WorldWideScience

Sample records for individual neuronal volume

  1. Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus

    DEFF Research Database (Denmark)

    Hosseini-Sharifabad, Mohammad; Nyengaard, Jens Randel

    2007-01-01

    vertical sections from the hippocampus. The volume of hippocampal neurons was estimated using the rotator principle on 40 microm thick plastic vertical uniform random sections and corrected for tissue shrinkage. Application of the proposed new design should result in more accurate estimates of neuron......Tools recently developed in stereology were employed for unbiased estimation of the neuronal number and volume in three major subdivisions of rat hippocampus (dentate granular, CA1 and CA3 pyramidal layers). The optical fractionator is used extensively in quantitative studies of the hippocampus......; however, the classical optical fractionator design may be affected by tissue deformation in the z-axis of the section. In this study, we applied an improved optical fractionator design to estimate total number of neurons on 100 microm thick vibratome sections that had been deformed, in the z...

  2. Energy-efficient neural information processing in individual neurons and neuronal networks.

    Science.gov (United States)

    Yu, Lianchun; Yu, Yuguo

    2017-11-01

    Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low-probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Connectivity and dynamics of neuronal networks as defined by the shape of individual neurons

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, Sebastian E [Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); A N Travencolo, Bruno; Costa, Luciano da Fontoura [Instituto de FIsica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao Carlense 400, Caixa Postal 369, CEP 13560-970, Sao Carlos, Sao Paulo (Brazil)], E-mail: luciano@if.sc.usp.br

    2009-10-15

    Biological neuronal networks constitute a special class of dynamical systems, as they are formed by individual geometrical components, namely the neurons. In the existing literature, relatively little attention has been given to the influence of neuron shape on the overall connectivity and dynamics of the emerging networks. The current work addresses this issue by considering simplified neuronal shapes consisting of circular regions (soma/axons) with spokes (dendrites). Networks are grown by placing these patterns randomly in the two-dimensional (2D) plane and establishing connections whenever a piece of dendrite falls inside an axon. Several topological and dynamical properties of the resulting graph are measured, including the degree distribution, clustering coefficients, symmetry of connections, size of the largest connected component, as well as three hierarchical measurements of the local topology. By varying the number of processes of the individual basic patterns, we can quantify relationships between the individual neuronal shape and the topological and dynamical features of the networks. Integrate-and-fire dynamics on these networks is also investigated with respect to transient activation from a source node, indicating that long-range connections play an important role in the propagation of avalanches.

  4. Micropatterning Facilitates the Long-Term Growth and Analysis of iPSC-Derived Individual Human Neurons and Neuronal Networks.

    Science.gov (United States)

    Burbulla, Lena F; Beaumont, Kristin G; Mrksich, Milan; Krainc, Dimitri

    2016-08-01

    The discovery of induced pluripotent stem cells (iPSCs) and their application to patient-specific disease models offers new opportunities for studying the pathophysiology of neurological disorders. However, current methods for culturing iPSC-derived neuronal cells result in clustering of neurons, which precludes the analysis of individual neurons and defined neuronal networks. To address this challenge, cultures of human neurons on micropatterned surfaces are developed that promote neuronal survival over extended periods of time. This approach facilitates studies of neuronal development, cellular trafficking, and related mechanisms that require assessment of individual neurons and specific network connections. Importantly, micropatterns support the long-term stability of cultured neurons, which enables time-dependent analysis of cellular processes in living neurons. The approach described in this paper allows mechanistic studies of human neurons, both in terms of normal neuronal development and function, as well as time-dependent pathological processes, and provides a platform for testing of new therapeutics in neuropsychiatric disorders.

  5. Intrinsic chemosensitivity of individual nucleus tractus solitarius (NTS) and locus coeruleus (LC) neurons from neonatal rats.

    Science.gov (United States)

    Nichols, Nicole L; Hartzler, Lynn K; Conrad, Susan C; Dean, Jay B; Putnam, Robert W

    2008-01-01

    Chemosensitive (CS) neurons are found in discrete brainstem regions, but whether the CS response of these neurons is due to intrinsic chemosensitivity of individual neurons or is mediated by changes in chemical and/or electrical synaptic input is largely unknown. We studied the effect of synaptic blockade (11.4 mM Mg2+/0.2mM Ca2+) solution (SNB) and a gap junction uncoupling agent carbenoxolone (CAR--100 microM) on the response of neurons from two CS brainstem regions, the NTS and the LC. In NTS neurons, SNB decreased spontaneous firing rate (FR). We calculated the magnitude of the FR response to hypercapnic acidosis (HA; 15% CO2) using the Chemosensitivity Index (CI). The percentage of NTS neurons activated and CI were the same in the absence and presence of SNB. Blocking gap junctions with CAR did not significantly alter spontaneous FR. CAR did not alter the CI in NTS neurons and resulted in a small decrease in the percentage of activated neurons, which was most evident in NTS neurons from rats younger than postnatal day 10. In LC neurons, SNB resulted in an increase in spontaneous FR. As with NTS neurons, SNB did not alter the percentage of activated neurons or the CI in LC neurons. CAR resulted in a small increase in spontaneous FR in LC neurons. In contrast, CAR had a marked effect on the response of LC neurons to HA: a reduced percentage of CS LC neurons and decreased CI. In summary, both NTS and LC neurons appear to contain intrinsically CS neurons. CS neurons from the two regions receive different tonic input in slices (excitatory for NTS and inhibitory for LC); however, blocking chemical synaptic input does not affect the CS response in either region. In NTS neurons, gap junction coupling plays a small role in the CS response, but gap junctions play a major role in the chemosensitivity of many LC neurons.

  6. Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph N; Sun, Zhuoxin

    2004-01-01

    The mediodorsal thalamic nucleus (MD) is the principal relay nucleus for the prefrontal cortex, a brain region thought to be dysfunctional in schizophrenia. Several, but not all, postmortem studies of the MD in schizophrenia have reported decreased volume and total neuronal number. However......, it is not clear whether the findings are specific for schizophrenia nor is it known which subtypes of thalamic neurons are affected. We studied the left MD in 11 subjects with schizophrenia, 9 control subjects, and 12 subjects with mood disorders. Based on morphological criteria, we divided the neurons into two...... subclasses, presumably corresponding to projection neurons and local circuit neurons. We estimated MD volume and the neuron number of each subclass using methods based on modern unbiased stereological principles. We also estimated the somal volumes of each subclass using a robust, but biased, approach...

  7. Neuron volumes in hippocampal subfields in delayed poststroke and aging-related dementias.

    Science.gov (United States)

    Gemmell, Elizabeth; Tam, Edward; Allan, Louise; Hall, Roslyn; Khundakar, Ahmad; Oakley, Arthur E; Thomas, Alan; Deramecourt, Vincent; Kalaria, Raj N

    2014-04-01

    Hippocampal atrophy is widely recognized in Alzheimer disease (AD). Whether neurons within hippocampal subfields are similarly affected in other aging-related dementias, particularly after stroke, remains an open question. We investigated hippocampal CA3 and CA4 pyramidal neuron volumes and densities using 3-dimensional stereologic techniques in postmortem samples from a total of 67 subjects: poststoke demented (PSD; n = 11), nondemented stroke survivors (PSND) and PSD patients from the CogFAST (Cognitive Function After Stroke) cohort (n = 13), elderly controls (n = 12), and subjects diagnosed as having vascular dementia (n = 11), AD (n = 10), and mixed AD and vascular dementia (n = 10). We found that CA3 and CA4 neuron volumes were reduced in PSD samples compared with those in PSND samples. The CA3 and CA4 neuron volumes were positively correlated with poststroke global cognitive function but were not associated with the burden of AD pathology. There were no differences in total neuron densities in either subfield in any of the groups studied. Our results indicate that selective reductions in CA4 and to a lesser extent CA3 neuron volumes may be related to post stroke cognitive impairment and aging-related dementias. These data suggest that CA4 neurons are vulnerable to disease processes and support our previous finding that a reduction in hippocampal neuron volume predominantly reflects vascular mechanisms as contributing to dementia after stroke.

  8. The Impact of Individual Surgeon Volume on Hysterectomy Costs

    Science.gov (United States)

    Shepherd, Jonathan P.; Kantartzis, Kelly L.; Lee, Ted; Bonidie, Michael J.

    2017-01-01

    Background and Objective: Hysterectomy is one of the most common surgical procedures women will undergo in their lifetime. Several factors affect surgical outcomes. It has been suggested that high-volume surgeons favorably affect outcomes and hospital cost. The objective is to determine the impact of individual surgeon volume on total hospital costs for hysterectomy. Methods: This is a retrospective cohort of women undergoing hysterectomy for benign indications from 2011 to 2013 at 10 hospitals within the University of Pittsburgh Medical Center System. Cases that included concomitant procedures were excluded. Costs by surgeon volume were analyzed by tertile group and with linear regression. Results: We studied 5,961 hysterectomies performed by 257 surgeons: 41.5% laparoscopic, 27.9% abdominal, 18.3% vaginal, and 12.3% robotic. Surgeons performed 1–542 cases (median = 4, IQR = 1–24). Surgeons were separated into equal tertiles by case volume: low (1–2 cases; median total cost, $4,349.02; 95% confidence interval [CI] [$3,903.54–$4,845.34]), medium (3–15 cases; median total cost, $2,807.90; 95% CI [$2,693.71–$2,926.93]) and high (>15 cases, median total cost $2,935.12, 95% CI [$2,916.31–$2,981.91]). ANOVA analysis showed a significant decrease (P < .001) in cost from low-to-medium– and low-to-high–volume surgeons. Linear regression showed a significant linear relationship (P < .001), with a $1.15 cost reduction per case with each additional hysterectomy. Thus, if a surgeon performed 100 cases, costs were $115 less per case (100 × $1.15), for a total savings of $11,500.00 (100 × $115). Conclusion: Overall, in our models, costs decreased as surgeon volume increased. Low-volume surgeons had significantly higher costs than both medium- and high-volume surgeons.

  9. Quantification of neurotoxic effects on individual neuron cells using optical diffraction tomography (Conference Presentation)

    Science.gov (United States)

    Yoon, Jonghee; Yang, Su-a.; Kim, Kyoohyun; Park, YongKeun

    2016-03-01

    Parkinson's disease (PD) is a common neurodegenerative disease that causes symptoms of postural instability and slowness of movement. Neurodegeneration in dopaminergic neurons at the substantia nigra has been reported as pathologic features, however, detailed mechanisms underlying neurodegeneration are still remain unclear. To investigate a neurodegenerative process, various imaging tools including phase contrast microscopy, electron microscopy, and fluorescence microscopy are utilized. However, these imaging methods provide qualitative information and require invasive approaches such as the use of fluorescence agents or chemical fixation procedures that disturb normal physiological conditions of neuron cells. In order to quantify the neurodegenerative process in a non-invasive manner, we exploited optical diffraction tomography (ODT). ODT is a 3D quantitative phase imaging method that measures 3D refractive index (RI) distributions of a sample which provide quantitative structural (volume, surface area, sphericity) and biochemical (protein concentration, total cellular dry mass) information. We investigated neurotoxic effects of MPP+ on SH-SY5Y cells by using quantitative information obtained from 3D RI distributions. We also performed temporal measurements of 3D RI distributions of an individual SH-SY5Y cell to analyze neurotoxic effects on intracellular vesicle dynamics.

  10. Molecular codes for neuronal individuality and cell assembly in the brain

    Directory of Open Access Journals (Sweden)

    Takeshi eYagi

    2012-04-01

    Full Text Available The brain contains an enormous, but finite, number of neurons. The ability of this limited number of neurons to produce nearly limitless neural information over a lifetime is typically explained by combinatorial explosion; that is, by the exponential amplification of each neuron’s contribution through its incorporation into cell assemblies and neural networks. In development, each neuron expresses diverse cellular recognition molecules that permit the formation of the appropriate neural cell assemblies to elicit various brain functions. The mechanism for generating neuronal assemblies and networks must involve molecular codes that give neurons individuality and allow them to recognize one another and join appropriate networks. The extensive molecular diversity of cell-surface proteins on neurons is likely to contribute to their individual identities. The cadherin-related neuronal receptors and clustered protocadherins (CNR/Pcdh is a large subfamily within the diverse cadherin superfamily. The CNR/Pcdh genes are encoded in tandem by three gene clusters, and are present in all known vertebrate genomes. The set of CNR/Pcdh genes is expressed in a random and combinatorial manner in each neuron. In addition, cis-tetramers composed of heteromultimeric CNR/Pcdh isoforms represent selective binding units for cell-cell interactions. Here I present the mathematical probabilities for neuronal individuality based on the random and combinatorial expression of CNR/Pcdh isoforms and their formation of cis-tetramers in each neuron. Notably, CNR/Pcdh gene products are known to play crucial roles in correct axonal projections, synaptic formation, and neuronal survival. Their molecular and biological features suggest that the diverse CNR/Pcdh molecules provide the molecular code by which neuronal individuality and cell assembly permit the combinatorial explosion of networks that supports enormous processing capability and plasticity of the brain.

  11. Characterization of the chemosensitive response of individual solitary complex neurons from adult rats

    Science.gov (United States)

    Nichols, Nicole L.; Mulkey, Daniel K.; Wilkinson, Katherine A.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2009-01-01

    We studied the CO2/H+-chemosensitive responses of individual solitary complex (SC) neurons from adult rats by simultaneously measuring the intracellular pH (pHi) and electrical responses to hypercapnic acidosis (HA). SC neurons were recorded using the blind whole cell patch-clamp technique and loading the soma with the pH-sensitive dye pyranine through the patch pipette. We found that SC neurons from adult rats have a lower steady-state pHi than SC neurons from neonatal rats. In the presence of chemical and electrical synaptic blockade, adult SC neurons have firing rate responses to HA (percentage of neurons activated or inhibited and the magnitude of response as determined by the chemosensitivity index) that are similar to SC neurons from neonatal rats. They also have a typical response to isohydric hypercapnia, including decreased ΔpHi, followed by pHi recovery, and increased firing rate. Thus, the chemosensitive response of SC neurons from adults is similar to the chemosensitive response of SC neurons from neonatal rats. Because our findings for adults are similar to previously reported values for neurons from neonatal rats, we conclude that intrinsic chemosensitivity is established early in development for SC neurons and is maintained throughout adulthood. PMID:19144749

  12. Effects of chronic low level lead exposure on the physiology of individually identifiable neurons.

    Science.gov (United States)

    Audesirk, G; Audesirk, T

    1983-01-01

    Although chronic exposure to lead has been correlated with a variety of behavioral and neurochemical deficits in humans and other mammals, little is known of the mechanisms of action of chronic lead at the level of the individual nerve cell. We have used the individually identifiable neurons of the freshwater pond snail Lymnaea stagnalis as a model system to investigate the effects of chronic low level (5 microM) lead exposure on neuronal physiology. Thirteen neuronal parameters were measured with intracellular microelectrode recording in each of six different identifiable neurons or homogeneous neuron clusters. Results were analyzed by a multivariate analysis of variance (MANOVA). MANOVA analysis indicates that there is a significant overall effect of lead exposure (p = 0.0001) and a significant interaction between lead and neuron type (p = 0.01). In most neuron types, chronic lead causes an increase in the resting potential, a slowing of recovery of the membrane potential after the undershoot of a spike, a decrease in spontaneous spiking activity, and a decrease in the input resistance. Lead also has differential effects on identifiable neurons, depressing excitability in some neuron types while not altering excitability in others.

  13. Primary visual cortex volume and total neuron number are reduced in schizophrenia

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph H.; Wu, Qiang

    2007-01-01

    with schizophrenia reported an increased density of neurons in the primary visual cortex (Brodmann's area 17, BA17). The observed changes in visual processing may thus be reflected in structural changes in the circuitry of BA17. To characterize the structural changes further we used stereological methods based...... on unbiased principles of sampling (Cavalieri's principle and the optical fractionator) to estimate the total volume and neuron number of BA17 in postmortem brains from 10 subjects with schizophrenia and 10 matched normal comparison subjects. In addition, we assessed cortical thickness. We found a marked...... and significant reduction in total neuron number (25%) and volume (22%) of BA17 in the schizophrenia group relative to the normal comparison subjects. In contrast, we found no changes in neuronal density or cortical thickness between the two groups. Subjects with schizophrenia therefore have a smaller cortical...

  14. Motor neuronal activity varies least among individuals when it matters most for behavior.

    Science.gov (United States)

    Cullins, Miranda J; Shaw, Kendrick M; Gill, Jeffrey P; Chiel, Hillel J

    2015-02-01

    How does motor neuronal variability affect behavior? To explore this question, we quantified activity of multiple individual identified motor neurons mediating biting and swallowing in intact, behaving Aplysia californica by recording from the protractor muscle and the three nerves containing the majority of motor neurons controlling the feeding musculature. We measured multiple motor components: duration of the activity of identified motor neurons as well as their relative timing. At the same time, we measured behavioral efficacy: amplitude of grasping movement during biting and amplitude of net inward food movement during swallowing. We observed that the total duration of the behaviors varied: Within animals, biting duration shortened from the first to the second and third bites; between animals, biting and swallowing durations varied. To study other sources of variation, motor components were divided by behavior duration (i.e., normalized). Even after normalization, distributions of motor component durations could distinguish animals as unique individuals. However, the degree to which a motor component varied among individuals depended on the role of that motor component in a behavior. Motor neuronal activity that was essential for the expression of biting or swallowing was similar among animals, whereas motor neuronal activity that was not essential for that behavior varied more from individual to individual. These results suggest that motor neuronal activity that matters most for the expression of a particular behavior may vary least from individual to individual. Shaping individual variability to ensure behavioral efficacy may be a general principle for the operation of motor systems. Copyright © 2015 the American Physiological Society.

  15. Human Neuron Cultures: Micropatterning Facilitates the Long-Term Growth and Analysis of iPSC-Derived Individual Human Neurons and Neuronal Networks (Adv. Healthcare Mater. 15/2016).

    Science.gov (United States)

    Burbulla, Lena F; Beaumont, Kristin G; Mrksich, Milan; Krainc, Dimitri

    2016-08-01

    Dimitri Krainc, Milan Mrksich, and co-workers demonstrate the utility of microcontact printing technology for culturing of human neurons in defined patterns over extended periods of time on page 1894. This approach facilitates studies of neuronal development, cellular trafficking, and related mechanisms that require assessment of individual neurons and neuronal networks.

  16. Anions Govern Cell Volume: A Case Study of Relative Astrocytic and Neuronal Swelling in Spreading Depolarization.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    Full Text Available Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little about the dynamics of cell and tissue swelling, and the differential changes in the volumes of neurons and glia during pathological states such as spreading depolarizations (SD under ischemic and non-ischemic conditions, and epileptic seizures. By combining the Hodgkin-Huxley type spiking dynamics, dynamic ion concentrations, and simultaneous neuronal and astroglial volume changes into a comprehensive model, we elucidate why glial cells swell more than neurons in SD and the special case of anoxic depolarization (AD, and explore the relative contributions of the two cell types to tissue swelling. Our results demonstrate that anion channels, particularly Cl-, are intrinsically connected to cell swelling and blocking these currents prevents changes in cell volume. The model is based on a simple and physiologically realistic description. We introduce model extensions that are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles, or by a phenomenological combination of these principles and known physiological facts. This work provides insights into numerous studies related to neuronal and glial volume changes in SD that otherwise seem contradictory, and is broadly applicable to swelling in other cell types and conditions.

  17. Pavlovian Fear Conditioning Activates a Common Pattern of Neurons in the Lateral Amygdala of Individual Brains

    Science.gov (United States)

    2011-01-12

    specific memories in the hippocampus . Our current data show the principle of a stable topography at the neuron level in the amygdala. Both the finding of...an attended novelty oddball task. Psychophysiology. 16. Veening JG, Bocker KB, Verdouw PM, Olivier B, De Jongh R, et al. (2009) Activation of the...neuronal ensembles in the human hippocampus . Curr Biol 19: 546–554. 24. Chadwick MJ, Hassabis D, Weiskopf N, Maguire EA (2010) Decoding individual episodic

  18. Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews.

    Science.gov (United States)

    Keuker, Jeanine I H; de Biurrun, Gabriel; Luiten, Paul G M; Fuchs, Eberhard

    2004-01-19

    Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many characteristics, tree shrews are closer to primates than they are to rodents. Young and aged male tree shrews performed a holeboard spatial memory task, which permits assessment of reference and working memory. Upon completion of the behavioral measurements, we carried out modified stereological analyses of neuronal numbers in various subdivisions of the hippocampus and used the Cavalieri method to calculate the volumes of these subfields. Results showed that the working memory of aged tree shrews was significantly impaired compared with that of young animals, whereas the hippocampus-dependent reference memory remained unchanged by aging. Estimation of the number of neurons revealed preserved neuron numbers in the subiculum, in the subregions CA1, CA2, CA3, and in the hilus of the dentate gyrus. Volume measurements showed no aging-related changes in the volume of any of these hippocampal subregions, or in the molecular and granule cell layers of the dentate gyrus of tree shrews. We conclude that the observed changes in memory performance in aging tree shrews are not accompanied by observable reductions of hippocampal neuron numbers or hippocampal volume, rather, the changes in memory performance are more likely the result of modified subcellular mechanisms that are affected by the aging process.

  19. A Pipeline for Neuron Reconstruction Based on Spatial Sliding Volume Filter Seeding

    Directory of Open Access Journals (Sweden)

    Dong Sui

    2014-01-01

    Full Text Available Neuron’s shape and dendritic architecture are important for biosignal transduction in neuron networks. And the anatomy architecture reconstruction of neuron cell is one of the foremost challenges and important issues in neuroscience. Accurate reconstruction results can facilitate the subsequent neuron system simulation. With the development of confocal microscopy technology, researchers can scan neurons at submicron resolution for experiments. These make the reconstruction of complex dendritic trees become more feasible; however, it is still a tedious, time consuming, and labor intensity task. For decades, computer aided methods have been playing an important role in this task, but none of the prevalent algorithms can reconstruct full anatomy structure automatically. All of these make it essential for developing new method for reconstruction. This paper proposes a pipeline with a novel seeding method for reconstructing neuron structures from 3D microscopy images stacks. The pipeline is initialized with a set of seeds detected by sliding volume filter (SVF, and then the open curve snake is applied to the detected seeds for reconstructing the full structure of neuron cells. The experimental results demonstrate that the proposed pipeline exhibits excellent performance in terms of accuracy compared with traditional method, which is clearly a benefit for 3D neuron detection and reconstruction.

  20. A High Density Electrophysiological Data Analysis System for a Peripheral Nerve Interface Communicating with Individual Neurons in the Brain

    Science.gov (United States)

    2016-11-14

    of-the-art instrumentation to communicate with individual neurons in the brain and the peripheral nervous system. The major theme of the research is...Nerve Interface Communicating with Individual Neurons in the Brain The views, opinions and/or findings contained in this report are those of the author...Communicating with Individual Neurons in the Brain Report Title The high density electrophysiological data acquisition system obtained through this

  1. Visualizing the distribution of synapses from individual neurons in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Ling Li

    Full Text Available BACKGROUND: Proper function of the mammalian brain relies on the establishment of highly specific synaptic connections among billions of neurons. To understand how complex neural circuits function, it is crucial to precisely describe neuronal connectivity and the distributions of synapses to and from individual neurons. METHODS AND FINDINGS: In this study, we present a new genetic synaptic labeling method that relies on expression of a presynaptic marker, synaptophysin-GFP (Syp-GFP in individual neurons in vivo. We assess the reliability of this method and use it to analyze the spatial patterning of synapses in developing and mature cerebellar granule cells (GCs. In immature GCs, Syp-GFP is distributed in both axonal and dendritic regions. Upon maturation, it becomes strongly enriched in axons. In mature GCs, we analyzed synapses along their ascending segments and parallel fibers. We observe no differences in presynaptic distribution between GCs born at different developmental time points and thus having varied depths of projections in the molecular layer. We found that the mean densities of synapses along the parallel fiber and the ascending segment above the Purkinje cell (PC layer are statistically indistinguishable, and higher than previous estimates. Interestingly, presynaptic terminals were also found in the ascending segments of GCs below and within the PC layer, with the mean densities two-fold lower than that above the PC layer. The difference in the density of synapses in these parts of the ascending segment likely reflects the regional differences in postsynaptic target cells of GCs. CONCLUSIONS: The ability to visualize synapses of single neurons in vivo is valuable for studying synaptogenesis and synaptic plasticity within individual neurons as well as information flow in neural circuits.

  2. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors.

    Science.gov (United States)

    Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki

    2017-01-01

    The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Single body parts are processed by individual neurons in the mouse dorsolateral striatum.

    Science.gov (United States)

    Coffey, Kevin R; Nader, Miles; West, Mark O

    2016-04-01

    Interest in the dorsolateral striatum (DLS) has generated numerous scientific studies of its neuropathologies, as well as its roles in normal sensorimotor integration and learning. Studies are informed by knowledge of DLS functional organization, the guiding principle being its somatotopic afferent projections from primary somatosensory (S1) and motor (M1) cortices. The potential to connect behaviorally relevant function to detailed structure is elevated by mouse models, which have access to extensive genetic neuroscience tool kits. Remaining to be demonstrated, however, is whether the correspondence between S1/M1 corticostriatal terminal distributions and the physiological properties of DLS neurons demonstrated in rats and non-human primates exists in mice. Given that the terminal distribution of S1/M1 projections to the DLS in mice is similar to that in rats, we studied whether firing rates (FRs) of DLS neurons in awake, behaving mice are related to activity of individual body parts. MSNs exhibited robust, selective increases in FR during movement or somatosensory stimulation of single body parts. Properties of MSNs, including baseline FRs, locations, responsiveness to stimulation, and proportions of responsive neurons were similar to properties observed in rats. Future studies can be informed by the present demonstration that the mouse lateral striatum functions as a somatic sensorimotor sector of the striatum and appears to be a homolog of the primate putamen, as demonstrated in rats (Carelli and West, 1991).

  4. Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Huaqiu Zhang

    Full Text Available Volume-regulated anion channels (VRAC are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 µM and NPPB (100 µM, but not to tamoxifen (10 µM. Using oxygen-and-glucose deprivation (OGD to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 µM NBQX and NMDA (40 µM AP-5 receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na(+-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage.

  5. Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron.

    Science.gov (United States)

    Costalago Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L

    2016-03-01

    Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron, of the desert locust in response to displacement of a sensory organ, the femoral chordotonal organ, which monitors movements of the tibia relative to the femur of the leg. The aim of the study was threefold: first to determine the potential value of ANNs as tools to model and investigate neural networks, second to understand the generalisation properties of ANNs across individuals and to different input signals and third, to understand individual differences in responses of an identified neuron. A metaheuristic algorithm was developed to design the ANN architectures. The performance of the models generated by the ANNs was compared with those generated through previous mathematical models of the same neuron. The results suggest that ANNs are significantly better than LNL and Wiener models in predicting specific neural responses to Gaussian White Noise, but not significantly different when tested with sinusoidal inputs. They are also able to predict responses of the same neuron in different individuals irrespective of which animal was used to develop the model, although notable differences between some individuals were evident.

  6. Moral values are associated with individual differences in regional brain volume.

    Science.gov (United States)

    Lewis, Gary J; Kanai, Ryota; Bates, Timothy C; Rees, Geraint

    2012-08-01

    Moral sentiment has been hypothesized to reflect evolved adaptations to social living. If so, individual differences in moral values may relate to regional variation in brain structure. We tested this hypothesis in a sample of 70 young, healthy adults examining whether differences on two major dimensions of moral values were significantly associated with regional gray matter volume. The two clusters of moral values assessed were "individualizing" (values of harm/care and fairness) and "binding" (deference to authority, in-group loyalty, and purity/sanctity). Individualizing was positively associated with left dorsomedial pFC volume and negatively associated with bilateral precuneus volume. For binding, a significant positive association was found for bilateral subcallosal gyrus and a trend to significance for the left anterior insula volume. These findings demonstrate that variation in moral sentiment reflects individual differences in brain structure and suggest a biological basis for moral sentiment, distributed across multiple brain regions.

  7. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.

    Science.gov (United States)

    Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O

    2015-12-01

    Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.

  8. Differences in relative hippocampus volume and number of hippocampus neurons among five corvid species.

    Science.gov (United States)

    Gould, Kristy L; Gilbertson, Karl E; Hrvol, Andrew J; Nelson, Joseph C; Seyfer, Abigail L; Brantner, Rose M; Kamil, Alan C

    2013-01-01

    The relative size of the avian hippocampus (Hp) has been shown to be related to spatial memory and food storing in two avian families, the parids and corvids. Basil et al. [Brain Behav Evol 1996;47:156-164] examined North American food-storing birds in the corvid family and found that Clark's nutcrackers had a larger relative Hp than pinyon jays and Western scrub jays. These results correlated with the nutcracker's better performance on most spatial memory tasks and their strong reliance on stored food in the wild. However, Pravosudov and de Kort [Brain Behav Evol 2006;67:1-9] raised questions about the methodology used in the 1996 study, specifically the use of paraffin as an embedding material and recalculation for shrinkage. Therefore, we measured relative Hp volume using gelatin as the embedding material in four North American species of food-storing corvids (Clark's nutcrackers, pinyon jays, Western scrub jays and blue jays) and one Eurasian corvid that stores little to no food (azure-winged magpies). Although there was a significant overall effect of species on relative Hp volume among the five species, subsequent tests found only one pairwise difference, blue jays having a larger Hp than the azure-winged magpies. We also examined the relative size of the septum in the five species. Although Shiflett et al. [J Neurobiol 2002;51:215-222] found a difference in relative septum volume amongst three species of parids that correlated with storing food, we did not find significant differences amongst the five species in relative septum. Finally, we calculated the number of neurons in the Hp relative to body mass in the five species and found statistically significant differences, some of which are in accord with the adaptive specialization hypothesis and some are not.

  9. Facial emotion recognition impairments are associated with brain volume abnormalities in individuals with HIV.

    Science.gov (United States)

    Clark, Uraina S; Walker, Keenan A; Cohen, Ronald A; Devlin, Kathryn N; Folkers, Anna M; Pina, Matthew J; Tashima, Karen T

    2015-04-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV-associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demonstrated emotion recognition impairments for fearful expressions, reduced anterior cingulate cortex (ACC) volumes, and increased amygdala volumes. In the HIV+ group, fear recognition impairments correlated significantly with ACC, but not amygdala volumes. ACC reductions were also associated with lower nadir CD4 levels (i.e., greater HIV-disease severity). These findings extend our understanding of the neurobiological substrates underlying an essential social function, facial emotion recognition, in HIV+ individuals and implicate HIV-related ACC atrophy in the impairment of these abilities.

  10. Facial Emotion Recognition Impairments are Associated with Brain Volume Abnormalities in Individuals with HIV

    Science.gov (United States)

    Clark, Uraina S.; Walker, Keenan A.; Cohen, Ronald A.; Devlin, Kathryn N.; Folkers, Anna M.; Pina, Mathew M.; Tashima, Karen T.

    2015-01-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV− associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demonstrated emotion recognition impairments for fearful expressions, reduced anterior cingulate cortex (ACC) volumes, and increased amygdala volumes. In the HIV+ group, fear recognition impairments correlated significantly with ACC, but not amygdala volumes. ACC reductions were also associated with lower nadir CD4 levels (i.e., greater HIV-disease severity). These findings extend our understanding of the neurobiological substrates underlying an essential social function, facial emotion recognition, in HIV+ individuals and implicate HIV-related ACC atrophy in the impairment of these abilities. PMID:25744868

  11. The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH

    Science.gov (United States)

    Wang, Runping; Lu, Yongjun; Gunasekar, Susheel; Zhang, Yanhui; Benson, Christopher J.; Chapleau, Mark W.; Sah, Rajan; Abboud, François M.

    2017-01-01

    The leucine rich repeat containing protein 8A (LRRC8A), or SWELL1, is an essential component of the volume-regulated anion channel (VRAC) that is activated by cell swelling and ionic strength. We report here for the first time to our knowledge its expression in a primary cell culture of nodose ganglia neurons and its localization in the soma, neurites, and neuronal membrane. We show that this neuronal VRAC/SWELL1 senses low external pH (pHo) in addition to hypoosmolarity. A robust sustained chloride current is seen in 77% of isolated nodose neurons following brief exposures to extracellular acid pH. Its activation involves proton efflux, intracellular alkalinity, and an increase in NOX-derived H2O2. The molecular identity of both the hypoosmolarity-induced and acid pHo–conditioned VRAC as LRRC8A (SWELL1) was confirmed by Cre-flox–mediated KO, shRNA-mediated knockdown, and CRISPR/Cas9-mediated LRRC8A deletion in HEK cells and in primary nodose neuronal cultures. Activation of VRAC by low pHo reduces neuronal injury during simulated ischemia and N-methyl-D-aspartate–induced (NMDA-induced) apoptosis. These results identify the VRAC (LRRC8A) as a dual sensor of hypoosmolarity and low pHo in vagal afferent neurons and define the mechanisms of its activation and its neuroprotective potential. PMID:28289711

  12. The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH.

    Science.gov (United States)

    Wang, Runping; Lu, Yongjun; Gunasekar, Susheel; Zhang, Yanhui; Benson, Christopher J; Chapleau, Mark W; Sah, Rajan; Abboud, François M

    2017-03-09

    The leucine rich repeat containing protein 8A (LRRC8A), or SWELL1, is an essential component of the volume-regulated anion channel (VRAC) that is activated by cell swelling and ionic strength. We report here for the first time to our knowledge its expression in a primary cell culture of nodose ganglia neurons and its localization in the soma, neurites, and neuronal membrane. We show that this neuronal VRAC/SWELL1 senses low external pH (pHo) in addition to hypoosmolarity. A robust sustained chloride current is seen in 77% of isolated nodose neurons following brief exposures to extracellular acid pH. Its activation involves proton efflux, intracellular alkalinity, and an increase in NOX-derived H2O2. The molecular identity of both the hypoosmolarity-induced and acid pHo-conditioned VRAC as LRRC8A (SWELL1) was confirmed by Cre-flox-mediated KO, shRNA-mediated knockdown, and CRISPR/Cas9-mediated LRRC8A deletion in HEK cells and in primary nodose neuronal cultures. Activation of VRAC by low pHo reduces neuronal injury during simulated ischemia and N-methyl-D-aspartate-induced (NMDA-induced) apoptosis. These results identify the VRAC (LRRC8A) as a dual sensor of hypoosmolarity and low pHo in vagal afferent neurons and define the mechanisms of its activation and its neuroprotective potential.

  13. Iridium oxide microelectrode arrays for in vitro stimulation of individual rat neurons from dissociated cultures.

    Science.gov (United States)

    Eick, Stefan; Wallys, Jens; Hofmann, Boris; van Ooyen, André; Schnakenberg, Uwe; Ingebrandt, Sven; Offenhäusser, Andreas

    2009-01-01

    We present the first in vitro extracellular stimulation of individual neurons from dissociated cultures with iridium oxide (IrO(x)) electrodes. Microelectrode arrays with sputtered IrO(x) films (SIROF) were developed for electrophysiological investigations with electrogenic cells. The microelectrodes were characterized with scanning electron and atomic force microscopy, revealing rough and porous electrodes with enlarged surface areas. As shown by cyclic voltammetry and electrochemical impedance spectroscopy, the large surface area in combination with the good electrochemical properties of SIROF resulted in high charge storage capacity and low electrode impedance. Thus, we could transfer the good properties of IrO(x) as material for in vivo stimulation electrodes to multi-electrode arrays with electrode diameters as small as 10 mum for in vitro applications. Single rat cortical neurons from dissociated cultures were successfully stimulated to fire action potentials using single or trains of biphasic rectangular voltage-controlled stimulation pulses. The stimulated cell's membrane potential was simultaneously monitored using whole-cell current-clamp recordings. This experimental configuration allowed direct evaluation of the influence of pulse phase sequence, amplitude, and number on the stimulation success ratio and action potential latency. Negative phase first pulses were more effective for extracellular stimulation and caused reduced latency in comparison to positive phase first pulses. Increasing the pulse amplitude also improved stimulation reliability. However, in order to prevent cell or electrode damage, the pulse amplitude is limited to voltages below the threshold for irreversible electrochemical reactions at the electrode. As an alternative to increasing the amplitude, a higher number of stimulation pulses was also shown to increase stimulation success.

  14. Iridium oxide microelectrode arrays for in vitro stimulation of individual rat neurons from dissociated cultures

    Directory of Open Access Journals (Sweden)

    Stefan Eick

    2009-11-01

    Full Text Available We present the first in-vitro extracellular stimulation of individual neurons from dissociated cultures with iridium oxide (IrOx electrodes. Microelectrode arrays with sputtered IrOx films (SIROF were developed for electrophysiological investigations with electrogenic cells. The microelectrodes were characterized with scanning electron and atomic force microscopy, revealing rough and porous electrodes with enlarged surface areas. As shown by cyclic voltammetry and electrochemical impedance spectroscopy, the large surface area in combination with the good electrochemical properties of SIROF resulted in high charge storage capacity and low electrode impedance. Thus, we could transfer the good properties of IrOx as material for in-vivo stimulation electrodes to MEAs with electrode diameters as small as 10 µm for in-vitro applications. Single rat cortical neurons from dissociated cultures were successfully stimulated to fire action potentials using single or trains of biphasic rectangular voltage-controlled stimulation pulses. The stimulated cell’s membrane potential was simultaneously monitored using whole-cell current-clamp recordings. This experimental configuration allowed direct evaluation of the influence of pulse phase sequence, amplitude, and number on the stimulation success ratio and action potential latency. Negative phase first pulses were more effective for extracellular stimulation and caused reduced latency in comparison to positive phase first pulses. Increasing the pulse amplitude also improved stimulation reliability. However, in order to prevent cell or electrode damage, the pulse amplitude is limited to voltages below the threshold for irreversible electrochemical reactions at the electrode. As an alternative to increasing the amplitude, a higher number of stimulation pulses was also shown to increase stimulation success.

  15. Development and application of an optogenetic platform for controlling and imaging a large number of individual neurons

    Science.gov (United States)

    Mohammed, Ali Ibrahim Ali

    The understanding and treatment of brain disorders as well as the development of intelligent machines is hampered by the lack of knowledge of how the brain fundamentally functions. Over the past century, we have learned much about how individual neurons and neural networks behave, however new tools are critically needed to interrogate how neural networks give rise to complex brain processes and disease conditions. Recent innovations in molecular techniques, such as optogenetics, have enabled neuroscientists unprecedented precision to excite, inhibit and record defined neurons. The impressive sensitivity of currently available optogenetic sensors and actuators has now enabled the possibility of analyzing a large number of individual neurons in the brains of behaving animals. To promote the use of these optogenetic tools, this thesis integrates cutting edge optogenetic molecular sensors which is ultrasensitive for imaging neuronal activity with custom wide field optical microscope to analyze a large number of individual neurons in living brains. Wide-field microscopy provides a large field of view and better spatial resolution approaching the Abbe diffraction limit of fluorescent microscope. To demonstrate the advantages of this optical platform, we imaged a deep brain structure, the Hippocampus, and tracked hundreds of neurons over time while mouse was performing a memory task to investigate how those individual neurons related to behavior. In addition, we tested our optical platform in investigating transient neural network changes upon mechanical perturbation related to blast injuries. In this experiment, all blasted mice show a consistent change in neural network. A small portion of neurons showed a sustained calcium increase for an extended period of time, whereas the majority lost their activities. Finally, using optogenetic silencer to control selective motor cortex neurons, we examined their contributions to the network pathology of basal ganglia related to

  16. A Simple and Efficient In Vivo Non-viral RNA Transfection Method for Labeling the Whole Axonal Tree of Individual Adult Long-Range Projection Neurons.

    Science.gov (United States)

    Porrero, César; Rodríguez-Moreno, Javier; Quetglas, José I; Smerdou, Cristian; Furuta, Takahiro; Clascá, Francisco

    2016-01-01

    We report a highly efficient, simple, and non-infective method for labeling individual long-range projection neurons (LRPNs) in a specific location with enough sparseness and intensity to allow complete and unambiguous reconstructions of their entire axonal tree. The method is based on the "in vivo" transfection of a large RNA construct that drives the massive expression of green fluorescent protein. The method combines two components: injection of a small volume of a hyperosmolar NaCl solution containing the Pal-eGFP-Sindbis RNA construct (Furuta et al., 2001), followed by the application of high-frequency electric current pulses through the micropipette tip. We show that, although each component alone increases transfection efficacy, compared to simple volume injections of standard RNA solution, the highest efficacy (85.7%) is achieved by the combination of both components. In contrast with the infective viral Sindbis vector, RNA transfection occurs exclusively at the position of the injection micropipette tip. This method simplifies consistently labeling one or a few isolated neurons per brain, a strategy that allows unambiguously resolving and quantifying the brain-wide and often multi-branched monosynaptic circuits created by LRPNs.

  17. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis

    Science.gov (United States)

    Estes, Patricia S.; Daniel, Scott G.; Mccallum, Abigail P.; Boehringer, Ashley V.; Sukhina, Alona S.; Zwick, Rebecca A.; Zarnescu, Daniela C.

    2013-01-01

    SUMMARY Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies. PMID:23471911

  18. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Patricia S. Estes

    2013-05-01

    Amyotrophic lateral sclerosis (ALS is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies.

  19. Distinguishing Representations as Origin and Representations as Input: Roles for Individual Neurons

    Science.gov (United States)

    Edwards, Jonathan C. W.

    2016-01-01

    It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with the issue of meaning, interpretation, or significance (semantic content). It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as a representation it must provide an input to a ‘consumer’ in the street. The arguments presented draw on two principles – the neuron doctrine and the need for a venue for ‘presentation’ or ‘reception’ of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include ‘null’ elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right – some form of atomic propositional significance – since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming ‘scenarios’ comprising a molecular combination of ‘premises’ from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to ‘occurrent’ representations based on current neural activity.) The concept of representations-as-input emphasizes the need for an internal ‘consumer’ of a representation and the dependence of meaning on the co-relationships involved

  20. Rapid Encoding of New Memories by Individual Neurons in the Human Brain.

    Science.gov (United States)

    Ison, Matias J; Quian Quiroga, Rodrigo; Fried, Itzhak

    2015-07-01

    The creation of memories about real-life episodes requires rapid neuronal changes that may appear after a single occurrence of an event. How is such demand met by neurons in the medial temporal lobe (MTL), which plays a fundamental role in episodic memory formation? We recorded the activity of MTL neurons in neurosurgical patients while they learned new associations. Pairs of unrelated pictures, one of a person and another of a place, were used to construct a meaningful association modeling the episodic memory of meeting a person in a particular place. We found that a large proportion of responsive MTL neurons expanded their selectivity to encode these specific associations within a few trials: cells initially responsive to one picture started firing to the associated one but not to others. Our results provide a plausible neural substrate for the inception of associations, which are crucial for the formation of episodic memories.

  1. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    Full Text Available Understanding the physical encoding of a memory (the engram is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.

  2. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.

    Science.gov (United States)

    Bergstrom, Hadley C; McDonald, Craig G; Johnson, Luke R

    2011-01-12

    Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.

  3. Determination of volume, shape and refractive index of individual blood platelets

    CERN Document Server

    Kolesnikova, Irina V; Yurkin, Maxim A; Hoekstra, Alfons G; Maltsev, Valeri P; Semyanov, Konstantin A

    2008-01-01

    Light scattering patterns (LSP) of blood platelets were theoretically and experimentally analyzed. We used spicular spheroids as a model for the platelets with pseudopodia. The discrete dipole approximation was employed to simulate light scattering from an individual spicular spheroid constructed from a homogeneous oblate spheroid and 14 rectilinear parallelepipeds rising from the cell centre. These parallelepipeds have a weak effect on the LSP over the measured angular range. Therefore, a homogeneous oblate spheroid was taken as a simplified optical model for platelets. Using the T-matrix method, we computed the LSP over a range of volumes, aspect ratios and refractive indices. Measured LSPs of individual platelets were compared one by one with the theoretical set and the best fit was taken to characterize the measured platelets, resulting in distributions of volume, aspect ratio and refractive index.

  4. Highly ordered large-scale neuronal networks of individual cells - toward single cell to 3D nanowire intracellular interfaces.

    Science.gov (United States)

    Kwiat, Moria; Elnathan, Roey; Pevzner, Alexander; Peretz, Asher; Barak, Boaz; Peretz, Hagit; Ducobni, Tamir; Stein, Daniel; Mittelman, Leonid; Ashery, Uri; Patolsky, Fernando

    2012-07-25

    The use of artificial, prepatterned neuronal networks in vitro is a promising approach for studying the development and dynamics of small neural systems in order to understand the basic functionality of neurons and later on of the brain. The present work presents a high fidelity and robust procedure for controlling neuronal growth on substrates such as silicon wafers and glass, enabling us to obtain mature and durable neural networks of individual cells at designed geometries. It offers several advantages compared to other related techniques that have been reported in recent years mainly because of its high yield and reproducibility. The procedure is based on surface chemistry that allows the formation of functional, tailormade neural architectures with a micrometer high-resolution partition, that has the ability to promote or repel cells attachment. The main achievements of this work are deemed to be the creation of a large scale neuronal network at low density down to individual cells, that develop intact typical neurites and synapses without any glia-supportive cells straight from the plating stage and with a relatively long term survival rate, up to 4 weeks. An important application of this method is its use on 3D nanopillars and 3D nanowire-device arrays, enabling not only the cell bodies, but also their neurites to be positioned directly on electrical devices and grow with registration to the recording elements underneath.

  5. A stochastic mechanism for signal propagation in the brain: Force of rapid random fluctuations in membrane potentials of individual neurons.

    Science.gov (United States)

    Hong, Dawei; Man, Shushuang; Martin, Joseph V

    2016-01-21

    There are two functionally important factors in signal propagation in a brain structural network: the very first synaptic delay-a time delay about 1ms-from the moment when signals originate to the moment when observation on the signal propagation can begin; and rapid random fluctuations in membrane potentials of every individual neuron in the network at a timescale of microseconds. We provide a stochastic analysis of signal propagation in a general setting. The analysis shows that the two factors together result in a stochastic mechanism for the signal propagation as described below. A brain structural network is not a rigid circuit rather a very flexible framework that guides signals to propagate but does not guarantee success of the signal propagation. In such a framework, with the very first synaptic delay, rapid random fluctuations in every individual neuron in the network cause an "alter-and-concentrate effect" that almost surely forces signals to successfully propagate. By the stochastic mechanism we provide analytic evidence for the existence of a force behind signal propagation in a brain structural network caused by rapid random fluctuations in every individual neuron in the network at a timescale of microseconds with a time delay of 1ms.

  6. When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals

    Science.gov (United States)

    Herculano-Houzel, Suzana; Messeder, Débora J.; Fonseca-Azevedo, Karina; Pantoja, Nilma A.

    2015-01-01

    There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease. PMID:26082686

  7. When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals.

    Science.gov (United States)

    Herculano-Houzel, Suzana; Messeder, Débora J; Fonseca-Azevedo, Karina; Pantoja, Nilma A

    2015-01-01

    There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease.

  8. When larger brains do not have more neurons: Increased numbers of cells are compensated by decreased average cell size across mouse individuals

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2015-06-01

    Full Text Available There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease.

  9. From individual spiking neurons to population behavior: Systematic elimination of short-wavelength spatial modes

    Science.gov (United States)

    Steyn-Ross, Moira L.; Steyn-Ross, D. A.

    2016-02-01

    Mean-field models of the brain approximate spiking dynamics by assuming that each neuron responds to its neighbors via a naive spatial average that neglects local fluctuations and correlations in firing activity. In this paper we address this issue by introducing a rigorous formalism to enable spatial coarse-graining of spiking dynamics, scaling from the microscopic level of a single type 1 (integrator) neuron to a macroscopic assembly of spiking neurons that are interconnected by chemical synapses and nearest-neighbor gap junctions. Spiking behavior at the single-neuron scale ℓ ≈10 μ m is described by Wilson's two-variable conductance-based equations [H. R. Wilson, J. Theor. Biol. 200, 375 (1999), 10.1006/jtbi.1999.1002], driven by fields of incoming neural activity from neighboring neurons. We map these equations to a coarser spatial resolution of grid length B ℓ , with B ≫1 being the blocking ratio linking micro and macro scales. Our method systematically eliminates high-frequency (short-wavelength) spatial modes q ⃗ in favor of low-frequency spatial modes Q ⃗ using an adiabatic elimination procedure that has been shown to be equivalent to the path-integral coarse graining applied to renormalization group theory of critical phenomena. This bottom-up neural regridding allows us to track the percolation of synaptic and ion-channel noise from the single neuron up to the scale of macroscopic population-average variables. Anticipated applications of neural regridding include extraction of the current-to-firing-rate transfer function, investigation of fluctuation criticality near phase-transition tipping points, determination of spatial scaling laws for avalanche events, and prediction of the spatial extent of self-organized macrocolumnar structures. As a first-order exemplar of the method, we recover nonlinear corrections for a coarse-grained Wilson spiking neuron embedded in a network of identical diffusively coupled neurons whose chemical synapses have

  10. Lung volume recruitment acutely increases respiratory system compliance in individuals with severe respiratory muscle weakness

    Directory of Open Access Journals (Sweden)

    Yannick Molgat-Seon

    2017-03-01

    Full Text Available The aim of the present study was to determine whether lung volume recruitment (LVR acutely increases respiratory system compliance (Crs in individuals with severe respiratory muscle weakness (RMW. Individuals with RMW resulting from neuromuscular disease or quadriplegia (n=12 and healthy controls (n=12 underwent pulmonary function testing and the measurement of Crs at baseline, immediately after, 1 h after and 2 h after a single standardised session of LVR. The LVR session involved 10 consecutive supramaximal lung inflations with a manual resuscitation bag to the highest tolerable mouth pressure or a maximum of 50 cmH2O. Each LVR inflation was followed by brief breath-hold and a maximal expiration to residual volume. At baseline, individuals with RMW had lower Crs than controls (37±5 cmH2O versus 109±10 mL·cmH2O−1, p0.05. LVR had no significant effect on measures of pulmonary function at any time point in either group (all p>0.05. During inflations, mean arterial pressure decreased significantly relative to baseline by 10.4±2.8 mmHg and 17.3±3.0 mmHg in individuals with RMW and controls, respectively (both p<0.05. LVR acutely increases Crs in individuals with RMW. However, the high airway pressures during inflations cause reductions in mean arterial pressure that should be considered when applying this technique.

  11. Effect of prenatal loud music and noise on total number of neurons and glia, neuronal nuclear area and volume of chick brainstem auditory nuclei, field L and hippocampus: a stereological investigation.

    Science.gov (United States)

    Sanyal, Tania; Palanisamy, Pradeep; Nag, T C; Roy, T S; Wadhwa, Shashi

    2013-06-01

    The present study explores whether prenatal patterned and unpatterned sound of high sound pressure level (110 dB) has any differential effect on the morphology of brainstem auditory nuclei, field L (auditory cortex analog) and hippocampus in chicks (Gallus domesticus). The total number of neurons and glia, mean neuronal nuclear area and total volume of the brainstem auditory nuclei, field L and hippocampus of post-hatch day 1 chicks were determined in serial, cresyl violet-stained sections, using stereology software. All regions studied showed a significantly increased total volume with increase in total neuron number and mean neuronal nuclear area in the patterned music stimulated group as compared to control. Contrastingly the unpatterned noise stimulated group showed an attenuated volume with reduction in the total neuron number. The mean neuronal nuclear area was significantly reduced in the auditory nuclei and hippocampus but increased in the field L. Glial cell number was significantly increased in both experimental groups, being highest in the noise group. The brainstem auditory nuclei and field L showed an increase in glia to neuron ratio in the experimental groups as compared to control. In the hippocampus the ratio remained unaltered between control and music groups, but was higher in the noise group. It is thus evident that though the sound pressure level in both experimental groups was the same there were differential changes in the morphological parameters of the brain regions studied, indicating that the characteristics of the sound had a role in mediating these effects.

  12. Penicillin-induced epilepsy model in rats: dose-dependant effect on hippocampal volume and neuron number.

    Science.gov (United States)

    Akdogan, Ilgaz; Adiguzel, Esat; Yilmaz, Ismail; Ozdemir, M Bulent; Sahiner, Melike; Tufan, A Cevik

    2008-10-22

    This study was designed to evaluate the penicillin-induced epilepsy model in terms of dose-response relationship of penicillin used to induce epilepsy seizure on hippocampal neuron number and hippocampal volume in Sprague-Dawley rats. Seizures were induced with 300, 500, 1500 and 2000IU of penicillin-G injected intracortically in rats divided in four experimental groups, respectively. Control group was injected intracortically with saline. Animals were decapitated on day 7 of treatment and brains were removed. The total neuron number of pyramidal cell layer from rat hippocampus was estimated using the optical fractionator method. The volume of same hippocampal areas was estimated using the Cavalieri method. Dose-dependent decrease in hippocampal neuron number was observed in three experimental groups (300, 500 and 1500IU of penicillin-G), and the effects were statistically significant when compared to the control group (P<0.009). Dose-dependent decrease in hippocampal volume, on the other hand, was observed in all three of these groups; however, the difference compared to the control group was only statistically significant in 1500IU of penicillin-G injected group (P<0.009). At the dose of 2000IU penicillin-G, all animals died due to status seizures. These results suggest that the appropriate dose of penicillin has to be selected for a given experimental epilepsy study in order to demonstrate the relevant epileptic seizure and its effects. Intracortical 1500IU penicillin-induced epilepsy model may be a good choice to practice studies that investigate neuroprotective mechanisms of the anti-epileptic drugs.

  13. The effects of overfeeding on the neuronal response to visual food cues in thin and reduced-obese individuals.

    Directory of Open Access Journals (Sweden)

    Marc-Andre Cornier

    Full Text Available The regulation of energy intake is a complex process involving the integration of homeostatic signals and both internal and external sensory inputs. The objective of this study was to examine the effects of short-term overfeeding on the neuronal response to food-related visual stimuli in individuals prone and resistant to weight gain.22 thin and 19 reduced-obese (RO individuals were studied. Functional magnetic resonance imaging (fMRI was performed in the fasted state after two days of eucaloric energy intake and after two days of 30% overfeeding in a counterbalanced design. fMRI was performed while subjects viewed images of foods of high hedonic value and neutral non-food objects. In the eucaloric state, food as compared to non-food images elicited significantly greater activation of insula and inferior visual cortex in thin as compared to RO individuals. Two days of overfeeding led to significant attenuation of not only insula and visual cortex responses but also of hypothalamus response in thin as compared to RO individuals.These findings emphasize the important role of food-related visual cues in ingestive behavior and suggest that there are important phenotypic differences in the interactions between external visual sensory inputs, energy balance status, and brain regions involved in the regulation of energy intake. Furthermore, alterations in the neuronal response to food cues may relate to the propensity to gain weight.

  14. An Improved Multivariate T2 Control Chart for Individual Observations in Low Volume Manufacturing

    Institute of Scientific and Technical Information of China (English)

    Miao Rui(苗瑞); Wang Dongpeng; Yao Yingxue

    2004-01-01

    For multivariate statistical process quality control with individual observations, the usually recommended procedure is Hotelling's T2 control chart. Using the T2 statistic based on β distribution is an exact method for constructing multivariate control limits in low volume manufacturing, but it is not convenient in that the variation of sample size leads to a change in control limit. This paper presents an improved multivariate T2 control chart whose control limit does not change with sample size, which is especially useful when the sample size is small.

  15. Voltage-sensitive dye recording from axons, dendrites and dendritic spines of individual neurons in brain slices.

    Science.gov (United States)

    Popovic, Marko; Gao, Xin; Zecevic, Dejan

    2012-11-29

    phototoxic effects (4, 6, 12, 13). At present, we take advantage of the superb brightness and stability of a laser light source at near-optimal wavelength to maximize the sensitivity of the V(m)-imaging technique. The current sensitivity permits multiple site optical recordings of V(m) transients from all parts of a neuron, including axons and axon collaterals, terminal dendritic branches, and individual dendritic spines. The acquired information on signal interactions can be analyzed quantitatively as well as directly visualized in the form of a movie.

  16. Monitoring Integrated Activity of Individual Neurons Using FRET-Based Voltage-Sensitive Dyes.

    Science.gov (United States)

    Briggman, Kevin L; Kristan, William B; González, Jesús E; Kleinfeld, David; Tsien, Roger Y

    2015-01-01

    Pairs of membrane-associated molecules exhibiting fluorescence resonance energy transfer (FRET) provide a sensitive technique to measure changes in a cell's membrane potential. One of the FRET pair binds to one surface of the membrane and the other is a mobile ion that dissolves in the lipid bilayer. The voltage-related signal can be measured as a change in the fluorescence of either the donor or acceptor molecules, but measuring their ratio provides the largest and most noise-free signal. This technology has been used in a variety of ways; three are documented in this chapter: (1) high throughput drug screening, (2) monitoring the activity of many neurons simultaneously during a behavior, and (3) finding synaptic targets of a stimulated neuron. In addition, we provide protocols for using the dyes on both cultured neurons and leech ganglia. We also give an updated description of the mathematical basis for measuring the coherence between electrical and optical signals. Future improvements of this technique include faster and more sensitive dyes that bleach more slowly, and the expression of one of the FRET pair genetically.

  17. Intensified neuronal investment in the processing of chemosensory anxiety signals in non-socially anxious and socially anxious individuals.

