WorldWideScience

Sample records for increased hepatic glucose

  1. Pulsatile hyperglucagonemia fails to increase hepatic glucose production in normal man

    International Nuclear Information System (INIS)

    Paolisso, G.; Scheen, A.J.; Luyckx, A.S.; Lefebvre, P.J.

    1987-01-01

    To study the metabolic effects of pulsatile glucagon administration, six male volunteers were submitted to a 260-min glucose-controlled glucose intravenous infusion using the Biostator. The endogenous secretion of the pancreatic hormones was inhibited by somatostatin, basal insulin secretion was replaced by a continuous insulin infusion, and glucagon was infused intravenously in two conditions at random: either continuously or intermittently. Blood glucose levels and glucose infusion rate were monitored continuously by the Biostator, and classical methodology using a D-[3- 3 H]glucose infusion allowed the authors to study glucose turnover. While basal plasma glucagon levels were similar in both conditions, they plateaued at 189 +/- 38 pg ml -1 during continuous infusion and varied between 95 and 501 pg x ml -1 during pulsatile infusion. When compared with continuous administration, pulsatile glucagon infusion 1) initially induced a similar increase in endogenous (hepatic) glucose production and blood glucose, 2) did not prevent the so-called evanescent effect of glucagon on blood glucose, and 3) after 3 h tended to reduce rather than increase hepatic glucose production. In conclusion, in vivo pulsatile hyperglucanemia in normal man fails to increase hepatic glucose production

  2. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Nicolai J. Wewer Albrechtsen

    2017-11-01

    Full Text Available Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among which proglucagon 1-61 (PG 1-61 appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in vivo. We conclude that glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion.

  3. Hepatic glucose utilization in hepatic steatosis and obesity

    OpenAIRE

    Keramida, Georgia; Hunter, James; Peters, Adrien?Michael

    2016-01-01

    Hepatic steatosis is associated with obesity and insulin resistance. Whether hepatic glucose utilization rate (glucose phosphorylation rate; MRglu) is increased in steatosis and/or obesity is uncertain. Our aim was to determine the separate relationships of steatosis and obesity with MRglu. Sixty patients referred for routine PET/CT had dynamic PET imaging over the abdomen for 30?min post-injection of F-18-fluorodeoxyglucose (FDG), followed by Patlak?Rutland graphical analysis of the liver us...

  4. Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake.

    Science.gov (United States)

    Karim, Sumera; Liaskou, Evaggelia; Fear, Janine; Garg, Abhilok; Reynolds, Gary; Claridge, Lee; Adams, David H; Newsome, Philip N; Lalor, Patricia F

    2014-12-15

    Insulin resistance is common in patients with chronic liver disease (CLD). Serum levels of soluble vascular adhesion protein-1 (VAP-1) are also increased in these patients. The amine oxidase activity of VAP-1 stimulates glucose uptake via translocation of transporters to the cell membrane in adipocytes and smooth muscle cells. We aimed to document human hepatocellular expression of glucose transporters (GLUTs) and to determine if VAP-1 activity influences receptor expression and hepatic glucose uptake. Quantitative PCR and immunocytochemistry were used to study human liver tissue and cultured cells. We also used tissue slices from humans and VAP-1-deficient mice to assay glucose uptake and measure hepatocellular responses to stimulation. We report upregulation of GLUT1, -3, -5, -6, -7, -8, -9, -10, -11, -12, and -13 in CLD. VAP-1 expression and enzyme activity increased in disease, and provision of substrate to hepatic VAP-1 drives hepatic glucose uptake. This effect was sensitive to inhibition of VAP-1 and could be recapitulated by H2O2. VAP-1 activity also altered expression and subcellular localization of GLUT2, -4, -9, -10, and -13. Therefore, we show, for the first time, alterations in hepatocellular expression of glucose and fructose transporters in CLD and provide evidence that the semicarbazide-sensitive amine oxidase activity of VAP-1 modifies hepatic glucose homeostasis and may contribute to patterns of GLUT expression in chronic disease. Copyright © 2014 the American Physiological Society.

  5. Histidine Augments the Suppression of Hepatic Glucose Production by Central Insulin Action

    OpenAIRE

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime

    2013-01-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA le...

  6. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    International Nuclear Information System (INIS)

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S.

    1990-01-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with [2-3H]glucose and HGP with [6-3H]glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). [2-3H]- minus [6-3H]glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP

  7. A variant in the G6PC2/ABCB11 locus is associated with increased fasting plasma glucose, increased basal hepatic glucose production and increased insulin release after oral and intravenous glucose loads

    DEFF Research Database (Denmark)

    Rose, C S; Grarup, N; Krarup, N T

    2009-01-01

    An association between elevated fasting plasma glucose and the common rs560887 G allele in the G6PC2/ABCB11 locus has been reported. In Danes we aimed to examine rs560887 in relation to plasma glucose and serum insulin responses following oral and i.v. glucose loads and in relation to hepatic...... glucose production during a hyperinsulinaemic-euglycaemic clamp. Furthermore, we examined rs560887 for association with impaired fasting glycaemia (IFG), impaired glucose tolerance (IGT), type 2 diabetes and components of the metabolic syndrome....

  8. Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production

    OpenAIRE

    Lam, Tony K.T.

    2007-01-01

    Brain glucose-sensing mechanisms are implicated in the regulation of feeding behavior and hypoglycemic-induced hormonal counter-regulation. This commentary discusses recent findings indicating that the brain senses glucose to regulate both hepatic glucose and lipid production.

  9. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis.

    Science.gov (United States)

    Kim, Hyunbae; Zheng, Ze; Walker, Paul D; Kapatos, Gregory; Zhang, Kezhong

    2017-07-15

    Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. Copyright © 2017 American Society for Microbiology.

  10. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling.

    Science.gov (United States)

    Softic, Samir; Gupta, Manoj K; Wang, Guo-Xiao; Fujisaka, Shiho; O'Neill, Brian T; Rao, Tata Nageswara; Willoughby, Jennifer; Harbison, Carole; Fitzgerald, Kevin; Ilkayeva, Olga; Newgard, Christopher B; Cohen, David E; Kahn, C Ronald

    2017-11-01

    Overconsumption of high-fat diet (HFD) and sugar-sweetened beverages are risk factors for developing obesity, insulin resistance, and fatty liver disease. Here we have dissected mechanisms underlying this association using mice fed either chow or HFD with or without fructose- or glucose-supplemented water. In chow-fed mice, there was no major physiological difference between fructose and glucose supplementation. On the other hand, mice on HFD supplemented with fructose developed more pronounced obesity, glucose intolerance, and hepatomegaly as compared to glucose-supplemented HFD mice, despite similar caloric intake. Fructose and glucose supplementation also had distinct effects on expression of the lipogenic transcription factors ChREBP and SREBP1c. While both sugars increased ChREBP-β, fructose supplementation uniquely increased SREBP1c and downstream fatty acid synthesis genes, resulting in reduced liver insulin signaling. In contrast, glucose enhanced total ChREBP expression and triglyceride synthesis but was associated with improved hepatic insulin signaling. Metabolomic and RNA sequence analysis confirmed dichotomous effects of fructose and glucose supplementation on liver metabolism in spite of inducing similar hepatic lipid accumulation. Ketohexokinase, the first enzyme of fructose metabolism, was increased in fructose-fed mice and in obese humans with steatohepatitis. Knockdown of ketohexokinase in liver improved hepatic steatosis and glucose tolerance in fructose-supplemented mice. Thus, fructose is a component of dietary sugar that is distinctively associated with poor metabolic outcomes, whereas increased glucose intake may be protective.

  11. MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity.

    Science.gov (United States)

    Vaitheesvaran, B; LeRoith, D; Kurland, I J

    2010-10-01

    Recent work has shown that there can be significant differences when glucose disposal is assessed for high-fat induced insulin resistance by static clamp methods vs dynamic assessment during a stable isotope i.p. glucose tolerance test. MKR mice, though lean, have severe insulin resistance and decreased muscle fatty acid oxidation. Our goal was to assess dynamic vs static glucose disposal in MKR mice, and to correlate glucose disposal and muscle-adipose-liver flux interactions with metabolic flexibility (indirect calorimetry) and muscle characteristics. Stable isotope flux phenotyping was performed using [6,6-(2)H(2)]glucose, [U-(13)C(6)]glucose and [2-(13)C]glycerol. Muscle triacylglycerol (TAG) and diacylglycerol (DAG) content was assessed by thin layer chromatography, and histological determination of fibre type and cytochrome c activity performed. Metabolic flexibility was assessed by indirect calorimetry. Indirect calorimetry showed that MKR mice used more glucose than FVB/N mice during fasting (respiratory exchange ratio [RER] 0.88 vs 0.77, respectively). Compared with FVB/N mice, MKR mice had faster dynamic glucose disposal, despite increased whole-muscle DAG and TAG, and similar hepatic glucose production with higher fasting insulin and unchanged basal glucose. Fed MKR muscle had more glycogen, and increased levels of GLUT1 and GLUT4 than FVB/N muscle. Histology indicated that MKR soleus had mildly decreased cytochrome c activity overall and more type II (glycolytic) fibres compared with that in FVB/N mice. MKR muscle adapts to using glucose, with more type II fibres present in red muscle. Fasting RER is elevated and glucose disposal during an i.p. glucose tolerance test is accelerated despite increased muscle DAG and TAG. Metabolic inflexibility may result from the compensatory use of fuel that can be best utilised for energy requirements; static vs dynamic glucose disposal assessments may measure complementary aspects of metabolic flexibility and insulin

  12. Hepatic Glucose Production Increases in Response to Metformin Treatment in the Glycogen-depleted State

    DEFF Research Database (Denmark)

    Christensen, Mette Marie Hougaard; Højlund, Kurt; Hother-Nielsen, Ole

    with two reduced-function alleles) were fasted for 42 h twice. In one of the periods, before the fasting, the volunteers were titrated to steady-state with 1 g metformin twice daily for seven days. Parameters of whole-body glucose metabolism were assessed using [3-3^H] glucose, indirect calorimetry......Metformin is believed to reduce glucose levels primarily by inhibiting hepatic glucose production, but at the same time do not cause hypoglycemia. Recent data indicate that metformin antagonizes the major glucose counterregulatory hormone, glucagon suggesting that other mechanisms protect against...... hypoglycemia. Here, we examined the effect of metformin on whole-body glucose metabolism after a glycogen-depleting 40 h fast and the role of reduced-function alleles in OCT1. In a randomized cross-over trial, 34 healthy volunteers with known OCT1 genotypes (12 with two wild-type alleles, 13 with one and 9...

  13. Evidence That in Uncontrolled Diabetes, Hyperglucagonemia Is Required for Ketosis but Not for Increased Hepatic Glucose Production or Hyperglycemia.

    Science.gov (United States)

    Meek, Thomas H; Dorfman, Mauricio D; Matsen, Miles E; Fischer, Jonathan D; Cubelo, Alexis; Kumar, Monica R; Taborsky, Gerald J; Morton, Gregory J

    2015-07-01

    Several lines of evidence implicate excess glucagon secretion in the elevated rates of hepatic glucose production (HGP), hyperglycemia, and ketosis characteristic of uncontrolled insulin-deficient diabetes (uDM), but whether hyperglucagonemia is required for hyperglycemia in this setting is unknown. To address this question, adult male Wistar rats received either streptozotocin (STZ) to induce uDM (STZ-DM) or vehicle and remained nondiabetic. Four days later, animals received daily subcutaneous injections of either the synthetic GLP-1 receptor agonist liraglutide in a dose-escalating regimen to reverse hyperglucagonemia or its vehicle for 10 days. As expected, plasma glucagon levels were elevated in STZ-DM rats, and although liraglutide treatment lowered glucagon levels to those of nondiabetic controls, it failed to attenuate diabetic hyperglycemia, elevated rates of glucose appearance (Ra), or increased hepatic gluconeogenic gene expression. In contrast, it markedly reduced levels of both plasma ketone bodies and hepatic expression of the rate-limiting enzyme involved in ketone body production. To independently confirm this finding, in a separate study, treatment of STZ-DM rats with a glucagon-neutralizing antibody was sufficient to potently lower plasma ketone bodies but failed to normalize elevated levels of either blood glucose or Ra. These data suggest that in rats with uDM, hyperglucagonemia is required for ketosis but not for increased HGP or hyperglycemia. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Histidine augments the suppression of hepatic glucose production by central insulin action.

    Science.gov (United States)

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-Ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2013-07-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA levels and augmented HGP suppression by insulin. This suppression of hepatic gluconeogenesis by histidine was abolished by hepatic STAT3 deficiency or hepatic Kupffer cell depletion. Inhibition of HGP by histidine was also blocked by ICV administration of a histamine H1 receptor antagonist. Therefore, histidine activates hepatic STAT3 and suppresses HGP via central histamine action. Hepatic STAT3 phosphorylation after histidine ICV administration was attenuated in histamine H1 receptor knockout (Hrh1KO) mice but not in neuron-specific insulin receptor knockout (NIRKO) mice. Conversely, hepatic STAT3 phosphorylation after insulin ICV administration was attenuated in NIRKO but not in Hrh1KO mice. These findings suggest that central histidine action is independent of central insulin action, while both have additive effects on HGP suppression. Our results indicate that central histidine/histamine-mediated suppression of HGP is a potential target for the treatment of type 2 diabetes.

  15. Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism

    DEFF Research Database (Denmark)

    Perry, Rachel J; Borders, Candace B; Cline, Gary W

    2016-01-01

    /tandem-mass spectrometry (LC-MS/MS) method to directly assess pyruvate cycling relative to mitochondrial pyruvate metabolism (VPyr-Cyc/VMito) in vivo using [3-(13)C]lactate as a tracer. Using this approach, VPyr-Cyc/VMito was only 6% in overnight fasted rats. In contrast, when propionate was infused simultaneously...... at doses previously used as a tracer, it increased VPyr-Cyc/VMito by 20-30-fold, increased hepatic TCA metabolite concentrations 2-3-fold, and increased endogenous glucose production rates by 20-100%. The physiologic stimuli, glucagon and epinephrine, both increased hepatic glucose production, but only...... tracer to assess hepatic glycolytic, gluconeogenic, and mitochondrial metabolism in vivo....

  16. The role of hepatic mitochondria in the regulation of glucose metabolism in BHE rats

    International Nuclear Information System (INIS)

    Kim, M.J.C.

    1988-01-01

    The interacting effects of dietary fat source and thyroxine treatment on the hepatic mitochondrial function and glucose metabolism were studied. In the first study, three different sources of dietary fatty acids and thyroxine treatment were used to investigate the hepatic mitochondrial thermotropic behavior in two strains of rat. The NIDDM BHE and Sprague-Dawley rats were used. Feeding coconut oil increased serum T 4 levels and T 4 treatment increased serum T 3 levels in the BHE rats. In the mitochondria from BHE rats fed coconut oil and treated with T 4 , the transition temperature disappeared due to a decoupling of succinate supported respiration. This was not observed in the Sprague-Dawley rats. In the second study, two different sources of dietary fat and T 4 treatment were used to investigate hepatic mitochondrial function. Coconut oil feeding increased Ca ++ Mg ++ ATPase and Mg ++ ATPase. T 4 treatment had potentiated this effect. T 4 increased the malate-aspartate shuttle and α-glycerophosphate shuttle activities. In the third study, the glucose turnover rate from D-[ 14 C-U]/[6- 3 H]-glucose and gluconeogeneis from L-[ 14 C-U]-alanine was examined. Dietary fat or T 4 did not affect the glucose mass. T 4 increased the irreversible fractional glucose turnover rate

  17. Free fatty acids increase hepatic glycogen content in obese males

    NARCIS (Netherlands)

    Allick, G.; Sprangers, F.; Weverling, G. J.; Ackermans, M. T.; Meijer, A. J.; Romijn, J. A.; Endert, E.; Bisschop, P. H.; Sauerwein, H. P.

    2004-01-01

    Obesity is associated with increased hepatic glycogen content. In vivo and in vitro data suggest that plasma free fatty acids (FFA) may cause this increase. In this study we investigated the effect of physiological plasma FFA levels on hepatic glycogen metabolism by studying intrahepatic glucose

  18. MicroRNA-451 Negatively Regulates Hepatic Glucose Production and Glucose Homeostasis by Targeting Glycerol Kinase-Mediated Gluconeogenesis.

    Science.gov (United States)

    Zhuo, Shu; Yang, Mengmei; Zhao, Yanan; Chen, Xiaofang; Zhang, Feifei; Li, Na; Yao, Pengle; Zhu, Tengfei; Mei, Hong; Wang, Shanshan; Li, Yu; Chen, Shiting; Le, Yingying

    2016-11-01

    MicroRNAs (miRNAs) are a new class of regulatory molecules implicated in type 2 diabetes, which is characterized by insulin resistance and hepatic glucose overproduction. We show that miRNA-451 (miR-451) is elevated in the liver tissues of dietary and genetic mouse models of diabetes. Through an adenovirus-mediated gain- and loss-of-function study, we found that miR-451 negatively regulates hepatic gluconeogenesis and blood glucose levels in normal mice and identified glycerol kinase (Gyk) as a direct target of miR-451. We demonstrate that miR-451 and Gyk regulate hepatic glucose production, the glycerol gluconeogenesis axis, and the AKT-FOXO1-PEPCK/G6Pase pathway in an opposite manner; Gyk could reverse the effect of miR-451 on hepatic gluconeogenesis and AKT-FOXO1-PEPCK/G6Pase pathway. Moreover, overexpression of miR-451 or knockdown of Gyk in diabetic mice significantly inhibited hepatic gluconeogenesis, alleviated hyperglycemia, and improved glucose tolerance. Further studies showed that miR-451 is upregulated by glucose and insulin in hepatocytes; the elevation of hepatic miR-451 in diabetic mice may contribute to inhibiting Gyk expression. This study provides the first evidence that miR-451 and Gyk regulate the AKT-FOXO1-PEPCK/G6Pase pathway and play critical roles in hepatic gluconeogenesis and glucose homeostasis and identifies miR-451 and Gyk as potential therapeutic targets against hyperglycemia in diabetes. © 2016 by the American Diabetes Association.

  19. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs

    Science.gov (United States)

    Ramnanan, Christopher J.; Saraswathi, Viswanathan; Smith, Marta S.; Donahue, E. Patrick; Farmer, Ben; Farmer, Tiffany D.; Neal, Doss; Williams, Philip E.; Lautz, Margaret; Mari, Andrea; Cherrington, Alan D.; Edgerton, Dale S.

    2011-01-01

    In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP. PMID:21865644

  20. Genetic ablation or chemical inhibition of phosphatidylcholine transfer protein attenuates diet-induced hepatic glucose production.

    Science.gov (United States)

    Shishova, Ekaterina Y; Stoll, Janis M; Ersoy, Baran A; Shrestha, Sudeep; Scapa, Erez F; Li, Yingxia; Niepel, Michele W; Su, Ya; Jelicks, Linda A; Stahl, Gregory L; Glicksman, Marcie A; Gutierrez-Juarez, Roger; Cuny, Gregory D; Cohen, David E

    2011-08-01

    Phosphatidylcholine transfer protein (PC-TP, synonym StARD2) is a highly specific intracellular lipid binding protein that is enriched in liver. Coding region polymorphisms in both humans and mice appear to confer protection against measures of insulin resistance. The current study was designed to test the hypotheses that Pctp-/- mice are protected against diet-induced increases in hepatic glucose production and that small molecule inhibition of PC-TP recapitulates this phenotype. Pctp-/- and wildtype mice were subjected to high-fat feeding and rates of hepatic glucose production and glucose clearance were quantified by hyperinsulinemic euglycemic clamp studies and pyruvate tolerance tests. These studies revealed that high-fat diet-induced increases in hepatic glucose production were markedly attenuated in Pctp-/- mice. Small molecule inhibitors of PC-TP were synthesized and their potencies, as well as mechanism of inhibition, were characterized in vitro. An optimized inhibitor was administered to high-fat-fed mice and used to explore effects on insulin signaling in cell culture systems. Small molecule inhibitors bound PC-TP, displaced phosphatidylcholines from the lipid binding site, and increased the thermal stability of the protein. Administration of the optimized inhibitor to wildtype mice attenuated hepatic glucose production associated with high-fat feeding, but had no activity in Pctp-/- mice. Indicative of a mechanism for reducing glucose intolerance that is distinct from commonly utilized insulin-sensitizing agents, the inhibitor promoted insulin-independent phosphorylation of key insulin signaling molecules. These findings suggest PC-TP inhibition as a novel therapeutic strategy in the management of hepatic insulin resistance. Copyright © 2011 American Association for the Study of Liver Diseases.

  1. Hepatic glucose-6-phosphatase-α deficiency leads to metabolic reprogramming in glycogen storage disease type Ia.

    Science.gov (United States)

    Cho, Jun-Ho; Kim, Goo-Young; Mansfield, Brian C; Chou, Janice Y

    2018-04-15

    Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), a key enzyme in endogenous glucose production. This autosomal recessive disorder is characterized by impaired glucose homeostasis and long-term complications of hepatocellular adenoma/carcinoma (HCA/HCC). We have shown that hepatic G6Pase-α deficiency-mediated steatosis leads to defective autophagy that is frequently associated with carcinogenesis. We now show that hepatic G6Pase-α deficiency also leads to enhancement of hepatic glycolysis and hexose monophosphate shunt (HMS) that can contribute to hepatocarcinogenesis. The enhanced hepatic glycolysis is reflected by increased lactate accumulation, increased expression of many glycolytic enzymes, and elevated expression of c-Myc that stimulates glycolysis. The increased HMS is reflected by increased glucose-6-phosphate dehydrogenase activity and elevated production of NADPH and the reduced glutathione. We have previously shown that restoration of hepatic G6Pase-α expression in G6Pase-α-deficient liver corrects metabolic abnormalities, normalizes autophagy, and prevents HCA/HCC development in GSD-Ia. We now show that restoration of hepatic G6Pase-α expression normalizes both glycolysis and HMS in GSD-Ia. Moreover, the HCA/HCC lesions in L-G6pc-/- mice exhibit elevated levels of hexokinase 2 (HK2) and the M2 isoform of pyruvate kinase (PKM2) which play an important role in aerobic glycolysis and cancer cell proliferation. Taken together, hepatic G6Pase-α deficiency causes metabolic reprogramming, leading to enhanced glycolysis and elevated HMS that along with impaired autophagy can contribute to HCA/HCC development in GSD-Ia. Published by Elsevier Inc.

  2. Combined functional CT/FDG-PET: demonstrates reduced hepatic phosphorylation of glucose in advanced colorectal cancer

    International Nuclear Information System (INIS)

    Miles, K.A.; Keith, C.J.; Griffiths, M.R.; Fuentes, M.; Bunce, I.

    2002-01-01

    Full text: This study describes a technique to quantify hepatic glucose phosphorylation using combined data from functional CT and FDG-PET and assesses the differences in phosphorylation between patients with either early or advanced colorectal cancer. Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Patients with PET evidence of extrahepatic tumour were considered to have advanced disease. The net influx constant (Ki) for FDG was determined from the liver SUV. CT measurements of hepatic perfusion were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). Hepatic glucose phosphorylation can be determined by combining functional CT measurements of perfusion with PET measurements of FDG and is significantly reduced in patients with more advanced malignancy. Reduced hepatic glucose phosphorylation may be an important mechanism in the development of cancer cachexia. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  3. Combined functional CT/FDG-PET: demonstrates reduced hepatic phosphorylation of glucose in advanced colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Miles, K A [Southernex Imaging Group, QLD (Australia); Queensland University of Technology, QLD (Australia); Keith, C J [Southernex Imaging Group, QLD (Australia); Wesley Research Institute, QLD (Australia); Griffiths, M R [Queensland University of Technology, QLD (Australia); Fuentes, M [Southernex Imaging Group, QLD (Australia); Bunce, I [Wesley Research Institute, QLD (Australia)

    2002-07-01

    Full text: This study describes a technique to quantify hepatic glucose phosphorylation using combined data from functional CT and FDG-PET and assesses the differences in phosphorylation between patients with either early or advanced colorectal cancer. Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Patients with PET evidence of extrahepatic tumour were considered to have advanced disease. The net influx constant (Ki) for FDG was determined from the liver SUV. CT measurements of hepatic perfusion were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). Hepatic glucose phosphorylation can be determined by combining functional CT measurements of perfusion with PET measurements of FDG and is significantly reduced in patients with more advanced malignancy. Reduced hepatic glucose phosphorylation may be an important mechanism in the development of cancer cachexia. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc.

  4. Thyroid stimulating hormone increases hepatic gluconeogenesis via CRTC2.

    Science.gov (United States)

    Li, Yujie; Wang, Laicheng; Zhou, Lingyan; Song, Yongfeng; Ma, Shizhan; Yu, Chunxiao; Zhao, Jiajun; Xu, Chao; Gao, Ling

    2017-05-05

    Epidemiological evidence indicates that thyroid stimulating hormone (TSH) is positively correlated with abnormal glucose levels. We previously reported that TSH has direct effects on gluconeogenesis. However, the underlying molecular mechanism remains unclear. In this study, we observed increased fasting blood glucose and glucose production in a mouse model of subclinical hypothyroidism (only elevated TSH levels). TSH acts via the classical cAMP/PKA pathway and CRTC2 regulates glucose homeostasis. Thus, we explore whether CRTC2 is involved in the process of TSH-induced gluconeogenesis. We show that TSH increases CRTC2 expression via the TSHR/cAMP/PKA pathway, which in turn upregulates hepatic gluconeogenic genes. Furthermore, TSH stimulates CRTC2 dephosphorylation and upregulates p-CREB (Ser133) in HepG2 cells. Silencing CRTC2 and CREB decreases the effect of TSH on PEPCK-luciferase, the rate-limiting enzyme of gluconeogenesis. Finally, the deletion of TSHR reduces the levels of the CRTC2:CREB complex in mouse livers. This study demonstrates that TSH activates CRTC2 via the TSHR/cAMP/PKA pathway, leading to the formation of a CRTC2:CREB complex and increases hepatic gluconeogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Murine remote preconditioning increases glucose uptake and suppresses gluconeogenesis in hepatocytes via a brain-liver neurocircuit, leading to counteracting glucose intolerance.

    Science.gov (United States)

    Kurabayashi, Atsushi; Tanaka, Chiharu; Matsumoto, Waka; Naganuma, Seiji; Furihata, Mutsuo; Inoue, Keiji; Kakinuma, Yoshihiko

    2018-05-01

    Our previous study revealed that cyclic hindlimb ischaemia-reperfusion (IR) activates cardiac acetylcholine (ACh) synthesis through the cholinergic nervous system and cell-derived ACh accelerates glucose uptake. However, the mechanisms regulating glucose metabolism in vivo remain unknown. We investigated the effects and mechanisms of IR in mice under pathophysiological conditions. Using IR-subjected male C57BL/6J mice, the effects of IR on blood sugar (BS), glucose uptake, central parasympathetic nervous system (PNS) activity, hepatic gluconeogenic enzyme expression and those of ACh on hepatocellular glucose uptake were assessed. IR decreased BS levels by 20% and increased c-fos immunoreactivity in the center of the PNS (the solitary tract and the dorsal motor vagal nucleus). IR specifically downregulated hepatic gluconeogenic enzyme expression and activities (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase) and accelerated hepatic glucose uptake. Transection of a hepatic vagus nerve branch decreased this uptake and reversed BS decrease. Suppressed gluconeogenic enzyme expression was reversed by intra-cerebroventricular administration of a choline acetyltransferase inhibitor. Moreover, IR significantly attenuated hyperglycaemia in murine model of type I and II diabetes mellitus. IR provides another insight into a therapeutic modality for diabetes mellitus due to regulating gluconeogenesis and glucose-uptake and advocates an adjunctive mode rectifying disturbed glucose metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Insulin-like peptide 5 is a microbially regulated peptide that promotes hepatic glucose production

    DEFF Research Database (Denmark)

    Lee, Ying Shiuan; De Vadder, Filipe; Tremaroli, Valentina

    2016-01-01

    expression in the brain was higher in CONV-R versus GF mice. We also observed that colonic Insl5 expression was suppressed by increasing the energy supply in GF mice by colonization or high-fat feeding. We did not observe any differences in food intake, gut transit or oral glucose tolerance between Insl5......-/- and wild-type mice. However, we showed impaired intraperitoneal glucose tolerance in Insl5-/- mice. We also observed improved insulin tolerance and reduced hepatic glucose production in Insl5-/- mice. CONCLUSIONS: We have shown that colonic Insl5 expression is regulated by the gut microbiota and energy...... availability. We propose that INSL5 is a hormone that could play a role in promoting hepatic glucose production during periods of energy deprivation....

  7. High environmental temperature increases glucose requirement in the developing chicken embryo.

    Directory of Open Access Journals (Sweden)

    Roos Molenaar

    Full Text Available Environmental conditions during the perinatal period influence metabolic and developmental processes in mammals and avian species, which could impact pre- and postnatal survival and development. The current study investigated the effect of eggshell temperature (EST on glucose metabolism in broiler chicken embryos. Broiler eggs were incubated at a high (38.9°C or normal (37.8°C EST from day 10.5 of incubation onward and were injected with a bolus of [U-(13C]glucose in the chorio-allantoic fluid at day 17.5 of incubation. After [U-(13C]glucose administration, (13C enrichment was determined in intermediate pools and end-products of glucose metabolism. Oxidation of labeled glucose occurred for approximately 3 days after injection. Glucose oxidation was higher in the high than in the normal EST treatment from day 17.6 until 17.8 of incubation. The overall recovery of (13CO2 tended to be 4.7% higher in the high than in the normal EST treatment. An increase in EST (38.9°C vs 37.8°C increased (13C enrichment in plasma lactate at day 17.8 of incubation and (13C in hepatic glycogen at day 18.8 of incubation. Furthermore, high compared to normal EST resulted in a lower yolk-free body mass at day 20.9 (-2.74 g and 21.7 (-3.81 g of incubation, a lower hepatic glycogen concentration at day 18.2 (-4.37 mg/g and 18.8 (-4.59 mg/g of incubation, and a higher plasma uric acid concentration (+2.8 mg/mL/+43% at day 21.6 of incubation. These results indicate that the glucose oxidation pattern is relatively slow, but the intensity increased consistently with an increase in developmental stage of the embryo. High environmental temperatures in the perinatal period of chicken embryos increased glucose oxidation and decreased hepatic glycogen prior to the hatching process. This may limit glucose availability for successful hatching and could impact body development, probably by increased gluconeogenesis from glucogenic amino acids to allow anaerobic glycolysis.

  8. Use of deuterium labelled glucose in evaluating the pathway of hepatic glycogen synthesis

    International Nuclear Information System (INIS)

    Goodman, M.N.; Masuoka, L.K.; deRopp, J.S.; Jones, A.D.

    1989-01-01

    Deuterium labelled glucose has been used to study the pathway of hepatic glycogen synthesis during the fasted-refed transition in rats. Deuterium enrichment of liver glycogen was determined using nuclear magnetic resonance as well as mass spectroscopy. Sixty minutes after oral administration of deuterated glucose to fasted rats, the portal vein blood was fully enriched with deuterated glucose. Despite this, less than half of the glucose molecules incorporated into liver glycogen contained deuterium. The loss of deuterium label from glucose is consistent with hepatic glycogen synthesis by an indirect pathway requiring prior metabolism of glucose. The use of deuterium labelled glucose may prove to be a useful probe to study hepatic glycogen metabolism. Its use may also find application in the study of liver glycogen metabolism in humans by a noninvasive means

  9. Clofibrate improves glucose tolerance in fat-fed rats but decreases hepatic glucose consumption capacity

    NARCIS (Netherlands)

    Gustafson, LA; Kuipers, F; Wiegman, C; Sauerwein, HP; Romijn, JA; Meijer, AJ

    2002-01-01

    Background/Aims: High-fat (HF) diets cause glucose intolerance. Fibrates improve glucose tolerance. We have tried to obtain information on possible hepatic mechanisms contributing to this effect. Methods: Rats were fed a HF diet, isocaloric with the control diet, for 3 weeks without or with

  10. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice.

    Science.gov (United States)

    Lerat, Hervé; Imache, Mohamed Rabah; Polyte, Jacqueline; Gaudin, Aurore; Mercey, Marion; Donati, Flora; Baudesson, Camille; Higgs, Martin R; Picard, Alexandre; Magnan, Christophe; Foufelle, Fabienne; Pawlotsky, Jean-Michel

    2017-08-04

    Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The Effect of Phloroglucinol, A Component of Ecklonia cava Extract, on Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Ji-Young Yoon

    2017-04-01

    Full Text Available Phloroglucinol is a phenolic compound that is one of the major compounds in Ecklonia cava (brown alga. It has many pharmacological activities, but its anti-diabetic effect is not yet fully explored. In this study, we investigated the effect of phloroglucinol on the control of blood glucose levels and the regulation of hepatic glucose production. Phloroglucinol significantly improved glucose tolerance in male C57BL/6J mice fed a high fat diet (HFD and inhibited glucose production in mouse primary hepatocytes. The expression of phosphoenol pyruvate carboxykinase (PEPCK and glucose-6-phosphatase mRNA and protein (G6Pase, enzymes involved in gluconeogenesis, were inhibited in liver tissue from phloroglucinol-treated mice and in phloroglucinol-treated HepG2 cells. In addition, phloroglucinol treatment increased phosphorylated AMP-activated protein kinase (AMPKα in HepG2 cells. Treatment with compound C, an AMPKα inhibitor, inhibited the increase of phosphorylated AMPKα and the decrease of PEPCK and G6Pase expression caused by phloroglucinol treatment. We conclude that phloroglucinol may inhibit hepatic gluconeogenesis via modulating the AMPKα signaling pathway, and thus lower blood glucose levels.

  12. Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate.

    Directory of Open Access Journals (Sweden)

    Maxi Meissner

    Full Text Available AIMS/HYPOTHESIS: Bile acid sequestrants (BAS reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore, in vivo glucose metabolism was assessed in db/db mice on and off BAS using tracer methodology. METHODS: Lean and diabetic db/db mice were treated with 2% (wt/wt in diet Colesevelam HCl (BAS for 2 weeks. Parameters of in vivo glucose metabolism were assessed by infusing [U-(13C]-glucose, [2-(13C]-glycerol, [1-(2H]-galactose and paracetamol for 6 hours, followed by mass isotopologue distribution analysis, and related to metabolic parameters as well as gene expression patterns. RESULTS: Compared to lean mice, db/db mice displayed an almost 3-fold lower metabolic clearance rate of glucose (p = 0.0001, a ∼300% increased glucokinase flux (p = 0.001 and a ∼200% increased total hepatic glucose production rate (p = 0.0002. BAS treatment increased glucose metabolic clearance rate by ∼37% but had no effects on glucokinase flux nor total hepatic or endogenous glucose production. Strikingly, BAS-treated db/db mice displayed reduced long-chain acylcarnitine content in skeletal muscle (p = 0.0317 but not in liver (p = 0.189. Unexpectedly, BAS treatment increased hepatic FGF21 mRNA expression 2-fold in lean mice (p = 0.030 and 3-fold in db/db mice (p = 0.002. CONCLUSIONS/INTERPRETATION: BAS induced plasma glucose lowering in db/db mice by increasing metabolic clearance rate of glucose in peripheral tissues, which coincided with decreased skeletal muscle long-chain acylcarnitine content.

  13. Control of Hepatic Glucose Metabolism by Islet and Brain

    Science.gov (United States)

    Rojas, Jennifer M.; Schwartz, Michael W.

    2014-01-01

    Dysregulation of hepatic glucose uptake (HGU) and inability of insulin to suppress hepatic glucose production (HGP), both contribute to hyperglycemia in patients with type 2 diabetes (T2D). Growing evidence suggests that insulin can inhibit HGP not only through a direct effect on the liver, but also via a mechanism involving the brain. Yet the notion that insulin action in the brain plays a physiological role in the control of HGP continues to be controversial. Although studies in dogs suggest that the direct hepatic effect of insulin is sufficient to explain day-to-day control of HGP, a surprising outcome has been revealed by recent studies in mice investigating whether the direct hepatic action of insulin is necessary for normal HGP: when hepatic insulin signaling pathway was genetically disrupted, HGP was maintained normally even in the absence of direct input from insulin. Here we present evidence that points to a potentially important role of the brain in the physiological control of both HGU and HGP in response to input from insulin as well as other hormones and nutrients. PMID:25200294

  14. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects.

    Science.gov (United States)

    Thorburn, A; Litchfield, A; Fabris, S; Proietto, J

    1995-05-01

    A transient rise in hepatic glucose production (HGP) after an oral glucosa load has been reported in some insulin-resistant states such as in obese fa/fa Zucker rats. The aim of this study was to determine whether this rise in HGP also occurs in subjects with established non-insulin-dependent diabetes mellitus (NIDDM). Glucose kinetics were measured basally and during a double-label oral glucose tolerance test (OGTT) in 12 NIDDM subjects and 12 non-diabetic 'control' subjects. Twenty minutes after the glucose load, HGP had increased 73% above basal in the NIDDM subjects (7.29 +/- 0.52 to 12.58 +/- 1.86 mumol/kg/min, P < 0.02). A transient rise in glucagon (12 pg/ml above basal, P < 0.004) occurred at a similar time. In contrast, the control subjects showed no rise in HGP or plasma glucagon. HGP began to suppress 40-50 min after the OGTT in both the NIDDM and control subjects. A 27% increase in the rate of gut-derived glucose absorption was also observed in the NIDDM group, which could be the result of increased gut glucose absorption or decreased first pass extraction of glucose by the liver. Therefore, in agreement with data in animal models of NIDDM, a transient rise in HGP partly contributes to the hyperglycemia observed after an oral glucose load in NIDDM subjects.

