kumar; Kudachikar, V.B.; Kumar, Sourav

    2013-01-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0–30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy. - Highlights: Ø γ-irradiation was found to inactivate Lipase present in Wheat Germ. Ø The treatment did not result in significant changes in Total Ash, Moisture and Protein Content of Wheat Germ. Ø The irradiation at 30 kGy resulted in 31.2 % inactivation of Lipase in Wheat Germ

  4. (Neovossia indica ) resistance in wheat

    Indian Academy of Sciences (India)

    Unknown

    Screening and multiplication of different wheat varieties under laboratory conditions using in vitro culture techniques may speed up the resistance breeding programmes. Hence, the present investigations were planned to study the nature and magnitude of gene effects of inhibition zone formed by the wheat embryos, callus-.

  5. [Properties and localization of Mg- and Ca-ATpase activities in wheat embryo cell nuclei].

    Science.gov (United States)

    Vasil'eva, N A; Belkina, G G; Stepanenko, S Y; Atalykova, F I; Oparin, A I

    1978-05-01

    The isolated nuclei of wheat embryo possess the ATPase activity. The addition of Mg2+ and Ca2+ significantly increases the activities of nuclear ATPases, whereas Hg2+, Cu2+ and Mn2+ inhibit the activity. The activating effect of Mg2+ is enhanced by an addition of Na and K ions. The activity of wheat embryo nuclear Mg-ATPase is higher than its Ca-ATPase activity; both ATPases also differ in their pH optima. Separation of total nuclear protein according to the solubility of its individual protein components in wheat and strong salt solutions, using the detergents, as well as ammonium sulfate precipitation and dialysis do not result in separation of Mg-activated and Ca-activated ATPases, although their levels of activities and ratios change in the course of fractionation. The Mg- and Ca-ATPase activities of the wheat embryo nuclei were found in the nuclear fraction of albumin, in nonhistone proteins and nuclear membranes. In the albumin nuclear fraction and subfractions of non-histone proteins the higher level of activity is observed in Ca-ATPase, whereas in the nuclei and soluble fractions of residual proteins in Mg-ATPase.

  6. Manthar-03: a high-yielding cultivar of wheat released for general cultivation in Southern Punjab

    International Nuclear Information System (INIS)

    Hussain, M.; Akhtar, L.H.; Nasim, M.

    2010-01-01

    We report the release of a new wheat variety Manthar-03. 'Manthar-03' is a high yielding and rust resistant variety of bread wheat with erect growth habit. It was released in the year 2003 as a general purpose variety. Manthar-03 is a selection from CIMMYT material (Entry No. 42 of 29 International Bread Wheat Screening Nursery) made at Regional Agricultural Research Institute (RARI), Bahawalpur during 1996-97. This strain has the famous CIMMYT line 'Kauz' in its parentage (KAUZ//ALTAR 84/AOS). Its pedigree is CM11163-6M-20Y-10M- 0M-0B. It is a more adapted and a high yielder. Genetically, this strain differs from existing commercial cultivars of Punjab. Resistance against leaf rust (5MRMS to 10MR), RRI value of 6.7 and 7.6 for leaf rust and ACI values of 3.4 and 0.7 for leaf rust) and high yield potential (6300 kg ha-1 ) are the major attributes of Manthar-03 that make it a superior variety for its target regions. Manthar-03 is tolerant to wheat aphid and Helicoverpa armigera. The thousand seed weight of this variety is 40-44 g. Seed is amber in color and contains 12.97% protein, 8.2% dry gluten and 1.55% ash. It has good chapati making quality. Plant type of Manthar-03 is erect with plant height 94 cm and droopy flag leaves. It is lodging resistant. It completes heading in 98 days and matures in 142 days. Manthar-03 performs better when planted from 15, November to 1, December, keeping 125 kg ha/sup -1/ seed rate and 125-85-50 kg NPK ha/sup -1/ are applied. (author)

  7. Unfolding the potential of wheat cultivar mixtures

    DEFF Research Database (Denmark)

    Borg, J.; Kiær, Lars Pødenphant; Lecarpentier, C.

    2018-01-01

    and they are not encouraged by advisory services. Based on the methodology developed by Kiær et al. (2009), we achieved a meta-analysis of cultivar mixtures in wheat. Among the 120 publications dedicated to wheat, we selected 32 studies to analyze various factors that may condition the success or failure of wheat mixtures...

  8. Assessing the ratio of leaf carbon to nitrogen in winter wheat and spring barley based on hyperspectral data

    Science.gov (United States)

    Xu, Xin-gang; Gu, Xiao-he; Song, Xiao-yu; Xu, Bo; Yu, Hai-yang; Yang, Gui-jun; Feng, Hai-kuan

    2016-10-01

    The metabolic status of carbon (C) and nitrogen (N) as two essential elements of crop plants has significant influence on the ultimate formation of yield and quality in crop production. The ratio of carbon to nitrogen (C/N) from crop leaves, defined as ratio of LCC (leaf carbon concentration) to LNC (leaf nitrogen concentration), is an important index that can be used to diagnose the balance between carbon and nitrogen, nutrient status, growth vigor and disease resistance in crop plants. Thus, it is very significant for effectively evaluating crop growth in field to monitor changes of leaf C/N quickly and accurately. In this study, some typical indices aimed at N estimation and chlorophyll evaluation were tested to assess leaf C/N in winter wheat and spring barley. The multi-temporal hyperspectral measurements from the flag-leaf, anthesis, filling, and milk-ripe stages were used to extract these selected spectral indices to estimate leaf C/N in wheat and barley. The analyses showed that some tested indices such as MTCI, MCARI/OSAVI2, and R-M had the better performance of assessing C/N for both of crops. Besides, a mathematic algorithm, Branch-and-Bound (BB) method was coupled with the spectral indices to assess leaf C/N in wheat and barley, and yielded the R2 values of 0.795 for winter wheat, R2 of 0.727 for spring barley, 0.788 for both crops combined. It demonstrates that using hyperspectral data has a good potential for remote assessment of leaf C/N in crops.

  9. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    DEFF Research Database (Denmark)

    Martre, Pierre; Reynolds, Matthew; Asseng, Senthold

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown...... dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season...... and end-of-season results from 30 wheat models....

  10. Best of both worlds: simultaneous high-light and shade-tolerance adaptations within individual leaves of the living stone Lithops aucampiae.

    Science.gov (United States)

    Field, Katie J; George, Rachel; Fearn, Brian; Quick, W Paul; Davey, Matthew P

    2013-01-01

    "Living stones" (Lithops spp.) display some of the most extreme morphological and physiological adaptations in the plant kingdom to tolerate the xeric environments in which they grow. The physiological mechanisms that optimise the photosynthetic processes of Lithops spp. while minimising transpirational water loss in both above- and below-ground tissues remain unclear. Our experiments have shown unique simultaneous high-light and shade-tolerant adaptations within individual leaves of Lithops aucampiae. Leaf windows on the upper surfaces of the plant allow sunlight to penetrate to photosynthetic tissues within while sunlight-blocking flavonoid accumulation limits incoming solar radiation and aids screening of harmful UV radiation. Increased concentration of chlorophyll a and greater chlorophyll a:b in above-ground regions of leaves enable maximum photosynthetic use of incoming light, while inverted conical epidermal cells, increased chlorophyll b, and reduced chlorophyll a:b ensure maximum absorption and use of low light levels within the below-ground region of the leaf. High NPQ capacity affords physiological flexibility under variable natural light conditions. Our findings demonstrate unprecedented physiological flexibility in a xerophyte and further our understanding of plant responses and adaptations to extreme environments.

  11. Durum wheat diversity for heat stress tolerance during inflorescence emergence is correlated to TdHSP101C expression in early developmental stages.

    Directory of Open Access Journals (Sweden)

    Miguel Bento

    Full Text Available The predicted world population increase along with climate changes threatens sustainable agricultural supply in the coming decades. It is therefore vital to understand crops diversity associated to abiotic stress response. Heat stress is considered one of the major constrains on crops productivity thus it is essential to develop new approaches for a precocious and rigorous evaluation of varietal diversity regarding heat tolerance. Plant cell membrane thermostability (CMS is a widely used method for wheat thermotolerance assessment although its limitations require complementary solutions. In this work we used CMS assay and explored TdHSP101C genes as an additional tool for durum wheat screening. Genomic and transcriptomic analyses of TdHSP101C genes were performed in varieties with contrasting CMS results and further correlated with heat stress tolerance during fertilization and seed development. Although the durum wheat varieties studied presented a very high homology on TdHSP101C genes (>99% the transcriptomic assessment allowed the discrimination between varieties with good CMS results and its correlation with differential impacts of heat treatment during inflorescence emergence and seed development on grain yield. The evidences here reported indicate that TdHSP101C transcription levels induced by heat stress in fully expanded leaves may be a promising complementary screening tool to discriminate between durum wheat varieties identified as thermotolerant through CMS.

  12. Nonmarital romantic relationship commitment and leave behavior: the mediating role of dissolution consideration.

    Science.gov (United States)

    Vanderdrift, Laura E; Agnew, Christopher R; Wilson, Juan E

    2009-09-01

    Two studies investigated the process by which individuals in nonmarital romantic relationships characterized by low commitment move toward enacting leave behaviors. Predictions based on the behavioral, goal, and implementation intention literatures were tested using a measure of dissolution consideration developed for this research. Dissolution consideration assesses how salient relationship termination is for an individual while one's relationship is intact. Study 1 developed and validated a measure of dissolution consideration and Study 2 was a longitudinal test of the utility of dissolution consideration in predicting the enactment of leave behaviors. Results indicated that dissolution consideration mediates the association between commitment and enacting leave behaviors, is associated with taking more immediate action, and provides unique explanatory power in leave behavior beyond the effect of commitment alone. Collectively, the findings suggest that dissolution consideration is an intermediate step between commitment and stay/leave behavior in close relationships.

  13. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Simone von Burg

    Full Text Available In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew became more favourable for another pest (aphids.

  14. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Science.gov (United States)

    von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2012-01-01

    In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).

  15. WHITE WHEAT MARKET AND STRATEGY ANALYSIS FOR NORTH DAKOTA

    OpenAIRE

    Janzen, Edward L.; Wilson, William W.

    2001-01-01

    There is a growing interest and a perceived demand for hard white (HW) wheat to satisfy the needs of the growing Asian noodle market which is currently dominated by Australia. The wheat industry is reviewed with attention to U.S. and Australian production and international markets for white wheat. Quality issues and target markets/market development are discussed. Economic issues associated with production of HW wheat in hard red spring (HRS) wheat producing areas, primarily North Dakota, are...

  16. Additional Leave as the Determinant of Retirement Timing—Retaining Older Workers in Norway

    Directory of Open Access Journals (Sweden)

    Åsmund Hermansen

    2015-01-01

    Full Text Available Faced with a rapidly aging labor force, increasing the labor supply of older workers has become an important goal for European countries. Offering additional leave to older workers with the option of withdrawing a contractual pension (contractual early retirement pension AFP has become a widespread retention measure in Norwegian companies. Thus far, no studies documenting the effects of individual retention measures on early retirement behavior have been published. The aim of this article is to examine whether offering additional leave impacts the relative risk of withdrawal of a contractual pension. The analysis uses a difference-in-differences approach and examines whether offering additional leave to counteract early retirement impacts the retirement decisions of 61- and 62-year-olds within the next two years of their employment, controlling for a range of different individual and company characteristics. This is achieved by comparing changes and differences in the individual relative risk of retiring early on the contractual pension (AFP scheme in the period 2001–2010 among older workers in companies with and without the retention measure. The analysis shows an overall average increase in the relative risk of a 61- or 62-year-old worker retiring on the contractual pension between 2001 and 2010; however, among older workers employed in companies offering additional leave there has been a decrease in the relative risk. The effect of additional leave is evident both before and after controlling for the selected individual and company characteristics. Thus, the analysis shows that offering additional leave as a retention measure reduces the individual relative risk of withdrawing a contractual pension (AFP in the next two years of employment among older workers between the age of 61 and 62 years.

  17. Allelopathic effects of aqueous extracts of sunflower on wheat (triticum aestivum l.) and maize (zea mays l.)

    International Nuclear Information System (INIS)

    Muhammad, Z.; Mujeed, A.

    2014-01-01

    Sunflower is a potent allelopathic plant which possesses important allelochemicals with known allelopathic activity on other plants. In this study, allelopathic effects of fresh aqueous extracts (FAE) and air dried aqueous extracts (DAE) of root, shoot and leaves of sunflower (Halianthus annuus L.) were investigated on germination and seedling growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) in seed bioassay experiments carried out at Botany Department of Peshawar University during 2010. Results showed significantly inhibitory effects of aqueous extracts on seed germination, growth and dry biomass of seedlings of wheat and maize. In wheat seedlings, significant germination inhibition (15.21%), increased mean germination time (MGT) (57.76%), reduced plumule and radical growth (21.66 and 28.44%) and lowered seedlings dry biomass (31.05%) were recorded under dry aqueous extracts of leaf when compared to control. Germination percentage of maize was inhibited by dry aqueous extracts of leaf by 7.81%, germination index by 16.51%, increased MGT by 25.53%, decreased plumule and radical lengths by 29.00 and 36.12% respectively, and lowered maize seedling dry biomass by 34.02 %. In both experiments, dry aqueous extracts (DAE) were more phytotoxic than fresh aqueous extracts (FAE). Similarly, inhibitory effects of aqueous extracts of different parts of sunflower were recorded in the order leaf > shoot > root for both tested plants. (author)

  18. Acceptability of Noodles Produced from Blends of Wheat, Acha and ...

    African Journals Online (AJOL)

    Acha (Digitaria exilis) and soybean (Glycine max) were processed into flours and used to substitute wheat flour (Titicum aestivm) as a composite flour at different proportions of 100:0:0 (Wheat); 75:25:25 (Wheat: Acha: Soybean); 75:25 (Wheat: Acha); 75:25 (Wheat: Soybean) and 50:50 (Acha: soybean). The formulated ...