    Directory of Open Access Journals (Sweden)

    Bettina M Pause

    Full Text Available BACKGROUND: The ability to communicate anxiety through chemosensory signals has been documented in humans by behavioral, perceptual and brain imaging studies. Here, we investigate in a time-sensitive manner how chemosensory anxiety signals, donated by humans awaiting an academic examination, are processed by the human brain, by analyzing chemosensory event-related potentials (CSERPs, 64-channel recording with current source density analysis. METHODOLOGY/PRINCIPAL FINDINGS: In the first study cerebral stimulus processing was recorded from 28 non-socially anxious participants and in the second study from 16 socially anxious individuals. Each individual participated in two sessions, smelling sweat samples donated from either female or male donors (88 sessions; balanced session order. Most of the participants of both studies were unable to detect the stimuli olfactorily. In non-socially anxious females, CSERPs demonstrate an increased magnitude of the P3 component in response to chemosensory anxiety signals. The source of this P3 activity was allocated to medial frontal brain areas. In socially anxious females chemosensory anxiety signals require more neuronal resources during early pre-attentive stimulus processing (N1. The neocortical sources of this activity were located within medial and lateral frontal brain areas. In general, the event-related neuronal brain activity in males was much weaker than in females. However, socially anxious males processed chemosensory anxiety signals earlier (N1 latency than the control stimuli collected during an ergometer training. CONCLUSIONS/SIGNIFICANCE: It is concluded that the processing of chemosensory anxiety signals requires enhanced neuronal energy. Socially anxious individuals show an early processing bias towards social fear signals, resulting in a repression of late attentional stimulus processing.

  18. Primary visual cortex volume and total neuron number are reduced in schizophrenia

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph H.; Wu, Qiang;

    2007-01-01

    with schizophrenia reported an increased density of neurons in the primary visual cortex (Brodmann's area 17, BA17). The observed changes in visual processing may thus be reflected in structural changes in the circuitry of BA17. To characterize the structural changes further we used stereological methods based...

  19. 28th Annual Report to Congress on the Implementation of the "Individuals with Disabilities Education Act," 2006. Volume 1

    Science.gov (United States)

    Office of Special Education and Rehabilitative Services, US Department of Education, 2009

    2009-01-01

    This 2006 or "28th Annual Report to Congress" follows the 2005 or "27th Annual Report to Congress" in sequence. Volume 1 focuses on the children and students being served under "IDEA" and provides profiles of individual states' special education environments. Volume 2 of the "2006 Annual Report to Congress"…

  20. 29th Annual Report to Congress on the Implementation of the "Individuals with Disabilities Education Act," 2007. Volume 3

    Science.gov (United States)

    Office of Special Education and Rehabilitative Services, US Department of Education, 2010

    2010-01-01

    The "29th Annual Report to Congress on the Implementation of the Individuals with Disabilities Education Act, 2007" follows the 2006--i.e., the 28th annual report--in sequence. The "29th Annual Report to Congress" is, however, the first to have three volumes. In the 28th and previous editions, volume 2 consisted of data tables…

  1. 29th Annual Report to Congress on the Implementation of the "Individuals with Disabilities Education Act," 2007. Volume 2

    Science.gov (United States)

    Office of Special Education and Rehabilitative Services, US Department of Education, 2010

    2010-01-01

    The "29th Annual Report to Congress on the Implementation of the Individuals with Disabilities Education Act, 2007" follows the 2006--i.e., the 28th annual report--in sequence. The "29th Annual Report to Congress" is, however, the first to have three volumes. In the 28th and earlier editions, volume 2 consisted of data tables…

  2. Extra-neurohypophyseal axonal projections from individual vasopressin-containing magnocellular neurons in rat hypothalamus

    Directory of Open Access Journals (Sweden)

    Vito Salvador Hernandez

    2015-10-01

    Full Text Available Conventional neuroanatomical, immunohistochemical techniques and electrophysiological recording, as well as in vitro labeling methods may fail to detect long range extra-neurohypophyseal-projecting axons from vasopressin (AVP-containing magnocellular neurons (magnocells in the hypothalamic paraventricular nucleus (PVN. Here, we used in vivo extracellular recording, juxtacellular labeling, post hoc anatomo-immunohistochemical analysis and camera lucida reconstruction to address this question. We demonstrate that all well-labeled AVP immunopositive neurons inside the PVN possess main axons joining the tract of Greving and multi-axon-like processes, as well as axonal collaterals branching very near to the somata, which project to extra-neurohypophyseal regions. The detected regions in this study include the medial and lateral preoptical area, suprachiasmatic nucleus, lateral habenula, medial and central amygdala and the conducting systems, such as stria medullaris, the fornix and the internal capsule. Expression of vesicular glutamate transporter 2 was observed in axon-collaterals. These results, in congruency with several previous reports in the literature, provided unequivocal evidence that AVP magnocells have an uncommon feature of possessing multiple axon-like processes emanating from somata or proximal dendrites. Furthermore, the long-range non-neurohypophyseal projections are more common than an occasional phenomenon as previously thought.

  3. Revised Calculated Volumes Of Individual Shield Volcanoes At The Young End Of The Hawaiian Ridge

    Science.gov (United States)

    Robinson, J. E.; Eakins, B. W.

    2003-12-01

    Recent, high-resolution multibeam bathymetry and a digital elevation model of the Hawaiian Islands allow us to recalculate Bargar and Jackson's [1974] volumes of coalesced volcanic edifices (Hawaii, Maui-Nui, Oahu, Kauai, and Niihau) and individual shield volcanoes at the young end of the Hawaiian Ridge, taking into account subsidence of the Pacific plate under the load of the volcanoes as modeled by Watts and ten Brink [1989]. Our volume for the Island of Hawaii (2.48 x105 km3) is twice the previous estimate (1.13 x105 km3), due primarily to crustal subsidence, which had not been accounted for in the earlier work. The volcanoes that make up the Hawaii edifice (Mahukona, Kohala, Mauna Kea, Hualalai, Mauna Loa, Kilauea, and Loihi) are generally considered to have formed within the past million years and our revised volume for Hawaii indicates that either magma-supply rates are greater than previously estimated (0.25 km3/yr as opposed to 0.1 km3/yr) or that Hawaii's volcanoes have erupted over a longer period of time (>1 million years). Our results also indicate that magma supply rates have increased dramatically to build the Hawaiian edifices: the average rate of the past 5 million years (0.096 km3/yr) is substantially greater than the overall average of the Hawaiian Ridge (0.018km3/yr) or Emperor Seamounts (0.012 km3/yr) as calculated by Bargar and Jackson, and that rates within the past million years are greater still (0.25 km3/yr). References: Bargar, K. E., and Jackson, E. D., 1974, Calculated volumes of individual shield volcanoes along the Hawaiian-Emperor Chain, Jour. Research U.S. Geol. Survey, Vol. 2, No. 5, p. 545-550. Watts, A. B., and ten Brink, U. S., 1989, Crustal structure, flexure, and subsidence history of the Hawaiian Islands, Jour. Geophys. Res., Vol. 94, No. B8, p. 10,473-10,500.

  4. Association of white matter hyperintensities and gray matter volume with cognition in older individuals without cognitive impairment.

    Science.gov (United States)

    Arvanitakis, Zoe; Fleischman, Debra A; Arfanakis, Konstantinos; Leurgans, Sue E; Barnes, Lisa L; Bennett, David A

    2016-05-01

    Both presence of white matter hyperintensities (WMH) and smaller total gray matter volume on brain magnetic resonance imaging (MRI) are common findings in old age, and contribute to impaired cognition. We tested whether total WMH volume and gray matter volume had independent associations with cognition in community-dwelling individuals without dementia or mild cognitive impairment (MCI). We used data from participants of the Rush Memory and Aging Project. Brain MRI was available in 209 subjects without dementia or MCI (mean age 80; education = 15 years; 74 % women). WMH and gray matter were automatically segmented, and the total WMH and gray matter volumes were measured. Both MRI-derived measures were normalized by the intracranial volume. Cognitive data included composite measures of five different cognitive domains, based on 19 individual tests. Linear regression analyses, adjusted for age, sex, and education, were used to examine the relationship of logarithmically-transformed total WMH volume and of total gray matter volume to cognition. Larger total WMH volumes were associated with lower levels of perceptual speed (p  0.10). Smaller total gray matter volumes were associated with lower levels of perceptual speed (p = 0.013) and episodic memory (p = 0.001), but not with the other three cognitive domains (all p > 0.14). Larger total WMH volume was correlated with smaller total gray matter volume (p cognitive impairment suggests that the association of larger total WMH volume with lower perceptual speed is independent of total gray matter volume. These results help elucidate the pathological processes leading to lower cognitive function in aging.

  5. Changes in hippocampal volume and neuron number co-occur with memory decline in old homing pigeons (Columba livia).

    Science.gov (United States)

    Coppola, Vincent J; Kanyok, Nate; Schreiber, Austin J; Flaim, Mary E; Bingman, Verner P

    2016-05-01

    The mammalian hippocampus is particularly susceptible to age-related structural changes, which have been used to explain, in part, age-related memory decline. These changes are generally characterized by atrophy (e.g., a decrease in volume and number of synaptic contacts). Recent studies have reported age-related spatial memory deficits in older pigeons similar to those seen in older mammals. However, to date, little is known about any co-occurring changes in the aging avian hippocampal formation (HF). In the current study, it was found that the HF of older pigeons was actually larger and contained more neurons than the HF of younger pigeons, a finding that suggests that the pattern of structural changes during aging in the avian HF is different from that seen in the mammalian hippocampus. A working hypothesis for relating the observed structural changes with spatial-cognitive decline is offered.

  6. Reduced frontal brain volume in non-treatment seeking cocaine dependent individuals: exploring the role of impulsivity, depression and smoking

    Directory of Open Access Journals (Sweden)

    Cleo Lina Crunelle

    2014-01-01

    Full Text Available In cocaine-dependent patients, grey matter (GM volume reductions have been observed in the frontal lobes that are associated with duration of cocaine use. Studies are mostly restricted to treatment-seekers and studies in non-treatment seeking cocaine abusers are sparse. Here, we assessed GM volume differences between 30 non-treatment-seeking cocaine-dependent individuals and 33 non drug using controls using voxel-based morphometry (VBM. Additionally, within the group of non-treatment-seeking cocaine-dependent individuals, we explored the role of frequently co-occurring features such as of trait impulsivity (Barratt Impulsivity Score, BIS, smoking, depressive symptoms (Beck Depression Inventory (BDI, as well as the role of cocaine use duration, on frontal GM volume. Smaller GM volumes in non-treatment-seeking cocaine-dependent individuals were observed in the left middle frontal gyrus. Moreover, within the group of cocaine users, trait impulsivity was associated with reduced GM volume in the right OFC, the left precentral gyrus and the right superior frontal gyrus, whereas no effect of smoking severity, depressive symptoms or duration of cocaine use was observed on regional GM volumes. Our data show an important association between trait impulsivity and frontal GM volumes in cocaine-dependent individuals. In contrast to previous studies with treatment-seeking cocaine-dependent patients, no significant effects of smoking severity, depressive symptoms or duration of cocaine use on frontal GM volume were observed. Reduced frontal GM volumes in non-treatment-seeking cocaine-dependent subjects are associated with trait impulsivity and are not associated with co-occurring nicotine dependence or depression.

  7. Reactive oxygen species are related to ionic fluxes and volume decrease in apoptotic cerebellar granule neurons: role of NOX enzymes.

    Science.gov (United States)

    Hernández-Enríquez, Berenice; Guemez-Gamboa, Alicia; Morán, Julio

    2011-05-01

    Reactive oxygen species (ROS) are produced early during apoptosis of cerebellar granule neurons induced by low potassium (K5) and staurosporine (Sts). In addition, K5 and Sts activate NADPH oxidases (NOX). Recently, we described that K5 and Sts induce apoptotic volume decrease (AVD) at a time when ROS generation and NOX activity occur. In the present study, we evaluated the relationship between ROS generation and ionic fluxes during AVD. Here, we showed that K5- and Sts-induced AVD was inhibited by antioxidants and that direct ROS production induced AVD. Moreover, NOX inhibitors eliminated AVD induced by both K5 and Sts. Sts, but not K5, failed to induce AVD in cerebellar granule neurons from NOX2 knockout mice. These findings suggest that K5- and Sts-induced AVD is largely mediated by ROS produced by NOX. On the other hand, we also found that the blockage of ionic fluxes involved in AVD inhibited both ROS generation and NOX activity. These findings suggest that ROS generation and NOX activity are involved in ionic fluxes activation, which in turn could maintain ROS generation by activating NOX, leading to a self-amplifying cycle.

  8. State Assessment and Testing Programs: An Annotated ERIC Bibliography. Volume I: General References. Volume II: Individual State Programs.

    Science.gov (United States)

    Porter, Deborah Elena; Wildemuth, Barbara

    There is a growing body of literature in the ERIC data base pertaining to state educational assessment and testing programs. Volume I of this bibliography includes abstracts of 39 documents and journal articles describing the design and implementation of programs, as well as the technical and political issues which have been addressed by the…

  9. Neuronal Intra-Individual Variability Masks Response Selection Differences between ADHD Subtypes—A Need to Change Perspectives

    Directory of Open Access Journals (Sweden)

    Annet Bluschke

    2017-06-01

    Full Text Available Due to the high intra-individual variability in attention deficit/hyperactivity disorder (ADHD, there may be considerable bias in knowledge about altered neurophysiological processes underlying executive dysfunctions in patients with different ADHD subtypes. When aiming to establish dimensional cognitive-neurophysiological constructs representing symptoms of ADHD as suggested by the initiative for Research Domain Criteria, it is crucial to consider such processes independent of variability. We examined patients with the predominantly inattentive subtype (attention deficit disorder, ADD and the combined subtype of ADHD (ADHD-C in a flanker task measuring conflict control. Groups were matched for task performance. Besides using classic event-related potential (ERP techniques and source localization, neurophysiological data was also analyzed using residue iteration decomposition (RIDE to statistically account for intra-individual variability and S-LORETA to estimate the sources of the activations. The analysis of classic ERPs related to conflict monitoring revealed no differences between patients with ADD and ADHD-C. When individual variability was accounted for, clear differences became apparent in the RIDE C-cluster (analog to the P3 ERP-component. While patients with ADD distinguished between compatible and incompatible flanker trials early on, patients with ADHD-C seemed to employ more cognitive resources overall. These differences are reflected in inferior parietal areas. The study demonstrates differences in neuronal mechanisms related to response selection processes between ADD and ADHD-C which, according to source localization, arise from the inferior parietal cortex. Importantly, these differences could only be detected when accounting for intra-individual variability. The results imply that it is very likely that differences in neurophysiological processes between ADHD subtypes are underestimated and have not been recognized because intra-individual

  10. Scaling of neuron number and volume of the pulvinar complex in New World primates: comparisons with humans, other primates, and mammals.

    Science.gov (United States)

    Chalfin, Brandon P; Cheung, Desmond T; Muniz, José Augusto P C; de Lima Silveira, Luiz Carlos; Finlay, Barbara L

    2007-09-20

    The lateral posterior nucleus and pulvinar (LP-pulvinar complex) are the principal thalamic nuclei associated with the elaborate development of the dorsal and ventral streams of the parietal cortex in primates. In humans, a novel site of origin for a subpopulation of pulvinar neurons has been observed, the ganglionic eminence of the telencephalon. This additional site of neuron origin has been proposed to contribute to the pulvinar's evolutionary expansion (Letinic and Rakic [2001] Nat Neurosci 4:930-936). Studies of neuron number in the LP-pulvinar complex in gibbon, chimpanzee, and gorilla compared to humans, however, did not show that the human LP-pulvinar was unexpectedly large (Armstrong [1981] Am J Phys Anthropol 55:369-383). Here we enlarge the allometric basis for comparison by determining neuron number in the LP-pulvinar complex of six New World primates (Cebus apella, Saimiri ustius, Saguinus midas niger, Alouatta caraya, Aotus azarae, and Callicebus moloch) as well as measuring LP-pulvinar volume in a further set of 24 species including additional primates, carnivores, and rodents. The volume of the LP-pulvinar complex scaled with positive allometry with respect to brain volume across all species examined. The scaling of the number of neurons in the LP-pulvinar complex was extremely similar in New World primates and anthropoid apes, with the human LP-pulvinar value close to the regression line. Comparison of the relative volumes of the LP-pulvinar in the larger sample confirmed this observation, and further demonstrated that both primates and carnivores showed a "grade shift" in its size compared to rodents, with the pulvinar comprising a greater proportion of total brain volume across the board. Diurnal, nocturnal, or crepuscular niche did not discriminate LP-pulvinar size across taxa.

  11. Epicardial fat volume and aortic stiffness in healthy individuals. A quantitative cardiac magnetic resonance study

    Energy Technology Data Exchange (ETDEWEB)

    Homsi, R.; Thomas, D.; Meier-Schroers, M.; Dabir, D.; Kuetting, D.; Luetkens, J.A.; Marx, C.; Schild, H.H. [Bonn University Hospital (Germany). Radiology; Gieseke, J. [Philips Healthcare, Hamburg (Germany); Sprinkart, A. [Bonn University Hospital (Germany). Radiology; Bochum Univ. (Germany). Inst. of Medical Engineering

    2016-09-15

    To determine epicardial fat volume (EFV) and aortic stiffness (assessed by aortic pulse wave velocity (PWV)) in healthy individuals, and to investigate the relationship of these parameters, and their association with body mass index (BMI) and age. 58 subjects (29 men, mean age 44.7 ± 13.9 years[y]) underwent a CMR exam at 1.5 Tesla. A 2 D velocity-encoded CMR scan was acquired to determine PWV. The EFV was measured based on a 3 D-mDixon sequence. Group comparisons were made between younger (age < 45y; n=30; mean age 33.4 ± 6.6y) and older (> 45y; n=28; 56.7 ± 8.4y) subjects and between subjects with a BMI < 25 kg/m{sup 2} (n=28; BMI 21.9 ± 2.5 kg/m{sup 2}) and a BMI > 25 kg/m{sup 2} (n=30; 28.7 ± 4.0 kg/m{sup 2}). Associations between the determined parameters were assessed by analyses of covariance (ANCOVAs). The mean values of PWV and EFV (normalized to body surface area) were 6.9 ±1.9 m/s and 44.2 ± 25.0 ml/m{sup 2}, respectively. The PWV and EFV were significantly higher in the older group (PWV=7.9 ± 2.0 m/s vs. 6.0 ± 1.2 m/s; EFV=54.7 ml/m{sup 2} vs. 34.5 ml/m{sup 2}; p < 0.01, each), with no significant differences in BMI or sex. In the overweighted group the EFV was significantly higher than in subjects with a BMI < 25kg/m{sup 2} (EFV=56.1 ± 27.1 ml/m{sup 2} vs. 31.5 ± 14.6 ml/m{sup 2}; p < 0.01) but without a significant difference in PWV. ANCOVA revealed a significant correlation between EFV and PWV, also after adjustment for age (p=0.025). An association was found between age and EFV as well as PWV. EFV and PWV were related to each other also after adjustment for age. The metabolic and pro-inflammatory activity found with increased epicardial fat volume may promote the development of atherosclerosis and aortic stiffness. CMR may be valuable for future studies investigating the relationship between EFV and PWV in patients with increased cardiovascular risk.

  12. Individual differences in the Behavioral Inhibition System are associated with orbitofrontal cortex and precuneus gray matter volume.

    Science.gov (United States)

    Fuentes, Paola; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Rosell, Patricia; Costumero, Víctor; Ávila, César

    2012-09-01

    The Behavioral Inhibition System (BIS) is described in Gray's Reinforcement Sensitivity Theory as a hypothetical construct that mediates anxiety in animals and humans. The neuroanatomical correlates of this system are not fully clear, although they are known to involve the amygdala, the septohippocampal system, and the prefrontal cortex. Previous neuroimaging research has related individual differences in BIS with regional volume and functional variations in the prefrontal cortex, amygdala, and hippocampal formation. The aim of the present work was to study BIS-related individual differences and their relationship with brain regional volume. BIS sensitivity was assessed through the BIS/BAS questionnaire in a sample of male participants (N = 114), and the scores were correlated with brain regional volume in a voxel-based morphometry analysis. The results show a negative correlation between the BIS and the volume of the right and medial orbitofrontal cortices and the precuneus. Our results and previous findings suggest that individual differences in anxiety-related personality traits and their related psychopathology may be associated with reduced brain volume in certain structures relating to emotional control (i.e., the orbitofrontal cortex) and self-consciousness (i.e., the precuneus), as shown by our results.

  13. 29th Annual Report to Congress on the Implementation of the "Individuals with Disabilities Education Act," 2007. Volume 1

    Science.gov (United States)

    Office of Special Education and Rehabilitative Services, US Department of Education, 2010

    2010-01-01

    The "29th Annual Report to Congress on the Implementation of the Individuals with Disabilities Education Act, 2007" focuses on key state performance data in accordance with recommendations of the President's Commission on Excellence in Special Education. Volume 1 focuses on the children and students being served under "IDEA"…

  14. Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals.

    Science.gov (United States)

    Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

    2014-01-01

    D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans.

  15. Increased metabolic activity in nucleus basalis of Meynert neurons in elderly individuals with mild cognitive impairment as indicated by the size of the Golgi apparatus.

    NARCIS (Netherlands)

    Dubelaar, E.J.G.; Mufson, E.J.; Meulen, W.G. ter; Heerikhuize, J.J. van; Verwer, R.W.H.; Swaab, D.F.

    2006-01-01

    In this study, we examined the metabolic activity of nucleus basalis of Meynert (NBM) neurons in individuals clinically diagnosed with no cognitive impairment (NCI, n = 8), mild cognitive impairment (MCI, n = 9), and subjects with moderate Alzheimer disease (AD, n = 7). We used Golgi apparatus (GA)

  16. Amygdala volume linked to individual differences in mental state inference in early childhood and adulthood

    Directory of Open Access Journals (Sweden)

    Katherine Rice

    2014-04-01

    Full Text Available We investigated the role of the amygdala in mental state inference in a sample of adults and in a sample of children aged 4 and 6 years. This period in early childhood represents a time when mentalizing abilities undergo dramatic changes. Both children and adults inferred mental states from pictures of others’ eyes, and children also inferred the mental states of others from stories (e.g., a false belief task. We also collected structural MRI data from these participants, to determine whether larger amygdala volumes (controlling for age and total gray matter volume were related to better face-based and story-based mentalizing. For children, larger amygdala volumes were related to better face-based, but not story-based, mentalizing. In contrast, in adults, amygdala volume was not related to face-based mentalizing. We next divided the face-based items into two subscales: cognitive (e.g., thinking, not believing versus affective (e.g., friendly, kind items. For children, performance on cognitive items was positively correlated with amygdala volume, but for adults, only performance on affective items was positively correlated with amygdala volume. These results indicate that the amygdala's role in mentalizing may be specific to face-based tasks and that the nature of its involvement may change over development.

  17. Amygdala volume linked to individual differences in mental state inference in early childhood and adulthood.

    Science.gov (United States)

    Rice, Katherine; Viscomi, Brieana; Riggins, Tracy; Redcay, Elizabeth

    2014-04-01

    We investigated the role of the amygdala in mental state inference in a sample of adults and in a sample of children aged 4 and 6 years. This period in early childhood represents a time when mentalizing abilities undergo dramatic changes. Both children and adults inferred mental states from pictures of others' eyes, and children also inferred the mental states of others from stories (e.g., a false belief task). We also collected structural MRI data from these participants, to determine whether larger amygdala volumes (controlling for age and total gray matter volume) were related to better face-based and story-based mentalizing. For children, larger amygdala volumes were related to better face-based, but not story-based, mentalizing. In contrast, in adults, amygdala volume was not related to face-based mentalizing. We next divided the face-based items into two subscales: cognitive (e.g., thinking, not believing) versus affective (e.g., friendly, kind) items. For children, performance on cognitive items was positively correlated with amygdala volume, but for adults, only performance on affective items was positively correlated with amygdala volume. These results indicate that the amygdala's role in mentalizing may be specific to face-based tasks and that the nature of its involvement may change over development. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.

    Science.gov (United States)

    Meda, Shashwath A; Pryweller, Jennifer R; Thornton-Wells, Tricia A

    2012-01-01

    Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex

  19. Intraday Seasonalities and Nonstationarity of Trading Volume in Financial Markets: Individual and Cross-Sectional Features

    Science.gov (United States)

    Graczyk, Michelle B.; Duarte Queirós, Sílvio M.

    2016-01-01

    We study the intraday behaviour of the statistical moments of the trading volume of the blue chip equities that composed the Dow Jones Industrial Average index between 2003 and 2014. By splitting that time interval into semesters, we provide a quantitative account of the nonstationary nature of the intraday statistical properties as well. Explicitly, we prove the well-known ∪-shape exhibited by the average trading volume—as well as the volatility of the price fluctuations—experienced a significant change from 2008 (the year of the “subprime” financial crisis) onwards. That has resulted in a faster relaxation after the market opening and relates to a consistent decrease in the convexity of the average trading volume intraday profile. Simultaneously, the last part of the session has become steeper as well, a modification that is likely to have been triggered by the new short-selling rules that were introduced in 2007 by the Securities and Exchange Commission. The combination of both results reveals that the ∪ has been turning into a ⊔. Additionally, the analysis of higher-order cumulants—namely the skewness and the kurtosis—shows that the morning and the afternoon parts of the trading session are each clearly associated with different statistical features and hence dynamical rules. Concretely, we claim that the large initial trading volume is due to wayward stocks whereas the large volume during the last part of the session hinges on a cohesive increase of the trading volume. That dissimilarity between the two parts of the trading session is stressed in periods of higher uproar in the market. PMID:27812141

  20. Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.

    Directory of Open Access Journals (Sweden)

    Shashwath A Meda

    Full Text Available Williams syndrome (WS is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and

  1. Role of GABAA-Mediated Inhibition and Functional Assortment of Synapses onto Individual Layer 4 Neurons in Regulating Plasticity Expression in Visual Cortex.

    Science.gov (United States)

    Saez, Ignacio; Friedlander, Michael J

    2016-01-01

    Layer 4 (L4) of primary visual cortex (V1) is the main recipient of thalamocortical fibers from the dorsal lateral geniculate nucleus (LGNd). Thus, it is considered the main entry point of visual information into the neocortex and the first anatomical opportunity for intracortical visual processing before information leaves L4 and reaches supra- and infragranular cortical layers. The strength of monosynaptic connections from individual L4 excitatory cells onto adjacent L4 cells (unitary connections) is highly malleable, demonstrating that the initial stage of intracortical synaptic transmission of thalamocortical information can be altered by previous activity. However, the inhibitory network within L4 of V1 may act as an internal gate for induction of excitatory synaptic plasticity, thus providing either high fidelity throughput to supragranular layers or transmittal of a modified signal subject to recent activity-dependent plasticity. To evaluate this possibility, we compared the induction of synaptic plasticity using classical extracellular stimulation protocols that recruit a combination of excitatory and inhibitory synapses with stimulation of a single excitatory neuron onto a L4 cell. In order to induce plasticity, we paired pre- and postsynaptic activity (with the onset of postsynaptic spiking leading the presynaptic activation by 10ms) using extracellular stimulation (ECS) in acute slices of primary visual cortex and comparing the outcomes with our previously published results in which an identical protocol was used to induce synaptic plasticity between individual pre- and postsynaptic L4 excitatory neurons. Our results indicate that pairing of ECS with spiking in a L4 neuron fails to induce plasticity in L4-L4 connections if synaptic inhibition is intact. However, application of a similar pairing protocol under GABAARs inhibition by bath application of 2μM bicuculline does induce robust synaptic plasticity, long term potentiation (LTP) or long term

  2. Curcumin and sertraline prevent the reduction of the number of neurons and glial cells and the volume of rats' medial prefrontal cortex induced by stress.

    Science.gov (United States)

    Noorafshan, Ali; Abdollahifar, Mohammad-Amin; Asadi-Golshan, Reza; Rashidian-Rashidabadi, Ali; Karbalay-Doust, Saied

    2014-01-01

    Chronic stress induces morphological changes in the neurons of several brain regions, including medial prefrontal cortex (mPFC). This region is involved in variety of behavioral tasks, including learning and memory. Our previous work showed that stress impaired function. The present work extends the earlier work to study mPFC in stressed and non-stressed rats with or without sertraline or curcumin treatments using stereological methods. Sertraline is a selective serotonin reuptake inhibitor and curcumin is the main ingredient of turmeric with neuroprotective effects. In this study, 42 male rats were randomly assigned to seven groups: stress + distilled water, stress + olive oil, stress + curcumin (100 mg/kg/day), stress + sertraline (10 mg/kg/day), curcumin, sertraline, and control groups. After 56 days, the right mPFC was removed. The volume of mPFC and its subdivisions and the total number of neurons and glia were estimated. The results showed ~8%, ~8%, and 24% decrease in the volume of the mPFC and its prelimbic and infralimbic subdivisions, respectively. However, the anterior cingulated cortex remained unchanged. Also, the total number of the neurons and glial cells was significantly reduced (11% and 5%, respectively) in stress (+distilled water or olive oil) group in comparison to the non-stressed rats (Psertraline and stress + curcumin groups in comparison to the non-treated stressed rats (Psertraline could prevent the stress-induced changes in mPFC.

  3. Hypophosphatemia on the intensive care unit: individualized phosphate replacement based on serum levels and distribution volume.

    NARCIS (Netherlands)

    Bech, A.; Blans, M.; Raaijmakers, M.; Mulkens, C.; Telting, D.; Boer, H. de

    2013-01-01

    BACKGROUND: Hypophosphatemia occurs in about 25% of patients admitted to the intensive care unit. To date, a safe and validated phosphate replacement protocol is not available. OBJECTIVE: To evaluate an individualized phosphate replacement regimen. DESIGN: Fifty consecutive intensive care unit patie

  4. [An automatic extraction algorithm for individual tree crown projection area and volume based on 3D point cloud data].

    Science.gov (United States)

    Xu, Wei-Heng; Feng, Zhong-Ke; Su, Zhi-Fang; Xu, Hui; Jiao, You-Quan; Deng, Ou

    2014-02-01

    Tree crown projection area and crown volume are the important parameters for the estimation of biomass, tridimensional green biomass and other forestry science applications. Using conventional measurements of tree crown projection area and crown volume will produce a large area of errors in the view of practical situations referring to complicated tree crown structures or different morphological characteristics. However, it is difficult to measure and validate their accuracy through conventional measurement methods. In view of practical problems which include complicated tree crown structure, different morphological characteristics, so as to implement the objective that tree crown projection and crown volume can be extracted by computer program automatically. This paper proposes an automatic untouched measurement based on terrestrial three-dimensional laser scanner named FARO Photon120 using plane scattered data point convex hull algorithm and slice segmentation and accumulation algorithm to calculate the tree crown projection area. It is exploited on VC+6.0 and Matlab7.0. The experiments are exploited on 22 common tree species of Beijing, China. The results show that the correlation coefficient of the crown projection between Av calculated by new method and conventional method A4 reaches 0.964 (p3D LIDAR point cloud data of individual tree, tree crown structure was reconstructed at a high rate of speed with high accuracy, and crown projection and volume of individual tree were extracted by this automatical untouched method, which can provide a reference for tree crown structure studies and be worth to popularize in the field of precision forestry.

  5. Neuronal Correlates of Individual Differences in the Big Five Personality Traits: Evidences from Cortical Morphology and Functional Homogeneity

    Directory of Open Access Journals (Sweden)

    Ting Li

    2017-07-01

    Full Text Available There have been many neuroimaging studies of human personality traits, and it have already provided glimpse into the neurobiology of complex traits. And most of previous studies adopt voxel-based morphology (VBM analysis to explore the brain-personality mechanism from two levels (vertex and regional based, the findings are mixed with great inconsistencies and the brain-personality relations are far from a full understanding. Here, we used a new method of surface-based morphology (SBM analysis, which provides better alignment of cortical landmarks to generate about the associations between cortical morphology and the personality traits across 120 healthy individuals at both vertex and regional levels. While to further reveal local functional correlates of the morphology-personality relationships, we related surface-based functional homogeneity measures to the regions identified in the regional-based SBM correlation. Vertex-wise analysis revealed that people with high agreeableness exhibited larger areas in the left superior temporal gyrus. Based on regional parcellation we found that extroversion was negatively related with the volume of the left lateral occipito-temporal gyrus and agreeableness was negatively associated with the sulcus depth of the left superior parietal lobule. Moreover, increased regional homogeneity in the left lateral occipito-temporal gyrus is related to the scores of extroversion, and increased regional homogeneity in the left superior parietal lobule is related to the scores of agreeableness. These findings provide supporting evidence of a link between personality and brain structural mysteries with a method of SBM, and further suggest that local functional homogeneity of personality traits has neurobiological relevance that is likely based on anatomical substrates.

  6. Neuron-specific enolase, but not S100B or myelin basic protein, increases in peripheral blood corresponding to lesion volume after cortical impact in piglets.

    Science.gov (United States)

    Costine, Beth A; Quebeda-Clerkin, Patricia B; Dodge, Carter P; Harris, Brent T; Hillier, Simon C; Duhaime, Ann-Christine

    2012-11-20

    A peripheral indicator of the presence and magnitude of brain injury has been a sought-after tool by clinicians. We measured neuron-specific enolase (NSE), myelin basic protein (MBP), and S100B, prior to and after scaled cortical impact in immature pigs, to determine if these purported markers increase after injury, correlate with the resulting lesion volume, and if these relationships vary with maturation. Scaled cortical impact resulted in increased lesion volume with increasing age. Concentrations of NSE, but not S100B or MBP, increased after injury in all age groups. The high variability of S100B concentrations prior to injury may have precluded detection of an increase due to injury. Total serum markers were estimated, accounting for the allometric growth of blood volume, and resulted in a positive correlation of both NSE and S100B with lesion volume. Even with allometric scaling of blood volume and a uniform mechanism of injury, NSE had only a fair to poor predictive value. In a clinical setting, where the types of injuries are varied, more investigation is required to yield a panel of serum markers that can reliably predict the extent of injury. Allometric scaling may improve estimation of serum marker release in pediatric populations.

  7. In vivo MRI quantification of individual muscle and organ volumes for assessment of anabolic steroid growth effects.

    Science.gov (United States)

    Wu, Ed X; Tang, Haiying; Tong, Christopher; Heymsfield, Steve B; Vasselli, Joseph R

    2008-04-01

    This study aimed to develop a quantitative and in vivo magnetic resonance imaging (MRI) approach to investigate the muscle growth effects of anabolic steroids. A protocol of MRI acquisition on a standard clinical 1.5 T scanner and quantitative image analysis was established and employed to measure the individual muscle and organ volumes in the intact and castrated guinea pigs undergoing a 16-week treatment protocol by two well-documented anabolic steroids, testosterone and nandrolone, via implanted silastic capsules. High correlations between the in vivo MRI and postmortem dissection measurements were observed for shoulder muscle complex (R=0.86), masseter (R=0.79), temporalis (R=0.95), neck muscle complex (R=0.58), prostate gland and seminal vesicles (R=0.98), and testis (R=0.96). Furthermore, the longitudinal MRI measurements yielded adequate sensitivity to detect the restoration of growth to or towards normal in castrated guinea pigs by replacing circulating steroid levels to physiological or slightly higher levels, as expected. These results demonstrated that quantitative MRI using a standard clinical scanner provides accurate and sensitive measurement of individual muscles and organs, and this in vivo MRI protocol in conjunction with the castrated guinea pig model constitutes an effective platform to investigate the longitudinal and cross-sectional growth effects of other potential anabolic steroids. The quantitative MRI protocol developed can also be readily adapted for human studies on most clinical MRI scanner to investigate the anabolic steroid growth effects, or monitor the changes in individual muscle and organ volume and geometry following injury, strength training, neuromuscular disorders, and pharmacological or surgical interventions.

  8. THREE-DIMENSIONAL ASSESSMENT OF THE PHARYNGEAL AIRWAY AND MAXILLARY SINUS VOLUMES IN INDIVIDUALS WITH NON-SYNDROMIC CLEFT LIP AND PALATE

    Directory of Open Access Journals (Sweden)

    Ana NEMȚOI

    2015-09-01

    Full Text Available Introduction: Children with cleft lip and palate (CLP are known to have airway problems. Introduction of ConeBeam CT (CBCT and imaging software has facilitated generation of 3D images for assessing the volume of maxillary sinuses and pharyngeal airway. Consequently, the present study aimed at evaluating and comparing the maxillary sinus and pharyngeal airway volume of patients with cleft lip and palate in healthy patients, using cone beam computed tomography (CBCT images. Materials and method: The sample group included 27 individuals (15 with cleft lip and palate subjects and 12 healthy subjects. The pharyngeal airway and each maxillary sinus were three-dimensionally assessed, segmented and their volume was calculated. A comparison between the right and left sinus was performed by Student t-test, and the differences between the control and cleft groups were calculated using ANOVA. Results: No statistically significant differences were found when the maxillary sinuses volumes from each side were compared (p >0.05. The unilateral CLP patients presented the lowest sinus volume. Individuals with CLP did not exhibit a total airway volume smaller than the nonCLP controls. Conclusions: 3D imaging using CBCT and Romexis software is reliable for assessing maxillary sinus and pharyngeal airway volume. The present study showed that the pharyngeal airway is not compromised in CLP individuals. The unilateral CLP individuals present maxillary sinuses with smaller volumes, no differences being recorded between the cleft and non-cleft side.

  9. Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus.

    Science.gov (United States)

    Jimenez-Mateos, Eva M; Engel, Tobias; Merino-Serrais, Paula; Fernaud-Espinosa, Isabel; Rodriguez-Alvarez, Natalia; Reynolds, James; Reschke, Cristina R; Conroy, Ronan M; McKiernan, Ross C; deFelipe, Javier; Henshall, David C

    2015-07-01

    Emerging data support roles for microRNA (miRNA) in the pathogenesis of various neurologic disorders including epilepsy. MicroRNA-134 (miR-134) is enriched in dendrites of hippocampal neurons, where it negatively regulates spine volume. Recent work identified upregulation of miR-134 in experimental and human epilepsy. Targeting miR-134 in vivo using antagomirs had potent anticonvulsant effects against kainic acid-induced seizures and was associated with a reduction in dendritic spine number. In the present study, we measured dendritic spine volume in mice injected with miR-134-targeting antagomirs and tested effects of the antagomirs on status epilepticus triggered by the cholinergic agonist pilocarpine. Morphometric analysis of over 6,400 dendritic spines in Lucifer yellow-injected CA3 pyramidal neurons revealed increased spine volume in mice given antagomirs compared to controls that received a scrambled sequence. Treatment of mice with miR-134 antagomirs did not alter performance in a behavioral test (novel object location). Status epilepticus induced by pilocarpine was associated with upregulation of miR-134 within the hippocampus of mice. Pretreatment of mice with miR-134 antagomirs reduced the proportion of animals that developed status epilepticus following pilocarpine and increased animal survival. In antagomir-treated mice that did develop status epilepticus, seizure onset was delayed and total seizure power was reduced. These studies provide in vivo evidence that miR-134 regulates spine volume in the hippocampus and validation of the seizure-suppressive effects of miR-134 antagomirs in a model with a different triggering mechanism, indicating broad conservation of anticonvulsant effects.

  10. Effects of birthplace and individual genetic admixture on lung volume and exercise phenotypes of Peruvian Quechua.

    Science.gov (United States)

    Brutsaert, Tom D; Parra, Esteban; Shriver, Mark; Gamboa, Alfredo; Palacios, Jose-Antonio; Rivera, Maria; Rodriguez, Ivette; León-Velarde, Fabiola

    2004-04-01

    Forced vital capacity (FVC) and maximal exercise response were measured in two populations of Peruvian males (age, 18-35 years) at 4,338 m who differed by the environment in which they were born and raised, i.e., high altitude (Cerro de Pasco, Peru, BHA, n = 39) and sea level (Lima, Peru, BSL, n = 32). BSL subjects were transported from sea level to 4,338 m, and were evaluated within 24 hr of exposure to hypobaric hypoxia. Individual admixture level (ADMIX, % Spanish ancestry) was estimated for each subject, using 22 ancestry-informative genetic markers and also by skin reflectance measurement (MEL). Birthplace accounted for the approximately 10% larger FVC (P < 0.001), approximately 15% higher maximal oxygen consumption (VO(2)max, ml.min(-1).kg(-1)) (P < 0.001), and approximately 5% higher arterial oxygen saturation during exercise (SpO(2)) (P < 0.001) of BHA subjects. ADMIX was low in both study groups, averaging 9.5 +/- 2.6% and 2.1 +/- 0.3% in BSL and BHA subjects, respectively. Mean underarm MEL was significantly higher in the BSL group (P < 0.001), despite higher ADMIX. ADMIX was not associated with any study phenotype, but study power was not sufficient to evaluate hypotheses of genetic adaptation via the ADMIX variable. MEL and FVC were positively correlated in the BHA (P = 0.035) but not BSL (P = 0.335) subjects. However, MEL and ADMIX were not correlated across the entire study sample (P = 0.282). In summary, results from this study emphasize the importance of developmental adaptation to high altitude. While the MEL-FVC correlation may reflect genetic adaptation to high altitude, study results suggest that alternate (environmental) explanations be considered.

  11. Comparison of the Pharyngeal Airway Volume between Non-Syndromic Unilateral Cleft Palate and Normal Individuals Using Cone Beam Computed Tomography

    Science.gov (United States)

    Shahidi, Shoaleh; Momeni Danaie, Shahla; Omidi, Mahsa

    2016-01-01

    Statement of the Problem: Individuals with cleft lip and cleft palate mostly have airway problems. Introduction of cone beam computed tomography (CBCT) and imaging software has provided the opportunity for a more precisely evaluating 3D volume of the airway. Purpose: The purpose of this study was to analyze and compare 3D the pharyngeal airway volumes of cleft palate patients with normal individuals using CBCT. Materials and Method: 30 complete cleft palate patients were selected from the Department of Orthodontics; Dental University (Shiraz, Iran) who had CBCT scans of the head. The control group included 30 individuals with Class I angle occlusion who were matched for age and gender with the experimental group. ITK-SNAP 2.4.0 PC software was used to build 3D models of the airways for the subjects and measuring airway volumes. The statistical analyses were performed using SPSS software (version 19). Mann-Whitney test was adopted with p< 0.05 as statistical significance. Results: The average volume of the pharyngeal airway of cleft group was 18.6 cm3, with mean volumes of 6.8 cm3 for the superior component and 11.3 cm3 for the inferior component. The total and superior airway volume of cleft group were significantly lower than non-cleft groups (p= 0.008, p= 0.00, respectively) but the inferior airway volumes were not significantly different between the cleft and non-cleft groups. There was a significant and positive correlation between superior airway volume and inferior airway volume in cleft palate patients (r=+0.786, p< 0.001) and control group (r=+0.575, p= 0.001). Conclusion: 3D analysis showed that the nasal and total airway was restricted in individuals with cleft palate but the inferior airway was not compromised in these individuals. This would be a crucial data to be considered for surgeons during surgical planning. PMID:27840840

  12. Comparison of the Pharyngeal Airway Volume between Non-Syndromic Unilateral Cleft Palate and Normal Individuals Using Cone Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Shoaleh Shahidi

    2016-09-01

    Full Text Available Statement of the Problem: Individuals with cleft lip and cleft palate mostly have airway problems. Introduction of cone beam computed tomography (CBCT and imaging software has provided the opportunity for a more precisely evaluating 3D volume of the airway. Purpose: The purpose of this study was to analyze and compare 3D the pharyngeal airway volumes of cleft palate patients with normal individuals using CBCT. Materials and Method: 30 complete cleft palate patients were selected from the Department of Orthodontics; Dental University (Shiraz, Iran who had CBCT scans of the head. The control group included 30 individuals with Class I angle occlusion who were matched for age and gender with the experimental group. ITK-SNAP 2.4.0 PC software was used to build 3D models of the airways for the subjects and measuring airway volumes. The statistical analyses were performed using SPSS software (version 19. Mann-Whitney test was adopted with p< 0.05 as statistical significance. Results: The average volume of the pharyngeal airway of cleft group was 18.6 cm3, with mean volumes of 6.8 cm3 for the superior component and 11.3 cm3 for the inferior component. The total and superior airway volume of cleft group were significantly lower than non-cleft groups (p= 0.008, p= 0.00, respectively but the inferior airway volumes were not significantly different between the cleft and non-cleft groups. There was a significant and positive correlation between superior airway volume and inferior airway volume in cleft palate patients (r=+0.786, p< 0.001 and control group (r=+0.575, p= 0.001. Conclusion: 3D analysis showed that the nasal and total airway was restricted in individuals with cleft palate but the inferior airway was not compromised in these individuals. This would be a crucial data to be considered for surgeons during surgical planning.

  13. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.

    Science.gov (United States)

    Dietzel, I; Heinemann, U; Lux, H D

    1989-01-01

    The aim of this investigation is to estimate the contribution of spatial glial K+ buffer currents to extracellular K+ homeostasis during enhanced neuronal activity. Neuronal hyperactivity was induced by electrical stimulation of the cortical surface or the ventrobasal thalamic nuclei of cats (5-50 Hz, 0.1-0.2 ms, two to three times threshold stimulation intensity, 5-20 s). The accompanying slow field potential changes were recorded simultaneously across the grey matter with vertical assemblies of eight micropipettes glued 300 microns apart. Using the Poisson equation, the amplitudes of the underlying current sources and sinks were calculated. The current source densities depended on the depth of recording, frequency, strength, and duration of the stimulation. Current sinks, corresponding to a removal of 0.1-0.5 mmoles of monovalent cations per liter of brain tissue and second from the extracellular space, were observed in middle cortical layers, whereas sources appeared at superficial and deeper sites. These sinks and sources might represent K+ moved across glial membranes by spatial buffer currents. The consequences of glial buffer currents of this magnitude were investigated with model calculations. It turned out that measurements of electrolyte and volume changes of the extracellular space (Dietzel et al. Exp. Brain Res. 40:432-439, 1980; Exp. Brain Res. 46:73-84, 1982) could only partially be explained by spatial buffer currents of this magnitude. Comparison of the calculated values with intracellular measurements in neurons and glial cells (Coles et al. Ann. N.Y. Acad. Sci. 481:303-317, 1986; Ballanyi et al. J. Physiol. 382:159-174, 1987) suggests that spatial buffering combines with an approximately equimolar KCl transport and, depending on the preparation, also K+/Na+-exchange across glial membranes.

  14. Long-term Effects of Maternal Deprivation on the Volume, Number and Size of Neurons in the Amygdala and Nucleus Accumbens of Rats.

    Science.gov (United States)

    Aleksić, Dubravka; Aksić, Milan; Radonjić, Nevena V; Jovanović, Aleksandar; Marković, Branka; Petronijević, Nataša; Radonjić, Vidosava; Mališ, Miloš; Filipović, Branislav

    2016-09-01

    Maternal deprivation (MD) in rodents is an important neurodevelopmental model for studying a variety of behavioral changes which closely resemble the symptoms of schizophrenia in humans. To determine whether early-life stress leads to changes in the limbic system structures: the amygdala and the nucleus accumbens, 9-day-old Wistar rats were exposed to 24 hour MD. On P60 the rats were sacrificed for morphometric analysis and their brains were compared to the control group. Results show that MD affected important limbic system structures: the amygdala and the nucleus accumbens, whose volume was decreased (17% of the control value for the amygdala and 9% of the control value for the nucleus accumbens ), as well as the number of neurons (41% of the control value for the amygdala and 43% of the control value for the nucleus accumbens ) and the size of their cells soma (12% of the control value for the amygdala and 33% of the control value for the nucleus accumbens ). This study indicates that early stress in life leads to changes in the morphology of the limbic areas of the brain, most probably due to the loss of neurons during postnatal development, and it further contributes to our understanding of the effects of maternal deprivation on brain development.

  15. Individual plant examination program: Perspectives on reactor safety and plant performance. Parts 2--5: Final report; Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC`s overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively.

  16. Automatic individualized contrast medium dosage during hepatic computed tomography by using computed tomography dose index volume (CTDI{sub vol})

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Anders; Cederlund, Kerstin; Aspelin, Peter; Brismar, Torkel B. [Intervention and Technology at Karolinska Institutet, Department of Clinical Science, Division of Medical Imaging and Technology, Stockholm (Sweden); Karolinska University Hospital in Huddinge, Department of Radiology, Stockholm (Sweden); Bjoerk, Jonas [FoU-centrum Skaane Skaanes Universitetssjukhus i Lund, Lund (Sweden); Nyman, Ulf [University of Lund, Department of Diagnostic Radiology, Lasarettet Trelleborg, Trelleborg (Sweden)

    2014-08-15

    To compare hepatic parenchymal contrast media (CM) enhancement during multi-detector row computed tomography (MDCT) and its correlation with volume pitch-corrected computed tomography dose index (CTDI{sub vol}) and body weight (BW). One hundred patients referred for standard three-phase thoraco-abdominal MDCT examination were enrolled. BW was measured in the CT suite. Forty grams of iodine was administered intravenously (iodixanol 320 mg I/ml at 5 ml/s or iomeprol 400 mg I/ml at 4 ml/s) followed by a 50-ml saline flush. CTDI{sub vol} presented by the CT equipment during the parenchymal examination was recorded. The CM enhancement of the liver was defined as the attenuation HU of the liver parenchyma during the hepatic parenchymal phase minus the attenuation in the native phase. Liver parenchymal enhancement was negatively correlated to both CTDI{sub vol} (r = -0.60) and BW (r = -0.64), but the difference in correlation between those two was not significant. CTDI{sub vol} may replace BW when adjusting CM doses to body size. This makes it potentially feasible to automatically individualize CM dosage by CT. (orig.)

  17. [Mirror neurons].

    Science.gov (United States)

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  18. A MATLAB toolbox for correcting within-individual effects of respiration rate and tidal volume on respiratory sinus arrhythmia during variable breathing.

    Science.gov (United States)

    Schulz, Stefan M; Ayala, Erica; Dahme, Bernhard; Ritz, Thomas

    2009-11-01

    Respiratory sinus arrhythmia (RSA) is a common estimator of vagal outflow to the heart, dependent on parasympathetic activity. During variable breathing, both respiration rate and tidal volume contribute substantially to within-individual RSA variance. A respiratory control method allows for within-individual correction of the time-domain index of RSA. rsaToolbox is a set of MATLAB programs for scoring respiration-corrected RSA using measurements of cardiac interbeat intervals, respiratory-cycle times, and tidal volumes, recorded at different paced-breathing frequencies. The within-individual regression of RSA divided by tidal volume upon total respiratory cycle time is then used to estimate the baseline vagal tone for each breath of a given total respiratory-cycle time. During a subsequent analysis, the difference between the observed RSA (divided by the tidal volume at each breath) and the RSA divided by the tidal volume that was predicted by the baseline equation serves as an estimate of changes in vagal tone. rsaToolbox includes a graphical user interface for intuitive handling. Modular implementation of the algorithm also allows for flexible integration within other analytic strategies or for batch processing.

  19. Impact of 5-Hz rTMS over the primary sensory cortex is related to white matter volume in individuals with chronic stroke.

    Science.gov (United States)

    Brodie, Sonia M; Borich, Michael R; Boyd, Lara A

    2014-11-01

    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that may facilitate mechanisms of motor learning. In a recent single-blind, pseudo-randomized study, we showed that 5-Hz rTMS over ipsilesional primary somatosensory cortex followed by practice of a skilled motor task enhanced motor learning compared with sham rTMS + practice in individuals with chronic stroke. However, the beneficial effect of stimulation was inconsistent. The current study examined how differences in sensorimotor cortex morphology might predict rTMS-related improvements in motor learning in these individuals. High-resolution T1-weighted magnetic resonance images were acquired and processed in FreeSurfer using a newly developed automated, whole brain parcellation technique. Gray matter and white matter volumes of the ipsilesional primary somatosensory and motor cortices were extracted. A significant positive association was observed between the volume of white matter in the primary somatosensory cortex and motor learning-related change, exclusively in the group that received active 5-Hz rTMS. A regression model with age, gray matter and white matter volumes as predictors was significant for predicting motor learning-related change in individuals who received active TMS. White matter volume predicted the greatest amount of variance (47.6%). The same model was non-significant when volumes of the primary motor cortex were considered. We conclude that white matter volume in the cortex underlying the TMS coil may be a novel predictor for behavioral response to 5-Hz rTMS over the ipsilesional primary somatosensory followed by motor practice.

  20. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca2+ transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Tobias eMühling

    2014-11-01

    Full Text Available Disturbances in Ca2+ homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS, a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca2+ homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs from a common ALS mouse model, endstage superoxide dismutase SOD1G93A transgenic mice, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca2+ uptake capacity and elevated Ca2+ extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca2+ transporters in individual, choline-acetyltransferase (ChAT positive hMNs from wildtype (WT and endstage SOD1G93A mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1G93A mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca2+ transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca2+ transporters MCU/MICU1, Letm1 and UCP2 in remaining hMNs from endstage SOD1G93A mice. These higher expression-levels of mitochondrial Ca2+ transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na2+/Ca2+exchanger NCX1 was also about 2-fold higher in hMNs from SOD1G93A mice. Thus, pharmacological stimulation of Ca2+ transporters in highly vulnerable hMNs might offer a novel neuroprotective strategy for ALS.

  1. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones.

    Science.gov (United States)

    Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-01-01

    How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes-with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later.

  2. Synthesis and evaluation of the racemate and individual enantiomers of C-11 labeled methylphenidate as radioligands for the presynaptic dopaminergic neuron

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y.S.; Fowler, J.S.; Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1994-05-01

    Methylphenidate (MP, ritalin) is a psychostimulant drug widely used to treat attention deficit hyperactivity disorder and narcolepsy. Its therapeutic properties are attributed to inhibition of the dopamine (DA) transporter enhancing synaptic DA. MP has two chiral centers and is marketed as the dl-threo racemic form. However, its pharmacological activity is believed due solely to the d-enantiomer. We have synthesized [{sup 11}C]d,l-threo-methylphenidate ([{sup 11}C]MP) in order to examine its pharmacokinetics in vivo and to examine its suitability as a radioligand for PET studies of the presynaptic DA neuron. [{sup 11}C]MP was prepared by O-{sup 11}C-alkylation of a protected derivative of ritalinic acid with labeled methyl iodide. Serial studies at baseline and after treatment with methylphenidate (0.5 mg/kg, 20 min prior); GBR 12909 (1.5 mg/kg; 30 min prior); tomoxetine (1.5 mg/kg, 20 min prior) and citalopram (2.0 mg/kg, 30 min prior) were performed to assess non-specific binding and binding to the DA, norepinephrine and serotonin transporters respectively. Only MP and GBR 12909 changed the SR/CB distribution volume ratio (decrease of 38 and 37% respectively) demonstrating selectivity for DA transporters over other monoamine transporters. We then pursued the synthesis of enantiomerically pure C-{sup 11} labeled d- and l-MP by using enantiomerically pure protected d- and l-ritalinic acids as precursors. A striking difference in SR/CB ratio (3.3 and 1.1 for d- and l-respectively at 1 hr. after i.v. injections) strongly suggests that the pharmacological specificity of MP resides entirely in the d-isomer and the binding of l-isomer was mostly non-specific. Further evaluations are underway. Radioligand reversibility, selectivity and the fact that MP is an approved drug are advantages of using [{sup 11}C]MP.

  3. Volume Entropy

    CERN Document Server

    Astuti, Valerio; Rovelli, Carlo

    2016-01-01

    Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states --with finite-volume individual nodes-- describing a region with total volume smaller than $V$, has \\emph{finite} dimension, bounded by $V \\log V$. This allows us to introduce the notion of "volume entropy": the von Neumann entropy associated to the measurement of volume.

  4. Linear correlation between the number of olfactory sensory neurons expressing a given mouse odorant receptor gene and the total volume of the corresponding glomeruli in the olfactory bulb

    Science.gov (United States)

    Bressel, Olaf Christian; Khan, Mona

    2015-01-01

    ABSTRACT Chemosensory specificity in the main olfactory system of the mouse relies on the expression of ∼1,100 odorant receptor (OR) genes across millions of olfactory sensory neurons (OSNs) in the main olfactory epithelium (MOE), and on the coalescence of OSN axons into ∼3,600 glomeruli in the olfactory bulb. A traditional approach for visualizing OSNs and their axons consists of tagging an OR gene genetically with an axonal marker that is cotranslated with the OR by virtue of an internal ribosome entry site (IRES). Here we report full cell counts for 15 gene‐targeted strains of the OR‐IRES‐marker design coexpressing a fluorescent protein. These strains represent 11 targeted OR genes, a 1% sample of the OR gene repertoire. We took an empirical, “count every cell” strategy: we counted all fluorescent cell profiles with a nuclear profile within the cytoplasm, on all serial coronal sections under a confocal microscope, a total of 685,673 cells in 56 mice at postnatal day 21. We then applied a strain‐specific Abercrombie correction to these OSN counts in order to obtain a closer approximation of the true OSN numbers. We found a 17‐fold range in the average (corrected) OSN number across these 11 OR genes. In the same series of coronal sections, we then determined the total volume of the glomeruli (TGV) formed by coalescence of the fluorescent axons. We found a strong linear correlation between OSN number and TGV, suggesting that TGV can be used as a surrogate measurement for estimating OSN numbers in these gene‐targeted strains. J. Comp. Neurol. 524:199–209, 2016. © 2015 Wiley Periodicals, Inc. PMID:26100963

  5. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium

    OpenAIRE

    van Erp, T. G. M.; Hibar, D.P.; Rasmussen, J M; Glahn, D. C.; Pearlson, G.D.; Andreassen, O.A.; Agartz, I; Westlye, L T; Haukvik, U K; Dale, A. M.; Melle, I.; Hartberg, C B; Gruber, O.; Kraemer, B; Zilles, D.

    2015-01-01

    IN_PRESS The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them acc...