  15. Combining functional CT and FDG PET allows the calculation of FDG extraction fraction and hepatic glucose phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, M R [Centre for Medical and Health Physics, Queensland University of Technology (Australia); Wesley Research Institute, QLD (Australia); Miles, K A [Centre for Medical and Health Physics, Queensland University of Technology (Australia); Wesley Research Institute, QLD (Australia); Southern X-ray Clinics, Brisbane [Australia; Keith, C J [Wesley Research Institute, QLD (Australia)

    2002-09-01

    Perfusion data from Functional CT and FDG-PET data may be combined to provide additional information about the uptake of FDG. We have developed methods to calculate FDG extraction fraction in tissues and to quantify hepatic glucose phosphorylation in the liver. Extraction fraction: Functional CT and FDG-PET studies were used to obtain measurements of perfusion and glucose uptake respectively within ten pulmonary nodules. The net influx constant (Ki) was determined from SUV measurements for each lung mass Extraction fraction (E) for each mass lesion was determined from: E=Ki/(Px[1-Hct]). A pixel by pixel calculation allowed generation of extraction fraction maps. The extraction fraction measurements ranged (median) from 0.6% to 4.81% (2.7%). The values for a benign nodule and an organising pneumonia were 0.6% and 0.71% respectively. Extraction fraction measurements for the malignant nodules ranged from 2.01% to 4.81%. A clearer separation of benign and malignant lesions is seen with E values rather than with SUV. Hepatic Glucose Phosphorylation: Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Hepatic perfusion and the net influx constant were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). By combining functional CT measurements of blood flow with PET measurements of FDG uptake, it is possible to calculate the extraction fraction of FDG and Hepatic glucose phosphorylation. The use of the extraction fraction has improved the distinction between malignant and

  16. Combining functional CT and FDG PET allows the calculation of FDG extraction fraction and hepatic glucose phosphorylation

    International Nuclear Information System (INIS)

    Griffiths, M.R.; Miles, K.A.; Keith, C.J.

    2002-01-01

    Perfusion data from Functional CT and FDG-PET data may be combined to provide additional information about the uptake of FDG. We have developed methods to calculate FDG extraction fraction in tissues and to quantify hepatic glucose phosphorylation in the liver. Extraction fraction: Functional CT and FDG-PET studies were used to obtain measurements of perfusion and glucose uptake respectively within ten pulmonary nodules. The net influx constant (Ki) was determined from SUV measurements for each lung mass Extraction fraction (E) for each mass lesion was determined from: E=Ki/(Px[1-Hct]). A pixel by pixel calculation allowed generation of extraction fraction maps. The extraction fraction measurements ranged (median) from 0.6% to 4.81% (2.7%). The values for a benign nodule and an organising pneumonia were 0.6% and 0.71% respectively. Extraction fraction measurements for the malignant nodules ranged from 2.01% to 4.81%. A clearer separation of benign and malignant lesions is seen with E values rather than with SUV. Hepatic Glucose Phosphorylation: Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Hepatic perfusion and the net influx constant were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). By combining functional CT measurements of blood flow with PET measurements of FDG uptake, it is possible to calculate the extraction fraction of FDG and Hepatic glucose phosphorylation. The use of the extraction fraction has improved the distinction between malignant and

  17. SREBP-1c regulates glucose-stimulated hepatic clusterin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gukhan [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Geun Hyang; Oh, Gyun-Sik; Yoon, Jin [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Hae Won [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Min-Seon [Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Seung-Whan, E-mail: swkim7@amc.seoul.kr [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} This is the first report to show nutrient-regulated clusterin expression. {yields} Clusterin expression in hepatocytes was increased by high glucose concentration. {yields} SREBP-1c is directly involved in the transcriptional activation of clusterin by glucose. {yields} This glucose-stimulated activation process is mediated through tandem E-box motifs. -- Abstract: Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.

  18. Biochanin A improves hepatic steatosis and insulin resistance by regulating the hepatic lipid and glucose metabolic pathways in diet-induced obese mice.

    Science.gov (United States)

    Park, Hee-Sook; Hur, Haeng Jeon; Kim, Soon-Hee; Park, Su-Jin; Hong, Moon Ju; Sung, Mi Jeong; Kwon, Dae Young; Kim, Myung-Sunny

    2016-09-01

    Natural compounds that regulate peroxisome proliferator-activated receptor alpha (PPARα) have been reported to have beneficial effects in obesity-mediated metabolic disorders. In this study, we demonstrated that biochanin A (BA), an agonist of PPAR-α, improved hepatic steatosis and insulin resistance by regulating hepatic lipid and glucose metabolism. C57BL/6 mice were fed a normal chow diet, a high-fat diet (HFD), and an HFD supplemented with 0.05% BA for 12 weeks. Histological and biochemical examinations indicated that BA prevented obesity-induced hepatic steatosis and insulin resistance in HFD-fed mice. BA stimulated the transcriptional activation of PPAR-α in vitro and increased the expression of PPAR-α and its regulatory proteins in the liver. CE-TOF/MS analyses indicated that BA administration promoted the recovery of metabolites involved in phosphatidylcholine synthesis, lipogenesis, and beta-oxidation in the livers of obese mice. BA also suppressed the levels of gluconeogenesis-related metabolites and the expression of the associated enzymes, glucose 6-phosphatase and pyruvate kinase. Taken together, these results showed that BA ameliorated metabolic disorders such as hepatic steatosis and insulin resistance by modulating lipid and glucose metabolism in diet-induced obesity. Thus, BA may be a potential therapeutic agent for the prevention of obesity-mediated hepatic steatosis and insulin resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Direct vs. indirect pathway of hepatic glycogen synthesis as a function of glucose infusion rate

    International Nuclear Information System (INIS)

    Bagby, G.J.; Lang, C.H.; Johnson, J.L.; Blakesly, H.L.; Spitzer, J.J.

    1986-01-01

    This study was initiated to determine the influence of the rate of exogenous glucose administration on liver glycogen synthesis by the direct (glucose uptake and incorporation into glycogen) vs the indirect pathway (glucose degradation to 3-carbon intermediates, e.g., lactate, prior to incorporation into glycogen). Catheterized rats were fasted 2 days prior to receiving a 3 hr infusion of glucose at rates of 0 to 230 μmol/min/kg containing tracer [6- 3 H]- and [U- 14 C]-glucose. Plasma glucose (r = 0.80), insulin (r = 0.90) and lactate (r = 0.84) were correlated with glucose infusion rate. The rate of liver glycogen deposition (0.46 +/- 0.03 μmol/min/g) did not differ between a glucose infusion rate of 20 and 230 μmol/min/kg. At the lowest and highest glucose infusion rates hepatic glycogenesis accounted for 87 +/- 6 and 9 +/- 1% of the total glucose load, respectively. The percent contribution of the direct pathways to glycogen deposition ([ 3 H] specific activity in hepatic glycogen/[ 3 H] specific activity in plasma glucose) increased from 16 +/- 3 to 83 +/- 5% from lowest to highest glucose infusion rates (prevailing plasma glucose concentrations: 9 +/- 1 and 21 +/- 2 mM, respectively). The results indicate that the relative contribution of the direct and indirect pathways of glucogen synthesis are dependent upon the glucose load or plasma glucose concentration

  20. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis.

    Science.gov (United States)

    Kurano, Makoto; Hara, Masumi; Satoh, Hiroaki; Tsukamoto, Kazuhisa

    2015-05-01

    Inhibition of intestinal NPC1L1 by ezetimibe has been demonstrated to improve glucose metabolism in rodent models; however, the role of hepatic NPC1L1 in glucose metabolism has not been elucidated. In this study, we analyzed the effects of hepatic NPC1L1 on glucose metabolism. We overexpressed NPC1L1 in the livers of lean wild type mice, diet-induced obesity mice and db/db mice with adenoviral gene transfer. We found that in all three mouse models, hepatic NPC1L1 overexpression lowered fasting blood glucose levels as well as blood glucose levels on ad libitum; in db/db mice, hepatic NPC1L1 overexpression improved blood glucose levels to almost the same as those found in lean wild type mice. A pyruvate tolerance test revealed that gluconeogenesis was suppressed by hepatic NPC1L1 overexpression. Further analyses revealed that hepatic NPC1L1 overexpression decreased the expression of FoxO1, resulting in the reduced expression of G6Pase and PEPCK, key enzymes in gluconeogenesis. These results indicate that hepatic NPC1L1 might have distinct properties of suppressing gluconeogenesis via inhibition of FoxO1 pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Deletion of hepatic carbohydrate response element binding protein (ChREBP impairs glucose homeostasis and hepatic insulin sensitivity in mice

    Directory of Open Access Journals (Sweden)

    Tara Jois

    2017-11-01

    Conclusions: Overall, hepatic ChREBP is protective in regards to hepatic insulin sensitivity and whole body glucose homeostasis. Hepatic ChREBP action can influence other peripheral tissues and is likely essential in coordinating the body's response to different feeding states.

  2. Bisphenol A impairs hepatic glucose sensing in C57BL/6 male mice.

    Directory of Open Access Journals (Sweden)

    Leigh Perreault

    Full Text Available AIMS/HYPOTHESIS: Glucose sensing (eg. glucokinase activity becomes impaired in the development of type 2 diabetes, the etiology of which is unclear. Estrogen can stimulate glucokinase activity, whereas the pervasive environmental pollutant bisphenol A (BPA can inhibit estrogen action, hence we aimed to determine the effect of BPA on glucokinase activity directly. METHODS: To evaluate a potential acute effect on hepatic glucokinase activity, BPA in water (n = 5 vs. water alone (n = 5 was administered at the EPA's purported "safe dose" (50 µg/kg by gavage to lean 6-month old male C57BL/6 mice. Two hours later, animals were euthanized and hepatic glucokinase activity measured over glucose levels from 1-20 mmol/l in liver homogenate. To determine the effect of chronic BPA exposure on hepatic glucokinase activity, lean 6-month old male C57BL/6 mice were provided with water (n = 15 or water with 1.75 mM BPA (∼50 µg/kg/day; n = 14 for 2 weeks. Following the 2-week exposure, animals were euthanized and glucokinase activity measured as above. RESULTS: Hepatic glucokinase activity was signficantly suppressed after 2 hours in animals given an oral BPA bolus compared to those who received only water (p = 0.002-0.029 at glucose 5-20 mmol/l; overall treatment effect p<0.001. Exposure to BPA over 2 weeks also suppressed hepatic glucokinase activity in exposed vs. unexposed mice (overall treatment effect, p = 0.003. In both experiments, the Hill coefficient was higher and Vmax lower in mice treated with BPA. CONCLUSIONS/INTERPRETATION: Both acute and chronic exposure to BPA significantly impair hepatic glucokinase activity and function. These findings identify a potential mechanism for how BPA may increase risk for diabetes.

  3. The glucose-galactose paradox in neonatal murine hepatic glycogen synthesis

    International Nuclear Information System (INIS)

    Kunst, C.; Kliegman, R.; Trindade, C.

    1989-01-01

    In adults glucose incorporation to glycogen is indirect after recycling from lactate. In neonates galactose entry to glycogen exceeds that for glucose, but the pathway is unknown. The pathway of hexose incorporation to glycogen was studied in 5-7-day-old rats and 6-h-old rats injected intraperitoneally (IP) with either double-labeled [6-3H]glucose (nonrecycling), [U-14C]glucose (recycling), or [6-3H]glucose and [U-14C]galactose in saline. In another group of pups, 1 g/kg of glucose or galactose was administered in addition to tracers to determine glycemia and net glycogen synthesis between 15 and 180 min after injection. Blood glucose increased from 3.4 +/- 0.4 to 8.5 +/- 1.5 mM in 5-7-day-old pups in response to IP glucose; there was no glycemic response to galactose, although galactose levels increased from 0.5 to 6.3 mM at 15 min. Hepatic glycogen increased after IP glucose from 14 +/- 2 at 15 min to 30 +/- 3 at 120 min (P less than 0.01), whereas after IP galactose glycogen was 44 +/- 6 mumol/g at 120 min (P less than 0.05). After IP glucose, 3H and 14C disintegration per minute in glycogen increased slowly with 14C exceeding 3H at 120 and 180 min. In contrast IP [14C]galactose resulted in a much greater peak of 14C incorporation into glycogen. The ratio of 3H to 14C in glycogen relative to the injectate after IP glucose decreased from 0.69 +/- 0.12 to 0.36 +/- 0.03 (P less than 0.01) between 15 to 180 min, whereas the ratio after galactose was 0.20 +/- 0.007 to 0.15 +/- 0.02 at these times. The 6-h-old pups also demonstrated augmented incorporation of [14C]galactose in glycogen relative to [3H-14C]glucose. In contrast to 5-7-day-old pups there was no evidence of glucose recycling in 6-h-old pups. In conclusion galactose entry into glycogen exceeds that for glucose and is not dependent on recycling

  4. Interaction Between the Central and Peripheral Effects of Insulin in Controlling Hepatic Glucose Metabolism in the Conscious Dog

    Science.gov (United States)

    Ramnanan, Christopher J.; Kraft, Guillaume; Smith, Marta S.; Farmer, Ben; Neal, Doss; Williams, Phillip E.; Lautz, Margaret; Farmer, Tiffany; Donahue, E. Patrick; Cherrington, Alan D.; Edgerton, Dale S.

    2013-01-01

    The importance of hypothalamic insulin action to the regulation of hepatic glucose metabolism in the presence of a normal liver/brain insulin ratio (3:1) is unknown. Thus, we assessed the role of central insulin action in the response of the liver to normal physiologic hyperinsulinemia over 4 h. Using a pancreatic clamp, hepatic portal vein insulin delivery was increased three- or eightfold in the conscious dog. Insulin action was studied in the presence or absence of intracerebroventricularly mediated blockade of hypothalamic insulin action. Euglycemia was maintained, and glucagon was clamped at basal. Both the molecular and metabolic aspects of insulin action were assessed. Blockade of hypothalamic insulin signaling did not alter the insulin-mediated suppression of hepatic gluconeogenic gene transcription but blunted the induction of glucokinase gene transcription and completely blocked the inhibition of glycogen synthase kinase-3β gene transcription. Thus, central and peripheral insulin action combined to control some, but not other, hepatic enzyme programs. Nevertheless, inhibition of hypothalamic insulin action did not alter the effects of the hormone on hepatic glucose flux (production or uptake). These data indicate that brain insulin action is not a determinant of the rapid (<4 h) inhibition of hepatic glucose metabolism caused by normal physiologic hyperinsulinemia in this large animal model. PMID:23011594

  5. Interleukin 6 stimulates hepatic glucose release from prelabeled glycogen pools

    International Nuclear Information System (INIS)

    Ritchie, D.G.

    1990-01-01

    Cytokines, derived from a wide variety of cell types, are now believed to initiate many of the physiological responses accompanying the inflammatory phase that follows either Gram-negative septicemia or thermal injury. Because hypoglycemia (after endotoxic challenge) and hyperglycemia (after thermal injury) represent well-characterized responses to these injuries, we sought to determine whether hepatic glycogen metabolism could be altered by specific cytokines. Cultured adult rat hepatocytes were prelabeled with [ 14 C]glucose for 24 h, a procedure that resulted in the labeling of hepatic glycogen pools that subsequently could be depleted (with concomitant [ 14 C]glucose release) by either glucagon or norepinephrine. After the addition of a highly concentrated human monocyte-conditioned medium (MCM) or various cytokines to these prelabeled cells, [ 14 C]glucose release was stimulated by MCM and recombinant human interleukin 6 (IL-6) but was not stimulated by other cytokines tested. Furthermore, only antisera to IL-6 were capable of reducing the glucose-releasing factor activity found in MCM. These data therefore suggest a novel glucoregulatory role for IL-6

  6. Lack of skeletal muscle IL-6 influences hepatic glucose metabolism in mice during prolonged exercise

    DEFF Research Database (Denmark)

    Bertholdt, Lærke; Gudiksen, Anders; Schwartz, Camilla Lindgren

    2017-01-01

    The liver is essential in maintaining and regulating glucose homeostasis during prolonged exercise. IL-6 has been shown to be secreted from skeletal muscle during exercise and has been suggested to signal to the liver. Therefore, the aim of this study was to investigate the role of skeletal muscle...... IL-6 on hepatic glucose regulation and substrate choice during prolonged exercise. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice (age, 12-14 wk) and littermate lox/lox (Control) mice were either rested (Rest) or completed a single bout of exercise for 10, 60, or 120 min, and the liver....... Furthermore, IL-6 MKO mice had higher hepatic pyruvate dehydrogenase (PDH)Ser232 and PDHSer300 phosphorylation than control mice at rest. In conclusion, hepatic gluconeogenic capacity in mice is increased during prolonged exercise independent of muscle IL-6. Furthermore, Skeletal muscle IL-6 influences...

  7. Inhibitory Effects of Ecklonia cava Extract on High Glucose-Induced Hepatic Stellate Cell Activation

    Directory of Open Access Journals (Sweden)

    Akiko Kojima-Yuasa

    2011-12-01

    Full Text Available Nonalcoholic steatohepatitis (NASH is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs, key players in hepatic fibrosis. Isolated HSCs were incubated with or without a high glucose concentration. Ecklonia cava extract (ECE was added to the culture simultaneously with the high glucose. Treatment with high glucose stimulated expression of type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the ECE. An increase in the formation of intracellular reactive oxygen species (ROS and a decrease in intracellular glutathione levels were observed soon after treatment with high glucose, and these changes were suppressed by the simultaneous addition of ECE. High glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. These results suggest that the suppression of high glucose-induced HSC activation by ECE is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β secretion. ECE is useful for preventing the development of diabetic liver fibrosis.

  8. High-fat feeding increases hepatic vitamin C synthesis and its circulatory mobilization in mice

    DEFF Research Database (Denmark)

    Christensen, Britt Tranberg; Hansen, Axel Jacob Kornerup; Lykkesfeldt, Jens

    2014-01-01

    , glucose and vitC concentrations. Hepatic vitC concentration and gulonolactone oxidase (GLO) capacity, as a measure of vitC de novo biosynthesis, were analyzed in liver homogenates. RESULTS: HF diet significantly increased plasma concentrations of vitC compared with a control diet low in fat (P ... to modulate their vitC homeostasis during high-fat (HF) feeding. METHODS: Twenty-five male 5-week-old C57BL/6 mice were fed high- or low-fat diets for 14 weeks. An oral glucose tolerance test (OGTT) was performed after 12 weeks of intervention. Terminal fasting plasma samples were analyzed for insulin.......05). Hepatic de novo biosynthesis of vitC was upregulated (P glucose and insulin concentrations...

  9. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    DEFF Research Database (Denmark)

    Wewer Albrechtsen, Nicolai J.; Kuhre, Rune E.; Hornburg, Daniel

    2017-01-01

    that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in......Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among...... which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated...

  10. Activating transcription factor 3 is a target molecule linking hepatic steatosis to impaired glucose homeostasis.

    Science.gov (United States)

    Kim, Ji Yeon; Park, Keon Jae; Hwang, Joo-Yeon; Kim, Gyu Hee; Lee, DaeYeon; Lee, Yoo Jeong; Song, Eun Hyun; Yoo, Min-Gyu; Kim, Bong-Jo; Suh, Young Ho; Roh, Gu Seob; Gao, Bin; Kim, Won; Kim, Won-Ho

    2017-08-01

    Non-alcoholic fatty liver disease (NAFLD) contributes to impaired glucose tolerance, leading to type 2 diabetes (T2D); however, the precise mechanisms and target molecules that are involved remain unclear. Activating transcription factor 3 (ATF3) is associated with β-cell dysfunction that is induced by severe stress signals in T2D. We aimed to explore the exact functional role of ATF3 as a mechanistic link between hepatic steatosis and T2D development. Zucker diabetic fatty (ZDF) rats were utilized for animal experiments. An in vivo-jetPEI siRNA delivery system against ATF3 was used for loss-of-function experiments. We analyzed the baseline cross-sectional data derived from the biopsy-proven NAFLD registry (n=322). Human sera and liver tissues were obtained from 43 patients with biopsy-proven NAFLD and from seven healthy participants. ATF3 was highly expressed in the livers of ZDF rats and in human participants with NAFLD and/or T2D. Insulin resistance and hepatic steatosis were associated with increased ATF3 expression and decreased fatty acid oxidation via mitochondrial dysfunction and were attenuated by in vivo ATF3 silencing. Knockdown of ATF3 also ameliorated glucose intolerance, impaired insulin action, and inflammatory responses in ZDF rats. In patients with NAFLD and/or T2D, a significant positive correlation was observed between hepatic ATF3 expression and surrogate markers of T2D, mitochondrial dysfunction, and macrophage infiltration. Increased hepatic ATF3 expression is closely associated with hepatic steatosis and incident T2D; therefore, ATF3 may serve as a potential therapeutic target for NAFLD and hepatic steatosis-induced T2D. Hepatic activating transcription factor 3 (ATF3) may play an important role in oxidative stress-mediated hepatic steatosis and the development of type 2 diabetes (T2D) in a Zucker diabetic fatty (ZDF) rat model and in human patients with non-alcoholic fatty liver disease (NAFLD). Therefore, ATF3 may be a useful biomarker for

  11. Ubiquitin-Specific Protease 2 Regulates Hepatic Gluconeogenesis and Diurnal Glucose Metabolism Through 11β-Hydroxysteroid Dehydrogenase 1

    Science.gov (United States)

    Molusky, Matthew M.; Li, Siming; Ma, Di; Yu, Lei; Lin, Jiandie D.

    2012-01-01

    Hepatic gluconeogenesis is important for maintaining steady blood glucose levels during starvation and through light/dark cycles. The regulatory network that transduces hormonal and circadian signals serves to integrate these physiological cues and adjust glucose synthesis and secretion by the liver. In this study, we identified ubiquitin-specific protease 2 (USP2) as an inducible regulator of hepatic gluconeogenesis that responds to nutritional status and clock. Adenoviral-mediated expression of USP2 in the liver promotes hepatic glucose production and exacerbates glucose intolerance in diet-induced obese mice. In contrast, in vivo RNA interference (RNAi) knockdown of this factor improves systemic glycemic control. USP2 is a target gene of peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), a coactivator that integrates clock and energy metabolism, and is required for maintaining diurnal glucose homeostasis during restricted feeding. At the mechanistic level, USP2 regulates hepatic glucose metabolism through its induction of 11β-hydroxysteroid dehydrogenase 1 (HSD1) and glucocorticoid signaling in the liver. Pharmacological inhibition and liver-specific RNAi knockdown of HSD1 significantly impair the stimulation of hepatic gluconeogenesis by USP2. Together, these studies delineate a novel pathway that links hormonal and circadian signals to gluconeogenesis and glucose homeostasis. PMID:22447855

  12. Hepatic glycogen in humans. I. Direct formation after oral and intravenous glucose or after a 24-h fast

    International Nuclear Information System (INIS)

    Radziuk, J.

    1989-01-01

    The formation of hepatic glycogen by the direct pathway is assessed in humans after a 12-h fast and oral loading (100 g) or intravenous infusion (90 g) and after a 24-h fast and the same oral glucose load. The methodology used is based on the double tracer method. [3- 3 H]glucose is infused at a constant rate for the determination of the metabolic clearance of glucose. [1- 14 C]glucose is administered with the glucose load. One hour after absorption or the intravenous glucose infusion is terminated, a glucagon infusion is initiated to mobilize the glycogen labeled with [1- 14 C]glucose and formed during the absorptive period. At this time a third tracer, [6- 3 H]glucose, is administered to measure glucose clearance. It was found that after the 12-h fast and oral glucose loading 7.2 +/- 1.1 g of hepatic glycogen appears to be formed directly from glucose compared with 8.4 +/- 1.0 g after the same load and a 24-h fast and 8.5 +/- 0.4 g after a 12-h fast and an equivalent intravenous glucose infusion. When the amount of label ([ 14 C]glucose) mobilized that was not corrected for metabolic recycling was calculated, the data suggested that the amount of glycogen formed by gluconeogenic pathways was probably at least equal to that formed by direct uptake. It was also approximately 60% greater after a 24-h fast. It can be concluded that the amount of hepatic glycogen formed directly from glucose during glucose loading is not significantly altered by the route of entry or the extension of the fasting period to 24 h. The data suggest, however, that gluconeogenetic formation of glycogen increases with fasting

  13. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism.

    Science.gov (United States)

    Li, Jian; Yu, Haiyang; Wang, Sijian; Wang, Wei; Chen, Qian; Ma, Yanmin; Zhang, Yi; Wang, Tao

    2018-01-01

    Imbalanced hepatic glucose homeostasis is one of the critical pathologic events in the development of metabolic syndromes (MSs). Therefore, regulation of imbalanced hepatic glucose homeostasis is important in drug development for MS treatment. In this review, we discuss the major targets that regulate hepatic glucose homeostasis in human physiologic and pathophysiologic processes, involving hepatic glucose uptake, glycolysis and glycogen synthesis, and summarize their changes in MSs. Recent literature suggests the necessity of multitarget drugs in the management of MS disorder for regulation of imbalanced glucose homeostasis in both experimental models and MS patients. Here, we highlight the potential bioactive compounds from natural products with medicinal or health care values, and focus on polypharmacologic and multitarget natural products with effects on various signaling pathways in hepatic glucose metabolism. This review shows the advantage and feasibility of discovering multicompound-multitarget drugs from natural products, and providing a new perspective of ways on drug and functional food development for MSs.

  14. Superior Glycemic Control with a Glucose-Responsive Insulin Analog: Hepatic and Nonhepatic Impacts.

    Science.gov (United States)

    Moore, Mary Courtney; Kelley, David E; Camacho, Raul C; Zafian, Peter; Ye, Tian; Lin, Songnian; Kaarsholm, Niels C; Nargund, Ravi; Kelly, Terri M; Van Heek, Margaret; Previs, Stephen F; Moyes, Christopher; Smith, Marta S; Farmer, Ben; Williams, Phil; Cherrington, Alan D

    2018-03-14

    We evaluated the hepatic and nonhepatic responses to glucose-responsive insulin (GRI). Eight dogs received GRI or regular human insulin (HI) in random order. A primed, continuous intravenous infusion of [3- 3 H]glucose began at -120 min. Basal sampling (-30 to 0 min) was followed by 2 study periods (150 min each), P1 and P2. At 0 min, somatostatin and GRI (36±3 pmol/kg/min) or HI (1.8 pmol/kg/min) were infused IV; basal glucagon was replaced intraportally. Glucose was infused intravenously to clamp plasma glucose at 80 mg/dL (P1) and 240 mg/dL (P2). Whole body insulin clearance (WBIC) and insulin concentrations were not different in P1 vs P2 with HI, but WBIC was 23% higher and arterial insulin 16% lower in P1 vs P2 with GRI. Net hepatic glucose output was similar between treatments in P1. In P2, both treatments induced net hepatic glucose uptake (2.1±0.5 [HI] vs 3.3±0.4 [GRI] mg/kg/min). Nonhepatic glucose uptake (nonHGU, mg/kg/min) in P1 and P2, respectively, differed between treatments (2.6±0.3 and 7.4±0.6 with HI; 2.0±0.2 and 8.1±0.8 with GRI). Thus, glycemia impacted GRI but not HI clearance, with resultant differential effects on HGU and nonHGU. GRI holds promise for decreasing hypoglycemia risk while enhancing glucose uptake under hyperglycemic conditions. © 2018 by the American Diabetes Association.

  15. Autonomic regulation of hepatic glucose production.

    Science.gov (United States)

    Bisschop, Peter H; Fliers, Eric; Kalsbeek, Andries

    2015-01-01

    Glucose produced by the liver is a major energy source for the brain. Considering its critical dependence on glucose, it seems only natural that the brain is capable of monitoring and controlling glucose homeostasis. In addition to neuroendocrine pathways, the brain uses the autonomic nervous system to communicate with peripheral organs. Within the brain, the hypothalamus is the key region to integrate signals on energy status, including signals from lipid, glucose, and hormone sensing cells, with afferent neural signals from the internal and external milieu. In turn, the hypothalamus regulates metabolism in peripheral organs, including the liver, not only via the anterior pituitary gland but also via multiple neuropeptidergic pathways in the hypothalamus that have been identified as regulators of hepatic glucose metabolism. These pathways comprise preautonomic neurons projecting to nuclei in the brain stem and spinal cord, which relay signals from the hypothalamus to the liver via the autonomic nervous system. The neuroendocrine and neuronal outputs of the hypothalamus are not separate entities. They appear to act as a single integrated regulatory system, far more subtle, and complex than when each is viewed in isolation. Consequently, hypothalamic regulation should be viewed as a summation of both neuroendocrine and neural influences. As a result, our endocrine-based understanding of diseases such as diabetes and obesity should be expanded by integration of neural inputs into our concept of the pathophysiological process. © 2014 American Physiological Society.

  16. Hepatic glucose output in humans measured with labeled glucose to reduce negative errors

    International Nuclear Information System (INIS)

    Levy, J.C.; Brown, G.; Matthews, D.R.; Turner, R.C.

    1989-01-01

    Steele and others have suggested that minimizing changes in glucose specific activity when estimating hepatic glucose output (HGO) during glucose infusions could reduce non-steady-state errors. This approach was assessed in nondiabetic and type II diabetic subjects during constant low dose [27 mumol.kg ideal body wt (IBW)-1.min-1] glucose infusion followed by a 12 mmol/l hyperglycemic clamp. Eight subjects had paired tests with and without labeled infusions. Labeled infusion was used to compare HGO in 11 nondiabetic and 15 diabetic subjects. Whereas unlabeled infusions produced negative values for endogenous glucose output, labeled infusions largely eliminated this error and reduced the dependence of the Steele model on the pool fraction in the paired tests. By use of labeled infusions, 11 nondiabetic subjects suppressed HGO from 10.2 +/- 0.6 (SE) fasting to 0.8 +/- 0.9 mumol.kg IBW-1.min-1 after 90 min of glucose infusion and to -1.9 +/- 0.5 mumol.kg IBW-1.min-1 after 90 min of a 12 mmol/l glucose clamp, but 15 diabetic subjects suppressed only partially from 13.0 +/- 0.9 fasting to 5.7 +/- 1.2 at the end of the glucose infusion and 5.6 +/- 1.0 mumol.kg IBW-1.min-1 in the clamp (P = 0.02, 0.002, and less than 0.001, respectively)

  17. Glucose abnormalities in Asian patients with chronic hepatitis C.

    Science.gov (United States)

    Bo, Qingyan; Orsenigo, Roberto; Wang, Junyi; Griffel, Louis; Brass, Clifford

    2015-01-01

    Many studies have demonstrated a potential association between type 2 diabetes (T2D) and hepatitis C virus infection in Western countries, while similar evidence is limited in Asia. We compared the prevalence of glucose abnormalities (impaired fasting glucose [IFG] and T2D) and their risk factors between Asian and non-Asian chronic hepatitis C (CHC) patients, and evaluated whether glucose abnormalities impacted the viral responses to peginterferon plus ribavirin treatment (current standard of care in most Asian countries). This study retrospectively analyzed data of 1,887 CHC patients from three Phase II/III studies with alisporivir (DEB025) as treatment for CHC. The chi-square test was used to compare the prevalence of IFG/T2D between Asian and non-Asian CHC patients, and logistic regression was used to adjust for sex, age, and cirrhosis status. Risk factors for IFG/T2D were evaluated using univariate and multivariate analysis. Our results indicated that the prevalence of IFG/T2D was high in both Asian and non-Asian CHC patients (23.0% vs 20.9%), and no significant difference was found between these two populations (adjusted odds ratio: 1.3, 95% confidence interval: 0.97, 1.7; P=0.08). Age, sex, and cirrhosis status were risk factors for IFG/T2D in both populations, while body mass index was positively associated with IFG/T2D in non-Asian but not in Asian participants. No significant differences in sustained virological response rates were seen between patients with normal fasting glucose and patients with IFG/T2D for both populations. These results demonstrate that the prevalence of glucose abnormalities in Asian CHC patients was similar to that in non-Asians, and glucose abnormalities had no impact on viral response to peginterferon plus ribavirin.

  18. Involvement of KLF11 in hepatic glucose metabolism in mice via suppressing of PEPCK-C expression.

    Directory of Open Access Journals (Sweden)

    Huabing Zhang

    Full Text Available Abnormal hepatic gluconeogenesis is related to hyperglycemia in mammals with insulin resistance. Despite the strong evidences linking Krüppel-like factor 11 (KLF11 gene mutations to development of Type 2 diabetes, the precise physiological functions of KLF11 in vivo remain largely unknown.In current investigation, we showed that KLF11 is involved in modulating hepatic glucose metabolism in mice. Overexpression of KLF11 in primary mouse hepatocytes could inhibit the expression of gluconeogenic genes, including phosphoenolpyruvate carboxykinase (cytosolic isoform, PEPCK-C and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, subsequently decreasing the cellular glucose output. Diabetic mice with overexpression of KLF11 gene in livers significantly ameliorated hyperglycemia and glucose intolerance; in contrast, the knockdown of KLF11 expression in db/m and C57BL/6J mice livers impaired glucose tolerance.Our data strongly indicated the involvement of KLF11 in hepatic glucose homeostasis via modulating the expression of PEPCK-C.

  19. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats.

    Science.gov (United States)

    Yi, Chun-Xia; Sun, Ning; Ackermans, Mariette T; Alkemade, Anneke; Foppen, Ewout; Shi, Jing; Serlie, Mireille J; Buijs, Ruud M; Fliers, Eric; Kalsbeek, Andries

    2010-07-01

    The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. Intracerebroventricular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production.

  1. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity.

    Science.gov (United States)

    Ozcan, Lale; Wong, Catherine C L; Li, Gang; Xu, Tao; Pajvani, Utpal; Park, Sung Kyu Robin; Wronska, Anetta; Chen, Bi-Xing; Marks, Andrew R; Fukamizu, Akiyoshi; Backs, Johannes; Singer, Harold A; Yates, John R; Accili, Domenico; Tabas, Ira

    2012-05-02

    Hepatic glucose production (HGP) is crucial for glucose homeostasis, but the underlying mechanisms have not been fully elucidated. Here, we show that a calcium-sensing enzyme, CaMKII, is activated in a calcium- and IP3R-dependent manner by cAMP and glucagon in primary hepatocytes and by glucagon and fasting in vivo. Genetic deficiency or inhibition of CaMKII blocks nuclear translocation of FoxO1 by affecting its phosphorylation, impairs fasting- and glucagon/cAMP-induced glycogenolysis and gluconeogenesis, and lowers blood glucose levels, while constitutively active CaMKII has the opposite effects. Importantly, the suppressive effect of CaMKII deficiency on glucose metabolism is abrogated by transduction with constitutively nuclear FoxO1, indicating that the effect of CaMKII deficiency requires nuclear exclusion of FoxO1. This same pathway is also involved in excessive HGP in the setting of obesity. These results reveal a calcium-mediated signaling pathway involved in FoxO1 nuclear localization and hepatic glucose homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2017-07-01

    Full Text Available The liver has a large capacity for mitochondrial fatty acid β-oxidation, which is critical for systemic metabolic adaptations such as gluconeogenesis and ketogenesis. To understand the role of hepatic fatty acid oxidation in response to a chronic high-fat diet (HFD, we generated mice with a liver-specific deficiency of mitochondrial long-chain fatty acid β-oxidation (Cpt2L−/− mice. Paradoxically, Cpt2L−/− mice were resistant to HFD-induced obesity and glucose intolerance with an absence of liver damage, although they exhibited serum dyslipidemia, hepatic oxidative stress, and systemic carnitine deficiency. Feeding an HFD induced hepatokines in mice, with a loss of hepatic fatty acid oxidation that enhanced systemic energy expenditure and suppressed adiposity. Additionally, the suppression in hepatic gluconeogenesis was sufficient to improve HFD-induced glucose intolerance. These data show that inhibiting hepatic fatty acid oxidation results in a systemic hormetic response that protects mice from HFD-induced obesity and glucose intolerance.

  3. Evidence for dual control mechanism regulating hepatic glucose output in nondiabetic men

    International Nuclear Information System (INIS)

    Clore, J.N.; Glickman, P.S.; Helm, S.T.; Nestler, J.E.; Blackard, W.G.

    1991-01-01

    The authors previously reported a fall in hepatic glucose output (HGO) during sleep accompanied by reductions in glucose utilization (Rd) and free fatty acids (FFAs). This study was undertaken to determine the potential role of changes in Rd and FFA on HGO in nondiabetic men. To determine if the fall in HGO during sleep could be reversed by FFA elevation, seven nondiabetic men underwent [3-3H]glucose infusions from 2200 to 0800, with heparin (90 mU.kg-1.min-1) added at 0200. Glucose appearance (Ra) fell from 11.7 ± 1.1 at 2430 to 8.9 ± 0.8 mumol.kg-1.min-1 (P less than 0.05) at 0200. The fall in Ra was associated with decreases in FFA (0.57 ± 0.10 to 0.48 ± 0.07 mM) and glycerol (0.08 ± 0.01 to 0.06 ± 0.01 mM). Infusion of heparin significantly increased FFA and glycerol (1.09 ± 0.21 and 0.11 ± 0.01 mM, respectively, P less than 0.01) and resulted in a significant fall in plasma alanine, suggesting that gluconeogenesis had been increased. However, rates of glucose turnover were indistinguishable from overnight studies without heparin. In additional studies (n = 6), intralipid and heparin-induced FFA elevation (from 0.61 ± 0.07 to 0.95 ± 0.05 mM, P less than 0.01) stimulated gluconeogenesis ([U-14C]alanine to glucose) twofold (188 ± 22% increase compared to 114 ± 6% in saline control studies, P less than 0.01). However, despite increasing gluconeogenesis, overall HGO did not change (10.6 ± 0.5 vs. 10.7 ± 0.6 mumol.kg-1.min-1) during lipid infusion

  4. Intracellular mechanism of action of sympathetic hepatic nerves on glucose and lactate balance in perfused rat liver

    NARCIS (Netherlands)

    Ballé, C.; Beuers, U.; ENGELHARDT, R.; JUNGERMANN, K.