  19. Occupational allergic multiorgan disease induced by wheat flour

    OpenAIRE

    Gómez Torrijos, Elisa; Rodríguez Sanchez, Joaquín; Diaz Perales, Araceli; García, R.; Feo-Brito, F.; García, C.; Pineda, Fernando; Quirce, Santiago

    2015-01-01

    Bakers are repeatedly exposed to wheat flour (WF) and may develop sensitization and occupational rhinoconjunctivitis and/or asthma to WF allergens.1 Several wheat proteins have been identified as causative allergens of occupational respiratory allergy in bakery workers.1 Testing of IgE reactivity in patients with different clinical profiles of wheat allergy (food allergy, wheat-dependent exercise-induced anaphylaxis, and baker's asthma) to salt-soluble and salt-insoluble protein fractions fro...

  20. BRS 374 – Wheat cultivar

    Directory of Open Access Journals (Sweden)

    Eduardo Caierão

    2013-01-01

    Full Text Available BRS 374 is a wheat cultivar developed by Embrapa. It resulted from a cross between the F1 generation of PF 88618/Coker80.33 and Frontana/Karl. BRS 374 belongs to the soft wheat class, has a low plant height, a high potential grain yield, andwhite flour.

  1. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1

    Science.gov (United States)

    Wheat (Triticum sp.) histones H1, H2, H3, and H4 were extracted. H1 was further purified. Their activities against fungi with varying degrees of wheat pathogenicity were determined. They included Aspergillus flavus, A. fumigatus, A. niger, F. oxysporum, F. verticillioides, F. solani, F. graminearu...

  2. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat.

    Science.gov (United States)

    Placido, Dante F; Campbell, Malachy T; Folsom, Jing J; Cui, Xinping; Kruger, Greg R; Baenziger, P Stephen; Walia, Harkamal

    2013-04-01

    Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an alien chromosome segment (7DL) from a wild wheat relative species (Agropyron elongatum) into cultivated wheat (Triticum aestivum). The wheat translocation line had improved water stress adaptation and higher root and shoot biomass compared with the control genotypes, which showed significant drops in root and shoot biomass during stress. Enhanced access to water due to higher root biomass enabled the translocation line to maintain more favorable gas-exchange and carbon assimilation levels relative to the wild-type wheat genotypes during water stress. Transcriptome analysis identified candidate genes associated with root development. Two of these candidate genes mapped to the site of translocation on chromosome 7DL based on single-feature polymorphism analysis. A brassinosteroid signaling pathway was predicted to be involved in the novel root responses observed in the A. elongatum translocation line, based on the coexpression-based gene network generated by seeding the network with the candidate genes. We present an effective and highly integrated approach that combines root phenotyping, whole-plant physiology, and functional genomics to discover novel root traits and the underlying genes from a wild related species to improve drought adaptation in cultivated wheat.

  3. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  4. Impact of improved wheat technology adoption on productivity and ...

    African Journals Online (AJOL)

    Wheat (Triticum aestivum L.) is one of the most important cereal crops cultivated in wide range of agro-ecologies in Eastern Africa. However, wheat productivity has remained low. This study was carried out in Ethiopia Aris Zone to determine the level and impact of adoption of improved wheat varieties on wheat productivity ...

  5. Nature-Based Stress Management Course for Individuals at Risk of Adverse Health Effects from Work-Related Stress—Effects on Stress Related Symptoms, Workability and Sick Leave

    Directory of Open Access Journals (Sweden)

    Eva Sahlin

    2014-06-01

    Full Text Available Sick leave due to stress-related disorders is increasing in Sweden after a period of decrease. To avoid that individuals living under heavy stress develop more severe stress-related disorders, different stress management interventions are offered. Self-assessed health, burnout-scores and well-being are commonly used as outcome measures. Few studies have used sick-leave to compare effects of stress interventions. A new approach is to use nature and garden in a multimodal stress management context. This study aimed to explore effects on burnout, work ability, stress-related health symptoms, and sick leave for 33 women participating in a 12-weeks nature based stress management course and to investigate how the nature/garden activities were experienced. A mixed method approach was used. Measures were taken at course start and three follow-ups. Results showed decreased burnout-scores and long-term sick leaves, and increased work ability; furthermore less stress-related symptoms were reported. Tools and strategies to better handle stress were achieved and were widely at use at all follow-ups. The garden and nature content played an important role for stress relief and for tools and strategies to develop. The results from this study points to beneficial effects of using garden activities and natural environments in a stress management intervention.

  6. Nature-Based Stress Management Course for Individuals at Risk of Adverse Health Effects from Work-Related Stress—Effects on Stress Related Symptoms, Workability and Sick Leave

    Science.gov (United States)

    Sahlin, Eva; Ahlborg, Gunnar; Vega Matuszczyk, Josefa; Grahn, Patrik

    2014-01-01

    Sick leave due to stress-related disorders is increasing in Sweden after a period of decrease. To avoid that individuals living under heavy stress develop more severe stress-related disorders, different stress management interventions are offered. Self-assessed health, burnout-scores and well-being are commonly used as outcome measures. Few studies have used sick-leave to compare effects of stress interventions. A new approach is to use nature and garden in a multimodal stress management context. This study aimed to explore effects on burnout, work ability, stress-related health symptoms, and sick leave for 33 women participating in a 12-weeks nature based stress management course and to investigate how the nature/garden activities were experienced. A mixed method approach was used. Measures were taken at course start and three follow-ups. Results showed decreased burnout-scores and long-term sick leaves, and increased work ability; furthermore less stress-related symptoms were reported. Tools and strategies to better handle stress were achieved and were widely at use at all follow-ups. The garden and nature content played an important role for stress relief and for tools and strategies to develop. The results from this study points to beneficial effects of using garden activities and natural environments in a stress management intervention. PMID:25003175

  7. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    As a consequence of global climate change, heat stress together with other abiotic stresses will remain an important determinant of future food security. Wheat (Triticum aestivum L.) is the third most important crop of the world feeding one third of the world population. Being a crop of temperate...... climate, wheat is sensitive to heat stress. We need to understand how our crops will perform in these changing climatic conditions and how we can develop varieties, which are more tolerant. The PhD study focussed on understanding heat tolerance in wheat with a combined approach of plant physiology...... and quantitative genetics in particular, plant phenotyping based quantitative trait loci (QTL) discovery for a physiological trait under heat stress. Chlorophyll a fluorescence trait, Fv/Fm was used as a phenotyping tool, as it reflects the effect of heat stress on maximum photochemical efficiency of photosystem...

  8. Asymmetric Price Transmission in Indonesia's Wheat Flour Market

    OpenAIRE

    Varela, Gonzalo J.; Taniguchi, Kiyoshi

    2014-01-01

    Data indicate that its domestic price in Indonesia has been increasing regardless of movements in the international price of wheat. A test for asymmetric price transmission from international wheat to domestic wheat flour markets is conducted using an error correction model and find the presence of asymmetric price transmission. The upward adjustment in the domestic price of wheat flour is much faster than its adjustment downward when it deviates from long-run equilibrium. Our results are rob...

  9. Parental leave: the impact of recent legislation on parents' leave taking.

    Science.gov (United States)

    Han, Wen-Jui; Waldfogel, Jane

    2003-02-01

    We use data from the Survey of Income and Program Participation to examine the impact of leave entitlements on unpaid leave usage by men and women after the birth of a child from 1991 to 1999. The results indicate that legislation providing the right to unpaid leave has not affected men's leave usage. The results for women are mixed: in some specifications, leave entitlements are associated with increased leave taking or longer leaves, but the results depend on how we define leave coverage. Our results point to the limited impact of unpaid leave policies and the potential importance of paid-leave policies.

  10. Impact of fertilizing pattern on the biodiversity of a weed community and wheat growth.

    Science.gov (United States)

    Tang, Leilei; Cheng, Chuanpeng; Wan, Kaiyuan; Li, Ruhai; Wang, Daozhong; Tao, Yong; Pan, Junfeng; Xie, Juan; Chen, Fang

    2014-01-01

    Weeding and fertilization are important farming practices. Integrated weed management should protect or improve the biodiversity of farmland weed communities for a better ecological environment with not only increased crop yield, but also reduced use of herbicides. This study hypothesized that appropriate fertilization would benefit both crop growth and the biodiversity of farmland weed communities. To study the effects of different fertilizing patterns on the biodiversity of a farmland weed community and their adaptive mechanisms, indices of species diversity and responses of weed species and wheat were investigated in a 17-year field trial with a winter wheat-soybean rotation. This long term field trial includes six fertilizing treatments with different N, P and K application rates. The results indicated that wheat and the four prevalent weed species (Galium aparine, Vicia sativa, Veronica persica and Geranium carolinianum) showed different responses to fertilizer treatment in terms of density, plant height, shoot biomass, and nutrient accumulations. Each individual weed population exhibited its own adaptive mechanisms, such as increased internode length for growth advantages and increased light interception. The PK treatment had higher density, shoot biomass, Shannon-Wiener and Pielou Indices of weed community than N plus P fertilizer treatments. The N1/2PK treatment showed the same weed species number as the PK treatment. It also showed higher Shannon-Wiener and Pielou Indices of the weed community, although it had a lower wheat yield than the NPK treatment. The negative effects of the N1/2PK treatment on wheat yield could be balanced by the simultaneous positive effects on weed communities, which are intermediate in terms of the effects on wheat and weeds.

  11. Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings

    International Nuclear Information System (INIS)

    Cammue, B.P.A.; Broekaert, W.F.; Kellens, J.T.C.; Peumans, W.J.; Raikhel, N.V.

    1989-01-01

    Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6,000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more [ 35 S]cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6,000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA

  12. Direct and regression methods do not give different estimates of digestible and metabolizable energy of wheat for pigs.

    Science.gov (United States)

    Bolarinwa, O A; Adeola, O

    2012-12-01

    Digestible and metabolizable energy contents of feed ingredients for pigs can be determined by direct or indirect methods. There are situations when only the indirect approach is suitable and the regression method is a robust indirect approach. This study was conducted to compare the direct and regression methods for determining the energy value of wheat for pigs. Twenty-four barrows with an average initial BW of 31 kg were assigned to 4 diets in a randomized complete block design. The 4 diets consisted of 969 g wheat/kg plus minerals and vitamins (sole wheat) for the direct method, corn (Zea mays)-soybean (Glycine max) meal reference diet (RD), RD + 300 g wheat/kg, and RD + 600 g wheat/kg. The 3 corn-soybean meal diets were used for the regression method and wheat replaced the energy-yielding ingredients, corn and soybean meal, so that the same ratio of corn and soybean meal across the experimental diets was maintained. The wheat used was analyzed to contain 883 g DM, 15.2 g N, and 3.94 Mcal GE/kg. Each diet was fed to 6 barrows in individual metabolism crates for a 5-d acclimation followed by a 5-d total but separate collection of feces and urine. The DE and ME for the sole wheat diet were 3.83 and 3.77 Mcal/kg DM, respectively. Because the sole wheat diet contained 969 g wheat/kg, these translate to 3.95 Mcal DE/kg DM and 3.89 Mcal ME/kg DM. The RD used for the regression approach yielded 4.00 Mcal DE and 3.91 Mcal ME/kg DM diet. Increasing levels of wheat in the RD linearly reduced (P direct method (3.95 and 3.89 Mcal/kg DM) did not differ (0.78 < P < 0.89) from those obtained using the regression method (3.96 and 3.88 Mcal/kg DM).

  13. Protein modeling of yellow rust disease in wheat

    International Nuclear Information System (INIS)

    Aziz, S.E.; Bano, R.; Zayed, M.E.; Elshikh, M.S.; Khan, M.H.; Chaudhry, Z.

    2017-01-01

    Wheat production in Pakistan is affected by yellow rust disease caused by a fungus Puccinia striiformis. There is a need to broaden the genetic basis of wheat by identifying new resistance genes. The present study was aimed to identify an alternate resistance gene for yellow rust disease in wheat caused by Puccinia striiformis. Genome sequence was compared with databases and similar gene was identified for disease resistance in rye plant. Structural analysis of RGA1 gene (resistance gene in wheat) was carried out using different bioinformatics tools and an alternative gene having same structure was identified on the basis of structural and sequence homology. Rye plant is the proposed plant for the alternate new resistance gene. The result of pairwise alignment of RGA1 gene in wheat and gene of rye plant is 94.2% with accession DQ494535 .The secondary structures of both the genes was compared and found similar to each other. These comparisons between the wheat resistance gene and gene from rye plant depict structural similarities between the two genes. Results of RGA1 gene's structural analysis in wheat is as follow: Helices: 59, Extended sheets: 30, Turns: 12, Coils: 13 and for alternate resistance genes in Rye is as follow: Helices: 52, Extended sheets: 30, Turns: 14, Coils: 17. As structures are similar, the alternate identified gene could be used for resistance in wheat. (author)

  14. Identification of novel QTL for sawfly resistance in wheat

    Science.gov (United States)

    J. D. Sherman; D. K. Weaver; M. L. Hofland; S. E. Sing; M. Buteler; S. P. Lanning; Y. Naruoka; F. Crutcher; N. K. Blake; J. M. Martin; P. F. Lamb; G. R. Carlson; L. E. Talbert

    2010-01-01

    The wheat stem sawfly (WSS) (Cephus cinctus Nort.) is an important pest of wheat (Triticum aestivum L. em. Thell.) in the Northern Great Plains. This paper reports the genetic analysis of antixenosis for egg-laying WSS females in recombinant inbred lines (RIL) of hard red spring wheat. Female WSS preferentially choose certain wheat genotypes for egg-laying, with the...