  6. Comparison of two flow-based imaging methods to measure individual red blood cell area and volume.

    Science.gov (United States)

    Tomaiuolo, Giovanna; Rossi, Domenico; Caserta, Sergio; Cesarelli, Mario; Guido, Stefano

    2012-12-01

    The red blood cells (RBCs) population is characterized by a high heterogeneity in membrane area, cellular volume, and mechanical properties, mainly due to the variety of mechanical and chemical stresses that a red cell undergoes in its entire life span. Here, we provide the first simultaneous area and volume measurements of RBCs flowing in microcapillaries, by using high-speed video microscopy imaging and quantitative data processing based on image analysis techniques. Both confined and unbounded flow conditions (depending on the relative size of RBCs and microcapillary diameter) are investigated. The results are compared with micropipette experiments from the literature and data from Coulter counter routine clinical blood tests. Good agreement is found for RBC volume, especially in the case of confined flow conditions. Surface area measurements, which are lacking in the routine clinical test, are of special interest being a potential diagnostic parameter of altered cell deformability and aggregability. Overall, our results provide a novel flow methodology suitable for high-throughput measurements of RBC geometrical parameters, allowing one to overcome the limits of classical static methods, such as micropipette aspiration, which are not suitable for handling a large number of cells.

  7. In vitro maturation system for individual culture of bovine oocytes using micro-volume multi-well plate.

    Science.gov (United States)

    Nagano, Masashi; Kang, Sung-Sik; Koyama, Keisuke; Huang, Weiping; Yanagawa, Yojiro; Takahashi, Yoshiyuki

    2013-11-01

    As a preliminary study for the development of individual in vitro maturation (IVM) culture of bovine oocytes, a multi-well (MW) plate was used. Maturation, fertilization and development to blastocysts were examined and compared with those of IVM oocytes cultured in 50-microl droplets in groups and in 10-microl droplets individually. The maturation rates were similar in all experimental groups. Normal fertilization rates in MW and 50-microl droplets were similar, but lower in 10-microl droplets (p culture.

  8. Localized gray matter volume reductions in the pars triangularis of the inferior frontal gyrus in individuals at clinical high-risk for psychosis and first episode for schizophrenia.

    Science.gov (United States)

    Iwashiro, Norichika; Suga, Motomu; Takano, Yosuke; Inoue, Hideyuki; Natsubori, Tatsunobu; Satomura, Yoshihiro; Koike, Shinsuke; Yahata, Noriaki; Murakami, Mizuho; Katsura, Masaki; Gonoi, Wataru; Sasaki, Hiroki; Takao, Hidemasa; Abe, Osamu; Kasai, Kiyoto; Yamasue, Hidenori

    2012-05-01

    Recent studies have suggested an important role for Broca's region and its right hemisphere counterpart in the pathophysiology of schizophrenia, owing to its roles in language and interpersonal information processing. Broca's region consists of the pars opercularis (PO) and the pars triangularis (PT). Neuroimaging studies have suggested that they have differential functional roles in healthy individuals and contribute differentially to the pathogenesis of schizophrenic symptoms. However, volume changes in these regions in subjects with ultra-high risk for psychosis (UHR) or first-episode schizophrenia (FES) have not been clarified. In the present 3 Tesla magnetic resonance imaging study, we separately measured the gray matter volumes of the PO and PT using a reliable manual-tracing volumetry in 80 participants (20 with UHR, 20 with FES, and 40 matched controls). The controls constituted two groups: the first group was matched for age, sex, parental socioeconomic background, and intelligence quotient to UHR (n=20); the second was matched for those to FES (n=20). Compared with matched controls, the volume of the bilateral PT, but not that of the PO, was significantly reduced in the subjects with UHR and FES. The reduced right PT volume, which showed the largest effect size among regions-of-interest in the both UHR and FES groups, correlated with the severity of the positive symptoms also in the both groups. These results suggest that localized gray matter volume reductions of the bilateral PT represent a vulnerability to schizophrenia in contrast to the PO volume, which was previously found to be reduced in patients with chronic schizophrenia. The right PT might preferentially contribute to the pathogenesis of psychotic symptoms.

  9. NeuronBank: A Tool for Cataloging Neuronal Circuitry.

    Science.gov (United States)

    Katz, Paul S; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  10. NeuronBank: a tool for cataloging neuronal circuitry

    Directory of Open Access Journals (Sweden)

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  11. NeuronBank: A Tool for Cataloging Neuronal Circuitry

    Science.gov (United States)

    Katz, Paul S.; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C.; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models. PMID:20428500

  12. HPA-axis function and grey matter volume reductions: imaging the diathesis-stress model in individuals at ultra-high risk of psychosis.

    Science.gov (United States)

    Valli, I; Crossley, N A; Day, F; Stone, J; Tognin, S; Mondelli, V; Howes, O; Valmaggia, L; Pariante, C; McGuire, P

    2016-05-03

    The onset of psychosis is thought to involve interactions between environmental stressors and the brain, with cortisol as a putative mediator. We examined the relationship between the cortisol stress response and brain structure in subjects at ultra-high risk (UHR) for psychosis. Waking salivary cortisol was measured in 22 individuals at UHR for psychosis and 17 healthy controls. Grey matter volume was assessed using magnetic resonance imaging at 3 T. The relationship between the stress response and grey matter volume was investigated using voxel-based analyses. Our predictions of the topography of cortisol action as a structural brain modulator were informed by measures of brain glucocorticoid and mineralcorticoid receptor distribution obtained from the multimodal neuroanatomical and genetic Allen Brain Atlas. Across all subjects, reduced responsivity of the hypothalamus-pituitary-adrenal (HPA) axis was correlated with smaller grey matter volumes in the frontal, parietal and temporal cortex and in the hippocampus. This relationship was particularly marked in the UHR subjects in the right prefrontal, left parahippocampal/fusiform and parietal cortices. The subgroup that subsequently developed psychosis showed a significant blunting of HPA stress response, observed at trend level also in the whole UHR sample. Altered responses to stress in people at high risk of psychosis are related to reductions in grey matter volume in areas implicated in the vulnerability to psychotic disorders. These areas may represent the neural components of a stress vulnerability model.

  13. Association between waist circumference and gray matter volume in 2344 individuals from two adult community-based samples.

    Science.gov (United States)

    Janowitz, Deborah; Wittfeld, Katharina; Terock, Jan; Freyberger, Harald Jürgen; Hegenscheid, Katrin; Völzke, Henry; Habes, Mohamad; Hosten, Norbert; Friedrich, Nele; Nauck, Matthias; Domanska, Grazyna; Grabe, Hans Jörgen

    2015-11-15

    We analyzed the putative association between abdominal obesity (measured in waist circumference) and gray matter volume (Study of Health in Pomerania: SHIP-2, N=758) adjusted for age and gender by applying volumetric analysis and voxel-based morphometry (VBM) with VBM8 to brain magnetic resonance (MR) imaging. We sought replication in a second, independent population sample (SHIP-TREND, N=1586). In a combined analysis (SHIP-2 and SHIP-TREND) we investigated the impact of hypertension, type II diabetes and blood lipids on the association between waist circumference and gray matter. Volumetric analysis revealed a significant inverse association between waist circumference and gray matter volume. VBM in SHIP-2 indicated distinct inverse associations in the following structures for both hemispheres: frontal lobe, temporal lobes, pre- and postcentral gyrus, supplementary motor area, supramarginal gyrus, insula, cingulate gyrus, caudate nucleus, olfactory sulcus, para-/hippocampus, gyrus rectus, amygdala, globus pallidus, putamen, cerebellum, fusiform and lingual gyrus, (pre-) cuneus and thalamus. These areas were replicated in SHIP-TREND. More than 76% of the voxels with significant gray matter volume reduction in SHIP-2 were also distinct in TREND. These brain areas are involved in cognition, attention to interoceptive signals as satiety or reward and control food intake. Due to our cross-sectional design we cannot clarify the causal direction of the association. However, previous studies described an association between subjects with higher waist circumference and future cognitive decline suggesting a progressive brain alteration in obese subjects. Pathomechanisms may involve chronic inflammation, increased oxidative stress or cellular autophagy associated with obesity.

  14. Enforcement actions: Significant actions resolved. Volume 14, No. 2, Part 1: Individual actions. Quarterly progress report, April--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1995) and includes copies of Orders sent by the Nuclear Regulatory Commission to individuals with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC. The Commission believes this information may be useful to licensees in making employment decisions.

  15. Enforcement actions: Significant actions resolved -- individual actions. Semiannual progress report, July--December 1997; Volume 16, Number 2, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This compilation summarizes significant enforcement actions that have been resolved during the period (July--December 1997) and includes copies of Orders and Notices of Violation sent by the Nuclear Regulatory Commission to individuals with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC. The Commission believes this information may be useful to licensees in making employment decisions.

  16. Efficient suppression of radiation damping in individual plasmonic resonators: towards high-Q nano-volume sensing

    DEFF Research Database (Denmark)

    Della Valle, G.; Bozhevolnyi, S. I.

    2012-01-01

    Recent results on radiation damping suppression in individual plasmonic resonators using conformal bending of the structure, which suppresses the electric-dipole response in favor of magnetic dipole one, are overviewed. It is demonstrated that bending of linear plasmonic nano-antennas increases...... significantly their Q factors above the electrostatic limit while preserving the nature of resonance along with its exceptional features, such as linear size-dependent tunability and robust field enhancement. The approach, which makes use of strong lateral confinement exhibited by the slow plasmonic modes (slow...

  17. Acute Effects of Caffeine on Heart Rate Variability, Blood Pressure and Tidal Volume in Paraplegic and Tetraplegic Compared to Able-Bodied Individuals: A Randomized, Blinded Trial

    Science.gov (United States)

    Flueck, Joelle Leonie; Schaufelberger, Fabienne; Lienert, Martina; Schäfer Olstad, Daniela; Wilhelm, Matthias; Perret, Claudio

    2016-01-01

    Caffeine increases sympathetic nerve activity in healthy individuals. Such modulation of nervous system activity can be tracked by assessing the heart rate variability. This study aimed to investigate the influence of caffeine on time- and frequency-domain heart rate variability parameters, blood pressure and tidal volume in paraplegic and tetraplegic compared to able-bodied participants. Heart rate variability was measured in supine and sitting position pre and post ingestion of either placebo or 6 mg caffeine in 12 able-bodied, 9 paraplegic and 7 tetraplegic participants in a placebo-controlled, randomized and double-blind study design. Metronomic breathing was applied (0.25 Hz) and tidal volume was recorded during heart rate variability assessment. Blood pressure, plasma caffeine and epinephrine concentrations were analyzed pre and post ingestion. Most parameters of heart rate variability did not significantly change post caffeine ingestion compared to placebo. Tidal volume significantly increased post caffeine ingestion in able-bodied (p = 0.021) and paraplegic (p = 0.036) but not in tetraplegic participants (p = 0.34). Systolic and diastolic blood pressure increased significantly post caffeine in able-bodied (systolic: p = 0.003; diastolic: p = 0.021) and tetraplegic (systolic: p = 0.043; diastolic: p = 0.042) but not in paraplegic participants (systolic: p = 0.09; diastolic: p = 0.33). Plasma caffeine concentrations were significantly increased post caffeine ingestion in all three groups of participants (p<0.05). Plasma epinephrine concentrations increased significantly in able-bodied (p = 0.002) and paraplegic (p = 0.032) but not in tetraplegic participants (p = 0.63). The influence of caffeine on the autonomic nervous system seems to depend on the level of lesion and the extent of the impairment. Therefore, tetraplegic participants may be less influenced by caffeine ingestion. Trial Registration ClinicalTrials.gov NCT02083328 PMID:27776149

  18. Estimate of size and total number of neurons in superior cervical ganglion of rat, capybara and horse.

    Science.gov (United States)

    Ribeiro, Antonio Augusto Coppi Maciel; Davis, Christine; Gabella, Giorgio

    2004-08-01

    The superior (cranial) cervical ganglion was investigated by light microscopy in adult rats, capybaras (Hydrochaeris hydrochaeris) and horses. The ganglia were vascularly perfused, embedded in resin and cut into semi-thin sections. An unbiased stereological procedure (disector method) was used to estimate ganglion neuron size, total number of ganglion neurons, neuronal density. The volume of the ganglion was 0.5 mm3 in rats, 226 mm3 in capybaras and 412 mm3 in horses. The total number of neurons per ganglion was 18,800, 1,520,000 and 3,390,000 and the number of neurons per cubic millimetre was 36,700, 7,000 and 8,250 in rats, capybaras and horses, respectively. The average neuronal size (area of the largest sectional profile of a neuron) was 358, 982 and 800 microm2, and the percentage of volume occupied by neurons was 33, 21 and 17% in rats, capybaras and horses, respectively. When comparing the three species (average body weight: 200 g, 40 kg and 200 kg), most of the neuronal quantitative parameters change in line with the variation of body weight. However, the average neuronal size in the capybara deviates from this pattern in being larger than that of in the horse. The rat presented great interindividual variability in all the neuronal parameters. From the data in the literature and our new findings in the capybara and horse, we conclude that some correlations exist between average size of neurons and body size and between total number of neurons and body size. However, these correlations are only approximate and are based on averaged parameters for large populations of neurons: they are less likely to be valid if one considers a single quantitative parameter. Several quantitative features of the nervous tissue have to be taken into account together, rather than individually, when evolutionary trends related to size are considered.

  19. From muscles synergies and individual goals to interpersonal synergies and shared goals: Mirror neurons and interpersonal action hierarchies. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by D'Ausilio et al.

    Science.gov (United States)

    Candidi, Matteo; Sacheli, Lucia Maria; Aglioti, Salvatore Maria

    2015-03-01

    D'Ausilio et al. [28] must be praised for bringing attention to the important question of how human Mirror Neurons (MNs) may contribute to action perception, prediction and understanding [1] and for linking their role with the granularity of the motor system as conceptualized in the domain of action control theories. Although we think that the Authors are right in saying that the granularity of the motor system constrains the granularity of the MN system, we speculate that the contribution of MNs to action perception, prediction and understanding is also constrained by the connections between MNs and other cortical and subcortical regions, and by the identity of MNs, i.e. whether they are interneurons or pyramidal cells [2]. In other words, the functional contribution of MS depends on whether they are connected to sensory, emotional and cognitive networks for the service of action perception, prediction and understanding.

  20. Individual differences in local gray and white matter volumes reflect differences in temperament and character: a voxel-based morphometry study in healthy young females.

    Science.gov (United States)

    Van Schuerbeek, Peter; Baeken, Chris; De Raedt, Rudi; De Mey, Johan; Luypaert, Rob

    2011-01-31

    The psychobiological personality model of Cloninger distinguishes four heritable temperament traits (harm avoidance (HA), novelty seeking (NS), reward dependence (RD) and persistence (P)) and three character traits (self-directedness (SD), cooperativeness (CO) and self-transcendence (ST)) which develop during lifetime. Prior research already showed that individual differences in temperament are reflected in structural variances in specific brain areas. In this study, we used voxel-based morphometry (VBM) to correlate the different temperament and character traits with local gray and white matter volumes (GMV and WMV) in young healthy female volunteers. We found correlations between the temperament traits and GMV and WMV in the frontal, temporal and limbic regions involved in controlling and generating the corresponding behavior as proposed in Cloninger's theory: anxious for HA, impulsive for NS, reward-directed for RD and goal-directed for P. The character traits correlated with GMV and WMV in the frontal, temporal and limbic regions involved in the corresponding cognitive tasks: self-reflection for SD, mentalizing and empathizing with others for CO and religious belief for ST. This study shows that individual variations in brain morphology can be related to the temperament and character dimensions, and lends support to the hypothesis of a neurobiological basis of personality traits.

  1. FDG-PET Response Prediction in Pediatric Hodgkin’s Lymphoma: Impact of Metabolically Defined Tumor Volumes and Individualized SUV Measurements on the Positive Predictive Value

    Energy Technology Data Exchange (ETDEWEB)

    Hussien, Amr Elsayed M. [Department of Nuclear Medicine (KME), Forschungszentrum Jülich, Medical Faculty, Heinrich-Heine-University Düsseldorf, Jülich, 52426 (Germany); Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225 (Germany); Furth, Christian [Department of Radiology and Nuclear Medicine, Medical School, Otto-von-Guericke University Magdeburg, Magdeburg, 39120 (Germany); Schönberger, Stefan [Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children’s Hospital, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225 (Germany); Hundsdoerfer, Patrick [Department of Pediatric Oncology and Hematology, Charité Campus Virchow, Humboldt-University Berlin, Berlin, 13353 (Germany); Steffen, Ingo G.; Amthauer, Holger [Department of Radiology and Nuclear Medicine, Medical School, Otto-von-Guericke University Magdeburg, Magdeburg, 39120 (Germany); Müller, Hans-Wilhelm; Hautzel, Hubertus, E-mail: h.hautzel@fz-juelich.de [Department of Nuclear Medicine (KME), Forschungszentrum Jülich, Medical Faculty, Heinrich-Heine-University Düsseldorf, Jülich, 52426 (Germany); Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225 (Germany)

    2015-01-28

    Background: In pediatric Hodgkin’s lymphoma (pHL) early response-to-therapy prediction is metabolically assessed by (18)F-FDG PET carrying an excellent negative predictive value (NPV) but an impaired positive predictive value (PPV). Aim of this study was to improve the PPV while keeping the optimal NPV. A comparison of different PET data analyses was performed applying individualized standardized uptake values (SUV), PET-derived metabolic tumor volume (MTV) and the product of both parameters, termed total lesion glycolysis (TLG); Methods: One-hundred-eight PET datasets (PET1, n = 54; PET2, n = 54) of 54 children were analysed by visual and semi-quantitative means. SUVmax, SUVmean, MTV and TLG were obtained the results of both PETs and the relative change from PET1 to PET2 (Δ in %) were compared for their capability of identifying responders and non-responders using receiver operating characteristics (ROC)-curves. In consideration of individual variations in noise and contrasts levels all parameters were additionally obtained after threshold correction to lean body mass and background; Results: All semi-quantitative SUV estimates obtained at PET2 were significantly superior to the visual PET2 analysis. However, ΔSUVmax revealed the best results (area under the curve, 0.92; p < 0.001; sensitivity 100%; specificity 85.4%; PPV 46.2%; NPV 100%; accuracy, 87.0%) but was not significantly superior to SUVmax-estimation at PET2 and ΔTLGmax. Likewise, the lean body mass and background individualization of the datasets did not impove the results of the ROC analyses; Conclusions: Sophisticated semi-quantitative PET measures in early response assessment of pHL patients do not perform significantly better than the previously proposed ΔSUVmax. All analytical strategies failed to improve the impaired PPV to a clinically acceptable level while preserving the excellent NPV.

  2. FDG-PET Response Prediction in Pediatric Hodgkin’s Lymphoma: Impact of Metabolically Defined Tumor Volumes and Individualized SUV Measurements on the Positive Predictive Value

    Directory of Open Access Journals (Sweden)

    Amr Elsayed M. Hussien

    2015-01-01

    Full Text Available Background: In pediatric Hodgkin’s lymphoma (pHL early response-to-therapy prediction is metabolically assessed by (18F-FDG PET carrying an excellent negative predictive value (NPV but an impaired positive predictive value (PPV. Aim of this study was to improve the PPV while keeping the optimal NPV. A comparison of different PET data analyses was performed applying individualized standardized uptake values (SUV, PET-derived metabolic tumor volume (MTV and the product of both parameters, termed total lesion glycolysis (TLG; Methods: One-hundred-eight PET datasets (PET1, n = 54; PET2, n = 54 of 54 children were analysed by visual and semi-quantitative means. SUVmax, SUVmean, MTV and TLG were obtained the results of both PETs and the relative change from PET1 to PET2 (Δ in % were compared for their capability of identifying responders and non-responders using receiver operating characteristics (ROC-curves. In consideration of individual variations in noise and contrasts levels all parameters were additionally obtained after threshold correction to lean body mass and background; Results: All semi-quantitative SUV estimates obtained at PET2 were significantly superior to the visual PET2 analysis. However, ΔSUVmax revealed the best results (area under the curve, 0.92; p < 0.001; sensitivity 100%; specificity 85.4%; PPV 46.2%; NPV 100%; accuracy, 87.0% but was not significantly superior to SUVmax-estimation at PET2 and ΔTLGmax. Likewise, the lean body mass and background individualization of the datasets did not impove the results of the ROC analyses; Conclusions: Sophisticated semi-quantitative PET measures in early response assessment of pHL patients do not perform significantly better than the previously proposed ΔSUVmax. All analytical strategies failed to improve the impaired PPV to a clinically acceptable level while preserving the excellent NPV.

  3. Automated identification of neurons and their locations

    CERN Document Server

    Inglis, Andrew; Roe, Dan L; Stanley, H E; Rosene, Douglas L; Urbanc, Brigita

    2007-01-01

    Individual locations of many neuronal cell bodies (>10^4) are needed to enable statistically significant measurements of spatial organization within the brain such as nearest-neighbor and microcolumnarity measurements. In this paper, we introduce an Automated Neuron Recognition Algorithm (ANRA) which obtains the (x,y) location of individual neurons within digitized images of Nissl-stained, 30 micron thick, frozen sections of the cerebral cortex of the Rhesus monkey. Identification of neurons within such Nissl-stained sections is inherently difficult due to the variability in neuron staining, the overlap of neurons, the presence of partial or damaged neurons at tissue surfaces, and the presence of non-neuron objects, such as glial cells, blood vessels, and random artifacts. To overcome these challenges and identify neurons, ANRA applies a combination of image segmentation and machine learning. The steps involve active contour segmentation to find outlines of potential neuron cell bodies followed by artificial ...

  4. Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat.

    Science.gov (United States)

    Ouda, Ladislav; Druga, Rastislav; Syka, Josef

    2012-01-01

    SMI-32 antibody recognizes a non-phosphorylated epitope of neurofilament proteins, which are thought to be necessary for the maintenance of large neurons with highly myelinated processes. We investigated the distribution and quantity of SMI-32-immunoreactive(-ir) neurons in individual parts of the rat auditory system. SMI-32-ir neurons were present in all auditory structures; however, in most regions they constituted only a minority of all neurons (10-30%). In the cochlear nuclei, a higher occurrence of SMI-32-ir neurons was found in the ventral cochlear nucleus. Within the superior olivary complex, SMI-32-ir cells were particularly abundant in the medial nucleus of the trapezoid body (MNTB), the only auditory region where SMI-32-ir neurons constituted an absolute majority of all neurons. In the inferior colliculus, a region with the highest total number of neurons among the rat auditory subcortical structures, the percentage of SMI-32-ir cells was, in contrast to the MNTB, very low. In the medial geniculate body, SMI-32-ir neurons were prevalent in the ventral division. At the cortical level, SMI-32-ir neurons were found mainly in layers III, V and VI. Within the auditory cortex, it was possible to distinguish the Te1, Te2 and Te3 areas on the basis of the variable numerical density and volumes of SMI-32-ir neurons, especially when the pyramidal cells of layer V were taken into account. SMI-32-ir neurons apparently form a representative subpopulation of neurons in all parts of the rat central auditory system and may belong to both the inhibitory and excitatory systems, depending on the particular brain region.

  5. Rhythm dynamics of complex neuronal networks with mixed bursting neurons

    Institute of Scientific and Technical Information of China (English)

    Lü Yong-Bing; Shi Xia; Zheng Yan-Hong

    2013-01-01

    The spatiotemporal order and rhythm dynamics of a complex neuronal network with mixed bursting neurons are studied in this paper.A quantitative characteristic,the width factor,is introduced to describe the rhythm dynamics of an individual neuron,and the average width factor is used to characterize the rhythm dynamics of a neuronal network.An r parameter is introduced to denote the ratio of the short bursting neurons in the network.Then we investigate the effect of the ratio on the rhythm dynamics of the neuronal network.The critical value of r is derived,and the neurons in the network always remain short bursting when the r ratio is larger than the critical value.

  6. Target volume delineation in individualized radiotherapy of non-surgical esophageal carcinoma%非手术食管癌个体化放疗的靶区勾画进展

    Institute of Scientific and Technical Information of China (English)

    营巧玲; 李前文; 杜云翔

    2014-01-01

    Individualized radiotherapy is the ideal model of radiation therapy, based on tailoring the treatment in a large num-ber of individual clinical, pathological and molecular genetic level. Two key problems exist in the implementation of individualized ra-diotherapy, one is how to identify and individually delineate the target volume of esophageal carcinoma, and the other is how to individ-ually implement the precise exposure. Due to technological advances and the renovation of equipment in radiotherapy for esophageal car-cinoma, the individualized implementation of the precise exposure has become possible. In recent years, with the advent of functional imaging, molecular imaging and other new technologies, it points out the future research direction of individualized tumor target volume delineation. This article reviewed the definition of the target volume in the individual radiotherapy of non-surgical esophageal carcinoma, which involves the application of new technologies such as anatomical imaging, functional imaging, hypoxia, molecular im-aging to individually identify and delineat the tumor target volume, including gross tumor volume, clinical tumor volume, planning tar-get volume, biological target volume and etc.%个体化放疗的实施取决于两个关键环节,首先是靶区的个体化识别和勾画,另一个是射线的个体化施照。由于放疗设备的更新和精确放疗技术的快速发展,实现射线个体化的精确施照成为可能。近年来,随着功能影像和分子显像等新技术的出现,指明了肿瘤个体化放疗靶区勾画的研究方向。本文对非手术食管癌患者个体化放疗的靶区勾画进行综述,内容涉及应用解剖影像、功能影像、乏氧和分子显像等新技术个体化识别和勾画非手术食管癌的放疗靶区,包括大体肿瘤靶区、临床靶区、计划靶区、生物靶区等。

  7. A new method to address unmet needs for extracting individual cell migration features from a large number of cells embedded in 3D volumes.

    Directory of Open Access Journals (Sweden)

    Ivan Adanja

    Full Text Available BACKGROUND: In vitro cell observation has been widely used by biologists and pharmacologists for screening molecule-induced effects on cancer cells. Computer-assisted time-lapse microscopy enables automated live cell imaging in vitro, enabling cell behavior characterization through image analysis, in particular regarding cell migration. In this context, 3D cell assays in transparent matrix gels have been developed to provide more realistic in vitro 3D environments for monitoring cell migration (fundamentally different from cell motility behavior observed in 2D, which is related to the spread of cancer and metastases. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we propose an improved automated tracking method that is designed to robustly and individually follow a large number of unlabeled cells observed under phase-contrast microscopy in 3D gels. The method automatically detects and tracks individual cells across a sequence of acquired volumes, using a template matching filtering method that in turn allows for robust detection and mean-shift tracking. The robustness of the method results from detecting and managing the cases where two cell (mean-shift trackers converge to the same point. The resulting trajectories quantify cell migration through statistical analysis of 3D trajectory descriptors. We manually validated the method and observed efficient cell detection and a low tracking error rate (6%. We also applied the method in a real biological experiment where the pro-migratory effects of hyaluronic acid (HA were analyzed on brain cancer cells. Using collagen gels with increased HA proportions, we were able to evidence a dose-response effect on cell migration abilities. CONCLUSIONS/SIGNIFICANCE: The developed method enables biomedical researchers to automatically and robustly quantify the pro- or anti-migratory effects of different experimental conditions on unlabeled cell cultures in a 3D environment.

  8. 镜像神经元:从个体认知到社会行为%Mirror Neuron Links Individual Cognition to Social Behavior

    Institute of Scientific and Technical Information of China (English)

    陈巍; 丁峻

    2009-01-01

    近十年来,一项被誉为可与DNA相媲美的神经科学新发现--镜像神经元(mirror neuron)逐渐成为未来神经科学、认知科学、心理学界的"研究宠儿",众多研究发现镜像神经元系统是人类社会认知的重要神经机制.该系统与人类的动作识别、意图理解、语言进化、共情等心理活动密切相关.文章介绍了该系统在个体认知和社会行为过程中的作用与意义,并对当前研究中所遗留的问题和未来研究方向作了反思与展望.

  9. Velocity neurons improve performance more than goal or position neurons do in a simulated closed-loop BCI arm-reaching task.

    Directory of Open Access Journals (Sweden)

    James Yu-Chang Liao

    2015-07-01

    Full Text Available Brain-Computer Interfaces (BCIs that convert brain-recorded neural signals into intended movement commands could eventually be combined with Functional Electrical Stimulation to allow individuals with Spinal Cord Injury to regain effective and intuitive control of their paralyzed limbs. To accelerate the development of such an approach, we developed a model of closed-loop BCI control of arm movements that (1 generates realistic arm movements (based on experimentally measured, visually-guided movements with real-time error correction, (2 simulates cortical neurons with firing properties consistent with literature reports, and (3 decodes intended movements from the noisy neural ensemble. With this model we explored (1 the relative utility of neurons tuned for different movement parameters (position, velocity, and goal and (2 the utility of recording from larger numbers of neurons – critical issues for technology development and for determining appropriate brain areas for recording. We simulated arm movements that could be practically restored to individuals with severe paralysis, i.e., movements from an armrest to a volume in front of the person. Performance was evaluated by calculating the smallest movement endpoint target radius within which the decoded cursor position could dwell for one second. Our results show that goal, position, and velocity neurons all contribute to improve performance. However, velocity neurons enabled smaller targets to be reached in shorter amounts of time than goal or position neurons. Increasing the number of neurons also improved performance, although performance saturated at 30-50 neurons for most neuron types. Overall, our work presents a closed-loop BCI simulator that models error corrections and the firing properties of various movement-related neurons that can be easily modified to incorporate different neural properties. We anticipate that this kind of tool will be important for development of future BCIs.

  10. Very Low Volume Sprint Interval Exercise Suppresses Subjective Appetite, Lowers Acylated Ghrelin, and Elevates GLP-1 in Overweight Individuals: A Pilot Study.

    Science.gov (United States)

    Holliday, Adrian; Blannin, Andrew K

    2017-04-05

    High-intensity exercise has been shown to elicit a transient suppression of appetite and create a more anorexigenic profile of appetite-associated hormones. It is yet to be fully elucidated whether such a response is observed following very low-volume, intermittent exercise at supramaximal intensity in those who are overweight. Eight overweight individuals (BMI 27.7 ± 1.7 kg·m²) completed resting (REST) and exercise (EX) trials in a counterbalanced order. EX consisted of 4 × 30 s "flat-out" cycling on an ergometer (adapted Wingate test). Two hours post-exercise (or REST), participants were presented with an ad libitum meal. Subjective appetite measures and blood samples were obtained throughout. Subjective appetite, measured using VAS, was significantly lower immediately after exercise compared with REST (38.0 ± 28.5 mm vs. 75.1 ± 26.2 mm, p = 0.018, d = 1.09). This difference remained significant 30 min post-exercise. Acylated ghrelin concentration was suppressed in EX compared with REST immediately post-exercise (113.4 ± 43.0 pg·mL(-1) vs. 189.2 ± 91.8 pg·mL(-1), p = 0.03, d = 1.07) and remained lower until the ad libitum test-meal. Area-under-the-curve for GLP-1 concentration was significantly greater for EX, versus REST. There was no difference in absolute adlibitum intake or relative energy intake. As little as 4 × 30 s of "flat-out" cycling was sufficient to elicit a transient suppression of appetite and an enduring suppression of plasma acylated ghrelin. Nonetheless, food intake 2-h post-exercise was unaffected.

  11. Grey matter volume and resting-state functional connectivity of the motor cortex-cerebellum network reflect the individual variation in masticatory performance in the healthy elderly people

    Directory of Open Access Journals (Sweden)

    Chia-Shu eLin

    2016-01-01

    Full Text Available Neuroimaging studies have consistently identified brain activation in the motor area and the cerebellum during chewing. In this study, we further investigated the structural and functional brain signature associated with masticatory performance, which is a widely used index for evaluating overall masticatory function in the elderly. Twenty-five healthy elderly participants underwent oral examinations, masticatory performance tests, and behavioral assessments, including the Cognitive Abilities Screening Instrument and the short-form Geriatric Depression Scale. Masticatory performance was assessed with the validated colorimetric method, using color-changeable chewing gum. T1-weighted structural magnetic resonance imaging (MRI and resting-state function MRI were performed. We analyzed alterations in grey matter volume (GMV using voxel-based morphometry and resting-state functional connectivity (rsFC between brain regions using the seed-based method. The structural and functional MRI analyses revealed the following findings: (1 the GMV change in the premotor cortex was positively correlated with masticatory performance. (2 The rsFC between the cerebellum and the premotor cortex was positively correlated with masticatory performance. (3 The GMV changes in the dorsolateral prefrontal cortex (DLPFC, as well as the rsFC between the cerebellum and the DLPFC, was positively correlated with masticatory performance. The findings showed that in the premotor cortex, a reduction of GMV and rsFC would reflect declined masticatory performance. The positive correlation between DLPFC connectivity and masticatory performance implies that masticatory ability is associated with cognitive function in the elderly. Our findings highlighted the role of the central nervous system in masticatory performance and increased our understanding of the structural and functional brain signature underlying individual variations in masticatory performance in the elderly.

  12. Neuron division or enucleation.

    Science.gov (United States)

    Sotnikov, O S; Laktionova, A A; Solovieva, I A; Krasnova, T V

    2010-10-01

    The classical Bielschowsky-Gross neurohistological method was used to reproduce all the morphological phenomena interpreted by many authors as signs of neuron division, budding, and fission. It is suggested that these signs are associated with the effects of enucleation, which occurs in many cells of other tissue types in response to a variety of chemical and physical treatments. Studies were performed using neurons isolated from the mollusk Lymnaea stagnalis and exposed in tissue culture to the actin microfilament inhibitor cytochalasin B. Phase contrast time-lapse video recording over periods of 4-8 h demonstrated nuclear displacement, ectopization, and budding, to the level of almost complete fission of the neuron body. This repeats the pattern seen in static fixed preparations in "normal" conditions and after different experimental treatments. Budding of the cytoplasm was also sometimes seen at the early stages of the experiments. Control experiments in which cultured neurons were exposed to the solvent for cytochalasin B, i.e., dimethylsulfoxide (DMSO), did not reveal any changes in neurons over a period of 8 h. We take the view that the picture previously interpreted as neuron division and fission can be explained in terms of the inhibition of actin microfilaments, sometimes developing spontaneously in cells undergoing individual metabolic changes preventing the maintenance of cytoskeleton stability.

  13. Human endogenous retrovirus-K contributes to motor neuron disease.

    Science.gov (United States)

    Li, Wenxue; Lee, Myoung-Hwa; Henderson, Lisa; Tyagi, Richa; Bachani, Muzna; Steiner, Joseph; Campanac, Emilie; Hoffman, Dax A; von Geldern, Gloria; Johnson, Kory; Maric, Dragan; Morris, H Douglas; Lentz, Margaret; Pak, Katherine; Mammen, Andrew; Ostrow, Lyle; Rothstein, Jeffrey; Nath, Avindra

    2015-09-30

    The role of human endogenous retroviruses (HERVs) in disease pathogenesis is unclear. We show that HERV-K is activated in a subpopulation of patients with sporadic amyotrophic lateral sclerosis (ALS) and that its envelope (env) protein may contribute to neurodegeneration. The virus was expressed in cortical and spinal neurons of ALS patients, but not in neurons from control healthy individuals. Expression of HERV-K or its env protein in human neurons caused retraction and beading of neurites. Transgenic animals expressing the env gene developed progressive motor dysfunction accompanied by selective loss of volume of the motor cortex, decreased synaptic activity in pyramidal neurons, dendritic spine abnormalities, nucleolar dysfunction, and DNA damage. Injury to anterior horn cells in the spinal cord was manifested by muscle atrophy and pathological changes consistent with nerve fiber denervation and reinnervation. Expression of HERV-K was regulated by TAR (trans-activation responsive) DNA binding protein 43, which binds to the long terminal repeat region of the virus. Thus, HERV-K expression within neurons of patients with ALS may contribute to neurodegeneration and disease pathogenesis. Copyright © 2015, American Association for the Advancement of Science.

  14. Helping the most vulnerable out of the poverty trap and reducing inequality: Policies, strategies, and services for individuals with Autism Spectrum Disorder, including intellectual and neurodevelopmental disabilities: BASE Project Report (Volume 2) NILT Survey Autism Module

    OpenAIRE

    Dillenburger, Karola; Jordan, Julie-Ann; McKerr, Lynne

    2013-01-01

    The primary purpose of the BASE Project was to establish how to help individuals with Autism Spectrum Disorder out of poverty by promoting social inclusion. In order to achieve this, a range of methodologies were utilised that aimed to provide a baseline against which the effect of the Autism Act (NI) 2011 and the associated Autism Strategy (2013-2020) and Action Plans can be measured. The BASE Project is reported in 5 volumes. Volume 2 reports on the analysis of the autism module of the Nort...

  15. Mirror neurons

    National Research Council Canada - National Science Library

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal...

  16. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  17. Determination of blood leukocyte concentration with constant volume acquisition on a flow cytometer is comparable to individualized single platform testing with beads as internal reference standard

    DEFF Research Database (Denmark)

    Hansen, Susan; Dahl, Ronald; Hoffmann, Hans Jürgen

    2008-01-01

    Flow cytometers have a constant flow rate. This enables flow cytometers to measure leukocyte concentrations in a determined volume by acquiring data at a fixed rate over a fixed time and is called constant volume acquisition (CVA). The volume aspirated by a FACS Calibur flow cytometer in 4 min...... at a high rate has a median of 163 microl (IQR 156-170) with TruCount tubes. Leukocyte concentrations of 26 healthy volunteers were measured twice on up to four occasions with a Bürker-Türk chamber, by single platform technology (SPT) with TruCount tubes and on the same data set using CVA. Total leukocyte...... concentrations determined by CVA correlated better with measurements in a Bürker-Türk (BT) chamber than with SPT. Concentrations determined with CVA were 1.86% higher than with BT whereas SPT data were 5.35% higher than BT (pCVA (p

  18. Homeostatic plasticity: single hippocampal neurons see the light.

    Science.gov (United States)

    Sutton, Michael A

    2010-11-04

    Neurons adapt to altered network activity through homeostatic changes in synaptic function. In this issue of Neuron, Goold and Nicoll report that chronic hyperactivation of individual CA1 pyramidal neurons drives cell-autonomous, compensatory synapse elimination via CaMKIV-dependent transcription. These findings suggest that neurons gauge their intrinsic activity to instruct homeostatic regulation of synaptic inputs.

  19. Effect of a mandatory iodization program on thyroid gland volume based on individuals' age, gender, and preceding severity of dietary iodine deficiency: A prospective, population-based study

    DEFF Research Database (Denmark)

    Vejbjerg, Pernille; Knudsen, Nils; Perrild, Hans

    2007-01-01

    Objective: We aimed to evaluate prospectively the effect of 4 yr of mandatory iodization of salt (13 ppm iodine) on thyroid volume in two regional areas with respectively mild and moderate iodine deficiency. Methods: Two separate cross-sectional studies were performed before (n = 4649) and after ...

  20. The relationship between the apolipoprotein E e4 allele and hippocampal magnetic resonance imaging volume in community-dwelling individuals with mild Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Walsh B

    2013-03-01

    Full Text Available Bernard Walsh,1 Stuart Slater,2 Balakrishnan Nair,3 John Attia3 1Department of Geriatric Medicine, John Hunter Hospital, Newcastle, Australia; 2Hunter Imaging Group, Cardiff, Australia; 3Centre for Clinical Epidemiology and Biostatics, University of Newcastle, Australia Background: The degree of hippocampal magnetic resonance imaging (MRI volume loss in Alzheimer's disease (AD is commonly accepted as a marker of disease severity, yet remains expensive, unavailable, or not tolerated by many patients. Aim: To examine whether the presence of one or more apolipoprotein E (ApoE e4 alleles is associated with smaller hippocampal MRI volumes in a population of early AD patients. Methods: A total of 88 consecutive patients attending a community-based memory disorders clinic who had both mild dementia on the Clinical Dementia Rating scale and Diagnostic and Statistical Manual of Mental Disorders criteria for probable AD were recruited. We examined the relationship between ApoE e4 allele load and hippocampal atrophy on MRI volumes. Results: There was no association between the ApoE e4 load and hippocampal volume in this cohort. Conclusion: This study suggests that the presence of one or more ApoE e4 alleles cannot be used to estimate pathological disease load in early AD. Keywords: apolipoprotein E, Alzheimer's disease, MRI, hippocampus

  1. Age-Related Differences in Memory and Executive Functions in Healthy "APOE"[epsilon]4 Carriers: The Contribution of Individual Differences in Prefrontal Volumes and Systolic Blood Pressure

    Science.gov (United States)

    Bender, Andrew R.; Raz, Naftali

    2012-01-01

    Advanced age and vascular risk are associated with declines in the volumes of multiple brain regions, especially the prefrontal cortex, and the hippocampus. Older adults, even unencumbered by declining health, perform less well than their younger counterparts in multiple cognitive domains, such as episodic memory, executive functions, and speed of…

  2. Reduced frontal brain volume in non-treatment-seeking cocaine-dependent individuals: exploring the role of impulsivity, depression, and smoking

    NARCIS (Netherlands)

    Crunelle, C.L.; Kaag, A.M.; Wingen, G. van; Munkhof, H.E. van den; Homberg, J.R.; Reneman, L.; Brink, W. van den

    2014-01-01

    In cocaine-dependent patients, gray matter (GM) volume reductions have been observed in the frontal lobes that are associated with the duration of cocaine use. Studies are mostly restricted to treatment-seekers and studies in non-treatment-seeking cocaine abusers are sparse. Here, we assessed GM vol

  3. NETMORPH: a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies

    NARCIS (Netherlands)

    Koene, R.A.; Tijms, B.; van Hees, P.; Postma, F.; de Ridder, A.; Ramakers, G.J.A.; van Pelt, J.; van Ooyen, A.

    2009-01-01

    We present a simulation framework, called NETMORPH, for the developmental generation of 3D large-scale neuronal networks with realistic neuron morphologies. In NETMORPH, neuronal morphogenesis is simulated from the perspective of the individual growth cone. For each growth cone in a growing axonal o

  4. [What mirror neurons have revealed: revisited].

    Science.gov (United States)

    Murata, Akira; Maeda, Kazutaka

    2014-06-01

    The first paper on mirror neurons was published in 1992. In the span of over two decades since then, much knowledge about the relationship between social cognitive function and the motor control system has been accumulated. Direct matching of visual actions and their corresponding motor representations is the most important functional property of mirror neuron. Many studies have emphasized intrinsic simulation as a core concept for mirror neurons. Mirror neurons are thought to play a role in social cognitive function. However, the function of mirror neurons in the macaque remains unclear, because such cognitive functions are limited or lacking in macaque monkeys. It is therefore important to discuss these neurons in the context of motor function. Rizzolatti and colleagues have stressed that the most important function of mirror neurons in macaques is recognition of actions performed by other individuals. I suggest that mirror neurons in the Macaque inferior pariental lobule might be correlated with body schema. In the parieto-premotor network, matching of corollary discharge and actual sensory feedback is an essential neuronal operation. Recently, neurons showing mirror properties were found in some cortical areas outside the mirror neuron system. The current work would revisit the outcomes of mirror neuron studies to discuss the function of mirror neurons in the monkey.

  5. Cryopreservation of adherent neuronal networks.

    Science.gov (United States)

    Ma, Wu; O'Shaughnessy, Thomas; Chang, Eddie

    2006-07-31

    Neuronal networks have been widely used for neurophysiology, drug discovery and toxicity testing. An essential prerequisite for future widespread application of neuronal networks is the development of efficient cryopreservation protocols to facilitate their storage and transportation. Here is the first report on cryopreservation of mammalian adherent neuronal networks. Dissociated spinal cord cells were attached to a poly-d-lysine/laminin surface and allowed to form neuronal networks. Adherent neuronal networks were embedded in a thin film of collagen gel and loaded with trehalose prior to transfer to a freezing medium containing DMSO, FBS and culture medium. This was followed by a slow rate of cooling to -80 degrees C for 24 h and then storage for up to 2 months in liquid nitrogen at -196 degrees C. The three components: DMSO, collagen gel entrapment and trehalose loading combined provided the highest post-thaw viability, relative to individual or two component protocols. The post-thaw cells with this protocol demonstrated similar neuronal and astrocytic markers and morphological structure as those detected in unfrozen cells. Fluorescent dye FM1-43 staining revealed active recycling of synaptic vesicles upon depolarizing stimulation in the post-thaw neuronal networks. These results suggest that a combination of DMSO, collagen gel entrapment and trehalose loading can significantly improve conventional slow-cooling methods in cryopreservation of adherent neuronal networks.

  6. From the neuron doctrine to neural networks.

    Science.gov (United States)

    Yuste, Rafael

    2015-08-01

    For over a century, the neuron doctrine--which states that the neuron is the structural and functional unit of the nervous system--has provided a conceptual foundation for neuroscience. This viewpoint reflects its origins in a time when the use of single-neuron anatomical and physiological techniques was prominent. However, newer multineuronal recording methods have revealed that ensembles of neurons, rather than individual cells, can form physiological units and generate emergent functional properties and states. As a new paradigm for neuroscience, neural network models have the potential to incorporate knowledge acquired with single-neuron approaches to help us understand how emergent functional states generate behaviour, cognition and mental disease.

  7. A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    Science.gov (United States)

    Wang, Yazhou; Wang, Wei; Li, Zong; Hao, Shilei; Wang, Bochu

    2016-10-01

    A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo conditions are introduced and analyzed. Second, research works in recent decades on the effects of different mechanical forces, especially compression and tension, on various neurons, including dorsal root ganglion neurons, retinal ganglion cells, cerebral cortex neurons, hippocampus neurons, neural stem cells, and other neurons, are summarized. Previous research results demonstrate that mechanical stress can not only injure neurons by damaging their morphology, impacting their electrophysiological characteristics and gene expression, but also promote neuron self-repair. Finally, some future perspectives in neuron research are discussed.

  8. Pan-neuronal imaging in roaming Caenorhabditis elegans.

    Science.gov (United States)

    Venkatachalam, Vivek; Ji, Ni; Wang, Xian; Clark, Christopher; Mitchell, James Kameron; Klein, Mason; Tabone, Christopher J; Florman, Jeremy; Ji, Hongfei; Greenwood, Joel; Chisholm, Andrew D; Srinivasan, Jagan; Alkema, Mark; Zhen, Mei; Samuel, Aravinthan D T

    2016-02-23

    We present an imaging system for pan-neuronal recording in crawling Caenorhabditis elegans. A spinning disk confocal microscope, modified for automated tracking of the C. elegans head ganglia, simultaneously records the activity and position of ∼80 neurons that coexpress cytoplasmic calcium indicator GCaMP6s and nuclear localized red fluorescent protein at 10 volumes per second. We developed a behavioral analysis algorithm that maps the movements of the head ganglia to the animal's posture and locomotion. Image registration and analysis software automatically assigns an index to each nucleus and calculates the corresponding calcium signal. Neurons with highly stereotyped positions can be associated with unique indexes and subsequently identified using an atlas of the worm nervous system. To test our system, we analyzed the brainwide activity patterns of moving worms subjected to thermosensory inputs. We demonstrate that our setup is able to uncover representations of sensory input and motor output of individual neurons from brainwide dynamics. Our imaging setup and analysis pipeline should facilitate mapping circuits for sensory to motor transformation in transparent behaving animals such as C. elegans and Drosophila larva.

  9. Individualizing Services, Individualizing Responsibility

    DEFF Research Database (Denmark)

    Garsten, Christina; Hollertz, Katarina; Jacobsson, Kerstin

    and responsibilising the unemployed individual? The paper finds that the individualisation that is taking place occurs as an individualisation of responsibility, more than as an individualisation of interventions. A related finding is that the social rights perspective is becoming performance......-oriented, and the normative demands placed on individuals appear increasingly totalizing, concerning the whole individual rather than the job-related aspects only. The paper is based on 23 in-depth interviews with individual clients as well as individual caseworkers and other professionals engaged in client-related work...

  10. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... properties of this facility in the path from synaptic sites to the motor axon is reviewed with emphasis on voltage sensitive ion channels and regulatory metabotropic transmitter pathways. The catalog of the intrinsic response properties, their underlying mechanisms, and regulation obtained from motoneurons...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  11. Enforcement actions: Significant actions resolved individual actions. Volume 14, Nos. 3 and 4, Part 1. Semiannual progress report, July--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This compilation summarizes significant enforcement actions that have been resolved during the period (July - December 1995) and includes copies of Orders and Notices of Violation sent by the Nuclear Regulatory Commission to individuals with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC. The Commission believes this information may be useful to licensees in making employment decisions.

  12. The Mirror Neuron System and Action Recognition

    Science.gov (United States)

    Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia

    2004-01-01

    Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…

  13. The Mirror Neuron System and Action Recognition

    Science.gov (United States)

    Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia

    2004-01-01

    Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…

  14. A primal analysis system of brain neurons data.

    Science.gov (United States)

    Pu, Dong-Mei; Gao, Da-Qi; Yuan, Yu-Bo

    2014-01-01

    It is a very challenging work to classify the 86 billions of neurons in the human brain. The most important step is to get the features of these neurons. In this paper, we present a primal system to analyze and extract features from brain neurons. First, we make analysis on the original data of neurons in which one neuron contains six parameters: room type, X, Y, Z coordinate range, total number of leaf nodes, and fuzzy volume of neurons. Then, we extract three important geometry features including rooms type, number of leaf nodes, and fuzzy volume. As application, we employ the feature database to fit the basic procedure of neuron growth. The result shows that the proposed system is effective.

  15. Influence of prior activity on residual limb volume and shape measured using plaster casting: Results from individuals with transtibial limb loss

    Directory of Open Access Journals (Sweden)

    Joan E. Sanders, PhD

    2013-10-01

    Full Text Available The purpose of this research was to determine whether prior activity affected the shape of a plaster cast taken of a transtibial residual limb. Plaster casts were taken twice on one day in 24 participants with transtibial limb loss, with 5 s between doffing and casting in one trial (PDI-5s and 20 min in the other trial (PDI-20m. The ordering of the trials was randomized. The mean +/- standard deviation radial difference between PDI-20m and PDI-5s was 0.34 +/- 0.21 mm when PDI-5s was conducted first and -0.02 +/- 0.20 mm when PDI-20m was conducted first. Ordering of the trials had a statistically significant influence on the mean radial difference between the two shapes (p = 0.008. The result shows that prior activity influenced the residual limb cast shape. Practitioners should be mindful of prior activity and doffing history when casting an individual's limb for socket design and prosthetic fitting.

  16. Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knockin neurons.

    Science.gov (United States)

    Rodríguez-Martín, Teresa; Pooler, Amy M; Lau, Dawn H W; Mórotz, Gábor M; De Vos, Kurt J; Gilley, Jonathan; Coleman, Michael P; Hanger, Diane P

    2016-01-01

    Expression of the frontotemporal dementia-related tau mutation, P301L, at physiological levels in adult mouse brain (KI-P301L mice) results in overt hypophosphorylation of tau and age-dependent alterations in axonal mitochondrial transport in peripheral nerves. To determine the effects of P301L tau expression in the central nervous system, we examined the kinetics of mitochondrial axonal transport and tau phosphorylation in primary cortical neurons from P301L knock-in (KI-P301L) mice. We observed a significant 50% reduction in the number of mitochondria in the axons of cortical neurons cultured from KI-P301L mice compared to wild-type neurons. Expression of murine P301L tau did not change the speed, direction of travel or likelihood of movement of mitochondria. Notably, the angle that defines the orientation of the mitochondria in the axon, and the volume of individual moving mitochondria, were significantly increased in neurons expressing P301L tau. We found that murine tau phosphorylation in KI-P301L mouse neurons was diminished and the ability of P301L tau to bind to microtubules was also reduced compared to tau in wild-type neurons. The P301L mutation did not influence the ability of murine tau to associate with membranes in cortical neurons or in adult mouse brain. We conclude that P301L tau is associated with mitochondrial changes and causes an early reduction in murine tau phosphorylation in neurons coupled with impaired microtubule binding of tau. These results support the association of mutant tau with detrimental effects on mitochondria and will be of significance for the pathogenesis of tauopathies. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  17. Calcium Homeostasis in ageing neurons

    Directory of Open Access Journals (Sweden)

    Vassiliki eNikoletopoulou

    2012-10-01

    Full Text Available The nervous system becomes increasingly vulnerable to insults and prone to dysfunction during ageing. Age-related decline of neuronal function is manifested by the late onset of many neurodegenerative disorders, as well as by reduced signalling and processing capacity of individual neuron populations. Recent findings indicate that impairment of Ca2+ homeostasis underlies the increased susceptibility of neurons to damage, associated with the ageing process. However, the impact of ageing on Ca2+ homeostasis in neurons remains largely unknown. Here, we survey the molecular mechanisms that mediate neuronal Ca2+ homeostasis and discuss the impact of ageing on their efficacy. To address the question of how ageing impinges on Ca2+ homeostasis, we consider potential nodes through which mechanisms regulating Ca2+ levels interface with molecular pathways known to influence the process of ageing and senescent decline. Delineation of this crosstalk would facilitate the development of interventions aiming to fortify neurons against age-associated functional deterioration and death by augmenting Ca2+ homeostasis.

  18. Simultaneous determination of the Cd and Zn total body burden of individual, nearly microscopic, nanoliter-volume aquatic organisms (Hyalella azteca) by rhenium-cup in-torch vaporization (ITV) sample introduction and axially viewed ICP-AES

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Andrea T.; Badiei, Hamid R.; Karanassios, Vassili [University of Waterloo, Department of Chemistry, Waterloo, ON (Canada); Evans, J. Catherine [University of Waterloo, Department of Biology, Waterloo, ON (Canada)

    2004-09-01

    The Cd and Zn total body burden of individual, up to 7-day-old aquatic organisms (Hyalella aztecabenthic amphipod) with an average volume of approximately 100 nL was determined simultaneously by using rhenium-cup (Re-cup) in-torch vaporization (ITV) sample introduction and an axially viewed inductively coupled plasma atomic emission spectrometry (ICP-AES) system. The direct elemental analysis capabilities of this system (i.e., no sample digestion) reduced sample preparation time, eliminated contamination concerns from the digestion reagent and, owing to its detection limits (e.g., in the low pg range for Cd and Zn), vit enabled simultaneous determinations of Cd and Zn in individual, neonate and young juvenile specimens barely visible to the unaided eye (e.g., nearly microscopic). As for calibration, liquid standards and the standard additions method were tested. Both methods gave comparable results, thus indicating that in this case liquid standards can be employed for calibration, and in the process making use of the standard additions method unnecessary. Overall, the ITV-ICP-AES approach by-passed the time-consuming acid digestions, eliminated the potential for contamination from the digestion reagents, improved considerably the speed of acquisition of analytical information and enabled simultaneous determinations of two elements using individual biological specimens. (orig.)

  19. Dopamine neurons share common response function for reward prediction error.

    Science.gov (United States)

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal.

  20. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  1. Bifurcation transitions in gap-junction-coupled neurons

    Science.gov (United States)

    Shaffer, Annabelle; Harris, Allison L.; Follmann, Rosangela; Rosa, Epaminondas

    2016-10-01

    Here we investigate transitions occurring in the dynamical states of pairs of distinct neurons electrically coupled, with one neuron tonic and the other bursting. Depending on the dynamics of the individual neurons, and for strong enough coupling, they synchronize either in a tonic or a bursting regime, or initially tonic transitioning to bursting via a period doubling cascade. Certain intrinsic properties of the individual neurons such as minimum firing rates are carried over into the dynamics of the coupled neurons affecting their ultimate synchronous state.

  2. Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations.

    Science.gov (United States)

    Schneider, Calvin J; Cuntz, Hermann; Soltesz, Ivan

    2014-10-01

    Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.

  3. [Neuronal network].

    Science.gov (United States)

    Langmeier, M; Maresová, D

    2005-01-01

    Function of the central nervous system is based on mutual relations among the nerve cells. Description of nerve cells and their processes, including their contacts was enabled by improvement of optical features of the microscope and by the development of impregnation techniques. It is associated with the name of Antoni van Leeuwenhoek (1632-1723), J. Ev. Purkyne (1787-1869), Camillo Golgi (1843-1926), and Ramón y Cajal (1852-1934). Principal units of the neuronal network are the synapses. The term synapse was introduced into neurophysiology by Charles Scott Sherrington (1857-1952). Majority of the interactions between nerve cells is mediated by neurotransmitters acting at the receptors of the postsynaptic membrane or at the autoreceptors of the presynaptic part of the synapse. Attachment of the vesicles to the presynaptic membrane and the release of the neurotransmitter into the synaptic cleft depend on the intracellular calcium concentration and on the presence of several proteins in the presynaptic element.

  4. Synaptic Circuit Organization of Motor Corticothalamic Neurons

    Science.gov (United States)

    Yamawaki, Naoki

    2015-01-01

    Corticothalamic (CT) neurons in layer 6 constitute a large but enigmatic class of cortical projection neurons. How they are integrated into intracortical and thalamo-cortico-thalamic circuits is incompletely understood, especially outside of sensory cortex. Here, we investigated CT circuits in mouse forelimb motor cortex (M1) using multiple circuit-analysis methods. Stimulating and recording from CT, intratelencephalic (IT), and pyramidal tract (PT) projection neurons, we found strong CT↔ CT and CT↔ IT connections; however, CT→IT connections were limited to IT neurons in layer 6, not 5B. There was strikingly little CT↔ PT excitatory connectivity. Disynaptic inhibition systematically accompanied excitation in these pathways, scaling with the amplitude of excitation according to both presynaptic (class-specific) and postsynaptic (cell-by-cell) factors. In particular, CT neurons evoked proportionally more inhibition relative to excitation (I/E ratio) than IT neurons. Furthermore, the amplitude of inhibition was tuned to match the amount of excitation at the level of individual neurons; in the extreme, neurons receiving no excitation received no inhibition either. Extending these studies to dissect the connectivity between cortex and thalamus, we found that M1-CT neurons and thalamocortical neurons in the ventrolateral (VL) nucleus were remarkably unconnected in either direction. Instead, VL axons in the cortex excited both IT and PT neurons, and CT axons in the thalamus excited other thalamic neurons, including those in the posterior nucleus, which additionally received PT excitation. These findings, which contrast in several ways with previous observations in sensory areas, illuminate the basic circuit organization of CT neurons within M1 and between M1 and thalamus. PMID:25653383

  5. The neurobiology of individuality

    Science.gov (United States)

    de Bivort, Benjamin

    2015-03-01

    Individuals often display conspicuously different patterns of behavior, even when they are very closely related genetically. These differences give rise to our sense of individuality, but what is their molecular and neurobiological basis? Individuals that are nominally genetically identical differ at various molecular and neurobiological levels: cell-to-cell variation in somatic genomes, cell-to-cell variation in expression patterns, individual-to-individual variation in neuronal morphology and physiology, and individual-to-individual variation in patterns of brain activity. It is unknown which of these levels is fundamentally causal of behavioral differences. To investigate this problem, we use the fruit fly Drosophila melanogaster, whose genetic toolkit allows the manipulation of each of these mechanistic levels, and whose rapid lifecycle and small size allows for high-throughput automation of behavioral assays. This latter point is crucial; identifying inter-individual behavioral differences requires high sample sizes both within and across individual animals. Automated behavioral characterization is at the heart of our research strategy. In every behavior examined, individual flies have individual behavioral preferences, and we have begun to identify both neural genes and circuits that control the degree of behavioral variability between individuals.