    1987-01-01

    In rat liver perfused in situ stimulation of the nerve plexus around the hepatic artery and the portal vein caused an increase in glucose output and a shift from lactate uptake to output. The effects of nerve stimulation on some key enzymes, metabolites and effectors of carbohydrate metabolism were

  5. Obesity-driven prepartal hepatic lipid accumulation in dairy cows is associated with increased CD36 and SREBP-1 expression.

    Science.gov (United States)

    Prodanović, Radiša; Korićanac, Goran; Vujanac, Ivan; Djordjević, Ana; Pantelić, Marija; Romić, Snježana; Stanimirović, Zoran; Kirovski, Danijela

    2016-08-01

    We investigated the hypothesis that obesity in dairy cows enhanced expression of proteins involved in hepatic fatty acid uptake and metabolism. Sixteen Holstein-Friesian close-up cows were divided into 2 equal groups based on their body condition score (BCS) as optimal (3.25≤BCS≤3.5) and high (4.0≤BCS≤4.25). Intravenous glucose tolerance test (GTT) and liver biopsies were carried out at day 10 before calving. Blood samples were collected before (basal) and after glucose infusion, and glucose, insulin and non-esterified fatty acid (NEFA) levels were determined at each sample point. In addition, β-hydroxybutyrate and triglycerides levels were measured in the basal samples. The liver biopsies were analyzed for total lipid content and protein expression of insulin receptor beta (IRβ), fatty acid translocase (FAT/CD36) and sterol regulatory element-binding protein-1 (SREBP-1). Basal glucose and insulin were higher in high-BCS cows, which coincided with higher circulating triglycerides and hepatic lipid content. Clearance rate and AUC for NEFA during GTT were higher in optimal-BCS cows. The development of insulin resistance and fatty liver in obese cows was paralleled by increased hepatic expression of the IRβ, CD36 and SREBP-1. These results suggest that increased expression of hepatic CD36 and SREBP-1 is relevant in the obesity-driven lipid accumulation in the liver of dairy cows during late gestation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Glucose abnormalities in Asian patients with chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    Bo Q

    2015-11-01

    Full Text Available Qingyan Bo,1 Roberto Orsenigo,2 Junyi Wang,1 Louis Griffel,3 Clifford Brass3 1Beijing Novartis Pharma Co. Ltd., Shanghai, People’s Republic of China; 2Novartis Pharma AG, Basel, Switzerland; 3Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA Abstract: Many studies have demonstrated a potential association between type 2 diabetes (T2D and hepatitis C virus infection in Western countries, while similar evidence is limited in Asia. We compared the prevalence of glucose abnormalities (impaired fasting glucose [IFG] and T2D and their risk factors between Asian and non-Asian chronic hepatitis C (CHC patients, and evaluated whether glucose abnormalities impacted the viral responses to peginterferon plus ribavirin treatment (current standard of care in most Asian countries. This study retrospectively analyzed data of 1,887 CHC patients from three Phase II/III studies with alisporivir (DEB025 as treatment for CHC. The chi-square test was used to compare the prevalence of IFG/T2D between Asian and non-Asian CHC patients, and logistic regression was used to adjust for sex, age, and cirrhosis status. Risk factors for IFG/T2D were evaluated using univariate and multivariate analysis. Our results indicated that the prevalence of IFG/T2D was high in both Asian and non-Asian CHC patients (23.0% vs 20.9%, and no significant difference was found between these two populations (adjusted odds ratio: 1.3, 95% confidence interval: 0.97, 1.7; P=0.08. Age, sex, and cirrhosis status were risk factors for IFG/T2D in both populations, while body mass index was positively associated with IFG/T2D in non-Asian but not in Asian participants. No significant differences in sustained virological response rates were seen between patients with normal fasting glucose and patients with IFG/T2D for both populations. These results demonstrate that the prevalence of glucose abnormalities in Asian CHC patients was similar to that in non-Asians, and glucose abnormalities had

  7. Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance.

    Science.gov (United States)

    Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S; Zhao, Liang; Hartung, Thomas; Scafidi, Susanna; Riddle, Ryan C; Wolfgang, Michael J

    2017-07-18

    The liver has a large capacity for mitochondrial fatty acid β-oxidation, which is critical for systemic metabolic adaptations such as gluconeogenesis and ketogenesis. To understand the role of hepatic fatty acid oxidation in response to a chronic high-fat diet (HFD), we generated mice with a liver-specific deficiency of mitochondrial long-chain fatty acid β-oxidation (Cpt2 L-/- mice). Paradoxically, Cpt2 L-/- mice were resistant to HFD-induced obesity and glucose intolerance with an absence of liver damage, although they exhibited serum dyslipidemia, hepatic oxidative stress, and systemic carnitine deficiency. Feeding an HFD induced hepatokines in mice, with a loss of hepatic fatty acid oxidation that enhanced systemic energy expenditure and suppressed adiposity. Additionally, the suppression in hepatic gluconeogenesis was sufficient to improve HFD-induced glucose intolerance. These data show that inhibiting hepatic fatty acid oxidation results in a systemic hormetic response that protects mice from HFD-induced obesity and glucose intolerance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Tissue inhibitor of matrix metalloproteinase-1 is required for high-fat diet-induced glucose intolerance and hepatic steatosis in mice

    DEFF Research Database (Denmark)

    Fjære, Even; Andersen, Charlotte; Myrmel, Lene Secher

    2015-01-01

    -induced glucose intolerance and hepatic steatosis using the Timp1 null mice. METHODS: Timp1 knockout (TKO) and wild type (TWT) mice were fed chow, high-fat diet (HFD) or intermediate fat and sucrose diet (IFSD). We determined body weight, body composition, lipid content of the liver, energy intake, energy...... and had lower energy efficiency than TWT mice when fed HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from development of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered expression of genes involved in hepatic lipid metabolism and inflammation....... CONCLUSION: Collectively, our results indicate that TIMP-1 contributes to the development of diet-induced hepatic steatosis and glucose intolerance and may be a potential therapeutic target....

  9. Effects of taurine on plasma glucose concentration and active glucose transport in the small intestine.

    Science.gov (United States)

    Tsuchiya, Yo; Kawamata, Koichi

    2017-11-01

    Taurine lowers blood glucose levels and improves hyperglycemia. However, its effects on glucose transport in the small intestine have not been investigated. Here, we elucidated the effect of taurine on glucose absorption in the small intestine. In the oral glucose tolerance test, addition of 10 mmol/L taurine suppressed the increase in hepatic portal glucose concentrations. To investigate whether the suppressive effect of taurine occurs via down-regulation of active glucose transport in the small intestine, we performed an assay using the everted sac of the rat jejunum. Addition of taurine to the mucosal side of the jejunum suppressed active glucose transport via sodium-glucose cotransporter 1 (SGLT1). After elimination of chloride ions from the mucosal solution, taurine did not show suppressive effects on active glucose transport. These results suggest that taurine suppressed the increase in hepatic portal glucose concentrations via suppression of SGLT1 activity in the rat jejunum, depending on chloride ions. © 2017 Japanese Society of Animal Science.

  10. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice*

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M.; Piganelli, Jon D.; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H. Henry

    2015-01-01

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. PMID:25944898

  11. 2-heptyl-formononetin increases cholesterol and induces hepatic steatosis in mice

    DEFF Research Database (Denmark)

    Andersen, Charlotte; Schjoldager, Janne Gram; Tortzen, Christian

    2013-01-01

    Consumption of isoflavones may prevent adiposity, hepatic steatosis, and dyslipidaemia. However, studies in the area are few and primarily with genistein. This study investigated the effects of formononetin and its synthetic analogue, 2-heptyl-formononetin (C7F), on lipid and cholesterol metabolism...... in C57BL/6J mice. The mice were fed a cholesterol-enriched diet for five weeks to induce hypercholesterolemia and were then fed either the cholesterol-enriched diet or the cholesterol-enriched diet-supplemented formononetin or C7F for three weeks. Body weight and composition, glucose homeostasis......, and plasma lipids were compared. In another experiment, mice were fed the above diets for five weeks, and hepatic triglyceride accumulation and gene expression and histology of adipose tissue and liver were examined. Supplementation with C7F increased plasma HDL-cholesterol thereby increasing the plasma...

  12. Continued glucose output after re-feeding contributes to glucose intolerance in hyperthyroidism.

    OpenAIRE

    Holness, M J; Sugden, M C

    1987-01-01

    The effects of hyperthyroidism to elicit glucose intolerance after glucose administration were decreased under conditions where hepatic glucose output was suppressed. It is concluded that continued hepatic glucose output contributes to abnormal glucose tolerance in hyperthyroidism.

  13. Hepatic steatosis is associated with increased hepatic FDG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Keramida, Georgia, E-mail: G.Keramida@bsms.ac.uk [Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton (United Kingdom); Department of Nuclear Medicine, Brighton Sussex University Hospitals NHS Trust, Brighton (United Kingdom); Potts, Jon [Department of Medicine, Brighton Sussex University Hospitals NHS Trust, Brighton (United Kingdom); Bush, Janice [Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton (United Kingdom); Dizdarevic, Sabina; Peters, A. Michael [Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton (United Kingdom); Department of Nuclear Medicine, Brighton Sussex University Hospitals NHS Trust, Brighton (United Kingdom)

    2014-05-15

    Objective: The use of liver as a reference tissue for semi-quantification of tumour FDG uptake may not be valid in hepatic steatosis (HS). Previous studies on the relation between liver FDG uptake and HS have been contradictory probably because they ignored blood glucose (BG). Because hepatocyte and blood FDG concentrations equalize, liver FDG uptake parallels BG, which must therefore be considered when studying hepatic FDG uptake. We therefore re-examined the relation between HS and liver uptake taking BG into account. Methods: This was a retrospective study of 304 patients undergoing routine PET/CT with imaging 60 min post-FDG. Average standard uptake value (SUV{sub ave}), maximum SUV (SUV{sub max}) and CT density (index of HS) were measured in a liver ROI. Blood pool SUV was based on the left ventricular cavity (SUV{sub LV}). Correlations were assessed using least squares fitting of continuous data. Patients were also divided into BG subgroups (<4, 4–5, 5–6, 6–8, 8–10 and 10+ mmol/l). Results: SUV{sub ave}, SUV{sub max} and SUV{sub LV} displayed similar relations with BG. SUV{sub max}/SUV{sub LV}, but not SUV{sub ave}/SUV{sub LV}, correlated significantly with BG. SUV{sub max}, but not SUV{sub ave}, correlated inversely with CT density before and after adjusting for BG. SUV{sub max}/SUV{sub ave} correlated more strongly with CT density than SUV{sub max}. CT density correlated inversely with SUV{sub max}/SUV{sub LV} but positively with SUV{sub ave}/SUV{sub LV}. Conclusions: Hepatic SUV is more influenced by BG than by HS. Its relation with BG renders it unsuitable as a reference tissue. Nevertheless, hepatic fat does correlate positively with liver SUV, although this is seen only with SUV{sub max} because SUV{sub ave} is ‘diluted’ by hepatic fat.

  14. Hepatic Branch Vagus Nerve Plays a Critical Role in the Recovery of Post-Ischemic Glucose Intolerance and Mediates a Neuroprotective Effect by Hypothalamic Orexin-A

    Science.gov (United States)

    Harada, Shinichi; Yamazaki, Yui; Koda, Shuichi; Tokuyama, Shogo

    2014-01-01

    Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A. PMID:24759941

  15. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    Directory of Open Access Journals (Sweden)

    Shinichi Harada

    Full Text Available Orexin-A (a neuropeptide in the hypothalamus plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve with orexin-1 receptor and c-Fos (activated neural cells marker. These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  16. Hepatitis C virus eradication by direct antiviral agents improves glucose tolerance and reduces post-load insulin resistance in nondiabetic patients with genotype 1.

    Science.gov (United States)

    Salomone, Federico; Catania, Maurizio; Montineri, Arturo; Bertino, Gaetano; Godos, Justyna; Rizzo, Leonardo; Magrì, Giovanni; Li Volti, Giovanni

    2017-12-19

    Genotype 1 chronic hepatitis C is associated with an impairment of glucose homoeostasis, especially in the advanced stages of the disease. Glucose tolerance is an independent predictor of liver-related mortality in patients with cirrhosis because of chronic hepatitis C. However, no study has demonstrated so far weather hepatitis C virus clearance affects glucose tolerance. To this aim, we performed a prospective study assessing the effects of direct antiviral agents treatment in nondiabetic cirrhotic patients with genotypes 1a/1b and impaired glucose tolerance based on a 75-g oral glucose tolerance test. Impaired glucose tolerance was diagnosed by a 2-hour plasma glucose between 140 and 199 mg/dL. Insulin resistance was estimated by the oral glucose insulin sensitivity index, an oral glucose tolerance test-derived measure. After meeting the inclusion criteria, the study population included 32 outpatients (26/6 genotypes 1b/1a; age 62 ± 7.4 years; 18 males) with compensated Child-A cirrhosis. All patients achieved a sustained virological response following direct antiviral agents treatment. After viral eradication, we did not observe change in fasting plasma glucose (103.5 ± 7.1 vs 102.8 ± 7.2 mg/dL, P = .15) but 2-hour plasma glucose was reduced (165.2 ± 22.7 vs 138.5 ± 21.3 mg/dL, P Hepatitis C virus eradication led also to a significant reduction in HbA1c (6.1 ± 0.2% vs 5.7 ± 0.3%, P resistance as assessed by the oral glucose insulin sensitivity index (6.92 ± 1.56 vs 9.52 ± 1.39 mg/kg/min, P  .5). Our results indicate that hepatitis C virus eradication may early improve glucose tolerance in patients with hepatitis C virus-related cirrhosis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice.

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M; Piganelli, Jon D; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H Henry

    2015-06-19

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Hepatic microvascular dysfunction and increased advanced glycation end products are components of non-alcoholic fatty liver disease.

    Science.gov (United States)

    Pereira, Evelyn Nunes Goulart da Silva; Silvares, Raquel Rangel; Flores, Edgar Eduardo Ilaquita; Rodrigues, Karine Lino; Ramos, Isalira Peroba; da Silva, Igor José; Machado, Marcelo Pelajo; Miranda, Rosiane Aparecida; Pazos-Moura, Carmen Cabanelas; Gonçalves-de-Albuquerque, Cassiano F; Faria-Neto, Hugo Caire de Castro; Tibiriça, Eduardo; Daliry, Anissa

    2017-01-01

    This study aimed to investigate the pathophysiology of hepatic microcirculatory dysfunction in non-alcoholic fatty liver disease (NAFLD). In Wistar rats, NAFLD model was induced by 20 weeks of high-fat diet (HFD) feeding. Rolling and adhesion of leukocytes and tissue perfusion in hepatic microcirculation were examined using in vivo microscopic and laser speckle contrast imaging (LSCI), respectively. Oxidative stress and inflamatory parameters were analysed by TBARs, catalase enzyme activity, RT-PCR and ELISA. The participation of advanced glycation end-products (AGE) and its receptor RAGE was evaluated by the measurement of gene and protein expression of RAGE by RT-PCR and Western-blot, respectively and by liver and serum quantification of fluorescent AGEs. Wistar rats fed high-fat diet (HFD) showed increase in epididymal and abdominal fat content, systolic arterial blood pressure, fasting blood glucose levels, hepatic triglycerides and cholesterol, and impairment of glucose and insulin metabolisms. Liver histology confirmed the presence of steatosis and ultrasound analysis revealed increased liver size and parenchymal echogenicity in HFD-fed rats. HFD causes significant increases in leukocyte rolling and adhesion on hepatic microcirculation and decrease in liver microvascular blood flow. Liver tissue presented increase in oxidative stress and inflammtion. At 20 weeks, there was a significantly increase in AGE content in the liver and serum of HFD-fed rats and an increase in RAGE gene expression in the liver. The increase in liver AGE levels and microcirculatory disturbances could play a role in the pathogenesis of liver injury and are key components of NAFLD.

  19. Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.

    Science.gov (United States)

    Trägårdh, Malene; Møller, Niels; Sørensen, Michael

    2015-09-01

    PET with the glucose analog (18)F-FDG is used to measure regional tissue metabolism of glucose. However, (18)F-FDG may have affinities different from those of glucose for plasma membrane transporters and intracellular enzymes; the lumped constant (LC) can be used to correct these differences kinetically. The aims of this study were to investigate the feasibility of measuring human hepatic glucose metabolism with dynamic (18)F-FDG PET/CT and to determine an operational LC for (18)F-FDG by comparison with (3)H-glucose measurements. Eight healthy human subjects were included. In all studies, (18)F-FDG and (3)H-glucose were mixed in saline and coadministered. A 60-min dynamic PET recording of the liver was performed for 180 min with blood sampling from catheters in a hepatic vein and a radial artery (concentrations of (18)F-FDG and (3)H-glucose in blood). Hepatic blood flow was determined by indocyanine green infusion. First, 3 subjects underwent studies comparing bolus administration and constant-infusion administration of tracers during hyperinsulinemic-euglycemic clamping. Next, 5 subjects underwent studies comparing fasting and hyperinsulinemic-euglycemic clamping with tracer infusions. Splanchnic extraction fractions of (18)F-FDG (E*) and (3)H-glucose (E) were calculated from concentrations in blood, and the LC was calculated as ln(1 - E*)/ln(1 - E). Volumes of interest were drawn in the liver tissue, and hepatic metabolic clearance of (18)F-FDG (mL of blood/100 mL of liver tissue/min) was estimated. For bolus versus infusion, E* values were always negative when (18)F-FDG was administered as a bolus and were always positive when it was administered as an infusion. For fasting versus clamping, E* values were positive in 4 of 5 studies during fasting and were always positive during clamping. Negative extraction fractions were ascribed to the tracer distribution in the large volume of distribution in the prehepatic splanchnic bed. The LC ranged from 0.43 to 2

  20. Tetrahydrobiopterin Has a Glucose-Lowering Effect by Suppressing Hepatic Gluconeogenesis in an Endothelial Nitric Oxide Synthase–Dependent Manner in Diabetic Mice

    Science.gov (United States)

    Abudukadier, Abulizi; Fujita, Yoshihito; Obara, Akio; Ohashi, Akiko; Fukushima, Toru; Sato, Yuichi; Ogura, Masahito; Nakamura, Yasuhiko; Fujimoto, Shimpei; Hosokawa, Masaya; Hasegawa, Hiroyuki; Inagaki, Nobuya

    2013-01-01

    Endothelial nitric oxide synthase (eNOS) dysfunction induces insulin resistance and glucose intolerance. Tetrahydrobiopterin (BH4) is an essential cofactor of eNOS that regulates eNOS activity. In the diabetic state, BH4 is oxidized to 7,8-dihydrobiopterin, which leads to eNOS dysfunction owing to eNOS uncoupling. The current study investigates the effects of BH4 on glucose metabolism and insulin sensitivity in diabetic mice. Single administration of BH4 lowered fasting blood glucose levels in wild-type mice with streptozotocin (STZ)-induced diabetes and alleviated eNOS dysfunction by increasing eNOS dimerization in the liver of these mice. Liver has a critical role in glucose-lowering effects of BH4 through suppression of hepatic gluconeogenesis. BH4 activated AMP kinase (AMPK), and the suppressing effect of BH4 on gluconeogenesis was AMPK-dependent. In addition, the glucose-lowering effect and activation of AMPK by BH4 did not appear in mice with STZ-induced diabetes lacking eNOS. Consecutive administration of BH4 in ob/ob mice ameliorated glucose intolerance and insulin resistance. Taken together, BH4 suppresses hepatic gluconeogenesis in an eNOS-dependent manner, and BH4 has a glucose-lowering effect as well as an insulin-sensitizing effect in diabetic mice. BH4 has potential in the treatment of type 2 diabetes. PMID:23649519

  1. Hepatic Aryl hydrocarbon Receptor Nuclear Translocator (ARNT regulates metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Christopher H Scott

    Full Text Available Aryl hydrocarbon Receptor Nuclear Translocator (ARNT and its partners hypoxia-inducible factors (HIF-1α and HIF-2α are candidate factors for the well-known link between the liver, metabolic dysfunction and elevation in circulating lipids and glucose. Methods: Hepatocyte-specific ARNT-null (LARNT, HIF-1α-null (LHIF1α and HIF-2α-null (LHIF2α mice were created.LARNT mice had increased fasting glucose, impaired glucose tolerance, increased glucose production, raised post-prandial serum triglycerides (TG and markedly lower hepatic ATP versus littermate controls. There was increased expression of G6Pase, Chrebp, Fas and Scd-1 mRNAs in LARNT animals. Surprisingly, LHIF1α and LHIF2α mice exhibited no alterations in any metabolic parameter assessed.These results provide convincing evidence that reduced hepatic ARNT can contribute to inappropriate hepatic glucose production and post-prandial dyslipidaemia. Hepatic ARNT may be a novel therapeutic target for improving post-prandial hypertriglyceridemia and glucose homeostasis.

  2. Increased muscle glucose uptake during contractions

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, Henrik; Richter, Erik

    1984-01-01

    We reinvestigated the prevailing concept that muscle contractions only elicit increased muscle glucose uptake in the presence of a so-called "permissive" concentration of insulin (Berger et al., Biochem. J. 146: 231-238, 1975; Vranic and Berger, Diabetes 28: 147-163, 1979). Hindquarters from rats...... in severe ketoacidosis were perfused with a perfusate containing insulin antiserum. After 60 min perfusion, electrical stimulation increased glucose uptake of the contracting muscles fivefold. Also, subsequent contractions increased glucose uptake in hindquarters from nondiabetic rats perfused for 1.5 h......-methylglucose uptake increased during contractions and glucose uptake was negative at rest and zero during contractions. An increase in muscle transport and uptake of glucose during contractions does not require the presence of insulin. Furthermore, glucose transport in contracting muscle may only increase if glycogen...

  3. Fermented Moringa oleifera Decreases Hepatic Adiposity and Ameliorates Glucose Intolerance in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Joung, Hyunchae; Kim, Bobae; Park, Hyunjoon; Lee, Kyuyeon; Kim, Hee-Hoon; Sim, Ho-Cheol; Do, Hyun-Jin; Hyun, Chang-Kee; Do, Myoung-Sool

    2017-05-01

    Metabolic diseases, such as glucose intolerance and nonalcoholic fatty-liver disease (NAFLD), are primary risk factors for life-threatening conditions such as diabetes, heart attack, stroke, and hepatic cancer. Extracts from the tropical tree Moringa oleifera show antidiabetic, antioxidant, anti-inflammatory, and anticancer effects. Fermentation can further improve the safety and nutritional value of certain foods. We investigated the efficacy of fermented M. oleifera extract (FM) against high-fat diet (HFD)-induced glucose intolerance and hepatic lipid accumulation and investigated the underlying mechanisms by analyzing expression of proteins and genes involved in glucose and lipid regulation. C57BL/6 mice were fed with normal chow diet (ND) or HFD supplemented with distilled water (DW, control), nonfermented M. oleifera extract (NFM), or FM for 10 weeks. Although body weights were similar among HFD-fed treatment groups, liver weight was decreased, and glucose tolerance test (GTT) results improved in the FM group compared with DW and NFM groups. Hepatic lipid accumulation was also lower in the FM group, and expressions of genes involved in liver lipid metabolism were upregulated. In addition, HFD-induced endoplasmic reticulum (ER) stress, oxidative stress, and lipotoxicity in quadriceps muscles were decreased by FM. Finally, proinflammatory cytokine mRNA expression was decreased by FM in the liver, epididymal adipose tissue, and quadriceps of HFD-fed mice. FMs may decrease glucose intolerance and NAFLD under HFD-induced obesity by decreasing ER stress, oxidative stress, and inflammation.

  4. Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis.

    Directory of Open Access Journals (Sweden)

    Xiwen Xiong

    Full Text Available Forkhead transcription factors FoxO1/3/4 have pleiotrophic functions including anti-oxidative stress and metabolism. With regard to glucose metabolism, most studies have been focused on FoxO1. To further investigate their hepatic functions, we generated liver-specific FoxO1/3/4 knockout mice (LTKO and examined their collective impacts on glucose homeostasis under physiological and pathological conditions. As compared to wild-type mice, LTKO mice had lower blood glucose levels under both fasting and non-fasting conditions and they manifested better glucose and pyruvate tolerance on regular chow diet. After challenged by a high-fat diet, wild-type mice developed type 2 diabetes, but LTKO mice remained euglycemic and insulin-sensitive. To understand the underlying mechanisms, we examined the roles of SIRT6 (Sirtuin 6 and Gck (glucokinase in the FoxO-mediated glucose metabolism. Interestingly, ectopic expression of SIRT6 in the liver only reduced gluconeogenesis in wild-type but not LTKO mice whereas knockdown of Gck caused glucose intolerance in both wild-type and LTKO mice. The data suggest that both decreased gluconeogenesis and increased glycolysis may contribute to the overall glucose phenotype in the LTKO mice. Collectively, FoxO1/3/4 transcription factors play important roles in hepatic glucose homeostasis.

  5. The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men

    DEFF Research Database (Denmark)

    Pilgaard, K; Jensen, C; Schou, J

    2009-01-01

    h glucose, insulin and glucagon profiles; OGTT; mixed meal test; IVGTT; hyperglycaemic clamp with co-infusion of glucagon-like peptide (GLP)-1 or glucose-dependent insulinotropic polypeptide (GIP); and a euglycaemic-hyperinsulinaemic clamp combined with glucose tracer infusion to study hepatic...... and peripheral insulin action. RESULTS: Carriers of the T allele were characterised by reduced 24 h insulin concentrations (p ...-phase insulinotropic action of GLP-1 (p = 0.03) and GIP (p = 0.07) during a 7 mmol/l hyperglycaemic clamp. Secretion of GLP-1 and GIP during the mixed meal test was normal. Despite elevated hepatic glucose production, carriers of the T allele had significantly reduced 24 h glucagon concentrations (p

  6. Estimation of liver glucose metabolism after refeeding

    International Nuclear Information System (INIS)

    Rognstad, R.

    1987-01-01

    Refeeding or infusing glucose to rats fasted for 24 hr or more causes rapid liver glycogen synthesis, the carbon source now considered to be largely from gluconeogenesis. While substrate cycling between plasma glucose and liver glucose-6P is known to occur, this cycling has apparently been ignored when calculations are made of % contribution of direct and indirect pathways to liver glycogen synthesis, or when hepatic glucose output is calculated from glucose turnover minus the glucose infusion rate. They show that, isotopically, an estimate of the fluxes of liver glucokinase and glucose-6-phosphatase is required to quantitate sources of carbon for liver glycogen synthesis, and to measure hepatic glucose output (or uptake). They propose a method to estimate these fluxes, involving a short infusion of a 14 C labelled gluconeogenic precursor plus (6T)glucose, with determination of isotopic yields in liver glycogen and total glucose. Given also the rate of liver glycogen synthesis, this procedure permits the estimation of net gluconeogenesis and hepatic glucose output or uptake. Also, in vitro evidence against the notion of a drastic zonation of liver carbohydrate metabolism is presented, e.g. raising the glucose concentration from 10 to 25 mM increases the 14 C yield from H 14 CO 3 - in lactate, with the increased pyruvate kinase flux and decreased gluconeogenesis occurring in the same cell type, not opposing pathways in different hepatocyte types (as has been postulated by some to occur in vivo after refeeding

  7. Rare Sugar Syrup Containing d-Allulose but Not High-Fructose Corn Syrup Maintains Glucose Tolerance and Insulin Sensitivity Partly via Hepatic Glucokinase Translocation in Wistar Rats.

    Science.gov (United States)

    Shintani, Tomoya; Yamada, Takako; Hayashi, Noriko; Iida, Tetsuo; Nagata, Yasuo; Ozaki, Nobuaki; Toyoda, Yukiyasu

    2017-04-05

    Ingestion of high-fructose corn syrup (HFCS) is associated with the risk of both diabetes and obesity. Rare sugar syrup (RSS) has been developed by alkaline isomerization of HFCS and has anti-obesity and anti-diabetic effects. However, the influence of RSS on glucose metabolism has not been explored. We investigated whether long-term administration of RSS maintains glucose tolerance and whether the underlying mechanism involves hepatic glucokinase translocation. Wistar rats were administered water, RSS, or HFCS in drinking water for 10 weeks and then evaluated for glucose tolerance, insulin tolerance, liver glycogen content, and subcellular distribution of liver glucokinase. RSS significantly suppressed body weight gain and abdominal fat mass (p glucose tolerance test revealed significantly higher blood glucose levels in the HFCS group compared to the water group, whereas the RSS group had significantly lower blood glucose levels from 90 to 180 min (p water group (p glucose loading, the nuclear export of glucokinase was significantly increased in the RSS group compared to the water group. These results imply that RSS maintains glucose tolerance and insulin sensitivity, at least partly, by enhancing nuclear export of hepatic glucokinase.

  8. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice.

    Science.gov (United States)

    Xiao, Chun; Wu, Qingping; Zhang, Jumei; Xie, Yizhen; Cai, Wen; Tan, Jianbin

    2017-01-20

    Ganoderma lucidum (Lin Zhi) has been used to treat diabetes in Chinese folk for centuries. Our laboratory previously demonstrated that Ganoderma lucidum polysaccharides (GLPs) had hypoglycemic effects in diabetic mice. Our aim was to identify the main bioactives in GLPs and corresponding mechanism of action. Four polysaccharide-enriched fraction were isolated from GLPs and the antidiabetic activities were evaluated by type 2 diabetic mice. Fasting serum glucose (FSG), fasting serum insulin (FSI) and epididymal fat/BW ratio were measured at the end of the experiment. In liver, the mRNA levels of hepatic glucose regulatory enzymes were determined by quantitative polymerase chain reaction (qPCR) and the protein levels of phospho-AMP-activated protein kinase (p-AMPK)/AMPK were determined by western blotting test. In epididymal fat tissue, the mRNA and protein levels GLUT4, resistin, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC1) were determined by qPCR and immuno-histochemistry. The structure of polysaccharide F31 was obtained from GPC, FTIR NMR and GC-MS spectroscopy, RESULTS: F31 significantly decreased FSG (P<0.05), FSI and epididymal fat/BW ratio (P<0.01). In liver, F31 decreased the mRNA levels of hepatic glucose regulatory enzymes, and up-regulated the ratio of phospho-AMP-activated protein kinase (p-AMPK)/AMPK. In epididymal fat tissue, F31 increased the mRNA levels of GLUT4 but decreased fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC1) and resistin. Immuno-histochemistry results revealed F31 increased the protein levels of GLUT4 and decreased resistin. Data suggested that the main bioactives in GLPs was F31, which was determined to be a β-heteropolysaccharide with the weight-average molecular weight of 15.9kDa. The possible action mechanism of F31 may be associated with down-regulation of the hepatic glucose regulated enzyme mRNA levels via AMPK activation, improvement of insulin resistance and decrease of epididymal fat/BW ratio. These

  9. The impact of obesity, sex, and diet on hepatic glucose production in cats.

    Science.gov (United States)

    Kley, Saskia; Hoenig, Margarethe; Glushka, John; Jin, Eunsook S; Burgess, Shawn C; Waldron, Mark; Jordan, Erin T; Prestegard, James H; Ferguson, Duncan C; Wu, Shaoxiong; Olson, Darin E

    2009-04-01

    Obesity is a risk factor for type 2 diabetes in cats. The risk of developing diabetes is severalfold greater for male cats than for females, even after having been neutered early in life. The purpose of this study was to investigate the role of different metabolic pathways in the regulation of endogenous glucose production (EGP) during the fasted state considering these risk factors. A triple tracer protocol using (2)H(2)O, [U-(13)C(3)]propionate, and [3,4-(13)C(2)]glucose was applied in overnight-fasted cats (12 lean and 12 obese; equal sex distribution) fed three different diets. Compared with lean cats, obese cats had higher insulin (P mass index, and girth correlated negatively with EGP (P lean cats and are still capable of maintaining fasting euglycemia, despite the well-documented existence of peripheral insulin resistance in obese cats. Our data further suggest that sex-related differences exist in the regulation of hepatic glucose metabolism in obese cats, suggesting that pyruvate cycling acts as a controlling mechanism to modulate EGP. Increased pyruvate cycling could therefore be an important factor in modulating the diabetes risk in female cats.

  10. Bile Acid Sequestration Reduces Plasma Glucose Levels in db/db Mice by Increasing Its Metabolic Clearance Rate

    NARCIS (Netherlands)

    Meissner, M.; Herrema, H.J.; Dijk, van Th.; Gerding, A.; Havinga, R.; Boer, T.; Müller, M.R.; Reijngoud, D.J.; Groen, A.K.; Kuipers, F.

    2011-01-01

    Aims/Hypothesis: Bile acid sequestrants (BAS) reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels.

  11. Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis.

    Science.gov (United States)

    Gray, Lawrence R; Sultana, Mst Rasheda; Rauckhorst, Adam J; Oonthonpan, Lalita; Tompkins, Sean C; Sharma, Arpit; Fu, Xiaorong; Miao, Ren; Pewa, Alvin D; Brown, Kathryn S; Lane, Erin E; Dohlman, Ashley; Zepeda-Orozco, Diana; Xie, Jianxin; Rutter, Jared; Norris, Andrew W; Cox, James E; Burgess, Shawn C; Potthoff, Matthew J; Taylor, Eric B

    2015-10-06

    Gluconeogenesis is critical for maintenance of euglycemia during fasting. Elevated gluconeogenesis during type 2 diabetes (T2D) contributes to chronic hyperglycemia. Pyruvate is a major gluconeogenic substrate and requires import into the mitochondrial matrix for channeling into gluconeogenesis. Here, we demonstrate that the mitochondrial pyruvate carrier (MPC) comprising the Mpc1 and Mpc2 proteins is required for efficient regulation of hepatic gluconeogenesis. Liver-specific deletion of Mpc1 abolished hepatic MPC activity and markedly decreased pyruvate-driven gluconeogenesis and TCA cycle flux. Loss of MPC activity induced adaptive utilization of glutamine and increased urea cycle activity. Diet-induced obesity increased hepatic MPC expression and activity. Constitutive Mpc1 deletion attenuated the development of hyperglycemia induced by a high-fat diet. Acute, virally mediated Mpc1 deletion after diet-induced obesity decreased hyperglycemia and improved glucose tolerance. We conclude that the MPC is required for efficient regulation of gluconeogenesis and that the MPC contributes to the elevated gluconeogenesis and hyperglycemia in T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Effect of abomasal glucose infusion on splanchnic and whole-body glucose metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism.......Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism....

  13. Effects of an oral insulin nanoparticle administration on hepatic glucose metabolism assessed by 13C and 2H isotopomer analysis

    NARCIS (Netherlands)

    Reis, C.P.; Neufeld, R.; Veiga, F.; Figueiredo, I.V.; Jones, J.; Soares, A.F.; Nunes, P.M.; Damg\\'e, C.; Carvalho, R.A.

    2012-01-01

    The purpose of this study was to evaluate hepatic glucose metabolism of diabetic induced rats after a daily oral load of insulin nanoparticles over 2 weeks. After the 2-week treatment, an oral glucose tolerance test was performed with [U-��C] glucose and �H2O. Plasma glucose �H and ��C enrichments

  14. Changes in Fasting Plasma Glucose Levels with Ribavirin and Pegylated Interferon Treatment in Normal and Impaired Glucose Tolerant Patients with Chronic Hepatitis C

    Science.gov (United States)

    Sarasombath, Ongkarn; Suwantarat, Nuntra; Tice, Alan D

    2012-01-01

    Background Patients with Hepatitis C Virus (HCV) infection have increased rates of glucose intolerance, and studies have shown the improvement of fasting plasma glucose (FPG) levels after clearance of HCV infection with standard ribavirin plus pegylated interferon treatment. The purpose of this study was to examine glycemic changes with standard HCV treatment in patients with impaired fasting glucose (IFG) and normal fasting glucose (NFG). Methods A retrospective study of FPG changes in HCV patients with IFG and NFG treated with standard HCV therapy was conducted. Baseline characteristics and viral responses were assessed; FPG levels before treatment, at the end of treatment, and more than one-month post treatment were compared. Results The mean FPG levels increased by 8.68 mg/dl at the end of treatment in the NFG group but decreased by 9.0 mg/dl in the IFG group, a statistically significant difference (P=0.019). The change in FPG levels remained significantly different after adjusting for weight change (P=0.009) and weight changes and initial weight (P=0.039). FPG change from baseline at more than one month after treatment were similar in both groups (P=0.145). The change in FPG levels was not associated with sustained viral response. Conclusions In HCV-infected patients, standard ribavirin plus pegylated interferon treatment reduced FPG levels in patients with IFG and increased FPG levels in NFG individuals; independent of initial weight, weight change, or viral response. Standard HCV treatment modulates fasting plasma glucose levels which supports the need for a prospective study to determine the clinical significance of this finding. PMID:22737650

  15. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice.

    Science.gov (United States)

    Shih, Chun-Ching; Shlau, Min-Tzong; Lin, Cheng-Hsiu; Wu, Jin-Bin

    2014-03-01

    Momordica charantia Linn. (Cucurbitaceae) fruit is commonly known as bitter melon. C57BL/6J mice were firstly divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% high-fat (HF) diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and still on HF diet and was given orally M. charantia extract (MCE) or rosiglitazone (Rosi) or not for 4 weeks. M. charantia decreased the weights of visceral fat and caused glucose lowering. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. MCE significantly increases the hepatic protein contents of AMPK phosphorylation by 126.2-297.3% and reduces expression of phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Most importantly, MCE decreased expression of hepatic 11beta hydroxysteroid dehydroxygenase (11beta-HSD1) gene, which contributed in attenuating diabetic state. Furthermore, MCE lowered serum triglycerides (TGs) by inhibition of hepatic fatty acid synthesis by dampening sterol response element binding protein 1c and fatty acid synthase mRNA leading to reduction in TGs synthesis. This study demonstrates M. charantia ameliorates diabetic and hyperlipidemic state in HF-fed mice occurred by regulation of hepatic PEPCK, 11beta-HSD1 and AMPK phosphorylation. Copyright © 2013 John Wiley & Sons, Ltd.