  15. Evaluation of Spring Wheat (20 Varieties Adaptation to Soil Drought during Seedlings Growth Stage

    Directory of Open Access Journals (Sweden)

    Jolanta Biesaga-Kościelniak

    2014-04-01

    Full Text Available The effect of soil drought (10 days on the growth of plants, the accumulation of water and leakage of electrolytes, gas exchange, the contents of chl a + b and carotenoids in leaves and photochemical activity of photosystem II was studied at the seedling stage by transient fluorescent analysis in 20 of the popular varieties of polish spring wheat. Drought caused a particularly strong reduction in vigor of growth of seedlings, net photosynthesis rate and triggered an increase in electrolyte leakage from the leaves. Certain varieties during the drought demonstrated relatively intense CO2 assimilation at low water loss through transpiration. The varieties tested were significantly different in terms of tolerance to drought of the processes of gas exchange and seedlings development. Photochemical processes in PSII showed high tolerance to drought and at the same time low differentiation among varieties. The results obtained suggested that tolerance of growth parameters to drought and CO2 assimilation at the seedling stage may alleviate consequent depression of final yield of the grain.

  16. Physiological Response of Wheat to Chemical Desiccants Used to Simulate Post-Anthesis Drought Stress

    Directory of Open Access Journals (Sweden)

    Nasrein Mohamed Kamal

    2018-04-01

    Full Text Available Post-anthesis drought stress is one of the main constraints on the production of wheat (Triticum aestivum L.. Because field screening for post-anthesis drought tolerance is difficult, effective and validated methods to simulate drought in order to identify sources of tolerance can facilitate screening of breeding materials. Chemical desiccants are widely used to simulate post-anthesis drought stress. We aimed to identify physiological traits that respond to desiccants as they do to drought. We examined the responses of ‘Norin 61’ to six treatments in a greenhouse: irrigated control, drought after anthesis, and 2% or 4% potassium chlorate (KClO3 at anthesis (A or grain filling (GF. We measured δ13C in leaves, aboveground fresh biomass, stomatal conductance, chlorophyll content, harvest index, and grain yield. Both 2% and 4% KClO3 at both A and GF simulated the effect of drought stress. Selection of drought-tolerant genotypes can be aided by chlorophyll content and δ13C measurement of leaves when 2% or 4% KClO3 is used to simulate drought.

  17. Work and pregnancy: individual and organizational factors influencing organizational commitment, timing of maternity leave, and return to work.

    Science.gov (United States)

    Lyness, K S; Thompson, C A; Francesco, A M; Judiesch, M K

    1999-10-01

    This study surveys pregnant women to examine the individual and organizational factors related with organizational commitment, planned timing of maternity leaves and return to work after childbirth. The survey was conducted on 86 pregnant women; among them, 73% were White, 8% were Asian, 7% were African-American, 6% were Hispanic, and 1% were Native-American respondents. The findings revealed that women whose organizations offered guaranteed jobs after childbirth planned to work later into their pregnancies and to return to work sooner after childbirth. Also, women who perceived supportive work-family cultures were more committed to their organizations and planned to return more quickly after childbirth than women who perceived less supportive cultures. Furthermore, women with less traditional attitudes towards parenting planned to work later into their pregnancies and return to work sooner after childbirth.

  18. Identification methods for irradiated wheat

    International Nuclear Information System (INIS)

    Zhu Shengtao; Kume, Tamikazu; Ishigaki, Isao.

    1992-02-01

    The effect of irradiation on wheat seeds was examined using various kinds of analytical methods for the identification of irradiated seeds. In germination test, the growth of sprouts was markedly inhibited at 500Gy, which was not affected by storage. The decrease in germination percentage was detected at 3300Gy. The results of enzymatic activity change in the germ measured by Vita-Scope germinator showed that the seeds irradiated at 10kGy could be identified. The content of amino acids in ungerminated and germinated seeds were analyzed. Irradiation at 10kGy caused the decrease of lysine content but the change was small which need very careful operation to detect it. The chemiluminescence intensity increased with radiation dose and decreased during storage. The wheat irradiated at 10kGy could be identified even after 3 months storage. In the electron spin resonance (ESR) spectrum analysis, the signal intensity with the g value f 2.0055 of skinned wheat seeds increased with radiation dose. Among these methods, germination test was the most sensitive and effective for identification of irradiated wheat. (author)

  19. A Hybrid Approach for Improving Image Segmentation: Application to Phenotyping of Wheat Leaves.

    Directory of Open Access Journals (Sweden)

    Joshua Chopin

    Full Text Available In this article we propose a novel tool that takes an initial segmented image and returns a more accurate segmentation that accurately captures sharp features such as leaf tips, twists and axils. Our algorithm utilizes basic a-priori information about the shape of plant leaves and local image orientations to fit active contour models to important plant features that have been missed during the initial segmentation. We compare the performance of our approach with three state-of-the-art segmentation techniques, using three error metrics. The results show that leaf tips are detected with roughly one half of the original error, segmentation accuracy is almost always improved and more than half of the leaf breakages are corrected.

  20. Pricing behavior of USA exporter in wheat international market

    Science.gov (United States)

    Wibowo, R. P.; Sumono; Iddrisu, Y.; Darus, M.; Sihombing, L. P.; Jufri

    2018-02-01

    The number of wheat producing countries is changing over time. It is expected the change in wheat supply will lead world wheat market become more competitive and reduce market power of major exporter country. This paper tries to identify and examined the degree of market power on wheat international market for USA by using the Pricing to Market (PTM) method. USA is the biggest producer and exporter in wheat market. The PTM method found that USA impose noncompetitive strategy by applying price discrimination and apply market power to their importer country.

  1. Earthworms, Collembola and residue management change wheat (Triticum aestivum) and herbivore pest performance (Aphidina: Rhophalosiphum padi).

    Science.gov (United States)

    Ke, Xin; Scheu, Stefan

    2008-10-01

    Management practices of arable systems determine the distribution of soil organic matter thereby changing decomposer animal activity and their impact on nutrient mineralization, plant growth and plant-herbivore interactions. Decomposer-mediated changes in plant growth and insect pest performance were investigated in wheat-aphid model systems in the greenhouse. Three types of litter distribution were established: litter patch at the soil surface (simulating mulching), litter patch deeper in soil (simulating ploughing) and litter homogeneously mixed into soil (simulating disk cultivation). The litter was labelled with (15)N to follow the mineralization and uptake of nutrients by the plants. Earthworms (Aporrectodea caliginosa) and Collembola (Protaphorura armata) were included as representatives of major functional groups of decomposers. Wheat (Triticum aestivum) was planted and aphids (Rhophalosiphum padi) were introduced to leaves as one of the most important pests. Earthworms, Collembola and litter distribution affected plant growth, N acquisition and aphid development in an interactive way. Earthworms and Collembola increased biomass of seeds, shoots and roots of wheat. Increased plant growth by earthworms and Collembola was mainly due to increased transfer of N from soil (rather than litter) into plants. Despite increasing plant growth, earthworms reduced aphid reproduction. Aphid reproduction was not correlated closely with plant N concentrations, but rather with the concentration of litter N in wheat. Unexpectedly, both Collembola and earthworms predominantly affected the mobilization of N from soil organic matter, and by altering the distribution of litter earthworms reduced infestation of crops by aphids via reducing plant capture of litter N, in particular if the litter was concentrated deeper in soil. The results suggest that management practices stimulating a continuous moderate increase in nutrient mobilization from soil organic matter rather than

  2. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    Science.gov (United States)

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net

  3. Genetic evolution and utilization of wheat germplasm resources in Huanghuai winter wheat region of China

    International Nuclear Information System (INIS)

    Xiyong, C.; Haixia, X.U.; Feng, C.

    2011-01-01

    To determine the genetic variation of wheat germplasm resources and improve their use in wheat breeding, 215 wheat cultivars and advanced lines from the Huanghuai Wheat Region of China were used to identify 14 agronomic traits and 7 quality traits, as well as the evolution and utilization of high molecular weight glutenin subunits (HMW-GS) and low molecular weight-glutenin subunits (LMW-GS). From land race cultivars to current cultivars there had been significant increases in grain numbers spike/sip -1/, grain weight spike/sup -1/, 1000-kernel weight, grain weight plant/sup -1/, spikelet number spike/sup -1/, sterile spikelet numbers spike/sup -1/, flag leaf width, and flag leaf area. There had been significant decreases in spike number plant/sup -1/, plant height, the first inter node length, flag leaf length, kernel protein content and wet gluten content. Based on Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results, a novel HMW-GS combination 20/8 was identified in 1B chromosome of Chinese landrace cultivar Heputou. Subunits 22, 20/8, 2.2+12, and GluB3a were only found in cultivars before the 1960s, and subunits 6+8, 13+16, 3+12, and 4+12 were only found in the cultivars after the 1980s. The average diversity index of 21 traits and allele variance of HMW-GS showed a decreasing-increasing-decreasing tendency. HMW-GS and LMW-GS combination-type cultivars showed an increasing-decreasing tendency. Before the 1980s, most parental strains were from foreign cultivars and landrace cultivars, while after the 1980s, most parental strains were from released cultivars and germplasm created by distant hybridization. This study provided useful information for improvement of wheat breeding in Huanghuai winter wheat region. (author)

  4. 78 FR 27857 - United States Standards for Wheat

    Science.gov (United States)

    2013-05-13

    ... RIN 0580-AB12 United States Standards for Wheat AGENCY: Grain Inspection, Packers and Stockyards... (GIPSA) is revising the United States Standards for Wheat under the United States Grain Standards Act (USGSA) to change the definition of Contrasting classes (CCL) in the class Hard White wheat. This change...

  5. Uptake of mercury vapor by wheat. An assimilation model

    International Nuclear Information System (INIS)

    Browne, C.L.; Fang, S.C.

    1978-01-01

    Using a whole-plant chamber and 203 Hg-labeled mercury, a quantitative study was made of the effect of environmental parameters on the uptake, by wheat (Triticum aestivum), of metallic mercury vapor, an atmospheric pollutant. Factors were examined in relation to their influence on components of the gas-assimilation model, U(Hg) = (C/sub A' -- C/sub L')/(r/sub L.Hg/ + r/sub M.Hg/) where U(Hg) is the rate of mercury uptake per unit leaf surface, C/sub A'/ is the ambient mercury vapor concentration, C/sub L'/ is the mercury concentration at immobilization sites within the plant (assumed to be zero), r/sub L.Hg/ is the total leaf resistance to mercury vapor exchange, and r/sub M.Hg/ is a residual term to account for unexplained physical and biochemical resistances to mercury vapor uptake. Essentially all mercury vapor uptake was confined to the leaves. r/sub L.Hg/ was particularly influenced by illumination (0 to 12.8 klux), but unaffected by ambient temperature (17 to 33 0 C) and mercury vapor concentration (0 to 40 μg m -3 ). The principal limitation to mercury vapor uptake was r/sub M.Hg/, which was linearly related to leaf temperature, but unaffected by mercury vapor concentration and illumination, except for apparent high values in darkness. Knowing C/sub A'/ and estimating r/sub L.Hg/ and r/sub M.Hg/ from experimental data, mercury vapor uptake by wheat in light was accurately predicted for several durations of exposure using the above model

  6. 29 CFR 825.202 - Intermittent leave or reduced leave schedule.

    Science.gov (United States)

    2010-07-01

    ... leave schedule is a leave schedule that reduces an employee's usual number of working hours per workweek, or hours per workday. A reduced leave schedule is a change in the employee's schedule for a period of... 29 Labor 3 2010-07-01 2010-07-01 false Intermittent leave or reduced leave schedule. 825.202...

  7. Breeding value of primary synthetic wheat genotypes for grain yield

    Science.gov (United States)

    To introduce new genetic diversity into the bread wheat gene pool from its progenitor, Aegilops tauschii (Coss.) Schmalh, 33 primary synthetic hexaploid wheat genotypes (SYN) were crossed to 20 spring bread wheat (BW) cultivars at the International Wheat and Maize Improvement Center. Modified single...

  8. Evaluation of irradiated wheat populations. Vol. 4

    International Nuclear Information System (INIS)

    Salam, T.Z.

    1996-01-01

    This study was carried out from 1992 to 1994. It aimed to study genetic behaviour for plant height, dry weight/plant, earliness, grain yield/plant, and 100-grain weight at harvest time in three wheat cultivars Mexi back, Giza 155, and Saka 69; and and their hybrids in F 3 - M 1 , and F 4 - M 2 mutagenic generations after treatment of dry seeds with gamma ray doses of 75, 100, and 125 Gy. All doses caused an increase or decrease in growth, yield, and yield attributes of the wheat cultivars. In G 1 55 Mexi back hybrid wheat the 100 Gy caused an increase in 100 - grain weight, grain yield/plant, and dry weight/plant in F 4 - M 2 generation only. But in Mexi back X G 1 55 hybrid wheat the 75 Gy increased plant height, 100 - grain weight, grain yield/plant, and dry weight/plant in both generations F 3 - M 1 and F 4 -M 2 . SK 69 X Mexi back hybrid wheat at 75 Gy caused earliness by about 13 days, and high grain yield in F 4 - M 2 generation only. however, in Mexi back x SK 69 hybrid wheat, 100 Gy caused earliness about 7 days but with low grain yield. 3 tabs

  9. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    Science.gov (United States)

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  10. Distribution of protein components of wheat from different regions

    African Journals Online (AJOL)

    kesiena

    2012-06-07

    Jun 7, 2012 ... The distribution of wheat protein components in different regions was researched to ..... properties of wheat gliadins II. effects on dynamic rheoligical ... fractions properties of wheat dough depending on molecular size and.

  11. Career effects of taking up parental leave. Evidence from a Dutch University

    OpenAIRE

    Vlasblom, J.D.; Plantenga, J.