  6. Quantitative sodium MRI of the human brain at 9.4 T provides assessment of tissue sodium concentration and cell volume fraction during normal aging.

    Science.gov (United States)

    Thulborn, Keith; Lui, Elaine; Guntin, Jonathan; Jamil, Saad; Sun, Ziqi; Claiborne, Theodore C; Atkinson, Ian C

    2016-02-01

    Sodium ion homeostasis is a fundamental property of viable tissue, allowing the tissue sodium concentration to be modeled as the tissue cell volume fraction. The modern neuropathology literature using ex vivo tissue from selected brain regions indicates that human brain cell density remains constant during normal aging and attributes the volume loss that occurs with advancing age to changes in neuronal size and dendritic arborization. Quantitative sodium MRI performed with the enhanced sensitivity of ultrahigh-field 9.4 T has been used to investigate tissue cell volume fraction during normal aging. This cross-sectional study (n = 49; 21-80 years) finds that the in vivo tissue cell volume fraction remains constant in all regions of the brain with advancing age in individuals who remain cognitively normal, extending the ex vivo literature reporting constant neuronal cell density across the normal adult age range. Cell volume fraction, as measured by quantitative sodium MRI, is decreased in diseases of cell loss, such as stroke, on a time scale of minutes to hours, and in response to treatment of brain tumors on a time scale of days to weeks. Neurodegenerative diseases often have prodromal periods of decades in which regional neuronal cell loss occurs prior to clinical presentation. If tissue cell volume fraction can detect such early pathology, this quantitative parameter may permit the objective measurement of preclinical disease progression. This current study in cognitively normal aging individuals provides the basis for the pursuance of investigations directed towards such neurodegenerative diseases.

  7. Low-intensity treadmill exercise-related changes in the rat stellate ganglion neurons.

    Science.gov (United States)

    Cavalcanti, Renato Albuquerque de Oliveira; da Pureza, Demilto Yamaguchi; de Melo, Mariana Pereira; de Souza, Romeu Rodrigues; Bergamaschi, Cássia T; do Amaral, Sandra Lia; Tang, Helen; Loesch, Andrzej; Ribeiro, Antonio Augusto Coppi Maciel

    2009-05-01

    Stellate ganglion (SG) represents the main sympathetic input to the heart. This study aimed at investigating physical exercise-related changes in the quantitative aspects of SG neurons in treadmill-exercised Wistar rats. By applying state-of-the-art design-based stereology, the SG volume, total number of SG neurons, mean perikaryal volume of SG neurons, and the total volume of neurons in the whole SG have been examined. Arterial pressure and heart rate were also measured at the end of the exercise period. The present study showed that a low-intensity exercise training program caused a 12% decrease in the heart rate of trained rats. In contrast, there were no effects on systolic pressure, diastolic pressure, or mean arterial pressure. As to quantitative changes related to physical exercise, the main findings were a 21% increase in the fractional volume occupied by neurons in the SG, and an 83% increase in the mean perikaryal volume of SG neurons in treadmill-trained rats, which shows a remarkable neuron hypertrophy. It seems reasonable to infer that neuron hypertrophy may have been the result of a functional overload imposed on the SG neurons by initial posttraining sympathetic activation. From the novel stereological data we provide, further investigations are needed to shed light on the mechanistic aspect of neuron hypertrophy: what role does neuron hypertrophy play? Could neuron hypertrophy be assigned to the functional overload induced by physical exercise?

  8. [Neurons that encode sound direction].

    Science.gov (United States)

    Peña, J L

    In the auditory system, the inner ear breaks down complex signals into their spectral components, and encodes the amplitude and phase of each. In order to infer sound direction in space, a computation on each frequency component of the sound must be performed. Space specific neurons in the owl s inferior colliculus respond only to sounds coming from a particular direction and represent the results of this computation. The interaural time difference (ITD) and interaural level difference (ILD define the auditory space for the owl and are processed in separate neural pathways. The parallel pathways that process these cues merge in the external nucleus of the inferior colliculus where the space specific neurons are selective to combinations of ITD and ILD. How do inputs from the two sources interact to produce combination selectivity to ITD ILD pairs? A multiplication of postsynaptic potentials tuned to ITD and ILD can account for the subthreshold responses of these neurons to ITD ILD pairs. Examples of multiplication by neurons or neural circuits are scarce, but many computational models assume the existence of this basic operation. The owl s auditory system uses such operation to create a 2 dimensional map of auditory space. The map of space in the owl s auditory system shows important similarities with representations of space in the cerebral cortex and other sensory systems. In encoding space or other stimulus features, individual neurons appear to possess analogous functional properties related to the synthesis of high order receptive fields.

  9. Targeting neurons and photons for optogenetics.

    Science.gov (United States)

    Packer, Adam M; Roska, Botond; Häusser, Michael

    2013-07-01

    Optogenetic approaches promise to revolutionize neuroscience by using light to manipulate neural activity in genetically or functionally defined neurons with millisecond precision. Harnessing the full potential of optogenetic tools, however, requires light to be targeted to the right neurons at the right time. Here we discuss some barriers and potential solutions to this problem. We review methods for targeting the expression of light-activatable molecules to specific cell types, under genetic, viral or activity-dependent control. Next we explore new ways to target light to individual neurons to allow their precise activation and inactivation. These techniques provide a precision in the temporal and spatial activation of neurons that was not achievable in previous experiments. In combination with simultaneous recording and imaging techniques, these strategies will allow us to mimic the natural activity patterns of neurons in vivo, enabling previously impossible 'dream experiments'.

  10. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    Science.gov (United States)

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  11. General artificial neuron

    Science.gov (United States)

    Degeratu, Vasile; Schiopu, Paul; Degeratu, Stefania

    2007-05-01

    In this paper the authors present a model of artificial neuron named the general artificial neuron. Depending on application this neuron can change self number of inputs, the type of inputs (from excitatory in inhibitory or vice versa), the synaptic weights, the threshold, the type of intensifying functions. It is achieved into optoelectronic technology. Also, into optoelectronic technology a model of general McCulloch-Pitts neuron is showed. The advantages of these neurons are very high because we have to solve different applications with the same neural network, achieved from these neurons, named general neural network.

  12. Dcc regulates asymmetric outgrowth of forebrain neurons in zebrafish.

    Directory of Open Access Journals (Sweden)

    Jingxia Gao

    Full Text Available The guidance receptor DCC (deleted in colorectal cancer ortholog UNC-40 regulates neuronal asymmetry development in Caenorhabditis elegans, but it is not known whether DCC plays a role in the specification of neuronal polarity in vertebrates. To examine the roles of DCC in neuronal asymmetry regulation in vertebrates, we studied zebrafish anterior dorsal telencephalon (ADt neuronal axons. We generated transgenic zebrafish animals expressing the photo-convertible fluorescent protein Kaede in ADt neurons and then photo-converted Kaede to label specifically the ADt neuron axons. We found that ADt axons normally project ventrally. Knock down of Dcc function by injecting antisense morpholino oligonucleotides caused the ADt neurons to project axons dorsally. To examine the axon projection pattern of individual ADt neurons, we labeled single ADt neurons using a forebrain-specific promoter to drive fluorescent protein expression. We found that individual ADt neurons projected axons dorsally or formed multiple processes after morpholino knock down of Dcc function. We further found that knock down of the Dcc ligand, Netrin1, also caused ADt neurons to project axons dorsally. Knockdown of Neogenin1, a guidance receptor closely related to Dcc, enhanced the formation of aberrant dorsal axons in embryos injected with Dcc morpholino. These experiments provide the first evidence that Dcc regulates polarized axon initiation and asymmetric outgrowth of forebrain neurons in vertebrates.

  13. The Neuronal Network Orchestration behind Motor Behaviors

    DEFF Research Database (Denmark)

    Petersen, Peter Christian

    In biological networks, millions of neurons organize themselves from microscopic noisy individuals to robust macroscopic entities. These entities are capable of producing higher functions like sensory processing, decision-making, and elaborate behavioral responses. Every aspect of these behaviors...... is the outcome of an advanced orchestration of the activity of populations of neurons. Through spiking activity, neurons are able to interact; yet we know little about how this interaction occurs in spinal networks. How is the activity distributed across the population? What is the composition of synaptic input...... that is received by the individual neurons and how is the synaptic input processed? This thesis focuses on aspects of these questions for spinal networks involved in the generation of stereotypical motor behaviors. The thesis consists of two studies. In the first study, I investigated the synaptic input...

  14. Simplified single plane echocardiography is comparable to conventional biplane two-dimensional echocardiography in the evaluation of left atrial volume: a study validated by three-dimensional echocardiography in 143 individuals.

    Science.gov (United States)

    Vieira-Filho, Normando G; Mancuso, Frederico J N; Oliveira, Wercules A A; Gil, Manuel A; Fischer, Cláudio H; Moises, Valdir A; Campos, Orlando

    2014-03-01

    The left atrial volume index (LAVI) is a biomarker of diastolic dysfunction and a predictor of cardiovascular events. Three-dimensional echocardiography (3DE) is highly accurate for LAVI measurements but is not widely available. Furthermore, biplane two-dimensional echocardiography (B2DE) may occasionally not be feasible due to a suboptimal two-chamber apical view. Simplified single plane two-dimensional echocardiography (S2DE) could overcome these limitations. We aimed to compare the reliability of S2DE with other validated echocardiographic methods in the measurement of the LAVI. We examined 143 individuals (54 ± 13 years old; 112 with heart disease and 31 healthy volunteers; all with sinus rhythm, with a wide range of LAVI). The results for all the individuals were compared with B2DE-derived LAVIs and validated using 3DE. The LAVIs, as determined using S2DE (32.7 ± 13.1 mL/m(2)), B2DE (31.9 ± 12.7 mL/m(2)), and 3DE (33.1 ± 13.4 mL/m(2)), were not significantly different from each other (P = 0.85). The S2DE-derived LAVIs correlated significantly with those obtained using both B2DE (r = 0.98; P < 0.001) and 3DE (r = 0.93; P < 0.001). The mean difference between the S2DE and B2DE measurements was <1.0 mL/m(2). Using the American Society of Echocardiography criteria for grading LAVI enlargement (normal, mild, moderate, severe), we observed an excellent agreement between the S2DE- and B2DE-derived classifications (κ = 0.89; P < 0.001). S2DE is a simple, rapid, and reliable method for LAVI measurement that may expand the use of this important biomarker in routine echocardiographic practice.

  15. Limited agreement between biomarkers of neuronal injury at different stages of Alzheimer's disease.

    Science.gov (United States)

    Alexopoulos, Panagiotis; Kriett, Laura; Haller, Bernhard; Klupp, Elisabeth; Gray, Katherine; Grimmer, Timo; Laskaris, Nikolaos; Förster, Stefan; Perneczky, Robert; Kurz, Alexander; Drzezga, Alexander; Fellgiebel, Andreas; Yakushev, Igor

    2014-11-01

    New diagnostic criteria for Alzheimer's disease (AD) treat different biomarkers of neuronal injury as equivalent. Here, we quantified the degree of agreement between hippocampal volume on structural magnetic resonance imaging, regional glucose metabolism on positron emission tomography, and levels of phosphorylated tau in cerebrospinal fluid (CSF) in 585 subjects from all phases of the AD Neuroimaging Initiative. The overall chance-corrected agreement was poor (Cohen κ, 0.24-0.34), in accord with a high rate of conflicting findings (26%-41%). Neither diagnosis nor APOE ε4 status significantly influenced the distribution of agreement between the biomarkers. The degree of agreement tended to be higher in individuals with abnormal versus normal CSF β-amyloid (Aβ1-42) levels. Prospective diagnostic criteria for AD should address the relative importance of markers of neuronal injury and elaborate a way of dealing with conflicting biomarker findings.

  16. Juvenil neuronal ceroid lipofuscinosis

    DEFF Research Database (Denmark)

    Ostergaard, J R; Hertz, Jens Michael

    1998-01-01

    Neuronal ceroid-lipofuscinosis is a group of neurodegenerative diseases which are characterized by an abnormal accumulation of lipopigment in neuronal and extraneuronal cells. The diseases can be differentiated into several subgroups according to age of onset, the clinical picture...

  17. Environmental Report 1996, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Harrach, R.J.

    1996-01-01

    This is Volume 2 of the Lawrence Livermore National Laboratory`s (LLNL`s) annual Environmental Report 1996, prepared for the US Department of Energy. Volume 2 supports Volume 1 summary data and is essentially a detailed data report that provides individual data points, where applicable. Volume 2 includes information on monitoring of air, air effluents, sewerable water, surface water, ground water, soil and sediment, vegetation and foodstuff, environmental radiation, and quality assurance.

  18. Spiking Neurons for Analysis of Patterns

    Science.gov (United States)

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological

  19. NEURON and Python

    OpenAIRE

    Michael Hines; Davison, Andrew P.; Eilif Muller

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because ...

  20. Mirror neurons: from origin to function.

    Science.gov (United States)

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.

  1. Synchronization properties of heterogeneous neuronal networks with mixed excitability type.

    Science.gov (United States)

    Leone, Michael J; Schurter, Brandon N; Letson, Benjamin; Booth, Victoria; Zochowski, Michal; Fink, Christian G

    2015-03-01

    We study the synchronization of neuronal networks with dynamical heterogeneity, showing that network structures with the same propensity for synchronization (as quantified by master stability function analysis) may develop dramatically different synchronization properties when heterogeneity is introduced with respect to neuronal excitability type. Specifically, we investigate networks composed of neurons with different types of phase response curves (PRCs), which characterize how oscillating neurons respond to excitatory perturbations. Neurons exhibiting type 1 PRC respond exclusively with phase advances, while neurons exhibiting type 2 PRC respond with either phase delays or phase advances, depending on when the perturbation occurs. We find that Watts-Strogatz small world networks transition to synchronization gradually as the proportion of type 2 neurons increases, whereas scale-free networks may transition gradually or rapidly, depending upon local correlations between node degree and excitability type. Random placement of type 2 neurons results in gradual transition to synchronization, whereas placement of type 2 neurons as hubs leads to a much more rapid transition, showing that type 2 hub cells easily "hijack" neuronal networks to synchronization. These results underscore the fact that the degree of synchronization observed in neuronal networks is determined by a complex interplay between network structure and the dynamical properties of individual neurons, indicating that efforts to recover structural connectivity from dynamical correlations must in general take both factors into account.

  2. Morphology of parasympathetic neurons innervating rat lingual salivary glands.

    Science.gov (United States)

    Kim, Miwon; Chiego, Daniel J; Bradley, Robert M

    2004-03-31

    Saliva is essential for taste function and not only does saliva influence taste reception, but also taste perception initiates salivation. As a first step in investigating circuits involved in gustatory-salivary reflexes, we have studied the morphology of the rat inferior salivatory nucleus (ISN), which contains parasympathetic secretomotor neurons that control the parotid and lingual (von Ebner) salivary glands. By applying the fluorescent label Fluorogold to the cut end of the glossopharyngeal nerve, the neurons supplying only the lingual salivary glands were labeled. Confocal microscopy and three-dimensional reconstruction were used to analyze the labeled neurons in the horizontal plane to determine their morphological characteristics. Additional neurons were studied in the coronal plane to determine the influence of the plane of section on neuron morphology. Reconstructions indicated that inferior salivatory neurons extend in a rostral-caudal distribution just adjacent to the medial border of the nucleus of the solitary tract (NST). There is considerable morphological variability among neurons, with neurons having up to 6 primary dendrites and 17 dendritic segments that extend a maximum of 834 microm from the soma. However, although ISN neurons vary in the size and complexity of their dendritic trees, distributions of all measures of neuron morphology are unimodal, indicating that distinct groups of neurons are not revealed based on these measures. There is, however, variability in the orientation pattern of the dendritic trees that is not represented in either the population or mean measures. Individual neurons can be categorized with either mediolateral, rostro-caudal or no apparent preferred orientation. Comparisons of neurons in rostral, intermediate or caudal third of the ISN revealed regional differences in neuron morphology; neurons in the caudal third have significantly longer dendrites than those in the intermediate or rostral third. Thus, while ISN

  3. Study of a new neuron

    CERN Document Server

    Adler, Stephen Louis; Weckel, J D

    1994-01-01

    We study a modular neuron alternative to the McCulloch-Pitts neuron that arises naturally in analog devices in which the neuron inputs are represented as coherent oscillatory wave signals. Although the modular neuron can compute XOR at the one neuron level, it is still characterized by the same Vapnik-Chervonenkis dimension as the standard neuron. We give the formulas needed for constructing networks using the new neuron and training them using back-propagation. A numerical study of the modular neuron on two data sets is presented, which demonstrates that the new neuron performs at least as well as the standard neuron.

  4. Regulation of Irregular Neuronal Firing by Autaptic Transmission

    Science.gov (United States)

    Guo, Daqing; Wu, Shengdun; Chen, Mingming; Perc, Matjaž; Zhang, Yangsong; Ma, Jingling; Cui, Yan; Xu, Peng; Xia, Yang; Yao, Dezhong

    2016-05-01

    The importance of self-feedback autaptic transmission in modulating spike-time irregularity is still poorly understood. By using a biophysical model that incorporates autaptic coupling, we here show that self-innervation of neurons participates in the modulation of irregular neuronal firing, primarily by regulating the occurrence frequency of burst firing. In particular, we find that both excitatory and electrical autapses increase the occurrence of burst firing, thus reducing neuronal firing regularity. In contrast, inhibitory autapses suppress burst firing and therefore tend to improve the regularity of neuronal firing. Importantly, we show that these findings are independent of the firing properties of individual neurons, and as such can be observed for neurons operating in different modes. Our results provide an insightful mechanistic understanding of how different types of autapses shape irregular firing at the single-neuron level, and they highlight the functional importance of autaptic self-innervation in taming and modulating neurodynamics.

  5. Automatically tracking neurons in a moving and deforming brain

    CERN Document Server

    Nguyen, Jeffrey P; Plummer, George S; Shaevitz, Joshua W; Leifer, Andrew M

    2016-01-01

    Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-r...

  6. Both increases in immature dentate neuron number and decreases of immobility time in the forced swim test occurred in parallel after environmental enrichment of mice.

    Science.gov (United States)

    Llorens-Martín, M V; Rueda, N; Martínez-Cué, C; Torres-Alemán, I; Flórez, J; Trejo, J L

    2007-07-13

    A direct relation between the rate of adult hippocampal neurogenesis in mice and the immobility time in a forced swim test after living in an enriched environment has been suggested previously. In the present work, young adult mice living in an enriched environment for 2 months developed considerably more immature differentiating neurons (doublecortin-positive, DCX(+)) than control, non-enriched animals. Furthermore, we found that the more DCX(+) cells they possessed, the lower the immobility time they scored in the forced swim test. This DCX(+) subpopulation is composed of mostly differentiating dentate neurons independently of the birthdates of every individual cell. However, variations found in this subpopulation were not the result of a general effect on the survival of any newborn neuron in the granule cell layer, as 5-bromo-2-deoxyuridine (BrdU)-labeled cells born during a narrow time window included in the longer lifetime period of DCX(+) cells, were not significantly modified after enrichment. In contrast, the survival of the mature population of neurons in the granule cell layer of the dentate gyrus in enriched animals increased, although this did not influence their performance in the Porsolt test, nor did it influence the dentate gyrus volume or granule neuronal nuclei size. These results indicate that the population of immature, differentiating neurons in the adult hippocampus is one factor directly related to the protective effect of an enriched environment against a highly stressful event.

  7. Cajal bodies in neurons.

    Science.gov (United States)

    Lafarga, Miguel; Tapia, Olga; Romero, Ana M; Berciano, Maria T

    2016-09-14

    Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of nuclear structure in the early 1900s, including the discovery of the "accessory body" later renamed "Cajal body" (CB). This important nuclear structure has emerged as a center for the assembly of ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons, where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.

  8. Fitting Neuron Models to Spike Trains

    Science.gov (United States)

    Rossant, Cyrille; Goodman, Dan F. M.; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K.; Brette, Romain

    2011-01-01

    Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input–output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model. PMID:21415925

  9. The Age of Human Cerebral Cortex Neurons

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  10. Synapse loss from chronically elevated glucocorticoids: relationship to neuropil volume and cell number in hippocampal area CA3.

    Science.gov (United States)

    Tata, Despina A; Marciano, Veronica A; Anderson, Brenda J

    2006-09-20

    Individuals with clinical disorders associated with elevated plasma glucocorticoids, such as major depressive disorder and Cushing's syndrome, are reported to have smaller hippocampal volume. To understand how the hippocampus responds at the cellular and subcellular levels to glucocorticoids and how such changes are related to volume measures, we have undertaken a comprehensive study of glucocorticoid effects on hippocampal CA3 volume and identified elements in the neuropil including astrocytic volume and cell and synapse number and size. Male Sprague-Dawley rats were injected with corticosterone (40 mg/kg), the primary glucocorticoid in rodents, or vehicle for 60 days. The CA3 was further subdivided so that the two-thirds of CA3 (nearest the dentate gyrus) previously shown to be vulnerable to corticosterone could be analyzed as two separate subfields. Corticosterone had no effect on neuropil volume or glial volume in the proximal subfield but caused a strong tendency for astrocytic processes to make up a larger proportion of the tissue and for volume of tissue made of constituents other than glial cells (primarily neuronal processes) to be smaller in the middle subfield. Within the neuropil, there were no cellular or subcellular profiles that indicated degeneration, suggesting that corticosterone does not cause prolonged damage. Corticosterone did not reduce cell number or cell or nonperforated synapse size but did cause a pronounced loss of synapses. This loss occurred in both subfields and, therefore, was independent of volume loss. Together, the findings suggest that volume measures can underestimate corticosterone effects on neural structure.

  11. Noise and Neuronal Heterogeneity

    CERN Document Server

    Barber, Michael J

    2010-01-01

    We consider signal transaction in a simple neuronal model featuring intrinsic noise. The presence of noise limits the precision of neural responses and impacts the quality of neural signal transduction. We assess the signal transduction quality in relation to the level of noise, and show it to be maximized by a non-zero level of noise, analogous to the stochastic resonance effect. The quality enhancement occurs for a finite range of stimuli to a single neuron; we show how to construct networks of neurons that extend the range. The range increases more rapidly with network size when we make use of heterogeneous populations of neurons with a variety of thresholds, rather than homogeneous populations of neurons all with the same threshold. The limited precision of neural responses thus can have a direct effect on the optimal network structure, with diverse functional properties of the constituent neurons supporting an economical information processing strategy that reduces the metabolic costs of handling a broad...

  12. Morphometric characteristics of the neurons of the human subiculum proper

    Directory of Open Access Journals (Sweden)

    Živanović-Mačužić Ivana

    2012-01-01

    Full Text Available The human subiculum is a significant part of the hippocampal formation positioned between the hippocampus proper and the entorhinal and other cortices. It plays an important role in spatial navigation, memory processing and control of the response to stress. The aim of our study was identification of the morphometric characteristics of the neurons of the human subiculum proper: the maximum length and width of cell body and total dendritic length and volume of cell body. Comparing the measured parameters of different types of subicular neurons (bipolar, multipolar, pyramidal neurons with triangular-shaped soma and neurons with oval-shaped soma, we can conclude that bipolar neurons have the lowest values of the measured parameters: the maximum length of their cell body is 14.1 ± 0.2 µm, the maximum width is 13.9 ± 0.5 µm, and total dendritic length is 14597 ± 3.1 µm. The lowest volume value was observed in bipolar neurons; the polymorphic layer is 1152.99 ± 662.69 µm3. The pyramidal neurons of the pyramidal layer have the highest value for the maximal length of the cell body (44.43 ± 7.94 µm, maximum width (23.64 ± 1.89 µm, total dendritic length (1830 ± 466.3 µm and volume (11768.65±4004.9 µm3 These characteristics of the pyramidal neurons indicate their importance, because the axons of these neurons make up the greatest part of the fornix, along with the axons of neurons of the CA1 hippocampal field.

  13. Neurons and tumor suppressors.

    Science.gov (United States)

    Zochodne, Douglas W

    2014-08-20

    Neurons choose growth pathways with half hearted reluctance, behavior that may be appropriate to maintain fixed long lasting connections but not to regenerate them. We now recognize that intrinsic brakes on regrowth are widely expressed in these hesitant neurons and include classical tumor suppressor molecules. Here, we review how two brakes, PTEN (phosphatase and tensin homolog deleted on chromosome 10) and retinoblastoma emerge as new and exciting knockdown targets to enhance neuron plasticity and improve outcome from damage or disease.

  14. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA

    Directory of Open Access Journals (Sweden)

    Kawel Nadine

    2012-04-01

    Full Text Available Abstract Purpose Myocardial T1 relaxation time (T1 time and extracellular volume fraction (ECV are altered in patients with diffuse myocardial fibrosis. The purpose of this study was to perform an intra-individual assessment of normal T1 time and ECV for two different contrast agents. Methods A modified Look-Locker Inversion Recovery (MOLLI sequence was acquired at 3 T in 24 healthy subjects (8 men; 28 ± 6 years at mid-ventricular short axis pre-contrast and every 5 min between 5-45 min after injection of a bolus of 0.15 mmol/kg gadopentetate dimeglumine (Gd-DTPA; Magnevist® (exam 1 and 0.1 mmol/kg gadobenate dimeglumine (Gd-BOPTA; Multihance® (exam 2 during two separate scanning sessions. T1 times were measured in myocardium and blood on generated T1 maps. ECVs were calculated as ΔR1myocardium/ΔR1blood*1−hematocrit. Results Mean pre-contrast T1 relaxation times for myocardium and blood were similar for both the first and second CMR exam (p > 0.5. Overall mean post-contrast myocardial T1 time was 15 ± 2 ms (2.5 ± 0.7% shorter for Gd-DTPA at 0.15 mmol/kg compared to Gd-BOPTA at 0.1 mmol/kg (p  0.05. Between 5 and 45 minutes after contrast injection, mean ECV values increased linearly with time for both contrast agents from 0.27 ± 0.03 to 0.30 ± 0.03 (p pre-contrast myocardial T1 relaxation time (CV 4.5% [exam 1] and 3.0% [exam 2], respectively. ECV with Gd-DTPA was highly correlated to ECV by Gd-BOPTA (r = 0.803; p  Conclusion In comparison to pre-contrast myocardial T1 relaxation time, variation in ECV values of normal subjects is larger. However, absolute differences in ECV between Gd-DTPA and Gd-BOPTA were small and rank correlation was high. There is a small and linear increase in ECV over time, therefore ideally images should be acquired at the same delay after contrast injection.

  15. MicroRNA networks direct neuronal development and plasticity

    NARCIS (Netherlands)

    Olde Loohuis, N.F.; Kos, A.; Martens, G.J.; Bokhoven, J.H.L.M. van; Nadif Kasri, N.; Aschrafi, A.

    2012-01-01

    MicroRNAs (miRNAs) constitute a class of small, non-coding RNAs that act as post-transcriptional regulators of gene expression. In neurons, the functions of individual miRNAs are just beginning to emerge, and recent studies have elucidated roles for neural miRNAs at various stages of neuronal develo

  16. Over-Expression of DSCR1 Protects against Post-Ischemic Neuronal Injury

    Science.gov (United States)

    Corlett, Alicia; Broughton, Brad R. S.; Kim, Hyun Ah; Thundyil, John; Drummond, Grant R.; Arumugam, Thiruma V.; Pritchard, Melanie A.

    2012-01-01

    Background and Purpose The Down syndrome candidate region 1 (DSCR1) gene is located on human chromosome 21 and its protein is over-expressed in brains of Down syndrome individuals. DSCR1 can modulate the activity of calcineurin, a phosphatase abundant in the brain, but its influence on stroke outcome is not clear. We compared stroke outcome in wildtype (WT) and transgenic (DSCR1-TG) mice which over-express isoform 1 of human DSCR1. Methods Transient cerebral ischemia was produced by occlusion of the middle cerebral artery for 0.5 h. After 23.5 h reperfusion, we assessed neurological impairment, brain infarct and edema volume, leukocyte infiltration and markers of inflammation. Intrinsic resistance to apoptosis following glucose deprivation was also assessed in primary cultures of WT and DSCR1-TG neurons. Results In contrast to WT, DSCR1-TG mice had an improved neurological deficit score, greater grip strength, attenuated infarct volume and brain swelling, and lacked hippocampal lesions after stroke. Expression of mouse DSCR1-1, but not DSCR1-4, mRNA and protein was increased by ischemia in both WT and DSCR1-TG. Brain calcineurin activity was increased to a similar degree after ischemia in each genotype. DSCR1-TG mice had fewer infiltrating neutrophils and activated microglia compared with WT, in association with an attenuated upregulation of several pro-inflammatory genes. Neurons from DSCR1-TG mice were more resistant than WT neurons to apoptotic cell death following 24 h of glucose deprivation. Conclusions Over-expression of DSCR1 in mice improves outcome following stroke. Mechanisms underlying this protection may involve calcineurin-independent, anti-inflammatory and anti-apoptotic effects mediated by DSCR1 in neurons. PMID:23144708

  17. Over-expression of DSCR1 protects against post-ischemic neuronal injury.

    Directory of Open Access Journals (Sweden)

    Vanessa H Brait

    Full Text Available BACKGROUND AND PURPOSE: The Down syndrome candidate region 1 (DSCR1 gene is located on human chromosome 21 and its protein is over-expressed in brains of Down syndrome individuals. DSCR1 can modulate the activity of calcineurin, a phosphatase abundant in the brain, but its influence on stroke outcome is not clear. We compared stroke outcome in wildtype (WT and transgenic (DSCR1-TG mice which over-express isoform 1 of human DSCR1. METHODS: Transient cerebral ischemia was produced by occlusion of the middle cerebral artery for 0.5 h. After 23.5 h reperfusion, we assessed neurological impairment, brain infarct and edema volume, leukocyte infiltration and markers of inflammation. Intrinsic resistance to apoptosis following glucose deprivation was also assessed in primary cultures of WT and DSCR1-TG neurons. RESULTS: In contrast to WT, DSCR1-TG mice had an improved neurological deficit score, greater grip strength, attenuated infarct volume and brain swelling, and lacked hippocampal lesions after stroke. Expression of mouse DSCR1-1, but not DSCR1-4, mRNA and protein was increased by ischemia in both WT and DSCR1-TG. Brain calcineurin activity was increased to a similar degree after ischemia in each genotype. DSCR1-TG mice had fewer infiltrating neutrophils and activated microglia compared with WT, in association with an attenuated upregulation of several pro-inflammatory genes. Neurons from DSCR1-TG mice were more resistant than WT neurons to apoptotic cell death following 24 h of glucose deprivation. CONCLUSIONS: Over-expression of DSCR1 in mice improves outcome following stroke. Mechanisms underlying this protection may involve calcineurin-independent, anti-inflammatory and anti-apoptotic effects mediated by DSCR1 in neurons.

  18. Regional magnetic resonance spectroscopy of the brain in autistic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Hisaoka, S.; Harada, M.; Nishitani, H. [Dept. of Radiology, School of Medicine, University of Tokushima (Japan); Mori, K. [Dept. of Paediatrics, School of Medicine, University of Tokushima (Japan)

    2001-06-01

    We studied the variations in the concentration of metabolites with brain region and age in autistic individuals and normal controls using multiple analysis of covariance. We examined 55 autistic individuals (2-21 years old, 47 male and eight female) and 51 normal children (3 months-15 years old, 26 boys and 25 girls). Single volumes of interest were placed in the frontal, parietal and temporal region on both sides, the brain stem and cingulate gyrus. The concentration of each metabolite was quantified by the water reference method. The concentration of N-acetylaspartate in the temporal regions (Brodmann's areas 41 and 42) in the autistic individuals were significantly lower than those in the controls (P < 0.05), but concentrations in other regions were not significantly different between the autistic individuals and controls. This suggests low density or dysfunction of neurones in Brodmann's areas 41 and 42 in autistic individual, which might be related to the disturbances of the sensory speech centre (Wernicke's area) in autism. (orig.)

  19. Pacemaking Kisspeptin Neurons

    Science.gov (United States)

    Kelly, Martin J.; Zhang, Chunguang; Qiu, Jian; Rønnekleiv, Oline K.

    2013-01-01

    Kisspeptin (Kiss1) neurons are vital for reproduction. GnRH neurons express the kisspeptin receptor, GPR 54, and kisspeptins potently stimulate the release of GnRH by depolarising and inducing sustained action potential firing in GnRH neurons. As such Kiss1 neurons may be the pre-synaptic pacemaker neurons in the hypothalamic circuitry that controls reproduction. There are at least two different populations of Kiss1 neurons: one in the rostral periventricular area (RP3V) that is stimulated by oestrogens and the other in the arcuate nucleus that is inhibited by oestrogens. How each of these Kiss1 neuronal populations participate in the regulation of the reproductive cycle is currently under intense investigation. Based on electrophysiological studies in the guinea pig and mouse, Kiss1 neurons in general are capable of generating burst firing behavior. Essentially all Kiss1 neurons, which have been studied thus far in the arcuate nucleus, express the ion channels necessary for burst firing, which include hyperpolarization-activated, cyclic nucleotide gated cation (HCN) channels and the T-type calcium (Cav3.1) channels. Under voltage clamp conditions, these channels produce distinct currents that under current clamp conditions can generate burst firing behavior. The future challenge is to identify other key channels and synaptic inputs involved in the regulation of the firing properties of Kiss1 neurons and the physiological regulation of the expression of these channels and receptors by oestrogens and other hormones. The ultimate goal is to understand how Kiss1 neurons control the different phases of GnRH neurosecretion and hence reproduction. PMID:23884368

  20. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution.

    Science.gov (United States)

    Herculano-Houzel, Suzana

    2011-03-01

    It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.

  1. Unbroken Mirror Neurons in Autism Spectrum Disorders

    Science.gov (United States)

    Fan, Yang-Teng; Decety, Jean; Yang, Chia-Yen; Liu, Ji-Lin; Cheng, Yawei

    2010-01-01

    Background: The "broken mirror" theory of autism, which proposes that a dysfunction of the human mirror neuron system (MNS) is responsible for the core social and cognitive deficits in individuals with autism spectrum disorders (ASD), has received considerable attention despite weak empirical evidence. Methods: In this electroencephalographic…

  2. Unbroken Mirror Neurons in Autism Spectrum Disorders

    Science.gov (United States)

    Fan, Yang-Teng; Decety, Jean; Yang, Chia-Yen; Liu, Ji-Lin; Cheng, Yawei

    2010-01-01

    Background: The "broken mirror" theory of autism, which proposes that a dysfunction of the human mirror neuron system (MNS) is responsible for the core social and cognitive deficits in individuals with autism spectrum disorders (ASD), has received considerable attention despite weak empirical evidence. Methods: In this electroencephalographic…

  3. Individual Education.

    Science.gov (United States)

    Corsini, Raymond

    1981-01-01

    Paper presented at the 66th Convention of the International Association of Pupil Personnel Workers, October 20, 1980, Baltimore, Maryland, describes individual education based on the principles of Alfred Adler. Defines six advantages of individual education, emphasizing student responsibility, mutual respect, and allowing students to progress at…

  4. Individual Education.

    Science.gov (United States)

    Corsini, Raymond

    1981-01-01

    Paper presented at the 66th Convention of the International Association of Pupil Personnel Workers, October 20, 1980, Baltimore, Maryland, describes individual education based on the principles of Alfred Adler. Defines six advantages of individual education, emphasizing student responsibility, mutual respect, and allowing students to progress at…

  5. Corticospinal mirror neurons.

    Science.gov (United States)

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  6. Culturing rat hippocampal neurons.

    Science.gov (United States)

    Audesirk, G; Audesirk, T; Ferguson, C

    2001-01-01

    Cultured neurons are widely used to investigate the mechanisms of neurotoxicity. Embryonic rat hippocampal neurons may be grown as described under a wide variety of conditions to suit differing experimental procedures, including electrophysiology, morphological analysis of neurite development, and various biochemical and molecular analyses.

  7. Asynchronous updating of threshold-coupled chaotic neurons

    Indian Academy of Sciences (India)

    Manish Dev Shirmali; Sudeshna Sinha; Kazuyuki Aihara

    2008-06-01

    We study a network of chaotic model neurons incorporating threshold activated coupling. We obtain a wide range of spatiotemporal patterns under varying degrees of asynchronicity in the evolution of the neuronal components. For instance, we find that sequential updating of threshold-coupled chaotic neurons can yield dynamical switching of the individual neurons between two states. So varying the asynchronicity in the updating scheme can serve as a control mechanism to extract different responses, and this can have possible applications in computation and information processing.

  8. Imaging calcium in neurons.

    Science.gov (United States)

    Grienberger, Christine; Konnerth, Arthur

    2012-03-08

    Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.

  9. NEURON and Python

    Directory of Open Access Journals (Sweden)

    Michael Hines

    2009-01-01

    Full Text Available The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including GUI tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the XML module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  10. NEURON and Python.

    Science.gov (United States)

    Hines, Michael L; Davison, Andrew P; Muller, Eilif

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  11. A new type of neurons for machine learning.

    Science.gov (United States)

    Fan, Fenglei; Cong, Wenxiang; Wang, Ge

    2017-07-27

    In machine learning, an artificial neural network is the mainstream approach. Such a network consists of many neurons. These neurons are of the same type characterized by the 2 features: (1) an inner product of an input vector and a matching weighting vector of trainable parameters and (2) a nonlinear excitation function. Here, we investigate the possibility of replacing the inner product with a quadratic function of the input vector, thereby upgrading the first-order neuron to the second-order neuron, empowering individual neurons and facilitating the optimization of neural networks. Also, numerical examples are provided to illustrate the feasibility and merits of the second-order neurons. Finally, further topics are discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Computational properties of networks of synchronous groups of spiking neurons.

    Science.gov (United States)

    Dayhoff, Judith E

    2007-09-01

    We demonstrate a model in which synchronously firing ensembles of neurons are networked to produce computational results. Each ensemble is a group of biological integrate-and-fire spiking neurons, with probabilistic interconnections between groups. An analogy is drawn in which each individual processing unit of an artificial neural network corresponds to a neuronal group in a biological model. The activation value of a unit in the artificial neural network corresponds to the fraction of active neurons, synchronously firing, in a biological neuronal group. Weights of the artificial neural network correspond to the product of the interconnection density between groups, the group size of the presynaptic group, and the postsynaptic potential heights in the synchronous group model. All three of these parameters can modulate connection strengths between neuronal groups in the synchronous group models. We give an example of nonlinear classification (XOR) and a function approximation example in which the capability of the artificial neural network can be captured by a neural network model with biological integrate-and-fire neurons configured as a network of synchronously firing ensembles of such neurons. We point out that the general function approximation capability proven for feedforward artificial neural networks appears to be approximated by networks of neuronal groups that fire in synchrony, where the groups comprise integrate-and-fire neurons. We discuss the advantages of this type of model for biological systems, its possible learning mechanisms, and the associated timing relationships.

  13. Digital hardware implementation of a stochastic two-dimensional neuron model.

    Science.gov (United States)

    Grassia, F; Kohno, T; Levi, T

    2017-02-22

    This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein-Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model's computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments.

  14. An introduction to modeling neuronal dynamics

    CERN Document Server

    Börgers, Christoph

    2017-01-01

    This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book. .

  15. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  16. Mesmerising mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  17. The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function.

    Science.gov (United States)

    Lu, Wei; Bushong, Eric A; Shih, Tiffany P; Ellisman, Mark H; Nicoll, Roger A

    2013-05-08

    The cell-autonomous role of synaptic transmission in the regulation of neuronal structural and electrical properties is unclear. We have now employed a genetic approach to eliminate glutamatergic synaptic transmission onto individual CA1 pyramidal neurons in a mosaic fashion in vivo. Surprisingly, while electrical properties are profoundly affected in these neurons, as well as inhibitory synaptic transmission, we found little perturbation of neuronal morphology, demonstrating a functional segregation of excitatory synaptic transmission from neuronal morphological development.

  18. A dynamic code for economic object valuation in prefrontal cortex neurons.

    Science.gov (United States)

    Tsutsui, Ken-Ichiro; Grabenhorst, Fabian; Kobayashi, Shunsuke; Schultz, Wolfram

    2016-09-13

    Neuronal reward valuations provide the physiological basis for economic behaviour. Yet, how such valuations are converted to economic decisions remains unclear. Here we show that the dorsolateral prefrontal cortex (DLPFC) implements a flexible value code based on object-specific valuations by single neurons. As monkeys perform a reward-based foraging task, individual DLPFC neurons signal the value of specific choice objects derived from recent experience. These neuronal object values satisfy principles of competitive choice mechanisms, track performance fluctuations and follow predictions of a classical behavioural model (Herrnstein's matching law). Individual neurons dynamically encode both, the updating of object values from recently experienced rewards, and their subsequent conversion to object choices during decision-making. Decoding from unselected populations enables a read-out of motivational and decision variables not emphasized by individual neurons. These findings suggest a dynamic single-neuron and population value code in DLPFC that advances from reward experiences to economic object values and future choices.

  19. Estimating neuronal connectivity from axonal and dendritic density fields

    Science.gov (United States)

    van Pelt, Jaap; van Ooyen, Arjen

    2013-01-01

    Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic “mass.” A population mean “mass” density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population mean density

  20. Individualizing Medicare.

    Science.gov (United States)

    Chollet, D J

    1999-05-01

    Despite the enactment of significant changes to the Medicare program in 1997, Medicare's Hospital Insurance trust fund is projected to be exhausted just as the baby boom enters retirement. To address Medicare's financial difficulties, a number of reform proposals have been offered, including several to individualize Medicare financing and benefits. These proposals would attempt to increase Medicare revenues and reduce Medicare expenditures by having individuals bear risk--investment market risk before retirement and insurance market risk after retirement. Many fundamental aspects of these proposals have yet to be worked out, including how to guarantee a baseline level of saving for health insurance after retirement, how retirees might finance unanticipated health insurance price increases after retirement, the potential implications for Medicaid of inadequate individual saving, and whether the administrative cost of making the system fair and adequate ultimately would eliminate any rate-of-return advantages from allowing workers to invest their Medicare contributions in corporate stocks and bonds.

  1. Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system

    Directory of Open Access Journals (Sweden)

    Citlali eTrueta

    2012-09-01

    Full Text Available We review the evidence of exocytosis from extrasynaptic sites in the soma, dendrites and axonal varicosities of central and peripheral neurons of vertebrates and invertebrates, and how it may contribute to signaling in the nervous system. The finding of secretory vesicles in extrasynaptic sites of neurons, the presence of transmitters in the extracellular space outside synaptic clefts, and the mismatch between exocytosis sites and the location of receptors for these molecules in neurons and glial cells, have long suggested that in addition to synaptic communication, transmitters are released and act extrasynaptically. The catalog of these molecules includes low molecular weight transmitters such as monoamines, acetylcholine, glutamate, GABA, ATP, and a list of peptides including substance P, BDNF, and oxytocin. By comparing the mechanisms of extrasynaptic exocytosis of different molecules in various neuron types we show that extrasynaptic exocytosis is a widespread mechanism for communication in the nervous system that uses certain common mechanisms, which are different from those of synaptic exocytosis but similar to those of exocytosis from excitable endocrine cells. Somatic exocytosis, which has been measured directly in different neuron types, starts after high-frequency electrical activity or long experimental depolarizations and may continue for several minutes after the end of stimulation. Activation of L-type calcium channels, calcium release from intracellular stores and vesicle transport couples excitation and exocytosis from small clear or large dense core vesicles in release sites lacking postsynaptic counterparts. The presence of synaptic and extrasynaptic exocytosis endows individual neurons with a wide variety of time- and space-dependent communication possibilities. Extrasynaptic exocytosis may be the major source of signaling molecules producing volume transmission and by doing so may be part of a long duration signaling mode in

  2. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  3. Enteric neurons from Parkinson’s disease patients display ex vivo aberrations in mitochondrial structure

    Science.gov (United States)

    Baumuratov, A. S.; Antony, P. M. A.; Ostaszewski, M.; He, F.; Salamanca, L.; Antunes, L.; Weber, J.; Longhino, L.; Derkinderen, P.; Koopman, W. J. H.; Diederich, N. J.

    2016-01-01

    Based on autopsy material mitochondrial dysfunction has been proposed being part of the pathophysiological cascade of Parkinson’s disease (PD). However, in living patients, evidence for such dysfunction is scarce. As the disease presumably starts at the enteric level, we studied ganglionic and mitochondrial morphometrics of enteric neurons. We compared 65 ganglia from 11 PD patients without intestinal symptoms and 41 ganglia from 4 age-matched control subjects. We found that colon ganglia from PD patients had smaller volume, contained significantly more mitochondria per ganglion volume, and displayed a higher total mitochondrial mass relative to controls. This suggests involvement of mitochondrial dysfunction in PD at the enteric level. Moreover, in PD patients the mean mitochondrial volume declined in parallel with motor performance. Ganglionic shrinking was evident in the right but not in the left colon. In contrast, mitochondrial changes prevailed in the left colon suggesting that a compensatory increase in mitochondrial mass might counterbalance mitochondrial dysfunction in the left colon but not in the right colon. Reduction in ganglia volume and combined mitochondrial morphometrics had both predictive power to discriminate between PD patients and control subjects, suggesting that both parameters could be used for early discrimination between PD patients and healthy individuals. PMID:27624977

  4. Temporal characteristics of gustatory responses in rat parabrachial neurons vary by stimulus and chemosensitive neuron type.

    Science.gov (United States)

    Geran, Laura; Travers, Susan

    2013-01-01

    It has been demonstrated that temporal features of spike trains can increase the amount of information available for gustatory processing. However, the nature of these temporal characteristics and their relationship to different taste qualities and neuron types are not well-defined. The present study analyzed the time course of taste responses from parabrachial (PBN) neurons elicited by multiple applications of "sweet" (sucrose), "salty" (NaCl), "sour" (citric acid), and "bitter" (quinine and cycloheximide) stimuli in an acute preparation. Time course varied significantly by taste stimulus and best-stimulus classification. Across neurons, the ensemble code for the three electrolytes was similar initially but quinine diverged from NaCl and acid during the second 500 ms of stimulation and all four qualities became distinct just after 1s. This temporal evolution was reflected in significantly broader tuning during the initial response. Metric space analyses of quality discrimination by individual neurons showed that increases in information (H) afforded by temporal factors was usually explained by differences in rate envelope, which had a greater impact during the initial 2s (22.5% increase in H) compared to the later response (9.5%). Moreover, timing had a differential impact according to cell type, with between-quality discrimination in neurons activated maximally by NaCl or citric acid most affected. Timing was also found to dramatically improve within-quality discrimination (80% increase in H) in neurons that responded optimally to bitter stimuli (B-best). Spikes from B-best neurons were also more likely to occur in bursts. These findings suggest that among PBN taste neurons, time-dependent increases in mutual information can arise from stimulus- and neuron-specific differences in response envelope during the initial dynamic period. A stable rate code predominates in later epochs.

  5. Motor neurone disease.

    Science.gov (United States)

    2016-03-23

    Essential facts Motor neurone disease describes a group of related diseases, affecting the neurones in the brain and spinal cord. Progressive, incurable and life-limiting, MND is rare, with about 1,100 people developing it each year in the UK and up to 5,000 people affected at any one time. One third of people will die within a year of diagnosis and more than half within two years. About 5% to 10% are alive at ten years.

  6. Neurons and Tumor Suppressors

    OpenAIRE

    Douglas W Zochodne

    2014-01-01

    Neurons choose growth pathways with half hearted reluctance, behavior that may be appropriate to maintain fixed long lasting connections but not to regenerate them. We now recognize that intrinsic brakes on regrowth are widely expressed in these hesitant neurons and include classical tumor suppressor molecules. Here, we review how two brakes, PTEN (phosphatase and tensin homolog deleted on chromosome 10) and retinoblastoma emerge as new and exciting knockdown targets to e...

  7. Mirror Neurons and Mirror-Touch Synesthesia.

    Science.gov (United States)

    Linkovski, Omer; Katzin, Naama; Salti, Moti

    2016-05-30

    Since mirror neurons were introduced to the neuroscientific community more than 20 years ago, they have become an elegant and intuitive account for different cognitive mechanisms (e.g., empathy, goal understanding) and conditions (e.g., autism spectrum disorders). Recently, mirror neurons were suggested to be the mechanism underlying a specific type of synesthesia. Mirror-touch synesthesia is a phenomenon in which individuals experience somatosensory sensations when seeing someone else being touched. Appealing as it is, careful delineation is required when applying this mechanism. Using the mirror-touch synesthesia case, we put forward theoretical and methodological issues that should be addressed before relying on the mirror-neurons account. © The Author(s) 2016.

  8. Collective individualism

    DEFF Research Database (Denmark)

    Baarts, Charlotte

    2009-01-01

    Safety knowledge appears to be ‘a doing’. In construction work safety is practised in the complex interrelationship between the individual, pair and gang. Thus the aim is to explore the nature and scope of individualist and collectivist preferences pertaining to the practice of safety at a constr...

  9. Vibrotactile coding capacities of spinocervical tract neurons in the cat.

    Science.gov (United States)

    Sahai, V; Mahns, D A; Perkins, N M; Robinson, L; Rowe, M J

    2006-03-01

    The response characteristics and tactile coding capacities of individual dorsal horn neurons, in particular, those of the spinocervical tract (SCT), have been examined in the anesthetized cat. Twenty one of 38 neurons studied were confirmed SCT neurons based on antidromic activation procedures. All had tactile receptive fields on the hairy skin of the hindlimb. Most (29/38) could also be activated transynaptically by electrical stimulation of the cervical dorsal columns, suggesting that a common set of tactile primary afferent fibers may provide the input for both the dorsal column-lemniscal pathway and for parallel ascending pathways, such as the SCT. All but 3 of the 38 neurons studied displayed a pure dynamic sensitivity to controlled tactile stimuli but were unable to sustain their responsiveness throughout 1s trains of vibration at vibration frequencies exceeding 5-10 Hz. Stimulus-response relations revealed a very limited capacity of individual SCT neurons to signal, in a graded way, the intensity parameter of the vibrotactile stimulus. Furthermore, because of their inability to respond on a cycle-by-cycle pattern at vibration frequencies >5-10 Hz, these neurons were unable to provide any useful signal of vibration frequency beyond the very narrow bandwidth of approximately 5-10 Hz. Similar limitations were observed in the responsiveness of these neurons to repetitive forms of antidromic and transynaptic inputs generated by electrical stimulation of the spinal cord. In summary, the observed limitations on the vibrotactile bandwidth of SCT neurons and on the precision and fidelity of their temporal signaling, suggest that SCT neurons could serve as little more than coarse event detectors in tactile sensibility, in contrast to DCN neurons the bandwidth of vibrotactile responsiveness of which may extend beyond 400 Hz and is therefore broader by approximately 40-50 times than that of SCT neurons.

  10. Nasal neuron PET imaging quantifies neuron generation and degeneration

    Science.gov (United States)

    Van de Bittner, Genevieve C.; Riley, Misha M.; Cao, Luxiang; Herrick, Scott P.; Ricq, Emily L.; O’Neill, Michael J.; Ahmed, Zeshan; Murray, Tracey K.; Smith, Jaclyn E.; Wang, Changning; Schroeder, Frederick A.; Albers, Mark W.; Hooker, Jacob M.

    2017-01-01

    Olfactory dysfunction is broadly associated with neurodevelopmental and neurodegenerative diseases and predicts increased mortality rates in healthy individuals. Conventional measurements of olfactory health assess odor processing pathways within the brain and provide a limited understanding of primary odor detection. Quantification of the olfactory sensory neurons (OSNs), which detect odors within the nasal cavity, would provide insight into the etiology of olfactory dysfunction associated with disease and mortality. Notably, OSNs are continually replenished by adult neurogenesis in mammals, including humans, so OSN measurements are primed to provide specialized insights into neurological disease. Here, we have evaluated a PET radiotracer, [11C]GV1-57, that specifically binds mature OSNs and quantifies the mature OSN population in vivo. [11C]GV1-57 monitored native OSN population dynamics in rodents, detecting OSN generation during postnatal development and aging-associated neurodegeneration. [11C]GV1-57 additionally measured rates of neuron regeneration after acute injury and early-stage OSN deficits in a rodent tauopathy model of neurodegenerative disease. Preliminary assessment in nonhuman primates suggested maintained uptake and saturable binding of [18F]GV1-57 in primate nasal epithelium, supporting its translational potential. Future applications for GV1-57 include monitoring additional diseases or conditions associated with olfactory dysregulation, including cognitive decline, as well as monitoring effects of neuroregenerative or neuroprotective therapeutics. PMID:28112682

  11. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    Science.gov (United States)

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects.

  12. Neuronal Networks on Nanocellulose Scaffolds.

    Science.gov (United States)

    Jonsson, Malin; Brackmann, Christian; Puchades, Maja; Brattås, Karoline; Ewing, Andrew; Gatenholm, Paul; Enejder, Annika

    2015-11-01

    Proliferation, integration, and neurite extension of PC12 cells, a widely used culture model for cholinergic neurons, were studied in nanocellulose scaffolds biosynthesized by Gluconacetobacter xylinus to allow a three-dimensional (3D) extension of neurites better mimicking neuronal networks in tissue. The interaction with control scaffolds was compared with cationized nanocellulose (trimethyl ammonium betahydroxy propyl [TMAHP] cellulose) to investigate the impact of surface charges on the cell interaction mechanisms. Furthermore, coatings with extracellular matrix proteins (collagen, fibronectin, and laminin) were investigated to determine the importance of integrin-mediated cell attachment. Cell proliferation was evaluated by a cellular proliferation assay, while cell integration and neurite propagation were studied by simultaneous label-free Coherent anti-Stokes Raman Scattering and second harmonic generation microscopy, providing 3D images of PC12 cells and arrangement of nanocellulose fibrils, respectively. Cell attachment and proliferation were enhanced by TMAHP modification, but not by protein coating. Protein coating instead promoted active interaction between the cells and the scaffold, hence lateral cell migration and integration. Irrespective of surface modification, deepest cell integration measured was one to two cell layers, whereas neurites have a capacity to integrate deeper than the cell bodies in the scaffold due to their fine dimensions and amoeba-like migration pattern. Neurites with lengths of >50 μm were observed, successfully connecting individual cells and cell clusters. In conclusion, TMAHP-modified nanocellulose scaffolds promote initial cellular scaffold adhesion, which combined with additional cell-scaffold treatments enables further formation of 3D neuronal networks.

  13. Neurons of human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  14. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  15. Renormalized Volume

    Science.gov (United States)

    Gover, A. Rod; Waldron, Andrew

    2017-09-01

    We develop a universal distributional calculus for regulated volumes of metrics that are suitably singular along hypersurfaces. When the hypersurface is a conformal infinity we give simple integrated distribution expressions for the divergences and anomaly of the regulated volume functional valid for any choice of regulator. For closed hypersurfaces or conformally compact geometries, methods from a previously developed boundary calculus for conformally compact manifolds can be applied to give explicit holographic formulæ for the divergences and anomaly expressed as hypersurface integrals over local quantities (the method also extends to non-closed hypersurfaces). The resulting anomaly does not depend on any particular choice of regulator, while the regulator dependence of the divergences is precisely captured by these formulæ. Conformal hypersurface invariants can be studied by demanding that the singular metric obey, smoothly and formally to a suitable order, a Yamabe type problem with boundary data along the conformal infinity. We prove that the volume anomaly for these singular Yamabe solutions is a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. Recently, Graham proved that the first variation of the volume anomaly recovers the density obstructing smooth solutions to this singular Yamabe problem; we give a new proof of this result employing our boundary calculus. Physical applications of our results include studies of quantum corrections to entanglement entropies.

  16. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure

    DEFF Research Database (Denmark)

    Burke, Mark W; Ptito, Maurice; Ervin, Frank R

    2015-01-01

    of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally...... late pregnancy results in a stable loss of hippocampal neurons and a progressive reduction of hippocampal volume....

  17. A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model.

    Science.gov (United States)

    Borisyuk, Roman; Al Azad, Abul Kalam; Conte, Deborah; Roberts, Alan; Soffe, Stephen R

    2014-01-01

    Relating structure and function of neuronal circuits is a challenging problem. It requires demonstrating how dynamical patterns of spiking activity lead to functions like cognitive behaviour and identifying the neurons and connections that lead to appropriate activity of a circuit. We apply a "developmental approach" to define the connectome of a simple nervous system, where connections between neurons are not prescribed but appear as a result of neuron growth. A gradient based mathematical model of two-dimensional axon growth from rows of undifferentiated neurons is derived for the different types of neurons in the brainstem and spinal cord of young tadpoles of the frog Xenopus. Model parameters define a two-dimensional CNS growth environment with three gradient cues and the specific responsiveness of the axons of each neuron type to these cues. The model is described by a nonlinear system of three difference equations; it includes a random variable, and takes specific neuron characteristics into account. Anatomical measurements are first used to position cell bodies in rows and define axon origins. Then a generalization procedure allows information on the axons of individual neurons from small anatomical datasets to be used to generate larger artificial datasets. To specify parameters in the axon growth model we use a stochastic optimization procedure, derive a cost function and find the optimal parameters for each type of neuron. Our biologically realistic model of axon growth starts from axon outgrowth from the cell body and generates multiple axons for each different neuron type with statistical properties matching those of real axons. We illustrate how the axon growth model works for neurons with axons which grow to the same and the opposite side of the CNS. We then show how, by adding a simple specification for dendrite morphology, our model "developmental approach" allows us to generate biologically-realistic connectomes.