  16. The relative importance of kinetic mechanisms and variable enzyme abundances for the regulation of hepatic glucose metabolism--insights from mathematical modeling.

    Science.gov (United States)

    Bulik, Sascha; Holzhütter, Hermann-Georg; Berndt, Nikolaus

    2016-03-02

    Adaptation of the cellular metabolism to varying external conditions is brought about by regulated changes in the activity of enzymes and transporters. Hormone-dependent reversible enzyme phosphorylation and concentration changes of reactants and allosteric effectors are the major types of rapid kinetic enzyme regulation, whereas on longer time scales changes in protein abundance may also become operative. Here, we used a comprehensive mathematical model of the hepatic glucose metabolism of rat hepatocytes to decipher the relative importance of different regulatory modes and their mutual interdependencies in the hepatic control of plasma glucose homeostasis. Model simulations reveal significant differences in the capability of liver metabolism to counteract variations of plasma glucose in different physiological settings (starvation, ad libitum nutrient supply, diabetes). Changes in enzyme abundances adjust the metabolic output to the anticipated physiological demand but may turn into a regulatory disadvantage if sudden unexpected changes of the external conditions occur. Allosteric and hormonal control of enzyme activities allow the liver to assume a broad range of metabolic states and may even fully reverse flux changes resulting from changes of enzyme abundances alone. Metabolic control analysis reveals that control of the hepatic glucose metabolism is mainly exerted by enzymes alone, which are differently controlled by alterations in enzyme abundance, reversible phosphorylation, and allosteric effects. In hepatic glucose metabolism, regulation of enzyme activities by changes of reactants, allosteric effects, and reversible phosphorylation is equally important as changes in protein abundance of key regulatory enzymes.

  17. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance.

    Science.gov (United States)

    Haus, Jacob M; Solomon, Thomas P J; Marchetti, Christine M; Edmison, John M; González, Frank; Kirwan, John P

    2010-01-01

    The objective of the study was to examine the effects of an exercise/diet lifestyle intervention on free fatty acid (FFA)-induced hepatic insulin resistance in obese humans. Obese men and women (n = 23) with impaired glucose tolerance were randomly assigned to either exercise training with a eucaloric (EU; approximately 1800 kcal; n = 11) or hypocaloric (HYPO; approximately 1300 kcal; n = 12) diet for 12 wk. Hepatic glucose production (HGP; milligrams per kilogram fat-free mass(-1) per minute(-1)) and hepatic insulin resistance were determined using a two-stage sequential hyperinsulinemic (40 mU/m(2) . min(-1)) euglycemic (5.0 mm) clamp with [3-(3)H]glucose. Measures were obtained at basal, during insulin infusion (INS; 120 min), and insulin plus intralipid/heparin infusion (INS/FFA; 300 min). At baseline, basal HGP was similar between groups; hyperinsulinemia alone did not completely suppress HGP, whereas INS/FFA exhibited less suppression than INS (EU, 4.6 +/- 0.8, 2.0 +/- 0.5, and 2.6 +/- 0.4; HYPO, 3.8 +/- 0.5, 1.2 +/- 0.3, and 2.3 +/- 0.4, respectively). After the intervention the HYPO group lost more body weight (P HYPO: -50 +/- 20%, before vs. after, P = 0.02). In contrast, the ability of insulin to overcome FFA-induced hepatic insulin resistance and HGP was improved only in the HYPO group (EU: -15 +/- 24% vs. HYPO: -58 +/- 19%, P = 0.02). Both lifestyle interventions are effective in reducing hepatic insulin resistance under basal and hyperinsulinemic conditions. However, the reversal of FFA-induced hepatic insulin resistance is best achieved with a combined exercise/caloric-restriction intervention.

  18. Genetic ablation of phosphatidylcholine transfer protein/StarD2 in ob/ob mice improves glucose tolerance without increasing energy expenditure.

    Science.gov (United States)

    Krisko, Tibor I; LeClair, Katherine B; Cohen, David E

    2017-03-01

    Phosphatidylcholine transfer protein (PC-TP; synonym StarD2) is highly expressed in liver and oxidative tissues. PC-TP promotes hepatic glucose production during fasting and aggravates glucose intolerance in high fat fed mice. However, because PC-TP also suppresses thermogenesis in brown adipose tissue (BAT), its direct contribution to obesity-associated diabetes in mice remains unclear. Here we examined the effects of genetic PC-TP ablation on glucose homeostasis in leptin-deficient ob/ob mice, which exhibit both diabetes and altered thermoregulation. Mice lacking both PC-TP and leptin (Pctp -/- ;ob/ob) were prepared by crossing Pctp -/- with ob/+ mice. Glucose homeostasis was assessed by standard assays, and energy expenditure was determined by indirect calorimetry using a comprehensive laboratory animal monitoring system, which also recorded physical activity and food intake. Body composition was determined by NMR and hepatic lipids by enzymatic assays. Core body temperature was measured using a rectal thermocouple probe. Pctp -/- ;ob/ob mice demonstrated improved glucose homeostasis, as evidenced by markedly improved glucose and pyruvate tolerance tests, without changes in insulin tolerance. However, there were no differences in EE at any ambient temperature. There were also no effects of PC-TP expression on physical activity, food intake or core body temperature. Improved glucose tolerance in Pctp -/- ;ob/ob mice in the absence of increases in energy expenditure or core body temperature indicates a direct pathogenic role for PC-TP in diabetes in leptin deficient mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Increased muscle glucose uptake after exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ploug, Thorkil; Galbo, Henrik

    1985-01-01

    responsiveness of glucose uptake was noted only in controls. Analysis of intracellular glucose-6-phosphate, glucose, glycogen synthesis, and glucose transport suggested that the exercise effect on responsiveness might be due to enhancement of glucose disposal. After electrical stimulation of diabetic...... of glucose. At maximal insulin concentrations, the enhancing effect of exercise on glucose uptake may involve enhancement of glucose disposal, an effect that is probably less in muscle from diabetic rats.(ABSTRACT TRUNCATED AT 250 WORDS)......It has recently been shown that insulin sensitivity of skeletal muscle glucose uptake and glycogen synthesis is increased after a single exercise session. The present study was designed to determine whether insulin is necessary during exercise for development of these changes found after exercise...

  20. A novel method for sensitive, low-cost and portable detection of hepatitis B surface antigen using a personal glucose meter.

    Science.gov (United States)

    Taebi, Saeed; Keyhanfar, Mehrnaz; Noorbakhsh, Abdollah

    2018-04-12

    Hepatitis B virus (HBV) infection is the major public health problem leading cause of death worldwide. The most important diagnostic marker for this infection is hepatitis B surface antigen (HBsAg). In this study, a novel, inexpensive, portable and sensitive ELISA method was designed and investigated for diagnosis of HBsAg based on the functionalized Fe 3 O 4 and Al 2 O 3 nanoparticles, with the strategy for detecting the concentration of glucose using a cheap and accessible personal glucose meter (PGM). The ELISA system was constructed using hepatitis B antibody against HBsAg immobilized on streptavidin coated magnetic iron oxide particles (S-Fe 3 O 4 ) as the capture antibody (Ab 1 ). In addition, another hepatitis B antibody against different epitope of HBsAg (Ab 2 ) and glucoamylase both were immobilized on Al 2 O 3 nanoparticles. After formation of the sandwich immune complex between Ab 1 and Ab 2 immobilized on S-Fe 3 O 4 and Al 2 O 3 NPs, respectively, through HBsAg, starch was converted into glucose using glucoamylase. Then, the glucose concentration was measured using PGM. The concentration of HBsAg was calculated based on the linear relation between the concentrations of HBsAg and glucose. Under optimal conditions, this assay showed detection limit values of 0.3 to 0.4 ng ml -1 for "ay" and "ad" subtypes of HBsAg, respectively. The results indicate that the designed assay is comparable to the commercial kits in terms of sensitivity, on-site, specificity, cost, simplicity, portability and reproducibility. The presented method can be used in disadvantaged areas of the world and blood transfusion centers. To the best of our knowledge, this is the first report of using PGMs for HBSAg detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice.

    Science.gov (United States)

    Penhoat, Armelle; Fayard, Laetitia; Stefanutti, Anne; Mithieux, Gilles; Rajas, Fabienne

    2014-01-01

    Similar to the liver and kidneys, the intestine has been strongly suggested to be a gluconeogenic organ. However, the precise contribution of the intestine to endogenous glucose production (EGP) remains to be determined. To define the quantitative role of intestinal gluconeogenesis during long-term fasting, we compared changes in blood glucose during prolonged fasting in mice with a liver-deletion of the glucose-6 phosphatase catalytic (G6PC) subunit (LKO) and in mice with a combined deletion of G6PC in both the liver and the intestine (ILKO). The LKO and ILKO mice were studied after 6h and 40 h of fasting by measuring metabolic and hormonal plasmatic parameters, as well as the expression of gluconeogenic enzymes in the liver, kidneys and intestine. After a transient hypoglycemic episode (approximately 60 mg/dL) because of their incapacity to mobilize liver glycogen, the LKO mice progressively re-increased their plasma glucose to reach a glycemia comparable to that of wild-type mice (90 mg/dL) from 30 h of fasting. This increase was associated with a rapid induction of renal and intestinal gluconeogenic gene expression, driven by glucagon, glucocorticoids and acidosis. The ILKO mice exhibited a similar induction of renal gluconeogenesis. However, these mice failed to re-increase their glycemia and maintained a plasma glucose level of only 60 mg/dL throughout the 48 h-fasting period. These data indicate that intestinal glucose production is essential to maintain glucose homeostasis in the absence of hepatic glucose production during fasting. These data provide a definitive quantitative estimate of the capacity of intestinal gluconeogenesis to sustain EGP during long-term fasting. © 2013.

  2. Prebiotic Fiber Increases Hepatic Acetyl CoA Carboxylase Phosphorylation and Suppresses Glucose-Dependent Insulinotropic Polypeptide Secretion More Effectively When Used with Metformin in Obese Rats1,2

    Science.gov (United States)

    Pyra, Kim A.; Saha, Dolan C.; Reimer, Raylene A.

    2013-01-01

    Independently, metformin (MET) and the prebiotic, oligofructose (OFS), have been shown to increase glucagon-like peptide (GLP-1) secretion. Our objective was to determine whether using OFS as an adjunct with MET augments GLP-1 secretion in obese rats. Male, diet-induced obese Sprague Dawley rats were randomized to: 1) high-fat/-sucrose diet [HFHS; control (C); 20% fat, 50% sucrose wt:wt]; 2) HFHS+10% OFS (OFS); 3) HFHS + MET [300 mg/kg/d (MET)]; 4) HFHS+10% OFS+MET (OFS +MET). Body composition, glycemia, satiety hormones, and mechanisms related to dipeptidyl peptidase 4 (DPP4) activity in plasma, hepatic AMP-activated protein kinase (AMPK; Western blots), and gut microbiota (qPCR) were examined. Direct effects of MET and SCFA were examined in human enteroendocrine cells. The interaction between OFS and MET affected fat mass, hepatic TG, secretion of glucose-dependent insulinotropic polypeptide (GIP) and leptin, and AMPKα2 mRNA and phosphorylated acetyl CoA carboxylase (pACC) levels (P < 0.05). Combined, OFS and MET reduced GIP secretion to a greater extent than either treatment alone (P < 0.05). The hepatic pACC level was increased by OFS+MET by at least 50% above all other treatments, which did not differ from each other (P < 0.05). OFS decreased plasma DPP4 activity (P < 0.001). Cecal Bifidobacteria (P < 0.001) were markedly increased and C. leptum decreased (P < 0.001) with OFS consumption. In human enteroendocrine cells, the interaction between MET and SCFA affected GLP-1 secretion (P < 0.04) but was not associated with higher GLP-1 than the highest individual doses. In conclusion, the combined actions of OFS and MET were associated with important interaction effects that have the potential to improve metabolic outcomes associated with obesity. PMID:22223580

  3. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis.

    Science.gov (United States)

    Mehta, Minal B; Shewale, Swapnil V; Sequeira, Raymond N; Millar, John S; Hand, Nicholas J; Rader, Daniel J

    2017-06-23

    Maintenance of whole-body glucose homeostasis is critical to glycemic function. Genetic variants mapping to chromosome 8p23.1 in genome-wide association studies have been linked to glycemic traits in humans. The gene of known function closest to the mapped region, PPP1R3B (protein phosphatase 1 regulatory subunit 3B), encodes a protein (G L ) that regulates glycogen metabolism in the liver. We therefore sought to test the hypothesis that hepatic PPP1R3B is associated with glycemic traits. We generated mice with either liver-specific deletion ( Ppp1r3b Δ hep ) or liver-specific overexpression of Ppp1r3b The Ppp1r3b deletion significantly reduced glycogen synthase protein abundance, and the remaining protein was predominantly phosphorylated and inactive. As a consequence, glucose incorporation into hepatic glycogen was significantly impaired, total hepatic glycogen content was substantially decreased, and mice lacking hepatic Ppp1r3b had lower fasting plasma glucose than controls. The concomitant loss of liver glycogen impaired whole-body glucose homeostasis and increased hepatic expression of glycolytic enzymes in Ppp1r3b Δ hep mice relative to controls in the postprandial state. Eight hours of fasting significantly increased the expression of two critical gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, above the levels in control livers. Conversely, the liver-specific overexpression of Ppp1r3b enhanced hepatic glycogen storage above that of controls and, as a result, delayed the onset of fasting-induced hypoglycemia. Moreover, mice overexpressing hepatic Ppp1r3b upon long-term fasting (12-36 h) were protected from blood ketone-body accumulation, unlike control and Ppp1r3b Δ hep mice. These findings indicate a major role for Ppp1r3b in regulating hepatic glycogen stores and whole-body glucose/energy homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Central effects of humanin on hepatic triglyceride secretion.

    Science.gov (United States)

    Gong, Zhenwei; Su, Kai; Cui, Lingguang; Tas, Emir; Zhang, Ting; Dong, H Henry; Yakar, Shoshana; Muzumdar, Radhika H

    2015-08-01

    Humanin (HN) is an endogenous mitochondria-associated peptide that has been shown to protect against various Alzheimer's disease-associated insults, myocardial ischemia-reperfusion injury, and reactive oxygen species-induced cell death. We have shown previously that HN improves whole body glucose homeostasis by improving insulin sensitivity and increasing glucose-stimulated insulin secretion (GSIS) from the β-cells. Here, we report that intraperitoneal treatment with one of HN analogs, HNG, decreases body weight gain, visceral fat, and hepatic triglyceride (TG) accumulation in high-fat diet-fed mice. The decrease in hepatic TG accumulation is due to increased activity of hepatic microsomal triglyceride transfer protein (MTTP) and increased hepatic TG secretion. Both intravenous (iv) and intracerebroventricular (icv) infusion of HNG acutely increase TG secretion from the liver. Vagotomy blocks the effect on both iv and icv HNG on TG secretion, suggesting that the effects of HNG on hepatic TG flux are centrally mediated. Our data suggest that HN is a new player in central regulation of peripheral lipid metabolism. Copyright © 2015 the American Physiological Society.

  5. Erythrocytes 125I-Insulin Binding Studies in Viral Hepatitis and Schistosomiasis Patients

    International Nuclear Information System (INIS)

    Ahmed, A.M.

    2003-01-01

    The present study aims to evaluate the alterations of insulin binding sites in human erythrocytes in patients with chronic viral B and C hepatitis and in schistosomiasis. Fifty men with ages ranged from 20-45 years were diagnosed into five groups; hepatitis B virus, hepatitis C virus, mixed hepatitis B and C, schistosomiasis and normal healthy volunteers as a control group. Biochemical analyses as erythrocyte insulin radioreceptor, plasma insulin estimation, fasting and post prandial blood glucose levels and liver function tests were performed. The results revealed significant decrease in insulin binding sites/cell in patients with hepatitis C virus, mixed B and C viruses and in schistosomiasis compared to the control group. There were significant increase in fasting plasma glucose levels in groups of hepatitis C virus mixed B and C viruses, while there were highly significant increase in post prandial plasma glucose levels in patients with mixed B and C viruses and in schistosomiasis groups compared to the normal control. Also, fasting plasma insulin levels were significantly elevated in groups of hepatitis C mixed B and C viruses and in schistosomiasis group. The obtained results revealed the importance of laboratory follow up of glucose and insulin levels in patients with chronic liver diseases

  6. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice.

    Directory of Open Access Journals (Sweden)

    Jingbo Pang

    Full Text Available Obesity and type 2 diabetes are associated with increased production of Galectin-3 (Gal-3, a protein that modulates inflammation and clearance of glucose adducts. We used Lean and Diet-induced Obese (DIO WT and Gal-3 KO mice to investigate the role of Gal-3 in modulation of adiposity, glucose metabolism and inflammation. Deficiency of Gal-3 lead to age-dependent development of excess adiposity and systemic inflammation, as indicated by elevated production of acute-phase proteins, number of circulating pro-inflammatory Ly6C(high monocytes and development of neutrophilia, microcytic anemia and thrombocytosis in 20-week-old Lean and DIO male Gal-3 KO mice. This was associated with impaired fasting glucose, heightened response to a glucose tolerance test and reduced adipose tissue expression of adiponectin, Gal-12, ATGL and PPARγ, in the presence of maintained insulin sensitivity and hepatic expression of gluconeogenic enzymes in 20-week-old Gal-3 KO mice compared to their diet-matched WT controls. Expression of PGC-1α and FGF-21 in the liver of Lean Gal-3 KO mice was comparable to that observed in DIO animals. Impaired fasting glucose and altered responsiveness to a glucose load preceded development of excess adiposity and systemic inflammation, as demonstrated in 12-week-old Gal-3 KO mice. Finally, a role for the microflora in mediating the fasting hyperglycemia, but not the excessive response to a glucose load, of 12-week-old Gal-3 KO mice was demonstrated by administration of antibiotics. In conclusion, Gal-3 is an important modulator of glucose metabolism, adiposity and inflammation.

  7. Effect of adrenaline on glucose kinetics during exercise in adrenalectomised humans

    DEFF Research Database (Denmark)

    Howlett, K.; Galbo, Henrik; Lorentsen, J.

    1999-01-01

    for 45 min at 68 +/- 1 % maximum pulmonary O2 uptake (VO2,max), followed by 15 min at 84 +/- 2 % VO2, max without (-ADR) or with (+ADR) adrenaline infusion, which elevated plasma adrenaline levels (45 min, 4.49 +/- 0.69 nmol l-1; 60 min, 12.41 +/- 1.80 nmol l-1; means +/- s.e.m.). Glucose kinetics were...... measured using [3-3H]glucose. 3. Euglycaemia was maintained during exercise in CON and -ADR, whilst in +ADR plasma glucose was elevated. The exercise-induced increase in hepatic glucose production was similar in +ADR and -ADR; however, adrenaline infusion augmented the rise in hepatic glucose production...... early in exercise. Glucose uptake increased during exercise in +ADR and -ADR, but was lower and metabolic clearance rate was reduced in +ADR. 4. During exercise noradrenaline and glucagon concentrations increased, and insulin and cortisol concentrations decreased, but plasma levels were similar between...

  8. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Xuan Xia

    2011-02-01

    Full Text Available Berberine (BBR is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French. It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK and Glucose-6-phosphatase (G6Pase, were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1, sterol regulatory element-binding protein 1c (SREBP1 and carbohydrate responsive element-binding protein (ChREBP were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway.

  9. Roux-en-Y Gastric Bypass Surgery Suppresses Hepatic Gluconeogenesis and Increases Intestinal Gluconeogenesis in a T2DM Rat Model.

    Science.gov (United States)

    Yan, Yong; Zhou, Zhou; Kong, Fanzhi; Feng, Suibin; Li, Xuzhong; Sha, Yanhua; Zhang, Guangjun; Liu, Haijun; Zhang, Haiqing; Wang, Shiguang; Hu, Cheng; Zhang, Xueli

    2016-11-01

    Roux-en-Y gastric bypass (RYGB) is an effective surgical treatment for type 2 diabetes mellitus (T2DM). The present study aimed to investigate the effects of RYGB on glucose homeostasis, lipid metabolism, and intestinal morphological adaption, as well as hepatic and intestinal gluconeogenesis. Twenty adult male T2DM rats induced by high-fat diet and low dose of streptozotocin were randomly divided into sham and RYGB groups. The parameters of body weight, food intake, glucose tolerance, insulin sensitivity, and serum lipid profiles were assessed to evaluate metabolic changes. Intestinal sections were stained with hematoxylin and eosin (H&E) for light microscopy examination. The messenger RNA (mRNA) and protein expression levels of key regulatory enzymes of gluconeogenesis [phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase)] were determined through reverse-transcription PCR (RT-PCR) and Western blotting, respectively. RYGB induced significant improvements in glucose tolerance and insulin sensitivity, along with weight loss and decreased food intake. RYGB also decreased serum triglyceride (TG) and free fatty acid (FFA) levels. The jejunum and ileum exhibited a marked increase in the length and number of intestinal villi after RYGB. The RYGB group exhibited downregulated mRNA and protein expression levels of PEPCK and G6Pase in the liver and upregulated expression of these enzymes in the jejunum and ileum tissues. RYGB ameliorates glucose and lipid metabolism accompanied by weight loss and calorie restriction. The small intestine shows hyperplasia and hypertrophy after RYGB. Meanwhile, our study demonstrated that the reduced hepatic gluconeogenesis and increased intestinal gluconeogenesis may contribute to improved glucose homeostasis after RYGB.

  10. Pathways of hepatic glycogen formation in humans following ingestion of a glucose load in the fed state

    International Nuclear Information System (INIS)

    Magnusson, I.; Chandramouli, V.; Schumann, W.C.; Kumaran, K.; Wahren, J.; Landau, B.R.

    1989-01-01

    The relative contributions of the direct and the indirect pathways to hepatic glycogen formation following a glucose load given to humans four hours after a substantial breakfast have been examined. Glucose loads labeled with [6-( 14 )C]glucose were given to six healthy volunteers along with diflunisal (1 g) or acetaminophen (1.5 g), drugs excreted in urine as glucuronides. Distribution of 14 C in the glucose unit of the glucuronide was taken as a measure of the extent to which glucose was deposited directly in liver glycogen (ie, glucose----glucose-6-phosphate----glycogen) rather than indirectly (ie, glucose----C3-compound----glucose-6-phosphate----glycogen). The maximum contribution to glycogen formation by the direct pathway was estimated to be 77% +/- 4%, which is somewhat higher than previous estimates in humans fasted overnight (65% +/- 1%, P less than 0.05). Thus, the indirect pathway of liver glycogen formation following a glucose load is operative in both the overnight fasted and the fed state, although its contribution may be somewhat less in the fed state

  11. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Steven D Kunkel

    Full Text Available Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II, blood vessel recruitment (Vegfa and autocrine/paracrine IGF-I signaling (Igf1. As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  12. Magnetic bead/capture DNA/glucose-loaded nanoliposomes for amplifying the glucometer signal in the rapid screening of hepatitis C virus RNA.

    Science.gov (United States)

    Tu, Haijian; Lin, Kun; Lun, Yongzhi; Yu, Liuming

    2018-06-01

    A digital detection strategy based on a portable personal glucometer (PGM) was developed for the simple, rapid, and sensitive detection of hepatitis C virus (HCV) RNA, involving the release of glucose-loaded nanoliposomes due to coupling-site-specific cleavage by the endonuclease BamHI. The glucose-loaded nanoliposomes were synthesized using a reversed-phase evaporation method and provided an amplified signal at the PGM in the presence of HCV RNA. Initially, a 21-mer oligonucleotide complementary to HCV RNA was covalently conjugated to a magnetic bead through the amino group at the 5' end of the oligonucleotide, and then bound to a glucose-loaded liposome by typical carbodiimide coupling at its 3' end. In the presence of the target HCV RNA, the target hybridized with the oligonucleotide to form double-stranded DNA. The symmetrical duplex sequence 5'-GGATCC-3' between guanines was then catalytically cleaved by BamHI, which detached the glucose-loaded liposome from the magnetic bead. Following magnetic separation of the bead, the detached glucose-loaded liposome was lysed using Triton X-100 to release the glucose molecules within it, which were then detected as an amplified signal at the digital PGM. Under optimal conditions, the PGM signal increased with increasing HCV RNA, and displayed a strongly linear dependence on the level of HCV RNA for concentrations ranging from 10 pM to 1.0 μM. The detection limit (LOD) of the system was 1.9 pM. Good reproducibility and favorable specificity were achieved in the analysis of the target HCV RNA. Human serum samples containing HCV RNA were analyzed using this strategy, and the developed sensing platform was observed to yield satisfactory results based on a comparison with the corresponding results from a Cobas ® Amplicor HCV Test Analyzer. Graphical abstract A digital detection strategy utilizing a personal glucometer was developed for the detection of hepatitis C virus RNA. The strategy involved the use of the

  13. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.

    Science.gov (United States)

    Monetti, Mara; Levin, Malin C; Watt, Matthew J; Sajan, Mini P; Marmor, Stephen; Hubbard, Brian K; Stevens, Robert D; Bain, James R; Newgard, Christopher B; Farese, Robert V; Hevener, Andrea L; Farese, Robert V

    2007-07-01

    Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, in the liver (Liv-DGAT2 mice). Liv-DGAT2 mice developed hepatic steatosis, with increased amounts of TG, diacylglycerol, ceramides, and unsaturated long-chain fatty acyl-CoAs in the liver. However, they had no abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, rates of glucose infusion and hepatic glucose production during hyperinsulinemic-euglycemic clamp studies, or activities of insulin-stimulated signaling proteins in the liver. DGAT1 overexpression in the liver also failed to induce glucose or insulin intolerance. Our results indicate that DGAT-mediated lipid accumulation in the liver is insufficient to cause insulin resistance and show that hepatic steatosis can occur independently of insulin resistance.

  14. Modulation of hepatic inflammation and energy-sensing pathways in the rat liver by high-fructose diet and chronic stress.

    Science.gov (United States)

    Veličković, Nataša; Teofilović, Ana; Ilić, Dragana; Djordjevic, Ana; Vojnović Milutinović, Danijela; Petrović, Snježana; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-29

    High-fructose consumption and chronic stress are both associated with metabolic inflammation and insulin resistance. Recently, disturbed activity of energy sensor AMP-activated protein kinase (AMPK) was recognized as mediator between nutrient-induced stress and inflammation. Thus, we analyzed the effects of high-fructose diet, alone or in combination with chronic stress, on glucose homeostasis, inflammation and expression of energy sensing proteins in the rat liver. In male Wistar rats exposed to 9-week 20% fructose diet and/or 4-week chronic unpredictable stress we measured plasma and hepatic corticosterone level, indicators of glucose homeostasis and lipid metabolism, hepatic inflammation (pro- and anti-inflammatory cytokine levels, Toll-like receptor 4, NLRP3, activation of NFκB, JNK and ERK pathways) and levels of energy-sensing proteins AMPK, SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). High-fructose diet led to glucose intolerance, activation of NFκB and JNK pathways and increased intrahepatic IL-1β, TNFα and inhibitory phosphorylation of insulin receptor substrate 1 on Ser 307 . It also decreased phospho-AMPK/AMPK ratio and increased SIRT1 expression. Stress alone increased plasma and hepatic corticosterone but did not influence glucose tolerance, nor hepatic inflammatory or energy-sensing proteins. After the combined treatment, hepatic corticosterone was increased, glucose tolerance remained preserved, while hepatic inflammation was partially prevented despite decreased AMPK activity. High-fructose diet resulted in glucose intolerance, hepatic inflammation, decreased AMPK activity and reduced insulin sensitivity. Chronic stress alone did not exert such effects, but when applied together with high-fructose diet it could partially prevent fructose-induced inflammation, presumably due to increased hepatic glucocorticoids.

  15. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    Science.gov (United States)

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Changes in hepatic glucose and lipid metabolism-related parameters in domestic pigeon (Columba livia) during incubation and chick rearing.

    Science.gov (United States)

    Wan, X P; Xie, P; Bu, Z; Zou, X T

    2018-04-01

    This study aimed to evaluate the hepatic glucose and lipid metabolism-related parameters of adult male and female White King pigeons (Columba livia) during incubation and chick rearing. At day 4 (I4), 10 (I10) and 17 (I17) of incubation and day 1 (R1), 7 (R7), 15 (R15) and 25 (R25) of chick rearing, livers were sampled from six pigeons for each sex. Glycogen and fat contents, activities of glycolytic enzymes (hexokinase, HK; 6-phosphofructokinase, 6-PFK), and genes expressions of key enzymes involved in glycolysis (pyruvate kinase, PK; glucokinase, GK), gluconeogenesis (phosphoenolpyruvate carboxykinase cytosolic, PCK1; fructose-1,6-bisphosphatase, FBP1; glucose-6-phosphatase, G6Pase), fatty acid synthesis (fatty acid synthase, FAS; acetyl-CoA carboxylase, ACC) and fatty acid β-oxidation (carnitine palmitoyltransferase 1, CPT1; acyl-CoA 1, ACO) were measured. In male and female pigeon livers, glycogen content and HK activity dramatically increased after I17 and after R1, respectively; expressions of FBP1 and G6Pase genes were maximized at R15; activity of 6-PFK and expressions of PK and CPT1 genes were highest at R7; fat content and expressions of FAS and ACC genes steeply increased from I10 to R1. In females, hepatic expressions of GK and PCK1 genes were greatest at R7 and I17, respectively; however, in males, both of them were maximized at R15. Hepatic expression of ACO gene was significantly enhanced at R1 compared to I17 and R7 in males, whereas it was notably up-regulated at I17 and R7 in females. Furthermore, expressions of PCK1, GK, FAS and ACC genes were in significant relation to fat content in the livers of female pigeons, while fat content in male pigeons was highly correlated with expression of PCK1, ACC, CPT1 and ACO genes. In conclusion, regulations of glucose and lipid metabolic processes were enhanced in parent pigeon livers from terminal phases of incubation to mid phase of chick rearing with sexual effects. © 2017 Blackwell Verlag GmbH.

  17. The Action of Antidiabetic Plants of the Canadian James Bay Cree Traditional Pharmacopeia on Key Enzymes of Hepatic Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Abir Nachar

    2013-01-01

    Full Text Available We determined the capacity of putative antidiabetic plants used by the Eastern James Bay Cree (Canada to modulate key enzymes of gluconeogenesis and glycogen synthesis and key regulating kinases. Glucose-6-phosphatase (G6Pase and glycogen synthase (GS activities were assessed in cultured hepatocytes treated with crude extracts of seventeen plant species. Phosphorylation of AMP-dependent protein kinase (AMPK, Akt, and Glycogen synthase kinase-3 (GSK-3 were probed by Western blot. Seven of the seventeen plant extracts significantly decreased G6Pase activity, Abies balsamea and Picea glauca, exerting an effect similar to insulin. This action involved both Akt and AMPK phosphorylation. On the other hand, several plant extracts activated GS, Larix laricina and A. balsamea, far exceeding the action of insulin. We also found a significant correlation between GS stimulation and GSK-3 phosphorylation induced by plant extract treatments. In summary, three Cree plants stand out for marked effects on hepatic glucose homeostasis. P. glauca affects glucose production whereas L. laricina rather acts on glucose storage. However, A. balsamea has the most promising profile, simultaneously and powerfully reducing G6Pase and stimulating GS. Our studies thus confirm that the reduction of hepatic glucose production likely contributes to the therapeutic potential of several antidiabetic Cree traditional medicines.

  18. Optimal glucose management in the perioperative period.

    Science.gov (United States)

    Evans, Charity H; Lee, Jane; Ruhlman, Melissa K

    2015-04-01

    Hyperglycemia is a common finding in surgical patients during the perioperative period. Factors contributing to poor glycemic control include counterregulatory hormones, hepatic insulin resistance, decreased insulin-stimulated glucose uptake, use of dextrose-containing intravenous fluids, and enteral and parenteral nutrition. Hyperglycemia in the perioperative period is associated with increased morbidity, decreased survival, and increased resource utilization. Optimal glucose management in the perioperative period contributes to reduced morbidity and mortality. To readily identify hyperglycemia, blood glucose monitoring should be instituted for all hospitalized patients. Published by Elsevier Inc.

  19. Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming.

    Science.gov (United States)

    Choi, Kevin; Weber, Jean-Michel

    2016-03-15

    This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise. Copyright © 2016 the American Physiological Society.

  20. Hepatic Insulin Resistance and Altered Gluconeogenic Pathway in Premature Baboons.

    Science.gov (United States)

    McGill-Vargas, Lisa; Gastaldelli, Amalia; Liang, Hanyu; Anzueto Guerra, Diana; Johnson-Pais, Teresa; Seidner, Steven; McCurnin, Donald; Muscogiuri, Giovanna; DeFronzo, Ralph; Musi, Nicolas; Blanco, Cynthia

    2017-05-01

    Premature infants have altered glucose regulation early in life and increased risk for diabetes in adulthood. Although prematurity leads to an increased risk of diabetes and metabolic syndrome in adult life, the role of hepatic glucose regulation and adaptation to an early extrauterine environment in preterm infants remain unknown. The purpose of this study was to investigate developmental differences in glucose metabolism, hepatic protein content, and gene expression of key insulin-signaling/gluconeogenic molecules. Fetal baboons were delivered at 67%, 75%, and term gestational age and euthanized at birth. Neonatal baboons were delivered prematurely (67% gestation), survived for two weeks, and compared with similar postnatal term animals and underwent serial hyperinsulinemic-euglycemic clamp studies. Premature baboons had decreased endogenous glucose production (EGP) compared with term animals. Consistent with these results, the gluconeogenic molecule, phosphoenolpyruvate carboxykinase messenger RNA, was decreased in preterm baboons compared with terms. Hepatic insulin signaling was altered by preterm birth as evidenced by decreased insulin receptor-β, p85 subunit of phosphoinositide 3-kinase, phosphorylated insulin receptor substrate 1, and Akt-1 under insulin-stimulated conditions. Furthermore, preterm baboons failed to have the normal increase in glycogen synthase kinase-α from fetal to postnatal life. The blunted responses in hepatic insulin signaling may contribute to the hyperglycemia of prematurity, while impaired EGP leads to hypoglycemia of prematurity. Copyright © 2017 Endocrine Society.

  1. Inverse association between liver fat content and hepatic glucose uptake in patients with type 2 diabetes mellitus

    NARCIS (Netherlands)

    Borra, Ronald; Lautamaki, Riikka; Parkkola, Riitta; Komu, Markku; Sijens, Paul E.; Hallsten, Kirstl; Bergman, Jorgen; Iozzo, Patricia; Nuutila, Pirjo

    2008-01-01

    The objective of this research was to study (1) the mutual relationship between liver fat content (LFC) and hepatic glucose uptake (HGU) in patients with type 2 diabetes mellitus and (2) the relationship between changes in LFC and HGU uptake induced by rosiglitazone in these patients. Liver fat was

  2. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    Science.gov (United States)

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Human monoclonal antibodies against glucagon receptor improve glucose homeostasis by suppression of hepatic glucose output in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Wook-Dong Kim

    Full Text Available AIM: Glucagon is an essential regulator of hepatic glucose production (HGP, which provides an alternative therapeutic target for managing type 2 diabetes with glucagon antagonists. We studied the effect of a novel human monoclonal antibody against glucagon receptor (GCGR, NPB112, on glucose homeostasis in diet-induced obese (DIO mice. METHODS: The glucose-lowering efficacy and safety of NPB112 were investigated in DIO mice with human GCGR for 11 weeks, and a hyperinsulinemic-euglycemic clamp study was conducted to measure HGP. RESULTS: Single intraperitoneal injection of NPB112 with 5 mg/kg effectively decreased blood glucose levels in DIO mice for 5 days. A significant reduction in blood glucose was observed in DIO mice treated with NPB112 at a dose ≥5 mg/kg for 6 weeks, and its glucose-lowering effect was dose-dependent. Long-term administration of NPB112 also caused a mild 29% elevation in glucagon level, which was returned to the normal range after discontinuation of treatment. The clamp study showed that DIO mice injected with NPB112 at 5 mg/kg were more insulin sensitive than control mice, indicating amelioration of insulin resistance by treatment with NPB112. DIO mice treated with NPB112 showed a significant improvement in the ability of insulin to suppress HGP, showing a 33% suppression (from 8.3 mg/kg/min to 5.6 mg/kg/min compared to the 2% suppression (from 9.8 mg/kg/min to 9.6 mg/kg/min in control mice. In addition, no hypoglycemia or adverse effect was observed during the treatment. CONCLUSIONS: A novel human monoclonal GCGR antibody, NPB112, effectively lowered the glucose level in diabetic animal models with mild and reversible hyperglucagonemia. Suppression of excess HGP with NPB112 may be a promising therapeutic modality for the treatment of type 2 diabetes.

  4. Assessment of the antidiabetic potential of selected medicinal plants using in vitro bioassays of muscle glucose transport and liver glucose production

    DEFF Research Database (Denmark)

    Beidokhti, M N; Sanchez Villavicencio, M L; Eid, H M

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is the most common type of diabetes mellitus. It is caused by decreased insulin sensitivity in target organs like liver, muscle and adipose tissue, and/or a deficiency in insulin secretion. In T2DM, increased hepatic glucose output and decreased glucose uptake by s...