    2010-01-01

    In this paper we study the effect of parental leave on individual careers. We use individual registration data of a Dutch non-profit firm (Utrecht University). Our outcomes show that even with a short period of flexible leave there are career effects. More specifically, these effects are not unambiguously positive: slightly longer job durations are found, but also a lower probability of wage increases. It also appears that there are differences in effects between men and women: for men the ef...

  12. The fatty acid profile in different wheat cultivars depending on the level of contamination with microscopic fungi.

    Science.gov (United States)

    Stuper-Szablewska, Kinga; Buśko, Maciej; Góral, Tomasz; Perkowski, Juliusz

    2014-06-15

    Analyses were conducted on 30 winter wheat samples growing under controlled conditions and following inoculation with fungi Fusarium culmorum. In inoculated samples the mean concentration of 30 analysed fatty acids was significantly higher in relation to the control and amounted to 1,396 mg/kg vs. 1,046 mg/kg in the control kernels. Recorded concentrations for individual cultivars were significantly correlated with the concentration of fungal biomass. Higher concentration in the control was recorded only for the acid trans C18:2n-6. It was also found that the acid profiles are characteristic of individual cultivars. Statistical analysis showed that trans C18:2n-6, C18:1, C18:3n-3 and C18:3n-6 were the acids with the greatest discriminatory power in distinguishing inoculated samples from the control. Discriminatory analysis separated individual cultivars into quality classes of winter wheat cultivars depending on the presence of a specific fatty acid profile. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. 77 FR 23420 - United States Standards for Wheat

    Science.gov (United States)

    2012-04-19

    ... and Stockyards Administration 7 CFR Part 810 RIN 0580-AB12 United States Standards for Wheat AGENCY..., 2012, regarding a proposal to revise the U.S. Standards for Wheat under the U.S. Grain Standards Act. The proposed rule would change the definition of Contrasting classes in Hard White wheat and change...

  14. 7 CFR 782.18 - Wheat purchased for export.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Wheat purchased for export. 782.18 Section 782.18... § 782.18 Wheat purchased for export. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of export to a foreign country or...

  15. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum).

    Science.gov (United States)

    Allen, Alexandra M; Winfield, Mark O; Burridge, Amanda J; Downie, Rowena C; Benbow, Harriet R; Barker, Gary L A; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; Griffiths, Simon; Bentley, Alison R; Alda, Mark; Jack, Peter; Phillips, Andrew L; Edwards, Keith J

    2017-03-01

    Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom ® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase

    DEFF Research Database (Denmark)

    Bohn, Lisbeth; Josefsen, Lone; Meyer, Anne S.

    2007-01-01

    Wheat phytase was purified to investigate the action of the enzyme toward its pure substrate (phytic acid - myo-inositol hexakisphosphate) and its naturally occurring substrate (phytate globoids). Phytate globoids were purified to homogeneity from wheat bran, and their nutritionally relevant...... phytic acid was replaced with phytate globoids as substrate. Time course degradation of phytic acid or phytate globoids using purified wheat phytase was followed by HPIC identification of inositol phosphates appearing and disappearing as products. In both cases, enzymatic degradation initiated at both...

  17. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter

    2013-01-01

    The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for

  18. Climate Change and Rainfed Wheat Production in Iran

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2011-01-01

    Full Text Available Abstract This research was conducted to evaluate the impacts of climate change on rainfed wheat growth and yield at country level. Weather data generated by a General Circulation model based on the ICCP scenarios for the target years of 2025 and 2050. Daily weather data including minimum and maximum temperatures, precipitation and radiation were used as the inputs of a growth simulation model for rainfed after calibration and validation for predicting wheat yield under current climatic conditions. Using the model, the impacts of climate change on wheat growth and yield was predicted and compared with the current data. The simulation results indicated that leaf area index and absorbed radiation by wheat canopy was reduced under climatic conditions of the target years. Reduction of absorbed radiation resulted to a lower crop growth rate and consequently drastic reduction in dry matter production. Estimated drought stress index for the future climate conditions showed that reduction of crop growth rate was mainly resulted from water shortage due to increased evapotranspiration. Reduction of the length of growth period together with a considerable decline of harvest index resulted in a significant reduction of rainfed wheat yield despite the positive effects of increased CO2 concentration and this negative impacts on wheat yield was intensified from 2025 towards 2050. Simulation results showed that the potential impact of climate change on rainfed wheat yield was more pronounced in Eastern regions of the country compared to the Western production areas. The overall country level reduction of rainfed wheat yield was estimated in the range of 16 to 25 % and 22 to 32% for the years 2025 and 2050, respectively. Keywords: Climate change, Rainfed wheat, General Circulation models, Simulation, Yield, Iran

  19. Microsatellites in wheat and their applications

    International Nuclear Information System (INIS)

    Stephenson, P.; Bryan, G.J.; Kirby, J.; Gale, M.D.

    1998-01-01

    The development of large panels of simply analyzable genetic markers for diversity studies and tagging, agronomically important genes in hexaploid bread wheat is an important goal in applied cereal genetic research. We have isolated and sequenced over two-hundred clones containing microsatellites from the wheat genome, and have tested 150 primer pairs for genetic polymorphism using a panel of ten wheat varieties, including the parents of our main mapping cross. A total of 125 loci were detected by 82 primer pairs, of which 105 loci from 63 primer pairs can be unequivocally allocated to one of the wheat chromosomes. A relatively low frequency of the loci detected are from the D-genome (24%). Generally, the microsatellites show high levels of genetic polymorphism and an average 3.5 alleles per locus with an average polymorphism information content (PIC) value of 0.5. The observed levels of polymorphism are positively correlated with the length of the microsatellite repeats. A high proportion, approximately one half, of primer pairs designed to detect simple sequence repeat (SSR) variation in wheat do not generate the expected amplification products and, more significantly, often generate unresolvable Polymerase Chain Reaction (PCR) products. In general our results agree closely with those obtained from other recent studies using microsatellites in plants. (author)

  20. Experiences of occupational therapists returning to work after maternity leave.

    Science.gov (United States)

    Parcsi, Lisa; Curtin, Michael

    2013-08-01

    Returning to work after maternity leave can be a challenging, anxious and fraught experience for women, and has been portrayed in the literature as a generally negative experience. Interestingly, although occupational therapists were predominantly women, no research was found focussing on their experiences of returning to work after maternity leave. The aim of this research was to gain an insight into occupational therapists' experiences of returning to work following maternity leave. Principles of interpretive phenomenological analysis were used to explore the individual experiences of six Australian occupational therapists returning to work after a period of maternity leave. Individual semi-structured interviews lasting up to 90 minutes were conducted. Interviews were audio-recorded, transcribed and then analysed. Two major themes emerged from the analysis of interviews: compromise and feeling valued. The experience of returning to work was a process of compromise in which women found strategies to cope with their changing roles and demands, to find a balance between home and work life. The women wanted to feel valued by their managers and co-workers, as this enabled them to feel comfortable and confident with some of the compromises they made. Occupational therapists returning to work after maternity leave will make compromises so that they can balance their home and work life. Occupational therapists value managers and co-workers who understand the compromises women make when returning to work following maternity leave and who create a supportive workplace that acknowledges and values their contribution. © 2013 Occupational Therapy Australia.

  1. Fourier Transform Infrared Spectroscopic Studies Of Wheat In The Mid Infrared

    Science.gov (United States)

    Olinger, Jill M.; Griffiths, Peter R.

    1989-12-01

    Official grain standards of the United States state that wheat may be divided into seven classes which are: Durum, Red Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, White, and Mixed.1 Most end uses of wheat involve converting the grain into flour through one of a variety of grinding methods. The quality of wheat-based products is often very dependent upon the type or class of wheat which was used to make the flour. Pasta products, for example, are made almost exclusively from the flour of durum wheats, which are the hardest of the wheats listed above. The highest quality breads are produced using flour from wheats classed as hard, whereas cakes, cookies and pastries are considered best when flour from wheats classed as soft are used. It is obvious then that the capability of determining the class of a particular wheat, especially with respect to hardness, is of economic importance to growers, processors, and merchants of wheat and wheat products. Hardness has been measured in many different ways 2-5 but, as of yet, no one method has become the method of choice. This paper reports on the use of principal components analysis (PCA) of mid infrared diffuse reflectance (DR) spectra of diluted ground wheats to aid in the classification of those wheats with respect to their hardness. The theory and mathematics involved in a principal component analysis have been described elsewhere.9

  2. Identification of isoforms of microRNAs in wheat (Triticum aestivum L. and their role in leaf rust pathogenesis

    Directory of Open Access Journals (Sweden)

    Summi Dutta

    2017-10-01

    Full Text Available Bread wheat, a type of grass under genus Triticum and species aestivum covers the largest land area when production of cereal crops is considered. Being an allohexaploid (2n=6x=42; AABBDD, its genome is contributed by three progenitors and is evolutionarily rich. Rust in leaves, caused by Puccinia triticina, severely affects grain quality. MicroRNAs are considered as major components of gene silencing and so have deep role to play during stress. Post transcriptional modification of miRNAs which generates isomiRNAs significantly affects target specificity especially when the modification occurs in 5′end. A total of four small RNA libraries were prepared through next-generation Illumina sequencing techniques from leaves of two wheat Near Isogenic Lines (NILs, HD2329 (susceptible and HD2329 + LR24 (resistant. Prior to this, one set of the two NILs was mock inoculated and considered as control (with sRNA library code named SM-mi and RM-mi while other was treated with urediniospores of leaf rust fungus (with sRNA library code named SPI-mi and RPI-mi. Clean reads in all four libraries were previously used for prediction of 559 novel miRNAs and in the current study it was used to detect isoforms of these miRNAs. A total of 237 isoforms were detected for 41 miRNAs. These isoforms included both 5′ and 3′ modifications of miRNAs. There were 27 miRNAs with 5′ modifications and five miRNAs with 3′ modifications while nine miRNAs showed both types of modifications.

  3. The Alleviating Effect of Elevated CO2 on Heat Stress Susceptibility of Two Wheat (Triticum aestivum L.) Cultivars

    DEFF Research Database (Denmark)

    Shanmugam, Sindhuja; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto

    2013-01-01

    This study analysed the alleviating effect of elevated CO2 on stress-induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (Triticum aestivum L.) of different origin. The plants were grown in ambient (400 μl l−1) and elevated (800 μl l−1) CO2 with a day...... in leaves were analysed before and during the stress treatments as well as after 1 day of recovery. Heat stress reduced PN and Fv/Fm in both wheat cultivars, but plants grown in elevated CO2 maintained higher PN and Fv/Fm in comparison with plants grown in ambient CO2. Heat stress reduced leaf chlorophyll...... to cultivar origin, the phenological stage of the plants and can be alleviated by elevated CO2. This confirms the complex interrelation between environmental factors and genotypic traits that influence crop performance under various climatic stresses....

  4. Genetics of Na+ exclusion and salinity tolerance in Afghani durum wheat landraces

    KAUST Repository

    Shamaya, Nawar Jalal

    2017-11-21

    BackgroundSelecting for low concentration of Na+ in the shoot provides one approach for tackling salinity stress that adversely affects crop production. Novel alleles for Na+ exclusion can be identified and then introduced into elite crop cultivars.ResultsWe have identified loci associated with lower Na+ concentration in leaves of durum wheat landraces originating from Afghanistan. Seedlings of two F2 populations derived from crossings between Australian durum wheat (Jandaroi) and two Afghani landraces (AUS-14740 and AUS-14752) were grown hydroponically and evaluated for Na+ and K+ concentration in the third leaf. High heritability was found for both third leaf Na+ concentration and the K+/Na+ ratio in both populations. Further work focussed on line AUS-14740. Bulk segregant analysis using 9 K SNP markers identified two loci significantly associated with third leaf Na+ concentration. Marker regression analysis showed a strong association between all traits studied and a favourable allele originating from AUS-14740 located on the long arm of chromosome 4B.ConclusionsThe candidate gene in the relevant region of chromosome 4B is likely to be the high affinity K+ transporter B1 (HKT1;5-B1). A second locus associated with third leaf Na+ concentration was located on chromosome 3BL, with the favourable allele originating from Jandaroi; however, no candidate gene can be identified.

  5. Genetics of Na+ exclusion and salinity tolerance in Afghani durum wheat landraces

    KAUST Repository

    Shamaya, Nawar Jalal; Shavrukov, Yuri; Langridge, Peter; Roy, Stuart John; Tester, Mark A.

    2017-01-01

    BackgroundSelecting for low concentration of Na+ in the shoot provides one approach for tackling salinity stress that adversely affects crop production. Novel alleles for Na+ exclusion can be identified and then introduced into elite crop cultivars.ResultsWe have identified loci associated with lower Na+ concentration in leaves of durum wheat landraces originating from Afghanistan. Seedlings of two F2 populations derived from crossings between Australian durum wheat (Jandaroi) and two Afghani landraces (AUS-14740 and AUS-14752) were grown hydroponically and evaluated for Na+ and K+ concentration in the third leaf. High heritability was found for both third leaf Na+ concentration and the K+/Na+ ratio in both populations. Further work focussed on line AUS-14740. Bulk segregant analysis using 9 K SNP markers identified two loci significantly associated with third leaf Na+ concentration. Marker regression analysis showed a strong association between all traits studied and a favourable allele originating from AUS-14740 located on the long arm of chromosome 4B.ConclusionsThe candidate gene in the relevant region of chromosome 4B is likely to be the high affinity K+ transporter B1 (HKT1;5-B1). A second locus associated with third leaf Na+ concentration was located on chromosome 3BL, with the favourable allele originating from Jandaroi; however, no candidate gene can be identified.