  18. A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model.

    Directory of Open Access Journals (Sweden)

    Roman Borisyuk

    Full Text Available Relating structure and function of neuronal circuits is a challenging problem. It requires demonstrating how dynamical patterns of spiking activity lead to functions like cognitive behaviour and identifying the neurons and connections that lead to appropriate activity of a circuit. We apply a "developmental approach" to define the connectome of a simple nervous system, where connections between neurons are not prescribed but appear as a result of neuron growth. A gradient based mathematical model of two-dimensional axon growth from rows of undifferentiated neurons is derived for the different types of neurons in the brainstem and spinal cord of young tadpoles of the frog Xenopus. Model parameters define a two-dimensional CNS growth environment with three gradient cues and the specific responsiveness of the axons of each neuron type to these cues. The model is described by a nonlinear system of three difference equations; it includes a random variable, and takes specific neuron characteristics into account. Anatomical measurements are first used to position cell bodies in rows and define axon origins. Then a generalization procedure allows information on the axons of individual neurons from small anatomical datasets to be used to generate larger artificial datasets. To specify parameters in the axon growth model we use a stochastic optimization procedure, derive a cost function and find the optimal parameters for each type of neuron. Our biologically realistic model of axon growth starts from axon outgrowth from the cell body and generates multiple axons for each different neuron type with statistical properties matching those of real axons. We illustrate how the axon growth model works for neurons with axons which grow to the same and the opposite side of the CNS. We then show how, by adding a simple specification for dendrite morphology, our model "developmental approach" allows us to generate biologically-realistic connectomes.

  19. 5,7-Dimethoxycoumarin inhibits neuronal apoptosis by targeting ...

    African Journals Online (AJOL)

    However, those in the normal control and model groups received the same volume of ... cerebral infarction in animals the rate of neuronal apoptosis is ... Department of Health and Human Services, and guidelines ... The complex development was performed using an ECL .... and reproduction in any medium, provided the.

  20. Neuronal survival in the brain: neuron type-specific mechanisms.

    Science.gov (United States)

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  1. Kappe neurons, a novel population of olfactory sensory neurons

    Science.gov (United States)

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-02-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  2. Mirror neurons encode the subjective value of an observed action.

    Science.gov (United States)

    Caggiano, Vittorio; Fogassi, Leonardo; Rizzolatti, Giacomo; Casile, Antonino; Giese, Martin A; Thier, Peter

    2012-07-17

    Objects grasped by an agent have a value not only for the acting agent, but also for an individual observing the grasping act. The value that the observer attributes to the object that is grasped can be pivotal for selecting a possible behavioral response. Mirror neurons in area F5 of the monkey premotor cortex have been suggested to play a crucial role in the understanding of action goals. However, it has not been addressed if these neurons are also involved in representing the value of the grasped object. Here we report that observation-related neuronal responses of F5 mirror neurons are indeed modulated by the value that the monkey associates with the grasped object. These findings suggest that during action observation F5 mirror neurons have access to key information needed to shape the behavioral responses of the observer.

  3. Cadherins in neuronal morphogenesis and function.

    Science.gov (United States)

    Suzuki, Sachihiro C; Takeichi, Masatoshi

    2008-06-01

    Classic cadherins represent a family of calcium-dependent homophilic cell-cell adhesion molecules. They confer strong adhesiveness to animal cells when they are anchored to the actin cytoskeleton via their cytoplasmic binding partners, catenins. The cadherin/catenin adhesion system plays key roles in the morphogenesis and function of the vertebrate and invertebrate nervous systems. In early vertebrate development, cadherins are involved in multiple events of brain morphogenesis including the formation and maintenance of the neuroepithelium, neurite extension and migration of neuronal cells. In the invertebrate nervous system, classic cadherin-mediated cell-cell interaction plays important roles in wiring among neurons. For synaptogenesis, the cadherin/catenin system not only stabilizes cell-cell contacts at excitatory synapses but also assembles synaptic molecules at synaptic sites. Furthermore, this system is involved in synaptic plasticity. Recent studies on the role of individual cadherin subtypes at synapses indicate that individual cadherin subtypes play their own unique role to regulate synaptic activities.

  4. Individual Consultations

    Directory of Open Access Journals (Sweden)

    Ian Walkinshaw

    2015-09-01

    Full Text Available Responding to calls for research into measurable English language outcomes from individual language support consultations at universities, this study investigated the effect of individual consultations (ICs on the academic writing skills and lexico-grammatical competence of students who speak English as an additional language (EAL. Attendance by 31 EAL students at ICs was recorded, and samples of their academic writing texts before and after a 9-month interval were compared. Participants’ academic writing skills were rated, and lexico-grammatical irregularities were quantified. No statistically significant positive shifts manifested, due to the relatively short research period and limited participant uptake, but there were encouraging predictors of future shifts given continued utilization of the service. First, although a Wilcoxon signed-rank test showed no association between attendance at ICs and shifts in academic writing ability, a Spearman’s rho calculation suggested a tentative relationship to positive pre–post shifts in three academic writing sub-skills: Task Fulfillment, Grammar, and Vocabulary. Second, instances of four common lexico-grammatical irregularities (subject/verb, wrong word, plural/singular, and punctuation declined at post-testing. Although only regular, sustained attendance would produce statistically significant shifts, there is a potential association between participants’ use of ICs and improved academic writing skills/lexico-grammatical competence.

  5. Identification and mechanosensitivity of viscerofugal neurons.

    Science.gov (United States)

    Hibberd, T J; Zagorodnyuk, V P; Spencer, N J; Brookes, S J H

    2012-12-06

    Enteric viscerofugal neurons are interneurons with cell bodies in the gut wall; they project to prevertebral ganglia where they provide excitatory synaptic drive to sympathetic neurons which control intestinal motility and secretion. Here, we studied the mechanosensitivity and firing of single, identified viscerofugal neurons in guinea-pig distal colon. Flat sheet preparations of gut were set up in vitro and conventional extracellular recordings made from colonic nerve trunks. The nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) (1mM), was locally pressure ejected onto individual myenteric ganglia. In a few ganglia, DMPP promptly evoked firing in colonic nerves. Biotinamide filling of colonic nerves revealed that DMPP-responsive sites corresponded to viscerofugal nerve cell bodies. This provides a robust means to positively identify viscerofugal neuron firing. Of 15 single units identified in this way, none responded to locally-applied capsaicin (1 μM). Probing with von Frey hairs at DMPP-responsive sites reliably evoked firing in all identified viscerofugal neurons (18/18 units tested; 0.8-5 mN). Circumferential stretch of the preparation increased firing in all 14/14 units (1-5 g, p<0.05). Both stretch and von Frey hair responses persisted in Ca(2+)-free solution (6 mM Mg(2+), 1mM EDTA), indicating that viscerofugal neurons are directly mechanosensitive. To investigate their adequate stimulus, circular muscle tension and length were independently modulated (BAY K8644, 1 μM and 10 μM, respectively). Increases in intramural tension without changes in length did not affect firing. However, contraction-evoked shortening, under constant load, significantly decreased firing (p<0.001). In conclusion, viscerofugal neuron action potentials contribute to recordings from colonic nerve trunks, in vitro. They provide a significant primary afferent output from the colon, encoding circumferential length, largely independent of muscle tension. All

  6. From Neurons to Newtons

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2001-01-01

    proteins generate forces, to the macroscopic levels where overt arm movements are vol- untarily controlled within an unpredictable environment by legions of neurons¯ring in orderly fashion. An extensive computer simulation system has been developed for this thesis, which at present contains a neural...... network scripting language for specifying arbitrary neural architectures, de¯nition ¯les for detailed spinal networks, various biologically realistic models of neurons, and dynamic synapses. Also included are structurally accurate models of intrafusal and extra-fusal muscle ¯bers and a general body...

  7. The Complete Genome Sequences, Unique Mutational Spectra, and Developmental Potency of Adult Neurons Revealed by Cloning.

    Science.gov (United States)

    Hazen, Jennifer L; Faust, Gregory G; Rodriguez, Alberto R; Ferguson, William C; Shumilina, Svetlana; Clark, Royden A; Boland, Michael J; Martin, Greg; Chubukov, Pavel; Tsunemoto, Rachel K; Torkamani, Ali; Kupriyanov, Sergey; Hall, Ira M; Baldwin, Kristin K

    2016-03-16

    Somatic mutation in neurons is linked to neurologic disease and implicated in cell-type diversification. However, the origin, extent, and patterns of genomic mutation in neurons remain unknown. We established a nuclear transfer method to clonally amplify the genomes of neurons from adult mice for whole-genome sequencing. Comprehensive mutation detection and independent validation revealed that individual neurons harbor ∼100 unique mutations from all classes but lack recurrent rearrangements. Most neurons contain at least one gene-disrupting mutation and rare (0-2) mobile element insertions. The frequency and gene bias of neuronal mutations differ from other lineages, potentially due to novel mechanisms governing postmitotic mutation. Fertile mice were cloned from several neurons, establishing the compatibility of mutated adult neuronal genomes with reprogramming to pluripotency and development.

  8. Vocal coordination and vocal imitation: a role for mirror neurons?

    Science.gov (United States)

    Newman, John D

    2014-04-01

    Some birds and mammals have vocal communication systems in which coordination between individuals is important. Examples would include duetting or antiphonal calling in some birds and mammals, rapid exchanges of the same vocalization, and vocal exchanges between paired individuals and other nearby pairs. Mirror neurons may play a role in such systems but become functional only after experience.

  9. Neuronal survival in the brain: neuron type-specific mechanisms

    DEFF Research Database (Denmark)

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation...... for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various...

  10. Neuroanatomy Predicts Individual Risk Attitudes

    Science.gov (United States)

    Gilaie-Dotan, Sharon; Tymula, Agnieszka; Cooper, Nicole; Kable, Joseph W.; Glimcher, Paul W.

    2014-01-01

    Over the course of the last decade a multitude of studies have investigated the relationship between neural activations and individual human decision-making. Here we asked whether the anatomical features of individual human brains could be used to predict the fundamental preferences of human choosers. To that end, we quantified the risk attitudes of human decision-makers using standard economic tools and quantified the gray matter cortical volume in all brain areas using standard neurobiological tools. Our whole-brain analysis revealed that the gray matter volume of a region in the right posterior parietal cortex was significantly predictive of individual risk attitudes. Participants with higher gray matter volume in this region exhibited less risk aversion. To test the robustness of this finding we examined a second group of participants and used econometric tools to test the ex ante hypothesis that gray matter volume in this area predicts individual risk attitudes. Our finding was confirmed in this second group. Our results, while being silent about causal relationships, identify what might be considered the first stable biomarker for financial risk-attitude. If these results, gathered in a population of midlife northeast American adults, hold in the general population, they will provide constraints on the possible neural mechanisms underlying risk attitudes. The results will also provide a simple measurement of risk attitudes that could be easily extracted from abundance of existing medical brain scans, and could potentially provide a characteristic distribution of these attitudes for policy makers. PMID:25209279

  11. Mirror neurons and imitation: a computationally guided review.

    Science.gov (United States)

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael

    2006-04-01

    Neurophysiology reveals the properties of individual mirror neurons in the macaque while brain imaging reveals the presence of 'mirror systems' (not individual neurons) in the human. Current conceptual models attribute high level functions such as action understanding, imitation, and language to mirror neurons. However, only the first of these three functions is well-developed in monkeys. We thus distinguish current opinions (conceptual models) on mirror neuron function from more detailed computational models. We assess the strengths and weaknesses of current computational models in addressing the data and speculations on mirror neurons (macaque) and mirror systems (human). In particular, our mirror neuron system (MNS), mental state inference (MSI) and modular selection and identification for control (MOSAIC) models are analyzed in more detail. Conceptual models often overlook the computational requirements for posited functions, while too many computational models adopt the erroneous hypothesis that mirror neurons are interchangeable with imitation ability. Our meta-analysis underlines the gap between conceptual and computational models and points out the research effort required from both sides to reduce this gap.

  12. Intrinsic properties of larval zebrafish neurons in ethanol.

    Directory of Open Access Journals (Sweden)

    Hiromi Ikeda

    Full Text Available The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here we examined whether the intrinsic properties of neurons play roles in this resistance. In order to minimize the contribution of metabolism and diffusional barriers, larvae were hemisected and the anterior half immersed in a range of ethanol concentrations thereby ensuring the free access of bath ethanol to the brain. The response to vibrational stimuli of three types of reticulospinal neurons: Mauthner neurons, vestibulospinal neurons, and MiD3 neurons were examined using an intracellular calcium indicator. The intracellular [Ca(2+] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects. The ethanol effect in Mauthner neurons was reversible following removal of ethanol. Interestingly, activities of MiD3 neurons displayed spontaneous recovery in 300 mM ethanol, suggestive of acute tolerance. Finally, we examined with mechanical vibration the startle response of free-swimming larvae in 300 mM ethanol. Ethanol treatment abolished long latency startle responses, suggesting a functional change in neural processing. These data support the hypothesis that individual neurons in larval zebrafish brains have distinct patterns of response to ethanol dictated by specific molecular targets.

  13. Why our brains cherish humanity: Mirror neurons and colamus humanitatem

    Directory of Open Access Journals (Sweden)

    John R. Skoyles

    2008-06-01

    Full Text Available Commonsense says we are isolated. After all, our bodies are physically separate. But Seneca’s colamus humanitatem, and John Donne’s observation that “no man is an island” suggests we are neither entirely isolated nor separate. A recent discovery in neuroscience—that of mirror neurons—argues that the brain and the mind is neither built nor functions remote from what happens in other individuals. What are mirror neurons? They are brain cells that process both what happens to or is done by an individual, and, as it were, its perceived “refl ection,” when that same thing happens or is done by another individual. Thus, mirror neurons are both activated when an individual does a particular action, and when that individual perceives that same action done by another. The discovery of mirror neurons suggests we need to radically revise our notions of human nature since they offer a means by which we may not be so separated as we think. Humans unlike other apes are adapted to mirror interact nonverbally when together. Notably, our faces have been evolved to display agile and nimble movements. While this is usually explained as enabling nonverbal communication, a better description would be nonverbal commune based upon mirror neurons. I argue we cherish humanity, colamus humanitatem, because mirror neurons and our adapted mirror interpersonal interface blur the physical boundaries that separate us.

  14. Nanoresolution radiology of neurons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.R.; Chen, S.T.; Chu, Y.S.; Conley, R.; Bouet, N.; Chien, C.C.; Chen, H.H.; Lin, C.H.; Tung, H.T.; Chen, Y.S.; Margaritondo, G.; Je, J.H.; Hwu, Y. (IP-Taiwan); (Ecole); (BNL); (POSTECH)

    2013-04-08

    We report recent advances in hard-x-ray optics - including record spatial resolution - and in staining techniques that enable synchrotron microradiology to produce neurobiology images of quality comparable to electron and visible microscopy. In addition, microradiology offers excellent penetration and effective three-dimensional detection as required for many neuron studies. Our tests include tomographic reconstruction based on projection image sets.

  15. Rhynchophylline Protects Cultured Rat Neurons against Methamphetamine Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Dan Dan Xu

    2012-01-01

    Full Text Available Rhynchophylline (Rhy is an active component isolated from species of the genus Uncaria which has been used for the treatment of ailments to the central nervous system in traditional Chinese medicine. Besides acting as a calcium channel blocker, Rhy was also reported to be able to protect against glutamate-induced neuronal death. We thus hypothesize that Rhy may have neuroprotective activity against methamphetamine (MA. The primary neurons were cultured directly from the cerebral cortex of neonatal rats, acting as in vitro model in the present study. The neurotoxicity of MA and the protective effect of Rhy were evaluated by MTT assay. The effects of MA, Rhy or their combination on intracellular free calcium concentration ([Ca2+]i were determined in individual neocortical neurons by the Fluo-3/AM tracing method. The MTT assay demonstrated that MA has a dose-dependent neurotoxicity in neuronal cultures. The addition of Rhy prior to the exposure to MA prevented neuronal death. Time course studies with the Fluo-3/AM probe showed that Rhy significantly decreased neuronal [Ca2+]i which was elevated by the exposure to MA. Our results suggested that Rhy can protect the neuronal cultures against MA exposure and promptly attenuate intracellular calcium overload triggered by MA challenge. This is the first report demonstrating an inhibitory effect of Rhy against MA impairment in cultured neurons in vitro.

  16. Reducing synuclein accumulation improves neuronal survival after spinal cord injury

    Science.gov (United States)

    Fogerson, Stephanie M.; van Brummen, Alexandra J.; Busch, David J.; Allen, Scott R.; Roychaudhuri, Robin; Banks, Susan M. L.; Klärner, Frank-Gerrit; Schrader, Thomas; Bitan, Gal; Morgan, Jennifer R.

    2016-01-01

    Spinal cord injury causes neuronal death, limiting subsequent regeneration and recovery. Thus, there is a need to develop strategies for improving neuronal survival after injury. Relative to our understanding of axon regeneration, comparatively little is known about the mechanisms that promote the survival of damaged neurons. To address this, we took advantage of lamprey giant reticulospinal neurons whose large size permits detailed examination of post-injury molecular responses at the level of individual, identified cells. We report here that spinal cord injury caused a select subset of giant reticulospinal neurons to accumulate synuclein, a synaptic vesicle-associated protein best known for its atypical aggregation and causal role in neurodegeneration in Parkinson’s and other diseases. Post-injury synuclein accumulation took the form of punctate aggregates throughout the somata and occurred selectively in dying neurons, but not in those that survived. In contrast, another synaptic vesicle protein, synaptotagmin, did not accumulate in response to injury. We further show that the post-injury synuclein accumulation was greatly attenuated after single dose application of either the “molecular tweezer” inhibitor, CLR01, or a translation-blocking synuclein morpholino. Consequently, reduction of synuclein accumulation not only improved neuronal survival, but also increased the number of axons in the spinal cord proximal and distal to the lesion. This study is the first to reveal that reducing synuclein accumulation is a novel strategy for improving neuronal survival after spinal cord injury. PMID:26854933

  17. New findings on neuron development

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A mature neuron receives inputs from multiple dendrites and sends its output to other neurons via a single axon.This polarized morphology requires proper axonal/dendritic differentiation during development.

  18. Exploring neuronal activity with photons

    Science.gov (United States)

    Bourdieu, Laurent; Léger, Jean-François

    2015-10-01

    The following sections are included: * Introduction * Information coding * Optical recordings of neuronal activity * Functional organization of the cortex at the level of a cortical column * Microarchitecture of a cortical column * Dynamics of neuronal populations * Outlook * Bibliography

  19. Binary neuron with optical devices

    Science.gov (United States)

    Degeratu, Vasile; Degeratu, Ştefania; Şchiopu, Paul; Şchiopu, Carmen

    2009-01-01

    In this paper the authors present a model of binary neuron, a model of McCulloch-Pitts neuron with optical devices. This model of neuron can be implemented not only in the optic integrated circuits but also in the classic optical circuits it being cheap and immune not only into electromagnetic fields but also into any kind of radiation. The transfer speed of information through the neuron is very higher, it being limited only by the light speed from the received medium.

  20. Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons

    Science.gov (United States)

    Yang, Chun; McKenna, James T.; Zant, Janneke C.; Winston, Stuart; Basheer, Radhika

    2014-01-01

    The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP+) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 μm diameter) BF GFP+ and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically

  1. Neuronal substrate of eating disorders

    OpenAIRE

    Timofeeva, Elena; Calvez, Juliane

    2014-01-01

    Eating disorders are devastating and life-threatening psychiatric diseases. Although clinical and experimental investigations have significantly progressed in discovering the neuronal causes of eating disorders, the exact neuronal and molecular mechanisms of the development and maintenance of these pathologies are not fully understood. The complexity of the neuronal substrate of eating disorders hampers progress in revealing the precise mechanisms. The present re...

  2. The Languages of Neurons: An Analysis of Coding Mechanisms by Which Neurons Communicate, Learn and Store Information

    Directory of Open Access Journals (Sweden)

    Morris H. Baslow

    2009-11-01

    Full Text Available In this paper evidence is provided that individual neurons possess language, and that the basic unit for communication consists of two neurons and their entire field of interacting dendritic and synaptic connections. While information processing in the brain is highly complex, each neuron uses a simple mechanism for transmitting information. This is in the form of temporal electrophysiological action potentials or spikes (S operating on a millisecond timescale that, along with pauses (P between spikes constitute a two letter “alphabet” that generates meaningful frequency-encoded signals or neuronal S/P “words” in a primary language. However, when a word from an afferent neuron enters the dendritic-synaptic-dendritic field between two neurons, it is translated into a new frequency-encoded word with the same meaning, but in a different spike-pause language, that is delivered to and understood by the efferent neuron. It is suggested that this unidirectional inter-neuronal language-based word translation step is of utmost importance to brain function in that it allows for variations in meaning to occur. Thus, structural or biochemical changes in dendrites or synapses can produce novel words in the second language that have changed meanings, allowing for a specific signaling experience, either external or internal, to modify the meaning of an original word (learning, and store the learned information of that experience (memory in the form of an altered dendritic-synaptic-dendritic field.

  3. Helping the most vulnerable out of the poverty trap and reducing inequality: Policies, strategies, and services for individuals with Autism Spectrum Disorder, including intellectual and neurodevelopmental disabilities: Benchmarking Autism Services Efficacy: BASE Project (Volume 3) Secondary Data analysis

    OpenAIRE

    2014-01-01

    1) Executive SummaryLegislation (Autism Act NI, 2011), a cross-departmental strategy (Autism Strategy 2013-2020) and a first action plan (2013-2016) have been developed in Northern Ireland in order to support individuals and families affected by Autism Spectrum Disorder (ASD) without a prior thorough baseline assessment of need. At the same time, there are large existing data sets about the population in NI that had never been subjected to a secondary data analysis with regards to data on ASD...

  4. Universality and individuality in a neural code

    CERN Document Server

    Schneidman, E; Tishby, N; De Ruyter van Steveninck, R R; Bialek, W; Schneidman, Elad; Brenner, Naama; Tishby, Naftali; De Ruyter van Steveninck, Rob R.; Bialek, William

    2000-01-01

    The problem of neural coding is to understand how sequences of action potentials (spikes) are related to sensory stimuli, motor outputs, or (ultimately) thoughts and intentions. One clear question is whether the same coding rules are used by different neurons, or by corresponding neurons in different individuals. We present a quantitative formulation of this problem using ideas from information theory, and apply this approach to the analysis of experiments in the fly visual system. We find significant individual differences in the structure of the code, particularly in the way that temporal patterns of spikes are used to convey information beyond that available from variations in spike rate. On the other hand, all the flies in our ensemble exhibit a high coding efficiency, so that every spike carries the same amount of information in all the individuals. Thus the neural code has a quantifiable mixture of individuality and universality.

  5. Functional and structural vascular adaptations following 8 weeks of low volume high intensity interval training in lower leg of type 2 diabetes patients and individuals at high risk of metabolic syndrome

    DEFF Research Database (Denmark)

    Madsen, Søren Møller; Thorup, Anne Cathrine Sønderstgaard; Overgaard, Kristian;

    2015-01-01

    We wished to investigate the effects of 8 weeks of low volume high intensity interval training (HIIT) on endothelial function of popliteal artery and circulating cell adhesion molecules in type 2 diabetes (T2D) patients and matched controls (CON). Methods: Over 8 weeks, non-active T2D patients...... and CONs cycled three times per week (10 × 60 sec HIIT). Pre- and post-HIIT measurements of endothelial function were conducted by applying flow-mediated dilation (FMD) along with taking venous blood samples. Results: Baseline diameter of popliteal artery increased significantly from an average of 5.53 mm.......12% to 6.58% in the CON-group (p = 0.004) and 4.84% to 5.66% in the T2D-group: (p = 0.045). The shear rate reduced significantly in both groups (CON-group: p = 0.04; T2D-group: p = 0.002). Circulating cell adhesion molecules remained unchanged (p > 0.05). Conclusion: HIIT induced an improvement...

  6. Beyond the frontiers of neuronal types.

    Science.gov (United States)

    Battaglia, Demian; Karagiannis, Anastassios; Gallopin, Thierry; Gutch, Harold W; Cauli, Bruno

    2013-01-01

    Cortical neurons and, particularly, inhibitory interneurons display a large diversity of morphological, synaptic, electrophysiological, and molecular properties, as well as diverse embryonic origins. Various authors have proposed alternative classification schemes that rely on the concomitant observation of several multimodal features. However, a broad variability is generally observed even among cells that are grouped into a same class. Furthermore, the attribution of specific neurons to a single defined class is often difficult, because individual properties vary in a highly graded fashion, suggestive of continua of features between types. Going beyond the description of representative traits of distinct classes, we focus here on the analysis of atypical cells. We introduce a novel paradigm for neuronal type classification, assuming explicitly the existence of a structured continuum of diversity. Our approach, grounded on the theory of fuzzy sets, identifies a small optimal number of model archetypes. At the same time, it quantifies the degree of similarity between these archetypes and each considered neuron. This allows highlighting archetypal cells, which bear a clear similarity to a single model archetype, and edge cells, which manifest a convergence of traits from multiple archetypes.

  7. Beyond the frontiers of neuronal types

    Science.gov (United States)

    Battaglia, Demian; Karagiannis, Anastassios; Gallopin, Thierry; Gutch, Harold W.; Cauli, Bruno

    2012-01-01

    Cortical neurons and, particularly, inhibitory interneurons display a large diversity of morphological, synaptic, electrophysiological, and molecular properties, as well as diverse embryonic origins. Various authors have proposed alternative classification schemes that rely on the concomitant observation of several multimodal features. However, a broad variability is generally observed even among cells that are grouped into a same class. Furthermore, the attribution of specific neurons to a single defined class is often difficult, because individual properties vary in a highly graded fashion, suggestive of continua of features between types. Going beyond the description of representative traits of distinct classes, we focus here on the analysis of atypical cells. We introduce a novel paradigm for neuronal type classification, assuming explicitly the existence of a structured continuum of diversity. Our approach, grounded on the theory of fuzzy sets, identifies a small optimal number of model archetypes. At the same time, it quantifies the degree of similarity between these archetypes and each considered neuron. This allows highlighting archetypal cells, which bear a clear similarity to a single model archetype, and edge cells, which manifest a convergence of traits from multiple archetypes. PMID:23403725

  8. Beyond the frontiers of neuronal types

    Directory of Open Access Journals (Sweden)

    Demian eBattaglia

    2013-02-01

    Full Text Available Cortical neurons and, particularly, inhibitory interneurons display a large diversity of morphological, synaptic, electrophysiological and molecular properties, as well as diverse embryonic origins. Various authors have proposed alternative classification schemes that rely on the concomitant observation of several multimodal features. However, a broad variability is generally observed even among cells that are grouped into a same class. Furthermore, the attribution of specific neurons to a single defined class is often difficult, because individual properties vary in a highly graded fashion, suggestive of continua of features between types. Going beyond the description of representative traits of distinct classes, we focus here on the analysis of atypical cells. We introduce a novel paradigm for neuronal type classification, assuming explicitly the existence of a structured continuum of diversity. Our approach, grounded on the theory of fuzzy sets, identifies a small optimal number of model archetypes. At the same time, it quantifies the degree of similarity between these archetypes and each considered neuron. This allows highlighting archetypal cells, which bear a clear similarity to a single model archetype, and edge cells, which manifest a convergence of traits from multiple archetypes.

  9. Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat.

    Science.gov (United States)

    Schjetnan, Andrea Gomez Palacio; Luczak, Artur

    2011-10-19

    Large scale electrophysiological recordings from neuronal ensembles offer the opportunity to investigate how the brain orchestrates the wide variety of behaviors from the spiking activity of its neurons. One of the most effective methods to monitor spiking activity from a large number of neurons in multiple local neuronal circuits simultaneously is by using silicon electrode arrays. Action potentials produce large transmembrane voltage changes in the vicinity of cell somata. These output signals can be measured by placing a conductor in close proximity of a neuron. If there are many active (spiking) neurons in the vicinity of the tip, the electrode records combined signal from all of them, where contribution of a single neuron is weighted by its 'electrical distance'. Silicon probes are ideal recording electrodes to monitor multiple neurons because of a large number of recording sites (+64) and a small volume. Furthermore, multiple sites can be arranged over a distance of millimeters, thus allowing for the simultaneous recordings of neuronal activity in the various cortical layers or in multiple cortical columns (Fig. 1). Importantly, the geometrically precise distribution of the recording sites also allows for the determination of the spatial relationship of the isolated single neurons. Here, we describe an acute, large-scale neuronal recording from the left and right forelimb somatosensory cortex simultaneously in an anesthetized rat with silicon probes (Fig. 2).

  10. Neurostereology Protocol for Unbiased Quantification of Neuronal Injury and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Victoria M Golub

    2015-10-01

    Full Text Available Neuronal injury and neurodegeneration are the hallmark pathologies in a variety of neurological conditions such as epilepsy, stroke, traumatic brain injury, Parkinson’s disease and Alzheimer’s disease. Quantification of absolute neuron and interneuron counts in various brain regions is essential to understand the impact of neurological insults or neurodegenerative disease progression in animal models. However, conventional qualitative scoring-based protocols are superficial and less reliable for use in studies of neuroprotection evaluations. Here we describe an optimized stereology protocol for quantification of neuronal injury and neurodegeneration by unbiased counting of neurons and interneurons. Every 20th section in each series of 20 sections was processed for NeuN(+ total neuron and parvalbumin(+ interneuron immunostaining. The sections that contain the hippocampus were then delineated into five reliably predefined subregions. Each region was separately analyzed with a microscope driven by the stereology software. Regional tissue volume was determined by using the Cavalieri estimator, and cell density and cell number were determined by using the optical disector and optical fractionator. This protocol yielded an estimate of 1.5 million total neurons and 0.05 million PV(+ interneurons within the rat hippocampus. The protocol has greater predictive power for absolute counts as it is based on 3D features rather than 2D images. The total neuron counts were consistent with literature values from sophisticated systems, which are more expensive than our stereology system. This unbiased stereology protocol allows for sensitive, medium-throughput counting of total neurons in any brain region, and thus provides a quantitative tool for studies of neuronal injury and neurodegeneration in a variety of acute brain injury and chronic neurological models.

  11. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  12. Increased neuronal Rab5 immunoreactive endosomes do not colocalize with TDP-43 in motor neuron disease.

    Science.gov (United States)

    Matej, Radoslav; Botond, Gergö; László, Lajos; Kopitar-Jerala, Natasa; Rusina, Robert; Budka, Herbert; Kovacs, Gabor G

    2010-09-01

    Sporadic motor neuron disease (MND) is characterized by progressive degeneration of motor neurons and intraneuronal cytoplasmic translocation and deposition of the nuclear protein TDP-43. There is a paucity of data on the subcellular mechanisms of the nuclear-cytoplasmic trafficking of TDP-43, particularly about the precise role of the endosomal-lysosomal system (ELS). In the present study, using a neuron-specific morphometric approach, we examined the expression of the early endosomal marker Rab5 and lysosomal cathepsins B, D, F, and L as well as PAS-stained structures in the anterior horn cells in 11 individuals affected by sporadic MND and 5 age-matched controls. This was compared with the expression of ubiquitin, p62 and TDP-43 and its phosphorylated form. The principal finding was the increased expression of the endosomal marker Rab5 and lysosomal cathepsin D, and of PAS-positive structures in motor neurons of MND cases. Furthermore, the area-portion of Rab5 immunoreactivity correlated well with the intracellular accumulation of ubiquitin, p62 and (phosphorylated) TDP-43. However, double immunolabelling and immunogold electron microscopy excluded colocalization of phosphorylated TDP-43 with the ELS. These data contrast with observations on neuronal cytopathology in Alzheimer's or prion diseases where the disease-specific proteins are processed within endosomes, and suggest a distinct role of the ELS in MND.

  13. Neuroimaging of motor neuron diseases.

    Science.gov (United States)

    Kassubek, Jan; Ludolph, Albert C; Müller, Hans-Peter

    2012-03-01

    It is agreed that conventional magnetic resonance imaging (MRI) of the brain and spine is one of the core elements in the differential diagnostic work up of patients with clinical signs of motor neuron diseases (MNDs), for example amyotrophic lateral sclerosis (ALS), to exclude MND mimics. However, the sensitivity and specificity of MRI signs in these disorders are moderate to low and do not have an evidence level higher than class IV (good clinical practice point). Currently computerized MRI analyses in ALS and other MNDs are not techniques used for individual diagnosis. However, they have improved the anatomical understanding of pathomorphological alterations in gray and white matter in various MNDs and the changes in functional networks by quantitative comparisons between patients with MND and controls at group level. For multiparametric MRI protocols, including T1-weighted three-dimensional datasets, diffusion-weighted imaging and functional MRI, the potential as a 'dry' surrogate marker is a subject of investigation in natural history studies with well defined patients. The additional value of MRI with respect to early diagnosis at an individual level and for future disease-modifying multicentre trials remains to be defined. There is still the need for more longitudinal studies in the very early stages of disease or when there is clinical uncertainty and for better standardization in the acquisition and postprocessing of computer-based MRI data. These requirements are to be addressed by establishing quality-controlled multicentre neuroimaging databases.

  14. Spatial determinants of multisensory integration in cat superior colliculus neurons.

    Science.gov (United States)

    Meredith, M A; Stein, B E

    1996-05-01

    1. Although a representation of multisensory space is contained in the superior colliculus, little is known about the spatial requirements of multisensory stimuli that influence the activity of neurons here. Critical to this problem is an assessment of the registry of the different receptive fields within individual multisensory neurons. The present study was initiated to determine how closely the receptive fields of individual multisensory neurons are aligned, the physiological role of that alignment, and the possible functional consequences of inducing receptive-field misalignment. 2. Individual multisensory neurons in the superior colliculus of anesthetized, paralyzed cats were studied with the use of standard extracellular recording techniques. The receptive fields of multisensory neurons were large, as reported previously, but exhibited a surprisingly high degree of spatial coincidence. The average proportion of receptive-field overlap was 86% for the population of visual-auditory neurons sampled. 3. Because of this high degree of intersensory receptive-field correspondence, combined-modality stimuli that were coincident in space tended to fall within the excitatory regions of the receptive fields involved. The result was a significantly enhanced neuronal response in 88% of the multisensory neurons studied. If stimuli were spatially disparate, so that one fell outside its receptive field, either a decreased response occurred (56%), or no intersensory effect was apparent (44%). 4. The normal alignment of the different receptive fields of a multisensory neuron could be disrupted by passively displacing the eyes, pinnae, or limbs/body. In no case was a shift in location or size observed in a neuron's other receptive field(s) to compensate for this displacement. The physiological result of receptive-field misalignment was predictable and based on the location of the stimuli relative to the new positions of their respective receptive fields. Now, for example, one

  15. Study on elastic modulus of individual ferritin

    Institute of Scientific and Technical Information of China (English)

    ZHANG JinHai; CUI ChengYi; ZHOU XingFei

    2009-01-01

    The mechanical property of individual ferriUn was measured with force-volume mapping (FV) under contact mode of atomic force microscopy (AFM) in this work. The elastic modulus of individual ferritin was estimated by the Hertz mode. The estimated value of the elastic modulus of individual ferritin was about 250-800 MPs under a small deformation. In addition, the elastic modulus of individual ferritin was compared with that of the colloid gold nanoparticle.

  16. Renormalized Volume

    CERN Document Server

    Gover, A Rod

    2016-01-01

    For any conformally compact manifold with hypersurface boundary we define a canonical renormalized volume functional and compute an explicit, holographic formula for the corresponding anomaly. For the special case of asymptotically Einstein manifolds, our method recovers the known results. The anomaly does not depend on any particular choice of regulator, but the coefficients of divergences do. We give explicit formulae for these divergences valid for any choice of regulating hypersurface; these should be relevant to recent studies of quantum corrections to entanglement entropies. The anomaly is expressed as a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. We show that the variation of these energy functionals is exactly the obstruction to solving a singular Yamabe type problem with boundary data along the...

  17. The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function

    OpenAIRE

    2013-01-01

    The cell-autonomous role of synaptic transmission in the regulation of neuronal structural and electrical properties is unclear. We have now employed a genetic approach to eliminate glutamatergic synaptic transmission onto individual CA1 pyramidal neurons in a mosaic fashion in vivo. Surprisingly, while electrical properties are profoundly affected in these neurons, as well as inhibitory synaptic transmission, we found little perturbation of neuronal morphology, demonstrating a functional seg...

  18. Neuronal synchrony 

    OpenAIRE

    Buzsáki, Gyorgy

    2010-01-01

    1. Neuronal synchrony: metabolic and wiring costs of excitatory and inhibitory systems The major part of the brain’s energy budget (~ 60-80%) is devoted to its communication activities. While inhibition is critical to brain function, relatively little attention has been paid to its metabolic costs. Understanding how inhibitory interneurons contribute to brain energy consumption (brain work) is not only of interest in understanding a fundamental aspect of brain function but also in understandi...

  19. Micropatterning neuronal networks.

    Science.gov (United States)

    Hardelauf, Heike; Waide, Sarah; Sisnaiske, Julia; Jacob, Peter; Hausherr, Vanessa; Schöbel, Nicole; Janasek, Dirk; van Thriel, Christoph; West, Jonathan

    2014-07-01

    Spatially organised neuronal networks have wide reaching applications, including fundamental research, toxicology testing, pharmaceutical screening and the realisation of neuronal implant interfaces. Despite the large number of methods catalogued in the literature there remains the need to identify a method that delivers high pattern compliance, long-term stability and is widely accessible to neuroscientists. In this comparative study, aminated (polylysine/polyornithine and aminosilanes) and cytophobic (poly(ethylene glycol) (PEG) and methylated) material contrasts were evaluated. Backfilling plasma stencilled PEGylated substrates with polylysine does not produce good material contrasts, whereas polylysine patterned on methylated substrates becomes mobilised by agents in the cell culture media which results in rapid pattern decay. Aminosilanes, polylysine substitutes, are prone to hydrolysis and the chemistries prove challenging to master. Instead, the stable coupling between polylysine and PLL-g-PEG can be exploited: Microcontact printing polylysine onto a PLL-g-PEG coated glass substrate provides a simple means to produce microstructured networks of primary neurons that have superior pattern compliance during long term (>1 month) culture.

  20. Hemispheric asymmetry in new neurons in adulthood is associated with vocal learning and auditory memory.

    Directory of Open Access Journals (Sweden)

    Shuk C Tsoi

    Full Text Available Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1 new neuron incorporation differs between the brain hemispheres, and 2 the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM, a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals.

  1. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    Science.gov (United States)

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-05-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification.

  2. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    Science.gov (United States)

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-01-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification. PMID:27193056

  3. Elucidating the Neuronal Architecture of Olfactory Glomeruli in the Drosophila Antennal Lobe

    Directory of Open Access Journals (Sweden)

    Veit Grabe

    2016-09-01

    Full Text Available Olfactory glomeruli are morphologically conserved spherical compartments of the olfactory system, distinguishable solely by their chemosensory repertoire, anatomical position, and volume. Little is known, however, about their numerical neuronal composition. We therefore characterized their neuronal architecture and correlated these anatomical features with their functional properties in Drosophila melanogaster. We quantitatively mapped all olfactory sensory neurons (OSNs innervating each glomerulus, including sexually dimorphic distributions. Our data reveal the impact of OSN number on glomerular dimensions and demonstrate yet unknown sex-specific differences in several glomeruli. Moreover, we quantified uniglomerular projection neurons for each glomerulus, which unraveled a glomerulus-specific numerical innervation. Correlation between morphological features and functional specificity showed that glomeruli innervated by narrowly tuned OSNs seem to possess a larger number of projection neurons and are involved in less lateral processing than glomeruli targeted by broadly tuned OSNs. Our study demonstrates that the neuronal architecture of each glomerulus encoding crucial odors is unique.

  4. No postnatal doubling of number of neurons in human Broca's areas (Brodmann areas 44 and 45)? A stereological study.

    Science.gov (United States)

    Uylings, H B M; Malofeeva, L I; Bogolepova, I N; Jacobsen, A M; Amunts, K; Zilles, K

    2005-01-01

    In this study we explored whether a postnatal doubling of the total number of neurons occurs in the human Brodmann areas 44 and 45 (Broca's area). We describe the most recent error prediction formulae and their application for the modern stereological estimators for volume and number of neurons. We estimated the number of neurons in 3D optical disector probes systematically random sampled throughout the entire Brodmann areas (BA) 44 and 45 in developing and young adult cases. In the relatively small number of male and female cases studied no substantial postnatal increase in total number of neurons occurred in areas 44 and 45; the volume of these areas reached adult values around 7 years. In addition, we did find indications that a shift from a right-over-left to a left-over-right asymmetry may occur in the volume of BA 45 during postnatal development. No major asymmetry in total number of neurons in BA 44 and 45 was detected.

  5. A Modified Technique for Culturing Primary Fetal Rat Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Sui-Yi Xu

    2012-01-01

    Full Text Available The study explored a modified primary culture system for fetal rat cortical neurons. Day E18 embryos from pregnant Sprague Dawley rats were microdissected under a stereoscope. To minimize enzymatic damage to the cultured neurons, we applied a sequential digestion protocol using papain and Dnase I. The resulting sifted cell suspension was seeded at a density of 50,000 cells per cm2 onto 0.1 mg/mL L-PLL-covered vessels. After a four-hour incubation in high-glucose Dulbecco’s Modified Eagle’s Medium (HG-DMEM to allow the neurons to adhere, the media was changed to neurobasal medium that was refreshed by changing half of the volume after three days followed by a complete medium change every week. The cells displayed progressively robust neurite extension, and nonneuronal-like cells could barely be detected by five days in vitro (DIV; cell growth was still substantial at 14 DIV. Neurons were identified by β-tubulin III immunofluorescence, and neuronal purity within the cultures was assessed at over 95% by both flow cytometry and by dark-field counting of β-tubulin III-positive cells. These results suggest that the protocol was successful and that the high purity of neurons in this system could be used as the basis for generating various cell models of neurological disease.

  6. Radiation induces acute alterations in neuronal function.

    Directory of Open Access Journals (Sweden)

    Peter H Wu

    Full Text Available Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABA(ARs. These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study.

  7. PATRAM '80. Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, H.W. (ed.)

    1980-01-01

    Volume 2 contains papers from the following sessions: Safeguards-Related Problems; Neutronics and Criticality; Operations and Systems Experience II; Plutonium Systems; Intermediate Storage in Casks; Operations and Systems Planning; Institutional Issues; Structural and Thermal Evaluation I; Poster Session B; Extended Testing I; Structural and Thermal Evaluation II; Extended Testing II; and Emergency Preparedness and Response. Individual papers were processed. (LM)

  8. PATRAM '80. Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, H.W. (ed.)

    1980-01-01

    Volume 1 contains papers from the following sessions: Plenary Session; Regulations, Licensing and Standards; LMFBR Systems Concepts; Risk/Safety Assessment I; Systems and Package Design; US Institutional Issues; Risk/Safety Assessment II; Leakage, Leak Rate and Seals; Poster Session A; Operations and Systems Experience I; Manufacturing Processes and Materials; and Quality Assurance and Maintenance. Individual papers were processed. (LM)

  9. Motor fMRI and cortical grey matter volume in adults born very preterm

    Directory of Open Access Journals (Sweden)

    E.J. Lawrence

    2014-10-01

    Full Text Available The primary aim of this study was to investigate the functional neuroanatomy of motor planning, initiation and execution in a cohort of young adults (mean age 20 years who were born very preterm (VPT; <33 weeks of gestation, as these individuals are at increased risk of experiencing neuromotor difficulties compared to controls. A cued motor task was presented to 20 right-handed VPT individuals and 20 controls within a functional magnetic resonance imaging (fMRI paradigm. Whole-brain grey matter volume was also quantified and associations with functional data were examined. Despite comparable task performance, fMRI results showed that the VPT group displayed greater brain activation compared to controls in a region comprising the right cerebellum and the lingual, parahippocampal and middle temporal gyri. The VPT group also displayed decreased grey matter volume in the right superior frontal/premotor cortex and left middle temporal gyri. Grey matter volume in the premotor and middle temporal clusters was significantly negatively correlated with BOLD activation in the cerebellum. Overall, these data suggest that preterm birth is associated with functional neuronal differences that persist into adulthood, which are likely to reflect neural reorganisation following early brain injury.

  10. Representation of retrieval confidence by single neurons in the human medial temporal lobe

    Science.gov (United States)

    Rutishauser, Ueli; Ye, Shengxuan; Koroma, Matthieu; Tudusciuc, Oana; Ross, Ian B.; Chung, Jeffrey M.; Mamelak, Adam N.

    2015-01-01

    Memory-based decisions are often accompanied by an assessment of choice certainty, but the mechanisms of such confidence judgments remain unknown. We studied the response of 1065 individual neurons in the human hippocampus and amygdala while neurosurgical patients made memory retrieval decisions together with a confidence judgment. Combining behavioral, neuronal and computational analysis, we identified a population of memory-selective (MS) neurons whose activity signaled stimulus familiarity and confidence as assessed by subjective report. In contrast, the activity of visually selective (VS) neurons was not sensitive to memory strength. The groups further differed in response latency, tuning, and extracellular waveforms. The information provided by MS neurons was sufficient for a race model to decide stimulus familiarity and retrieval confidence. Together, this demonstrates a trial-by-trial relationship between a specific group of neurons and declared memory strength in humans. We suggest that VS and MS neurons are a substrate for declarative memories. PMID:26053402

  11. The smell of blue light: a new approach towards understanding an olfactory neuronal network

    Directory of Open Access Journals (Sweden)

    Klemens F Störtkuhl

    2011-05-01

    Full Text Available Olfaction is one of the most important senses throughout the animal kingdom. It enables animals to discriminate between a wide variety of attractive and repulsive odorants and often plays a decisive role in species specific communication. In recent years the analysis of olfactory systems both in vertebrates and invertebrates has attracted much scientific interest. In this context a pivotal question is how the properties and connectivities of individual neurons contribute to a functioning neuronal network that mediates odor-guided behavior. As a novel approach to analyze the role of individual neurons within a circuitry, techniques have been established that make use of light-sensitive proteins. In this review we introduce a non-invasive, optogenetic technique which was used to manipulate the activity of individual neurons in the olfactory system of Drosophila melanogaster larvae. Both channelrhodopsin-2 and the photosensitive adenylyl cyclase PAC α in individual olfactory receptor neurons of the olfactory system of Drosophila larvae allows stimulating individual receptor neurons by light. Depending on which particular olfactory receptor neuron is optogenetically activated, repulsion or attraction behavior can be induced, indicating which sensory neurons underlie which type of behavior.

  12. Purity and Enrichment of Laser-Microdissected Midbrain Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Amanda L. Brown

    2013-01-01

    Full Text Available The ability to microdissect individual cells from the nervous system has enormous potential, as it can allow for the study of gene expression in phenotypically identified cells. However, if the resultant gene expression profiles are to be accurately ascribed, it is necessary to determine the extent of contamination by nontarget cells in the microdissected sample. Here, we show that midbrain dopamine neurons can be laser-microdissected to a high degree of enrichment and purity. The average enrichment for tyrosine hydroxylase (TH gene expression in the microdissected sample relative to midbrain sections was approximately 200-fold. For the dopamine transporter (DAT and the vesicular monoamine transporter type 2 (Vmat2, average enrichments were approximately 100- and 60-fold, respectively. Glutamic acid decarboxylase (Gad65 expression, a marker for GABAergic neurons, was several hundredfold lower than dopamine neuron-specific genes. Glial cell and glutamatergic neuron gene expression were not detected in microdissected samples. Additionally, SN and VTA dopamine neurons had significantly different expression levels of dopamine neuron-specific genes, which likely reflects functional differences between the two cell groups. This study demonstrates that it is possible to laser-microdissect dopamine neurons to a high degree of cell purity. Therefore gene expression profiles can be precisely attributed to the targeted microdissected cells.

  13. Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons.

    Science.gov (United States)

    Oddo, Calogero M; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M D; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik

    2017-04-04

    Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models.

  14. Population Coding in Sparsely Connected Networks of Noisy Neurons

    Directory of Open Access Journals (Sweden)

    Bryan Patrick Tripp

    2012-05-01

    Full Text Available This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behaviour. However, population coding theory has often ignored network structure, or assumed discrete, fully-connected populations (in contrast with the sparsely connected, continuous sheet of the cortex. In this study, we model a sheet of cortical neurons with sparse, primarily local connections, and find that a network with this structure can encode multiple internal state variables with high signal-to-noise ratio. However, in our model, although connection probability varies with the distance between neurons, we find that the connections cannot be instantiated at random according to these probabilities, but must have additional structure if information is to be encoded with high fidelity.

  15. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    Science.gov (United States)

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  16. Neuronal activation by mucosal biopsy supernatants from irritable bowel syndrome patients is linked to visceral sensitivity.

    Science.gov (United States)

    Buhner, Sabine; Braak, Breg; Li, Qin; Kugler, Eva Maria; Klooker, Tamira; Wouters, Mira; Donovan, Jemma; Vignali, Sheila; Mazzuoli-Weber, Gemma; Grundy, David; Boeckxstaens, Guy; Schemann, Michael

    2014-10-01

    Based on the discomfort/pain threshold during rectal distension, irritable bowel syndrome (IBS) patients may be subtyped as normo- or hypersensitive. We previously showed that mucosal biopsy supernatants from IBS patients activated enteric and visceral afferent neurons. We tested the hypothesis that visceral sensitivity is linked to the degree of neuronal activation. Normo- and hypersensitive IBS patients were distinguished by their discomfort/pain threshold to rectal balloon distension with a barostat. Using potentiometric and Ca(2+) dye imaging, we recorded the response of guinea-pig enteric submucous and mouse dorsal root ganglion (DRG) neurons, respectively, to mucosal biopsy supernatants from normosensitive (n = 12 tested in enteric neurons, n = 9 tested in DRG) and hypersensitive IBS patients (n = 9, tested in both types of neurons). In addition, we analysed the association between neuronal activation and individual discomfort/pain pressure thresholds. The IBS supernatants evoked Ca(2+) transients in DRG neurons and spike discharge in submucous neurons. Submucous and DRG neurons showed significantly stronger responses to supernatants from hypersensitive IBS patients as reflected by higher spike frequency or stronger [Ca(2+)]i transients in a larger proportion of neurons. The neuroindex as a product of spike frequency or [Ca(2+)]i transients and proportion of responding neurons correlated significantly with the individual discomfort/pain thresholds of the IBS patients. Supernatants from hypersensitive IBS patients caused stronger activation of enteric and DRG neurons. The level of activation correlated with the individual discomfort/pain threshold pressure values. These findings support our hypothesis that visceral sensitivity is linked to activation of peripheral neurons by biopsy supernatants.

  17. Measuring the quality of neuronal identification in ensemble recordings.

    Science.gov (United States)

    Neymotin, Samuel A; Lytton, William W; Olypher, Andrey V; Fenton, André A

    2011-11-09

    Technological advances in electrode construction and digital signal processing now allow recording simultaneous extracellular action potential discharges from many single neurons, with the potential to revolutionize understanding of the neural codes for sensory, motor, and cognitive variables. Such studies have revealed the importance of ensemble neural codes, encoding information in the dynamic relationships among the action potential spike trains of multiple single neurons. Although the success of this research depends on the accurate classification of extracellular action potentials to individual neurons, there are no widely used quantitative methods for assessing the quality of the classifications. Here we describe information theoretic measures of action potential waveform isolation applicable to any dataset that have an intuitive, universal interpretation, that are not dependent on the methods or choice of parameters for single-unit isolation, and that have been validated using a dataset of simultaneous intracellular and extracellular neuronal recordings from Sprague Dawley rats.

  18. Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions.

    Science.gov (United States)

    Baranes, Koby; Kollmar, Davida; Chejanovsky, Nathan; Sharoni, Amos; Shefi, Orit

    2012-08-01

    We study the effect of topographic nano-cues on neuronal growth-morphology using invertebrate neurons in culture. We use photolithography to fabricate substrates with repeatable line-pattern ridges of nano-scale heights of 10-150 nm. We plate leech neurons atop the patterned-substrates and compare their growth pattern to neurons plated atop non-patterned substrates. The model system allows us the analysis of single neurite-single ridge interactions. The use of high resolution electron microscopy reveals small filopodia processes that attach to the line-pattern ridges. These fine processes, that cannot be detected in light microscopy, add anchoring sites onto the side of the ridges, thus additional physical support. These interactions of the neuronal process dominantly affect the neuronal growth direction. We analyze the response of the entire neuronal branching tree to the patterned substrates and find significant effect on the growth patterns compared to non-patterned substrates. Moreover, interactions with the nano-cues trigger a growth strategy similarly to interactions with other neuronal cells, as reflected in their morphometric parameters. The number of branches and the number of neurites originating from the soma decrease following the interaction demonstrating a tendency to a more simplified neuronal branching tree. The effect of the nano-cues on the neuronal function deserves further investigation and will strengthen our understanding of the interplay between function and form.

  19. Neurons of the dentate molecular layer in the rabbit hippocampus.

    Directory of Open Access Journals (Sweden)

    Francisco J Sancho-Bielsa

    Full Text Available The molecular layer of the dentate gyrus appears as the main entrance gate for information into the hippocampus, i.e., where the perforant path axons from the entorhinal cortex synapse onto the spines and dendrites of granule cells. A few dispersed neuronal somata appear intermingled in between and probably control the flow of information in this area. In rabbits, the number of neurons in the molecular layer increases in the first week of postnatal life and then stabilizes to appear permanent and heterogeneous over the individuals' life span, including old animals. By means of Golgi impregnations, NADPH histochemistry, immunocytochemical stainings and intracellular labelings (lucifer yellow and biocytin injections, eight neuronal morphological types have been detected in the molecular layer of developing adult and old rabbits. Six of them appear as interneurons displaying smooth dendrites and GABA immunoreactivity: those here called as globoid, vertical, small horizontal, large horizontal, inverted pyramidal and polymorphic. Additionally there are two GABA negative types: the sarmentous and ectopic granular neurons. The distribution of the somata and dendritic trees of these neurons shows preferences for a definite sublayer of the molecular layer: small horizontal, sarmentous and inverted pyramidal neurons are preferably found in the outer third of the molecular layer; vertical, globoid and polymorph neurons locate the intermediate third, while large horizontal and ectopic granular neurons occupy the inner third or the juxtagranular molecular layer. Our results reveal substantial differences in the morphology and electrophysiological behaviour between each neuronal archetype in the dentate molecular layer, allowing us to propose a new classification for this neural population.

  20. STDP in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Matthieu Gilson

    2010-09-01

    Full Text Available Recent results about spike-timing-dependent plasticity (STDP in recurrently connected neurons are reviewed, with a focus on the relationship between the weight dynamics and the emergence of network structure. In particular, the evolution of synaptic weights in the two cases of incoming connections for a single neuron and recurrent connections are compared and contrasted. A theoretical framework is used that is based upon Poisson neurons with a temporally inhomogeneous firing rate and the asymptotic distribution of weights generated by the learning dynamics. Different network configurations examined in recent studies are discussed and an overview of the current understanding of STDP in recurrently connected neuronal networks is presented.

  1. The straintronic spin-neuron.

    Science.gov (United States)

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons.

  2. A complete developmental sequence of a Drosophila neuronal lineage as revealed by twin-spot MARCM.

    Directory of Open Access Journals (Sweden)

    Hung-Hsiang Yu

    Full Text Available Drosophila brains contain numerous neurons that form complex circuits. These neurons are derived in stereotyped patterns from a fixed number of progenitors, called neuroblasts, and identifying individual neurons made by a neuroblast facilitates the reconstruction of neural circuits. An improved MARCM (mosaic analysis with a repressible cell marker technique, called twin-spot MARCM, allows one to label the sister clones derived from a common progenitor simultaneously in different colors. It enables identification of every single neuron in an extended neuronal lineage based on the order of neuron birth. Here we report the first example, to our knowledge, of complete lineage analysis among neurons derived from a common neuroblast that relay olfactory information from the antennal lobe (AL to higher brain centers. By identifying the sequentially derived neurons, we found that the neuroblast serially makes 40 types of AL projection neurons (PNs. During embryogenesis, one PN with multi-glomerular innervation and 18 uniglomerular PNs targeting 17 glomeruli of the adult AL are born. Many more PNs of 22 additional types, including four types of polyglomerular PNs, derive after the neuroblast resumes dividing in early larvae. Although different offspring are generated in a rather arbitrary sequence, the birth order strictly dictates the fate of each post-mitotic neuron, including the fate of programmed cell death. Notably, the embryonic progenitor has an altered temporal identity following each self-renewing asymmetric cell division. After larval hatching, the same progenitor produces multiple neurons for each cell type, but the number of neurons for each type is tightly regulated. These observations substantiate the origin-dependent specification of neuron types. Sequencing neuronal lineages will not only unravel how a complex brain develops but also permit systematic identification of neuron types for detailed structure and function analysis of the

  3. Latency dependent development of related firing patterns of cultured cortical neurons

    NARCIS (Netherlands)

    le Feber, Jakob; van Pelt, Jaap; Rutten, Wim

    Networks of cortical neurons were grown over multi electrode arrays to enable simultaneous measurement of signals from multiple neurons. We described functional connectivity in these networks by relationships be¬tween individual electrodes, based on conditional firing probabilities. In this study we

  4. Growth and morphogenesis of an autonomic ganglion. I. Matching neurons with target.

    Science.gov (United States)

    Heathcote, R D; Sargent, P B

    1987-08-01

    Regulation of the number and size of neurons presumably plays a role in the matching of a group of neurons to their target. In this paper the relationship of the cardiac ganglion neurons of the frog to their target is examined. Neurons in this ganglion first appear in the embryo and continue to accumulate for several months, even after the animal has completed metamorphosis, and eventually reach a fixed number of cells in the adult. This prolonged period of neuron production has provided an opportunity to manipulate development and test various mechanisms of neuronal regulation. Manipulation of animal culture conditions and hormone levels has shown that the addition of neurons to the ganglion continues up to the characteristic adult number and depends upon neither the chronological age nor the developmental stage of the animal. The size of neurons also changes markedly during development. The average cell body size initially decreases due to the addition of many smaller cells to the ganglion. After metamorphosis neuron size increases dramatically. The changes in size and number complement one another such that the total volume of neuronal cell bodies increases in proportion with the size of both the target and the entire body. The relationship holds for changes in animal size that extend over 4 orders of magnitude and follows a power function of the form y = bxm. Regulation of cardiac ganglion size can be divided into 3 overlapping phases: (1) the arrival of neurons and precursors from the neural crest, (2) an increase in neuron number, (3) and an increase in neuron size. A common denominator for all phases is that the size of the ganglion is, in a coherent way, precisely matched to the size of its target.