  5. Prediction of net hepatic release of glucose using a “hybrid” mechanistic model in ruminants applied to positive energy balance

    OpenAIRE

    Bahloul, Lahlou; Ortigues, Isabelle; Vernet, Jean; Lapierre, Helène; Noziere, Pierre; Sauvant, Daniel

    2013-01-01

    Ruminants depend on hepatic gluconeogenesis to meet most of their metabolic demand for glucose which relies on availability of precursors from diet supply and animal requirements (Loncke et al., 2010). Several mechanistic models of the metabolic fate of nutrients across the liver exist that have been parameterized for dairy cows. They cannot be directly used to predict hepatic gluconeogenesis in all types of ruminants in different physiological status. A hybrid mechanistic model of nutrient f...

  6. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2

    DEFF Research Database (Denmark)

    Hogan, Meghan F; Ravnskjaer, Kim; Matsumura, Shigenobu

    2015-01-01

    and dephosphorylation of the cAMP regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where...... increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite...... accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis....

  7. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    Science.gov (United States)

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Postprandial hyperglycemia in patients with noninsulin-dependent diabetes mellitus. Role of hepatic and extrahepatic tissues

    International Nuclear Information System (INIS)

    Firth, R.G.; Bell, P.M.; Marsh, H.M.; Hansen, I.; Rizza, R.A.

    1986-01-01

    Patients with noninsulin-dependent diabetes mellitus (NIDDM) have both preprandial and postprandial hyperglycemia. To determine the mechanism responsible for the postprandial hyperglycemia, insulin secretion, insulin action, and the pattern of carbohydrate metabolism after glucose ingestion were assessed in patients with NIDDM and in matched nondiabetic subjects using the dual isotope and forearm catheterization techniques. Prior to meal ingestion, hepatic glucose release was increased (P less than 0.001) in the diabetic patients measured using [2- 3 H] or [3- 3 H] glucose. After meal ingestion, patients with NIDDM had excessive rates of systemic glucose entry (1,316 +/- 56 vs. 1,018 +/- 65 mg/kg X 7 h, P less than 0.01), primarily owing to a failure to suppress adequately endogenous glucose release (680 +/- 50 vs. 470 +/- 32 mg/kg X 7 h, P less than 0.01) from its high preprandial level. Despite impaired suppression of endogenous glucose production during a hyperinsulinemic glucose clamp (P less than 0.001) and decreased postprandial C-peptide response (P less than 0.05) in NIDDM, percent suppression of hepatic glucose release after oral glucose was comparable in the diabetic and nondiabetic subjects (45 +/- 3 vs. 39 +/- 2%). Although new glucose formation from meal-derived three-carbon precursors (53 +/- 3 vs. 40 +/- 7 mg/kg X 7 h, P less than 0.05) was greater in the diabetic patients, it accounted for only a minor part of this excessive postprandial hepatic glucose release. Postprandial hyperglycemia was exacerbated by the lack of an appropriate increase in glucose uptake whether measured isotopically or by forearm glucose uptake. Thus excessive hepatic glucose release and impaired glucose uptake are involved in the pathogenesis of postprandial hyperglycemia in patients with NIDDM

  9. Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs

    International Nuclear Information System (INIS)

    Altszuler, N.; Puma, F.; Winkler, B.; Fontan, N.; Saudek, C.D.

    1986-01-01

    Infusion of oxytocin into normal dogs increases plasma levels of insulin and glucagon and glucose production and uptake. To determine whether infused oxytocin also increases glucagon secretion from extrapancreatic sites, pancreatectomized dogs, off insulin of 18 hr, were infused with oxytocin and plasma glucagon, and glucose production and uptake were measured using the [6- 3 H]glucose primer-infusion technique. The diabetic dogs, in the control period, had elevated plasma glucose and glucagon levels, an increased rate of glucose production, and a relative decrease in glucose uptake (decreased clearance). Infusion of oxytocin (500 μU/kg/min) caused a rise in plasma glucagon and glucose levels, increased glucose production, and further decreased glucose clearance. it is concluded that oxytocin can stimulate secretion of extrapancreatic glucagon, which contributes to the increased glucose production

  10. Chapter 10: Glucose control: insulin therapy*

    African Journals Online (AJOL)

    Insulin and its analogues lower blood glucose by stimulating peripheral glucose uptake, especially by skeletal muscle and fat, and by inhibiting hepatic glucose production. Insulin inhibits ... control on 2 or 3 oral glucose lowering drugs.

  11. Regulation of energy substrate utilization and hepatic insulin sensitivity by phosphatidylcholine transfer protein/StarD2.

    Science.gov (United States)

    Scapa, Erez F; Pocai, Alessandro; Wu, Michele K; Gutierrez-Juarez, Roger; Glenz, Lauren; Kanno, Keishi; Li, Hua; Biddinger, Sudha; Jelicks, Linda A; Rossetti, Luciano; Cohen, David E

    2008-07-01

    Phosphatidylcholine transfer protein (PC-TP, also known as StarD2) is a highly specific intracellular lipid binding protein with accentuated expression in oxidative tissues. Here we show that decreased plasma concentrations of glucose and free fatty acids in fasting PC-TP-deficient (Pctp(-/-)) mice are attributable to increased hepatic insulin sensitivity. In hyperinsulinemic-euglycemic clamp studies, Pctp(-/-) mice exhibited profound reductions in hepatic glucose production, gluconeogenesis, glycogenolysis, and glucose cycling. These changes were explained in part by the lack of PC-TP expression in liver per se and in part by marked alterations in body fat composition. Reduced respiratory quotients in Pctp(-/-) mice were indicative of preferential fatty acid utilization for energy production in oxidative tissues. In the setting of decreased hepatic fatty acid synthesis, increased clearance rates of dietary triglycerides and increased hepatic triglyceride production rates reflected higher turnover in Pctp(-/-) mice. Collectively, these data support a key biological role for PC-TP in the regulation of energy substrate utilization.

  12. Hepatic Expression of Adenovirus 36 E4ORF1 Improves Glycemic Control and Promotes Glucose Metabolism Through AKT Activation.

    Science.gov (United States)

    McMurphy, Travis B; Huang, Wei; Xiao, Run; Liu, Xianglan; Dhurandhar, Nikhil V; Cao, Lei

    2017-02-01

    Considering that impaired proximal insulin signaling is linked with diabetes, approaches that enhance glucose disposal independent of insulin signaling are attractive. In vitro data indicate that the E4ORF1 peptide derived from human adenovirus 36 (Ad36) interacts with cells from adipose tissue, skeletal muscle, and liver to enhance glucose disposal, independent of proximal insulin signaling. Adipocyte-specific expression of Ad36E4ORF1 improves hyperglycemia in mice. To determine the hepatic interaction of Ad36E4ORF1 in enhancing glycemic control, we expressed E4ORF1 of Ad36 or Ad5 or fluorescent tag alone by using recombinant adeno-associated viral vector in the liver of three mouse models. In db/db or diet-induced obesity (DIO) mice, hepatic expression of Ad36E4ORF1 but not Ad5E4ORF1 robustly improved glycemic control. In normoglycemic wild-type mice, hepatic expression of Ad36E4ORF1 lowered nonfasting blood glucose at a high dose of expression. Of note, Ad36E4ORF1 significantly reduced insulin levels in db/db and DIO mice. The improvement in glycemic control was observed without stimulation of the proximal insulin signaling pathway. Collectively, these data indicate that Ad36E4ORF1 is not a typical sensitizer, mimetic, or secretagogue of insulin. Instead, it may have insulin-sparing action, which seems to reduce the need for insulin and, hence, to reduce insulin levels. © 2017 by the American Diabetes Association.

  13. Decreased serum glucose and glycosylated hemoglobin levels in patients with Chuvash polycythemia: a role for HIF in glucose metabolism

    Science.gov (United States)

    McClain, Donald A.; Abuelgasim, Khadega A.; Nouraie, Mehdi; Salomon-Andonie, Juan; Niu, Xiaomei; Miasnikova, Galina; Polyakova, Lydia A.; Sergueeva, Adelina; Okhotin, Daniel J.; Cherqaoui, Rabia; Okhotin, David; Cox, James E.; Swierczek, Sabina; Song, Jihyun; Simon, M.Celeste; Huang, Jingyu; Simcox, Judith A.; Yoon, Donghoon; Prchal, Josef T.; Gordeuk, Victor R.

    2012-01-01

    In Chuvash polycythemia, a homozygous 598C>T mutation in the von Hippel-Lindau gene (VHL) leads to an R200W substitution in VHL protein, impaired degradation of α-subunits of hypoxia inducible factor (HIF)-1 and HIF-2, and augmented hypoxic responses during normoxia. Chronic hypoxia of high altitude is associated with decreased serum glucose and insulin concentrations. Other investigators reported that HIF-1 promotes cellular glucose uptake by increased expression of GLUT1 and increased glycolysis by increased expression of enzymes such as PDK. On the other hand, inactivation of Vhl in murine liver leads to hypoglycemia associated with a HIF-2-related decrease in the expression of the gluconeogenic enzymes genes Pepck, G6pc, and Glut2. We therefore hypothesized that glucose concentrations are decreased in individuals with Chuvash polycythemia. We found that 88 Chuvash VHLR200W homozygotes had lower random glucose and glycosylated hemoglobin A1c levels than 52 Chuvash subjects with wildtype VHL alleles. Serum metabolomics revealed higher glycerol and citrate levels in the VHLR200W homozygotes. We expanded these observations in VHLR200W homozygote mice and found that they had lower fasting glucose values and lower glucose excursions than wild-type control mice but no change in fasting insulin concentrations. Hepatic expression of Glut2 and G6pc but not Pdk2 was decreased and skeletal muscle expression of Glut1, Pdk1 and Pdk4 was increased. These results suggest that both decreased hepatic gluconeogenesis and increased skeletal uptake and glycolysis contribute to the decreased glucose concentrations. Further study is needed to determine whether pharmacologically manipulating HIF expression might be beneficial for treatment of diabetic patients. PMID:23015148

  14. Is Insulin Action in the Brain Relevant in Regulating Blood Glucose in Humans?

    Science.gov (United States)

    Dash, Satya; Xiao, Changting; Morgantini, Cecilia; Koulajian, Khajag; Lewis, Gary F

    2015-07-01

    In addition to its direct action on the liver to lower hepatic glucose production, insulin action in the central nervous system (CNS) also lowers hepatic glucose production in rodents after 4 hours. Although CNS insulin action (CNSIA) modulates hepatic glycogen synthesis in dogs, it has no net effect on hepatic glucose output over a 4-hour period. The role of CNSIA in regulating plasma glucose has recently been examined in humans and is the focus of this review. Intransal insulin (INI) administration increases CNS insulin concentration. Hence, INI can address whether CNSIA regulates plasma glucose concentration in humans. We and three other groups have sought to answer this question, with differing conclusions. Here we will review the critical aspects of each study, including its design, which may explain these discordant conclusions. The early glucose-lowering effect of INI is likely due to spillover of insulin into the systemic circulation. In the presence of simultaneous portal and CNS hyperinsulinemia, portal insulin action is dominant. INI administration does lower plasma glucose independent of peripheral insulin concentration (between ∼3 and 6 h after administration), suggesting that CNSIA may play a role in glucose homeostasis in the late postprandial period when its action is likely greatest and portal insulin concentration is at baseline. The potential physiological role and purpose of this pathway are discussed in this review. Because the effects of INI are attenuated in patients with type 2 diabetes and obesity, this is unlikely to be of therapeutic utility.

  15. Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats

    Science.gov (United States)

    Kou, Hao; Wang, Gui-hua; Pei, Lin-guo; Zhang, Li; Shi, Chai; Guo, Yu; Wu, Dong-fang; Wang, Hui

    2017-12-01

    Epidemiological evidences show that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR). The IUGR offspring also present glucose intolerance and type 2 diabetes mellitus after maturity. We have previously demonstrated that PCE induced IUGR and increased susceptibility to adult metabolic syndrome in rats. This study aimed to further investigate the effects of PCE on glucose homeostasis in adult offspring rats. Pregnant rats were administered caffeine (120 mg/kg/day, intragastrically) from gestational days 11 to 20. PCE offspring presented partial catch-up growth pattern after birth, characterizing by the increased body weight gain rates. Meanwhile, PCE had no significant influences on the basal blood glucose and insulin phenotypes of adult offspring but increased the glucose tolerance, glucose-stimulated insulin section and β cell sensitivity to glucose in female progeny. The insulin sensitivity of both male and female PCE offspring were enhanced accompanied with reduced β cell fraction and mass. Western blotting results revealed that significant augmentation in protein expression of hepatic insulin signaling elements of PCE females, including insulin receptor (INSR), insulin receptor substrate 1 (IRS-1) and the phosphorylation of serine-threonine protein kinase (Akt), was also potentiated. In conclusion, we demonstrated that PCE reduced the pancreatic β mass but increased the glucose tolerance in adult offspring rats, especially for females. The adaptive compensatory enhancement of β cell responsiveness to glucose and elevated insulin sensitivity mainly mediated by upregulated hepatic insulin signaling might coordinately contribute to the increased glucose tolerance.

  16. Impaired basal glucose effectiveness but unaltered fasting glucose release and gluconeogenesis during short-term hypercortisolemia in healthy subjects

    DEFF Research Database (Denmark)

    Nielsen, Michael F; Caumo, Andrea; Chandramouli, Visvanathan

    2004-01-01

    Excess cortisol has been demonstrated to impair hepatic and extrahepatic insulin action. To determine whether glucose effectiveness and, in terms of endogenous glucose release (EGR), gluconeogenesis, also are altered by hypercortisolemia, eight healthy subjects were studied after overnight infusion...... resistance. Postabsorptive glucose production (P = 0.64) and the fractional....... Hepatic GE was lower during cortisol than during saline infusion (2.39 +/- 0.24 vs. 3.82 +/- 0.51 ml.kg-1.min-1; P

  17. Diminished hepatic insulin removal in obesity

    International Nuclear Information System (INIS)

    Cano, I.; Salvador, J.; Rodriguez, R.; Arraiza, M.C.; Goena, M.; Barberia, J.J.; Moncada, E.

    1986-01-01

    Peripheral insulin and C-peptide levels during oral glucose load were measured in 20 obese and 23 normal weight nondiabetic subjects. The fasting C-peptide to insulin molar ratios (Cp/I), as well as the relation between incremental areas of the two polypeptides (ACp-AI)/ACp, were used as relative measures of the hepatic insulin extraction (HIE). The insulin and C-peptide basal levels as well as incremental areas under plasma curves were higher in the obese subjects (P<0.001). HIE was lower in obeses than in controls assessed in the fasting state (P<0.05), as well as after glucose load (P<0.001). Nevertheless, obeses and controls with similar insulin fasting levels showed identical hepatic insulin extraction in fasting or after glucose load. HIE was independent of obesity degree, but was related to insulin basal levels (r=-0.60, P<0.01). This study suggests the hypothesis that the decreased hepatic insulin extraction in obeses is a result of the chronically increased insulin delivery to the liver and is not a consequence of obesity, although a contributory role cannot be ruled out

  18. Diminished hepatic insulin removal in obesity

    Energy Technology Data Exchange (ETDEWEB)

    Cano, I; Salvador, J; Rodriguez, R; Arraiza, M C; Goena, M; Barberia, J J; Moncada, E

    1986-01-01

    Peripheral insulin and C-peptide levels during oral glucose load were measured in 20 obese and 23 normal weight nondiabetic subjects. The fasting C-peptide to insulin molar ratios (Cp/I), as well as the relation between incremental areas of the two polypeptides (ACp-AI)/ACp, were used as relative measures of the hepatic insulin extraction (HIE). The insulin and C-peptide basal levels as well as incremental areas under plasma curves were higher in the obese subjects (P<0.001). HIE was lower in obeses than in controls assessed in the fasting state (P<0.05), as well as after glucose load (P<0.001). Nevertheless, obeses and controls with similar insulin fasting levels showed identical hepatic insulin extraction in fasting or after glucose load. HIE was independent of obesity degree, but was related to insulin basal levels (r=-0.60, P<0.01). This study suggests the hypothesis that the decreased hepatic insulin extraction in obeses is a result of the chronically increased insulin delivery to the liver and is not a consequence of obesity, although a contributory role cannot be ruled out.

  19. A review of metabolism of labeled glucoses for use in measuring glucose recycling

    International Nuclear Information System (INIS)

    Russell, R.W.; Young, J.W.

    1990-01-01

    The fate of tritium from each carbon of D-glucose and the metabolism of L-glucose and 2-deoxy-D-glucose are known. Differences in metabolism of labeled glucoses can be used to quantify physical and chemical recycling of glucose. Only physical recycling is measured by [1- 3 H]-L-glucose, whereas [U- 14 C]-D-glucose measures total recycling. The difference between [1- 3 H]-L-glucose and [U- 14 C]-D-glucose, therefore, is chemical recycling. Recycling from extracellular binding sites and hepatic glucose 6-phosphate can be measured by difference between [1,2- 3 H]-2-deoxy-D-glucose and [1- 3 H]-L-glucose, and the difference in irreversible loss of the two will measure extrahepatic uptake of D-glucose. Recycling via Cori-alanine cycle plus CO 2 is the difference in irreversible loss measured by using [6- 3 H]-glucose and [U- 14 C]-D-glucose. Recycling via the hexose monophosphate pathway can be determined by difference in irreversible loss between [1- 3 H]-D-glucose and [6- 3 H]-D-glucose. Recycling via CO 2 and glycerol must be measured directly with [U- 14 C]glucose, bicarbonate, and glycerol. Recycling via hepatic glycogen can be estimated by subtracting all other measured chemical recycling from total chemical recycling. This review describes means to quantify glucose recycling in vivo, enabling studies of mechanisms for conservation and utilization of glucose. 54 references

  20. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Bojsen-Møller, Kirstine N; Dirksen, Carsten; Jørgensen, Nils Bruun

    2014-01-01

    after RYGB. Participants were included after a preoperative diet induced total weight loss of -9.2±1.2%. Hepatic and peripheral insulin sensitivity were assessed using the hyperinsulinemic euglycemic clamp combined with glucose tracer technique and beta-cell function evaluated in response...... after surgery. Insulin mediated glucose disposal and suppression of fatty acids did not improve immediately after surgery but increased at 3 months and 1 year likely related to the reduction in body weight. Insulin secretion increased after RYGB, but only in patients with type 2 diabetes and only...

  1. Autonomic regulation of hepatic glucose production

    NARCIS (Netherlands)

    Bisschop, Peter H.; Fliers, Eric; Kalsbeek, Andries

    2015-01-01

    Glucose produced by the liver is a major energy source for the brain. Considering its critical dependence on glucose, it seems only natural that the brain is capable of monitoring and controlling glucose homeostasis. In addition to neuroendocrine pathways, the brain uses the autonomic nervous system

  2. Effects of hydroalcoholic extract of Rhus coriaria seed on glucose and insulin related biomarkers, lipid profile, and hepatic enzymes in nicotinamide-streptozotocin-induced type II diabetic male mice.

    Science.gov (United States)

    Ahangarpour, Akram; Heidari, Hamid; Junghani, Majid Salehizade; Absari, Reza; Khoogar, Mehdi; Ghaedi, Ehsan

    2017-10-01

    Type 2 diabetes often leads to dislipidemia and abnormal activity of hepatic enzymes. The purpose of this study was to evaluate the antidiabetic and hypolipidemic properties of Rhus coriaria ( R. coriaria ) seed extrac on nicotinamide-streptozotocin induced type 2 diabetic mice. In this experimental study, 56 male Naval Medical Research Institute mice (30-35 g) were randomly separated into seven groups: control, diabetic group, diabetic mice treated with glibenclamide (0.25 mg/kg, as standard antidiabetic drug) or R. coriaria seed extract in doses of 200 and 300 mg/kg, and control groups received these two doses of extract orally for 28 days. Induction of diabetes was done by intraperitoneal injection of nicotinamide and streptozotocin. Ultimately, body weight of mice, blood levels of glucose, insulin, hepatic enzymes, leptin, and lipid profile were assayed. After induction of type 2 diabetes, level of glucose, cholesterol, low density lipoprotein, serum glutamic oxaloacetic transaminase, and serum glutamic pyruvic transaminase increased and level of insulin and high density lipoprotein decreased remarkably. Administration of both doses of extract decreased level of glucose and cholesterol significantly in diabetic mice. LDL level decreased in treated group with dose of 300 mg/kg of the extract. Although usage of the extract improved level of other lipid profiles, insulin and hepatic enzymes, changes weren't significant. This study showed R. coriaria seeds administration has a favorable effect in controlling some blood parameters in type 2 diabetes. Therefore it may be beneficial in the treatment of diabetes.

  3. ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis.

    Science.gov (United States)

    Tsai, Wen-Wei; Matsumura, Shigenobu; Liu, Weiyi; Phillips, Naomi G; Sonntag, Tim; Hao, Ergeng; Lee, Soon; Hai, Tsonwin; Montminy, Marc

    2015-03-03

    Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways.

  4. Endozepine-4 levels are increased in hepatic coma.

    Science.gov (United States)

    Malaguarnera, Giulia; Vacante, Marco; Drago, Filippo; Bertino, Gaetano; Motta, Massimo; Giordano, Maria; Malaguarnera, Michele

    2015-08-14

    To evaluate the serum levels of endozepine-4, their relation with ammonia serum levels, the grading of coma and the severity of cirrhosis, in patients with hepatic coma. In this study we included 20 subjects with Hepatic coma, 20 subjects with minimal hepatic encephalopathy (MHE) and 20 subjects control. All subjects underwent blood analysis, Child Pugh and Model for End - stage liver disease (MELD) assessment, endozepine-4 analysis. Subjects with hepatic coma showed significant difference in endozepine-4 (P blood ammonia concentration was noted to be raised in patients with hepatic coma, with the highest ammonia levels being found in those who were comatose. We also found a high correlation between endozepine-4 and ammonia (P < 0.001). In patients with grade IV hepatic coma, endozepine levels were significantly higher compared to other groups. This study suggests that an increased level of endozepine in subjects with higher levels of MELD was observed. In conclusion, data concerning involvement of the GABA-ergic system in HE coma could be explained by stage-specific alterations.

  5. Evolution of hepatic glucose metabolism: liver-specific glucokinase deficiency explained by parallel loss of the gene for glucokinase regulatory protein (GCKR.

    Directory of Open Access Journals (Sweden)

    Zhao Yang Wang

    Full Text Available Glucokinase (GCK plays an important role in the regulation of carbohydrate metabolism. In the liver, phosphorylation of glucose to glucose-6-phosphate by GCK is the first step for both glycolysis and glycogen synthesis. However, some vertebrate species are deficient in GCK activity in the liver, despite containing GCK genes that appear to be compatible with function in their genomes. Glucokinase regulatory protein (GCKR is the most important post-transcriptional regulator of GCK in the liver; it participates in the modulation of GCK activity and location depending upon changes in glucose levels. In experimental models, loss of GCKR has been shown to associate with reduced hepatic GCK protein levels and activity.GCKR genes and GCKR-like sequences were identified in the genomes of all vertebrate species with available genome sequences. The coding sequences of GCKR and GCKR-like genes were identified and aligned; base changes likely to disrupt coding potential or splicing were also identified.GCKR genes could not be found in the genomes of 9 vertebrate species, including all birds. In addition, in multiple mammalian genomes, whereas GCKR-like gene sequences could be identified, these genes could not predict a functional protein. Vertebrate species that were previously reported to be deficient in hepatic GCK activity were found to have deleted (birds and lizard or mutated (mammals GCKR genes. Our results suggest that mutation of the GCKR gene leads to hepatic GCK deficiency due to the loss of the stabilizing effect of GCKR.

  6. Rho, a Fraction From Rhodiola crenulate, Ameliorates Hepatic Steatosis in Mice Models

    Directory of Open Access Journals (Sweden)

    Qin Yi

    2018-03-01

    Full Text Available The prevalence of non-alcoholic fatty liver disease (NAFLD, which is developed from hepatic steatosis, is increasing worldwide. However, no specific drugs for NAFLD have been approved yet. To observe the effects of Rho, a fraction from Rhodiola crenulate, on non-alcoholic hepatic steatosis, three mouse models with characteristics of NAFLD were used including high-fat diet (HFD-induced obesity (DIO mice, KKAy mice, and HFD combined with tetracycline stimulated Model-T mice. Hepatic lipid accumulation was determined via histopathological analysis and/or hepatic TG determination. The responses to insulin were evaluated by insulin tolerance test (ITT, glucose tolerance test (GTT, and hyperinsulinemic-euglycemic clamp, respectively. The pathways involved in hepatic lipid metabolism were observed via western-blot. Furthermore, the liver microcirculation was observed by inverted microscopy. The HPLC analysis indicated that the main components of Rho were flavan polymers. The results of histopathological analysis showed that Rho could ameliorate hepatic steatosis in DIO, KKAy, and Model-T hepatic steatosis mouse models, respectively. After Rho treatment in DIO mice, insulin resistance was improved with increasing glucose infusion rate (GIR in hyperinsulinemic-euglycemic clamp, and decreasing areas under the blood glucose-time curve (AUC in both ITT and GTT; the pathways involved in fatty acid uptake and de novo lipogenesis were both down-regulated, respectively. However, the pathways involved in beta-oxidation and VLDL-export on hepatic steatosis were not changed significantly. The liver microcirculation disturbances were also improved by Rho in DIO mice. These results suggest that Rho is a lead nature product for hepatic steatosis treatment. The mechanism is related to enhancing insulin sensitivity, suppressing fatty acid uptake and inhibiting de novo lipogenesis in liver.

  7. Proximity to Delivery Alters Insulin Sensitivity and Glucose Metabolism in Pregnant Mice.

    Science.gov (United States)

    Musial, Barbara; Fernandez-Twinn, Denise S; Vaughan, Owen R; Ozanne, Susan E; Voshol, Peter; Sferruzzi-Perri, Amanda N; Fowden, Abigail L

    2016-04-01

    In late pregnancy, maternal insulin resistance occurs to support fetal growth, but little is known about insulin-glucose dynamics close to delivery. This study measured insulin sensitivity in mice in late pregnancy at day 16 (D16) and near term at D19. Nonpregnant (NP) and pregnant mice were assessed for metabolite and hormone concentrations, body composition by DEXA, tissue insulin signaling protein abundance by Western blotting, glucose tolerance and utilization, and insulin sensitivity using acute insulin administration and hyperinsulinemic-euglycemic clamps with [(3)H]glucose infusion. Whole-body insulin resistance occurred in D16 pregnant dams in association with basal hyperinsulinemia, insulin-resistant endogenous glucose production, and downregulation of several proteins in hepatic and skeletal muscle insulin signaling pathways relative to NP and D19 values. Insulin resistance was less pronounced at D19, with restoration of NP insulin concentrations, improved hepatic insulin sensitivity, and increased abundance of hepatic insulin signaling proteins. At D16, insulin resistance at whole-body, tissue, and molecular levels will favor fetal glucose acquisition, while improved D19 hepatic insulin sensitivity will conserve glucose for maternal use in anticipation of lactation. Tissue sensitivity to insulin, therefore, alters differentially with proximity to delivery in pregnant mice, with implications for human and other species. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Hepatic and cerebral energy metabolism after neonatal canine alimentation.

    Science.gov (United States)

    Kliegman, R M; Miettinen, E L; Morton, S K

    1983-04-01

    Intrahepatic and intracerebral metabolic responses to neonatal fasting or enteric carbohydrate alimentation were investigated among newborn dogs. Pups were either fasted or given an intravenous glucose infusion (alimented) before an enteric feeding of physiologic quantities of either glucose or galactose. These pups were also compared to another group which was completely starved throughout the study period. Gastrointestinal carbohydrate feeding resulted in enhanced hepatic glycogen content among pups after a prior state of fasting. Though there were no differences of glycogen content between glucose or galactose feeding in this previously fasted group, combined intravenous glucose and enteric galactose administration produced the greatest effect on hepatic glycogen synthesis. Intrahepatic fructose 1, 6-diphosphate and phosphoenolpyruvate levels were increased among previously fasted pups fed enteric monosaccharides compared to completely starved control pups, whereas intrahepatic phosphoenolpyruvate and pyruvate levels were elevated after combined intravenous and enteric carbohydrate administration. Of greater interest was the observation that hepatic levels of ATP were significantly elevated among all groups given exogenous carbohydrates compared to the completely starved control group. In contrast to the augmented hepatic glycogen and ATP levels, there were no alterations of cerebral glycogen or ATP after alimentation. Nevertheless, cerebral pyruvate and/or phosphoenolpyruvate concentrations were elevated after enteric or combined intravenous and enteric alimentation compared to the totally starved control pups.

  10. Comparison of 3H-galactose and 3H-glucose as precursors of hepatic glycogen in control-fed rats

    International Nuclear Information System (INIS)

    Michaels, J.E.; Garfield, S.A.; Hung, J.T.; Cardell, R.R. Jr.

    1989-01-01

    Labeling of hepatic glycogen derived from 3H-galactose and 3H-glucose was compared shortly after intravenous injection in control-fed rats. The rats were allowed to accumulate 5-8% glycogen prior to receiving label. Fifteen minutes to 2 hours after labeling, liver was excised and processed for routine light (LM) and electron microscopic (EM) radioautography (RAG) or biochemical analysis. After injection of 3H-galactose, LM-RAGs revealed that the percentage of heavily labeled hepatocytes increased from 37% after 15 minutes to 68% after 1 hour but showed no further increase after 2 hours. alpha-Amylase treatment removed most glycogen and incorporated label; thus few silver grains were observed, indicating little incorporation of label except into glycogen. EM-RAGs demonstrated that most label occurred where glycogen was located. Biochemical analysis showed initially a high blood level of label that rapidly plateaued at a reduced level by 5 minutes. Concomitantly, glycogen labeling determined by liquid scintillation counting reflected the increases observed in the RAGs. After injection of 3H-glucose, LM-RAGs revealed that only 12% of the hepatocytes were heavily labeled at 1 hour and 20% at 2 hours. In tissue treated with alpha-amylase, glycogen was depleted and label was close to background level at each interval observed. EM-RAGs showed most grains associated with glycogen deposits. Biochemically, blood levels of label persisted at a high level for 30 minutes and tissue levels increased slowly over the 2-hour period. This study shows that incorporation from 3H-galactose was more rapid than incorporation of 3H-glucose; however, label derived from both carbohydrates appeared to be incorporated mainly into glycogen

  11. Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Yihan Zhang

    2016-01-01

    Full Text Available Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R after high (25 mM or low (5.5 mM glucose culture. Cell viability, reactive oxygen species (ROS, and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2 and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.

  12. Combined supplementation of carbohydrate, alanine, and proline is effective in maintaining blood glucose and increasing endurance performance during long-term exercise in mice.

    Science.gov (United States)

    Nogusa, Yoshihito; Mizugaki, Ami; Hirabayashi-Osada, Yuri; Furuta, Chie; Ohyama, Kana; Suzuki, Katsuya; Kobayashi, Hisamine

    2014-01-01

    Carbohydrate supplementation is extremely important during prolonged exercise because it maintains blood glucose levels during later stages of exercise. In this study, we examined whether maintaining blood glucose levels by carbohydrate supplementation could be enhanced during long-term exercise by combining this supplementation with alanine and proline, which are gluconeogenic amino acids, and whether such a combination would affect exercise endurance performance. Male C57BL/6J mice were orally administered either maltodextrin (1.25 g/kg) or maltodextrin (1.0 g/kg) with alanine (0.225 g/kg) and proline (0.025 g/kg) 15 min before running for 170 min. Combined supplementation of maltodextrin, alanine, and proline induced higher blood glucose levels than isocaloric maltodextrin alone during the late exercise phase (100-170 min). The hepatic glycogen content of mice administered maltodextrin, alanine, and proline was higher than that of mice ingesting maltodextrin alone 60 min after beginning exercise, but the glycogen content of the gastrocnemius muscle showed no difference. We conducted a treadmill running test to determine the effect of alanine and proline on endurance performance. The test showed that running time to exhaustion of mice that were supplemented with maltodextrin (2.0 g/kg) was longer than that of mice that were supplemented with water alone. Maltodextrin supplementation (1.0 g/kg) with alanine (0.9 g/kg) and proline (0.1 g/kg) further increased running time to exhaustion compared to maltodextrin alone (2.0 g/kg). These results indicate that combined supplementation of carbohydrate, alanine, and proline is effective for maintaining blood glucose and hepatic glycogen levels and increasing endurance performance during long-term exercise in mice.

  13. Effects of glucose ingestion on hepatic hemodynamics in patients with liver disease by per-rectal portal scintigraphy using 99mTcO4- (direct intramural administration of radioisotope method)

    International Nuclear Information System (INIS)

    Tetsuka, Isando; Ohe, Takashi; Harada, Takashi

    1992-01-01

    Effect of glucose (225 ml, 300 kcal) ingestion on hepatic hemodynamics was studied in ten patients with liver cirrhosis and eight patients with non cirrhotic liver disease by per-rectal portal scintigraphy using 99m TcO 4 - (direct intramural administration of radioisotope method). Initial portal blood flow index (IP) and collateral index (CI) were calculated from the time activity curve of heart and liver. The value of IP was not significantly changed between before and after glucose ingestion in cases of liver cirrhosis (before: 0.0160±0.0016, after: 0.0204±0.0106). In cases of non cirrhotic liver disease, the value of IP was significantly increased after glucose ingestion (before: 0.0381±0.0145, after: 0.0544±0.0194, p<0.02). These findings suggested increase in portal blood flow via inferior mesenteric vein to the cardiac blood flow. The value of CI before glucose ingestion was significantly increased in cases of liver cirrhosis (0.751±0.156) compared with that in cases of non cirrhotic liver disease (0.517±0.122), but no significant difference in values after glucose ingestion was found between these two groups. (author)

  14. The effect of altitude hypoxia on glucose homeostasis in men

    DEFF Research Database (Denmark)

    Larsen, J J; Hansen, J M; Olsen, Niels Vidiendal

    1997-01-01

    1. Exposure to altitude hypoxia elicits changes in glucose homeostasis with increases in glucose and insulin concentrations within the first few days at altitude. Both increased and unchanged hepatic glucose production (HGP) have previously been reported in response to acute altitude hypoxia...... (noradrenaline and adrenaline) and day 7 (adrenaline), but not at sea level. 4. In conclusion, insulin action decreases markedly in response to two days of altitude hypoxia, but improves with more prolonged exposure. HGP is always unchanged. The changes in insulin action may in part be explained by the changes...

  15. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats.

    Directory of Open Access Journals (Sweden)

    Anette I Öberg

    Full Text Available BACKGROUND: There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin, plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE: Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.

  16. Branched chain enriched amino acid versus glucose treatment of hepatic encephalopathy. A double-blind study of 65 patients with cirrhosis

    DEFF Research Database (Denmark)

    Vilstrup, Hendrik; Gluud, C; Hardt, F

    1990-01-01

    We studied the effects of infusion of a branched chain enriched amino acid mixture versus glucose on acute hepatic encephalopathy in patients with cirrhosis. Sixty-five patients were randomly treated with 1 g/kg per day of an amino acid mixture with 40% branched chain contents (32 patients...

  17. Insulin secretion and incretin hormones after oral glucose in non-obese subjects with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Rask, E; Olsson, T; Söderberg, S

    2004-01-01

    of glucose, insulin, C-peptide, GLP-1, and GIP. Insulin secretion (TIS) and insulin sensitivity (OGIS) were assessed using models describing the relationship between glucose, insulin and C-peptide data. These models allowed estimation also of the hepatic extraction of insulin. The age (54.2 +/- 9.7 [mean......Subjects with impaired glucose tolerance (IGT) are usually overweight and exhibit insulin resistance with a defective compensation of insulin secretion. In this study, we sought to establish the interrelation between insulin secretion and insulin sensitivity after oral glucose in non-obese subjects...... over the whole 180-minute period was higher in IGT (26.2 +/- 2.4 v 20.0 +/- 2.0 nmol/L; P =.035). Hepatic insulin extraction correlated linearly with OGIS (r = 0.71; P

  18. Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-03-01

    Full Text Available Objective: Recently, we have shown that Bezafibrate (BEZ, the pan-PPAR (peroxisome proliferator-activated receptor activator, ameliorated diabetes in insulin deficient streptozotocin treated diabetic mice. In order to study whether BEZ can also improve glucose metabolism in a mouse model for fatty liver and type 2 diabetes, the drug was applied to TallyHo mice. Methods: TallyHo mice were divided into an early (ED and late (LD diabetes progression group and both groups were treated with 0.5% BEZ (BEZ group or standard diet (SD group for 8 weeks. We analyzed plasma parameters, pancreatic beta-cell morphology, and mass as well as glucose metabolism of the BEZ-treated and control mice. Furthermore, liver fat content and composition as well as hepatic gluconeogenesis and mitochondrial mass were determined. Results: Plasma lipid and glucose levels were markedly reduced upon BEZ treatment, which was accompanied by elevated insulin sensitivity index as well as glucose tolerance, respectively. BEZ increased islet area in the pancreas. Furthermore, BEZ treatment improved energy expenditure and metabolic flexibility. In the liver, BEZ ameliorated steatosis, modified lipid composition and increased mitochondrial mass, which was accompanied by reduced hepatic gluconeogenesis. Conclusions: Our data showed that BEZ ameliorates diabetes probably via reduced steatosis, enhanced hepatic mitochondrial mass, improved metabolic flexibility and elevated hepatic insulin sensitivity in TallyHo mice, suggesting that BEZ treatment could be beneficial for patients with NAFLD and impaired glucose metabolism. Keywords: Bezafibrate, Glucose metabolism, Insulin resistance, Lipid metabolism, NAFLD

  19. Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis.