  6. Utilization of nitrogen-15 from wheat by growing poultry and laying hens

    International Nuclear Information System (INIS)

    Hennig, A.; Gruhn, K.; Jahreis, G.

    1976-01-01

    Nitrogen-15 offered to broiler chickens and laying hens has been tested. The test animals were given wheat (atom % 15 N-excess 20-25%) or 15 N-lysine in balanced rations. The results showed that different feedstuffs are transported selectively through the gastro-intestinal tract. Therefore the atom % 15 N-excess is higher in the contents of the crop, the proventriculus and the gizzard in comparison with the feed. Some hours after feeding the atom % 15 N-excess in the contents of the small intestine is lower than in other parts of the intestinal tract (3 to 12 hours after feeding). As to atom % 15 N, there is a significant correlation between the contents of the small intestine and the gut wall (r=0.99). As the amount of nitrogen in the contents of the small intestine does not change between 3 and 12 hours after feeding, the obvious dilution of 15 N does not allow conclusions to be made regarding the endogenic secretion. In the steady state, 24% of the 15 N of wheat lysine, 12% of the 15 N of wheat histidine and 9% of arginine were excreted in the faeces. Four days after the last feed intake of labelled wheat or lysine we found more 15 N in the carcass than in the total sum of eggs. Four days after the last feeding the albumen showed a higher labelling rate than urine. The 15 N of wheat was differently incorporated into thoracic, leg and heart muscles. We found a different half-life time for the individual muscle protein types in the following order: heart, leg, thoracic. Within the eight-day period no changes were observed in the level of labelling in the thoracic muscle. (author)

  7. Evidence of isolate-specificity in non-hypersensitive resistance in spring wheat (Triticum aestivum) to wheat leaf rust

    NARCIS (Netherlands)

    Qamar, Maqsood; Niks, R.E.

    2007-01-01

    Isolate-specific aspect of non-hypersensitive resistance in wheat to wheat leaf rust was studied at seedling stage in the green house. Isolate-specific response of non-hypersensitive resistance was assessed from latency period (LP) and infection frequency (IF) of two single-pustule isolates of

  8. Transferring alien genes to wheat

    International Nuclear Information System (INIS)

    Knott, D.R.

    1987-01-01

    In broad terms an alien gene can be considered to be any gene transferred to wheat from a related species. As described above by Maan (section 7D) the genus Triticum contains a broad range of species, some of which cross readily with the cultivated tetraploid (T. Turgidum L.) or hexaploid (T. aestivum L.) wheats, and others only with great difficulty. In addition, wheat will also cross with species in a number of other genera including Agropyron, Elymus, Elytrigia (=Agropyron), Haynaldia, Hordeum, and Secale (Riley and Kimber, 1966; Knobloch, 1968; Feldman and Sears, 1981). In discussing the Triticum and Aegilops spp., the classification by Kimber and Sears, section SA-I, above, will be followed. For the Agropyron and related species the classification described by Dewey (1983) will be used. To avoid confusion, in referring to the literature the designations used by the authors will be given, followed by the new designation. The wild relatives of wheat are adapted to a broad range of environments and carry a large reservoir of useful genes (Zohary et al., 1969; Kerber and Dyck, 1973; Brezhnev, 1977; Feldman and Sears, 1981; Limin and Fowler, 1981; Sharma et aI., 1981; McGuire and Dvorak, 1981). Initially they were considered to be primarily sources of disease resistance, but more recently they have been recognized as potential sources of genes for high protein, cold tolerance, salt tolerance, drought tolerance, lodging resistance, early maturity, and even yield. Extensive screening of the wild relatives of wheat needs to be done before their useful genes can be fully utilized

  9. Transferring alien genes to wheat

    Energy Technology Data Exchange (ETDEWEB)

    Knott, D. R.

    1987-07-01

    In broad terms an alien gene can be considered to be any gene transferred to wheat from a related species. As described above by Maan (section 7D) the genus Triticum contains a broad range of species, some of which cross readily with the cultivated tetraploid (T. Turgidum L.) or hexaploid (T. aestivum L.) wheats, and others only with great difficulty. In addition, wheat will also cross with species in a number of other genera including Agropyron, Elymus, Elytrigia (=Agropyron), Haynaldia, Hordeum, and Secale (Riley and Kimber, 1966; Knobloch, 1968; Feldman and Sears, 1981). In discussing the Triticum and Aegilops spp., the classification by Kimber and Sears, section SA-I, above, will be followed. For the Agropyron and related species the classification described by Dewey (1983) will be used. To avoid confusion, in referring to the literature the designations used by the authors will be given, followed by the new designation. The wild relatives of wheat are adapted to a broad range of environments and carry a large reservoir of useful genes (Zohary et al., 1969; Kerber and Dyck, 1973; Brezhnev, 1977; Feldman and Sears, 1981; Limin and Fowler, 1981; Sharma et aI., 1981; McGuire and Dvorak, 1981). Initially they were considered to be primarily sources of disease resistance, but more recently they have been recognized as potential sources of genes for high protein, cold tolerance, salt tolerance, drought tolerance, lodging resistance, early maturity, and even yield. Extensive screening of the wild relatives of wheat needs to be done before their useful genes can be fully utilized.

  10. Rising Temperatures Reduce Global Wheat Production

    Science.gov (United States)

    Asseng, S.; Ewert, F.; Martre, P.; Rötter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.; hide

    2015-01-01

    Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32? degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degree C of further temperature increase and become more variable over space and time.

  11. Lack of adjustment latitude at work as a trigger of taking sick leave-a Swedish case-crossover study.

    Directory of Open Access Journals (Sweden)

    Hanna Hultin

    Full Text Available OBJECTIVES: Research has shown that individuals reporting a low level of adjustment latitude, defined as having few possibilities to temporarily adjust work demands to illness, have a higher risk of sick leave. To what extent lack of adjustment latitude influences the individual when making the decision to take sick leave is unknown. We hypothesize that ill individuals are more likely to take sick leave on days when they experience a lack of adjustment latitude at work than on days with access to adjustment latitude. METHODS: A case-crossover design was applied to 546 sick-leave spells, extracted from a cohort of 1 430 employees at six Swedish workplaces, with a 3-12 month follow-up of all new sick-leave spells. Exposure to lack of adjustment latitude on the first sick-leave day was compared with exposure during several types of control periods sampled from the previous two months for the same individual. RESULTS: Only 35% of the respondents reported variations in access to adjustment latitude, and 19% reported a constant lack of adjustment latitude during the two weeks prior to the sick-leave spell. Among those that did report variation, the risk of sick leave was lower on days with lack of adjustment latitude, than on days with access (Odds Ratio 0.36, 95% Confidence Interval 0.25-0.52. CONCLUSIONS: This is the first study to show the influence of adjustment latitude on the decision to take sick leave. Among those with variations in exposure, lack of adjustment latitude was a deterrent of sick leave, which is contrary to the à priori hypothesis. These results indicate that adjustment latitude may not only capture long-lasting effects of a flexible working environment, but also temporary possibilities to adjust work to being absent. Further studies are needed to disentangle the causal mechanisms of adjustment latitude on sick-leave.

  12. [Teacher sick leave: Prevalence, duration, reasons and covariates].

    Science.gov (United States)

    Vercambre-Jacquot, M-N; Gilbert, F; Billaudeau, N

    2018-02-01

    Absences from work have considerable social and economic impact. In the education sector, the phenomenon is particularly worrying since teacher sick leave has an impact on the overall performance of the education system. Yet, available data are scarce. In April-June 2013, 2653 teachers responded to a population-based postal survey on their quality of life (enquête Qualité de vie des enseignants, MGEN Foundation/Ministry of education, response rate 53 %). Besides questions on work environment and health, teachers were asked to describe their eventual sick leave(s) since the beginning of the school year: duration, type and medical reasons. Self-reported information was reinforced by administrative data from ministerial databases and weighted to be extrapolated to all French teachers. Tobit models adjusted for individual factors of a private nature were used to investigate different occupational risk factors of teacher sick leave, taking into account both the estimated effect on the probability of sick leave and the length of it. More than one in three teachers (36 %) reported having had at least one day of sick leave since the beginning of the school year. Respiratory/ENT diseases were the leading reason for sick leave (37 %). However, and because sick leave duration depended on the underlying health problem, such diseases came in third place among justifications of sick leave days (14 %), far behind musculoskeletal problems (27 %) and neurological and psychological disorders (25 %). Tobit models suggested that some occupational factors significantly associated with the risk of sick leave may represent promising preventive targets, including high psychological demand, workplace violence and unfavorable socio-environmental context. Our study provides objective evidence about the issue of sick leave among French teachers, highlighting the usefulness of implementing actions to minimize its weight. To this end, the study findings point-out the importance of

  13. Health Effects of Psidium guajava L. Leaves: An Overview of the Last Decade.

    Science.gov (United States)

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2017-04-24

    Today, there is increasing interest in discovering new bioactive compounds derived from ethnomedicine. Preparations of guava ( Psidium guajava L.) leaves have traditionally been used to manage several diseases. The pharmacological research in vitro as well as in vivo has been widely used to demonstrate the potential of the extracts from the leaves for the co-treatment of different ailments with high prevalence worldwide, upholding the traditional medicine in cases such as diabetes mellitus, cardiovascular diseases, cancer, and parasitic infections. Moreover, the biological activity has been attributed to the bioactive composition of the leaves, to some specific phytochemical subclasses, or even to individual compounds. Phenolic compounds in guava leaves have been credited with regulating blood-glucose levels. Thus, the aim of the present review was to compile results from in vitro and in vivo studies carried out with guava leaves over the last decade, relating the effects to their clinical applications in order to focus further research for finding individual bioactive compounds. Some food applications (guava tea and supplementary feed for aquaculture) and some clinical, in vitro, and in vivo outcomes are also included.

  14. Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat.

    Science.gov (United States)

    Qiao, Xu; Bei, Shuikuan; Li, Chunjie; Dong, Yan; Li, Haigang; Christie, Peter; Zhang, Fusuo; Zhang, Junling

    2015-01-29

    The mechanistic understanding of the dynamic processes linking nutrient acquisition and biomass production of competing individuals can be instructive in optimizing intercropping systems. Here, we examine the effect of inoculation with Funneliformis mosseae on competitive dynamics between wheat and faba bean. Wheat is less responsive to mycorrhizal inoculation. Both inoculated and uninoculated wheat attained the maximum instantaneous N and P capture approximately five days before it attained the maximum instantaneous biomass production, indicating that wheat detected the competitor and responded physiologically to resource limitation prior to the biomass response. By contrast, the instantaneous N and P capture by uninoculated faba bean remained low throughout the growth period, and plant growth was not significantly affected by competing wheat. However, inoculation substantially enhanced biomass production and N and P acquisition of faba bean. The exudation of citrate and malate acids and acid phosphatase activity were greater in mycorrhizal than in uninoculated faba bean, and rhizosphere pH tended to decrease. We conclude that under N and P limiting conditions, temporal separation of N and P acquisition by competing plant species and enhancement of complementary resource use in the presence of AMF might be attributable to the competitive co-existence of faba bean and wheat.

  15. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation.

    Science.gov (United States)

    El-Shishtawy, Reda M; Mohamed, Saleh A; Asiri, Abdullah M; Gomaa, Abu-Bakr M; Ibrahim, Ibrahim H; Al-Talhi, Hasan A

    2015-05-28

    In continuation of our previously interest in the saccharification of agriculture wastes by Bacillus megatherium in solid state fermentation (SSF), we wish to report an investigation and comparative evaluation among Trichoderma sp. for the saccharification of four alkali-pretreated agricultural residues and production of hydrolytic enzymes, carboxymethyl cellulase (CMCase), filter paperase (FPase), pectinase (PGase) and xylanase (Xylase) in SSF. The optimization of the physiological conditions of production of hydrolytic enzymes and saccharification content from Trichoderma virens using alkali-pretreated wheat bran was the last goal. The physico-chemical parameters of SSF include incubation time, incubation temperature, moisture content of the substrate, incubation pH, supplementation with carbon and nitrogen sources were optimized. Saccharification of different solid state fermentation sources wheat bran, date's seeds, grass and palm leaves, were tested for the production of fermentable sugar by Trichoderma sp. The maximum production of hydrolytic enzymes CMCase, FPase, PGase and Xylase and saccharification content were obtained on wheat bran. Time course, moisture content, optimum temperature, optimum pH, supplementation with carbon and nitrogen sources were optimized to achieve the maximum production of the hydrolytic enzymes, protein and total carbohydrate of T. virens using alkali pre-treated wheat bran. The maximum production of CMCase, FPase, PGase, Xylase, protein and carbohydrate content was recorded at 72 h of incubation, 50-70 % moisture, temperature 25-35 °C and pH 5. The influence of supplementary carbon and nitrogen sources was studied. While lactose and sucrose enhanced the activity of PGase from 79.2 to 582.9 and 632.6 U/g, starch inhibited all other enzymes. This was confirmed by maximum saccharification content. Among the nitrogen sources, yeast extract and urea enhanced the saccharification content and CMCase, PGase and Xylase. The results of

  16. Evaluation of irradiated wheat populations. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Salam, T Z [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    This study was carried out from 1992 to 1994. It aimed to study genetic behaviour for plant height, dry weight/plant, earliness, grain yield/plant, and 100-grain weight at harvest time in three wheat cultivars Mexi back, Giza 155, and Saka 69; and and their hybrids in F{sub 3} - M{sub 1}, and F{sub 4} - M{sub 2} mutagenic generations after treatment of dry seeds with gamma ray doses of 75, 100, and 125 Gy. All doses caused an increase or decrease in growth, yield, and yield attributes of the wheat cultivars. In G{sub 1}55 Mexi back hybrid wheat the 100 Gy caused an increase in 100 - grain weight, grain yield/plant, and dry weight/plant in F{sub 4} - M{sub 2} generation only. But in Mexi back X G{sub 1}55 hybrid wheat the 75 Gy increased plant height, 100 - grain weight, grain yield/plant, and dry weight/plant in both generations F{sub 3} - M{sub 1} and F{sub 4} -M{sub 2}. SK{sub 69} X Mexi back hybrid wheat at 75 Gy caused earliness by about 13 days, and high grain yield in F{sub 4} - M{sub 2} generation only. however, in Mexi back x SK{sub 69} hybrid wheat, 100 Gy caused earliness about 7 days but with low grain yield. 3 tabs.