  5. Visualization of cyclic nucleotide dynamics in neurons

    Directory of Open Access Journals (Sweden)

    Kirill eGorshkov

    2014-12-01

    Full Text Available The second messengers cAMP and cGMP transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in signal transduction. The development of genetically encodable fluorescent biosensors has provided researchers with useful tools to study these versatile second messengers and their downstream effectors with unparalleled spatial and temporal resolution in cultured cells and living animals. In this review, we introduce the general design of these fluorescent biosensors and describe several of them in more detail. Then we discuss a few examples of using cyclic nucleotide fluorescent biosensors to study regulation of neuronal function and finish with a discussion of advances in the field. Although there has been significant progress made in understanding how the specific signaling of cyclic nucleotide second messengers is achieved, the mechanistic details in complex cell types like neurons are only just beginning to surface. Current and future fluorescent protein reporters will be essential to elucidate the role of cyclic nucleotide signaling dynamics in the functions of individual neurons and their networks.

  6. Santiago Ramon y Cajal and Neuron Doctrine

    Directory of Open Access Journals (Sweden)

    Simge Aykan Zergeroğlu

    2015-09-01

    Full Text Available Santiago Ramon y Cajal’s emergence in the world of science has led to a new era in neuroscience. He was the founder of modern neuroscience with the neuron doctrine he revealed. He showed that nervous system was not a continuum network structure as it is believed to that day, but consists of individual cell as in all other tissues. His contribution to modern neuroscience was not limited to the neuron doctrine, he also contributed to neuronal morphology, communication and development. All of these contributions was honored with a shared Nobel Prize Award with Camillo Golgi in 1906, for their studies on the nervous system. Santiago Ramon y Cajal, was a scientist with unusual observation and interpretation talents, who pushed the conditions until the end to access to information and share his findings in the underdeveloped scientific environment of Spain. Besides, he was involved in scientific breakthroughs of his country. Ramon y Cajal was not only a scientist but also a multi-faceted personality; a passionate chess player, gymnast, a very talented painter and photographer.

  7. Local impermeant anions establish the neuronal chloride concentration

    DEFF Research Database (Denmark)

    Glykys, J; Dzhala, V; Egawa, K

    2014-01-01

    , but accumulating evidence suggests factors other than the bulk concentrations of transported ions determine [Cl(-)](i). Measurement of [Cl(-)](i) in murine brain slice preparations expressing the transgenic fluorophore Clomeleon demonstrated that cytoplasmic impermeant anions ([A](i)) and polyanionic extracellular...... anions determine the homeostatic set point for [Cl(-)], and hence, neuronal volume and the polarity of local GABA(A)R signaling....

  8. Comment on "Local impermeant anions establish the neuronal chloride concentration".

    Science.gov (United States)

    Voipio, Juha; Boron, Walter F; Jones, Stephen W; Hopfer, Ulrich; Payne, John A; Kaila, Kai

    2014-09-05

    Glykys et al. (Reports, 7 February 2014, p. 670) conclude that, rather than ion transporters, "local impermeant anions establish the neuronal chloride concentration" and thereby determine "the magnitude and direction of GABAAR currents at individual synapses." If this were possible, perpetual ion-motion machines could be constructed. The authors' conclusions conflict with basic thermodynamic principles.

  9. Neurones and neuropeptides in coelenterates

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Ebbesen, Ditte Graff; McFarlane, I D

    1989-01-01

    The first nervous system probably evolved in coelenterates. Many neurons in coelenterates have morphological characteristics of both sensory and motor neurones, and appear to be multifunctional. Using immunocytochemistry with antisera to the sequence Arg-Phe-NH2 (RFamide), RFamide-like peptides w...... that these neuropeptides play a role in neurotransmission....

  10. The Neuronal Ceroid-Lipofuscinoses

    Science.gov (United States)

    Bennett, Michael J.; Rakheja, Dinesh

    2013-01-01

    The neuronal ceroid-lipofuscinoses (NCL's, Batten disease) represent a group of severe neurodegenerative diseases, which mostly present in childhood. The phenotypes are similar and include visual loss, seizures, loss of motor and cognitive function, and early death. At autopsy, there is massive neuronal loss with characteristic storage in…

  11. Phenotypic checkpoints regulate neuronal development.

    Science.gov (United States)

    Ben-Ari, Yehezkel; Spitzer, Nicholas C

    2010-11-01

    Nervous system development proceeds by sequential gene expression mediated by cascades of transcription factors in parallel with sequences of patterned network activity driven by receptors and ion channels. These sequences are cell type- and developmental stage-dependent and modulated by paracrine actions of substances released by neurons and glia. How and to what extent these sequences interact to enable neuronal network development is not understood. Recent evidence demonstrates that CNS development requires intermediate stages of differentiation providing functional feedback that influences gene expression. We suggest that embryonic neuronal functions constitute a series of phenotypic checkpoint signatures; neurons failing to express these functions are delayed or developmentally arrested. Such checkpoints are likely to be a general feature of neuronal development and constitute presymptomatic signatures of neurological disorders when they go awry.

  12. Cell biology of neuronal endocytosis.

    Science.gov (United States)

    Parton, R G; Dotti, C G

    1993-09-01

    Endocytosis is the process by which cells take in fluid and components of the plasma membrane. In this way cells obtain nutrients and trophic factors, retrieve membrane proteins for degradation, and sample their environment. In neuronal cells endocytosis is essential for the recycling of membrane after neurotransmitter release and plays a critical role during early developmental stages. Moreover, alterations of the endocytic pathway have been attributed a crucial role in the pathophysiology of certain neurological diseases. Although well characterized at the ultrastructural level, little is known of the dynamics and molecular organization of the neuronal endocytic pathways. In this respect most of our knowledge comes from studies of non-neuronal cells. In this review we will examine the endocytic pathways in neurons from a cell biological viewpoint by making comparisons with non-neuronal cells and in particular with another polarized cell, the epithelial cell.

  13. Prediction of economic choice by primate amygdala neurons.

    Science.gov (United States)

    Grabenhorst, Fabian; Hernádi, István; Schultz, Wolfram

    2012-11-13

    The amygdala is a key structure of the brain's reward system. Existing theories view its role in decision-making as restricted to an early valuation stage that provides input to decision mechanisms in downstream brain structures. However, the extent to which the amygdala itself codes information about economic choices is unclear. Here, we report that individual neurons in the primate amygdala predict behavioral choices in an economic decision task. We recorded the activity of amygdala neurons while monkeys chose between saving liquid reward with interest and spending the accumulated reward. In addition to known value-related responses, we found that activity in a group of amygdala neurons predicted the monkeys' upcoming save-spend choices with an average accuracy of 78%. This choice-predictive activity occurred early in trials, even before information about specific actions associated with save-spend choices was available. For a substantial number of neurons, choice-differential activity was specific for free, internally generated economic choices and not observed in a control task involving forced imperative choices. A subgroup of choice-predictive neurons did not show relationships to value, movement direction, or visual stimulus features. Choice-predictive activity in some amygdala neurons was preceded by transient periods of value coding, suggesting value-to-choice transitions and resembling decision processes in other brain systems. These findings suggest that the amygdala might play an active role in economic decisions. Current views of amygdala function should be extended to incorporate a role in decision-making beyond valuation.

  14. Nitric Oxide Signaling in Hypergravity-Induced Neuronal Plasticity

    Science.gov (United States)

    Holstein, Gay R.

    2003-01-01

    The goal of this research project was to identify the neurons and circuits in the vestibular nuclei and nucleus prepositus hypoglossi that utilize nitric oxide (NO) for intercellular signaling during gravity-induced plasticity. This objective was pursued using histochemical and immunocytochemical approaches to localize NO-producing neurons and characterize the fine morphology of the cells in ground-based studies of normal rats, rats adapted to hypergravity, and rats adapted to hypergravity and then re-adapted to the 1G environment. NO-producing neurons were identified and studied using four methodologies: i) immunocytochemistry employing polyclonal antibodies directed against neuronal nitric oxide synthase (nNOS), to provide an indication of the capacity of a cell for NO production; ii) immunocytochemistry employing a monoclonal antibody directed against L-citrulline, to provide an indirect index of the enzyme's activity; iii) histochemistry based on the NADPH-diaphorase reaction, for fuI1 cytological visualization of neurons; and iv) double immunofluorescence to co-localize nNOS and L-citrulline in individual vestibular nuclei (VN) and neurons.

  15. Small is beautiful: models of small neuronal networks.

    Science.gov (United States)

    Lamb, Damon G; Calabrese, Ronald L

    2012-08-01

    Modeling has contributed a great deal to our understanding of how individual neurons and neuronal networks function. In this review, we focus on models of the small neuronal networks of invertebrates, especially rhythmically active CPG networks. Models have elucidated many aspects of these networks, from identifying key interacting membrane properties to pointing out gaps in our understanding, for example missing neurons. Even the complex CPGs of vertebrates, such as those that underlie respiration, have been reduced to small network models to great effect. Modeling of these networks spans from simplified models, which are amenable to mathematical analyses, to very complicated biophysical models. Some researchers have now adopted a population approach, where they generate and analyze many related models that differ in a few to several judiciously chosen free parameters; often these parameters show variability across animals and thus justify the approach. Models of small neuronal networks will continue to expand and refine our understanding of how neuronal networks in all animals program motor output, process sensory information and learn.

  16. Projections from a single NUCB2/nesfatin-1 neuron in the paraventricular nucleus to different brain regions involved in feeding.

    Science.gov (United States)

    Maejima, Yuko; Kumamoto, Kensuke; Takenoshita, Seiichi; Shimomura, Kenju

    2016-12-01

    The anorexigenic neuropeptide NEFA/nucleobindin 2 (NUCB2)/nesfatin-1-containing neurons are distributed in the brain regions involved in feeding regulation, including the hypothalamic paraventricular nucleus (PVN). Functionally, NUCB2/nesfatin-1 neurons in the PVN regulate feeding through the hypothalamus and brain stem. However, the neural network of PVN NUCB2/nesfatin-1 neurons has yet to be elucidated. Axon collateral branches allow individual neurons to target multiple neurons. In some cases, each target neuron can be located in different nuclei. Here we show that a single neuron in the PVN projects axonal collaterals to both the dorsal vagal complex (DVC) and the arcuate nucleus (ARC), which are important brain regions for feeding regulation. In this study, after injection of different retrograde tracers into the DVC and ARC, both tracer-labeled neurons were detected in the identical PVN neuron, indicating the axon collateral projections from the single PVN neuron to the DVC and ARC. Furthermore, immunohistochemical analysis revealed that approximately 50 % of the neurons with axon collateral projections from the PVN to the DVC and ARC were found to be NUCB2/nesfatin-1 neurons. Our data suggest that a single NUCB2/nesfatin-1 neuron in the PVN projects to both the ARC and the DVC with axon collateral projection. Although the physiological significance remains to be elucidated, our data offer new perspectives on NUCB2/nesfatin-1 function at the neural network level and food intake regulation.

  17. Nuclear trafficking of Pten after brain injury leads to neuron survival not death.

    Science.gov (United States)

    Goh, Choo-Peng; Putz, Ulrich; Howitt, Jason; Low, Ley-Hian; Gunnersen, Jenny; Bye, Nicole; Morganti-Kossmann, Cristina; Tan, Seong-Seng

    2014-02-01

    There is controversy whether accumulation of the tumor suppressor PTEN protein in the cell nucleus under stress conditions such as trauma and stroke causes cell death. A number of in vitro studies have reported enhanced apoptosis in neurons possessing nuclear PTEN, with the interpretation that its nuclear phosphatase activity leads to reduction of the survival protein phospho-Akt. However, there have been no in vivo studies to show that nuclear PTEN in neurons under stress is detrimental. Using a mouse model of injury, we demonstrate here that brain trauma altered the nucleo-cytoplasmic distribution of Pten, resulting in increased nuclear Pten but only in surviving neurons near the lesion. This event was driven by Ndfip1, an adaptor and activator of protein ubiquitination by Nedd4 E3 ligases. Neurons next to the lesion with nuclear PTEN were invariably negative for TUNEL, a marker for cell death. These neurons also showed increased Ndfip1 which we previously showed to be associated with neuron survival. Biochemical assays revealed that overall levels of Pten in the affected cortex were unchanged after trauma, suggesting that Pten abundance globally had not increased but rather Pten subcellular location in affected neurons had changed. Following experimental injury, the number of neurons with nuclear Pten was reduced in heterozygous mice (Ndfip1(+/-)) although lesion volumes were increased. We conclude that nuclear trafficking of Pten following injury leads to neuron survival not death.

  18. Disinhibition Bursting of Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Collin J Lobb

    2011-05-01

    Full Text Available Substantia nigra pars compacta (SNpc dopaminergic neurons receive strong tonic inputs from GABAergic neurons in the substantia nigra pars reticulata (SNpr and globus pallidus (GP, and glutamatergic neurons in the subthalamic nucleus. The presence of these tonic inputs raises the possibility that phasic disinhibition may trigger phasic bursts in dopaminergic neurons. We first applied constant NMDA and GABAA conductances onto a two-compartment single cell model of the dopaminergic neuron (Kuznetsov et al., 2006. The model exhibited disinhibition bursting upon stepwise removal of inhibition. A further bifurcation analysis suggests that disinhibition may be more robust than excitation alone in that for most levels of NMDA conductance, the cell remains capable of bursting even after a complete removal of inhibition, whereas too much excitatory input will drive the cell into depolarization block. To investigate the network dynamics of disinhibition, we used a modified version of an integrate-and-fire based model of the basal ganglia (Humphries et al., 2006. Synaptic activity generated in the network was delivered to the two-compartment single cell dopaminergic neuron. Phasic activation of the D1-expressing medium spiny neurons in the striatum (D1STR produced disinhibition bursts in dopaminergic neurons through the direct pathway (D1STR to SNpr to SNpc. Anatomical studies have shown that D1STR neurons have collaterals that terminate in GP. Adding these collaterals to the model, we found that striatal activation increased the intra-burst firing frequency of the disinhibition burst as the weight of this connection was increased. Our studies suggest that striatal activation is a robust means by which disinhibition bursts can be generated by SNpc dopaminergic neurons, and that recruitment of the indirect pathway via collaterals may enhance disinhibition bursting.

  19. Orexin neurons receive glycinergic innervations.

    Directory of Open Access Journals (Sweden)

    Mari Hondo

    Full Text Available Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation.

  20. Simultaneous electrophysiological recording and calcium imaging of suprachiasmatic nucleus neurons.

    Science.gov (United States)

    Irwin, Robert P; Allen, Charles N

    2013-12-08

    Simultaneous electrophysiological and fluorescent imaging recording methods were used to study the role of changes of membrane potential or current in regulating the intracellular calcium concentration. Changing environmental conditions, such as the light-dark cycle, can modify neuronal and neural network activity and the expression of a family of circadian clock genes within the suprachiasmatic nucleus (SCN), the location of the master circadian clock in the mammalian brain. Excitatory synaptic transmission leads to an increase in the postsynaptic Ca(2+) concentration that is believed to activate the signaling pathways that shifts the rhythmic expression of circadian clock genes. Hypothalamic slices containing the SCN were patch clamped using microelectrodes filled with an internal solution containing the calcium indicator bis-fura-2. After a seal was formed between the microelectrode and the SCN neuronal membrane, the membrane was ruptured using gentle suction and the calcium probe diffused into the neuron filling both the soma and dendrites. Quantitative ratiometric measurements of the intracellular calcium concentration were recorded simultaneously with membrane potential or current. Using these methods it is possible to study the role of changes of the intracellular calcium concentration produced by synaptic activity and action potential firing of individual neurons. In this presentation we demonstrate the methods to simultaneously record electrophysiological activity along with intracellular calcium from individual SCN neurons maintained in brain slices.

  1. Contradiction Resolution of Competitive and Input Neurons to Improve Prediction and Visualization Performance

    Directory of Open Access Journals (Sweden)

    Ryotaro Kamimura

    2013-12-01

    Full Text Available In this paper, we propose a new type of informationtheoretic method to resolve the contradiction observed in competitive and input neurons. For competitive neurons, contradiction between self-evaluation (individuality and outer-evaluation (collectivity exists, which is reduced to realize the self-organizing maps. For input neurons, there exists contradiction between the use of many and few input neurons. We try to realize a situation where as many input neurons as possible are used, and at the same time, another where only a few input neurons are used. This contradictory situation can be resolved by viewing input neurons on different levels, namely, the individual and average level. We applied contradiction resolution to two data sets, namely, the Japanese short term economy survey (Tankan and Dollar-Yen exchange rates. In both data sets, we succeeded in improving the prediction performance. Many input neurons were used on average, but a few input neurons were only taken for each input pattern. In addition, connection weights were condensed into a small number of distinct groups for better prediction and interpretation performance.

  2. Individual Training in Collecting and Reporting Military Information. Volume I.

    Science.gov (United States)

    1951-10-01

    exercise - involving milita ry objects and personnel. (6) Use of field glasses and all relation formula. b. Reporti ng: (1) Oral reports. (2) Message...are answered in his report. Materials required: Equip ment being used. for regular training, 13. SItuation No 18. - Recognition and reporti ng. Thu

  3. Benefits Analysis of Past Projects. Volume 2. Individual Project Assessments.

    Science.gov (United States)

    1984-11-01

    Tennessee Avenue Component Repair Facility in incinnati and at its Singapore, Malaysia repair facility. The Stage I X-40 vane is H2 cleaned, and the...purity (high resistivity) silicon for production of the laser detectors for the Laser Maverick , Hellfire, and PAVEWAY guidance systems was Wacker, a...produced in the project were shipped to RCA and Ilughes to fabricate samples of the Laser Maverick and Hellfire detectors, which we r, evaluated for

  4. The role of the ETS gene PEA3 in the development of motor and sensory neurons.

    Science.gov (United States)

    Ladle, David R; Frank, Eric

    2002-12-01

    The ETS family of transcription factors includes two members, ER81 and PEA3, which are expressed in groups of sensory and motor neurons supplying individual muscles. To investigate a possible role of these genes in determining sensory and/or motor neuron phenotype, we studied mice in which each of these genes was deleted. In contrast to the deletion of ER81, which blocks the formation of projections from muscle sensory neurons to motor neurons in the spinal cord, deletion of PEA3 causes no obvious effects on sensory neurons or on their synaptic connections with motor neurons. PEA3 does play a major role in the formation of some brachial motoneurons however. Motoneurons innervating the cutaneous maximus muscle, which are normally PEA3(+), fail to develop normally so that postnatally the muscle is innervated by few motoneurons and is severely atrophic. Other studies suggest that these motoneurons initially appear during development but fail to contact their normal muscle targets.

  5. Broadband shifts in LFP power spectra are correlated with single-neuron spiking in humans

    Science.gov (United States)

    Manning, Jeremy R.; Jacobs, Joshua; Fried, Itzhak; Kahana, Michael J.

    2010-01-01

    A fundamental question in neuroscience concerns the relation between the spiking of individual neurons and the aggregate electrical activity of neuronal ensembles as seen in local-field potentials (LFPs). Because LFPs reflect both spiking activity and subthreshold events, this question is not simply one of data aggregation. Recording from 20 neurosurgical patients, we directly examined the relation between LFPs and neuronal spiking. Examining 2,030 neurons in widespread brain regions, we found that firing rates were positively correlated with broadband (2 – 150 Hz) shifts in the LFP power spectrum. In contrast, narrowband oscillations correlated both positively and negatively with firing rates at different recording sites. Broadband power shifts were a more-reliable predictor of neuronal spiking than narrowband power shifts. These findings suggest that broadband LFP power provides valuable information concerning neuronal activity beyond that contained in narrowband oscillations. PMID:19864573

  6. Regenerative process evaluation of neuronal subclasses in chagasic patients with megacolon.

    Science.gov (United States)

    Moreira, Milena Dionízio; Brehmer, Axel; de Oliveira, Enio Chaves; Neto, Salustiano Gabriel; Luquetti, Alejandro O; Bueno, Lilian Lacerda; Fujiwara, Ricardo Toshio; de Freitas, Michelle Aparecida Ribeiro; da Silveira, Alexandre Barcelos Morais

    2013-02-01

    Chagas' disease is one of the most serious parasitic diseases of Latin America, with a social and economic impact far outweighing the combined effects of other parasitic diseases such as malaria, leishmaniasis and schistosomiasis. In the chronic phase of this disease, the destruction of enteric nervous system (ENS) components leads to megacolon development. Previous data presented that the regeneration tax in the ENS neurons is augmented in chagasic patients. Although, there are several neuronal types with different functions in the intestine a detailed study about the regeneration of every neuronal type was never performed before. Therefore, the aim of this study was to evaluate the regeneration tax of every neuronal cell type in the ENS from chagasic patients with megacolon and non-infected individuals. A neuronal regeneration marker (GAP-43) was used in combination with a pan-neuronal marker (Peripherin) and several neuropeptides markers (cChat, Substance P, NPY, VIP and NOS), and it was considered as positive just with the combination of these markers. Our results demonstrated that the regeneration levels of cChat, Substance P, and NPY were similar in chagasic patients and non-infected individuals. However, levels of VIP and NOS neuropeptides were increased in chagasic patients when compared with non-infected individuals. We believe that the augment in the regeneration occur due to an increased destruction of selective neuronal types. These results corroborates with previous studies that pointed out to selective destruction of VIP and NOS neurons in chagasic patients.

  7. Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy

    CERN Document Server

    Prevedel, R; Hoffmann, M; Pak, N; Wetzstein, G; Kato, S; Schrödel, T; Raskar, R; Zimmer, M; Boyden, E S; Vaziri, A

    2014-01-01

    3D functional imaging of neuronal activity in entire organisms at single cell level and physiologically relevant time scales faces major obstacles due to trade-offs between the size of the imaged volumes, and spatial and temporal resolution. Here, using light-field microscopy in combination with 3D deconvolution, we demonstrate intrinsically simultaneous volumetric functional imaging of neuronal population activity at single neuron resolution for an entire organism, the nematode Caenorhabditis elegans. The simplicity of our technique and possibility of the integration into epi-fluoresence microscopes makes it an attractive tool for high-speed volumetric calcium imaging.

  8. Neurons within the same network independently achieve conserved output by differentially balancing variable conductance magnitudes.

    Science.gov (United States)

    Ransdell, Joseph L; Nair, Satish S; Schulz, David J

    2013-06-12

    Biological and theoretical evidence suggest that individual neurons may achieve similar outputs by differentially balancing variable underlying ionic conductances. Despite the substantial amount of data consistent with this idea, a direct biological demonstration that cells with conserved output, particularly within the same network, achieve these outputs via different solutions has been difficult to achieve. Here we demonstrate definitively that neurons from native neural networks with highly similar output achieve this conserved output by differentially tuning underlying conductance magnitudes. Multiple motor neurons of the crab (Cancer borealis) cardiac ganglion have highly conserved output within a preparation, despite showing a 2-4-fold range of conductance magnitudes. By blocking subsets of these currents, we demonstrate that the remaining conductances become unbalanced, causing disparate output as a result. Therefore, as strategies to understand neuronal excitability become increasingly sophisticated, it is important that such variability in excitability of neurons, even among those within the same individual, is taken into account.

  9. Single-Neuron Sequencing Analysis of L1 Retrotransposition and Somatic Mutation in the Human Brain

    Science.gov (United States)

    Evrony, Gilad D.; Cai, Xuyu; Lee, Eunjung; Hills, L. Benjamin; Elhosary, P. Christina; Lehmann, Hillel S.; Parker, J.J.; Atabay, Kutay D.; Gilmore, Edward C.; Poduri, Annapurna; Park, Peter J.; Walsh, Christopher A.

    2013-01-01

    Summary A major unanswered question in neuroscience is whether there exists genomic variability between individual neurons of the brain, contributing to functional diversity or to an unexplained burden of neurological disease. To address this question, we developed a method to amplify genomes of single neurons from human brains. Since recent reports suggest frequent LINE-1 (L1) retrotransposition in human brains, we performed genome-wide L1 insertion profiling of 300 single neurons from cerebral cortex and caudate nucleus of 3 normal individuals, recovering >80% of germline insertions from single neurons. While we find somatic L1 insertions, we estimate hemimegalencephaly. Single-neuron sequencing allows systematic assessment of genomic diversity in the human brain. PMID:23101622

  10. Chronic Hypoxia Suppresses the Co2 Response of Solitary Complex (Sc) Neurons from Rats

    Science.gov (United States)

    Nichols, Nicole L.; Wilkinson, Katherine A.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2009-01-01

    We studied the effect of chronic hypobaric hypoxia (CHx; 10-11% O2) on the response to hypercapnia (15% CO2) of individual solitary complex (SC) neurons from adult rats. We simultaneously measured the intracellular pH and firing rate responses to hypercapnia of SC neurons in superfused medullary slices from control and CHx-adapted adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. We found that CHx caused the percentage of SC neurons inhibited by hypercapnia to significantly increase from about 10% up to about 30%, but did not significantly alter the percentage of SC neurons activated by hypercapnia (50% in control versus 35% in CHx). Further, the magnitudes of the responses of SC neurons from control rats (chemosensitivity index for activated neurons of 166±11% and for inhibited neurons of 45±15%) were the same in SC neurons from CHx-adapted rats. This plasticity induced in chemosensitive SC neurons by CHx appears to involve intrinsic changes in neuronal properties since they were the same in synaptic blockade medium. PMID:19619674

  11. Mirror neurons and their clinical relevance.

    Science.gov (United States)

    Rizzolatti, Giacomo; Fabbri-Destro, Maddalena; Cattaneo, Luigi

    2009-01-01

    One of the most exciting events in neurosciences over the past few years has been the discovery of a mechanism that unifies action perception and action execution. The essence of this 'mirror' mechanism is as follows: whenever individuals observe an action being done by someone else, a set of neurons that code for that action is activated in the observers' motor system. Since the observers are aware of the outcome of their motor acts, they also understand what the other individual is doing without the need for intermediate cognitive mediation. In this Review, after discussing the most pertinent data concerning the mirror mechanism, we examine the clinical relevance of this mechanism. We first discuss the relationship between mirror mechanism impairment and some core symptoms of autism. We then outline the theoretical principles of neurorehabilitation strategies based on the mirror mechanism. We conclude by examining the relationship between the mirror mechanism and some features of the environmental dependency syndromes.

  12. Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism.

    Science.gov (United States)

    Jacot-Descombes, Sarah; Uppal, Neha; Wicinski, Bridget; Santos, Micaela; Schmeidler, James; Giannakopoulos, Panteleimon; Heinsen, Helmut; Heinsein, Helmut; Schmitz, Christoph; Hof, Patrick R

    2012-07-01

    Autism is a neurodevelopmental disorder characterized by deficits in social interaction and social communication, as well as by the presence of repetitive and stereotyped behaviors and interests. Brodmann areas 44 and 45 in the inferior frontal cortex, which are involved in language processing, imitation function, and sociality processing networks, have been implicated in this complex disorder. Using a stereologic approach, this study aims to explore the presence of neuropathological differences in areas 44 and 45 in patients with autism compared to age- and hemisphere-matched controls. Based on previous evidence in the fusiform gyrus, we expected to find a decrease in the number and size of pyramidal neurons as well as an increase in volume of layers III, V, and VI in patients with autism. We observed significantly smaller pyramidal neurons in patients with autism compared to controls, although there was no difference in pyramidal neuron numbers or layer volumes. The reduced pyramidal neuron size suggests that a certain degree of dysfunction of areas 44 and 45 plays a role in the pathology of autism. Our results also support previous studies that have shown specific cellular neuropathology in autism with regionally specific reduction in neuron size, and provide further evidence for the possible involvement of the mirror neuron system, as well as impairment of neuronal networks relevant to communication and social behaviors, in this disorder.

  13. Pathogenesis of motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xuefei Wang

    2006-01-01

    OBJECTIVE: To summarize and analyze the factors and theories related to the attack of motor neuron disease, and comprehensively investigate the pathogenesis of motor neuron disease.DATA SOURCES: A search of Pubmed database was undertaken to identify articles about motor neuron disease published in English from January 1994 to June 2006 by using the keywords of "neurodegenerative diseases". Other literatures were collected by retrieving specific journals and articles.STUDY SELECTION: The data were checked primarily, articles related to the pathogenesis of motor neuron disease were involved, and those obviously irrelated to the articles were excluded.DATA EXTRACTION: Totally 54 articles were collected, 30 of them were involved, and the other 24 were excluded.DATA SYNTHESIS: The pathogenesis of motor neuron disease has multiple factors, and the present related theories included free radical oxidation, excitotoxicity, genetic and immune factors, lack of neurotrophic factor,injury of neurofilament, etc. The studies mainly come from transgenic animal models, cell culture in vitro and patients with familial motor neuron disease, but there are still many restrictions and disadvantages.CONCLUSION: It is necessary to try to find whether there is internal association among different mechanisms,comprehensively investigate the pathogenesis of motor neuron diseases, in order to provide reliable evidence for the clinical treatment.

  14. Salsolinol modulation of dopamine neurons

    Directory of Open Access Journals (Sweden)

    Guiqin eXie

    2013-05-01

    Full Text Available Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumbens. However, the underlying neuronal mechanisms are unclear. Here we present an overview of some of the recent research on this topic. Electrophysiological studies reveal that dopaminergic neurons in the posterior ventral tegmental area (pVTA are a target of salsolinol. In acute brain slices from rats, salsolinol increases the excitability and accelerates the ongoing firing of dopamine neurons in the pVTA. Intriguingly, this action of salsolinol involves multiple pre- and post-synaptic mechanisms, including: (a depolarizing the membrane potential of dopamine neurons; (b activating mu opioid receptors on the GABAergic inputs to dopamine neurons, which decreases GABAergic activity and dopamine neurons are disinhibited; and (c enhancing presynaptic glutamatergic transmission onto dopamine neurons via activation of dopamine type 1 receptors, probably situated on the glutamatergic terminals. These novel mechanisms may contribute to the rewarding/reinforcing properties of salsolinol observed in vivo.

  15. A Neuron Model for FPGA Spiking Neuronal Network Implementation

    Directory of Open Access Journals (Sweden)

    BONTEANU, G.

    2011-11-01

    Full Text Available We propose a neuron model, able to reproduce the basic elements of the neuronal dynamics, optimized for digital implementation of Spiking Neural Networks. Its architecture is structured in two major blocks, a datapath and a control unit. The datapath consists of a membrane potential circuit, which emulates the neuronal dynamics at the soma level, and a synaptic circuit used to update the synaptic weight according to the spike timing dependent plasticity (STDP mechanism. The proposed model is implemented into a Cyclone II-Altera FPGA device. Our results indicate the neuron model can be used to build up 1K Spiking Neural Networks on reconfigurable logic suport, to explore various network topologies.

  16. Single neuron dynamics and computation.

    Science.gov (United States)

    Brunel, Nicolas; Hakim, Vincent; Richardson, Magnus J E

    2014-04-01

    At the single neuron level, information processing involves the transformation of input spike trains into an appropriate output spike train. Building upon the classical view of a neuron as a threshold device, models have been developed in recent years that take into account the diverse electrophysiological make-up of neurons and accurately describe their input-output relations. Here, we review these recent advances and survey the computational roles that they have uncovered for various electrophysiological properties, for dendritic arbor anatomy as well as for short-term synaptic plasticity.

  17. Nonsulfated cholecystokinins in cerebral neurons

    DEFF Research Database (Denmark)

    Agersnap, Mikkel; Zhang, Ming-Dong; Harkany, Tibor

    2016-01-01

    Cholecystokinin (CCK) is a widely expressed neuropeptide system originally discovered in the gut. Both cerebral and peripheral neurons as well as endocrine I-cells in the small intestine process proCCK to tyrosyl-O-sulfated and α-carboxyamidated peptides. Recently, we reported that gut endocrine I...... for nonsulfated CCK-8 with an antibody recognizing both sulfated and nonsulfated CCK. However, nonsulfated CCK immunoreactivity was stronger than that of sulfated CCK in cell bodies and weaker in nerve terminals. We conclude that only a small fraction of neuronal CCK is nonsulfated. The intracellular distribution...... of nonsulfated CCK in neurons suggests that they contribute only modestly to the CCK transmitter activity....

  18. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia

    DEFF Research Database (Denmark)

    Ryskamp, Daniel A; Jo, Andrew O; Frye, Amber M

    2014-01-01

    Activity-dependent shifts in ionic concentrations and water that accompany neuronal and glial activity can generate osmotic forces with biological consequences for brain physiology. Active regulation of osmotic gradients and cellular volume requires volume-sensitive ion channels. In the vertebrate...... retina, critical support to volume regulation is provided by Müller astroglia, but the identity of their osmosensor is unknown. Here, we identify TRPV4 channels as transducers of mouse Müller cell volume increases into physiological responses. Hypotonic stimuli induced sustained [Ca(2+)]i elevations...

  19. Spatial wavelet analysis of calcium oscillations in developing neurons.

    Directory of Open Access Journals (Sweden)

    Federico Alessandro Ruffinatti

    Full Text Available Calcium signals play a major role in the control of all key stages of neuronal development, and in particular in the growth and orientation of neuritic processes. These signals are characterized by high spatial compartmentalization, a property which has a strong relevance in the different roles of specific neuronal regions in information coding. In this context it is therefore important to understand the structural and functional basis of this spatial compartmentalization, and in particular whether the behavior at each compartment is merely a consequence of its specific geometry or the result of the spatial segregation of specific calcium influx/efflux mechanisms. Here we have developed a novel approach to separate geometrical from functional differences, regardless on the assumptions on the actual mechanisms involved in the generation of calcium signals. First, spatial indices are derived with a wavelet-theoretic approach which define a measure of the oscillations of cytosolic calcium concentration in specific regions of interests (ROIs along a cell, in our case developing chick ciliary ganglion neurons. The resulting spatial profile demonstrates clearly that different ROIs along the neuron are characterized by specific patterns of calcium oscillations. Next we have investigated whether this inhomogeneity is due just to geometrical factors, namely the surface to volume ratio in the different subcompartments (e.g. soma vs. growth cone or it depends on their specific biophysical properties. To this aim correlation functions are computed between the activity indices and the surface/volume ratio along the cell: the data thus obtained are validated by a statistical analysis on a dataset of [Formula: see text] different cells. This analysis shows that whereas in the soma calcium dynamics is highly correlated to the surface/volume ratio, correlations drop in the growth cone-neurite region, suggesting that in this latter case the key factor is the

  20. Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains

    Directory of Open Access Journals (Sweden)

    Lissa eVentura-Antunes

    2013-04-01

    Full Text Available Expansion of the cortical grey matter in evolution has been accompanied by an even faster expansion of the subcortical white matter volume and by folding of the grey matter surface, events traditionally considered to occur homogeneously across mammalian species. Here we investigate how white matter expansion and cortical folding scale across species of rodents and primates as the grey matter gains neurons. We find very different scaling rules of white matter expansion across the two orders, favoring volume conservation and smaller propagation times in primates. For a similar number of cortical neurons, primates have a smaller connectivity fraction and less white matter volume than rodents; moreover, as the cortex gains neurons, there is a much faster increase in white matter volume and in its ratio to grey matter volume in rodents than in primates. Order-specific scaling of the white matter can be attributed to different scaling of average fiber caliber and neuronal connectivity in rodents and primates. Finally, cortical folding increases as different functions of the number of cortical neurons in rodents and primates, scaling faster in the latter than in the former. While the neuronal rules that govern grey and white matter scaling are different across rodents and primates, we find that they can be explained by the same unifying model, with order-specific exponents. The different scaling of the white matter has implications for the scaling of propagation time and computational capacity in evolution, and calls for a reappraisal of developmental models of cortical expansion in evolution.

  1. Tinbergen on mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories.

  2. Neuronal intestinal dysplasia.

    Science.gov (United States)

    Rintala, R; Rapola, J; Louhimo, I

    1989-01-01

    A series of 21 patients with NID is presented. A histologic and histochemical picture of NID was seen in an heterogenous group of patients. NID was associated with bowel obstruction and/or perforation in six neonates and infants. One neonate died. During follow-up the bowel histology gradually normalized in four of the five patients. NID was found incidentally in four patients with anorectal malformations and two with Hirschsprung's disease. Three patients with Hirschsprung's disease and associated NID had chronic proctitis; one patient with an anorectal anomaly had chronic obstipation and megacolon and one proctitis. Two children with multiple endocrine neoplasia 2b syndrome and chronic obstipation had typical NID in their rectum biopsies, as did a 50-year-old woman with CIIP. The clinical heterogeneity of patients with NID suggests that NID may not be a distinct clinical entity but rather a reaction of the neuronal network of the bowel wall and could be caused either by congenital or secondary factors.

  3. Transient epileptiform signaling during neuronal network development: regulation by external stimulation and bimodal GABAergic activity.

    Science.gov (United States)

    Zemianek, Jill M; Shultz, Abraham M; Lee, Sangmook; Guaraldi, Mary; Yanco, Holly A; Shea, Thomas B

    2013-04-01

    A predominance of excitatory activity, with protracted appearance of inhibitory activity, accompanies cortical neuronal development. It is unclear whether or not inhibitory neuronal activity is solicited exclusively by excitatory neurons or whether the transient excitatory activity displayed by developing GABAergic neurons contributes to an excitatory threshold that fosters their conversion to inhibitory activity. We addressed this possibility by culturing murine embryonic neurons on multi-electrode arrays. A wave of individual 0.2-0.4 mV signals ("spikes") appeared between approx. 20-30 days in culture, then declined. A transient wave of high amplitude (>0.5 mV) epileptiform activity coincided with the developmental decline in spikes. Bursts (clusters of ≥3 low-amplitude spikes within 0.7s prior to returning to baseline) persisted following this decline. Addition of the GABAergic antagonist bicuculline initially had no effect on signaling, consistent with delayed development of GABAergic synapses. This was followed by a period in which bicuculline inhibited overall signaling, confirming that GABAergic neurons initially display excitatory activity in ex vivo networks. Following the transient developmental wave of epileptiform signaling, bicuculline induced a resurgence of epileptiform signaling, indicating that GABAergic neurons at this point displayed inhibitory activity. The appearance of transition after the developmental and decline of epileptiform activity, rather than immediately after the developmental decline in lower-amplitude spikes, suggests that the initial excitatory activity of GABAergic neurons contributes to their transition into inhibitory neurons, and that inhibitory GABAergic activity is essential for network development. Prior studies indicate that a minority (25%) of neurons in these cultures were GABAergic, suggesting that inhibitory neurons regulate multiple excitatory neurons. A similar robust increase in signaling following cessation of

  4. Thinking the individual as form of individuation

    Directory of Open Access Journals (Sweden)

    Samuel Mateus

    2011-12-01

    Full Text Available In this paper we will ponder the problem of the individualism through the individuation, pointing out the implications on the idea of “individual”. It attempts to find a theoretical way that allows a broader understanding of its role in human societies It will be suggested that the emphasis placed by modernity in the individual can be evaluated, not as a solipsist individualism, but as a figurational form specific of social contexts characterized by a wide objectivation of the social tissue. That means that beside individualism we can think individualizations through the seminal setting of individuation. This hypothesis is already insinuated in the German sociological thought, in particular, in the sociology of the social forms of Georg Simmel and in the process sociology of Norbert Elias.

  5. Neuronal boost to evolutionary dynamics.

    Science.gov (United States)

    de Vladar, Harold P; Szathmáry, Eörs

    2015-12-06

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild.

  6. Neuronal boost to evolutionary dynamics

    Science.gov (United States)

    de Vladar, Harold P.; Szathmáry, Eörs

    2015-01-01

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild. PMID:26640653

  7. Modeling neuronal vulnerability in ALS.

    Science.gov (United States)

    Roselli, Francesco; Caroni, Pico

    2014-08-20

    Using computational models of motor neuron ion fluxes, firing properties, and energy requirements, Le Masson et al. (2014) reveal how local imbalances in energy homeostasis may self-amplify and contribute to neurodegeneration in ALS.

  8. Is realistic neuronal modeling realistic?

    Science.gov (United States)

    Almog, Mara; Korngreen, Alon

    2016-11-01

    Scientific models are abstractions that aim to explain natural phenomena. A successful model shows how a complex phenomenon arises from relatively simple principles while preserving major physical or biological rules and predicting novel experiments. A model should not be a facsimile of reality; it is an aid for understanding it. Contrary to this basic premise, with the 21st century has come a surge in computational efforts to model biological processes in great detail. Here we discuss the oxymoronic, realistic modeling of single neurons. This rapidly advancing field is driven by the discovery that some neurons don't merely sum their inputs and fire if the sum exceeds some threshold. Thus researchers have asked what are the computational abilities of single neurons and attempted to give answers using realistic models. We briefly review the state of the art of compartmental modeling highlighting recent progress and intrinsic flaws. We then attempt to address two fundamental questions. Practically, can we realistically model single neurons? Philosophically, should we realistically model single neurons? We use layer 5 neocortical pyramidal neurons as a test case to examine these issues. We subject three publically available models of layer 5 pyramidal neurons to three simple computational challenges. Based on their performance and a partial survey of published models, we conclude that current compartmental models are ad hoc, unrealistic models functioning poorly once they are stretched beyond the specific problems for which they were designed. We then attempt to plot possible paths for generating realistic single neuron models. Copyright © 2016 the American Physiological Society.

  9. Increased Putamen Volume in Adults with Autism Spectrum Disorder

    OpenAIRE

    Sato, Wataru; Kubota, Yasutaka; Kochiyama, Takanori; Uono, Shota; Yoshimura, Sayaka; Sawada, Reiko; Sakihama, Morimitsu; Toichi, Motomi

    2014-01-01

    Basal ganglia (BG) abnormalities are implicated in the pathophysiology of autism spectrum disorder (ASD). However, studies measuring the volume of the entire BG in individuals with ASD have reported discrepant findings, and no study conducted volume measurement of the entire substructures of the BG (the caudate, putamen, nucleus accumbens, and globus pallidus) in individuals with ASD. We delineated the BG substructures and measured their volumes in 29 adults with ASD without intellectual disa...

  10. Asymmetry of Radial and Symmetry of Tangential Neuronal Migration Pathways in Developing Human Fetal Brains.

    Science.gov (United States)

    Miyazaki, Yuta; Song, Jae W; Takahashi, Emi

    2016-01-01

    The radial and tangential neural migration pathways are two major neuronal migration streams in humans that are critical during corticogenesis. Corticogenesis is a complex process of neuronal proliferation that is followed by neuronal migration and the formation of axonal connections. Existing histological assessments of these two neuronal migration pathways have limitations inherent to microscopic studies and are confined to small anatomic regions of interest (ROIs). Thus, little evidence is available about their three-dimensional (3-D) fiber pathways and development throughout the entire brain. In this study, we imaged and analyzed radial and tangential migration pathways in the whole human brain using high-angular resolution diffusion MR imaging (HARDI) tractography. We imaged ten fixed, postmortem fetal (17 gestational weeks (GW), 18 GW, 19 GW, three 20 GW, three 21 GW and 22 GW) and eight in vivo newborn (two 30 GW, 34 GW, 35 GW and four 40 GW) brains with no neurological/pathological conditions. We statistically compared the volume of the left and right radial and tangential migration pathways, and the volume of the radial migration pathways of the anterior and posterior regions of the brain. In specimens 22 GW or younger, the volume of radial migration pathways of the left hemisphere was significantly larger than that of the right hemisphere. The volume of posterior radial migration pathways was also larger when compared to the anterior pathways in specimens 22 GW or younger. In contrast, no significant differences were observed in the radial migration pathways of brains older than 22 GW. Moreover, our study did not identify any significant differences in volumetric laterality in the tangential migration pathways. These results suggest that these two neuronal migration pathways develop and regress differently, and radial neuronal migration varies regionally based on hemispheric and anterior-posterior laterality, potentially explaining regional differences in

  11. [Some characteristics of vertigo in vestibular neuronitis].

    Science.gov (United States)

    Skliut, I A; Likhachev, S A; Rybina, O V

    2004-01-01

    The authors present a detailed clinical analysis of objective neurological symptoms and vertigo in patients with vestibular neuronitis. Diagnostic criteria are specified allowing differentiation between vertigo and dizziness, pathognomonic signs of vestibular neuronitis are outlined. Peripheral location of the pathological process in vestibular neuronitis is suggested. How rotating vertigo is forming in patients with vestibular neuronitis is hypothesized.

  12. REMOD: a computational tool for remodeling neuronal dendrites

    Directory of Open Access Journals (Sweden)

    Panagiotis Bozelos

    2014-05-01

    Full Text Available In recent years, several modeling studies have indicated that dendritic morphology is a key determinant of how individual neurons acquire a unique signal processing profile. The highly branched dendritic structure that originates from the cell body, explores the surrounding 3D space in a fractal-like manner, until it reaches a certain amount of complexity. Its shape undergoes significant alterations not only in various neuropathological conditions, but in physiological, too. Yet, despite the profound effect that these alterations can have on neuronal function, the causal relationship between structure and function remains largely elusive. The lack of a systematic approach for remodeling neuronal cells and their dendritic trees is a key limitation that contributes to this problem. In this context, we developed a computational tool that allows the remodeling of any type of neurons, given a set of exemplar morphologies. The tool is written in Python and provides a simple GUI that guides the user through various options to manipulate selected neuronal morphologies. It provides the ability to load one or more morphology files (.swc or .hoc and choose specific dendrites to operate one of the following actions: shrink, remove, extend or branch (as shown in Figure 1. The user retains complete control over the extent of each alteration and if a chosen action is not possible due to pre-existing structural constraints, appropriate warnings are produced. Importantly, the tool can also be used to extract morphology statistics for one or multiple morphologies, including features such as the total dendritic length, path length to the root, branch order, diameter tapering, etc. Finally, an experimental utility enables the user to remodel entire dendritic trees based on preloaded statistics from a database of cell-type specific neuronal morphologies. To our knowledge, this is the first tool that allows (a the remodeling of existing –as opposed to the de novo

  13. More sensitivity of cortical GABAergic neurons than glutamatergic neurons in response to acidosis.

    Science.gov (United States)

    Liu, Hua; Li, Fang; Wang, Chunyan; Su, Zhiqiang

    2016-05-25

    Acidosis impairs brain functions. Neuron-specific mechanisms underlying acidosis-induced brain dysfunction remain elusive. We studied the sensitivity of cortical GABAergic neurons and glutamatergic neurons to acidosis by whole-cell recording in brain slices. The acidification to the neurons was induced by perfusing artificial cerebral spinal fluid with lower pH. This acidification impairs excitability and synaptic transmission in the glutamatergic and GABAergic neurons. Acidosis impairs spiking capacity in the GABAergic neurons more than in the glutamatergic neurons. Acidosis also strengthens glutamatergic synaptic transmission and attenuates GABAergic synaptic transmission on the GABAergic neurons more than the glutamatergic neurons, which results in the functional impairment of these GABAergic neurons. This acidosis-induced dysfunction predominantly in the cortical GABAergic neurons drives the homeostasis of neuronal networks toward overexcitation and exacerbates neuronal impairment.

  14. Mechanosensitive enteric neurons in the guinea pig gastric corpus.

    Science.gov (United States)

    Mazzuoli-Weber, Gemma; Schemann, Michael

    2015-01-01

    For long it was believed that a particular population of enteric neurons, referred to as intrinsic primary afferent neuron (IPAN)s, encodes mechanical stimulation. We recently proposed a new concept suggesting that there are in addition mechanosensitive enteric neurons (MEN) that are multifunctional. Based on firing pattern MEN behaved as rapidly, slowly, or ultra-slowly adapting RAMEN, SAMEN, or USAMEN, respectively. We aimed to validate this concept in the myenteric plexus of the gastric corpus, a region where IPANs were not identified and existence of enteric sensory neurons was even questioned. The gastric corpus is characterized by a particularly dense extrinsic sensory innervation. Neuronal activity was recorded with voltage sensitive dye imaging after deformation of ganglia by compression (intraganglionic volume injection or von Fry hair) or tension (ganglionic stretch). We demonstrated that 27% of the gastric neurons were MEN and responded to intraganglionic volume injection. Of these 73% were RAMEN, 25% SAMEN, and 2% USAMEN with a firing frequency of 1.7 (1.1/2.2), 5.1 (2.2/7.7), and of 5.4 (5.0/15.5) Hz, respectively. The responses were reproducible and stronger with increased stimulus strength. Even after adaptation another deformation evoked spike discharge again suggesting a resetting mode of the mechanoreceptors. All MEN received fast synaptic input. Fifty five percent of all MEN were cholinergic and 45% nitrergic. Responses in some MEN significantly decreased after perfusion of TTX, low Ca(++)/high Mg(++) Krebs solution, capsaicin induced nerve defunctionalization and capsazepine indicating the involvement of TRPV1 expressing extrinsic mechanosensitive nerves. Half of gastric MEN responded to intraganglionic volume injection as well as to ganglionic stretch and 23% responded to stretch only. Tension-sensitive MEN were to a large proportion USAMEN (44%). In summary, we demonstrated for the first time compression and tension-sensitive MEN in the

  15. Mechanosensitive enteric neurons in the guinea pig gastric corpus

    Directory of Open Access Journals (Sweden)

    Gemma eMazzuoli-Weber

    2015-11-01

    Full Text Available For long it was believed that a particular population of enteric neurons, referred to as intrinsic primary afferent neuron (IPANs, encodes mechanical stimulation. We recently proposed a new concept suggesting that there are in addition mechanosensitive enteric neurons (MEN that are multifunctional. Based on firing pattern MEN behaved as rapidly, slowly or ultra-slowly adapting RAMEN, SAMEN or USAMEN, respectively. We aimed to validate this concept in the myenteric plexus of the gastric corpus, a region where IPANs were not identified and existence of enteric sensory neurons was even questioned. The gastric corpus is characterized by a particularly dense extrinsic sensory innervation. Neuronal activity was recorded with voltage sensitive dye imaging after deformation of ganglia by compression (intraganglionic volume injection or von Fry hair or tension (ganglionic stretch. We demonstrated that 27% of the gastric neurons were MEN and responded to intraganglionic volume injection. Of these 73% were RAMEN, 25% SAMEN and 2% USAMEN with a firing frequency of 1.7 (1.1/ 2.2 Hz, 5.1 (2.2/7.7 Hz and of 5.4 (5.0/15.5 Hz, respectively. The responses were reproducible and stronger with increased stimulus strength. Even after adaptation another deformation evoked spike discharge again suggesting a resetting mode of the mechanoreceptors. All MEN received fast synaptic input. 55% of all MEN were cholinergic and 45% nitrergic. Responses in some MEN significantly decreased after perfusion of TTX, low Ca++/high Mg++ Krebs solution, capsaicin induced nerve defunctionalization and capsazepine indicating the involvement of TRPV1 expressing extrinsic mechanosensitive nerves. Half of gastric MEN responded to intraganglionic volume injection as well as to ganglionic stretch and 23% responded to stretch only. Tension-sensitive MEN were to a large proportion USAMEN (44%. In summary, we demonstrated for the first time compression and tension-sensitive MEN in the stomach

  16. Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus.

    Science.gov (United States)

    Chali, Farah; Djelti, Fathia; Eugene, Emmanuel; Valderrama, Mario; Marquer, Catherine; Aubourg, Patrick; Duykaerts, Charles; Miles, Richard; Cartier, Nathalie; Navarro, Vincent

    2015-05-01

    Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA to suppress expression of the enzyme cytochrome P450 family 46, subfamily A, polypeptide 1 gene (CYP46A1). This protein hydroxylates cholesterol and so facilitates transmembrane extrusion. A short hairpin RNA CYP46A1construction coupled to the adeno-associated virus type 5 was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the cornu ammonis (hippocampus) (CA)3a region. Cytoplasmic and membrane cholesterol increased, and the neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, interictal electroencephalographic (EEG) events occurred during exploration and non-rapid eye movement sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low-amplitude, high-frequency oscillations of peak power at ~300 Hz and a range of 250-350 Hz. Although episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behaviour.

  17. Neuronal Mechanisms of Intelligence.

    Science.gov (United States)

    1986-03-21

    Sulpiride , a D2 dopamine receptor antagonist, and SCH 23390, a D1 dopamine receptor antagonist, were used separately and in combination with...dopamine in cellular operant conditioning experiments. The results (Fig. 2) show that D2 receptor blockade by sulpiride reduced conditioning (DA + SUL...OAINE Oh t SU SU.PRIRIDE EM 4" SCH 5O 23390 W0- Figure 2. Sulpiride , but not SCH 23390, blocks operant conditioning of individual CAlI cellular

  18. Ovarian volume throughout life

    DEFF Research Database (Denmark)

    Kelsey, Thomas W; Dodwell, Sarah K; Wilkinson, A Graham

    2013-01-01

    cancer. To date there is no normative model of ovarian volume throughout life. By searching the published literature for ovarian volume in healthy females, and using our own data from multiple sources (combined n=59,994) we have generated and robustly validated the first model of ovarian volume from...... to about 2.8 mL (95% CI 2.7-2.9 mL) at the menopause and smaller volumes thereafter. Our model allows us to generate normal values and ranges for ovarian volume throughout life. This is the first validated normative model of ovarian volume from conception to old age; it will be of use in the diagnosis...

  19. Resolution of Nested Neuronal Representations Can Be Exponential in the Number of Neurons

    Science.gov (United States)

    Mathis, Alexander; Herz, Andreas V. M.; Stemmler, Martin B.

    2012-07-01

    Collective computation is typically polynomial in the number of computational elements, such as transistors or neurons, whether one considers the storage capacity of a memory device or the number of floating-point operations per second of a CPU. However, we show here that the capacity of a computational network to resolve real-valued signals of arbitrary dimensions can be exponential in N, even if the individual elements are noisy and unreliable. Nested, modular codes that achieve such high resolutions mirror the properties of grid cells in vertebrates, which underlie spatial navigation.

  20. Human Temporal Cortical Single Neuron Activity during Language: A Review

    Directory of Open Access Journals (Sweden)

    George A. Ojemann

    2013-04-01

    Full Text Available Findings from recordings of human temporal cortical single neuron activity during several measures of language, including object naming and word reading are reviewed and related to changes in activity in the same neurons during recent verbal memory and verbal associative learning measures, in studies conducted during awake neurosurgery for the treatment of epilepsy. The proportion of neurons changing activity with language tasks was similar in either hemisphere. Dominant hemisphere activity was characterized by relative inhibition, some of which occurred during overt speech, possibly to block perception of one’s own voice. However, the majority seems to represent a dynamic network becoming active with verbal memory encoding and especially verbal learning, but inhibited during performance of overlearned language tasks. Individual neurons are involved in different networks for different aspects of language, including naming or reading and naming in different languages. The majority of the changes in activity were tonic sustained shifts in firing. Patterned phasic activity for specific language items was very infrequently recorded. Human single neuron recordings provide a unique perspective on the biologic substrate for language, for these findings are in contrast to many of the findings from other techniques for investigating this.

  1. Identifying Chaotic FitzHugh–Nagumo Neurons Using Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ri-Qi Su

    2014-07-01

    Full Text Available We develop a completely data-driven approach to reconstructing coupled neuronal networks that contain a small subset of chaotic neurons. Such chaotic elements can be the result of parameter shift in their individual dynamical systems and may lead to abnormal functions of the network. To accurately identify the chaotic neurons may thus be necessary and important, for example, applying appropriate controls to bring the network to a normal state. However, due to couplings among the nodes, the measured time series, even from non-chaotic neurons, would appear random, rendering inapplicable traditional nonlinear time-series analysis, such as the delay-coordinate embedding method, which yields information about the global dynamics of the entire network. Our method is based on compressive sensing. In particular, we demonstrate that identifying chaotic elements can be formulated as a general problem of reconstructing the nodal dynamical systems, network connections and all coupling functions, as well as their weights. The working and efficiency of the method are illustrated by using networks of non-identical FitzHugh–Nagumo neurons with randomly-distributed coupling weights.

  2. Mild hypoxia affects synaptic connectivity in cultured neuronal networks.

    Science.gov (United States)

    Hofmeijer, Jeannette; Mulder, Alex T B; Farinha, Ana C; van Putten, Michel J A M; le Feber, Joost

    2014-04-01

    Eighty percent of patients with chronic mild cerebral ischemia/hypoxia resulting from chronic heart failure or pulmonary disease have cognitive impairment. Overt structural neuronal damage is lacking and the precise cause of neuronal damage is unclear. As almost half of the cerebral energy consumption is used for synaptic transmission, and synaptic failure is the first abrupt consequence of acute complete anoxia, synaptic dysfunction is a candidate mechanism for the cognitive deterioration in chronic mild ischemia/hypoxia. Because measurement of synaptic functioning in patients is problematic, we use cultured networks of cortical neurons from new born rats, grown over a multi-electrode array, as a model system. These were exposed to partial hypoxia (partial oxygen pressure of 150Torr lowered to 40-50Torr) during 3 (n=14) or 6 (n=8) hours. Synaptic functioning was assessed before, during, and after hypoxia by assessment of spontaneous network activity, functional connectivity, and synaptically driven network responses to electrical stimulation. Action potential heights and shapes and non-synaptic stimulus responses were used as measures of individual neuronal integrity. During hypoxia of 3 and 6h, there was a statistically significant decrease of spontaneous network activity, functional connectivity, and synaptically driven network responses, whereas direct responses and action potentials remained unchanged. These changes were largely reversible. Our results indicate that in cultured neuronal networks, partial hypoxia during 3 or 6h causes isolated disturbances of synaptic connectivity.