    Science.gov (United States)

    Lee, Ji-Min; Seo, Woo-Young; Han, Hye-Sook; Oh, Kyoung-Jin; Lee, Yong-Soo; Kim, Don-Kyu; Choi, Seri; Choi, Byeong Hun; Harris, Robert A; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2016-01-01

    The role of a glucagon/cAMP-dependent protein kinase-inducible coactivator PGC-1α signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner-interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis. Here, we show that hepatic SMILE expression was induced by feeding in normal mice but not in db/db and high-fat diet (HFD)-fed mice. Interestingly, SMILE expression was induced by insulin in mouse primary hepatocyte and liver. Hepatic SMILE expression was not altered by refeeding in liver-specific insulin receptor knockout (LIRKO) or PKB β-deficient (PKBβ(-/-)) mice. At the molecular level, SMILE inhibited hepatocyte nuclear factor 4-mediated transcriptional activity via direct competition with PGC-1α. Moreover, ablation of SMILE augmented gluconeogenesis and increased blood glucose levels in mice. Conversely, overexpression of SMILE reduced hepatic gluconeogenic gene expression and ameliorated hyperglycemia and glucose intolerance in db/db and HFD-fed mice. Therefore, SMILE is an insulin-inducible corepressor that suppresses hepatic gluconeogenesis. Small molecules that enhance SMILE expression would have potential for treating hyperglycemia in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Clinical features of male patients with alcoholic liver cirrhosis or hepatitis B cirrhosis complicated by abnormal glucose metabolism

    Directory of Open Access Journals (Sweden)

    CHEN Qidan

    2016-02-01

    Full Text Available ObjectiveTo investigate the clinical features of male patients with alcoholic liver cirrhosis (ALC or hepatitis B cirrhosis (HBC complicated by abnormal glucose metabolism. MethodsA total of 287 patients with liver cirrhosis who were admitted to Guangzhou Panyu Central Hospital from January 2008 to September 2013 were selected. Among these patients, 74 had ALC and were all male, including 54 with abnormal glucose metabolism; the other 213 had HBC, including 97 with abnormal glucose metabolism (69 male patients and 28 female patients. A controlled study was performed for the clinical data of ALC and HBC patients with abnormal glucose metabolism, to investigate the association of patients′ clinical manifestations with the indices for laboratory examination, insulin resistance index, incidence rate of abnormal glucose metabolism, and Child-Pugh class. The t-test was applied for comparison of continuous data between groups, the chi-square test was applied for comparison of categorical data between groups, and the Spearman rank correlation was applied for correlation analysis. ResultsCompared with HBC patients, ALC patients had significantly higher incidence rates of abnormal glucose metabolism (730% vs 32.4%, hepatogenous diabetes (35.1% vs 14.6%, fasting hypoglycemia (27.0% vs 10.3%, and impaired glucose tolerance (31.1% vs 14.1% (χ2=4.371, 3.274, 4.784, and 1.633, all P<0.05. The Spearman correlation analysis showed that in ALC and HBC patients, the incidence rate of abnormal glucose metabolism was positively correlated with Child-Pugh class (rs=0.41, P<005. Compared with the HBC patients with abnormal glucose metabolism, the ALC patients with abnormal glucose metabolism had a significantly higher incidence rate of Child-Pugh class A (χ2=7.520, P=0.001, and a significantly lower incidence rate of Child-Pugh class C (χ2=6.542, P=0.003. There were significant differences in the incidence rates of dim complexion, telangiectasia of the

  1. One-Hour Postload Hyperglycemia Confers Higher Risk of Hepatic Steatosis to HbA1c-Defined Prediabetic Subjects.

    Science.gov (United States)

    Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Pedace, Elisabetta; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio

    2016-11-01

    Individuals with glycated hemoglobin (HbA1c)-defined prediabetes (HbA1c value of 5.7-6.4%) and 1-hour plasma glucose ≥155 mg/dL during an oral glucose tolerance test have an increased risk of developing type 2 diabetes. To evaluate the degree to which HbA1c-defined prediabetes and 1-hour postload glucose ≥155 mg/dL individually and jointly associate with hepatic steatosis and related biomarkers. A cross-sectional analysis was performed on 1108 White individuals. Ambulatory care. Anthropometric and metabolic characteristics including hepatic steatosis assessed by ultrasonography. Compared with the normal group (HbA1c prediabetic and diabetic individuals exhibit higher values of fasting, 1-hour, and 2-hour postload glucose; fasting and 2-hour postload insulin; triglycerides; uric acid; homeostasis model of assessment for insulin resistance; liver insulin resistance index; liver enzymes; and inflammatory biomarkers; and lower levels of high-density lipoprotein cholesterol and IGF-1. Prediabetic and diabetic subjects have increased risk of hepatic steatosis (1.5- and 2.46-fold, respectively). Stratifying participants according to HbA1c and 1-hour postload glucose, we found that individuals with HbA1c-defined prediabetes and 1-hour postload glucose ≥155 mg/dL have significantly higher risk of hepatic steatosis as compared with individuals with HbA1c-defined prediabetes but 1-hour postload glucose prediabetes and 1-hour postload glucose ≥155 mg/dL exhibit higher values of liver enzymes; fasting, 1-hour, and 2-hour postload glucose; insulin; triglycerides; uric acid; and inflammatory biomarkers; and lower levels of high-density lipoprotein and IGF-1. These data suggest that a value of 1-hour postload glucose ≥155 mg/dL may be helpful to identify a subset of individuals within HbA1c-defined glycemic categories at higher risk of hepatic steatosis.

  2. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Richard J. Naftalin

    2016-04-01

    Full Text Available A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD, non-alcoholic steatohepatitis, (NASH and type 2 diabetes mellitus, (T2DM demonstrates how when glucagon-like peptide-1, (GLP-1 is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU. When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic

  3. Hepatitis B virus enhances cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 Kda.

    Science.gov (United States)

    Zhang, Xiaoxue; Zhang, Rui; Yang, HuiOu; Xiang, Qian; Jiang, Qing; He, Qi; Zhang, Ting; Chen, Chen; Zhu, Huifen; Wang, Qiang; Ning, Qin; Li, Yiwu; Lei, Ping; Shen, Guanxin

    2016-07-25

    Cisplatin is a classical platinum-based chemotherapeutic drug used in the treatment of many cancer types, including hepatocellular carcinoma (HCC). The application of cisplatin is significantly limited by its toxicity, which may be affected by various biological factors. Persistence of Hepatitis B virus (HBV) infection leads to HCC development and may be associated with higher incidence of severe hepatitis during chemotherapy. However, whether HBV alters the susceptibility of hepatocytes to cisplatin remains poorly understood. Here, we demonstrate that HBV transfection enhanced cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 KDa (Grp78), a major stress-induced chaperone that localizes to the endoplasmic reticulum. Silencing Grp78 gene increased the susceptibility of HepG2 to cisplatin by activating caspase-3. Grp78 expression was down-regulated by HBV infection both in vitro and in liver tissues of patients. We compared the cisplatin sensitivity of hepatoma cells either expressing (HepG2.2.15 cells) or not expressing the entire Hepatitis B Virus genome (HepG2). HepG2.2.15 cells showed increased sensitivity to cisplatin and a higher apoptosis rate. Overexpression of Grp78 counteracted the increase of sensitivity of HepG2.215 cells to cisplatin. Furthermore, we found that HBV disrupted Grp78 synthesis in response to cisplatin stimulation, which may trigger severe and prolonged endoplasmic reticulum (ER) stress that can induce cellular apoptosis. Our findings provide new information into the effect of HBV in the modulation of Grp78 expression, and, consequently on cisplatin-induced hepatotoxicity during viral infection. Copyright © 2016. Published by Elsevier Ireland Ltd.

  4. Obesity-induced hepatic hypoperfusion primes for hepatic dysfunction after resuscitated hemorrhagic shock.

    Science.gov (United States)

    Matheson, Paul J; Hurt, Ryan T; Franklin, Glen A; McClain, Craig J; Garrison, R Neal

    2009-10-01

    Obese patients (BMI>35) after blunt trauma are at increased risk compared to non-obese for organ dysfunction, prolonged hospital stay, infection, prolonged mechanical ventilation, and mortality. Obesity and non-alcoholic fatty liver disease (NAFLD) produce a low grade systemic inflammatory response syndrome (SIRS) with compromised hepatic blood flow, which increases with body mass index. We hypothesized that obesity further aggravates liver dysfunction by reduced hepatic perfusion following resuscitated hemorrhagic shock (HEM). Age-matched Zucker rats (Obese, 314-519 g & Lean, 211-280 g) were randomly assigned to 4 groups (n = 10-12/group): (1) Lean-Sham; (2) Lean, HEM, and resuscitation (HEM/RES); (3) Obese-Sham; and (4) Obese-HEM/RES. HEM was 40% of mean arterial pressure (MAP) for 60 min; RES was return of shed blood/5 min and 2 volumes of saline/25 min. Hepatic blood flow (HBF) using galactose clearance, liver enzymes and complete metabolic panel were measured over 4 h after completion of RES. Obese rats had increased MAP, heart rate, and fasting blood glucose and BUN concentrations compared to lean controls, required less blood withdrawal (mL/g) to maintain 40% MAP, and RES did not restore BL MAP. Obese rats had decreased HBF at BL and during HEM/RES, which persisted 4 h post RES. ALT and BUN were increased compared to Lean-HEM/RES at 4 h post-RES. These data suggest that obesity significantly contributes to trauma outcomes through compromised vascular control or through fat-induced sinusoidal compression to impair hepatic blood flow after HEM/RES resulting in a greater hepatic injury. The pro-inflammatory state of NAFLD seen in obesity appears to prime the liver for hepatic ischemia after resuscitated hemorrhagic shock, perhaps intensified by insidious and ongoing hepatic hypoperfusion established prior to the traumatic injury or shock.

  5. Improved hepatic lipid composition following short-term exercise in nonalcoholic fatty liver disease

    DEFF Research Database (Denmark)

    Haus, Jacob M; Solomon, Thomas; Kelly, Karen R

    2013-01-01

    measures included hepatic triglyceride content, and a lipid saturation index and polyunsaturated lipid index (PUI) of the liver, obtained by 1H magnetic resonance spectroscopy (N = 14). Insulin sensitivity was estimated from an oral glucose tolerance test (OGTT), and mononuclear cells were isolated...... to assess reactive oxygen species production during the OGTT. Circulating glucose, insulin, and high molecular weight (HMW) adiponectin were determined from plasma. Main Outcome: Short-term aerobic exercise training improved hepatic lipid composition in patients with NAFLD. Results: Exercise training...... resulted in an increase in liver PUI (P Index: P

  6. Increased glucose dependence in resting, iron-deficient rats

    International Nuclear Information System (INIS)

    Brooks, G.A.; Henderson, S.A.; Dallman, P.R.

    1987-01-01

    Rates of blood glucose and lactate turnover were assessed in resting iron-deficient and iron-sufficient (control) rats to test the hypothesis that dependence on glucose metabolism is increased in iron deficiency. Male Sprague-Dawley rats, 21 days old, were fed a diet containing either 6 mg iron/kg feed (iron-deficient group) or 50 mg iron/kg feed (iron-sufficient group) for 3-4 wk. The iron-deficient group became anemic, with hemoglobin levels of 6.4 ± 0.2 compared with 13.8 ± 0.3 g/dl for controls. Rats received a 90-min primed continuous infusion of D-[6- 3 H]glucose and sodium L-[U- 14 C]lactate via a jugular catheter. Serial samples were taken from a carotid catheter for concentration and specific activity determinations. Iron-deficient rats had significantly higher blood glucose and lactate concentrations than controls. The iron-deficient group had a significantly higher glucose turnover rate than the control group. Significantly more metabolite recycling in iron-deficient rats was indicated by greater incorporation of 14 C into blood glucose. Assuming a carbon crossover correction factor of 2, half of blood glucose arose from lactate in deficient animals. By comparison, only 25% of glucose arose from lactate in controls. Lack of a difference in lactate turnover rates between deficient rats and controls was attributed to 14 C recycling. The results indicate a greater dependence on glucose metabolism in iron-deficient rats

  7. Glucose turnover during insulin-induced hypoglycemia in liver-denervated rats

    DEFF Research Database (Denmark)

    Mikines, K J; Sonne, B; Richter, Erik

    1985-01-01

    The role of hepatic autonomic nerves in glucose production during hypoglycemia was studied. Selective, surgical denervation of the liver was performed in rats, which reduced hepatic norepinephrine concentrations by 96%. Hypoglycemia was induced by 250 mU of insulin intra-arterially in anesthetized...... as well as in chronically catheterized, awake rats. Half of the anesthetized denervated or sham-operated rats had previously been adrenodemedullated. Glucose turnover was measured by primed, constant intravenous infusion of [3-3H]glucose. Before as well as during hypoglycemia the arterial glucose...

  8. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13 C-lactate/ 13 C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Clinical Observations of Abnormal Glucose Tolerance in Hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Ja; Lee, Hong Kyu [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1969-09-15

    Plasma glucose levels before and after oral glucose administration have been compared in g group of 76 thyrotoxic subjects and a group of 8 normal control subjects in order to study the effect of glucose loading in thyrotoxicosis. Following were the results: 1) The mean fasting plasma glucose level was elevated in thyrotoxic group (95.5 mg%) compared to normal control group (88 mg%). 2) The peak of glucose tolerance curve is at 30 minutes after glucose administration in both groups, but its mean value was 44 mg% higher in thyrotoxic group than in control group. 3) The plasma glucose levels returned towards the fasting level in the later stage of the test more rapidly in thyrotoxic group than in control group. 4) 69.6% of oral glucose tolerance tests were impaired in the thyrotoxic group, and the occurrence of abnormal glucose tolerance could be related to the degree of thyrotoxicity, sex and age. 5) The mechanisms of the impaired glucose tolerance in thyrotoxicosis are thought to be related to an increased rate of glucose absorption from gastrointestinal tract, abnormal liver function with decreased hepatic glycogenesis, increased glucose oxidation, decreased pancreatic release of insulin, and genetic relationship between diabetes and thyrotoxicosis.

  10. An Intestinal Farnesoid X Receptor–Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice

    Science.gov (United States)

    Xie, Cen; Shi, Jingmin; Gao, Xiaoxia; Sun, Dongxue; Sun, Lulu; Wang, Ting; Takahashi, Shogo; Anitha, Mallappa; Krausz, Kristopher W.; Patterson, Andrew D.

    2017-01-01

    Increasing evidence supports the view that intestinal farnesoid X receptor (FXR) is involved in glucose tolerance and that FXR signaling can be profoundly impacted by the gut microbiota. Selective manipulation of the gut microbiota–FXR signaling axis was reported to significantly impact glucose intolerance, but the precise molecular mechanism remains largely unknown. Here, caffeic acid phenethyl ester (CAPE), an over-the-counter dietary supplement and an inhibitor of bacterial bile salt hydrolase, increased levels of intestinal tauro-β-muricholic acid, which selectively suppresses intestinal FXR signaling. Intestinal FXR inhibition decreased ceramide levels by suppressing expression of genes involved in ceramide synthesis specifically in the intestinal ileum epithelial cells. The lower serum ceramides mediated decreased hepatic mitochondrial acetyl-CoA levels and pyruvate carboxylase (PC) activities and attenuated hepatic gluconeogenesis, independent of body weight change and hepatic insulin signaling in vivo; this was reversed by treatment of mice with ceramides or the FXR agonist GW4064. Ceramides substantially attenuated mitochondrial citrate synthase activities primarily through the induction of endoplasmic reticulum stress, which triggers increased hepatic mitochondrial acetyl-CoA levels and PC activities. These results reveal a mechanism by which the dietary supplement CAPE and intestinal FXR regulates hepatic gluconeogenesis and suggest that inhibiting intestinal FXR is a strategy for treating hyperglycemia. PMID:28223344

  11. Role of liver nerves and adrenal medulla in glucose turnover of running rats

    DEFF Research Database (Denmark)

    Sonne, B; Mikines, K J; Richter, Erik

    1985-01-01

    Sympathetic control of glucose turnover was studied in rats running 35 min at 21 m X min-1 on the level. The rats were surgically liver denervated, adrenodemedullated, or sham operated. Glucose turnover was measured by primed constant infusion of [3-3H]glucose. At rest, the three groups had...... identical turnover rates and concentrations of glucose in plasma. During running, glucose production always rose rapidly to steady levels. The increase was not influenced by liver denervation but was halved by adrenodemedullation. Similarly, hepatic glycogen depletion was identical in denervated and control...... rats but reduced after adrenodemedullation. Early in exercise, glucose uptake rose identically in all groups and, in adrenodemedullated rats, matched glucose production. Accordingly, plasma glucose concentration increased in liver-denervated and control rats but was constant in adrenodemedullated rats...

  12. [HOMA-IR in patients with chronic hepatitis C].

    Science.gov (United States)

    Botshorishvili, T; Vashakidze, E

    2012-02-01

    The aim of investigation was to study the frequency of IR in type of viral hepatitis C, correlation with the degree of hepatic lesion and liver cirrhosis. 130 patients were investigated: 20 with acute hepatitis C; 38 with chronic hepatitis C; 72 with cirrhosis: among them 10 with Stage A, 14 with Stage B and 48 with Stage C. Also we used 30 healthy people as the controls. The study demonstrates significant changes of insulin, glucose, HOMA-IR type of viral hepatitis C, correlation with the degree of hepatic lesion and liver cirrhosis. In patients with liver cirrhosis levels of HOMA-IR is higher than in patients with chronic hepatitis C. In patients with acute hepatitis C levels of HOMA-IR was normal as in the control group. The results showed that various types of chronic viral hepatitis C and stages of cirrhosis set to increase HOMA-IR versus the controls., which were the most prominent in cases of severe hepatic lesion, which indicates that insulin resistance is a frequent companion of CHC.

  13. Underestimation of glucose turnover corrected with high-performance liquid chromatography purification of [6-3H]glucose

    International Nuclear Information System (INIS)

    Schwenk, W.F.; Butler, P.C.; Haymond, M.W.; Rizza, R.A.

    1990-01-01

    We have recently reported that during infusion of commercially available [6-3H]glucose, a radioactive nonglucose contaminant may accumulate in plasma causing errors in the measurement of glucose turnover. To determine whether purification of this tracer by HPLC (high-performance liquid chromatography) before infusion would eliminate the contaminant in plasma and remove the underestimation of glucose turnover reported during hyperinsulinemia, four normal subjects each underwent two 5-h euglycemic clamps during infusion of insulin (1 mU.kg-1.min-1). Glucose turnover was measured with either commercially available [6-3H]glucose or with HPLC-purified [6-3H]glucose. HPLC analysis of samples from the clamps done with commercially available [6-3H]glucose showed that 9.7% of the infused tracer and 26% of the plasma glucose 3H radioactivity were contaminants. In contrast, no contaminant was observed in the plasma during infusion of HPLC-purified [6-3H]glucose. During the last hour of the clamp, mean glucose turnover using commercially available [6-3H]glucose was less (P less than 0.01) than the mean glucose infusion rate (7.6 +/- 0.3 vs. 10.5 +/- 0.3 mg.kg-1.min-1) yielding apparent negative (P less than 0.001) hepatic glucose release. In contrast, when HPLC-purified [6-3H]glucose was employed, glucose turnover equaled the glucose infusion rate (10.4 +/- 0.9 vs. 10.2 +/- 0.9 mg.kg-1.min-1) and hepatic glucose release was no longer negative. We conclude that removal of a tritiated nonglucose contaminant in [6-3H]glucose by HPLC yields correct estimations of glucose turnover at steady state

  14. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Liu

    2015-12-01

    Full Text Available This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF diet (63.1%. Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1 normal group (normal; (2 HF group; (3 chitosan + HF group (HF + C. The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 105 Dalton and degree of deacetylation was about 89.8% significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF-α, Interleukin (IL-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC and triglyceride (TG contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C, very-low-density lipoprotein cholesterol (VLDL-C, the TC/high-density lipoprotein cholesterol (HDL-C ratio, and increased the HDL-C/(LDL-C + VLDL-C ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4 protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment

  15. Long-term administration of olanzapine induces adiposity and increases hepatic fatty acid desaturation protein in female C57BL/6J mice

    Science.gov (United States)

    Hou, Po-Hsun; Chang, Geng-Ruei; Chen, Chin-Pin; Lin, Yen-Ling; Chao, I-Shuan; Shen, Ting-Ting; Mao, Frank Chiahung

    2018-01-01

    Objective(s): Weight gain and metabolic disturbances such as dyslipidemia, are frequent side effects of second-generation antipsychotics, including olanzapine. This study examined the metabolic effects of chronic olanzapine exposure. In addition, we investigated the hepatic fatty acid effects of olanzapine in female C57BL/6J mice fed a normal diet. Materials and Methods: Female C57BL/6J mice orally received olanzapine or normal saline for 7 weeks. The effects of long-term olanzapine exposure on body weight changes, food efficiency, blood glucose, triglyceride (TG), insulin, and leptin levels were observed. Hepatic TG and abdominal fat mass were investigated, and fat cell morphology was analyzed through histopathological methods. The levels of protein markers of fatty acid regulation in the liver, namely fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 (SCD-1), were measured. Results: Olanzapine treatment increased the food intake of the mice as well as their body weight. Biochemical analyses showed that olanzapine increased blood TG, insulin, leptin, and hepatic TG. The olanzapine group exhibited increased abdominal fat mass and fat cell enlargement in abdominal fat tissue. Western blotting of the mouse liver revealed significantly higher (1.6-fold) levels of SCD-1 in the olanzapine group relative to the control group; by contrast, FAS levels in the two groups did not differ significantly. Conclusion: Enhanced lipogenesis triggered by increased hepatic SCD-1 activity might be a probable peripheral mechanism of olanzapine-induced dyslipidemia. Some adverse metabolic effects of olanzapine may be related to the disturbance of lipid homeostasis in the liver. PMID:29922430

  16. Increased nuclear tri-iodothyronine binding and thyroid hormone-stimulated glucose consumption in mononuclear blood cells from patients with liver cirrhosis

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L

    1991-01-01

    Nuclear tri-iodothyronine (T3) maximal binding capacity (MBC) and thyroxine- and T3-stimulated cellular oxygen consumption and glucose consumption were examined in mononuclear blood cells from six patients with liver cirrhosis (LC), in six patients with alcoholic hepatitis (AH), and in six healthy...

  17. NFIL3 is a negative regulator of hepatic gluconeogenesis.

    Science.gov (United States)

    Kang, Geon; Han, Hye-Sook; Koo, Seung-Hoi

    2017-12-01

    Nuclear factor interleukin-3 regulated (NFIL3) has been known as an important transcriptional regulator of the development and the differentiation of immune cells. Although expression of NFIL3 is regulated by nutritional cues in the liver, the role of NFIL3 in the glucose metabolism has not been extensively studied. Thus, we wanted to explore the potential role of NFIL3 in the control of hepatic glucose metabolism. Mouse primary hepatocytes were cultured to perform western blot analysis, Q-PCR and chromatin immunoprecipitation assay. 293T cells were cultured to perform luciferase assay. Male C57BL/6 mice (fed a normal chow diet or high fat diet for 27weeks) as well as ob/ob mice were used for experiments with adenoviral delivery. We observed that NFIL3 reduced glucose production in hepatocytes by reducing expression of gluconeogenic gene transcription. The repression by NFIL3 required its basic leucine zipper DNA binding domain, and it competed with CREB onto the binding of cAMP response element in the gluconeogenic promoters. The protein levels of hepatic NFIL3 were decreased in the mouse models of genetic- and diet-induced obesity and insulin resistance, and ectopic expression of NFIL3 in the livers of insulin resistant mice ameliorated hyperglycemia and glucose intolerance, with concomitant reduction in expression of hepatic gluconeogenic genes. Finally, we witnessed that knockdown of NFIL3 in the livers of normal chow-fed mice promoted elevations in the glucose levels and expression of hepatic gluconeogenic genes. In this study, we showed that NFIL3 functions as an important regulator of glucose homeostasis in the liver by limiting CREB-mediated hepatic gluconeogenesis. Thus, enhancement of hepatic NFIL3 activity in insulin resistant state could be potentially beneficial in relieving glycemic symptoms in the metabolic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. In vivo hepatic glycogen metabolism in the baboon

    International Nuclear Information System (INIS)

    Jehenson, P.; Canioni, P.; Hantraye, P.; Gueron, M.; Syrota, A.

    1988-01-01

    This paper describes hepatic glycogen synthesis from glucose studied in the baboon by C-13 MR spectroscopy at 2 T. Glycogen synthesis was followed for 3 hours on natural abundance spectra during glucose infusion. (1-C-13)-glucose (3g) was then injected. It produced a ten times larger rate of increase of glycogen-C 1 , which is much lower than expected, suggesting that glycogen synthesis mainly occurred from unlabeled gluconeogenic substrates. Signal-to-noise ratio was 50 for glycogen-C 1 on 2-minute H-1 decoupled spectra. Labeling of C 1 but also C 2 , C 5 and C 6 of glycogen indicated a 15% contribution of indirect pathways to its synthesis from glucose

  19. Increased serum cortisol binding in chronic active hepatitis

    International Nuclear Information System (INIS)

    Orbach, O.; Schussler, G.C.

    1989-01-01

    A high serum cortisol concentration, apparently due to increased cortisol-binding globulin (CBG), was found in a patient (index case) with chronic active hepatitis (CAH). We therefore performed further studies to determine whether increased cortisol binding is generally associated with CAH. Serum samples were obtained from 15 hospitalized patients with long-term liver function test elevations but no evidence of cirrhosis, 15 normal subjects without a history of hepatitis, four healthy pregnant women, and 10 alcoholic patients with stigmata of cirrhosis. Serum cortisol binding was measured by an adaptation of a previously described charcoal uptake method. Thyroxine-binding globulin (TBG) and sex hormone-binding globulin were determined by radioimmunoassays. Charcoal uptake of 125I cortisol from sera of normal subjects and additional patients with CAH revealed that increased serum cortisol binding by a saturable site, presumably CBG, was associated with CAH. Cortisol binding was significantly correlated with immunoassayable TBG, suggesting that in CAH, similar mechanisms may be responsible for increasing the serum concentrations of CBG and TBG

  20. Atypical Mechanism of Glucose Modulation by Colesevelam in Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Oliseyenum M. Nwose

    2013-01-01

    Full Text Available Colesevelam's glucose-lowering mechanism of action is not completely understood. Clinical trials of colesevelam suggest that its mechanism, and often adverse effects, differ from those of other oral antidiabetes drugs. Colesevelam does not affect insulin sensitivity (unlike thiazolidinediones, insulin secretion (unlike sulfonylureas and meglitinides, or early insulin response or glucagon (unlike dipeptidyl peptidase-4 inhibitors. Colesevelam may have some effect on glucose absorption, but likely via a different mechanism than α-glucosidase inhibitors. Colesevelam and metformin have similarities regarding hepatic glucose production, but divergent effects on gluconeogenesis versus glycogenolysis, suggesting differing mechanisms of drug action for improving glycemic control. Colesevelam is thought to be a portal glucagon-like peptide-1 (GLP-1 secretagogue with primarily hepatic effects. Bile acid binding by colesevelam leads to TGR5 activation, increased secretion of GLP-1 or other incretins, and inhibition of hepatic glycogenolysis. Colesevelam's mechanism of action appears to be atypical of other antidiabetes medications, making it a potentially suitable component of many combination regimens in the treatment of type 2 diabetes.

  1. Glycemic variability is an independent predictive factor for development of hepatic fibrosis in nonalcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Motoi Hashiba

    Full Text Available Patients with nonalcoholic fatty liver disease (NAFLD and nonalcoholic steatohepatitis (NASH often have metabolic disorders including insulin resistance and type 2 diabetes mellitus (T2DM. We clarified the predictive factors in glucose metabolism for progression of hepatic fibrosis in patients with NAFLD by the 75-g oral glucose tolerance test (75gOGTT and a continuous glucose monitoring system (CGMS. One hundred sixty-nine patients (68 female and 101 male patients with biopsy-proven NAFLD with performance with 75gOGTT were enrolled and divided into four groups according to the stage of hepatic fibrosis (F0-3. The proportion of patients with T2DM significantly gradually increased, HbA1c and the homeostasis model assessment of insulin resistance were significantly elevated, and 1,5-anhydroglucitol (1,5-AG was remarkably decreased with the progression of fibrosis. In the 75gOGTT, both plasma glucose and insulin secretion were remarkably increased with the progression of fibrosis. The only factor significantly associated with advanced fibrosis was 1,5-AG (P = 0.008 as determined by multivariate logistic regression analysis. We next evaluated the changes in blood glucose during 24 hours by monitoring with the CGMS to confirm the relationship between glycemic variability and progression of fibrosis. Variability of median glucose, standard deviation of median glucose (P = 0.0022, maximum blood glucose (P = 0.0019, and ΔMin-max blood glucose (P = 0.0029 were remarkably higher in severe fibrosis than in mild fibrosis.Hyperinsulinemia and hyperglycemia, especially glycemic variability, are important predictive factors in glucose impairment for the progression of hepatic fibrosis in NAFLD.

  2. TCPTP Regulates Insulin Signalling in AgRP Neurons to Coordinate Glucose Metabolism with Feeding.

    Science.gov (United States)

    Dodd, Garron T; Lee-Young, Robert S; Brüning, Jens C; Tiganis, Tony

    2018-04-30

    Insulin regulates glucose metabolism by eliciting effects on peripheral tissues as well as the brain. Insulin receptor (IR) signalling inhibits AgRP-expressing neurons in the hypothalamus to contribute to the suppression of hepatic glucose production (HGP) by insulin, whereas AgRP neuronal activation attenuates brown adipose tissue (BAT) glucose uptake. The tyrosine phosphatase TCPTP suppresses IR signalling in AgRP neurons. Hypothalamic TCPTP is induced by fasting and degraded after feeding. Here we assessed the influence of TCPTP in AgRP neurons in the control of glucose metabolism. TCPTP deletion in AgRP neurons ( Agrp -Cre; Ptpn2 fl/fl ) enhanced insulin sensitivity as assessed by the increased glucose infusion rates and reduced HGP during hyperinsulinemic-euglycemic clamps, accompanied by increased [ 14 C]-2-deoxy-D-glucose uptake in BAT and browned white adipose tissue. TCPTP deficiency in AgRP neurons promoted the intracerebroventricular insulin-induced repression of hepatic gluconeogenesis in otherwise unresponsive food-restricted mice yet had no effect in fed/satiated mice where hypothalamic TCPTP levels are reduced. The improvement in glucose homeostasis in Agrp -Cre; Ptpn2 fl/fl mice was corrected by IR heterozygosity ( Agrp -Cre; Ptpn2 fl/fl ; Insr fl/+ ), causally linking the effects on glucose metabolism with the IR signalling in AgRP neurons. Our findings demonstrate that TCPTP controls IR signalling in AgRP neurons to coordinate HGP and brown/beige adipocyte glucose uptake in response to feeding/fasting. © 2018 by the American Diabetes Association.

  3. PCAF Improves Glucose Homeostasis by Suppressing the Gluconeogenic Activity of PGC-1α

    Directory of Open Access Journals (Sweden)

    Cheng Sun

    2014-12-01

    Full Text Available PGC-1α plays a central role in hepatic gluconeogenesis and has been implicated in the onset of type 2 diabetes. Acetylation is an important posttranslational modification for regulating the transcriptional activity of PGC-1α. Here, we show that PCAF is a pivotal acetyltransferase for acetylating PGC-1α in both fasted and diabetic states. PCAF acetylates two lysine residues K328 and K450 in PGC-1α, which subsequently triggers its proteasomal degradation and suppresses its transcriptional activity. Adenoviral-mediated expression of PCAF in the obese mouse liver greatly represses gluconeogenic enzyme activation and glucose production and improves glucose homeostasis and insulin sensitivity. Moreover, liver-specific knockdown of PCAF stimulates PGC-1α activity, resulting in an increase in blood glucose and hepatic glucose output. Our results suggest that PCAF might be a potential pharmacological target for developing agents against metabolic disorders associated with hyperglycemia, such as obesity and diabetes.

  4. INFLUENCE OF PERI-ARTERIAL HEPATIC DENERVATION ON THE GLYCEMIC RESPONSE TO EXERCISE IN RATS

    NARCIS (Netherlands)

    LINDFELDT, J; BALKAN, B; VANDIJK, G; SCHEURINK, A; AHREN, B; STEFFENS, AB

    Exercise is known to increase hepatic glucose production. Previous studies have suggested that the sympathetic nerves only marginally contribute to this process. This study examined whether increased catecholamine response or increased adrenoceptor sensitivity might have affected previous results

  5. EFFECTS OF GLUCOSE-INFUSION ON HORMONE-SECRETION AND HEPATIC GLUCOSE-PRODUCTION DURING HEAVY EXERCISE

    NARCIS (Netherlands)

    WIERSMA, MML; VISSING, J; STEFFENS, AB; GALBO, H

    1993-01-01

    Blood-borne metabolic feedback vs. neural feedforward regulation of glucose homeostasis during exercise was investigated by infusing glucose and [H-3]glucose for glucose appearance determination intravenously in rats running for 20 min at 28 m/min [almost-equal-to 85% of maximal 02 consumption

  6. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada); Faure, Robert [Département de Pédiatrie, Université Laval and Centre de recherche du CHUQ (Centre Mère-Enfant), Québec, Qc, Canada G1V 4G2 (Canada); Marceau, Normand, E-mail: normand.marceau@crhdq.ulaval.ca [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada)

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.

  7. Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations.

    Science.gov (United States)

    Fraser, D A; Hessvik, N P; Nikolić, N; Aas, V; Hanssen, K F; Bøhn, S K; Thoresen, G H; Rustan, A C

    2012-07-01

    The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) on glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions. Myotubes established from lean, healthy volunteers were treated with benfotiamine for 4 days. Glucose and lipid metabolism were studied with labeled precursors. Gene expression was measured using real-time polymerase chain reaction (qPCR) and microarray technology. Benfotiamine significantly increased glucose oxidation under normoglycemic (35 and 49% increase at 100 and 200 μM benfotiamine, respectively) as well as hyperglycemic conditions (70% increase at 200 μM benfotiamine). Benfotiamine also increased glucose uptake. In comparison, thiamine (200 μM) increased overall glucose metabolism but did not change glucose oxidation. In contrast to glucose, mitochondrial lipid oxidation and overall lipid metabolism were unchanged by benfotiamine. The expression of NADPH oxidase 4 (NOX4) was significantly downregulated by benfotiamine treatment under both normo- and hyperglycemic conditions. Gene set enrichment analysis (GSEA) showed that befotiamine increased peroxisomal lipid oxidation and organelle (mitochondrial) membrane function. In conclusion, benfotiamine increases mitochondrial glucose oxidation in myotubes and downregulates NOX4 expression. These findings may be of relevance to type 2 diabetes where reversal of reduced glucose oxidation and mitochondrial capacity is a desirable goal.

  8. The transcription factor Prep1 controls hepatic insulin sensitivity and gluconeogenesis by targeting nuclear localization of FOXO1

    International Nuclear Information System (INIS)

    Kulebyakin, Konstantin; Penkov, Dmitry; Blasi, Francesco; Akopyan, Zhanna; Tkachuk, Vsevolod

    2016-01-01

    Liver plays a key role in controlling body carbohydrate homeostasis by switching between accumulation and production of glucose and this way maintaining constant level of glucose in blood. Increased blood glucose level triggers release of insulin from pancreatic β-cells. Insulin represses hepatic glucose production and increases glucose accumulation. Insulin resistance is the main cause of type 2 diabetes and hyperglycemia. Currently thiazolidinediones (TZDs) targeting transcriptional factor PPARγ are used as insulin sensitizers for treating patients with type 2 diabetes. However, TZDs are reported to be associated with cardiovascular and liver problems and stimulate obesity. Thus, it is necessary to search new approaches to improve insulin sensitivity. A promising candidate is transcriptional factor Prep1, as it was shown earlier it could affect insulin sensitivity in variety of insulin-sensitive tissues. The aim of the present study was to evaluate a possible involvement of transcriptional factor Prep1 in control of hepatic glucose accumulation and production. We created mice with liver-specific Prep1 knockout and discovered that hepatocytes derived from these mice are much more sensitive to insulin, comparing to their WT littermates. Incubation of these cells with 100 nM insulin results in almost complete inhibition of gluconeogenesis, while in WT cells this repression is only partial. However, Prep1 doesn't affect gluconeogenesis in the absence of insulin. Also, we observed that nuclear content of gluconeogenic transcription factor FOXO1 was greatly reduced in Prep1 knockout hepatocytes. These findings suggest that Prep1 may control hepatic insulin sensitivity by targeting FOXO1 nuclear stability. - Highlights: • A novel model of liver-specific Prep1 knockout is established. • Ablation of Prep1 in hepatocytes increases insulin sensitivity. • Prep1 controls hepatic insulin sensitivity by regulating localization of FOXO1. • Prep1 regulates

  9. Endothelial dysfunction in high fructose containing diet fed rats: Increased nitric oxide and decreased endothelin-1 levels in liver tissue

    Directory of Open Access Journals (Sweden)

    Zeki Arı

    2010-09-01

    Full Text Available Objectives: Dietary high fructose consumption which is closely associated with endothelial dysfunction via insulin re-sistance has recently increased in developed countries. Insulin resistance has a promoter effect on many metabolic disorders such as syndrome X, polycystic ovary syndrome, Type 2 diabetes mellitus etc. Our aim in this study is to understand the impact of increased fructose intake on metabolisms of glucose, insulin and endothelial dysfunction by measuring nitric oxide (NO and endothelin-1 (ET-1 levels in hepatic tissue which is crucial in fructose metabolism.Materials and Methods: We designed an animal study to understand increased fructose intake on hepatic endothe-lium. Twenty adult male albino rats were divided into two groups; the study group (group 1, n=10 received isocaloric fructose enriched diet (fructose-fed rats, containing 18.3% protein, 60.3% fructose and 5.2% fat while the control group received purified regular chow (group 2, n=10 for 2 weeks. After feeding period, blood and hepatic tissue samples were collected and glucose, insulin, NO and ET-1 levels were analysed.Results: We found increased fasting glucose and insulin levels and impaired glucose tolerance in fructose fed rats. Higher NO and lower ET–1 levels were also detected in hepatic tissue samples of the group 1.Conclusion: Increased fructose consumption has deleterious effects on glucose tolerance, insulin resistance and may cause to endothelial dysfunction.