  17. Negative leave balances

    CERN Multimedia

    Human Resources Department

    2005-01-01

    Members of the personnel entitled to annual leave and, where appropriate, saved leave and/or compensatory leave are requested to take note of the new arrangements described below, which were recommended by the Standing Concertation Committee (SCC) at its meeting on 1Â September 2005 and subsequently approved by the Director-General. The changes do not apply to members of the personnel participating in the Progressive Retirement Programme (PRP) or the Part-time Work as a pre-retirement measure, for whom the specific provisions communicated at the time of joining will continue to apply. Â Negative balances in annual leave, saved leave and/or compensatory leave accounts at the end of the leave year (30th September) and on the date on which bonuses are credited to the saved leave account (31st December): Where members of the personnel have a leave account with a negative balance on 30Â September and/or 31Â December, leave will automatically be transferred from one account to another on the relevant dates i...

  18. Negative leave balances

    CERN Multimedia

    Human Resources Department

    2005-01-01

    Members of the personnel entitled to annual leave and, where appropriate, saved leave and/or compensatory leave are requested to take note of the new arrangements described below, which were recommended by the Standing Concertation Committee (SCC) at its meeting on 1 September 2005 and subsequently approved by the Director-General. The changes do not apply to members of the personnel participating in the Progressive Retirement Programme (PRP) or the Part-time Work as a pre-retirement measure, for whom the specific provisions communicated at the time of joining will continue to apply.  Negative balances in annual leave, saved leave and/or compensatory leave accounts at the end of the leave year (30th September) and on the date on which bonuses are credited to the saved leave account (31st December): Where members of the personnel have a leave account with a negative balance on 30 September and/or 31 December, leave will automatically be transferred from one account to another on the relevant dates in or...

  19. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Shunli [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China)], E-mail: zhoushl@cau.edu.cn; Wu Yongcheng [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); College of Agronomy, Si Chuan Agricultural University, Yaan 625014 (China); Wang Zhimin [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); Lu Laiqing; Wang Runzheng [Wuqiao Experimental Station, China Agricultural University, Hebei 061802 (China)

    2008-04-15

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of {sup 15}N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system.

  20. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    International Nuclear Information System (INIS)

    Zhou Shunli; Wu Yongcheng; Wang Zhimin; Lu Laiqing; Wang Runzheng

    2008-01-01

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of 15 N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system

  1. The mechanism on rhizosphere phosphorus activation of two wheat ...

    African Journals Online (AJOL)

    The mechanism on rhizosphere phosphorus activation of two wheat genotypes with different phosphorus efficiency. ... genotype would be a potential approach for maintaining wheat yield potential in soils with low P bioavailability. Key words: Wheat, P efficiency, rhizosphere properties, P fractions, phosphates activity.

  2. Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes.

    Science.gov (United States)

    Singh, Nagendra K; Dalal, Vivek; Batra, Kamlesh; Singh, Binay K; Chitra, G; Singh, Archana; Ghazi, Irfan A; Yadav, Mahavir; Pandit, Awadhesh; Dixit, Rekha; Singh, Pradeep K; Singh, Harvinder; Koundal, Kirpa R; Gaikwad, Kishor; Mohapatra, Trilochan; Sharma, Tilak R

    2007-01-01

    The high-quality rice genome sequence is serving as a reference for comparative genome analysis in crop plants, especially cereals. However, early comparisons with bread wheat showed complex patterns of conserved synteny (gene content) and colinearity (gene order). Here, we show the presence of ancient duplicated segments in the progenitor of wheat, which were first identified in the rice genome. We also show that single-copy (SC) rice genes, those representing unique matches with wheat expressed sequence tag (EST) unigene contigs in the whole rice genome, show more than twice the proportion of genes mapping to syntenic wheat chromosome as compared to the multicopy (MC) or duplicated rice genes. While 58.7% of the 1,244 mapped SC rice genes were located in single syntenic wheat chromosome groups, the remaining 41.3% were distributed randomly to the other six non-syntenic wheat groups. This could only be explained by a background dispersal of genes in the genome through transposition or other unknown mechanism. The breakdown of rice-wheat synteny due to such transpositions was much greater near the wheat centromeres. Furthermore, the SC rice genes revealed a conserved primordial gene order that gives clues to the origin of rice and wheat chromosomes from a common ancestor through polyploidy, aneuploidy, centromeric fusions, and translocations. Apart from the bin-mapped wheat EST contigs, we also compared 56,298 predicted rice genes with 39,813 wheat EST contigs assembled from 409,765 EST sequences and identified 7,241 SC rice gene homologs of wheat. Based on the conserved colinearity of 1,063 mapped SC rice genes across the bins of individual wheat chromosomes, we predicted the wheat bin location of 6,178 unmapped SC rice gene homologs and validated the location of 213 of these in the telomeric bins of 21 wheat chromosomes with 35.4% initial success. This opens up the possibility of directed mapping of a large number of conserved SC rice gene homologs in wheat

  3. A haplotype specific to North European wheat (Triticum aestivum L.)

    Czech Academy of Sciences Publication Activity Database

    Tsombalova, J.; Karafiátová, Miroslava; Vrána, Jan; Kubaláková, Marie; Peusa, H.; Jakobson, I.; Jarve, M.; Valárik, Miroslav; Doležel, Jaroslav; Jarve, K.

    2017-01-01

    Roč. 64, č. 4 (2017), s. 653-664 ISSN 0925-9864 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : bread wheat * genetic diversity * polyploid wheat * introgression lines * molecular analysis * tetraploid wheat * hexaploid wheat * powdery mildew * spelta l. * map * Common wheat * Triticum aestivum L * Spelt * Triticum spelta L * Chromosome 4A * Zero alleles * Haplotype * Linkage disequilibrium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 1.294, year: 2016

  4. The International Heat Stress Genotype Experiment for Modeling Wheat Response to Heat: Field Experiments and AgMIP-Wheat Multi-Model Simulations

    Science.gov (United States)

    Martre, Pierre; Reynolds, Matthew P.; Asseng, Senthold; Ewert, Frank; Alderman, Phillip D.; Cammarano, Davide; Maiorano, Andrea; Ruane, Alexander C.; Aggarwal, Pramod K.; Anothai, Jakarat; hide

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models.

  5. The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Zeng, Q.; Xie, Z.; Tang, H.; Zhu, C. (Chinese Academy of Sciences. State Key Lab. of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing (China)); Hasegawa, T. (National Institute for Agro-Environmental Sciences. Agro-Meteorology Div., Tsukuba (Japan)); Ziska, L. (Crop Systems and Global Change Lab., Beltsville, MD (United States)); Jia, X. (Chinese Academic of Sciences/Nanjing Botanical Garden Memorial Sun Yat-Sen. Jiangsu Institute of Botany, Nanjing (China))

    2012-07-15

    In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, g{sub s}, g{sub m}, C{sub i}/C{sub a}, C{sub i}/C{sub c}, V{sub cmax}, J{sub max}, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid-anthesis and the late grain-filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid-anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO{sub 2}]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non-structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO{sub 2}] appeared to enhance the rate of N degradation and senescence so that by late-grain fill, photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO{sub 2}] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation. (Author)

  6. Energy productivity and efficiency of wheat farming in Bangladesh

    International Nuclear Information System (INIS)

    Rahman, Sanzidur; Hasan, M. Kamrul

    2014-01-01

    Wheat is the second most important cereal crop in Bangladesh and production is highly sensitive to variations in the environment. We estimate productivity and energy efficiency of wheat farming in Bangladesh by applying a stochastic production frontier approach while accounting for the environmental constraints affecting production. Wheat farming is energy efficient with a net energy balance of 20,596 MJ per ha and energy ratio of 2.34. Environmental constraints such as a combination of unsuitable land, weed and pest attack, bad weather, planting delay and infertile soils significantly reduce wheat production and its energy efficiency. Environmental constraints account for a mean energy efficiency of 3 percentage points. Mean technical efficiency is 88% thereby indicating that elimination of inefficiencies can increase wheat energy output by 12%. Farmers' education, access to agricultural information and training in wheat production significantly improves efficiency, whereas events such as a delay in planting and first fertilization significantly reduce it. Policy recommendations include development of varieties that are resistant to environmental constraints and suitable for marginal areas; improvement of wheat farming practices; and investments in education and training of farmers as well as dissemination of information. - Highlights: • Bangladesh wheat farming is energy efficient at 20,596 MJha −1 ; energy ratio 2.34. • Environmental factors significantly influence productivity and energy efficiency. • Environmental factors must be taken into account when estimating wheat productivity. • Government policies must focus on ways of alleviating environmental factors. • Farmers' education, training and information sources increase technical efficiency

  7. Australian wheat production expected to decrease by the late 21st century.

    Science.gov (United States)

    Wang, Bin; Liu, De L; O'Leary, Garry J; Asseng, Senthold; Macadam, Ian; Lines-Kelly, Rebecca; Yang, Xihua; Clark, Anthony; Crean, Jason; Sides, Timothy; Xing, Hongtao; Mi, Chunrong; Yu, Qiang

    2017-12-28

    Climate change threatens global wheat production and food security, including the wheat industry in Australia. Many studies have examined the impacts of changes in local climate on wheat yield per hectare, but there has been no assessment of changes in land area available for production due to changing climate. It is also unclear how total wheat production would change under future climate when autonomous adaptation options are adopted. We applied species distribution models to investigate future changes in areas climatically suitable for growing wheat in Australia. A crop model was used to assess wheat yield per hectare in these areas. Our results show that there is an overall tendency for a decrease in the areas suitable for growing wheat and a decline in the yield of the northeast Australian wheat belt. This results in reduced national wheat production although future climate change may benefit South Australia and Victoria. These projected outcomes infer that similar wheat-growing regions of the globe might also experience decreases in wheat production. Some cropping adaptation measures increase wheat yield per hectare and provide significant mitigation of the negative effects of climate change on national wheat production by 2041-2060. However, any positive effects will be insufficient to prevent a likely decline in production under a high CO 2 emission scenario by 2081-2100 due to increasing losses in suitable wheat-growing areas. Therefore, additional adaptation strategies along with investment in wheat production are needed to maintain Australian agricultural production and enhance global food security. This scenario analysis provides a foundation towards understanding changes in Australia's wheat cropping systems, which will assist in developing adaptation strategies to mitigate climate change impacts on global wheat production. © 2017 John Wiley & Sons Ltd.

  8. Biolistics Transformation of Wheat

    Science.gov (United States)

    Sparks, Caroline A.; Jones, Huw D.

    We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).

  9. Natural variation in grain composition of wheat and related cereals.

    Science.gov (United States)

    Shewry, Peter R; Hawkesford, Malcolm J; Piironen, Vieno; Lampi, Ann-Maija; Gebruers, Kurt; Boros, Danuta; Andersson, Annica A M; Åman, Per; Rakszegi, Mariann; Bedo, Zoltan; Ward, Jane L

    2013-09-04

    The wheat grain comprises three groups of major components, starch, protein, and cell wall polysaccharides (dietary fiber), and a range of minor components that may confer benefits to human health. Detailed analyses of dietary fiber and other bioactive components were carried out under the EU FP6 HEALTHGRAIN program on 150 bread wheat lines grown on a single site, 50 lines of other wheat species and other cereals grown on the same site, and 23-26 bread wheat lines grown in six environments. Principal component analysis allowed the 150 bread wheat lines to be classified on the basis of differences in their contents of bioactive components and wheat species (bread, durum, spelt, emmer, and einkorn wheats) to be clearly separated from related cereals (barley, rye, and oats). Such multivariate analyses could be used to define substantial equivalence when novel (including transgenic) cereals are considered.

  10. Effects of feeding irradiated wheat to malnourished children

    International Nuclear Information System (INIS)

    Bhaskaram, C.; Sadasivan, G.

    1975-01-01

    Fifteen children suffering from severe protein-calorie malnutrition were divided into three groups of five each and received diets containing either unirradiated, freshly irradiated, or stored irradiated wheat. All the children were hospitalized for a period of 6 weeks and leukocyte cultures were done initially and at intervals of 2 weeks. Children receiving freshly irradiated wheat developed polyploid cells and certain abnormal cells in increasing number as the duration of feeding increased and showed a gradual reversal to basal level of nil after withdrawal of irradiated wheat. In marked contrast, none of the children fed unirradiated diet developed any abnormal cells while children fed stored irradiated wheat showed polyploid and abnormal cells in significantly decreased numbers. Though the biological significance of polyploidy is not clear, its association with malignancy makes it imperative that the wholesomeness of irradiated wheat for human consumption be very carefully assessed. (U.S.)

  11. Wheat bran reduces concentrations of digestible, metabolizable, and net energy in diets fed to pigs, but energy values in wheat bran determined by the difference procedure are not different from values estimated from a linear regression procedure.