  3. Neuronize: a tool for building realistic neuronal cell morphologies

    Science.gov (United States)

    Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis; DeFelipe, Javier; Benavides-Piccione, Ruth

    2013-01-01

    This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments. PMID:23761740

  4. Isoflurane-induced neuronal apoptosis in developing hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai; Weitao Guo

    2013-01-01

    We hypothesized that the P2X7 receptor may be the target of isoflurane, so we investigated the roles of the P2X7 receptor and inositol triphosphate receptor in calcium overload and neuronal apoptosis induced by isoflurane in cultured embryonic rat hippocampal neurons. Results showed that isoflurane induced widespread neuronal apoptosis and significantly increased cytoplasmic Ca2+. Blockade of P2X7 receptors or removal of extracellular Ca2+ combined with blockade of inositol triphosphate receptors completely inhibited apoptosis or increase in cytoplasmic Ca2+. Removal of extracellular Ca2+ or blockade of inositol triphosphate receptor alone could partly inhibit these effects of isoflurane. Isoflurane could directly activate P2X7-gated channels and induce inward currents, but did not affect the expression of P2X7 receptor protein in neurons. These findings indicate that the mechanism by which isoflurane induced neuronal apoptosis in rat developing brain was mediated by intracellular calcium overload, which was caused by P2X7 receptor mediated calcium influx and inositol triphosphate receptor mediated calcium release.

  5. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism.

    Science.gov (United States)

    Dodson, Paul D; Dreyer, Jakob K; Jennings, Katie A; Syed, Emilie C J; Wade-Martins, Richard; Cragg, Stephanie J; Bolam, J Paul; Magill, Peter J

    2016-04-12

    Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits.

  6. Developmental transcriptional networks are required to maintain neuronal subtype identity in the mature nervous system.

    Directory of Open Access Journals (Sweden)

    Kevin T Eade

    Full Text Available During neurogenesis, transcription factors combinatorially specify neuronal fates and then differentiate subtype identities by inducing subtype-specific gene expression profiles. But how is neuronal subtype identity maintained in mature neurons? Modeling this question in two Drosophila neuronal subtypes (Tv1 and Tv4, we test whether the subtype transcription factor networks that direct differentiation during development are required persistently for long-term maintenance of subtype identity. By conditional transcription factor knockdown in adult Tv neurons after normal development, we find that most transcription factors within the Tv1/Tv4 subtype transcription networks are indeed required to maintain Tv1/Tv4 subtype-specific gene expression in adults. Thus, gene expression profiles are not simply "locked-in," but must be actively maintained by persistent developmental transcription factor networks. We also examined the cross-regulatory relationships between all transcription factors that persisted in adult Tv1/Tv4 neurons. We show that certain critical cross-regulatory relationships that had existed between these transcription factors during development were no longer present in the mature adult neuron. This points to key differences between developmental and maintenance transcriptional regulatory networks in individual neurons. Together, our results provide novel insight showing that the maintenance of subtype identity is an active process underpinned by persistently active, combinatorially-acting, developmental transcription factors. These findings have implications for understanding the maintenance of all long-lived cell types and the functional degeneration of neurons in the aging brain.

  7. Male pheromone protein components activate female vomeronasal neurons in the salamander Plethodon shermani

    Directory of Open Access Journals (Sweden)

    Feldhoff Pamela W

    2006-03-01

    Full Text Available Abstract Background The mental gland pheromone of male Plethodon salamanders contains two main protein components: a 22 kDa protein named Plethodon Receptivity Factor (PRF and a 7 kDa protein named Plethodon Modulating Factor (PMF, respectively. Each protein component individually has opposing effects on female courtship behavior, with PRF shortening and PMF lengthening courtship. In this study, we test the hypothesis that PRF or PMF individually activate vomeronasal neurons. The agmatine-uptake technique was used to visualize chemosensory neurons that were activated by each protein component individually. Results Vomeronasal neurons exposed to agmatine in saline did not demonstrate significant labeling. However, a population of vomeronasal neurons was labeled following exposure to either PRF or PMF. When expressed as a percent of control level labeled cells, PRF labeled more neurons than did PMF. These percentages for PRF and PMF, added together, parallel the percentage of labeled vomeronasal neurons when females are exposed to the whole pheromone. Conclusion This study suggests that two specific populations of female vomeronasal neurons are responsible for responding to each of the two components of the male pheromone mixture. These two neural populations, therefore, could express different receptors which, in turn, transmit different information to the brain, thus accounting for the different female behavior elicited by each pheromone component.

  8. Turtle Dorsal Cortex Pyramidal Neurons Comprise Two Distinct Cell Types with Indistinguishable Visual Responses.

    Directory of Open Access Journals (Sweden)

    Thomas Crockett

    Full Text Available A detailed inventory of the constituent pieces in cerebral cortex is considered essential to understand the principles underlying cortical signal processing. Specifically, the search for pyramidal neuron subtypes is partly motivated by the hypothesis that a subtype-specific division of labor could create a rich substrate for computation. On the other hand, the extreme integration of individual neurons into the collective cortical circuit promotes the hypothesis that cellular individuality represents a smaller computational role within the context of the larger network. These competing hypotheses raise the important question to what extent the computational function of a neuron is determined by its individual type or by its circuit connections. We created electrophysiological profiles from pyramidal neurons within the sole cellular layer of turtle visual cortex by measuring responses to current injection using whole-cell recordings. A blind clustering algorithm applied to these data revealed the presence of two principle types of pyramidal neurons. Brief diffuse light flashes triggered membrane potential fluctuations in those same cortical neurons. The apparently network driven variability of the visual responses concealed the existence of subtypes. In conclusion, our results support the notion that the importance of diverse intrinsic physiological properties is minimized when neurons are embedded in a synaptic recurrent network.

  9. Locus ceruleus neurons in people with autism contain no histochemically-detectable mercury.

    Science.gov (United States)

    Pamphlett, Roger; Kum Jew, Stephen

    2016-02-01

    Exposure to environmental mercury has been proposed to play a part in autism. Mercury is selectively taken up by the human locus ceruleus, a region of the brain that has been implicated in autism. We therefore looked for the presence of mercury in the locus ceruleus of people who had autism, using the histochemical technique of autometallography which can detect nanogram amounts of mercury in tissues. In addition, we sought evidence of damage to locus ceruleus neurons in autism by immunostaining for hyperphosphorylated tau. No mercury was found in any neurons of the locus ceruleus of 6 individuals with autism (5 male, 1 female, age range 16-48 years). Mercury was present in locus ceruleus neurons in 7 of 11 (64%) age-matched control individuals who did not have autism, which is significantly more than in individuals with autism. No increase in numbers of locus ceruleus neurons containing hyperphosphorylated tau was detected in people with autism. In conclusion, most people with autism have not been exposed early in life to quantities of mercury large enough to be found later in adult locus ceruleus neurons. Human locus ceruleus neurons are sensitive indicators of mercury exposure, and mercury appears to remain in these neurons indefinitely, so these findings do not support the hypothesis that mercury neurotoxicity plays a role in autism.

  10. Cajal body number and nucleolar size correlate with the cell body mass in human sensory ganglia neurons.

    Science.gov (United States)

    Berciano, Maria T; Novell, Mariona; Villagra, Nuria T; Casafont, Iñigo; Bengoechea, Rocio; Val-Bernal, J Fernado; Lafarga, Miguel

    2007-06-01

    This paper studies the cell size-dependent organization of the nucleolus and Cajal bodies (CBs) in dissociated human dorsal root ganglia (DRG) neurons from autopsy tissue samples of patients without neurological disease. The quantitative analysis of nucleoli with an anti-fibrillarin antibody showed that all neurons have only one nucleolus. However, the nucleolar volume and the number of fibrillar centers per nucleolus significantly increase as a function of cell body size. Immunostaining for coilin demonstrated the presence of numerous CBs in DRG neurons (up to 20 in large size neurons). The number of CBs per neuron correlated positively with the cell body volume. Light and electron microscopy immunocytochemical analysis revealed the concentration of coilin, snRNPs, SMN and fibrillarin in CBs of DRG neurons. CBs were frequently associated with the nucleolus, active chromatin domains and PML bodies, but not with telomeres. Our results support the view that the nucleolar volume and number of both fibrillar centers and CBs depend on the cell body mass, a parameter closely related to transcriptional and synaptic activity in mammalian neurons. Moreover, the unusual large number of CBs could facilitate the transfer of RNA processing components from CBs to nucleolar and nucleoplasmic sites of RNA processing.

  11. Fibromyalgia patients have reduced hippocampal volume compared with healthy controls

    Directory of Open Access Journals (Sweden)

    McCrae CS

    2015-01-01

    Full Text Available Christina S McCrae,1 Andrew M O’Shea,1 Jeff Boissoneault,2 Karlyn E Vatthauer,1 Michael E Robinson,1,2 Roland Staud,2,3 William M Perlstein,4–7 Jason G Craggs1 1Department of Clinical and Health Psychology, 2Pain Research and Intervention Center of Excellence, 3College of Medicine, University of Florida, Gainesville, FL, USA; 4McKnight Brain Institute, University of Florida, Gainesville, FL, USA; 5Department of Psychiatry, University of Florida, Gainesville, FL, 6Malcom Randall Veterans Administration Medical Center, Gainesville, FL, 7Rehabilitation Research and Development Brain Research Center of Excellence, Veterans Administration Medical Center, Gainesville, FL, USA Objective: Fibromyalgia patients frequently report cognitive abnormalities. As the hippocampus plays an important role in learning and memory, we determined whether individuals with fibromyalgia had smaller hippocampal volume compared with healthy control participants.Methods: T1-weighted structural magnetic resonance imaging (MRI scans were acquired from 40 female participants with fibromyalgia and 22 female healthy controls. The volume of the hippocampus was estimated using the software FreeSurfer. An analysis of covariance model controlling for potentially confounding factors of age, whole brain size, MRI signal quality, and Beck Depression Inventory scores were used to determine significant group differences.Results: Fibromyalgia participants had significantly smaller hippocampi in both left (F[1,56]=4.55, P=0.037, η2p=0.08 and right hemispheres (F[1,56]=5.89, P=0.019, η2p =0.10. No significant effect of depression was observed in either left or right hemisphere hippocampal volume (P=0.813 and P=0.811, respectively.Discussion: Potential mechanisms for reduced hippocampal volume in fibromyalgia include abnormal glutamate excitatory neurotransmission and glucocorticoid dysfunction; these factors can lead to neuronal atrophy, through excitotoxicity, and disrupt

  12. Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics.

    Science.gov (United States)

    Sadeh, Sadra; Rotter, Stefan

    2015-01-01

    The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not

  13. Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics.

    Directory of Open Access Journals (Sweden)

    Sadra Sadeh

    2015-01-01

    Full Text Available The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are

  14. Subcortical correlates of individual differences in aptitude.

    Directory of Open Access Journals (Sweden)

    Rex E Jung

    Full Text Available The study of individual differences encompasses broad constructs including intelligence, creativity, and personality. However, substantially less research is devoted to the study of specific aptitudes in spite of their importance to educational, occupational, and avocational success. We sought to determine subcortical brain structural correlates of several broad aptitudes including Math, Vocabulary, Foresight, Paper Folding, and Inductive Reasoning in a large (N = 107, healthy, young (age range  = 16-29 cohort. Subcortical volumes were measured using an automated technique (FreeSurfer across structures including bilateral caudate, putamen, globus pallidus, thalamus, nucleus accumbens, hippocampus, amygdala, and five equal regions of the corpus callosum. We found that performance on measures of each aptitude was predicted by different subcortical structures: Math--higher right nucleus accumbens volume; Vocabulary--higher left hippocampus volume; Paper Folding--higher right thalamus volume; Foresight--lower right thalamus and higher mid anterior corpus callosum volume; Inductive Reasoning--higher mid anterior corpus callosum volume. Our results support general findings, within the cognitive neurosciences, showing lateralization of structure-function relationships, as well as more specific relationships between individual structures (e.g., left hippocampus and functions relevant to particular aptitudes (e.g., Vocabulary.

  15. Subcortical correlates of individual differences in aptitude.

    Science.gov (United States)

    Jung, Rex E; Ryman, Sephira G; Vakhtin, Andrei A; Carrasco, Jessica; Wertz, Chris; Flores, Ranee A

    2014-01-01

    The study of individual differences encompasses broad constructs including intelligence, creativity, and personality. However, substantially less research is devoted to the study of specific aptitudes in spite of their importance to educational, occupational, and avocational success. We sought to determine subcortical brain structural correlates of several broad aptitudes including Math, Vocabulary, Foresight, Paper Folding, and Inductive Reasoning in a large (N = 107), healthy, young (age range  = 16-29) cohort. Subcortical volumes were measured using an automated technique (FreeSurfer) across structures including bilateral caudate, putamen, globus pallidus, thalamus, nucleus accumbens, hippocampus, amygdala, and five equal regions of the corpus callosum. We found that performance on measures of each aptitude was predicted by different subcortical structures: Math--higher right nucleus accumbens volume; Vocabulary--higher left hippocampus volume; Paper Folding--higher right thalamus volume; Foresight--lower right thalamus and higher mid anterior corpus callosum volume; Inductive Reasoning--higher mid anterior corpus callosum volume. Our results support general findings, within the cognitive neurosciences, showing lateralization of structure-function relationships, as well as more specific relationships between individual structures (e.g., left hippocampus) and functions relevant to particular aptitudes (e.g., Vocabulary).

  16. Identified central neurons convey a mitogenic signal from a peripheral target to the CNS.

    Science.gov (United States)

    Becker, T S; Bothe, G; Berliner, A J; Macagno, E R

    1996-08-01

    Regulation of central neurogenesis by a peripheral target has been previously demonstrated in the ventral nerve cord of the leech Hirudo medicinalis (Baptista, C. A., Gershon, T. R. and Macagno, E. R. (1990). Nature 346, 855-858) Specifically, innervation of the male genitalia by the fifth and sixth segmental ganglia (the sex ganglia) was shown to trigger the birth of several hundred central neurons (PIC neurons) in these ganglia. As reported here, removal of the target early during induction shows that PIC neurons can be independently induced in each side of a ganglion, indicating that the inductive signal is both highly localized and conveyed to each hemiganglion independently. Further, since recent observations (Becker, T., Berliner, A. J., Nitabach, M. N., Gan, W.-B. and Macagno, E. R. (1995). Development, 121, 359-369) had indicated that efferent projections are probably involved in this phenomenon, we individually ablated all possible candidates, which led to the identification of two central neurons that appear to play significant roles in conveying the inductive signal to the CNS. Ablation of a single ML neuron reduced cell proliferation in its own hemiganglion by nearly 50%, on the average. In contrast, proliferation on the opposite side of the ganglion increased by about 25%, suggesting the possibility of a compensatory response by the remaining contralateral ML neuron. Simultaneous ablation of both ML neurons in a sex ganglion caused similar reductions in cell proliferation in each hemiganglion. Deletion of a single AL neuron produced a weaker (7%) but nonetheless reproducible reduction. Ablation of the other nine central neurons that might have been involved in PIC neuron induction had no detectable effect. Both ML and AL neurons exhibit ipsilateral peripheral projections, and both arborize mostly in the hemiganglion where they reside. Thus, we conclude that peripheral regulation of central neurogenesis is mediated in the leech by inductive signals

  17. Mean nuclear volume

    DEFF Research Database (Denmark)

    Mogensen, O.; Sørensen, Flemming Brandt; Bichel, P.

    1999-01-01

    We evaluated the following nine parameters with respect to their prognostic value in females with endometrial cancer: four stereologic parameters [mean nuclear volume (MNV), nuclear volume fraction, nuclear index and mitotic index], the immunohistochemical expression of cancer antigen (CA125...

  18. Transformation of odor selectivity from projection neurons to single mushroom body neurons mapped with dual-color calcium imaging.

    Science.gov (United States)

    Li, Hao; Li, Yiming; Lei, Zhengchang; Wang, Kaiyu; Guo, Aike

    2013-07-16

    Although the response properties of most neurons are, to a large extent, determined by the presynaptic inputs that they receive, comprehensive functional characterization of the presynaptic inputs of a single neuron remains elusive. Toward this goal, we introduce a dual-color calcium imaging approach that simultaneously monitors the responses of a single postsynaptic neuron together with its presynaptic axon terminal inputs in vivo. As a model system, we applied the strategy to the feed-forward connections from the projection neurons (PNs) to the Kenyon cells (KCs) in the mushroom body of Drosophila and functionally mapped essentially all PN inputs for some of the KCs. We found that the output of single KCs could be well predicted by a linear summation of the PN input signals, indicating that excitatory PN inputs play the major role in generating odor-selective responses in KCs. When odors failed to activate KC output, local calcium transients restricted to individual postsynaptic sites could be observed in the KC dendrites. The response amplitudes of the local transients often correlated linearly with the presynaptic response amplitudes, allowing direct assay of the strength of single synaptic sites. Furthermore, we found a scaling relationship between the total number of PN terminals that a single KC received and the average synaptic strength of these PN-KC synapses. Our strategy provides a unique perspective on the process of information transmission and integration in a model neural circuit and may be broadly applicable for the study of the origin of neuronal response properties.

  19. Beyond Optimality to Understanding Neuronal Circuits

    Science.gov (United States)

    Marder, Eve

    2010-03-01

    I will summarize recent theoretical and experimental work that shows that similar circuit outputs can be produced with highly variable circuit parameters. This work argues that the nervous system of each healthy individual has found a set of different solutions that give ``good enough'' circuit performance. I will use examples from theoretical and experimental studies using the crustacean stomatogastric nervous system to argue that synaptic and intrinsic currents can vary far more than the output of the circuit in which they are found. These data have significant implications for the mechanisms that maintain stable function over the animal's lifetime, and for the kinds of changes that allow the nervous system to recover function after injury. In this kind of complex system, merely collecting mean data from many individuals can lead to significant errors, and it becomes important to measure as many individual network parameters in each individual as possible. This work raises the question of the extent to which neuromodulation can be constant with underlying circuit parameter variation. To address this question, we construct two cell reciprocally inhibitory circuits using the dynamic clamp from biological GM neurons of the crab stomatogastric ganglion. We then describe the output of the circuits while sweeping through a range of synaptic and intrinsic conductances, first in control saline and then in the presence of serotonin. We find that serotonin extends the ranges of parameters that produce alternating bursting. Moreover, although serotonin's effects are highly robust and significant on the entire population, individual networks respond anomalously. These data demonstrate that while neuromodulation may have robust actions on a population, not all individuals may respond as do the majority. These findings have important implications for evolution.

  20. Adenomatous Polyposis Coli Protein Deletion in Efferent Olivocochlear Neurons Perturbs Afferent Synaptic Maturation and Reduces the Dynamic Range of Hearing

    Science.gov (United States)

    Hickman, Tyler T.; Liberman, M. Charles

    2015-01-01

    Normal hearing requires proper differentiation of afferent ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) that carry acoustic information to the brain. Within individual IHCs, presynaptic ribbons show a size gradient with larger ribbons on the modiolar face and smaller ribbons on the pillar face. This structural gradient is associated with a gradient of spontaneous rates and threshold sensitivity, which is essential for a wide dynamic range of hearing. Despite their importance for hearing, mechanisms that direct ribbon differentiation are poorly defined. We recently identified adenomatous polyposis coli protein (APC) as a key regulator of interneuronal synapse maturation. Here, we show that APC is required for ribbon size heterogeneity and normal cochlear function. Compared with wild-type littermates, APC conditional knock-out (cKO) mice exhibit decreased auditory brainstem responses. The IHC ribbon size gradient is also perturbed. Whereas the normal-developing IHCs display ribbon size gradients before hearing onset, ribbon sizes are aberrant in APC cKOs from neonatal ages on. Reporter expression studies show that the CaMKII-Cre used to delete the floxed APC gene is present in efferent olivocochlear (OC) neurons, not IHCs or SGNs. APC loss led to increased volumes and numbers of OC inhibitory dopaminergic boutons on neonatal SGN fibers. Our findings identify APC in efferent OC neurons as essential for regulating ribbon heterogeneity, dopaminergic terminal differentiation, and cochlear sensitivity. This APC effect on auditory epithelial cell synapses resembles interneuronal and nerve–muscle synapses, thereby defining a global role for APC in synaptic maturation in diverse cell types. Significance Statement This study identifies novel molecules and cellular interactions that are essential for the proper maturation of afferent ribbon synapses in sensory cells of the inner ear, and for normal hearing. PMID:26085645

  1. Npas1+ Pallidal Neurons Target Striatal Projection Neurons.

    Science.gov (United States)

    Glajch, Kelly E; Kelver, Daniel A; Hegeman, Daniel J; Cui, Qiaoling; Xenias, Harry S; Augustine, Elizabeth C; Hernández, Vivian M; Verma, Neha; Huang, Tina Y; Luo, Minmin; Justice, Nicholas J; Chan, C Savio

    2016-05-18

    Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease. Copyright © 2016 the authors 0270-6474/16/365472-17$15.00/0.

  2. Models of the stochastic activity of neurones

    CERN Document Server

    Holden, Arun Vivian

    1976-01-01

    These notes have grown from a series of seminars given at Leeds between 1972 and 1975. They represent an attempt to gather together the different kinds of model which have been proposed to account for the stochastic activity of neurones, and to provide an introduction to this area of mathematical biology. A striking feature of the electrical activity of the nervous system is that it appears stochastic: this is apparent at all levels of recording, ranging from intracellular recordings to the electroencephalogram. The chapters start with fluctuations in membrane potential, proceed through single unit and synaptic activity and end with the behaviour of large aggregates of neurones: L have chgaen this seque~~e\\/~~';uggest that the interesting behaviourr~f :the nervous system - its individuality, variability and dynamic forms - may in part result from the stochastic behaviour of its components. I would like to thank Dr. Julio Rubio for reading and commenting on the drafts, Mrs. Doris Beighton for producing the fin...

  3. Changes of growth hormone-releasing hormone and somatostatin neurons in the rat hypothalamus induced by genistein: a stereological study.

    Science.gov (United States)

    Trifunović, Svetlana; Manojlović-Stojanoski, Milica; Ristić, Nataša; Nestorović, Nataša; Medigović, Ivana; Živanović, Jasmina; Milošević, Verica

    2016-12-01

    Genistein is a plant-derived estrogenic isoflavone commonly found in dietary and therapeutic supplements, due to its potential health benefits. Growth hormone-releasing hormone (GHRH) and somatostatin (SS) are neurosecretory peptides synthesized in neurons of the hypothalamus and regulate the growth hormone secretion. Early reports indicate that estrogens have highly involved in the regulation of GHRH and SS secretions. Since little is known about the potential effects of genistein on GHRH and SS neurons, we exposed rats to genistein. Genistein were administered to adult rats in dose of 30 mg/kg, for 3 weeks. The estradiol-dipropionate treatment was used as the adequate controls to genistein. Using applied stereology on histological sections of hypothalamus, we obtained the quantitative information on arcuate (Arc) and periventricular (Pe) nucleus volume and volume density of GHRH neurons and SS neurons. Image analyses were used to obtain GHRH and SS contents in the median eminence (ME). Administration of estradiol-dipropionate caused the increase of Arc and Pe nucleus volume, SS neuron volume density, GHRH and SS staining intensity in the ME, when compared with control. Genistein treatment increased: Arc nucleus volume and the volume density of GHRH neurons (by 26%) and SS neurons (1.5 fold), accompanied by higher GHRH and SS staining intensity in the ME, when compared to the orhidectomized group. These results suggest that genistein has a significant effect on hypothalamic region, involved in the regulation of somatotropic system function, and could contribute to the understanding of genistein as substance that alter the hormonal balance.

  4. More questions for mirror neurons.

    Science.gov (United States)

    Borg, Emma

    2013-09-01

    The mirror neuron system is widely held to provide direct access to the motor goals of others. This paper critically investigates this idea, focusing on the so-called 'intentional worry'. I explore two answers to the intentional worry: first that the worry is premised on too limited an understanding of mirror neuron behaviour (Sections 2 and 3), second that the appeal made to mirror neurons can be refined in such a way as to avoid the worry (Section 4). I argue that the first response requires an account of the mechanism by which small-scale gestures are supposedly mapped to larger chains of actions but that none of the extant accounts of this mechanism are plausible. Section 4 then briefly examines refinements of the mirror neuron-mindreading hypothesis which avoid the intentional worry. I conclude that these refinements may well be plausible but that they undermine many of the claims standardly made for mirror neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Stochastic phase-change neurons

    Science.gov (United States)

    Tuma, Tomas; Pantazi, Angeliki; Le Gallo, Manuel; Sebastian, Abu; Eleftheriou, Evangelos

    2016-08-01

    Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals.

  6. Brain Neurons as Quantum Computers:

    Science.gov (United States)

    Bershadskii, A.; Dremencov, E.; Bershadskii, J.; Yadid, G.

    The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of brain neurons, has been actively discussed in the last years. A positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In the present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied in vivo on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in the generation of pleasure and in the development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a quantum system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental (in vivo) indication in the favor of the quantum (at least partially) nature of brain neurons activity.

  7. Sodium sensing in neurons with a dendrimer-based nanoprobe.

    Science.gov (United States)

    Lamy, Christophe M; Sallin, Olivier; Loussert, Céline; Chatton, Jean-Yves

    2012-02-28

    Ion imaging is a powerful methodology to assess fundamental biological processes in live cells. The limited efficiency of some ion-sensing probes and their fast leakage from cells are important restrictions to this approach. In this study, we present a novel strategy based on the use of dendrimer nanoparticles to obtain better intracellular retention of fluorescent probes and perform prolonged fluorescence imaging of intracellular ion dynamics. A new sodium-sensitive nanoprobe was generated by encapsulating a sodium dye in a PAMAM dendrimer nanocontainer. This nanoprobe is very stable and has high sodium sensitivity and selectivity. When loaded in neurons in live brain tissue, it homogenously fills the entire cell volume, including small processes, and stays for long durations, with no detectable alterations of cell functional properties. We demonstrate the suitability of this new sodium nanosensor for monitoring physiological sodium responses such as those occurring during neuronal activity.

  8. Spatiotemporally controlled and multifactor involved assay of neuronal compartment regeneration after chemical injury in an integrated microfluidics.

    Science.gov (United States)

    Li, Li; Ren, Li; Liu, Wenming; Wang, Jian-Chun; Wang, Yaolei; Tu, Qin; Xu, Juan; Liu, Rui; Zhang, Yanrong; Yuan, Mao-Sen; Li, Tianbao; Wang, Jinyi

    2012-08-07

    Studies on the degeneration and regeneration of neurons as individual compartments of axons or somata can provide critical information for the clinical therapy of nervous system diseases. A controllable in vitro platform for multiple purposes is key to such studies. In the present study, we describe an integrated microfluidic device designed for achieving localized stimulation to neuronal axons or somata. We observed neuronal compartment degeneration after localized chemical stimulation and regeneration under the accessorial function of an interesting compound treatment or coculture with desired cells in controllable chambers. In a spatiotemporally controlled manner, this device was used to investigate hippocampal neuronal soma and axon degeneration after acrylamide stimulation, as well as subsequent regeneration after treatment with the monosialoganglioside GM1 or with cocultured glial cells (astrocytes or Schwann cells). To gain insight into the molecular mechanisms that mediate neuronal injury and regeneration, as well as to investigate whether acrylamide stimulation to neurons induces changes in Ca(2+) concentrations, the related neuronal genes and real-time Ca(2+) signal in neurons were also analyzed. The results showed that neuronal axons were more resistant to acrylamide injury than neuronal somata. Under localized stimulation, axons had self-destruct programs different from somata, and somatic injury caused the secondary response of axon collapse. This study provides a foundation for future in-depth analyses of spatiotemporally controlled and multifactor neuronal compartment regeneration after various injuries. The microfluidic device is also useful in evaluating potential therapeutic strategies to treat chemical injuries involving the central nervous system.

  9. Olfactory-learning abilities are correlated with the rate by which intrinsic neuronal excitability is modulated in the piriform cortex.

    Science.gov (United States)

    Cohen-Matsliah, Sivan I; Rosenblum, Kobi; Barkai, Edi

    2009-10-01

    Long-lasting modulation of intrinsic neuronal excitability in cortical neurons underlies distinct stages of skill learning. However, whether individual differences in learning capabilities are dependent on the rate by which such learning-induced modifications occur has yet to be explored. Here we show that training rats in a simple olfactory-discrimination task results in the same enhanced excitability in piriform cortex neurons as previously shown after training in a much more complex olfactory-discrimination task. Based on their learning capabilities in the simple task, rats could be divided to two groups: fast performers and slow performers. The rate at which rats accomplished the skill to perform the simple task was correlated with the time course at which piriform cortex neurons increased their repetitive spike firing. Twelve hours after learning, neurons from fast performers had reduced spike frequency adaptation as compared with neurons from slow performers and controls. Three days after learning, spike frequency adaptation was reduced in neurons from SP, while neurons from fast performers increased their spike firing adaptation to the level of controls. Accordingly, the post-burst AHP was reduced in neurons from fast performers 12 h after learning and in neurons from slow performers 3 days after learning. Moreover, the differences in learning capabilities between fast performers and slow performers were maintained when examined in a different, complex olfactory-discrimination task. We suggest that the rate at which neuronal excitability is modified during learning may affect the behavioral flexibility of the animal.

  10. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales

    Science.gov (United States)

    Mandelblat-Cerf, Yael; Ramesh, Rohan N; Burgess, Christian R; Patella, Paola; Yang, Zongfang; Lowell, Bradford B; Andermann, Mark L

    2015-01-01

    Agouti-related-peptide (AgRP) neurons—interoceptive neurons in the arcuate nucleus of the hypothalamus (ARC)—are both necessary and sufficient for driving feeding behavior. To better understand the functional roles of AgRP neurons, we performed optetrode electrophysiological recordings from AgRP neurons in awake, behaving AgRP-IRES-Cre mice. In free-feeding mice, we observed a fivefold increase in AgRP neuron firing with mounting caloric deficit in afternoon vs morning recordings. In food-restricted mice, as food became available, AgRP neuron firing dropped, yet remained elevated as compared to firing in sated mice. The rapid drop in spiking activity of AgRP neurons at meal onset may reflect a termination of the drive to find food, while residual, persistent spiking may reflect a sustained drive to consume food. Moreover, nearby neurons inhibited by AgRP neuron photostimulation, likely including satiety-promoting pro-opiomelanocortin (POMC) neurons, demonstrated opposite changes in spiking. Finally, firing of ARC neurons was also rapidly modulated within seconds of individual licks for liquid food. These findings suggest novel roles for antagonistic AgRP and POMC neurons in the regulation of feeding behaviors across multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.07122.001 PMID:26159614

  11. Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism

    Science.gov (United States)

    Vaccarino, Flora M.; Grigorenko, Elena L.; Smith, Karen Muller; Stevens, Hanna E.

    2009-01-01

    Increased brain size is common in children with autism spectrum disorders. Here we propose that an increased number of cortical excitatory neurons may underlie the increased brain volume, minicolumn pathology and excessive network excitability, leading to sensory hyper-reactivity and seizures, which are often found in autism. We suggest that…

  12. Mathematical modelling and numerical simulation of the morphological development of neurons.

    Science.gov (United States)

    Graham, Bruce P; van Ooyen, Arjen

    2006-10-30

    The morphological development of neurons is a very complex process involving both genetic and environmental components. Mathematical modelling and numerical simulation are valuable tools in helping us unravel particular aspects of how individual neurons grow their characteristic morphologies and eventually form appropriate networks with each other. A variety of mathematical models that consider (1) neurite initiation (2) neurite elongation (3) axon pathfinding, and (4) neurite branching and dendritic shape formation are reviewed. The different mathematical techniques employed are also described. Some comparison of modelling results with experimental data is made. A critique of different modelling techniques is given, leading to a proposal for a unified modelling environment for models of neuronal development. A unified mathematical and numerical simulation framework should lead to an expansion of work on models of neuronal development, as has occurred with compartmental models of neuronal electrical activity.

  13. Associative conditioning analog selectively increases cAMP levels of tail sensory neurons in Aplysia.

    Science.gov (United States)

    Ocorr, K A; Walters, E T; Byrne, J H

    1985-04-01

    Bilateral clusters of sensory neurons in the pleural ganglia of Aplysia contain cells involved in a defensive tail withdrawal reflex. These cells exhibit heterosynaptic facilitation in response to noxious skin stimulation that can be mimicked by the application of serotonin. Recently it has been shown that this facilitation can be selectively amplified by the application of a classical conditioning procedure to individual sensory neurons. We now report that an analog of this classical conditioning paradigm produces a selective amplification of the cAMP content of isolated sensory neuron clusters. The enhancement is achieved within a single trial and appears to be localized to the sensory neurons. These results indicate that a pairing-specific enhancement of cAMP levels may be a biochemical mechanism for associative neuronal modifications and perhaps learning.

  14. Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons

    Institute of Scientific and Technical Information of China (English)

    石霞; 陆启韶

    2005-01-01

    The firing activities of Hindmarsh-Rose (HR) neurons are studied by means of numerical simulation and bifurcation analysis. A single HR neuron exhibits various firing patterns, such as quiescent state, periodic spiking, periodic bursting and chaos, when the external current input is changed. The fast/slow dynamical analysis is applied to explore the dynamical behaviour of the HR model. The complete synchronization of two coupled identical HR neurons with electrical coupling mimicking gap junctions can be realized in certain ranges of the coupling strength, whenever each individual neuron shows quiescency, periodic firing and chaos. The criteria for complete synchronization are analysed theoretically, and the corresponding numericaI simulation is presented as well. The persistence of the interspike intervals bifurcation structure of the coupled HR neuronal system under electrical coupling is also discussed.

  15. Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD

    Directory of Open Access Journals (Sweden)

    Dae-Sung eKim

    2014-04-01

    Full Text Available Autism spectrum disorder (ASD is an early-onset neurodevelopmental disorder characterized by deficits in social communication, and restricted and repetitive patterns of behavior. Despite its high prevalence, discovery of pathophysiological mechanisms underlying ASD has lagged due to a lack of appropriate model systems. Recent advances in induced pluripotent stem cell (iPSC technology and neural differentiation techniques allow for detailed functional analyses of neurons generated from living individuals with ASD. Refinement of cortical neuron differentiation methods from iPSCs will enable mechanistic studies of specific neuronal subpopulations that may be preferentially impaired in ASD. In this review, we summarize recent accomplishments in differentiation of cortical neurons from human pluripotent stems cells and efforts to establish in vitro model systems to study ASD using personalized neurons.

  16. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.

    Science.gov (United States)

    Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M

    2016-09-01

    Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits.

  17. The origin of cortical neurons

    Directory of Open Access Journals (Sweden)

    J.G. Parnavelas

    2002-12-01

    Full Text Available Neurons of the mammalian cerebral cortex comprise two broad classes: pyramidal neurons, which project to distant targets, and the inhibitory nonpyramidal cells, the cortical interneurons. Pyramidal neurons are generated in the germinal ventricular zone, which lines the lateral ventricles, and migrate along the processes of radial glial cells to their positions in the developing cortex in an `inside-out' sequence. The GABA-containing nonpyramidal cells originate for the most part in the ganglionic eminence, the primordium of the basal ganglia in the ventral telencephalon. These cells follow tangential migratory routes to enter the cortex and are in close association with the corticofugal axonal system. Once they enter the cortex, they move towards the ventricular zone, possibly to obtain positional information, before they migrate radially in the direction of the pial surface to take up their positions in the developing cortex. The mechanisms that guide interneurons throughout these long and complex migratory routes are currently under investigation.

  18. Correlations and Neuronal Population Information.

    Science.gov (United States)

    Kohn, Adam; Coen-Cagli, Ruben; Kanitscheider, Ingmar; Pouget, Alexandre

    2016-07-01

    Brain function involves the activity of neuronal populations. Much recent effort has been devoted to measuring the activity of neuronal populations in different parts of the brain under various experimental conditions. Population activity patterns contain rich structure, yet many studies have focused on measuring pairwise relationships between members of a larger population-termed noise correlations. Here we review recent progress in understanding how these correlations affect population information, how information should be quantified, and what mechanisms may give rise to correlations. As population coding theory has improved, it has made clear that some forms of correlation are more important for information than others. We argue that this is a critical lesson for those interested in neuronal population responses more generally: Descriptions of population responses should be motivated by and linked to well-specified function. Within this context, we offer suggestions of where current theoretical frameworks fall short.

  19. Turning skin into dopamine neurons

    Institute of Scientific and Technical Information of China (English)

    Malin Parmar; Johan Jakobsson

    2011-01-01

    The possibility to generate neurons from fibroblasts became a reality with the development of iPS technology a few years ago.By reprogramming somatic cells using transcription factor (TF) overexpression,it is possible to generate pluripotent stem cells that then can be differentiated into any somatic cell type including various subtypes of neurons.This raises the possibility of using donor-matched or even patientspecific cells for cell therapy of neurological disorders such as Parkinson's disease (PD),Huntington's disease and stroke.Supporting this idea,dopamine neurons,which are the cells dying in PD,derived from human iPS cells have been demonstrated to survive transplantation and reverse motor symptoms in animal models of PD [1].

  20. The neuronal code for number.

    Science.gov (United States)

    Nieder, Andreas

    2016-06-01

    Humans and non-human primates share an elemental quantification system that resides in a dedicated neural network in the parietal and frontal lobes. In this cortical network, 'number neurons' encode the number of elements in a set, its cardinality or numerosity, irrespective of stimulus appearance across sensory motor systems, and from both spatial and temporal presentation arrays. After numbers have been extracted from sensory input, they need to be processed to support goal-directed behaviour. Studying number neurons provides insights into how information is maintained in working memory and transformed in tasks that require rule-based decisions. Beyond an understanding of how cardinal numbers are encoded, number processing provides a window into the neuronal mechanisms of high-level brain functions.

  1. Prospective Coding by Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Johanni Brea

    2016-06-01

    Full Text Available Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron's firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ.

  2. Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death

    Directory of Open Access Journals (Sweden)

    Thundyil John

    2010-08-01

    Full Text Available Abstract Background- Adiponectin is a hormone produced in and released from adipose cells, which has been shown to have anti-diabetic and anti-inflammatory actions in peripheral cells. Two cell surface adiponectin receptors (ADRs mediate the majority of the known biological actions of adiponectin. Thus far, ADR expression in the brain has been demonstrated in the arcuate and the paraventricular nucleus of hypothalamus, where its activation affects food intake. Recent findings suggest that levels of circulating adiponectin increase after an ischemic stroke, but the role of adiponectin receptor activation in stroke pathogenesis and its functional outcome is unclear. Methods- Ischemic stroke was induced in C57BL/6 mice by middle cerebral artery occlusion (MCAO for 1 h, followed by reperfusion. Primary cortical neuronal cultures were established from individual embryonic neocortex. For glucose deprivation (GD, cultured neurons were incubated in glucose-free Locke's medium for 6, 12 or 24 h. For combined oxygen and glucose deprivation (OGD, neurons were incubated in glucose-free Locke's medium in an oxygen-free chamber with 95% N2/5% CO2 atmosphere for either 3, 6, 9, 12 or 24 h. Primary neurons and brain tissues were analysed for Adiponectin and ADRs using reverse transcriptase polymerase chain reaction (RT-PCR, immunoblot and immunochemistry methods. Results- Cortical neurons express ADR1 and ADR2, and that the levels of ADR1 are increased in neurons in response to in vitro or in vivo ischemic conditions. Neurons treated with either globular or trimeric adiponectin exhibited increased vulnerability to oxygen and glucose deprivation which was associated with increased activation of a pro-apoptotic signaling cascade involving p38 mitogen-activated protein kinase (p38MAPK and AMP-activated protein kinase (AMPK. Conclusions- This study reveals a novel pathogenic role for adiponectin and adiponectin receptor activation in ischemic stroke. We show that

  3. Shared Genetic Factors Influence Amygdala Volumes and Risk for Alcoholism

    Science.gov (United States)

    Dager, Alecia D; McKay, D Reese; Kent, Jack W; Curran, Joanne E; Knowles, Emma; Sprooten, Emma; Göring, Harald HH; Dyer, Thomas D; Pearlson, Godfrey D; Olvera, Rene L; Fox, Peter T; Lovallo, William R; Duggirala, Ravi; Almasy, Laura; Blangero, John; Glahn, David C

    2015-01-01

    Alcohol abuse and dependence (alcohol use disorders, AUDs) are associated with brain shrinkage. Subcortical structures including the amygdala, hippocampus, ventral striatum, dorsal striatum, and thalamus subserve reward functioning and may be particularly vulnerable to alcohol-related damage. These structures may also show pre-existing deficits impacting the development and maintenance of AUD. It remains unclear whether there are common genetic features underlying both subcortical volumes and AUD. In this study, structural brain images were acquired from 872 Mexican-American individuals from extended pedigrees. Subcortical volumes were obtained using FreeSurfer, and quantitative genetic analyses were performed in SOLAR. We hypothesized the following: (1) reduced subcortical volumes in individuals with lifetime AUD relative to unrelated controls; (2) reduced subcortical volumes in individuals with current relative to past AUD; (3) in non-AUD individuals, reduced subcortical volumes in those with a family history of AUD compared to those without; and (4) evidence for common genetic underpinnings (pleiotropy) between AUD risk and subcortical volumes. Results showed that individuals with lifetime AUD showed larger ventricular and smaller amygdala volumes compared to non-AUD individuals. For the amygdala, there were no differences in volume between current vs past AUD, and non-AUD individuals with a family history of AUD demonstrated reductions compared to those with no such family history. Finally, amygdala volume was genetically correlated with the risk for AUD. Together, these results suggest that reduced amygdala volume reflects a pre-existing difference rather than alcohol-induced neurotoxic damage. Our genetic correlation analysis provides evidence for a common genetic factor underlying both reduced amygdala volumes and AUD risk. PMID:25079289

  4. Shared genetic factors influence amygdala volumes and risk for alcoholism.

    Science.gov (United States)

    Dager, Alecia D; McKay, D Reese; Kent, Jack W; Curran, Joanne E; Knowles, Emma; Sprooten, Emma; Göring, Harald H H; Dyer, Thomas D; Pearlson, Godfrey D; Olvera, Rene L; Fox, Peter T; Lovallo, William R; Duggirala, Ravi; Almasy, Laura; Blangero, John; Glahn, David C

    2015-01-01

    Alcohol abuse and dependence (alcohol use disorders, AUDs) are associated with brain shrinkage. Subcortical structures including the amygdala, hippocampus, ventral striatum, dorsal striatum, and thalamus subserve reward functioning and may be particularly vulnerable to alcohol-related damage. These structures may also show pre-existing deficits impacting the development and maintenance of AUD. It remains unclear whether there are common genetic features underlying both subcortical volumes and AUD. In this study, structural brain images were acquired from 872 Mexican-American individuals from extended pedigrees. Subcortical volumes were obtained using FreeSurfer, and quantitative genetic analyses were performed in SOLAR. We hypothesized the following: (1) reduced subcortical volumes in individuals with lifetime AUD relative to unrelated controls; (2) reduced subcortical volumes in individuals with current relative to past AUD; (3) in non-AUD individuals, reduced subcortical volumes in those with a family history of AUD compared to those without; and (4) evidence for common genetic underpinnings (pleiotropy) between AUD risk and subcortical volumes. Results showed that individuals with lifetime AUD showed larger ventricular and smaller amygdala volumes compared to non-AUD individuals. For the amygdala, there were no differences in volume between current vs past AUD, and non-AUD individuals with a family history of AUD demonstrated reductions compared to those with no such family history. Finally, amygdala volume was genetically correlated with the risk for AUD. Together, these results suggest that reduced amygdala volume reflects a pre-existing difference rather than alcohol-induced neurotoxic damage. Our genetic correlation analysis provides evidence for a common genetic factor underlying both reduced amygdala volumes and AUD risk.

  5. Gene expression profile of neuronal progenitor cells derived from hESCs: activation of chromosome 11p15.5 and comparison to human dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    William J Freed

    Full Text Available BACKGROUND: We initiated differentiation of human embryonic stem cells (hESCs into dopamine neurons, obtained a purified population of neuronal precursor cells by cell sorting, and determined patterns of gene transcription. METHODOLOGY: Dopaminergic differentiation of hESCs was initiated by culturing hESCs with a feeder layer of PA6 cells. Differentiating cells were then sorted to obtain a pure population of PSA-NCAM-expressing neuronal precursors, which were then analyzed for gene expression using Massive Parallel Signature Sequencing (MPSS. Individual genes as well as regions of the genome which were activated were determined. PRINCIPAL FINDINGS: A number of genes known to be involved in the specification of dopaminergic neurons, including MSX1, CDKN1C, Pitx1 and Pitx2, as well as several novel genes not previously associated with dopaminergic differentiation, were expressed. Notably, we found that a specific region of the genome located on chromosome 11p15.5 was highly activated. This region contains several genes which have previously been associated with the function of dopaminergic neurons, including the gene for tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamine biosynthesis, IGF2, and CDKN1C, which cooperates with Nurr1 in directing the differentiation of dopaminergic neurons. Other genes in this region not previously recognized as being involved in the functions of dopaminergic neurons were also activated, including H19, TSSC4, and HBG2. IGF2 and CDKN1C were also found to be highly expressed in mature human TH-positive dopamine neurons isolated from human brain samples by laser capture. CONCLUSIONS: The present data suggest that the H19-IGF2 imprinting region on chromosome 11p15.5 is involved in the process through which undifferentiated cells are specified to become neuronal precursors and/or dopaminergic neurons.

  6. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease.

    Science.gov (United States)

    Bender, Andreas; Krishnan, Kim J; Morris, Christopher M; Taylor, Geoffrey A; Reeve, Amy K; Perry, Robert H; Jaros, Evelyn; Hersheson, Joshua S; Betts, Joanne; Klopstock, Thomas; Taylor, Robert W; Turnbull, Douglass M

    2006-05-01

    Here we show that in substantia nigra neurons from both aged controls and individuals with Parkinson disease, there is a high level of deleted mitochondrial DNA (mtDNA) (controls, 43.3% +/- 9.3%; individuals with Parkinson disease, 52.3% +/- 9.3%). These mtDNA mutations are somatic, with different clonally expanded deletions in individual cells, and high levels of these mutations are associated with respiratory chain deficiency. Our studies suggest that somatic mtDNA deletions are important in the selective neuronal loss observed in brain aging and in Parkinson disease.

  7. Neuronal involvement in cisplatin neuropathy

    DEFF Research Database (Denmark)

    Krarup-Hansen, A; Helweg-Larsen, Susanne Elisabeth; Schmalbruch, H

    2007-01-01

    Although it is well known that cisplatin causes a sensory neuropathy, the primary site of involvement is not established. The clinical symptoms localized in a stocking-glove distribution may be explained by a length dependent neuronopathy or by a distal axonopathy. To study whether the whole neuron...... of large dorsal root ganglion cells. Motor conduction studies, autonomic function and warm and cold temperature sensation remained unchanged at all doses of cisplatin treatment. The results of these studies are consistent with degeneration of large sensory neurons whereas there was no evidence of distal...

  8. Electrodiagnosis of motor neuron disease.

    Science.gov (United States)

    Duleep, Anuradha; Shefner, Jeremy

    2013-02-01

    Electrodiagnostic testing has proved useful in helping to establish the diagnosis of amyotrophic lateral sclerosis by eliminating possible disease mimics and by demonstrating abnormalities in body areas that are clinically unaffected. Electrodiagnosis begins with an understanding of the clinical features of the disease, because clinical correlation is essential. To improve the sensitivity of the electrophysiologic evaluation, the Awaji criteria have been proposed as a modification to the revised El Escorial criteria. Although techniques to evaluate corticomotor neuron abnormalities and to quantify lower motor neuron loss have been developed, they remain primarily research techniques and have not yet influenced clinical practice.

  9. Neuronal oscillations enhance stimulus discrimination by ensuring action potential precision

    DEFF Research Database (Denmark)

    Schaefer, Andreas T; Angelo, Kamilla; Spors, Hartwig

    2006-01-01

    Although oscillations in membrane potential are a prominent feature of sensory, motor, and cognitive function, their precise role in signal processing remains elusive. Here we show, using a combination of in vivo, in vitro, and theoretical approaches, that both synaptically and intrinsically......, membrane potential oscillations dramatically enhance the discriminatory capabilities of individual neurons and networks of cells and provide one attractive explanation for their abundance in neurophysiological systems....

  10. Identified Serotonin-Releasing Neurons Induce Behavioral Quiescence and Suppress Mating in Drosophila.

    Science.gov (United States)

    Pooryasin, Atefeh; Fiala, André

    2015-09-16

    Animals show different levels of activity that are reflected in sensory responsiveness and endogenously generated behaviors. Biogenic amines have been determined to be causal factors for these states of arousal. It is well established that, in Drosophila, dopamine and octopamine promote increased arousal. However, little is known about factors that regulate arousal negatively and induce states of quiescence. Moreover, it remains unclear whether global, diffuse modulatory systems comprehensively affecting brain activity determine general states of arousal. Alternatively, individual aminergic neurons might selectively modulate the animals' activity in a distinct behavioral context. Here, we show that artificially activating large populations of serotonin-releasing neurons induces behavioral quiescence and inhibits feeding and mating. We systematically narrowed down a role of serotonin in inhibiting endogenously generated locomotor activity to neurons located in the posterior medial protocerebrum. We identified neurons of this cell cluster that suppress mating, but not feeding behavior. These results suggest that serotonin does not uniformly act as global, negative modulator of general arousal. Rather, distinct serotoninergic neurons can act as inhibitory modulators of specific behaviors. An animal's responsiveness to external stimuli and its various types of endogenously generated, motivated behavior are highly dynamic and change between states of high activity and states of low activity. It remains unclear whether these states are mediated by unitary modulatory systems globally affecting brain activity, or whether distinct neurons modulate specific neuronal circuits underlying particular types of behavior. Using the model organism Drosophila melanogaster, we find that activating large proportions of serotonin-releasing neurons induces behavioral quiescence. Moreover, distinct serotonin-releasing neurons that we genetically isolated and identified negatively affect

  11. Human motor neuron progenitor transplantation leads to endogenous neuronal sparing in 3 models of motor neuron loss.

    Science.gov (United States)

    Wyatt, Tanya J; Rossi, Sharyn L; Siegenthaler, Monica M; Frame, Jennifer; Robles, Rockelle; Nistor, Gabriel; Keirstead, Hans S

    2011-01-01

    Motor neuron loss is characteristic of many neurodegenerative disorders and results in rapid loss of muscle control, paralysis, and eventual death in severe cases. In order to investigate the neurotrophic effects of a motor neuron lineage graft, we transplanted human embryonic stem cell-derived motor neuron progenitors (hMNPs) and examined their histopathological effect in three animal models of motor neuron loss. Specifically, we transplanted hMNPs into rodent models of SMA (Δ7SMN), ALS (SOD1 G93A), and spinal cord injury (SCI). The transplanted cells survived and differentiated in all models. In addition, we have also found that hMNPs secrete physiologically active growth factors in vivo, including NGF and NT-3, which significantly enhanced the number of spared endogenous neurons in all three animal models. The ability to maintain dying motor neurons by delivering motor neuron-specific neurotrophic support represents a powerful treatment strategy for diseases characterized by motor neuron loss.

  12. Mitochondrial swelling impairs the transport of organelles in cerebellar granule neurons.

    Science.gov (United States)

    Kaasik, Allen; Safiulina, Dzhamilja; Choubey, Vinay; Kuum, Malle; Zharkovsky, Alexander; Veksler, Vladimir

    2007-11-09

    Organelle transport in neuronal processes is central to the organization, developmental fate, and functions of neurons. Organelles must be transported through the slender, highly branched neuronal processes, making the axonal transport vulnerable to any perturbation. However, some intracellular structures like mitochondria are able to considerably modify their volume. We therefore hypothesized that swollen mitochondria could impair the traffic of other organelles in neurite shafts. To test this hypothesis, we have investigated the effects of mitochondrial swellers on the organelle traffic. Our data demonstrate that treatment of neurons with potassium ionophore valinomycin led to the fast time-dependent inhibition of organelle movement in cerebellar granule neurons. Similar inhibition was observed in neurons treated with the inhibitors of the mitochondrial respiratory chain, sodium azide and antimycin, which also induced swelling. No decrease in the motility of organelles was observed in cultures treated with inhibitors of ATP production or transport, oligomycin or bongkrekic acid, suggesting that inhibition of the ATP-generating activity itself without swelling does not affect the motility of organelles. The effect of swellers on the traffic was more important in thin processes, thus indicating the role of steric hindrance of swollen mitochondria. We propose that the size and morphology of the transported cargo is also relevant for seamless axonal transport and speculate that mitochondrial swelling could be one of the reasons for impaired organelle transport in neuronal processes.

  13. Isolated hippocampal neurons in cryopreserved long-term cultures: development of neuroarchitecture and sensitivity to NMDA.

    Science.gov (United States)

    Mattson, M P; Kater, S B

    1988-01-01

    Isolated neurons in long-term culture provide a unique opportunity to address important problems in neuronal development. In the present study we established conditions for cryopreservation and long-term primary culture of isolated embryonic hippocampal neurons. This culture system was then used for initial characterizations of the development of neuroarchitecture and neurotransmitter response systems. Cryoprotection with 8% dimethylsulfoxide, slow freezing, and rapid thawing provided high-yield cultures which appeared normal in terms of cell types, mitotic ability, axonal and dendritic outgrowth, and sensitivity to glutamate neurotoxicity. A reduced medium volume and moderate elevation in extracellular K+ to 20 mM promoted survival of isolated neurons through 3 weeks of culture. The outgrowth of axons and dendrites in pyramidal-like neurons was found to differ over a 3-week culture period such that axons continued to grow at a relatively constant rate while dendritic outgrowth slowed during the second week and ceased by the end of week 3. Developmental changes were also observed in the sensitivity of pyramidal neurons to glutamate neurotoxicity; functional kainate/quisqualate receptors were present during the first week of culture, while responses to N-methyl-D-aspartic acid (NMDA) did not appear until the second week. The technologies for cryopreservation and long-term culture of isolated hippocampal neurons reported here provide a useful system in which to address a variety of problems in development neuroscience.

  14. Structural properties of the Caenorhabditis elegans neuronal network.

    Science.gov (United States)

    Varshney, Lav R; Chen, Beth L; Paniagua, Eric; Hall, David H; Chklovskii, Dmitri B

    2011-02-03

    Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal propagation. We identify neurons that may play central roles in information processing, and network motifs that could serve as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation.

  15. Structural properties of the Caenorhabditis elegans neuronal network.

    Directory of Open Access Journals (Sweden)

    Lav R Varshney

    Full Text Available Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal propagation. We identify neurons that may play central roles in information processing, and network motifs that could serve as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation.

  16. Characterization of age-dependent and progressive cortical neuronal degeneration in presenilin conditional mutant mice.

    Directory of Open Access Journals (Sweden)

    Mary Wines-Samuelson

    Full Text Available Presenilins are the major causative genes of familial Alzheimer's disease (AD. Our previous study has demonstrated essential roles of presenilins in memory and neuronal survival. Here, we explore further how loss of presenilins results in age-related, progressive neurodegeneration in the adult cerebral cortex, where the pathogenesis of AD occurs. To circumvent the requirement of presenilins for embryonic development, we used presenilin conditional double knockout (Psen cDKO mice, in which presenilin inactivation is restricted temporally and spatially to excitatory neurons of the postnatal forebrain beginning at 4 weeks of age. Increases in the number of degenerating (Fluoro-Jade B+, 7.6-fold and apoptotic (TUNEL+, 7.4-fold neurons, which represent approximately 0.1% of all cortical neurons, were first detected at 2 months of age when there is still no significant loss of cortical neurons and volume in Psen cDKO mice. By 4 months of age, significant loss of cortical neurons (approximately 9% and gliosis was found in Psen cDKO mice. The apoptotic cell death is associated with caspase activation, as shown by increased numbers of cells immunoreactive for active caspases 9 and 3 in the Psen cDKO cortex. The vulnerability of cortical neurons to loss of presenilins is region-specific with cortical neurons in the lateral cortex most susceptible. Compared to the neocortex, the increase in apoptotic cell death and the extent of neurodegeneration are less dramatic in the Psen cDKO hippocampus, possibly in part due to increased neurogenesis in the aging dentate gyrus. Neurodegeneration is also accompanied with mitochondrial defects, as indicated by reduced mitochondrial density and altered mitochondrial size distribution in aging Psen cortical neurons. Together, our findings show that loss of presenilins in cortical neurons causes apoptotic cell death occurring in a very small percentage of neurons, which accumulates over time and leads to substantial loss

  17. Neurons in Vulnerable Regions of the Alzheimer's Disease Brain Display Reduced ATM Signaling.

    Science.gov (United States)

    Shen, Xuting; Chen, Jianmin; Li, Jiali; Kofler, Julia; Herrup, Karl

    2016-01-01

    Ataxia telangiectasia (A-T) is a multisystemic disease caused by mutations in the ATM (A-T mutated) gene. It strikes before 5 years of age and leads to dysfunctions in many tissues, including the CNS, where it leads to neurodegeneration, primarily in cerebellum. Alzheimer's disease (AD), by contrast, is a largely sporadic neurodegenerative disorder that rarely strikes before the 7th decade of life with primary neuronal losses in hippocampus, frontal cortex, and certain subcortical nuclei. Despite these differences, we present data supporting the hypothesis that a failure of ATM signaling is involved in the neuronal death in individuals with AD. In both, partially ATM-deficient mice and AD mouse models, neurons show evidence for a loss of ATM. In human AD, three independent indices of reduced ATM function-nuclear translocation of histone deacetylase 4, trimethylation of histone H3, and the presence of cell cycle activity-appear coordinately in neurons in regions where degeneration is prevalent. These same neurons also show reduced ATM protein levels. And though they represent only a fraction of the total neurons in each affected region, their numbers significantly correlate with disease stage. This previously unknown role for the ATM kinase in AD pathogenesis suggests that the failure of ATM function may be an important contributor to the death of neurons in AD individuals.