  10. Metabolic Fate of Fructose Ingested with and without Glucose in a Mixed Meal

    Directory of Open Access Journals (Sweden)

    Fanny Theytaz

    2014-07-01

    Full Text Available Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G or 13C-labelled fructose, lipids and protein, but without glucose (Fr, or protein and lipids alone (ProLip. After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4% and 13CO2 production (36.6% ± 1.9% were higher (p < 0.05 than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG. This trial was approved by clinicaltrial. gov. Identifier is NCT01792089.

  11. Evidence for a role of proline and hypothalamic astrocytes in the regulation of glucose metabolism in rats.

    Science.gov (United States)

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M; Lam, Tony K T; Gutiérrez-Juárez, Roger

    2013-04-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our results showed that increasing the availability of proline in rats either centrally (MBH) or systemically acutely lowered blood glucose. Pancreatic clamp studies revealed that this hypoglycemic effect was due to a decrease of hepatic glucose production secondary to an inhibition of glycogenolysis, gluconeogenesis, and glucose-6-phosphatase flux. The effect of proline was mimicked by glutamate, an intermediary of proline metabolism. Interestingly, proline's action was markedly blunted by pharmacological inhibition of hypothalamic lactate dehydrogenase (LDH) suggesting that metabolic flux through LDH was required. Furthermore, short hairpin RNA-mediated knockdown of hypothalamic LDH-A, an astrocytic component of the ANLS, also blunted the glucoregulatory action of proline. Thus our studies suggest not only a new role for proline in the regulation of hepatic glucose production but also indicate that hypothalamic astrocytes are involved in the regulatory mechanism as well.

  12. USP7 Attenuates Hepatic Gluconeogenesis Through Modulation of FoxO1 Gene Promoter Occupancy

    Science.gov (United States)

    Hall, Jessica A.; Tabata, Mitsuhisa; Rodgers, Joseph T.

    2014-01-01

    Hepatic forkhead protein FoxO1 is a key component of systemic glucose homeostasis via its ability to regulate the transcription of rate-limiting enzymes in gluconeogenesis. Important in the regulation of FoxO1 transcriptional activity are the modifying/demodifying enzymes that lead to posttranslational modification. Here, we demonstrate the functional interaction and regulation of FoxO1 by herpesvirus-associated ubiquitin-specific protease 7 (USP7; also known as herpesvirus-associated ubiquitin-specific protease, HAUSP), a deubiquitinating enzyme. We show that USP7-mediated mono-deubiquitination of FoxO1 results in suppression of FoxO1 transcriptional activity through decreased FoxO1 occupancy on the promoters of gluconeogenic genes. Knockdown of USP7 in primary hepatocytes leads to increased expression of FoxO1-target gluconeogenic genes and elevated glucose production. Consistent with this, USP7 gain-of-function suppresses the fasting/cAMP-induced activation of gluconeogenic genes in hepatocyte cells and in mouse liver, resulting in decreased hepatic glucose production. Notably, we show that the effects of USP7 on hepatic glucose metabolism depend on FoxO1. Together, these results place FoxO1 under the intimate regulation of deubiquitination and glucose metabolic control with important implication in diseases such as diabetes. PMID:24694308

  13. Saponarin activates AMPK in a calcium-dependent manner and suppresses gluconeogenesis and increases glucose uptake via phosphorylation of CRTC2 and HDAC5.

    Science.gov (United States)

    Seo, Woo-Duck; Lee, Ji Hae; Jia, Yaoyao; Wu, Chunyan; Lee, Sung-Joon

    2015-11-15

    This study investigated the molecular mechanism of saponarin, a flavone glucoside, in the regulation of insulin sensitivity. Saponarin suppressed the rate of gluconeogenesis and increased cellular glucose uptake in HepG2 and TE671 cells by regulating AMPK. Using an in vitro kinase assay, we showed that saponarin did not directly interact with the AMPK protein. Instead, saponarin increased intracellular calcium levels and induced AMPK phosphorylation, which was diminished by co-stimulation with STO-609, an inhibitor of CAMKKβ. Transcription of hepatic gluconeogenesis genes was upregulated by nuclear translocation of CRTC2 and HDAC5, coactivators of CREB and FoxO1 transcription factors, respectively. This nuclear translocation was inhibited by increased phosphorylation of CRTC2 and HDAC5 by saponarin-induced AMPK in HepG2 cells and suppression of CREB and FoxO1 transactivation activities in cells stimulated by saponarin. The results from a chromatin immunoprecipitation assay confirmed the reduced binding of CRTC2 on the PEPCK and G6Pase promoters. In TE671 cells, AMPK phosphorylated HDAC5, which suppressed nuclear penetration and upregulated GLUT4 transcription, leading to enhanced glucose uptake. Collectively, these results suggest that saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Detection of serum leptin levels in patients with viral hepatitis and fatty liver

    International Nuclear Information System (INIS)

    Sun Shuhong; Sun Bingmei; Niu Airong; Lan Cuixia

    2007-01-01

    In order to find out the correlations between serum leptin levels and viral hepatitis, the serum leptin levels in 167 patients with viral chronic hepatitis, 87 patients with fatty liver, and 80 control subjects were determined by radioimmunoassay. The liver function (ALT, AST), glucose(Glu) and total cholesterol(TC) in these patients were also measured. Compared with controls and patients with fatty liver, the levels of serum leptin in patients with viral hepatitis were significantly increased (P 0.05). The increase of serum leptin levels in the patients with viral hepatitis was correlated positively with the severity of liver inflammation. Therefore, the leptin can be regarded as an indicator to reflect the severity of liver inflammation. (authors)

  15. Roles of Protein Arginine Methyltransferases in the Control of Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Hye-Sook Han

    2014-12-01

    Full Text Available Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events.

  16. Emotionally arousing pictures increase blood glucose levels and enhance recall.

    Science.gov (United States)

    Blake, T M; Varnhagen, C K; Parent, M B

    2001-05-01

    Arousal enhances memory in human participants and this enhancing effect is likely due to the release of peripheral epinephrine. As epinephrine does not readily enter the brain, one way that peripheral epinephrine may enhance memory is by increasing circulating blood glucose levels. The present study investigated the possibility that emotionally arousing color pictures would improve memory and elevate blood glucose levels in human participants. Blood glucose levels were measured before, 15 min, and 30 min after male university students viewed 60 emotionally arousing or relatively neutral pictures. Participants viewed each picture for 6 s and then had 10 s to rate the arousal (emotional intensity) and valence (pleasantness) of each picture. A free-recall memory test was given 30 min after the last picture was viewed. Although the emotionally arousing and neutral picture sets were given comparable valence ratings, participants who viewed the emotionally arousing pictures rated the pictures as being more arousing, recalled more pictures, and had higher blood glucose levels after viewing the pictures than did participants who viewed the neutral pictures. These findings indicate that emotionally arousing pictures increase blood glucose levels and enhance memory, and that this effect is not due to differences in the degree of pleasantness of the stimuli. These findings support the possibility that increases in circulating blood glucose levels in response to emotional arousal may be part of the biological mechanism that allows emotional arousal to enhance memory. Copyright 2001 Academic Press.

  17. Insulin sensitivity of hepatic glucose and lipid metabolism in animal models of hepatic steatosis

    NARCIS (Netherlands)

    Grefhorst, Aldo

    2006-01-01

    De lever is betrokken bij de regulatie van zowel het koolhydraat als het vet metabolisme. De lever slaat glucose op als glycogeen, scheidt glucose uit, kan glucose maken uit bijvoorbeeld melkzuur en aminozuren (‘gluconeogenese’), zet glucose om in vet (‘de novo lipogenese’), verbrandt vetzuren in de

  18. Coexistence of insulin resistance and increased glucose tolerance in pregnant rats: a physiological mechanism for glucose maintenance.

    Science.gov (United States)

    Carrara, Marcia Aparecida; Batista, Márcia Regina; Saruhashi, Tiago Ribeiro; Felisberto, Antonio Machado; Guilhermetti, Marcio; Bazotte, Roberto Barbosa

    2012-06-06

    The contribution of insulin resistance (IR) and glucose tolerance to the maintenance of blood glucose levels in non diabetic pregnant Wistar rats (PWR) was investigated. PWR were submitted to conventional insulin tolerance test (ITT) and glucose tolerance test (GTT) using blood sample collected 0, 10 and 60 min after intraperitoneal insulin (1 U/kg) or oral (gavage) glucose (1g/kg) administration. Moreover, ITT, GTT and the kinetics of glucose concentration changes in the fed and fasted states were evaluated with a real-time continuous glucose monitoring system (RT-CGMS) technique. Furthermore, the contribution of the liver glucose production was investigated. Conventional ITT and GTT at 0, 7, 14 and 20 days of pregnancy revealed increased IR and glucose tolerance after 20 days of pregnancy. Thus, this period of pregnancy was used to investigate the kinetics of glucose changes with the RT-CGMS technique. PWR (day 20) exhibited a lower (pinsulin sensitivity and/or glucose tolerance during late pregnancy. In contrast to the general view that IR is a pathological process associated with gestational diabetes, a certain degree of IR may represent an important physiological mechanism for blood glucose maintenance during fasting. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Coinfection of Hepatic Cell Lines with Human Immunodeficiency Virus and Hepatitis B Virus Leads to an Increase in Intracellular Hepatitis B Surface Antigen▿

    Science.gov (United States)

    Iser, David M.; Warner, Nadia; Revill, Peter A.; Solomon, Ajantha; Wightman, Fiona; Saleh, Suha; Crane, Megan; Cameron, Paul U.; Bowden, Scott; Nguyen, Tin; Pereira, Cândida F.; Desmond, Paul V.; Locarnini, Stephen A.; Lewin, Sharon R.

    2010-01-01

    Liver-related mortality is increased in the setting of HIV-hepatitis B virus (HBV) coinfection. However, interactions between HIV and HBV to explain this observation have not been described. We hypothesized that HIV infection of hepatocytes directly affects the life cycle of HBV. We infected human hepatic cell lines expressing HBV (Hep3B and AD38 cells) or not expressing HBV (Huh7, HepG2, and AD43 cells) with laboratory strains of HIV (NL4-3 and AD8), as well as a vesicular stomatitis virus (VSV)-pseudotyped HIV expressing enhanced green fluorescent protein (EGFP). Following HIV infection with NL4-3 or AD8 in hepatic cell lines, we observed a significant increase in HIV reverse transcriptase activity which was infectious. Despite no detection of surface CD4, CCR5, and CXCR4 by flow cytometry, AD8 infection of AD38 cells was inhibited by maraviroc and NL4-3 was inhibited by AMD3100, demonstrating that HIV enters AD38 hepatic cell lines via CCR5 or CXCR4. High-level infection of AD38 cells (50%) was achieved using VSV-pseudotyped HIV. Coinfection of the AD38 cell line with HIV did not alter the HBV DNA amount or species as determined by Southern blotting or nucleic acid signal amplification. However, coinfection with HIV was associated with a significant increase in intracellular HBsAg when measured by Western blotting, quantitative HBsAg, and fluorescence microscopy. We conclude that HIV infection of HBV-infected hepatic cell lines significantly increased intracellular HBsAg but not HBV DNA synthesis and that increased intrahepatic HBsAg secondary to direct infection by HIV may contribute to accelerated liver disease in HIV-HBV-coinfected individuals. PMID:20357083

  20. Coinfection of hepatic cell lines with human immunodeficiency virus and hepatitis B virus leads to an increase in intracellular hepatitis B surface antigen.

    Science.gov (United States)

    Iser, David M; Warner, Nadia; Revill, Peter A; Solomon, Ajantha; Wightman, Fiona; Saleh, Suha; Crane, Megan; Cameron, Paul U; Bowden, Scott; Nguyen, Tin; Pereira, Cândida F; Desmond, Paul V; Locarnini, Stephen A; Lewin, Sharon R

    2010-06-01

    Liver-related mortality is increased in the setting of HIV-hepatitis B virus (HBV) coinfection. However, interactions between HIV and HBV to explain this observation have not been described. We hypothesized that HIV infection of hepatocytes directly affects the life cycle of HBV. We infected human hepatic cell lines expressing HBV (Hep3B and AD38 cells) or not expressing HBV (Huh7, HepG2, and AD43 cells) with laboratory strains of HIV (NL4-3 and AD8), as well as a vesicular stomatitis virus (VSV)-pseudotyped HIV expressing enhanced green fluorescent protein (EGFP). Following HIV infection with NL4-3 or AD8 in hepatic cell lines, we observed a significant increase in HIV reverse transcriptase activity which was infectious. Despite no detection of surface CD4, CCR5, and CXCR4 by flow cytometry, AD8 infection of AD38 cells was inhibited by maraviroc and NL4-3 was inhibited by AMD3100, demonstrating that HIV enters AD38 hepatic cell lines via CCR5 or CXCR4. High-level infection of AD38 cells (50%) was achieved using VSV-pseudotyped HIV. Coinfection of the AD38 cell line with HIV did not alter the HBV DNA amount or species as determined by Southern blotting or nucleic acid signal amplification. However, coinfection with HIV was associated with a significant increase in intracellular HBsAg when measured by Western blotting, quantitative HBsAg, and fluorescence microscopy. We conclude that HIV infection of HBV-infected hepatic cell lines significantly increased intracellular HBsAg but not HBV DNA synthesis and that increased intrahepatic HBsAg secondary to direct infection by HIV may contribute to accelerated liver disease in HIV-HBV-coinfected individuals.

  1. Long-term feeding of red algae (Gelidium amansii ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model

    Directory of Open Access Journals (Sweden)

    Hshuan-Chen Liu

    2017-07-01

    Full Text Available This study was designed to investigate the effect of Gelidium amansii (GA on carbohydrate and lipid metabolism in rats with high fructose (HF diet (57.1% w/w. Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1 control diet group (Con; (2 HF diet group (HF; and (3 HF with GA diet group (HF + 5% GA. The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model.

  2. DDT increases hepatic testosterone metabolism in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Santoyo, Adolfo; Albores, Arnulfo; Cebrian, Mariano E. [Cinvestav-IPN, Seccion de Toxicologia, Mexico (Mexico); Hernandez, Manuel [Cinvestav-IPN, Departamento de Biologia Celular (Mexico)

    2005-01-01

    DDT and its metabolites are considered as endocrine disruptors able to promote hormone-dependent pathologies. We studied the effects of technical-grade DDT on hepatic testosterone metabolism and testosterone hydroxylase activity ratios in the rat. Male and female Wistar rats were treated by gavage with a single dose of technical-grade DDT (0, 0.1, 1, 10, and 100 mg/kg body weight) and killed 24 h later. Hepatic microsomes were incubated with [4-{sup 14}C]-testosterone and the metabolites were separated by thin-layer chromatography and quantified by radio scanning. DDT increased testosterone biotransformation and modified the profile of metabolites produced in a sex-dependent manner. Males treated with a representative dose (10 mg/kg) produced relatively less androstenedione (AD), 2{alpha}-hydroxytestosterone (OHT), and 16{alpha}-OHT but higher 6{beta}-OHT whereas treated females produced less 7{alpha}-OHT and AD but higher 6{beta}-OHT and 6{alpha}-OHT than their respective controls. In both sexes DDT decreased the relative proportion of AD and increased that of 6{beta}-OHT suggesting that the androgen-saving pathway was affected. The testosterone 6{alpha}-/15{alpha}-OHT ratio, a proposed indicator of demasculinization, was increased in treated males. This effect was in agreement with the demasculinizing ability proposed for DDT. The effects on 6{alpha}-/16{alpha}-OHT and 6-dehydrotestosterone/16{alpha}-OHT ratios followed a similar tendency, with the ratio 6{alpha}-/16{alpha}-OHT being the most sensitive marker. Interestingly, these ratios were reduced in treated females suggesting that technical-grade DDT shifted testosterone hydroxylations toward a more masculine pattern. Thus, technical-grade DDT altered the hepatic sexual dimorphism in testosterone metabolism and decreased the metabolic differences between male and female rats. (orig.)

  3. Glucose phosphorylation is not rate limiting for accumulation of glycogen from glucose in perfused livers from fasted rats

    International Nuclear Information System (INIS)

    Youn, J.H.; Ader, M.; Bergman, R.N.

    1989-01-01

    Incorporation of Glc and Fru into glycogen was measured in perfused livers from 24-h fasted rats using [6-3H]Glc and [U-14C]Fru. For the initial 20 min, livers were perfused with low Glc (2 mM) to deplete hepatic glycogen and were perfused for the following 30 min with various combinations of Glc and Fru. With constant Fru (2 mM), increasing perfusate Glc increased the relative contribution of Glc carbons to glycogen (7.2 +/- 0.4, 34.9 +/- 2.8, and 59.1 +/- 2.7% at 2, 10, and 20 mM Glc, respectively; n = 5 for each). During perfusion with substrate levels seen during refeeding (10 mM Glc, 1.8 mumol/g/min gluconeogenic flux from 2 mM Fru), Fru provided 54.7 +/- 2.7% of the carbons for glycogen, while Glc provided only 34.9 +/- 2.8%, consistent with in vivo estimations. However, the estimated rate of Glc phosphorylation was at least 1.10 +/- 0.11 mumol/g/min, which exceeded by at least 4-fold the glycogen accumulation rate (0.28 +/- 0.04 mumol of glucose/g/min). The total rate of glucose 6-phosphate supply via Glc phosphorylation and gluconeogenesis (2.9 mumol/g/min) exceeded reported in vivo rates of glycogen accumulation during refeeding. Thus, in perfused livers of 24-h fasted rats there is an apparent redundancy in glucose 6-phosphate supply. These results suggest that the rate-limiting step for hepatic glycogen accumulation during refeeding is located between glucose 6-phosphate and glycogen, rather than at the step of Glc phosphorylation or in the gluconeogenic pathway

  4. Metformin attenuates olanzapine-induced hepatic, but not peripheral insulin resistance.

    Science.gov (United States)

    Remington, Gary J; Teo, Celine; Wilson, Virginia; Chintoh, Araba; Guenette, Melanie; Ahsan, Zohra; Giacca, Adria; Hahn, Margaret K

    2015-11-01

    Antipsychotics (APs) are linked to diabetes, even without weight gain. Whether anti-diabetic drugs are efficacious in reversing the direct effects of APs on glucose pathways is largely undetermined. We tested two metformin (Met) doses to prevent impairments seen following a dose of olanzapine (Ola) (3 mg/kg); glucokinetics were measured using the hyperinsulinemic-euglycemic clamp (HIEC). Met (150 mg/kg; n=13, or 400 mg/kg; n=11) or vehicle (Veh) (n=11) was administered through gavage preceding an overnight fast, followed by a second dose prior to the HIEC. Eleven additional animals were gavaged with Veh and received a Veh injection during the HIEC (Veh/Veh); all others received Ola. Basal glucose was similar across treatment groups. The Met 400 group had significantly greater glucose appearance (Ra) in the basal period (i.e., before Ola, or hyperinsulinemia) vs other groups. During hyperinsulinemia, glucose infusion rate (GINF) to maintain euglycemia (reflective of whole-body insulin sensitivity) was higher in Veh/Veh vs other groups. Met 150/Ola animals demonstrated increased GINF relative to Veh/Ola during early time points of the HIEC. Glucose utilization during hyperinsulinemia, relative to basal conditions, was significantly higher in Veh/Veh vs other groups. The change in hepatic glucose production (HGP) from basal to hyperinsulinemia demonstrated significantly greater decreases in Veh/Veh and Met 150/Ola groups vs Veh/Ola. Given the increase in basal Ra with Met 400, we measured serum lactate (substrate for HGP), finding increased levels in Met 400 vs Veh and Met 150. In conclusion, Met attenuates hepatic insulin resistance observed with acute Ola administration, but fails to improve peripheral insulin resistance. Use of supra-therapeutic doses of Met may mask metabolic benefits by increasing lactate. © 2015 Society for Endocrinology.

  5. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men.

    Science.gov (United States)

    Johnston, Richard D; Stephenson, Mary C; Crossland, Hannah; Cordon, Sally M; Palcidi, Elisa; Cox, Eleanor F; Taylor, Moira A; Aithal, Guruprasad P; Macdonald, Ian A

    2013-11-01

    Diets high in fructose have been proposed to contribute to nonalcoholic fatty liver disease. We compared the effects of high-fructose and matched glucose intake on hepatic triacylglycerol (TAG) concentration and other liver parameters. In a double-blind study, we randomly assigned 32 healthy but centrally overweight men to groups that received either a high-fructose or high-glucose diet (25% energy). These diets were provided during an initial isocaloric period of 2 weeks, followed by a 6-week washout period, and then again during a hypercaloric 2-week period. The primary outcome measure was hepatic level of TAG, with additional assessments of TAG levels in serum and soleus muscle, hepatic levels of adenosine triphosphate, and systemic and hepatic insulin resistance. During the isocaloric period of the study, both groups had stable body weights and concentrations of TAG in liver, serum, and soleus muscle. The high-fructose diet produced an increase of 22 ± 52 μmol/L in the serum level of uric acid, whereas the high-glucose diet led to a reduction of 23 ± 25 μmol/L (P fructose diet also produced an increase of 0.8 ± 0.9 in the homeostasis model assessment of insulin resistance, whereas the high-glucose diet produced an increase of only 0.1 ± 0.7 (P = .03). During the hypercaloric period, participants in the high-fructose and high-glucose groups had similar increases in weight (1.0 ± 1.4 vs 0.6 ± 1.0 kg; P = .29) and absolute concentration of TAG in liver (1.70% ± 2.6% vs 2.05% ± 2.9%; P = .73) and serum (0.36 ± 0.75 vs 0.33 ± 0.38 mmol/L; P = .91), and similar results in biochemical assays of liver function. Body weight changes were associated with changes in liver biochemistry and concentration of TAGs. In the isocaloric period, overweight men who were on a high-fructose or a high-glucose diet did not develop any significant changes in hepatic concentration of TAGs or serum levels of liver enzymes. However, in the hypercaloric period

  6. Estimation of glucose carbon recycling in children with glycogen storage disease: A 13C NMR study using [U-13C]glucose

    International Nuclear Information System (INIS)

    Kalderon, B.; Korman, S.H.; Gutman, A.; Lapidot, A.

    1989-01-01

    A stable isotope procedure to estimate hepatic glucose carbon recycling and thereby elucidate the mechanism by which glucose is produced in patients lacking glucose 6-phosphatase is described. A total of 10 studies was performed in children with glycogen storage disease type I (GSD-I) and type III (GSD-III) and control subjects. A primed dose-constant nasogastric infusion of D-[U- 13 C]glucose or an infusion diluted with nonlabeled glucose solution was administered following different periods of fasting. Hepatic glucose carbon recycling was estimated from 13 C NMR spectra. The values obtained for GSD-I patients coincided with the standard [U- 13 C]glucose dilution curve. These results indicate that the plasma glucose of GSD-I subjects comprises only a mixture of 99% 13 C-enriched D-[U- 13 C]glucose and unlabeled glucose but lacks any recycled glucose. Significantly different glucose carbon recycling values were obtained for two GSD-III patients in comparison to GSD-I patients. The results eliminate a mechanism for glucose production in GSD-I children involving gluconeogenesis. However, glucose release by amylo-1,6-glucosidase activity would result in endogenous glucose production of non- 13 C-labeled and nonrecycled glucose carbon, as was found in this study. In GSD-III patients gluconeogenesis is suggested as the major route for endogenous glucose synthesis. The contribution of the triose-phosphate pathway in these patients has been determined

  7. Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice.

    Science.gov (United States)

    Cokorinos, Emily C; Delmore, Jake; Reyes, Allan R; Albuquerque, Bina; Kjøbsted, Rasmus; Jørgensen, Nicolas O; Tran, Jean-Luc; Jatkar, Aditi; Cialdea, Katherine; Esquejo, Ryan M; Meissen, John; Calabrese, Matthew F; Cordes, Jason; Moccia, Robert; Tess, David; Salatto, Christopher T; Coskran, Timothy M; Opsahl, Alan C; Flynn, Declan; Blatnik, Matthew; Li, Wenlin; Kindt, Erick; Foretz, Marc; Viollet, Benoit; Ward, Jessica; Kurumbail, Ravi G; Kalgutkar, Amit S; Wojtaszewski, Jørgen F P; Cameron, Kimberly O; Miller, Russell A

    2017-05-02

    The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK β1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effect of somatostatin on glucose homeostasis in conscious long-fasted dogs

    International Nuclear Information System (INIS)

    Stevenson, R.W.; Steiner, K.E.; Hendrick, G.K.; Cherrington, A.D.

    1987-01-01

    The effects of somatostatin plus intraportal insulin and glucagon replacement (pancreatic clamp) on carbohydrate metabolism were studied in conscious dogs fasted for 7 days so that gluconeogenesis was a major contributor to total glucose production. By use of [3- 3 H]glucose, glucose production (R a ) and utilization (R d ) and glucose clearance were assessed before and after implementation of the pancreatic clamp. After an initial control period, somatostatin (0.8 μg·kg -1 ·min -1 ) was infused with intraportal replacement amounts of glucagon and insulin. The insulin infusion rate was varied to maintain euglycemia and then kept constant for 250 min. Plasma glucagon was similar before and during somatostatin infusion, while plasma insulin was lower. Plasma glucose levels remained similar while R a and R d and the ratio of glucose clearance to plasma insulin were significantly increased. Net hepatic lactate uptake and [ 14 C]alanine plus [ 14 C]lactate conversion to [ 14 C]glucose increased. In conclusion, somatostatin alters glucose clearance in 7-day fasted dogs, resulting in changes in several indices of carbohydrate metabolism

  9. Intake of Lactobacillus reuteri Improves Incretin and Insulin Secretion in Glucose-Tolerant Humans

    DEFF Research Database (Denmark)

    Simon, Marie-Christine; Strassburger, Klaus; Nowotny, Bettina

    2015-01-01

    production. Muscle and hepatic lipid contents were assessed by (1)H-magnetic resonance spectroscopy, and immune status, cytokines, and endotoxin were measured with specific assays. RESULTS: In glucose-tolerant volunteers, daily administration of L. reuteri SD5865 increased glucose-stimulated GLP-1 and GLP-2....... reuteri SD5865 or placebo over 4 weeks. Oral glucose tolerance and isoglycemic glucose infusion tests were used to assess incretin effect and GLP-1 and GLP-2 secretion, and euglycemic-hyperinsulinemic clamps with [6,6-(2)H2]glucose were used to measure peripheral insulin sensitivity and endogenous glucose...... cytokines. CONCLUSIONS: Enrichment of gut microbiota with L. reuteri increases insulin secretion, possibly due to augmented incretin release, but does not directly affect insulin sensitivity or body fat distribution. This suggests that oral ingestion of one specific strain may serve as a novel therapeutic...

  10. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats.

    Science.gov (United States)

    Park, Sunmin; Kim, Da Sol; Kang, Suna

    2016-01-01

    Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin

  11. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2017-04-01

    Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.

  12. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake.

    Directory of Open Access Journals (Sweden)

    Lídia Cedó

    Full Text Available Human hepatic lipase (hHL is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT. In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL-mediated free fatty acid (FFA lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.

  13. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake.

    Science.gov (United States)

    Cedó, Lídia; Santos, David; Roglans, Núria; Julve, Josep; Pallarès, Victor; Rivas-Urbina, Andrea; Llorente-Cortes, Vicenta; Laguna, Joan Carles; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles

    2017-01-01

    Human hepatic lipase (hHL) is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL) is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT). In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL)-mediated free fatty acid (FFA) lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.

  14. Correction of Diabetic Hyperglycemia and Amelioration of Metabolic Anomalies by Minicircle DNA Mediated Glucose-Dependent Hepatic Insulin Production.

    Directory of Open Access Journals (Sweden)

    Tausif Alam

    Full Text Available Type 1 diabetes mellitus (T1DM is caused by immune destruction of insulin-producing pancreatic β-cells. Commonly used insulin injection therapy does not provide a dynamic blood glucose control to prevent long-term systemic T1DM-associated damages. Donor shortage and the limited long-term success of islet transplants have stimulated the development of novel therapies for T1DM. Gene therapy-based glucose-regulated hepatic insulin production is a promising strategy to treat T1DM. We have developed gene constructs which cause glucose-concentration-dependent human insulin production in liver cells. A novel set of human insulin expression constructs containing a combination of elements to improve gene transcription, mRNA processing, and translation efficiency were generated as minicircle DNA preparations that lack bacterial and viral DNA. Hepatocytes transduced with the new constructs, ex vivo, produced large amounts of glucose-inducible human insulin. In vivo, insulin minicircle DNA (TA1m treated streptozotocin (STZ-diabetic rats demonstrated euglycemia when fasted or fed, ad libitum. Weight loss due to uncontrolled hyperglycemia was reversed in insulin gene treated diabetic rats to normal rate of weight gain, lasting ∼1 month. Intraperitoneal glucose tolerance test (IPGT demonstrated in vivo glucose-responsive changes in insulin levels to correct hyperglycemia within 45 minutes. A single TA1m treatment raised serum albumin levels in diabetic rats to normal and significantly reduced hypertriglyceridemia and hypercholesterolemia. Elevated serum levels of aspartate transaminase, alanine aminotransferase, and alkaline phosphatase were restored to normal or greatly reduced in treated rats, indicating normalization of liver function. Non-viral insulin minicircle DNA-based TA1m mediated glucose-dependent insulin production in liver may represent a safe and promising approach to treat T1DM.

  15. Control of Hepatic Gluconeogenesis by the Promyelocytic Leukemia Zinc Finger Protein

    Science.gov (United States)

    Chen, Siyu; Qian, Jinchun; Shi, Xiaoli; Gao, Tingting; Liang, Tingming

    2014-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein is involved in major biological processes including energy metabolism, although its role remains unknown. In this study, we demonstrated that hepatic PLZF expression was induced in fasted or diabetic mice. PLZF promoted gluconeogenic gene expression and hepatic glucose output, leading to hyperglycemia. In contrast, hepatic PLZF knockdown improved glucose homeostasis in db/db mice. Mechanistically, peroxisome proliferator-activated receptor γ coactivator 1α and the glucocorticoid receptor synergistically activated PLZF expression. We conclude that PLZF is a critical regulator of hepatic gluconeogenesis. PLZF manipulation may benefit the treatment of metabolic diseases associated with gluconeogenesis. PMID:25333514

  16. Involvement of glucagon-like peptide-1 in the glucose-lowering effect of metformin

    DEFF Research Database (Denmark)

    Bahne, Emilie; Hansen, Morten; Brønden, Andreas

    2016-01-01

    Metformin is an oral antihyperglycaemic drug used in the first-line treatment of type 2 diabetes. Metformin's classic and most well-known blood glucose-lowering mechanisms include reduction of hepatic gluconeogenesis and increased peripheral insulin sensitivity. Interestingly, intravenously...... administered metformin is ineffective and recently, metformin was shown to increase plasma concentrations of the glucose-lowering gut incretin hormone glucagon-like peptide-1 (GLP-1), which may contribute to metformin's glucose-lowering effect in patients with type 2 diabetes. The mechanisms behind metformin......-induced increments in GLP-1 levels remain unknown, but it has been hypothesized that metformin stimulates GLP-1 secretion directly and/or indirectly and that metformin prolongs the half-life of GLP-1. Also, it has been suggested that metformin may potentiate the glucose-lowering effects of GLP-1 by increasing target...

  17. Eradicating hepatitis C virus ameliorates insulin resistance without change in adipose depots.

    Science.gov (United States)

    Milner, K-L; Jenkins, A B; Trenell, M; Tid-Ang, J; Samocha-Bonet, D; Weltman, M; Xu, A; George, J; Chisholm, D J

    2014-05-01

    Chronic hepatitis C (CHC) is associated with lipid-related changes and insulin resistance; the latter predicts response to antiviral therapy, liver disease progression and the risk of diabetes. We sought to determine whether insulin sensitivity improves following CHC viral eradication after antiviral therapy and whether this is accompanied by changes in fat depots or adipokine levels. We compared 8 normoglycaemic men with CHC (genotype 1 or 3) before and at least 6 months post viral eradication and 15 hepatitis C antibody negative controls using an intravenous glucose tolerance test and two-step hyperinsulinaemic-euglycaemic clamp with [6,6-(2) H2 ] glucose to assess peripheral and hepatic insulin sensitivity. Magnetic resonance imaging and spectroscopy quantified abdominal fat compartments, liver and intramyocellular lipid. Peripheral insulin sensitivity improved (glucose infusion rate during high-dose insulin increased from 10.1 ± 1.6 to 12 ± 2.1 mg/kg/min/, P = 0.025), with no change in hepatic insulin response following successful viral eradication, without any accompanying change in muscle, liver or abdominal fat depots. There was corresponding improvement in incremental glycaemic response to intravenous glucose (pretreatment: 62.1 ± 8.3 vs post-treatment: 56.1 ± 8.5 mm, P = 0.008). Insulin sensitivity after viral clearance was comparable to matched controls without CHC. Post therapy, liver enzyme levels decreased but, interestingly, levels of glucagon, fatty acid-binding protein and lipocalin-2 remained elevated. Eradication of the hepatitis C virus improves insulin sensitivity without alteration in fat depots, adipokine or glucagon levels, consistent with a direct link of the virus with insulin resistance. © 2013 John Wiley & Sons Ltd.

  18. Insulin resistance, adipokine profile and hepatic expression of SOCS-3 gene in chronic hepatitis C.

    Science.gov (United States)

    Wójcik, Kamila; Jabłonowska, Elżbieta; Omulecka, Aleksandra; Piekarska, Anna

    2014-08-14

    To analyze adipokine concentrations, insulin resistance and hepatic expression of suppressor of cytokine signaling 3 (SOCS-3) in patients with chronic hepatitis C genotype 1 with normal body weight, glucose and lipid profile. The study group consisted of 31 patients with chronic hepatitis C and 9 healthy subjects. Total levels of adiponectin, leptin, resistin, visfatin, omentin, osteopontin and insulin were measured using an ELISA kit. The hepatic expression of SOCS-3 was determined by the use of the reverse transcription polymerase chain reaction method. Homeostasis model assessment for insulin resistance (HOMA-IR) values were significantly higher in hepatitis C virus (HCV) infected patients without metabolic disorders compared to healthy controls (2.24 vs 0.59, P = 0.0003). Hepatic steatosis was observed in 32.2% of patients with HCV infection and was found in patients with increased HOMA-IR index (2.81 vs 1.99, P = 0.05) and reduced adiponectin level (5.96 vs 8.37, P = 0.04). Inflammatory activity (G ≥ 2) was related to increased osteopontin concentration (34.04 vs 23.35, P = 0.03). Advanced liver fibrosis (S ≥ 2) was associated with increased levels of omentin and osteopontin (436.94 vs 360.09, P = 0.03 and 32.84 vs 20.29, P = 0.03) and reduced resistin concentration (1.40 vs 1.74, P = 0.047). No correlations were reported between adipokine profile, HOMA-IR values and hepatic expression of the SOCS-3 gene. We speculated that no relationship between adipokines and HOMA-IR values may indicate that HCV can induce insulin resistance itself. Some adipokines appear to be biochemical markers of steatosis, inflammation and fibrosis in patients with chronic HCV infection. © 2014 Baishideng Publishing Group Inc. All rights reserved.

  19. Insulin sensitivity of hepatic glucose and lipid metabolism in animal models of hepatic steatosis

    OpenAIRE

    Grefhorst, Aldo

    2006-01-01

    De lever is betrokken bij de regulatie van zowel het koolhydraat als het vet metabolisme. De lever slaat glucose op als glycogeen, scheidt glucose uit, kan glucose maken uit bijvoorbeeld melkzuur en aminozuren (‘gluconeogenese’), zet glucose om in vet (‘de novo lipogenese’), verbrandt vetzuren in de beta-oxidatie (levert energie voor de gluconeogenese) en scheidt triglycerides uit in de circulatie in ‘very low density lipoprotein’ (VLDL) deeltjes. Insuline remt de glucoseproductie door de lev...

  20. Short communication: Acute but transient increase in serum insulin reduces messenger RNA expression of hepatic enzymes associated with progesterone catabolism in dairy cows.

    Science.gov (United States)

    Vieira, F V R; Cooke, R F; Aboin, A C; Lima, P; Vasconcelos, J L M

    2013-02-01

    The objective of this experiment was to evaluate the effects of glucose infusion on serum concentrations of glucose, insulin, and progesterone (P4), as well as mRNA expression of hepatic CYP2C19 and CYP3A4 in nonlactating, ovariectomized cows in adequate nutritional status. Eight Gir × Holstein cows were maintained on a low-quality Brachiaria brizantha pasture with reduced forage availability, but they individually received, on average, 3 kg/cow daily (as fed) of a corn-based concentrate from d -28 to 0 of the experiment. All cows had an intravaginal P4-releasing device inserted on d -14, which remained in cows until the end of the experiment (d 1). On d 0, cows were randomly assigned to receive, in a crossover design containing 2 periods of 24h each (d 0 and 1), (1) an intravenous glucose infusion (GLUC; 0.5 g of glucose/kg of BW, over a 3-h period) or (2) an intravenous saline infusion (SAL; 0.9%, over a 3-h period). Cows were fasted for 12h before infusions, and they remained fasted during infusion and sample collections. Blood samples were collected at 0, 3, and 6h relative to the beginning of infusions. Liver biopsies were performed concurrently with blood collections at 0 and 3h. After the last blood collection of period 1, cows received concentrate and returned to pasture. Cows gained BW (16.5 ± 3.6 kg) and BCS (0.08 ± 0.06) from d -28 to 0. Cows receiving GLUC had greater serum glucose and insulin concentrations at 3h compared with SAL cohorts. No treatment effects were detected for serum P4 concentrations, although mRNA expression of CYP2C19 and CYP3A4 after the infusion period was reduced for cows in the GLUC treatment compared with their cohorts in the SAL treatment. In conclusion, hepatic CYP3A4 and CYP2C19 mRNA expression can be promptly modulated by glucose infusion followed by acute increases in circulating insulin, which provides novel insight into the physiological mechanisms associating nutrition and reproductive function in dairy cows

  1. Increased hepatic nicotine elimination after phenobarbital induction in the conscious rat

    International Nuclear Information System (INIS)

    Foth, H.; Walther, U.I.; Kahl, G.F.