    Science.gov (United States)

    Jaworski, N W; Liu, D W; Li, D F; Stein, H H

    2016-07-01

    An experiment was conducted to determine effects on DE, ME, and NE for growing pigs of adding 15 or 30% wheat bran to a corn-soybean meal diet and to compare values for DE, ME, and NE calculated using the difference procedure with values obtained using linear regression. Eighteen barrows (54.4 ± 4.3 kg initial BW) were individually housed in metabolism crates. The experiment had 3 diets and 6 replicate pigs per diet. The control diet contained corn, soybean meal, and no wheat bran. Two additional diets were formulated by mixing 15 or 30% wheat bran with 85 or 70% of the control diet, respectively. The experimental period lasted 15 d. During the initial 7 d, pigs were adapted to their experimental diets and housed in metabolism crates and fed 573 kcal ME/kg BW per day. On d 8, metabolism crates with the pigs were moved into open-circuit respiration chambers for measurement of O consumption and CO and CH production. The feeding level was the same as in the adaptation period, and feces and urine were collected during this period. On d 13 and 14, pigs were fed 225 kcal ME/kg BW per day, and pigs were then fasted for 24 h to obtain fasting heat production. Results of the experiment indicated that the apparent total tract digestibility of DM, GE, crude fiber, ADF, and NDF linearly decreased ( ≤ 0.05) as wheat bran inclusion increased in the diets. The daily O consumption and CO and CH production by pigs fed increasing concentrations of wheat bran linearly decreased ( ≤ 0.05), resulting in a linear decrease ( ≤ 0.05) in heat production. The DE (3,454, 3,257, and 3,161 kcal/kg for diets containing 0, 15, and 30% wheat bran, respectively for diets containing 0, 15, and 30% wheat bran, respectively), ME (3,400, 3,209, and 3,091 kcal/kg for diets containing 0, 15, and 30% wheat bran, respectively), and NE (1,808, 1,575, and 1,458 kcal/kg for diets containing 0, 15, and 30% wheat bran, respectively) of diets decreased (linear, ≤ 0.05) as wheat bran inclusion increased

  12. Classification of whole wheat flour using a dimensionless number.

    Science.gov (United States)

    Sehn, Georgia Ane Raquel; Steel, Caroline Joy

    2017-11-01

    The rheological standards currently used for classifying refined wheat flour for technological quality of bread are also used for whole wheat flours. The aim of this study was to evaluate the rheological and technological behavior of different whole wheat flours, as well as pre-mixes of refined wheat flour with different replacement levels of wheat bran, to develop a dimensionless number that assigns a numerical scale using results of rheological parameters to solve this problem. Through farinograph and extensograph results, most whole wheat flours evaluated presented parameters recommended for bread making, according to the current classification. However, the specific volume of breads elaborated with these flours was not suitable, that is, the rheological analyses were not able to predict the specific volume of pan bread. The development of the Sehn-Steel dimensionless number allowed establishing a classification of whole wheat flours as "suitable" (Sehn-Steel dimensionless number between 62 and 200) or "unsuitable" for the production of pan bread (Sehn-Steel dimensionless number lower than 62). Moreover, an equation that can predict the specific volume of whole pan bread through this dimensionless number was developed.

  13. Genetic gains in wheat in Turkey: Winter wheat for dryland conditions

    Directory of Open Access Journals (Sweden)

    Mesut Keser

    2017-12-01

    Full Text Available Wheat breeders in Turkey have been developing new varieties since the 1920s, but few studies have evaluated the rates of genetic improvement. This study determined wheat genetic gains by evaluating 22 winter/facultative varieties released for rainfed conditions between 1931 and 2006. The study was conducted at three locations in Turkey during 2008–2012, with a total of 21 test sites. The experimental design was a randomized complete block with four replicates in 2008 and 2009 and three replicates in 2010–2012. Regression analysis was conducted to determine genetic progress over time. Mean yield across all 21 locations was 3.34 t ha−1, but varied from 1.11 t ha−1 to 6.02 t ha−1 and was highly affected by moisture stress. Annual genetic gain was 0.50% compared to Ak-702, or 0.30% compared to the first modern landmark varieties. The genetic gains in drought-affected sites were 0.75% compared to Ak-702 and 0.66% compared to the landmark varieties. Modern varieties had both improved yield potential and tolerance to moisture stress. Rht genes and rye translocations were largely absent in the varieties studied. The number of spikes per unit area decreased by 10% over the study period, but grains spike−1 and 1000-kernel weight increased by 10%. There were no significant increases in harvest index, grain size, or spike fertility, and no significant decrease in quality over time. Future use of Rht genes and rye translocations in breeding programs may increase yield under rainfed conditions. Keywords: Genetic gain, Rainfed wheat production, Winter wheat, Yield

  14. Drying watery wheat grains by far infrared

    International Nuclear Information System (INIS)

    Suda, K.; Murata, K.; Hara, M.

    2004-01-01

    Summary A far infrared dryer was experimented to dry wheat grains for high performance and cost reduction. It is more efficient than a circulating dryer reducing drying time by 20% and fuel consumption by 20 - 30%. Whereas it takes more time and more fuel, when the drying rate is set at 1%/h. Moreover, on condition that the average drying rate is lower, it could decrease the rate of green wheat grains up to 3%. But green wheat grains did not disappear at all on the condition

  15. Microwave fixation enhances gluten fibril formation in wheat endosperm

    Science.gov (United States)

    The wheat storage proteins, primarily glutenin and gliadin, contribute unique functional properties in food products and play a critical role in determining the end-use quality of wheat. In the wheat endosperm these proteins form a proteinaceous matrix deposited among starch granules only to be brou...

  16. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance

    Science.gov (United States)

    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a costeffective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chrom...

  17. Mechanism of Resistance in two Bread Wheat (Triticum Aestivum L.) Lines to Russian Wheat Aphid (Diuraphis Noxia: Homoptra: Aphididae) in Kenya

    International Nuclear Information System (INIS)

    Malinga, J.N.

    2002-01-01

    Russian wheat aphid (Diuraphis noxia) is a recent pest of small cereals that is causing severe yield losses in farmers' fields and farmers have demanded a resistant wheat line. In wheat the pest causes both direct and indirect damage resulting in losses of up to 90%. Control of the aphid is a major constraint in the production of wheat in Kenya requiring the use of more than one systematic insecticide application.This cost is prohibitive.Breeding wheat for resistance to Russian wheat is the cheapest alternative and is the international trend. The use of Russian wheat aphid resistant cultivars may reduce the impact of these pest on cereal production. A study was therefore conducted in Kenya to understand and determine the genetics of inheritance pattern of D. noxia present in two new sources of resistance (RWA 8 and RWA 16). These two new sources would be potential donors of D. noxia resistance in breeding programmes. The two resistant donors with unknown resistance genes for Diuraphis noxia were crossed with susceptible Kenyan commercial wheat cultivar, Heroe. Resistant reaction of F 1 ,BC 1 and F2 indicated that resistance in the two lines differed. Resistant in RWA 8 may be controlled by a single dominant genes while RWA 16 by two incomplete dominant genes. It is unknown wether these genes are identical to any known, designated resistance genes. However, their resistance has been shown to be effective on the RWA population in Kenya. As studies continue on these genes at molecular level, it is recommended that resistant populations are carried on through the breeding programme to possibly identify and release a resistant variety for commercial production

  18. A positive allelopathic effect of corn cockle, agrostemma githago, on wheat, triticum aestivum

    DEFF Research Database (Denmark)

    Søgaard, B.; Doll, H.

    1992-01-01

    The effect of com cockle on wheat was studied during germination and on adult plants in a growth chamber. Seedling length of wheat germinated together with corn cockle for 5 days increased 13%. Wheat growing together with corn cockle in pots to maturity had a statistically significant higher wheat...... biomass and grain production than wheat growing alone. However, two other experiments with adult plants harvested before wheat maturity showed no effect of corn cockle on wheat production per pot. Within the pots the presence of corn cockle influenced wheat in all three experiments. Wheat plants growing...... at the same position as a corn cockle plant were 20 to 50% larger than wheat plants standing alone....

  19. Impact of Graze-­‐Out in Hard Red Winter Wheat Production

    OpenAIRE

    Neupane, Diwash; Moss, Charles B.

    2014-01-01

    We investigate the relationship between wheat graze-­‐out and cattle-­‐wheat price ratio and moisture level and examine the impact of graze-­‐out on wheat yield in major wheat-­‐producing states in US. Results indicate that cattle-­‐wheat price ratio and moisture level affect farmers’ graze out decision and graze-­‐out have significant impact on wheat yield.

  20. Postharvest tillage reduces Downy Brome infestations in winter wheat

    Science.gov (United States)

    In the Pacific Northwest, downy brome continues to infest winter wheat producing regions especially in low-rainfall areas where the winter wheat-summer fallow rotation is the dominate production system. In Washington, a study was conducted for 2 years at each of two locations in the winter wheat -su...

  1. Ridge Regression: A tool to forecast wheat area and production

    Directory of Open Access Journals (Sweden)

    Nasir Jamal

    2007-07-01

    Full Text Available This research study is designed to develop forecasting models for acreage and production of wheat crop for Chakwal district of Rawalpindi region keeping in view the assumptions of OLS estimation. The forecasting models are developed on the basis of 15 years data from 1984-85 to 1998-99 then wheat area and production for next five years from 1999-2000 to 2003-04 is forecasted through the models and compared with the actual figures. After evaluating the accuracy of the models, final models are developed on the basis of 20 years data for the period 1984-85 to 2003-04. These linear models can be used to forecast wheat area and production of next five years. The Urea fertilizer, DAP fertilizer and manures plays a significant role to enhance the production of wheat crop. Number of ploughs in the wheat fields is significant factor to increase the production of wheat crop. Good rains in the month of October and November significantly contributes to increase the production of wheat crop and mean maximum temperature in the month of March is a significant factor to reduce the production of wheat crop.

  2. PITHOMYCES CHARTARUM AS A PATHOGEN OF WHEAT

    NARCIS (Netherlands)

    Tóth, B; Csösz, M; Dijksterhuis, J; Frisvad, J C; Varga, J

    2007-01-01

    During routine surveys of wheat-growing (Triticum aestivum L.) areas of Hungary, symptomatic leaf samples were collected from different wheat cultivars. Macro- and micromorphological examinations of singlespore isolates showed some of them to belong to Pithomyces chartarum (teleomorph:

  3. The Marketing Performance of Illinois and Kansas Wheat Farmers

    OpenAIRE

    Dietz, Sarah N.; Aulerich, Nicole M.; Irwin, Scott H.; Good, Darrel L.

    2008-01-01

    The purpose of this paper is to investigate the marketing performance of wheat farmers in Illinois and Kansas over 1982-2004. The results show that farmer benchmark prices for wheat in Illinois and Kansas fall in the middle-third of the price range about half to three-quarters of the time. Consistent with previous studies, this refutes the contention that Illinois and Kansas wheat farmers routinely market the bulk of their wheat crop in the bottom portion of the price range. Tests of the aver...

  4. Exposure to inhalable dust, wheat flour and alpha-amylase allergens in industrial and traditional bakeries.

    Science.gov (United States)

    Bulat, Petar; Myny, Katrien; Braeckman, Lutgart; van Sprundel, Marc; Kusters, Edouard; Doekes, Gert; Pössel, Kerstin; Droste, Jos; Vanhoorne, Michel

    2004-01-01

    This study was designed to characterize exposure to inhalable dust, wheat flour and alpha-amylase allergens in industrial and traditional bakeries. The study included 70 bakeries from the northern part of Belgium. Based on the degree of automation and a clear division of individual job tasks, four bakeries were identified as industrial and the remaining 66 were identified as traditional ones. Personal, as well as stationary, samples of inhalable dust were collected during full shift periods, usually 5-7 h. The portable pumps aspirated 2 l/min through Teflon personal dust samplers (Millipore, pore size 1.0 microm) mounted in PAS-6 sampling heads. In the collected samples the inhalable dust, wheat flour and alpha-amylase allergens were determined. Wheat flour allergens were measured using enzyme-linked immunosorbent assay inhibition and an antiwheat IgG4 serum pool. The alpha-amylase allergens were measured using a sandwich enzyme immunoassay with affinity-purified polyclonal rabbit IgG antibodies. In total, 440 samples (300 personal and 140 stationary) were processed. The highest inhalable dust exposure was observed in traditional bakeries among bread [geometric mean (GM) 2.10 mg/m3] and bread and pastry workers (GM 1.80 mg/m3). In industrial bakeries the highest dust exposure was measured in bread-producing workers (GM 1.06 mg/m3). Similar relations were observed for wheat flour and alpha-amylase allergens. Bread baking workers in traditional bakeries had the highest exposure to both allergens (wheat flour GM 22.33 microg/m(3), alpha-amylase GM 0.61 ng/m3). The exposure to wheat flour and alpha-amylase allergens in industrial bakeries was higher in bread baking workers (wheat flour GM 6.15 microg/m3, alpha-amylase GM 0.47 ng/m3) than in bread packing workers (wheat flour GM 2.79 microg/m3, alpha-amylase GM 0.15 ng/m3). The data presented suggest that, on average, exposure in the Belgium bakeries studied-industrial as well as traditional-is lower than or similar to

  5. Adapting wheat in Europe for climate change.

    Science.gov (United States)

    Semenov, M A; Stratonovitch, P; Alghabari, F; Gooding, M J

    2014-05-01

    Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.

  6. Wheat yield vulnerability: relation to rainfall and suggestions for adaptation

    Directory of Open Access Journals (Sweden)

    Khalid Tafoughalti

    2018-04-01

    Full Text Available Wheat production is of paramount importance in the region of Meknes, which is mainly produced under rainfed conditions. It is the dominant cereal, the greater proportion being the soft type. During the past few decades, rainfall flaws have caused a number of cases of droughts. These flaws have seriously affecting wheat production. The main objective of this study is the assessment of rainfall variability at monthly, seasonal and annual scales and to determine their impact on wheat yields. To reduce this impact we suggested some mechanisms of adaptation. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model to evaluate the impact of rainfall on wheat yields. Data analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that soft wheat and hard wheat are strongly correlated with the period of January to March than with the whole growing-season. While they are adversely correlated with the mid-spring. This investigation concluded that synchronizing appropriate adaptation with the period of January to March was crucial to achieving success yield of wheat.