  18. Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology.

    Directory of Open Access Journals (Sweden)

    Thomas Rotolo

    Full Text Available BACKGROUND: In mammals, genetically-directed cell labeling technologies have not yet been applied to the morphologic analysis of neurons with very large and complex arbors, an application that requires extremely sparse labeling and that is only rendered practical by limiting the labeled population to one or a few predetermined neuronal subtypes. METHODS AND FINDINGS: In the present study we have addressed this application by using CreER technology to non-invasively label very small numbers of neurons so that their morphologies can be fully visualized. Four lines of IRES-CreER knock-in mice were constructed to permit labeling selectively in cholinergic or catecholaminergic neurons [choline acetyltransferase (ChAT-IRES-CreER or tyrosine hydroxylase (TH-IRES-CreER], predominantly in projection neurons [neurofilament light chain (NFL-IRES-CreER], or broadly in neurons and some glia [vesicle-associated membrane protein2 (VAMP2-IRES-CreER]. When crossed to the Z/AP reporter and exposed to 4-hydroxytamoxifen in the early postnatal period, the number of neurons expressing the human placental alkaline phosphatase reporter can be reproducibly lowered to fewer than 50 per brain. Sparse Cre-mediated recombination in ChAT-IRES-CreER;Z/AP mice shows the full axonal and dendritic arbors of individual forebrain cholinergic neurons, the first time that the complete morphologies of these very large neurons have been revealed in any species. CONCLUSIONS: Sparse genetically-directed, cell type-specific neuronal labeling with IRES-creER lines should prove useful for studying a wide variety of questions in neuronal development and disease.

  19. Long-range correlation of the membrane potential in neocortical neurons during slow oscillation

    Science.gov (United States)

    Volgushev, Maxim; Chauvette, Sylvain; Timofeev, Igor

    2012-01-01

    Large amplitude slow waves are characteristic for the summary brain activity, recorded as electroencephalogram (EEG) or local field potentials (LFP), during deep stages of sleep and some types of anesthesia. Slow rhythm of the synchronized EEG reflects an alternation of active (depolarized, UP) and silent (hyperpolarized, DOWN) states of neocortical neurons. In neurons, involvement in the generalized slow oscillation results in a long-range synchronization of changes of their membrane potential as well as their firing. Here, we aimed at intracellular analysis of details of this synchronization. We asked which components of neuronal activity exhibit long-range correlations during the synchronized EEG? To answer this question, we made simultaneous intracellular recordings from two to four neocortical neurons in cat neocortex. We studied how correlated is the occurrence of active and silent states, and how correlated are fluctuations of the membrane potential in pairs of neurons located close one to the other or separated by up to 13 mm. We show that strong long-range correlation of the membrane potential was observed only (i) during the slow oscillation but not during periods without the oscillation, (ii) during periods which included transitions between the states but not during within-the-state periods, and (iii) for the low-frequency (10 Hz). In contrast to the neurons located several millimeters one from the other, membrane potential fluctuations in neighboring neurons remain strongly correlated during periods without slow oscillation. We conclude that membrane potential correlation in distant neurons is brought about by synchronous transitions between the states, while activity within the states is largely uncorrelated. The lack of the generalized fine-scale synchronization of membrane potential changes in neurons during the active states of slow oscillation may allow individual neurons to selectively engage in short living episodes of correlated activity

  20. Electroholographic neurons implemented on potassium lithium tantalate niobate crystals.

    Science.gov (United States)

    Balberg, M; Razvag, M; Vidro, S; Refaeli, E; Agranat, A J

    1996-10-01

    We describe a new approach for constructing large-scale artificial neural networks. The novelty of our approach is based on the concept of electroholography (EH), which permits interconnecting of electronic neurons by minute-volume holograms, using the voltage-controlled photorefractive effect in paraelectric crystals. Crystals of potassium lithium tantalate niobate (KLTN) in the paraelectric phase are shown to be suitable for implementing this concept. A small network composed of two KLTN crystals on which holographic connections are recorded is presented to demonstrate the EH approach.

  1. [Effect of nootropic agents on impulse activity of cerebral cortex neurons].

    Science.gov (United States)

    Iasnetsov, V V; Pravdivtsev, V A; Krylova, I N; Kozlov, S B; Provornova, N A; Ivanov, Iu V; Iasnetsov, V V

    2001-01-01

    The effect of nootropes (semax, mexidol, and GVS-111) on the activity of individual neurons in various cerebral cortex regions was studied by microelectrode and microionophoresis techniques in cats immobilized by myorelaxants. It was established that the inhibiting effect of mexidol upon neurons in more than half of cases is prevented or significantly decreased by the GABA antagonists bicuculline and picrotoxin. The inhibiting effect of semax and GVS-111 upon neurons in more than half of cases is related to stimulation of the M-choline and NMDA receptors, respectively.

  2. A stereological analysis of NPY, POMC, Orexin, GFAP astrocyte, and Iba1 microglia cell number and volume in diet-induced obese male mice.

    Science.gov (United States)

    Lemus, Moyra B; Bayliss, Jacqueline A; Lockie, Sarah H; Santos, Vanessa V; Reichenbach, Alex; Stark, Romana; Andrews, Zane B

    2015-05-01

    The hypothalamic arcuate nucleus (ARC) contains 2 key neural populations, neuropeptide Y (NPY) and proopiomelanocortin (POMC), and, together with orexin neurons in the lateral hypothalamus, plays an integral role in energy homeostasis. However, no studies have examined total neuronal number and volume after high-fat diet (HFD) exposure using sophisticated stereology. We used design-based stereology to estimate NPY and POMC neuronal number and volume, as well as glial fibrillary acidic protein (astrocyte marker) and ionized calcium-binding adapter molecule 1 (microglia marker) cell number in the ARC; as well as orexin neurons in the lateral hypothalamus. Stereological analysis indicated approximately 8000 NPY and approximately 9000 POMC neurons in the ARC, and approximately 7500 orexin neurons in the lateral hypothalamus. HFD exposure did not affect total neuronal number in any population. However, HFD significantly increased average NPY cell volume and affected NPY and POMC cell volume distribution. HFD reduced orexin cell volume but had a bimodal effect on volume distribution with increased cells at relatively small volumes and decreased cells with relatively large volumes. ARC glial fibrillary acidic protein cells increased after 2 months on a HFD, although no significant difference after 6 months on chow diet or HFD was observed. No differences in ARC ionized calcium-binding adapter molecule 1 cell number were observed in any group. Thus, HFD affects ARC NPY or POMC neuronal cell volume number not cell number. Our results demonstrate the importance of stereology to perform robust unbiased analysis of cell number and volume. These data should be an empirical baseline reference to which future studies are compared.

  3. Individual Tree Biomass Models for Plantation Grown American Sycamore

    Science.gov (United States)

    Regan B. Willson; Bryce E. Schlaegel; Harvey E. Kennedy

    1982-01-01

    Individual tree volume and green and dry weight equations are derived for American sycamore from a 5-year-old plantation in southeast Arkansas. Two trees have been destructively sampled each year from each of 20 plots. Observations from 168 trees are used to predict tree weight and volume as a function of dbh, total height, age, and initial number of trees. Separate...

  4. Alterations in right posterior hippocampus in early blind individuals

    DEFF Research Database (Denmark)

    Chebat, Daniel-Robert; Chen, Jan-Kai; Schneider, Fabien

    2007-01-01

    This study compares hippocampal volumes of early blind and sex/age-matched sighted controls through volumetric and localization analyses. Early blind individuals showed a significantly smaller right posterior hippocampus compared with controls. No differences in total hippocampal volumes were fou...

  5. Kaposi's Sarcoma-Associated Herpesvirus Infection of Neurons in HIV-Positive Patients.

    Science.gov (United States)

    Tso, For Yue; Sawyer, Ashley; Kwon, Eun Hee; Mudenda, Victor; Langford, Dianne; Zhou, You; West, John; Wood, Charles

    2017-06-15

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi sarcoma (KS), one of the leading cancers in human immunodeficiency virus (HIV)-infected patients in Zambia. KSHV was detected in the human central nervous system (CNS) by polymerase chain reaction (PCR) analysis, but tissue location and cell tropism for KSHV infection has not been established. Given the neurotropism exhibited by other herpesviruses and the frequent coinfection of HIV-positive individuals by KSHV, we sought to determine whether the central nervous system (CNS) can be infected by KSHV in HIV-positive Zambian individuals. Postmortem brain tissue specimens were collected from individuals coinfected with KSHV and HIV. PCR and Southern blots were performed on DNA extracted from the brain tissue specimens to verify KSHV infection. Immunohistochemical analysis and immunofluorescent microscopy were used to localize and identify KSHV-infected cells. Tropism was further established by in vitro infection of primary human neurons with rKSHV.219. KSHV DNA was detected in the CNS from 4 of 11 HIV-positive individuals. Immunohistochemical analysis and immunofluorescent microscopy demonstrated that KSHV infected neurons and oligodendrocytes in parenchymal brain tissues. KSHV infection of neurons was confirmed by in vitro infection of primary human neurons with rKSHV.219. Our study showed that KSHV infects human CNS-resident cells, primarily neurons, in HIV-positive Zambian individuals.

  6. Computing with Spiking Neuron Networks

    NARCIS (Netherlands)

    Paugam-Moisy, H.; Bohte, S.M.; Rozenberg, G.; Baeck, T.H.W.; Kok, J.N.

    2012-01-01

    Abstract Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener- ation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an ac- curate modeling of synaptic interactions between neu

  7. Motor neurone disease: an overview.

    Science.gov (United States)

    Kent, Anna

    Motor neurone disease (MND) is a relatively rare, progressive and incurable neurological condition affecting patients' speech, mobility and respiratory function. Care of patients with MND is complex and involves various healthcare professionals and services. There is a need to discuss symptom management and promote palliative and end of life care from the point of diagnosis to ensure appropriate holistic care is provided.

  8. Neuronal circuits of fear extinction.

    Science.gov (United States)

    Herry, Cyril; Ferraguti, Francesco; Singewald, Nicolas; Letzkus, Johannes J; Ehrlich, Ingrid; Lüthi, Andreas

    2010-02-01

    Fear extinction is a form of inhibitory learning that allows for the adaptive control of conditioned fear responses. Although fear extinction is an active learning process that eventually leads to the formation of a consolidated extinction memory, it is a fragile behavioural state. Fear responses can recover spontaneously or subsequent to environmental influences, such as context changes or stress. Understanding the neuronal substrates of fear extinction is of tremendous clinical relevance, as extinction is the cornerstone of psychological therapy of several anxiety disorders and because the relapse of maladaptative fear and anxiety is a major clinical problem. Recent research has begun to shed light on the molecular and cellular processes underlying fear extinction. In particular, the acquisition, consolidation and expression of extinction memories are thought to be mediated by highly specific neuronal circuits embedded in a large-scale brain network including the amygdala, prefrontal cortex, hippocampus and brain stem. Moreover, recent findings indicate that the neuronal circuitry of extinction is developmentally regulated. Here, we review emerging concepts of the neuronal circuitry of fear extinction, and highlight novel findings suggesting that the fragile phenomenon of extinction can be converted into a permanent erasure of fear memories. Finally, we discuss how research on genetic animal models of impaired extinction can further our understanding of the molecular and genetic bases of human anxiety disorders.

  9. Stomatin and sensory neuron mechanotransduction.

    Science.gov (United States)

    Martinez-Salgado, Carlos; Benckendorff, Anne G; Chiang, Li-Yang; Wang, Rui; Milenkovic, Nevena; Wetzel, Christiane; Hu, Jing; Stucky, Cheryl L; Parra, Marilyn G; Mohandas, Narla; Lewin, Gary R

    2007-12-01

    Somatic sensory neurons of the dorsal root ganglia are necessary for a large part of our mechanosensory experience. However, we only have a good knowledge of the molecules required for mechanotransduction in simple invertebrates such as the nematode Caenorhabiditis elegans. In C. elegans, a number of so-called mec genes have been isolated that are required for the transduction of body touch. One such gene, mec-2 codes for an integral membrane protein of the stomatin family, a large group of genes with a stomatin homology domain. Using stomatin null mutant mice, we have tested the hypothesis that the founding member of this family, stomatin might play a role in the transduction of mechanical stimuli by primary sensory neurons. We used the in vitro mouse skin nerve preparation to record from a large population of low- and high-threshold mechanoreceptors with myelinated A-fiber (n = 553) and unmyelinated C-fiber (n = 157) axons. One subtype of mechanoreceptor, the d-hair receptor, which is a rapidly adapting mechanoreceptor, had reduced sensitivity to mechanical stimulation in the absence of stomatin. Other cutaneous mechanoreceptors, including nociceptive C-fibers were not affected by the absence of a functional stomatin protein. Patch-clamp analysis of presumptive D-hair receptor mechanoreceptive neurons, which were identified by a characteristic rosette morphology in culture, showed no change in membrane excitability in the absence of the stomatin protein. We conclude that stomatin is required for normal mechanotransduction in a subpopulation of vertebrate sensory neurons.

  10. What do mirror neurons mirror?

    NARCIS (Netherlands)

    Uithol, S.; Rooij, I.J.E.I. van; Bekkering, H.; Haselager, W.F.G.

    2011-01-01

    Single cell recordings in monkeys provide strong evidence for an important role of the motor system in action understanding. This evidence is backed up by data from studies of the (human) mirror neuron system using neuroimaging or TMS techniques, and behavioral experiments. Although the data acquire

  11. What do mirror neurons mirror?

    NARCIS (Netherlands)

    Uithol, S.; Rooij, I.J.E.I. van; Bekkering, H.; Haselager, W.F.G.

    2011-01-01

    Single cell recordings in monkeys provide strong evidence for an important role of the motor system in action understanding. This evidence is backed up by data from studies of the (human) mirror neuron system using neuroimaging or TMS techniques, and behavioral experiments. Although the data

  12. Sugar Antennae for Guidance Signals: Syndecans and Glypicans Integrate Directional Cues for Navigating Neurons

    Directory of Open Access Journals (Sweden)

    Christa Rhiner

    2006-01-01

    Full Text Available Attractive and repulsive signals guide migrating nerve cells in all directions when the nervous system starts to form. The neurons extend thin processes, axons, that connect over wide distances with other brain cells to form a complicated neuronal network. One of the most fascinating questions in neuroscience is how the correct wiring of billions of nerve cells in our brain is controlled. Several protein families are known to serve as guidance cues for navigating neurons and axons. Nevertheless, the combinatorial potential of these proteins seems to be insufficient to sculpt the entire neuronal network and the appropriate formation of connections. Recently, heparan sulfate proteoglycans (HSPGs, which are present on the cell surface of neurons and in the extracellular matrix through which neurons and axons migrate, have been found to play a role in regulating cell migration and axon guidance. Intriguingly, the large number of distinct modifications that can be put onto the sugar side chains of these PGs would in principle allow for an enormous diversity of HSPGs, which could help in regulating the vast number of guidance choices taken by individual neurons. In this review, we will focus on the role of the cell surface HSPGs syndecan and glypican and specific HS modifications in promoting neuronal migration, axon guidance, and synapse formation.

  13. Decreased Neuronal Autophagy in HIV Dementia: A Mechanism of Indirect Neurotoxicity

    Science.gov (United States)

    Alirezaei, Mehrdad; Kiosses, William B.; Fox, Howard S.

    2009-01-01

    Many recent studies indicate that dysregulation of autophagy is a common feature of many neurodegenerative diseases. The HIV-1-associated neurological disorder is an acquired cognitive and motor disease that includes a severe neurodegenerative dementia. We find that the neurodegeneration seen in the brain in HIV-1 infection is associated with an inhibition of neuronal autophagy, leading to neuronal demise. Neurons treated with supernatants from SIV-infected microglia develop a decrease in autophagy-inducing proteins, a decrease in neuronal autophagy vesicles, and an increase in sequestosome-1/p62. Examination of brains from HIV-infected individuals and SIV-infected monkeys reveals signs of autophagy dysregulation, associated, respectively, with dementia and encephalitis. Excitotoxic and inflammatory factors could inhibit neuronal autophagy, and stimulation of autophagy with rapamycin prevents such effects. Here we amplify on these findings, and propose that in the setting of HIV-infection, the decreased neuronal autophagy sensitizes cells to pro-apoptotic and other damaging mechanisms, leading to neuronal dysfunction and death. Hence, new therapeutic approaches aimed at boosting neuronal autophagy are conceivable to treat those suffering from the neurological complications of HIV. PMID:18772620

  14. Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Cornelia Schmitt

    Full Text Available Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2 enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these neurons, or even single cells, can be further addressed by restricting the illumination to the cell of interest. However, this is technically demanding, particularly in free moving animals. Thus, it would be helpful if expression of ChR2 could be restricted to single neurons or neuron pairs, as even wide-field illumination would photostimulate only this particular cell. To this end we adopted the use of Cre or FLP recombinases and conditional ChR2 expression at the intersection of two promoter expression domains, i.e. in the cell of interest only. Success of this method depends on precise knowledge of the individual promoters' expression patterns and on relative expression levels of recombinase and ChR2. A bicistronic expression cassette with GFP helps to identify the correct expression pattern. Here we show specific expression in the AVA reverse command neurons and the aversive polymodal sensory ASH neurons. This approach shall enable to generate strains for optogenetic manipulation of each of the 302 C. elegans neurons. This may eventually allow to model the C. elegans nervous system in its entirety, based on functional data for each neuron.

  15. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Tomáš Sieger

    Full Text Available The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  16. Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus.

    Science.gov (United States)

    Deguchi, Yuichi; Donato, Flavio; Galimberti, Ivan; Cabuy, Erik; Caroni, Pico

    2011-04-01

    The extent to which individual neurons are interconnected selectively within brain circuits is an unresolved problem in neuroscience. Neurons can be organized into preferentially interconnected microcircuits, but whether this reflects genetically defined subpopulations is unclear. We found that the principal neurons in the main subdivisions of the hippocampus consist of distinct subpopulations that are generated during distinct time windows and that interconnect selectively across subdivisions. In two mouse lines in which transgene expression was driven by the neuron-specific Thy1 promoter, transgene expression allowed us to visualize distinct populations of principal neurons with unique and matched patterns of gene expression, shared distinct neurogenesis and synaptogenesis time windows, and selective connectivity at dentate gyrus-CA3 and CA3-CA1 synapses. Matched subpopulation marker genes and neuronal subtype markers mapped near clusters of olfactory receptor genes. The nonoverlapping matched timings of synaptogenesis accounted for the selective connectivities of these neurons in CA3. Therefore, the hippocampus contains parallel connectivity channels assembled from distinct principal neuron subpopulations through matched schedules of synaptogenesis.

  17. [The ontogeny of the mirror neuron system].

    Science.gov (United States)

    Myowa-Yamakoshi, Masako

    2014-06-01

    Abstract Humans utilize the mirror neuron system to understand and predict others' actions. However, the ontogeny of the mirror neuron system remains unknown. Whether mirror neuron function is an innate trait or whether mirror neurons acquire their sensorimotor matching properties ontogenetically remains to be clarified. In this paper, I review the ontogenetic theory of the mirror neuron system. I then discuss the functioning of the mirror neuron system in the context of social cognitive abilities, which are unique to humans. Recently, some researchers argue that it is too early to interpret the function of mirror neurons as an understanding of the underlying psychological states of others. They imply that such functioning would require inferential cognitive processes that are known to involve areas outside the mirror neuron system. Filling in this missing link may be the key to elucidating the unique ability of humans to understand others' actions.

  18. Performance of a Single Quantum Neuron

    Institute of Scientific and Technical Information of China (English)

    LIFei; ZHAOShengmei; ZHENGBaoyu

    2005-01-01

    Quantum neural network (QNN) is a promising area in the field of quantum computing and quantum information processing. A novel model for quantum neuron is described, a quantum learning algorithm is proposed and its convergence property is investigated. It has been shown, Quantum neuron (QN) has the same convergence property as Conventional neuron (CN) but can attain faster training than Conventional neuron. The computational power of the quantum neuron is also explored.Numerical and graphical results show that this single quantum neuron can implement the Walsh-Hadamard transformation, perform the XOR function unrealizable with a classical neuron and can eliminate the necessity of building a network of neurons to obtain nonlinear mapping.

  19. Effect of Methamidophos on cerebellar neuronal cells

    African Journals Online (AJOL)

    olayemitoyin

    TH-mediated cerebellar neuronal cell development and function, and consequently could interfere with TH-regulated neuronal ... 1972), decreased number of synapses between the. Purkinje .... 0.008%DNase and triturated in same solution to ...

  20. Imipramine treatment increases the number of hippocampal synapses and neurons in a genetic animal model of depression.

    Science.gov (United States)

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers; Nyengaard, Jens R

    2010-12-01

    The aim was to investigate treatment effects of the antidepressant imipramine on the markers of neuronal plasticity. We investigated changes in neuron and synapse numbers in a rat strain that displays a genetic susceptibility to depressive behavior, the Flinders Sensitive and Resistant Lines (FSL/FRL). All rats were treated with imipramine (15 mg/kg) or saline (i.p) once daily for 25 days. The volume, neuron and synapse numbers in the hippocampus were estimated using design-based stereological methods. Under untreated conditions, the volume and the number of neurons and synapses were significantly smaller in the FSL saline group (untreated "depressed" rats) compared with the FRL saline group (normal rats), showing correlation to the observed decreased immobility in the forced swim test. Imipramine treatment significantly increased the number of neurons in the granule cell layer (GCL) and spine synapses in the CA1 in the FSL imipramine group (treated "depressed" rats) compared with the FSL saline group. The neuron numbers in the GCL and Hilus showed no differences in the FSL imipramine group compared to the FRL saline group. In conclusion, baseline levels of the volume and the number of neurons and spine synapses in hippocampus were significantly smaller in the untreated FSL rats. Our findings indicate that chronic imipramine treatment reverses the suppression of neurogenesis and synaptogenesis in the hippocampus of the "depressed" FSL rats, and this occurs in correlation with behavioral effects. Our results support the neuronal plasticity hypothesis that depressive disorders may be related to impairments of structural plasticity and neuronal viability in hippocampus, furthermore, antidepressant treatment counteracts the structural impairments.

  1. Small-volume effect enables the spine robust, sensitive and efficient information transfer

    CERN Document Server

    Fujii, Masashi; Karasawa, Yasuaki; Hikichi, Minori; Kuroda, Shinya

    2016-01-01

    Why is the spine of a neuron so small that only small numbers of molecules can exist and reactions inevitably become stochastic? Despite such noisy conditions, we previously showed that the spine exhibits robust, sensitive and efficient features of information transfer using probability of Ca$^{2+}$ increase; however, their mechanisms remains unknown. Here we show that the small-volume effect enables robust, sensitive and efficient information transfer in the spine volume, but not in the cell volume. In the spine volume, intrinsic noise in reactions becomes larger than extrinsic noise of input, making robust information transfer against input fluctuation. Stochastic facilitation of Ca$^{2+}$ increase occurs in the spine volume, making higher sensitivity to lower intensity of input. Volume-dependency of information transfer enables efficient information transfer per input in the spine volume. Thus, we propose that the small-volume effect is the functional reasons why the spine has to be so small.

  2. Spiking neuron network Helmholtz machine.

    Science.gov (United States)

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.

  3. Rethinking evolutionary individuality.

    Science.gov (United States)

    Ereshefsky, Marc; Pedroso, Makmiller

    2015-08-18

    This paper considers whether multispecies biofilms are evolutionary individuals. Numerous multispecies biofilms have characteristics associated with individuality, such as internal integrity, division of labor, coordination among parts, and heritable adaptive traits. However, such multispecies biofilms often fail standard reproductive criteria for individuality: they lack reproductive bottlenecks, are comprised of multiple species, do not form unified reproductive lineages, and fail to have a significant division of reproductive labor among their parts. If such biofilms are good candidates for evolutionary individuals, then evolutionary individuality is achieved through other means than frequently cited reproductive processes. The case of multispecies biofilms suggests that standard reproductive requirements placed on individuality should be reconsidered. More generally, the case of multispecies biofilms indicates that accounts of individuality that focus on single-species eukaryotes are too restrictive and that a pluralistic and open-ended account of evolutionary individuality is needed.

  4. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    - serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...... of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume......, controlled cell death and cellular migration. Volume regulatory mechanisms has long been in focus for regulating cellular proliferation and my thesis work have been focusing on the role of Cl- channels in proliferation with specific emphasis on ICl, swell. Pharmacological blockage of the ubiquitously...

  5. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus.

    Directory of Open Access Journals (Sweden)

    Jiaying Tang

    Full Text Available The lateral geniculate nucleus (LGN is increasingly regarded as a "smart-gating" operator for processing visual information. Therefore, characterizing the response properties of LGN neurons will enable us to better understand how neurons encode and transfer visual signals. Efforts have been devoted to study its anatomical and functional features, and recent advances have highlighted the existence in rodents of complex features such as direction/orientation selectivity. However, unlike well-researched higher-order mammals such as primates, the full array of response characteristics vis-à-vis its morphological features have remained relatively unexplored in the mouse LGN. To address the issue, we recorded from mouse LGN neurons using multisite-electrode-arrays (MEAs and analysed their discharge patterns in relation to their location under a series of visual stimulation paradigms. Several response properties paralleled results from earlier studies in the field and these include centre-surround organization, size of receptive field, spontaneous firing rate and linearity of spatial summation. However, our results also revealed "high-pass" and "low-pass" features in the temporal frequency tuning of some cells, and greater average contrast gain than reported by earlier studies. In addition, a small proportion of cells had direction/orientation selectivity. Both "high-pass" and "low-pass" cells, as well as direction and orientation selective cells, were found only in small numbers, supporting the notion that these properties emerge in the cortex. ON- and OFF-cells showed distinct contrast sensitivity and temporal frequency tuning properties, suggesting parallel projections from the retina. Incorporating a novel histological technique, we created a 3-D LGN volume model explicitly capturing the morphological features of mouse LGN and localising individual cells into anterior/middle/posterior LGN. Based on this categorization, we show that the ON/OFF, DS

  6. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure.

    Science.gov (United States)

    Hussy, N; Deleuze, C; Desarménien, M G; Moos, F C

    2000-10-01

    Maintenance of osmotic pressure is a primary regulatory process essential for normal cell function. The osmolarity of extracellular fluids is regulated by modifying the intake and excretion of salts and water. A major component of this regulatory process is the neuroendocrine hypothalamo-neurohypophysial system, which consists of neurons located in the paraventricular and supraoptic nuclei. These neurons synthesize the neurohormones vasopressin and oxytocin and release them in the blood circulation. We here review the mechanisms responsible for the osmoregulation of the activity of these neurons. Notably, the osmosensitivity of the supraoptic nucleus is described including the recent data that suggests an important participation of taurine in the transmission of the osmotic information. Taurine is an amino acid mainly known for its involvement in cell volume regulation, as it is one of the major inorganic osmolytes used by cells to compensate for changes in extracellular osmolarity. In the supraoptic nucleus, taurine is highly concentrated in astrocytes, and released in an osmodependent manner through volume-sensitive anion channels. Via its agonist action on neuronal glycine receptors, taurine is likely to contribute to the inhibition of neuronal activity induced by hypotonic stimuli. This inhibitory influence would complement the intrinsic osmosensitivity of supraoptic neurons, mediated by excitatory mechanoreceptors activated under hypertonic conditions. These observations extend the role of taurine from the regulation of cell volume to that of the whole body fluid balance. They also point to a new role of supraoptic glial cells as active components in a neuroendocrine regulatory loop.

  7. Effect of gating currents of ion channels on the collective spiking activity of coupled Hodgkin-Huxley neurons

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the coupled stochastic Hodgkin-Huxley neurons, we numerically studied the effect of gating currents of ion channels, as well as coupling and the number of neurons, on the collective spiking rate and regularity in the coupled system. It was found, for a given coupling strength and with a relatively large number of neurons, when gating currents are applied, the collective spiking regularity decreases; meanwhile, the collective spiking rate increases, indicating that gating currents can aggravate the de-synchronization of the spikings of all neurons. However, gating currents caused hardly any effect in the spiking of any individual neuron of the coupled system. This result, different from the reduction of the spiking rate by gating currents in a single neuron, provides a new insight into the effect of gating cur-rents on the global information processing and signal transduction in real neural systems.

  8. Effect of gating currents of ion channels on the collective spiking activity of coupled Hodξkin-Huxley neurons

    Institute of Scientific and Technical Information of China (English)

    GONG YuBing; XIE YanHang; XU Bo; MA XiaoGuang

    2009-01-01

    Based on the coupled stochastic Hodgkin-Huxley neurons, we numerically studied the effect of gating currents of ion channels, as well as coupling and the number of neurons, on the collective spiking rate and regularity in the coupled system, it was found, for a given coupling strength and with a relatively large number of neurons, when gating currents are applied, the collective spiking regularity decreases; meanwhile, the collective spiking rate increases, indicating that gating currents can aggravate the de-synchronization of the spikings of all neurons. However, gating currents caused hardly any effect in the spiking of any individual neuron of the coupled system. This result, different from the reduction of the spiking rate by gating currents in a single neuron, provides a new insight into the effect of gating cur-rents on the global information processing and signal transduction in real neural systems.

  9. BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.

    Science.gov (United States)

    Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan

    2015-10-01

    Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.

  10. Spontaneous Calcium Changes in Micro Neuronal Networks

    Science.gov (United States)

    Saito, Aki; Moriguchi, Hiroyuki; Iwabuchi, Shin; Goto, Miho; Takayama, Yuzo; Kotani, Kiyoshi; Jimbo, Yasuhiko

    We have developed a practical experimental method to mass-produce and maintain a variation of minimal neuronal networks (“micro neuronal networks”) consisted of a single to several neurons in culture using spray-patterning technique. In this paper, we could maintain the micro-cultures for one month or more by adding conditioned medium and carried out optical recording of spontaneous activity in micro neuronal networks and considered the interactions between them. To determine the interactions between micro neuronal networks, fluorescence changes in several small networks were simultaneously measured using calcium indicator dye fluo-4 AM, and time-series analysis was carried out using surrogate arrangements. By using the spray-patterning method, a large number of cell-adhesive micro regions were formed. Neurons extended neurites along the edge of the cell-adhesive micro regions and form micro neuronal networks. In part of micro regions, some neurite was protruded from the region, and thus micro neuronal networks were connected with synapses. In these networks, a single neuron-induced network activity was observed. On the other hand, even in morphologically non-connected micro neuronal networks, synchronous oscillations between micro neuronal networks were observed. Our micro-patterning methods and results provide the possibility that synchronous activity is occurred between morphologically non-connected neuronal networks. This suggest that the humoral factor is also a important component for network-wide dynamics.

  11. Studies Gain Insight into Neuronal Polarity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ A typical matured nerve cell (or neuron) has one axon and multiple dendrites. It receives information at the dendrites and sending signals to other neurons via the axon. Although scientists have discovered that this axon-dendrite polarity is a cardinal feature of neuronal morphology essential for information flow, they are still in the dark about the cause of this polarization.

  12. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    David R. Grattan

    2016-04-01

    Full Text Available In this issue of Cell Reports, Stagkourakis et al. (2016 report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  13. Cognition and behavior in motor neuron disease

    NARCIS (Netherlands)

    Raaphorst, J.

    2015-01-01

    Motor neuron disease (MND) is a devastating neurodegenerative disorder characterized by progressive motor neuron loss, leading to weakness of the muscles of arms and legs, bulbar and respiratory muscles. Depending on the involvement of the lower and the upper motor neuron, amyotrophic lateral sclero

  14. Neuronal networks: enhanced feedback feeds forward.

    Science.gov (United States)

    Calabrese, Ronald L

    2012-09-25

    Modulatory projection neurons gate neuronal networks, such as those comprising motor central pattern generators; in turn, they receive feedback from the networks they gate. A recent study has shown that, in the crab stomatogastric ganglion, this feedback is also subject to modulation: the enhanced feedback feeds forward through the projection neurons to modify circuit output.

  15. Categorical apparatus of individual marketing

    Directory of Open Access Journals (Sweden)

    I.L. Reshetnikova

    2013-12-01

    Full Text Available The aim of the article. The aim of the article is to clarify the essence of individual marketing and its interconnection with relationship marketing, CRM, direct marketing and database marketing based on a study of the marketing genesis and the evolution of the process of individual communication between buyer and seller. We consider relationship marketing as the most general notion that involves individual marketing, CRM, direct marketing and database marketing. Relationship marketing is to be viewed as establishing long-term relationships between seller and buyer on mutually beneficial basis. The emergence of information technologies and their widespread use in business has a significant impact on relationship marketing and led to the concept of CRM. The results of the analysis. We consider CRM as business strategy which is based on information technologies and designed to provide long-term, mutually beneficial relationships with customers through client-oriented approach and the creation of high customer value to the product and company. CRM and CRM-systems that are designed to work with customers' databases and are operating with huge volumes of information for marketing purposes have contributed to the realization of the principles of individual marketing. Conceptual approaches to the definition of the concepts of «individual marketing» and CRM allow us to identify common and distinctive features as well as the interdependency between them. It is appropriate to talk about CRM as the concept which is broader than individual marketing. CRM focuses on relationships with customers, and the main objective of it is to establish long-term relationships for mutual benefit, while individual marketing needs to be supported by resources and technologies to create a specific product that is able to meet the particular individual needs of customers. It should be noted that the practical implementation of the principles of CRM is possible when using an

  16. Precision volume measurement system.

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  17. Automatic Detection, Segmentation and Classification of Retinal Horizontal Neurons in Large-scale 3D Confocal Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Mahmut [ORNL; Kerekes, Ryan A [ORNL; Gleason, Shaun Scott [ORNL; Martins, Rodrigo [St. Jude Children' s Research Hospital; Dyer, Michael [St. Jude Children' s Research Hospital

    2011-01-01

    Automatic analysis of neuronal structure from wide-field-of-view 3D image stacks of retinal neurons is essential for statistically characterizing neuronal abnormalities that may be causally related to neural malfunctions or may be early indicators for a variety of neuropathies. In this paper, we study classification of neuron fields in large-scale 3D confocal image stacks, a challenging neurobiological problem because of the low spatial resolution imagery and presence of intertwined dendrites from different neurons. We present a fully automated, four-step processing approach for neuron classification with respect to the morphological structure of their dendrites. In our approach, we first localize each individual soma in the image by using morphological operators and active contours. By using each soma position as a seed point, we automatically determine an appropriate threshold to segment dendrites of each neuron. We then use skeletonization and network analysis to generate the morphological structures of segmented dendrites, and shape-based features are extracted from network representations of each neuron to characterize the neuron. Based on qualitative results and quantitative comparisons, we show that we are able to automatically compute relevant features that clearly distinguish between normal and abnormal cases for postnatal day 6 (P6) horizontal neurons.

  18. Automatic detection, segmentation and characterization of retinal horizontal neurons in large-scale 3D confocal imagery

    Science.gov (United States)

    Karakaya, Mahmut; Kerekes, Ryan A.; Gleason, Shaun S.; Martins, Rodrigo A. P.; Dyer, Michael A.

    2011-03-01

    Automatic analysis of neuronal structure from wide-field-of-view 3D image stacks of retinal neurons is essential for statistically characterizing neuronal abnormalities that may be causally related to neural malfunctions or may be early indicators for a variety of neuropathies. In this paper, we study classification of neuron fields in large-scale 3D confocal image stacks, a challenging neurobiological problem because of the low spatial resolution imagery and presence of intertwined dendrites from different neurons. We present a fully automated, four-step processing approach for neuron classification with respect to the morphological structure of their dendrites. In our approach, we first localize each individual soma in the image by using morphological operators and active contours. By using each soma position as a seed point, we automatically determine an appropriate threshold to segment dendrites of each neuron. We then use skeletonization and network analysis to generate the morphological structures of segmented dendrites, and shape-based features are extracted from network representations of each neuron to characterize the neuron. Based on qualitative results and quantitative comparisons, we show that we are able to automatically compute relevant features that clearly distinguish between normal and abnormal cases for postnatal day 6 (P6) horizontal neurons.

  19. Site Environmental Report for 2007 Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Regina E; Baskin, David; Fox, Robert; Jelinski, John; Pauer, Ron; Thorson, Patrick; Wahl, Linnea; Wyrick, Steve

    2008-09-15

    The Site Environmental Report for 2007 is an integrated report on the environmental programs at Lawrence Berkeley National Laboratory and satisfies the requirements of DOE Order 231.1A, Environment, Safety, and Health Reporting. Volume II contains individual data results from surveillance and monitoring activities.

  20. Site Environmental Report for 2008, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Regina; Baskin, David; Fox, Robert; Jelinski, John; Pauer, Ron; Thorson, Patrick; Wahl, Linnea; Xu, Suying

    2009-09-21

    The Site Environmental Report for 2008 is an integrated report on the environmental programs at Lawrence Berkeley National Laboratory and satisfies the requirements of DOE order 231.1A, Environment, Safety, and Health Reporting. Volume II contains individual data results from surveillance and monitoring activities

  1. An aerator for brain slice experiments in individual cell culture plate wells.

    Science.gov (United States)

    Dorris, David M; Hauser, Caitlin A; Minnehan, Caitlin E; Meitzen, John

    2014-12-30

    Ex vivo acute living brain slices are a broadly employed and powerful experimental preparation. Most new technology regarding this tissue has involved the chamber used when performing electrophysiological experiments. Alternatively we instead focus on the creation of a simple, versatile aerator designed to allow maintenance and manipulation of acute brain slices and potentially other tissue in a multi-well cell culture plate. Here we present an easily manufactured aerator designed to fit into a 24-well cell culture plate. It features a nylon mesh and a single microhole to enable gas delivery without compromising tissue stability. The aerator is designed to be individually controlled, allowing both high throughput and single well experiments. The aerator was validated by testing material leach, dissolved oxygen delivery, brain slice viability and neuronal electrophysiology. Example experiments are also presented, including a test of whether β1-adrenergic receptor activation regulates gene expression in ex vivo dorsal striatum using qPCR. Key differences include enhanced control over gas delivery to individual wells containing brain slices, decreased necessary volume, a sample restraint to reduce movement artifacts, the potential to be sterilized, the avoidance of materials that absorb water and small biological molecules, minimal production costs, and increased experimental throughput. This new aerator is of high utility and will be useful for experiments involving brain slices and other potentially tissue samples in 24-well cell culture plates. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Coherence resonance in globally coupled neuronal networks with different neuron numbers

    Institute of Scientific and Technical Information of China (English)

    Ning Wei-Lian; Zhang Zheng-Zhen; Zeng Shang-You; Luo Xiao-Shu; Hu Jin-Lin; Zeng Shao-Wen; Qiu Yi; Wu Hui-Si

    2012-01-01

    Because a brain consists of tremendous neuronal networks with different neuron numbers ranging from tens to tens of thousands,we study the coherence resonance due to ion channel noises in globally coupled neuronal networks with different neuron numbers.We confirm that for all neuronal networks with different neuron numbers there exist the array enhanced coherence resonance and the optimal synaptic conductance to cause the maximal spiking coherence.Furthermoremore,the enhancement effects of coupling on spiking coherence and on optimal synaptic conductance are almost the same,regardless of the neuron numbers in the neuronal networks.Therefore for all the neuronal networks with different neuron numbers in the brain,relative weak synaptic conductance (0.1 mS/cm2) is sufficient to induce the maximal spiking coherence and the best sub-threshold signal encoding.

  3. The stochastic properties of input spike trains control neuronal arithmetic.

    Science.gov (United States)

    Bures, Zbynek

    2012-02-01

    In the nervous system, the representation of signals is based predominantly on the rate and timing of neuronal discharges. In most everyday tasks, the brain has to carry out a variety of mathematical operations on the discharge patterns. Recent findings show that even single neurons are capable of performing basic arithmetic on the sequences of spikes. However, the interaction of the two spike trains, and thus the resulting arithmetic operation may be influenced by the stochastic properties of the interacting spike trains. If we represent the individual discharges as events of a random point process, then an arithmetical operation is given by the interaction of two point processes. Employing a probabilistic model based on detection of coincidence of random events and complementary computer simulations, we show that the point process statistics control the arithmetical operation being performed and, particularly, that it is possible to switch from subtraction to division solely by changing the distribution of the inter-event intervals of the processes. Consequences of the model for evaluation of binaural information in the auditory brainstem are demonstrated. The results accentuate the importance of the stochastic properties of neuronal discharge patterns for information processing in the brain; further studies related to neuronal arithmetic should therefore consider the statistics of the interacting spike trains.

  4. Site Environmental Report for 1999 - Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, M

    2000-08-12

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The Site Environmental Report for 1999 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1999. The report is separated into two volumes. Volume I contains a general overview of the Laboratory, the status of environmental programs, and summary results from surveillance and monitoring activities. Each chapter in Volume I begins with an outline of the sections that follow, including any tables or figures found in the chapter. Readers should use section numbers (e.g., {section}1.5) as navigational tools to find topics of interest in either the printed or the electronic version of the report. Volume II contains the individual data results from monitoring programs.

  5. The validity and reliability of computed tomography orbital volume measurements.

    Science.gov (United States)

    Diaconu, Silviu C; Dreizin, David; Uluer, Mehmet; Mossop, Corey; Grant, Michael P; Nam, Arthur J

    2017-09-01

    Orbital volume calculations allow surgeons to design patient-specific implants to correct volume deficits. It is estimated that changes as small as 1 ml in orbital volume can lead to enophthalmos. Awareness of the limitations of orbital volume computed tomography (CT) measurements is critical to differentiate between true volume differences and measurement error. The aim of this study is to analyze the validity and reliability of CT orbital volume measurements. A total of 12 cadaver orbits were scanned using a standard CT maxillofacial protocol. Each orbit was dissected to isolate the extraocular muscles, fatty tissue, and globe. The empty bony orbital cavity was then filled with sculpting clay. The volumes of the muscle, fat, globe, and clay (i.e., bony orbital cavity) were then individually measured via water displacement. The CT-derived volumes, measured by manual segmentation, were compared to the direct measurements to determine validity. The difference between CT orbital volume measurements and physically measured volumes is not negligible. Globe volumes have the highest agreement with 95% of differences between -0.5 and 0.5 ml, bony volumes are more likely to be overestimated with 95% of differences between -1.8 and 2.6 ml, whereas extraocular muscle volumes have poor validity and should be interpreted with caution. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Towards Musical Individuation

    Directory of Open Access Journals (Sweden)

    Dong Min Kim

    2008-03-01

    Full Text Available In Jungian theory, heavily influenced by Zen Buddhism, the developmental stages of human life are symbolized as a circle that represents the wholeness, and the open ended process towards the wholeness is called Individuation. Within the circle there are two stages; the Morning and the Afternoon of Life, and the latter begins at the age of 35, an age at which individuation begins and one that I have reached and passed. Thus, it seemed to be a perfect time for me to begin my own journey towards individuation, especially musical individuation since music had always been such a central part of my life. The first step of individuation is to be aware of one’s individual, social, cultural unconscious forces that affect conscious thoughts and behavior. Thus, my musical individuation began with my attempts to be aware of the unconscious forces beneath my conscious thoughts and behaviors.

  7. Consciousness: individuated information in action

    Directory of Open Access Journals (Sweden)

    Jakub Adam Jonkisz

    2015-07-01

    Full Text Available Within theoretical and empirical enquiries, many different meanings associated with consciousness have appeared, leaving the term itself quite vague. This makes formulating an abstract and unifying version of the concept of consciousness – the main aim of this article –into an urgent theoretical imperative. It is argued that consciousness, characterized as dually accessible (cognized from the inside and the outside, hierarchically referential (semantically ordered, bodily determined (embedded in the working structures of an organism or conscious system and useful in action (pragmatically functional, is a graded rather than an all-or-none phenomenon. A gradational approach, however, despite its explanatory advantages, can lead to some counterintuitive consequences and theoretical problems. In most such conceptions consciousness is extended globally (attached to primitive organisms or artificial systems, but also locally (connected to certain lower-level neuronal and bodily processes. For example, according to information integration theory (as introduced recently by Tononi and Koch, even such simple artificial systems as photodiodes possess miniscule amounts of consciousness. The major challenge for this article, then, is to establish reasonable, empirically justified constraints on how extended the range of a graded consciousness could be. It is argued that conscious systems are limited globally by the ability to individuate information (where individuated information is understood as evolutionarily embedded, socially altered and private, whereas local limitations should be determined on the basis of a hypothesis about the action-oriented nature of the processes that select states of consciousness. Using these constraints, an abstract concept of consciousness is arrived at, hopefully contributing to a more unified state of play within consciousness studies itself.

  8. Consciousness: individuated information in action.

    Science.gov (United States)

    Jonkisz, Jakub

    2015-01-01

    Within theoretical and empirical enquiries, many different meanings associated with consciousness have appeared, leaving the term itself quite vague. This makes formulating an abstract and unifying version of the concept of consciousness - the main aim of this article -into an urgent theoretical imperative. It is argued that consciousness, characterized as dually accessible (cognized from the inside and the outside), hierarchically referential (semantically ordered), bodily determined (embedded in the working structures of an organism or conscious system), and useful in action (pragmatically functional), is a graded rather than an all-or-none phenomenon. A gradational approach, however, despite its explanatory advantages, can lead to some counterintuitive consequences and theoretical problems. In most such conceptions consciousness is extended globally (attached to primitive organisms or artificial systems), but also locally (connected to certain lower-level neuronal and bodily processes). For example, according to information integration theory (as introduced recently by Tononi and Koch, 2014), even such simple artificial systems as photodiodes possess miniscule amounts of consciousness. The major challenge for this article, then, is to establish reasonable, empirically justified constraints on how extended the range of a graded consciousness could be. It is argued that conscious systems are limited globally by the ability to individuate information (where individuated information is understood as evolutionarily embedded, socially altered, and private), whereas local limitations should be determined on the basis of a hypothesis about the action-oriented nature of the processes that select states of consciousness. Using these constraints, an abstract concept of consciousness is arrived at, hopefully contributing to a more unified state of play within consciousness studies itself.

  9. What we know currently about mirror neurons.

    Science.gov (United States)

    Kilner, J M; Lemon, R N

    2013-12-02

    Mirror neurons were discovered over twenty years ago in the ventral premotor region F5 of the macaque monkey. Since their discovery much has been written about these neurons, both in the scientific literature and in the popular press. They have been proposed to be the neuronal substrate underlying a vast array of different functions. Indeed so much has been written about mirror neurons that last year they were referred to, rightly or wrongly, as "The most hyped concept in neuroscience". Here we try to cut through some of this hyperbole and review what is currently known (and not known) about mirror neurons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The investigation of variable nernst equilibria on isolated neurons and coupled neurons forming discrete and continuous networks

    Science.gov (United States)

    Meier, Stephen R.

    Since the introduction of the Hodgkin-Huxley equations, used to describe the excitation of neurons, the Nernst equilibria for individual ion channels have assumed to be constant in time. Recent biological recordings call into question the validity of this assumption. Very little theoretical work has been done to address the issue of accounting for these non-static Nernst equilibria using the Hodgkin-Huxley formalism. This body of work incorporates non-static Nernst equilibria into the generalized Hodgkin-Huxley formalism by considering the first-order effects of the Nernst equation. It is further demonstrated that these effects are likely dominate in neurons with diameters much smaller than that of the squid giant axon and permeate important information processing regions of the brain such as the hippocampus. Particular results of interest include single-cell bursting due to the interplay of spatially separated neurons, pattern formation via spiral waves within a soliton-like regime, and quantifiable shifts in the multifractality of hippocampal neurons under the administration of various drugs at varying dosages. This work provides a new perspective on the variability of Nernst equilibria and demonstrates its utility in areas such as pharmacology and information processing.

  11. Degenerative alterations in noradrenergic neurons of the locus coeruleus in Alzheimer’s disease****

    Institute of Scientific and Technical Information of China (English)

    Lihua Liu; Saiping Luo; Leping Zeng; Weihong Wang; Liming Yuan; Xiaohong Jian

    2013-01-01

    Mice carrying mutant amyloid-β precursor protein and presenilin-1 genes (APP/PS1 double trans-genic mice) have frequently been used in studies of Alzheimer’s disease; however, such studies have focused mainly on hippocampal and cortical changes. The severity of Alzheimer’s disease is known to correlate with the amount of amyloid-βprotein deposition and the number of dead neurons in the locus coeruleus. In the present study, we assigned APP/PS1 double transgenic mice to two groups according to age: young mice (5–6 months old) and aged mice (16–17 months old). Age-matched wild-type mice were used as controls. Immunohistochemistry for tyrosine hydroxylase (a marker of catecholaminergic neurons in the locus coeruleus) revealed that APP/PS1 mice had 23%fewer cel s in the locus coeruleus compared with aged wild-type mice. APP/PS1 mice also had increased numbers of cel bodies of neurons positive for tyrosine hydroxylase, but fewer tyrosine hydroxylase-positive fibers, which were also short, thick and broken. Quantitative analysis using unbiased stereology showed a significant age-related increase in the mean volume of tyrosine hy-droxylase-positive neurons in aged APP/PS1 mice compared with young APP/PS1 mice. Moreover, the mean volume of tyrosine hydroxylase-positive neurons was positively correlated with the total volume of the locus coeruleus. These findings indicate that noradrenergic neurons and fibers in the locus coeruleus are predisposed to degenerative alterations in APP/PS1 double transgenic mice.

  12. Single-neuron diversity generated by Protocadherin-β cluster in mouse central and peripheral nervous systems

    Directory of Open Access Journals (Sweden)

    Keizo eHirano

    2012-08-01

    Full Text Available The generation of complex neural circuits depends on the correct wiring of neurons with diverse individual characteristics. To understand the complexity of the nervous system, the molecular mechanisms for specifying the identity and diversity of individual neurons must be elucidated. The clustered protocadherins (Pcdh in mammals consist of approximately 50 Pcdh genes (Pcdh-α, Pcdh-β, and Pcdh-γ that encode cadherin-family cell surface adhesion proteins. Individual neurons express a random combination of Pcdh-α and Pcdh-γ, whereas the expression patterns for the Pcdh-β genes, 22 one-exon genes in mouse, are not fully understood. Here we show that the Pcdh-β genes are expressed in a 3’-polyadenylated form in mouse brain. In situ hybridization using a pan-Pcdh-β probe against a conserved Pcdh-β sequence showed widespread labeling in the brain, with prominent signals in the olfactory bulb, hippocampus, and cerebellum. In situ hybridization with specific probes for individual Pcdh-β genes showed their expression to be scattered in Purkinje cells from P10 to P150. The scattered expression patterns were confirmed by performing a newly developed single-cell 3’-RACE analysis of Purkinje cells, which clearly demonstrated that the Pcdh-β genes are expressed monoallelically and combinatorially in individual Purkinje cells. Scattered expression patterns of individual Pcdh-β genes were also observed in pyramidal neurons in the hippocampus and cerebral cortex, neurons in the trigeminal and dorsal root ganglion, GABAergic interneurons, and cholinergic neurons. Our results extend previous observations of diversity at the single-neuron level generated by Pcdh expression and suggest that the Pcdh-β cluster genes contribute to specifying the identity and diversity of individual neurons.

  13. Inflammation without neuronal death triggers striatal neurogenesis comparable to stroke.

    Science.gov (United States)

    Chapman, Katie Z; Ge, Ruimin; Monni, Emanuela; Tatarishvili, Jemal; Ahlenius, Henrik; Arvidsson, Andreas; Ekdahl, Christine T; Lindvall, Olle; Kokaia, Zaal

    2015-11-01

    Ischemic stroke triggers neurogenesis from neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) and migration of newly formed neuroblasts toward the damaged striatum where they differentiate to mature neurons. Whether it is the injury per se or the associated inflammation that gives rise to this endogenous neurogenic response is unknown. Here we showed that inflammation without corresponding neuronal loss caused by intrastriatal lipopolysaccharide (LPS) injection leads to striatal neurogenesis in rats comparable to that after a 30 min middle cerebral artery occlusion, as characterized by striatal DCX+ neuroblast recruitment and mature NeuN+/BrdU+ neuron formation. Using global gene expression analysis, changes in several factors that could potentially regulate striatal neurogenesis were identified in microglia sorted from SVZ and striatum of LPS-injected and stroke-subjected rats. Among the upregulated factors, one chemokine, CXCL13, was found to promote neuroblast migration from neonatal mouse SVZ explants in vitro. However, neuroblast migration to the striatum was not affected in constitutive CXCL13 receptor CXCR5(-/-) mice subjected to stroke. Infarct volume and pro-inflammatory M1 microglia/macrophage density were increased in CXCR5(-/-) mice, suggesting that microglia-derived CXCL13, acting through CXCR5, might be involved in neuroprotection following stroke. Our findings raise the possibility that the inflammation accompanying an ischemic insult is the major inducer of striatal neurogenesis after stroke.

  14. Variable volume combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  15. Stiff substrates enhance cultured neuronal network activity.

    Science.gov (United States)

    Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng

    2014-08-28

    The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca(2+) channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca(2+) oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering.

  16. Control of Neuronal Network in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Rahul Badhwar

    Full Text Available Caenorhabditis elegans, a soil dwelling nematode, is evolutionarily rudimentary and contains only ∼ 300 neurons which are connected to each other via chemical synapses and gap junctions. This structural connectivity can be perceived as nodes and edges of a graph. Controlling complex networked systems (such as nervous system has been an area of excitement for mankind. Various methods have been developed to identify specific brain regions, which when controlled by external input can lead to achievement of control over the state of the system. But in case of neuronal connectivity network the properties of neurons identified as driver nodes is of much importance because nervous system can produce a variety of states (behaviour of the animal. Hence to gain insight on the type of control achieved in nervous system we implemented the notion of structural control from graph theory to C. elegans neuronal network. We identified 'driver neurons' which can provide full control over the network. We studied phenotypic properties of these neurons which are referred to as 'phenoframe' as well as the 'genoframe' which represents their genetic correlates. We find that the driver neurons are primarily motor neurons located in the ventral nerve cord and contribute to biological reproduction of the animal. Identification of driver neurons and its characterization adds a new dimension in controllability of C. elegans neuronal network. This study suggests the importance of driver neurons and their utility to control the behaviour of the organism.

  17. Equity Price-Volume Relationship On The Russian Stock Exchange

    OpenAIRE

    Tov Assogbavi; Jennifer Schell; Siméon Fagnissè

    2011-01-01

    This paper analyses the stock price?volume relationship of individual equities in the Russian Stock Exchange. Using a vector auto-regression analysis on weekly data, we present a strong evidence of bi-directional relationship between volume and price change. This finding confirms the evidence reported by studies on many developed markets. However, the weak support for the positive price-volume relationship may imply that the differences in institutions and information flows in the Russian Sto...

  18. Neuronal autophagy in cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; Jin-Hua Gu; Zheng-Hong Qin

    2012-01-01

    Autophagy has evolved as a conserved process for the bulk degradation and recycling of cytosolic components,such as long-lived proteins and organelles.In neurons,autophagy is important for homeostasis and protein quality control and is maintained at relatively low levels under normal conditions,while it is upregulated in response to pathophysiological conditions,such as cerebral ischemic injury.However,the role of autophagy is more complex.It depends on age or brain maturity,region,severity of insult,and the stage of ischemia.Whether autophagy plays a beneficial or a detrimental role in cerebral ischemia depends on various pathological conditions.In this review,we elucidate the role of neuronal autophagy in cerebral ischemia.

  19. Novel model of neuronal bioenergetics

    DEFF Research Database (Denmark)

    Bak, Lasse Kristoffer; Obel, Linea Lykke Frimodt; Walls, Anne B

    2012-01-01

    matrix thus activating the tricarboxylic acid cycle dehydrogenases. This will lead to a lower activity of the MASH (malate-aspartate shuttle), which in turn will result in anaerobic glycolysis and lactate production rather than lactate utilization. In the present work, we have investigated the effect......We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N......-methyl-d-aspartate)-induced synaptic activity and that lactate alone is not able to support neurotransmitter glutamate homoeostasis. Subsequently, a model was proposed to explain these results at the cellular level. In brief, the intermittent rises in intracellular Ca2+ during activation cause influx of Ca2+ into the mitochondrial...

  20. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  1. A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Richard J Poole

    2011-06-01

    Full Text Available One of the central goals of developmental neurobiology is to describe and understand the multi-tiered molecular events that control the progression of a fertilized egg to a terminally differentiated neuron. In the nematode Caenorhabditis elegans, the progression from egg to terminally differentiated neuron has been visually traced by lineage analysis. For example, the two gustatory neurons ASEL and ASER, a bilaterally symmetric neuron pair that is functionally lateralized, are generated from a fertilized egg through an invariant sequence of 11 cellular cleavages that occur stereotypically along specific cleavage planes. Molecular events that occur along this developmental pathway are only superficially understood. We take here an unbiased, genome-wide approach to identify genes that may act at any stage to ensure the correct differentiation of ASEL. Screening a genome-wide RNAi library that knocks-down 18,179 genes (94% of the genome, we identified 245 genes that affect the development of the ASEL neuron, such that the neuron is either not generated, its fate is converted to that of another cell, or cells from other lineage branches now adopt ASEL fate. We analyze in detail two factors that we identify from this screen: (1 the proneural gene hlh-14, which we find to be bilaterally expressed in the ASEL/R lineages despite their asymmetric lineage origins and which we find is required to generate neurons from several lineage branches including the ASE neurons, and (2 the COMPASS histone methyltransferase complex, which we find to be a critical embryonic