  7. Quantification of peptides causing celiac disease in historical and modern hard red spring wheat cultivars

    Science.gov (United States)

    Celiac disease (CD) is prevalent in 0.5 to 1.26% of adolescents and adults. The disease develops in genetically susceptible individuals as a result of ingestion of gluten forming proteins found in cereals such as, wheat (Triticum aestivum L.), rye (Secale cereale L.) and barley (Hordeum sativum L.)...

  8. Expression Level of the DREB2-Type Gene, Identified with Amplifluor SNP Markers, Correlates with Performance, and Tolerance to Dehydration in Bread Wheat Cultivars from Northern Kazakhstan

    Science.gov (United States)

    Shavrukov, Yuri; Zhumalin, Aibek; Serikbay, Dauren; Botayeva, Makpal; Otemisova, Ainur; Absattarova, Aiman; Sereda, Grigoriy; Sereda, Sergey; Shvidchenko, Vladimir; Turbekova, Arysgul; Jatayev, Satyvaldy; Lopato, Sergiy; Soole, Kathleen; Langridge, Peter

    2016-01-01

    A panel of 89 local commercial cultivars of bread wheat was tested in field trials in the dry conditions of Northern Kazakhstan. Two distinct groups of cultivars (six cultivars in each group), which had the highest and the lowest grain yield under drought were selected for further experiments. A dehydration test conducted on detached leaves indicated a strong association between rates of water loss in plants from the first group with highest grain yield production in the dry environment relative to the second group. Modern high-throughput Amplifluor Single Nucleotide Polymorphism (SNP) technology was applied to study allelic variations in a series of drought-responsive genes using 19 SNP markers. Genotyping of an SNP in the TaDREB5 (DREB2-type) gene using the Amplifluor SNP marker KATU48 revealed clear allele distribution across the entire panel of wheat accessions, and distinguished between the two groups of cultivars with high and low yield under drought. Significant differences in expression levels of TaDREB5 were revealed by qRT-PCR. Most wheat plants from the first group of cultivars with high grain yield showed slight up-regulation in the TaDREB5 transcript in dehydrated leaves. In contrast, expression of TaDREB5 in plants from the second group of cultivars with low grain yield was significantly down-regulated. It was found that SNPs did not alter the amino acid sequence of TaDREB5 protein. Thus, a possible explanation is that alternative splicing and up-stream regulation of TaDREB5 may be affected by SNP, but these hypotheses require additional analysis (and will be the focus of future studies). PMID:27917186

  9. Expression level of the DREB2-type gene, identified with Amplifluor SNP markers, correlates with performance and tolerance to dehydration in bread wheat cultivars from Northern Kazakhstan

    Directory of Open Access Journals (Sweden)

    Yuri Shavrukov

    2016-11-01

    Full Text Available A panel of 89 local commercial cultivars of bread wheat was tested in field trials in the dry conditions of Northern Kazakhstan. Two distinct groups of cultivars (six cultivars in each group, which had the highest and the lowest grain yield under drought were selected for further experiments. A dehydration test conducted on detached leaves indicated a strong association between rates of water loss in plants from the first group with highest grain yield production in the dry environment relative to the second group. Modern high-throughput Amplifluor SNP technology was applied to study allelic variations in a series of drought-responsive genes using 19 SNP markers. Genotyping of an SNP in the TaDREB5 (DREB2-type gene using the Amplifluor SNP marker KATU48 revealed clear allele distribution across the entire panel of wheat accessions, and distinguished between the two groups of cultivars with high and low yield under drought. Significant differences in expression levels of TaDREB5 were revealed by qRT-PCR. Most wheat plants from the first group of cultivars with high grain yield showed strong up-regulation of TaDREB5 transcript in dehydrated leaves. In contrast, expression of TaDREB5 in plants from the second group of cultivars with low grain yield was significantly down-regulated. It was found that SNPs did not alter the amino acid sequence of TaDREB5 protein. Thus, a possible explanation is that alternative splicing and up-stream regulation of TaDREB5 may be affected by SNP, but these hypotheses require additional analysis (and will be the focus of future studies.

  10. Common bunt resistant wheat composite cross populations

    DEFF Research Database (Denmark)

    Steffan, Philipp Matthias; Borgen, A.; Backes, Gunter Martin

    stability. However, a number of challenges must be met before diverse wheat populations can be introduced into commercial wheat production: one of these is the development of breeding technologies based on mass selection which enable breeders and farmers to improve specific traits in populations...... and maintain diversity at the same time. BIOBREED is a project which commenced in Denmark in 2011 to meet these challenges for wheat population breeding. The project focuses on the development of tools and methods for mass selection of traits relevant for organic and low input production, where it is expected...... that the highest benefits of utilizing diverse populations can be achieved. BIOBREED focuses on three main aspects of wheat population breeding for organic and low input production systems: i) common bunt (caused by Tilletia caries) resistance, ii) selection for improved protein content and iii) the influence...

  11. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat

    Directory of Open Access Journals (Sweden)

    Reem Joukhadar

    2017-12-01

    Full Text Available Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to

  12. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat.

    Science.gov (United States)

    Joukhadar, Reem; Daetwyler, Hans D; Bansal, Urmil K; Gendall, Anthony R; Hayden, Matthew J

    2017-01-01

    Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT) germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to assist with

  13. Biochemical and sensory evaluation of wheat bran supplemented sorghum kisra bread

    International Nuclear Information System (INIS)

    Mallasy, Limya Osman Husain

    1998-05-01

    Studies were carried out on the effects of addition of wheat bran to sorghum flour (Dabar cultivar) at two levels extraction rates (72% and 80%). Samples were fermented for 14hr and the PH, titrable acidity, crude fibre, protein, total solid, total soluble solids and reducing sugars of fermented batter were determined at 2 hrs intervals. Results indicated that addition of wheat bran either before or after fermentation increased the PH there was decrease in titrable acidity. Reducing sugar contents decrease as a result of addition of wheat bran. Addition of wheat bran result in increasing protein content (15.7%m 19.0% and 20.7% for control, 80%S/WB and 72% S/WB. respectively at the end of fermentation) and also increase of crude fibre content. Addition of wheat bran to sorghum batter either before or after fermentation was accompanied by increase in viscosity ( from 145.1 cp for control to 203.1 cp and 209.8 cp fpr 80%S/WB and 72%S/WB blends respectively). Starch content was determined using iodine spectrophotometry, the moisture content of kisra bread containing wheat bran was significant higher compared with control and lower in available calories. Kisra bread containing wheat bran was lower in reducing sugars 7.42% for control to 5.2% and 4.2% and 4.5% for kisra containing wheat bran, a higher reduction in total carbohydrate were observed in samples containing wheat bran added after fermentation.Kisra containing wheat bran before fermentation gave significantly lower in vitro protein digestabilities. Addition of wheat bran after fermentation resulted in still lower decrease in IVPD compared to addition before fermentation. Sensory evaluation of kisra containing wheat bran indicated significant preference for kisra containing wheat bran compared to the control kisra

  14. Biochemical and sensory evaluation of wheat bran supplemented sorghum kisra bread

    Energy Technology Data Exchange (ETDEWEB)

    Mallasy, Limya Osman Husain [Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Khartoum (Sudan)

    1998-05-01

    Studies were carried out on the effects of addition of wheat bran to sorghum flour (Dabar cultivar) at two levels extraction rates (72% and 80%). Samples were fermented for 14hr and the PH, titrable acidity, crude fibre, protein, total solid, total soluble solids and reducing sugars of fermented batter were determined at 2 hrs intervals. Results indicated that addition of wheat bran either before or after fermentation increased the PH there was decrease in titrable acidity. Reducing sugar contents decrease as a result of addition of wheat bran. Addition of wheat bran result in increasing protein content (15.7%m 19.0% and 20.7% for control, 80%S/WB and 72% S/WB. respectively at the end of fermentation) and also increase of crude fibre content. Addition of wheat bran to sorghum batter either before or after fermentation was accompanied by increase in viscosity ( from 145.1 cp for control to 203.1 cp and 209.8 cp fpr 80%S/WB and 72%S/WB blends respectively). Starch content was determined using iodine spectrophotometry, the moisture content of kisra bread containing wheat bran was significant higher compared with control and lower in available calories. Kisra bread containing wheat bran was lower in reducing sugars 7.42% for control to 5.2% and 4.2% and 4.5% for kisra containing wheat bran, a higher reduction in total carbohydrate were observed in samples containing wheat bran added after fermentation.Kisra containing wheat bran before fermentation gave significantly lower in vitro protein digestabilities. Addition of wheat bran after fermentation resulted in still lower decrease in IVPD compared to addition before fermentation. Sensory evaluation of kisra containing wheat bran indicated significant preference for kisra containing wheat bran compared to the control kisra. 132 refs., 14 tabs., 7 figs.

  15. Effects of climate change on yield potential of wheat and maize crops in the European Union

    NARCIS (Netherlands)

    Wolf, J.; Diepen, van C.A.

    1995-01-01

    Yields of winter wheat, silage maize and grain maize in the main arable areas of the European Union (EU) were calculated with a simulation model, WOFOST, using historical weather data and average soil characteristics. The sensitivity of the model to individual weather variables was determined.

  16. LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity

    Directory of Open Access Journals (Sweden)

    István Monostori

    2018-05-01

    Full Text Available The use of light-emitting diode (LED technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

  17. Stem rust seedling resistance genes in Ethiopian wheat cultivars ...

    African Journals Online (AJOL)

    Thirty durum wheat (19 commercial cultivars and 11 breeding lines) and 30 bread wheat (20 commercial cultivars and 10 breeding lines) were tested for gene postulation. Stem rust infection types produced on wheat cultivars and breeding lines by ten Pgt races was compared with infection types produced on 40 near ...

  18. Induced mutations in wheat, Triticum aestivum L., for high protein and lysine content

    International Nuclear Information System (INIS)

    Barriga, P.; Fuentes, R.

    1984-01-01

    With the aim of producing cultivars adapted to the Lakes Region of Chile (latitude 39-44 deg. South) with better protein content and high grain yield, in 1975 spring wheat seeds of genotypes Express and UACH-2-75 were irradiated with gamma rays in doses of 15, 25 and 35 Krad. The M 1 generation was field sown and harvested individually, initiating plant selection in the M 2 generation. The selection process, through six generations, has permitted to identify some mutants of high protein content. Two mutants UACH-2-I and UACH-3-I have been included in the National Co-operative Wheat Program for yield. A second experiment was initiated in 1981 with the objective of obtaining mutants not only for high protein content but also for high lysine content. For this purpose seeds of the spring wheat genotypes Huenufen and Austral were irradiated with gamma rays in doses of 10 and 25 Krad. The M 1 generation was sown at a high density and harvested in bulk. Selection per plant will start in the M 2 generation, continuing in the following. (author)

  19. Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat.

    Science.gov (United States)

    Rey, Elodie; Abrouk, Michael; Keeble-Gagnère, Gabriel; Karafiátová, Miroslava; Vrána, Jan; Balzergue, Sandrine; Soubigou-Taconnat, Ludivine; Brunaud, Véronique; Martin-Magniette, Marie-Laure; Endo, Takashi R; Bartoš, Jan; Appels, Rudi; Doležel, Jaroslav

    2018-03-06

    Despite a long history, the production of useful alien introgression lines in wheat remains difficult mainly due to linkage drag and incomplete genetic compensation. In addition, little is known about the molecular mechanisms underlying the impact of foreign chromatin on plant phenotype. Here, a comparison of the transcriptomes of barley, wheat and a wheat-barley 7HL addition line allowed the transcriptional impact both on 7HL genes of a non-native genetic background and on the wheat gene complement as a result of the presence of 7HL to be assessed. Some 42% (389/923) of the 7HL genes assayed were differentially transcribed, which was the case for only 3% (960/35 301) of the wheat gene complement. The absence of any transcript in the addition line of a suite of chromosome 7A genes implied the presence of a 36 Mbp deletion at the distal end of the 7AL arm; this deletion was found to be in common across the full set of Chinese Spring/Betzes barley addition lines. The remaining differentially transcribed wheat genes were distributed across the whole genome. The up-regulated barley genes were mostly located in the proximal part of the 7HL arm, while the down-regulated ones were concentrated in the distal part; as a result, genes encoding basal cellular functions tended to be transcribed, while those encoding specific functions were suppressed. An insight has been gained into gene transcription in an alien introgression line, thereby providing a basis for understanding the interactions between wheat and exotic genes in introgression materials. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Sickness absence: a systematic review and meta-analysis of psychological treatments for individuals on sick leave due to common mental disorders.

    Science.gov (United States)

    Salomonsson, Sigrid; Hedman-Lagerlöf, Erik; Öst, Lars-Göran

    2018-01-30

    Sick leave due to common mental disorders (CMDs) increase rapidly and present a major societal challenge. The overall effect of psychological interventions to reduce sick leave and symptoms has not been sufficiently investigated and there is a need for a systematic review and meta-analysis of the field. The aim of the present meta-analysis was to calculate the effect size of psychological interventions for CMDs on sick leave and psychiatric symptoms based on all published randomized controlled trials. Methodological quality, the risk of bias and publication bias were also assessed. The literature searches gave 2240 hits and 45 studies were included. The psychological interventions were more effective than care as usual on both reduced sick leave (g = 0.15) and symptoms (g = 0.21). There was no significant difference in effect between work focused interventions, problem-solving therapy, cognitive behavioural therapy or collaborative care. We conclude that psychological interventions are more effective than care as usual to reduce sick leave and symptoms but the effect sizes are small. More research is needed on psychological interventions that evaluate effects on sick leave. Consensual measures of sick leave should be established and quality of psychotherapy for patients on sick leave should be improved.