    1990-01-01

    Elimination parameters of [14C]nicotine in conscious rats receiving nicotine (0.3 mg/kg) either intravenously or orally were studied. The oral availability of unchanged nicotine, derived by comparison of the respective areas under the concentration vs time curves (AUC), was 89%, indicating low hepatic extraction ratios of about 10%. Pretreatment of rats with phenobarbital (PB) markedly increased hepatic first-pass extraction of nicotine. The oral availability of unchanged nicotine in plasma dropped to 1.4% of the corresponding values obtained from PB-treated rats receiving nicotine iv. After PB pretreatment, the clearance of iv nicotine was increased approximately twofold over controls, much less than the observed more than ninefold increase of hepatic first-pass extraction. It is assumed that extrahepatic metabolism contributed significantly to the rapid removal of nicotine from the plasma. The elimination of cotinine, originating from nicotine administered either po or iv, was significantly increased by PB pretreatment, as determined by the ratio of corresponding AUCs. The pattern of nicotine metabolites in urine also indicated an increase in the rate of cotinine metabolic turnover. The amount of norcotinine in the organic extract of urine paralleled PB microsomal enzyme induction. The ratio between urinary concentrations of the normetabolite and cotinine correlated strongly with the PB-induced state of rat liver. This may be a suitable indicator of PB-inducible hepatic cytochrome P450 isoenzyme(s). Since smoking habits in man are feedback-regulated by nicotine plasma concentrations, a similar increase of nicotine elimination by microsomal enzyme induction in man may be of relevance for tobacco consumption

  2. Early Glucose Derangement Detected by Continuous Glucose Monitoring and Progression of Liver Fibrosis in Nonalcoholic Fatty Liver Disease: An Independent Predictive Factor?

    Science.gov (United States)

    Schiaffini, Riccardo; Liccardo, Daniela; Alisi, Anna; Benevento, Danila; Cappa, Marco; Cianfarani, Stefano; Nobili, Valerio

    2016-01-01

    Glucose derangement has been reported to increase oxidative stress, one of the most important factors underlying the progression of hepatic fibrosis in adults with nonalcoholic fatty liver disease (NAFLD). To date, careful evaluation of the glucose profile in pediatric NAFLD has not been performed. A total of 30 severely obese children (15 males; mean age 12.87 ± 2.19 years) with biopsy-proven NAFLD were enrolled in this study from September to December 2013. All patients underwent anthropometric and laboratory evaluation, including the oral glucose tolerance test (OGTT) and continuous glucose monitoring (CGM). Our study reveals some differences between OGTT and CGM in detecting NAFLD children with impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). OGTT showed 2 (6.67%) patients with IFG and 1 (3.34%) with IGT, while CGM showed 5 (16.67%) patients with IFG and 6 (20%) with IGT. The daily blood glucose profile positively correlated with the baseline blood glucose (r = 0.39, p = 0.04) and the homeostatic model assessment (r = 0.56, p = 0.05). A positive correlation between hyperglycemia and liver fibrosis was found (r = 0.65, p < 0.05). Mean glucose values (F3-F4 group: 163.2 ± 35.92 mg/dl vs. F1 group: 136.58 ± 46.83 mg/dl and F2 group: 154.12 ± 22.51 mg/dl) and the difference between the minimum and maximum blood glucose levels (F3-F4 group: 110.21 ± 25.26 mg/dl vs. F1 group: 91.67 ± 15.97 mg/dl and F2 group: 92 ± 15.48 mg/dl) were significantly (p < 0.05) higher in the F3-F4 group compared to the F1 and F2 groups. Glucose profile derangement as detected by CGM is associated with the severity of hepatic fibrosis in children with NAFLD. © 2015 S. Karger AG, Basel.

  3. Accretion of visceral fat and hepatic insulin resistance in pregnant rats.

    Science.gov (United States)

    Einstein, Francine H; Fishman, Sigal; Muzumdar, Radhika H; Yang, Xiao Man; Atzmon, Gil; Barzilai, Nir

    2008-02-01

    Insulin resistance (IR) is a hallmark of pregnancy. Because increased visceral fat (VF) is associated with IR in nonpregnant states, we reasoned that fat accretion might be important in the development of IR during pregnancy. To determine whether VF depots increase in pregnancy and whether VF contributes to IR, we studied three groups of 6-mo-old female Sprague-Dawley rats: 1) nonpregnant sham-operated rats (Nonpreg; n = 6), 2) pregnant sham-operated rats (Preg; n = 6), and 3) pregnant rats in which VF was surgically removed 1 mo before mating (PVF-; n = 6). VF doubled by day 19 of pregnancy (Nonpreg 5.1 +/- 0.3, Preg 10.0 +/- 1.0 g, P Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp in late gestation in chronically catheterized unstressed rats. Glucose IR (mg.kg(-1).min(-1)) was highest in Nonpreg (19.4 +/- 2.0), lowest in Preg (11.1 +/- 1.4), and intermediate in PVF- (14.7 +/- 0.6; P insulin sensitivity than Preg [hepatic glucose production (HGP): Nonpreg 4.5 +/- 1.3, Preg 9.3 +/- 0.5 mg.kg(-1).min(-1); P insulin sensitivity was similar to nonpregnant levels in PVF- (HGP 4.9 +/- 0.8 mg.kg(-1).min(-1)). Both pregnant groups had lower peripheral glucose uptake compared with Nonpreg. In parallel with hepatic insulin sensitivity, hepatic triglyceride content was increased in pregnancy (Nonpreg 1.9 +/- 0.4 vs. Preg 3.2 +/- 0.3 mg/g) and decreased with removal of VF (PVF- 1.3 +/- 0.4 mg/g; P insulin action in pregnancy.

  4. TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis*

    Science.gov (United States)

    Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T.; Rane, Sushil G.

    2017-01-01

    Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. PMID:28069811

  5. Integrated model of insulin and glucose kinetics describing both hepatic glucose and pancreatic insulin regulation

    DEFF Research Database (Denmark)

    Erlandsen, Mogens; Martinussen, Christoffer; Gravholt, Claus Højbjerg

    2018-01-01

    AbstractBackground and objectives Modeling of glucose kinetics has to a large extent been based on models with plasma insulin as a known forcing function. Furthermore, population-based statistical methods for parameter estimation in these models have mainly addressed random inter-individual varia......AbstractBackground and objectives Modeling of glucose kinetics has to a large extent been based on models with plasma insulin as a known forcing function. Furthermore, population-based statistical methods for parameter estimation in these models have mainly addressed random inter......-individual variations and not intra-individual variations in the parameters. Here we present an integrated whole-body model of glucose and insulin kinetics which extends the well-known two-compartment glucose minimal model. The population-based estimation technique allow for quantification of both random inter......- and intra-individual variation in selected parameters using simultaneous data series on glucose and insulin. Methods We extend the two-compartment glucose model into a whole-body model for both glucose and insulin using a simple model for the pancreas compartment which includes feedback of glucose on both...

  6. Long-term feeding of red algae (Gelidium amansii) ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model.

    Science.gov (United States)

    Liu, Hshuan-Chen; Chang, Chun-Ju; Yang, Tsung-Han; Chiang, Meng-Tsan

    2017-07-01

    This study was designed to investigate the effect of Gelidium amansii (GA) on carbohydrate and lipid metabolism in rats with high fructose (HF) diet (57.1% w/w). Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1) control diet group (Con); (2) HF diet group (HF); and (3) HF with GA diet group (HF + 5% GA). The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC) and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model. Copyright © 2016. Published by Elsevier B.V.

  7. Increasing Coverage of Hepatitis B Vaccination in China

    Science.gov (United States)

    Wang, Shengnan; Smith, Helen; Peng, Zhuoxin; Xu, Biao; Wang, Weibing

    2016-01-01

    Abstract This study used a system evaluation method to summarize China's experience on improving the coverage of hepatitis B vaccine, especially the strategies employed to improve the uptake of timely birth dosage. Identifying successful methods and strategies will provide strong evidence for policy makers and health workers in other countries with high hepatitis B prevalence. We conducted a literature review included English or Chinese literature carried out in mainland China, using PubMed, the Cochrane databases, Web of Knowledge, China National Knowledge Infrastructure, Wanfang data, and other relevant databases. Nineteen articles about the effectiveness and impact of interventions on improving the coverage of hepatitis B vaccine were included. Strong or moderate evidence showed that reinforcing health education, training and supervision, providing subsidies for facility birth, strengthening the coordination among health care providers, and using out-of-cold-chain storage for vaccines were all important to improving vaccination coverage. We found evidence that community education was the most commonly used intervention, and out-reach programs such as out-of-cold chain strategy were more effective in increasing the coverage of vaccination in remote areas where the facility birth rate was respectively low. The essential impact factors were found to be strong government commitment and the cooperation of the different government departments. Public interventions relying on basic health care systems combined with outreach care services were critical elements in improving the hepatitis B vaccination rate in China. This success could not have occurred without exceptional national commitment. PMID:27175710

  8. Enteral nutrition increases interstitial brain glucose levels in poor-grade subarachnoid hemorrhage patients.

    Science.gov (United States)

    Kofler, Mario; Schiefecker, Alois J; Beer, Ronny; Gaasch, Maxime; Rhomberg, Paul; Stover, John; Pfausler, Bettina; Thomé, Claudius; Schmutzhard, Erich; Helbok, Raimund

    2018-03-01

    Low brain tissue glucose levels after acute brain injury are associated with poor outcome. Whether enteral nutrition (EN) reliably increases cerebral glucose levels remains unclear. In this retrospective analysis of prospectively collected observational data, we investigate the effect of EN on brain metabolism in 17 poor-grade subarachnoid hemorrhage (SAH) patients undergoing cerebral microdialysis (CMD) monitoring. CMD-values were obtained hourly. A nutritional intervention was defined as the clinical routine administration of EN without supplemental parenteral nutrition. Sixty-three interventions were analyzed. The mean amount of EN per intervention was 472.4 ± 10.7 kcal. CMD-glucose levels significantly increased from 1.59 ± 0.13 mmol/l at baseline to a maximum of 2.03 ± 0.2 mmol/l after 5 h (p  40) and the microdialysis probe location. The increase in CMD-glucose was directly dependent on the magnitude of increase of serum glucose levels (p = 0.007). No change in CMD-lactate, CMD-pyruvate, CMD-LPR, or CMD-glutamate (p > 0.4) was observed. Routine EN also increased CMD-glucose even if baseline concentrations were critically low ( < 0.7 mmol/l, neuroglucopenia; p < 0.001). These results may have treatment implications regarding glucose management of poor-grade aneurysmal SAH patients.

  9. Significance of glucagon for insulin secretion and hepatic glycogenolysis during exercise in rats

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H; Holst, J J

    1981-01-01

    The significance of glucagon and of the sympatho-adrenal system for insulin secretion and hepatic glycogen depletion during exercise was studied. Male rats were either adrenodemedullated and chemically sympathectomized with 6-hydroxydopamine (SX) or sham-treated (C). During light ether anesthesia......, cardiac blood for glucose analysis and a biopsy of the liver were obtained, and either antigen-stripped glucagon antibodies (A) or control gamma globulins (N) in saline were injected through the cardiac cannula. Subsequently, the rats swam in tepid water (33-34 degree C) for 100 minutes with a tail weight...... attached (2% of body weight). Then cardiac blood was drawn for analysis of glucose, insulin and glucagon, and a sample of the liver was collected. In both CA and CN rats, the blood glucose concentration tended to increase (p less than 0.1) during exercise, whereas hepatic glycogen depletion and the plasma...

  10. Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus (VMH).

    Science.gov (United States)

    Shimazu, Takashi; Minokoshi, Yasuhiko

    2017-05-01

    The ventromedial hypothalamic nucleus (VMH) regulates glucose production in the liver as well as glucose uptake and utilization in peripheral tissues, including skeletal muscle and brown adipose tissue, via efferent sympathetic innervation and neuroendocrine mechanisms. The action of leptin on VMH neurons also increases glucose uptake in specific peripheral tissues through the sympathetic nervous system, with improved insulin sensitivity. On the other hand, subsets of VMH neurons, such as those that express steroidogenic factor 1 (SF1), sense changes in the ambient glucose concentration and are characterized as glucose-excited (GE) and glucose-inhibited (GI) neurons whose action potential frequency increases and decreases, respectively, as glucose levels rise. However, how these glucose-sensing (GE and GI) neurons in the VMH contribute to systemic glucoregulation remains poorly understood. In this review, we provide historical background and discuss recent advances related to glucoregulation by VMH neurons. In particular, the article describes the role of GE neurons in the control of peripheral glucose utilization and insulin sensitivity, which depend on mitochondrial uncoupling protein 2 of the neurons, as well as that of GI neurons in the control of hepatic glucose production through hypoglycemia-induced counterregulatory mechanisms.

  11. Detection of serum leptin levels in patients with viral hepatitis C

    International Nuclear Information System (INIS)

    Sun Shuhong; Yu Hua; Niu Airong; Wu Yuqing

    2006-01-01

    To evaluate changes of serum leptin levels in patients with viral hepatitis C(HCV), serum leptin levels were determined by RIA in 65 patients with viral chronic hepatitis C and in 80 control subjects ,liver function (ALT, AST) , glucose (Glu) , and total cholesterol (TC) were evaluated too. Campared with controls, the levels of serum leptin were significantly increased in patients with HCV (P 0.05). The levels of serum leptin increased in patients with HCV, which correlates positively with the severity of liver inflammation, so that leptin can be regarded as an index which reflects the severity of liver inflammation. (authors)

  12. Hypothalamic growth hormone receptor (GHR controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb expressing neurons

    Directory of Open Access Journals (Sweden)

    Gillian Cady

    2017-05-01

    Full Text Available Objective: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR are active in the central nervous system (CNS and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. Methods: To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR. The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. Results: Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. Conclusion: These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding. Keywords: Growth hormone receptor, Hypothalamus, Leptin receptor, Glucose production, Liver

  13. Dapper1 attenuates hepatic gluconeogenesis and lipogenesis by activating PI3K/Akt signaling.

    Science.gov (United States)

    Kuang, Jian-Ren; Zhang, Zhi-Hui; Leng, Wei-Ling; Lei, Xiao-Tian; Liang, Zi-Wen

    2017-05-15

    Studies have shown that hepatic insulin resistance, a disorder of glucose and lipid metabolism, plays a vital role in type 2 diabetes (T2D). To clarify the function of Dapper1 in glucose and lipid metabolism in the liver, we investigated the relationships between Dapper1 and adenosine triphosphate (ATP)- and Ca 2+ -mediated activation of PI3K/Akt. We observed a reduction in hepatic Dapper1 in db/db (mice that are homozygous for a spontaneous diabetes mutation) and HFD-induced diabetic mice with T2D. Hepatic overexpression of Dapper1 improved hyperglycemia, insulin resistance, and fatty liver. It also increased Akt (pAkt) signaling and repressed both gluconeogenesis and lipogenesis. Conversely, Ad-shDapper1-induced knockdown of hepatic Dapper1 promoted gluconeogenesis and lipogenesis. Furthermore, Dapper1 activated PI3K p110α/Akt in an insulin-independent manner by inducing ATP production and secretion in vitro. Blockade of P2 ATP receptors, the downstream phospholipase C (PLC), or the inositol triphosphate receptor (IP3R all reduced the Dapper1-induced increase in cytosolic free calcium and Dapper1-mediated PI3K/Akt activation, as did removal of calcium in the medium. In conclusion, Dapper1 attenuates hepatic gluconeogenesis and lipogenesis in T2D. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The acute effect of metformin on glucose production in the conscious dog is primarily attributable to inhibition of glycogenolysis.

    Science.gov (United States)

    Chu, C A; Wiernsperger, N; Muscato, N; Knauf, M; Neal, D W; Cherrington, A D

    2000-12-01

    Although metformin has been used worldwide to treat type 2 diabetes for several decades, its mechanism of action on glucose homeostasis remains controversial. To further assess the effect of metformin on glucose metabolism, 10 42-hour-fasted conscious dogs were studied in the absence ([Con] n = 5) and presence ([Met] n = 5) of a portal infusion of metformin (0.15 mg x kg(-1) x min(-1)) over 300 minutes. Hepatic glucose production was measured by both arteriovenous-difference and tracer methods. All dogs were maintained on a pancreatic clamp and in a euglycemic state to ensure that any changes in glucose metabolism would result directly from the effects of metformin. The arterial metformin level was 21 +/- 3 microg/mL during the test period. Net hepatic glucose output (NHGO) decreased in Met dogs from 1.9 +/- 0.2 to 0.7 +/- 0.1 mg x kg(-1) x min(-1) (P metformin on glucose metabolism was an inhibition of hepatic glucose production and not a stimulation of glucose utilization; and (2) the inhibition of glucose production was attributable to a decrease in hepatic glycogenolysis and not to an alteration in gluconeogenic flux.

  15. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis.

    Science.gov (United States)

    Gotoh, Saki; Negishi, Masahiko

    2015-09-22

    Statin therapy is known to increase blood glucose levels in humans. Statins utilize pregnane X receptor (PXR) and serum/glucocorticoid regulated kinase 2 (SGK2) to activate phosphoenolpyruvate carboxykinase 1 (PEPCK1) and glucose-6-phosphatase (G6Pase) genes, thereby increasing glucose production in human liver cells. Here, the novel statin/PXR/SGK2-mediated signaling pathway has now been characterized for hepatic gluconeogenesis. Statin-activated PXR scaffolds the protein phosphatase 2C (PP2C) and SGK2 to stimulate PP2C to dephosphorylate SGK2 at threonine 193. Non-phosphorylated SGK2 co-activates PXR-mediated trans-activation of promoters of gluconeogenic genes in human liver cells, thereby enhancing gluconeogenesis. This gluconeogenic statin-PXR-SGK2 signal is not present in mice, in which statin treatment suppresses hepatic gluconeogenesis. These findings provide the basis for statin-associated side effects such as an increased risk for Type 2 diabetes.

  16. Impairments of hepatic gluconeogenesis and ketogenesis in PPARα-deficient neonatal mice.

    Science.gov (United States)

    Cotter, David G; Ercal, Baris; d'Avignon, D André; Dietzen, Dennis J; Crawford, Peter A

    2014-07-15

    Peroxisome proliferator activated receptor-α (PPARα) is a master transcriptional regulator of hepatic metabolism and mediates the adaptive response to fasting. Here, we demonstrate the roles for PPARα in hepatic metabolic adaptations to birth. Like fasting, nutrient supply is abruptly altered at birth when a transplacental source of carbohydrates is replaced by a high-fat, low-carbohydrate milk diet. PPARα-knockout (KO) neonatal mice exhibit relative hypoglycemia due to impaired conversion of glycerol to glucose. Although hepatic expression of fatty acyl-CoA dehydrogenases is imparied in PPARα neonates, these animals exhibit normal blood acylcarnitine profiles. Furthermore, quantitative metabolic fate mapping of the medium-chain fatty acid [(13)C]octanoate in neonatal mouse livers revealed normal contribution of this fatty acid to the hepatic TCA cycle. Interestingly, octanoate-derived carbon labeled glucose uniquely in livers of PPARα-KO neonates. Relative hypoketonemia in newborn PPARα-KO animals could be mechanistically linked to a 50% decrease in de novo hepatic ketogenesis from labeled octanoate. Decreased ketogenesis was associated with diminished mRNA and protein abundance of the fate-committing ketogenic enzyme mitochondrial 3-hydroxymethylglutaryl-CoA synthase (HMGCS2) and decreased protein abundance of the ketogenic enzyme β-hydroxybutyrate dehydrogenase 1 (BDH1). Finally, hepatic triglyceride and free fatty acid concentrations were increased 6.9- and 2.7-fold, respectively, in suckling PPARα-KO neonates. Together, these findings indicate a primary defect of gluconeogenesis from glycerol and an important role for PPARα-dependent ketogenesis in the disposal of hepatic fatty acids during the neonatal period. Copyright © 2014 the American Physiological Society.

  17. Ghrelin Alleviates MDMA-Induced Disturbance of Serum Glucose and Lipids Levels in the Rat

    Directory of Open Access Journals (Sweden)

    Ravieh Golchoobian

    2018-01-01

    Full Text Available Hepatotoxicity is one of the clinically adverse effects of ecstasy (3, 4-methylenedioxymethamphetamine; MDMA consumption. The detoxification tissue, liver, plays a central role in maintaining circulating levels of glucose and lipid. Hypoglycemia and hypotriglyceridemia have been reported due to ecstasy abuse. Ghrelin is a 28-amino-acid peptide secreted predominantly from the stomach. It has been demonstrated that ghrelin has hepatoprotective effects and is able to increase blood glucose concentration. In the current study, we explored the effect of hepatotoxic dose of MDMA and therapeutic use of exogenous ghrelin on the serum levels of glucose and lipids in four groups of rats. MDMA caused a severe and transient reduction in circulating levels of glucose and triglyceride and increased serum LDL. However, cholesterol and HDL levels remained unchanged. Meanwhile, altered hepatic architecture was observed with intracellular vacuolation that may indicate intracellular accumulation of lipid droplets. In addition, following ghrelin administration, the blood sugar levels improved and LDL levels returned to the baseline value, and ghrelin treatment did not improve triglycerides levels. These results showed that MDMA causes hypoglycemia, hypotriglyceridemia, and hyper LDL-cholesterolemia. To our knowledge, this is the first report showing ghrelin administration could improve hypoglycemia and normalize LDL levels induced by MDMA and partially restore hepatic architecture.

  18. Increased hepatic cholesterol esterification with essential fatty acid deficiency (EFAD): relationship to plasma lipoprotein (LP) cholesterol content

    International Nuclear Information System (INIS)

    Ney, D.M.; Ziboh, V.A.; Schneeman, B.O.

    1986-01-01

    EFAD in the rat is associated with hepatic accumulation of esterified cholesterol and altered distribution of cholesterol between plasma and hepatic tissue. Little is known regarding the impact of EFAD on LP composition. To determine the relationship between hepatic cholesterol esterification and plasma lP composition in control (C) and EFAD male Wistar rats, the authors induced EFAD with continuous intragastric (IG) infusion of EFA-free solutions containing 3.5% of calories as triolein for 7 and 14 days. C animals received IG infusion of solutions containing 3.5% of calories as linoleic acid. Data in the EFAD groups reveal: (i) marked decreases in hepatic EFAs and increases in monoenoic acids; (ii) progressive increases in hepatic content of triglyceride and esterified cholesterol with 7 and 14 days of feeding; (iii) assay of acyl CoA:cholesterol acyltransferase activity in hepatic tissue using 14 C-cholesterol demonstrates an increase in hepatic cholesterol esterification when compared to C animals. Increased hepatic cholesterol esterification correlates with elevated levels of esterified cholesterol in plasma VLDL and HDL particles. These data indicate that the elevated levels of cholesterol esters in LP particles is due, at least in part, to increased hepatic cholesterol esterification with EFAD

  19. Effects of glucogenic and ketogenic feeding strategies on splanchnic glucose and amino acid metabolism in postpartum transition Holstein cows.

    Science.gov (United States)

    Larsen, M; Kristensen, N B

    2012-10-01

    Nine periparturient Holstein cows catheterized in major splanchnic vessels were used in a complete randomized design with repeated measurements to investigate effects of glucogenic and ketogenic feeding strategies on splanchnic metabolism of glucose and amino acids. At parturition, cows were assigned to 1 of 3 feeding strategies: a glucogenic diet (GLCG) based on sodium hydroxide treated wheat grain (56.5% of diet dry matter); a ketogenic diet (KETO) based on fodder beets (40.5% of diet dry matter); or an alfalfa-glucogenic strategy (ALF-GLCG) supplying 100% alfalfa (Medicago sativa L.) haylage at the day of parturition, followed by a 6-d linear shift to the GLCG diet. Samples were obtained 14 d before expected parturition as well as at 4, 15, and 29 d in milk (DIM). The net portal release of glucose was greatest with GLCG, reflecting the higher intake of ruminal escape starch with GLCG, as compared with a lower starch intake with KETO. Postpartum, the portal recovery of feed starch was greater (28 ± 3%, mean ± SEM) with KETO as compared with GLCG (15 ± 4%). At 4 DIM, the net hepatic release of glucose was greatest with KETO and least with ALF-GLCG, whereafter it increased as lactation progressed with ALF-GLCG and GLCG, but not with KETO. The high alfalfa haylage allowance at 4 DIM with the ALF-GLCG treatment induced the lowest net release of nutrients from the splanchnic tissues at 4 DIM. The hepatic removal of lactate as percent of total influx (mean ± SEM) increased from 27 ± 3% prepartum to 56 ± 3% at 4 DIM. The hepatic removal of lactate as percent of net portal release increased from 144 ± 10% prepartum to 329 ± 17% at 4 DIM with ALF-GLCG and KETO as compared with 242 ± 20% in GLCG. No clear evidence for an amino acid sparing effect in splanchnic tissues from increasing small intestinal glucose absorption was observed. In conclusion, the glucogenic feeding strategy induced the highest glucogenic status among the tested feeding strategies due to

  20. Ghrelin administered spinally increases the blood glucose level in mice.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-04-01

    Ghrelin is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of ghrelin located in the spinal cord in the regulation of the blood glucose level were investigated in ICR mice. We found that intrathecal (i.t.) injection with ghrelin (from 1 to 10 μg) caused an elevation of the blood glucose level. In addition, i.t. pretreatment with YIL781 (ghrelin receptor antagonist; from 0.1 to 5 μg) markedly attenuated ghrelin-induced hyperglycemic effect. The plasma insulin level was increased by ghrelin. The enhanced plasma insulin level by ghrelin was reduced by i.t. pretreatment with YIL781. However, i.t. pretreatment with glucagon-like peptide-1 (GLP-1; 5 μg) did not affect the ghrelin-induced hyperglycemia. Furthermore, i.t. administration with ghrelin also elevated the blood glucose level, but in an additive manner, in d-glucose-fed model. Our results suggest that the activation of ghrelin receptors located in the spinal cord plays important roles for the elevation of the blood glucose level. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis.

    Science.gov (United States)

    Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T; Rane, Sushil G

    2017-02-24

    Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Three hours of intermittent hypoxia increases circulating glucose levels in healthy adults.

    Science.gov (United States)

    Newhouse, Lauren P; Joyner, Michael J; Curry, Timothy B; Laurenti, Marcello C; Man, Chiara Dalla; Cobelli, Claudio; Vella, Adrian; Limberg, Jacqueline K

    2017-01-01

    An independent association exists between sleep apnea and diabetes. Animal models suggest exposure to intermittent hypoxia, a consequence of sleep apnea, results in altered glucose metabolism and fasting hyperglycemia. However, it is unknown if acute exposure to intermittent hypoxia increases glucose concentrations in nondiabetic humans. We hypothesized plasma glucose would be increased from baseline following 3 h of intermittent hypoxia in healthy humans independent of any effect on insulin sensitivity. Eight (7M/1F, 21-34 years) healthy subjects completed two study visits randomized to 3 h of intermittent hypoxia or continuous normoxia, followed by an oral glucose tolerance test. Intermittent hypoxia consisted of 25 hypoxic events per hour where oxygen saturation (SpO 2 ) was significantly reduced (Normoxia: 97 ± 1%, Hypoxia: 90 ± 2%, P  0.05). In contrast, circulating glucose concentrations were increased after 3 h of intermittent hypoxia when compared to baseline (5.0 ± 0.2 vs. 5.3 ± 0.2 mmol/L, P = 0.01). There were no detectable changes in insulin sensitivity following intermittent hypoxia when compared to continuous normoxia, as assessed by the oral glucose tolerance test (P > 0.05). Circulating glucose is increased after 3 h of intermittent hypoxia in healthy humans, independent of any lasting changes in insulin sensitivity. These novel findings could explain, in part, the high prevalence of diabetes in patients with sleep apnea and warrant future studies to identify underlying mechanisms. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Effects of β-hydroxy β-methyl butyrate supplementation to sows in late gestation on absorption and hepatic metabolism of glucose and amino acids during transition

    DEFF Research Database (Denmark)

    Flummer, Christine; Lyby, H; Storli, K S

    2012-01-01

    A multicatheter sow model was established to study the effects of dietary β-hydroxy β-methyl butyrate (HMB) supplementation on net portal flux (NPF) and net hepatic flux (NHF) of HMB, glucose, and the AA Ala, Gly, Ile, Leu, Phe, Tyr, and Val. Eight second parity sows were fitted with permanent...... the experiment, and 4 HMB sows were fed the control diet supplemented with 15 mg Ca(HMB)2/kg BW mixed in one third of the morning meal from day –10 until parturition. Net portal flux of HMB was affected by treatment (Trt; P HMB sows at 6.9 mmol/h 30 min after the morning meal...... and then decreased towards preprandial level (0.0 mmol/h) 3.5 h after the meal, revealing that dietary HMB was rapidly absorbed from the intestine. The NHF of HMB tended to be affected by Trt (P = 0.06) showing a small hepatic uptake of HMB (1.1 mmol/h) in HMB sows. Net portal flux of glucose and all measured AA...

  4. ERK2-Mediated Phosphorylation of Transcriptional Coactivator Binding Protein PIMT/NCoA6IP at Ser298 Augments Hepatic Gluconeogenesis

    Science.gov (United States)

    Parsa, Kishore V. L.; Kain, Vasundhara; Behera, Soma; Suraj, Sashidhara Kaimal; Babu, Phanithi Prakash; Kar, Anand; Panda, Sunanda; Zhu, Yi-jun; Jia, Yuzhi; Thimmapaya, Bayar; Reddy, Janardan K.; Misra, Parimal

    2013-01-01

    PRIP-Interacting protein with methyl transferase domain (PIMT) serves as a molecular bridge between CREB-binding protein (CBP)/ E1A binding protein p300 (Ep300) -anchored histone acetyl transferase and the Mediator complex sub-unit1 (Med1) and modulates nuclear receptor transcription. Here, we report that ERK2 phosphorylates PIMT at Ser298 and enhances its ability to activate PEPCK promoter. We observed that PIMT is recruited to PEPCK promoter and adenoviral-mediated over-expression of PIMT in rat primary hepatocytes up-regulated expression of gluconeogenic genes including PEPCK. Reporter experiments with phosphomimetic PIMT mutant (PIMTS298D) suggested that conformational change may play an important role in PIMT-dependent PEPCK promoter activity. Overexpression of PIMT and Med1 together augmented hepatic glucose output in an additive manner. Importantly, expression of gluconeogenic genes and hepatic glucose output were suppressed in isolated liver specific PIMT knockout mouse hepatocytes. Furthermore, consistent with reporter experiments, PIMTS298D but not PIMTS298A augmented hepatic glucose output via up-regulating the expression of gluconeogenic genes. Pharmacological blockade of MAPK/ERK pathway using U0126, abolished PIMT/Med1-dependent gluconeogenic program leading to reduced hepatic glucose output. Further, systemic administration of T4 hormone to rats activated ERK1/2 resulting in enhanced PIMT ser298 phosphorylation. Phosphorylation of PIMT led to its increased binding to the PEPCK promoter, increased PEPCK expression and induction of gluconeogenesis in liver. Thus, ERK2-mediated phosphorylation of PIMT at Ser298 is essential in hepatic gluconeogenesis, demonstrating an important role of PIMT in the pathogenesis of hyperglycemia. PMID:24358311

  5. Effects of ovariectomy and exercise training intensity on energy substrate and hepatic lipid metabolism, and spontaneous physical activity in mice.

    Science.gov (United States)

    Tuazon, Marc A; Campbell, Sara C; Klein, Dylan J; Shapses, Sue A; Anacker, Keith R; Anthony, Tracy G; Uzumcu, Mehmet; Henderson, Gregory C

    2018-06-01

    Menopause is associated with fatty liver, glucose dysregulation, increased body fat, and impaired bone quality. Previously, it was demonstrated that single sessions of high-intensity interval exercise (HIIE) are more effective than distance- and duration-matched continuous exercise (CE) on altering hepatic triglyceride (TG) metabolism and very-low density lipoprotein-TG (VLDL-TG) secretion. Six weeks training using these modalities was examined for effects on hepatic TG metabolism/secretion, glucose tolerance, body composition, and bone mineral density (BMD) in ovariectomized (OVX) and sham-operated (SHAM) mice. OVX and SHAM were assigned to distance- and duration-matched CE and HIIE, or sedentary control. Energy expenditure during exercise was confirmed to be identical between CE and HIIE and both similarly reduced post-exercise absolute carbohydrate oxidation and spontaneous physical activity (SPA). OVX vs. SHAM displayed impaired glucose tolerance and greater body fat despite lower hepatic TG, and these outcomes were not affected by training. Only HIIE increased hepatic AMPK in OVX and SHAM, but neither training type impacted VLDL-TG secretion. As expected, BMD was lower in OVX, and training did not affect long bones. The results reveal intensity-dependent effects on hepatic AMPK expression and general exercise effects on subsequent SPA and substrate oxidation that is independent of estrogen status. These findings support the notion that HIIE can impact aspects of liver physiology in females while the effects of exercise on whole body substrate selection appear to be independent of training intensity. However, neither exercise approach mitigated the impairment in glucose tolerance and elevated body fat occurring in OVX mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Protectin DX suppresses hepatic gluconeogenesis through AMPK-HO-1-mediated inhibition of ER stress.

    Science.gov (United States)

    Jung, Tae Woo; Kim, Hyung-Chun; Abd El-Aty, A M; Jeong, Ji Hoon

    2017-06-01

    Several studies have shown that protectins, which are ω-3 fatty acid-derived proresolution mediators, may improve insulin resistance. Recently, protectin DX (PDX) was documented to attenuate insulin resistance by stimulating IL-6 expression in skeletal muscle, thereby regulating hepatic gluconeogenesis. These findings made us investigate the direct effects of PDX on hepatic glucose metabolism in the context of diabetes. In the current study, we show that PDX regulates hepatic gluconeogenesis in a manner distinct from its indirect glucoregulatory activity via IL-6. We found that PDX stimulated AMP-activated protein kinase (AMPK) phosphorylation, thereby inducing heme oxygenase 1 (HO-1) expression. This induction blocked hepatic gluconeogenesis by suppressing endoplasmic reticulum (ER) stress in hepatocytes under hyperlipidemic conditions. These effects were significantly dampened by silencing AMPK or HO-1 expression with small interfering RNA (siRNA). We also demonstrated that administration of PDX to high fat diet (HFD)-fed mice resulted in increased hepatic AMPK phosphorylation and HO-1 expression, whereas hepatic ER stress was substantially attenuated. Furthermore, PDX treatment suppressed the expression of gluconeogenic genes, thereby decreasing blood glucose levels in HFD-fed mice. In conclusion, our findings suggest that PDX inhibits hepatic gluconeogenesis via AMPK-HO-1-dependent suppression of ER stress. Thus, PDX may be an effective therapeutic target for the treatment of insulin resistance and type 2 diabetes through the regulation of hepatic gluconeogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Increased recovery rates of phosphocreatine and inorganic phosphate after isometric contraction in oxidative muscle fibres and elevated hepatic insulin resistance in homozygous carriers of the A-allele of FTO rs9939609

    DEFF Research Database (Denmark)

    Grunnet, Louise Groth; Brøns, Charlotte; Jacobsen, Stine

    2009-01-01

    9939609 A-allele was associated with elevated fasting blood glucose and plasma insulin, hepatic insulin resistance and shorter recovery halftimes of phosphocreatine (PCr) and inorganic phosphate (Pi) after exercise in a primarily type I muscle. These relationships - except for fasting insulin - remained...... or mitochondrially encoded genes in skeletal muscle during rest. Conclusion. Increased energy efficiency - and potentially increased mitochondrial coupling - as suggested by faster recovery rates of PCr and Pi in oxidative muscle fibres may contribute to the increased risk of obesity and type 2 diabetes...

  8. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.

    Science.gov (United States)

    Liu, Tong-Yan; Shi, Chang-Xiang; Gao, Run; Sun, Hai-Jian; Xiong, Xiao-Qing; Ding, Lei; Chen, Qi; Li, Yue-Hua; Wang, Jue-Jin; Kang, Yu-Ming; Zhu, Guo-Qing

    2015-11-01

    Increased glucose production and reduced hepatic glycogen storage contribute to metabolic abnormalities in diabetes. Irisin, a newly identified myokine, induces the browning of white adipose tissue, but its effects on gluconeogenesis and glycogenesis are unknown. In the present study, we investigated the effects and underlying mechanisms of irisin on gluconeogenesis and glycogenesis in hepatocytes with insulin resistance, and its therapeutic role in type 2 diabetic mice. Insulin resistance was induced by glucosamine (GlcN) or palmitate in human hepatocellular carcinoma (HepG2) cells and mouse primary hepatocytes. Type 2 diabetes was induced by streptozotocin/high-fat diet (STZ/HFD) in mice. In HepG2 cells, irisin ameliorated the GlcN-induced increases in glucose production, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression, and glycogen synthase (GS) phosphorylation; it prevented GlcN-induced decreases in glycogen content and the phosphoinositide 3-kinase (PI3K) p110α subunit level, and the phosphorylation of Akt/protein kinase B, forkhead box transcription factor O1 (FOXO1) and glycogen synthase kinase-3 (GSK3). These effects of irisin were abolished by the inhibition of PI3K or Akt. The effects of irisin were confirmed in mouse primary hepatocytes with GlcN-induced insulin resistance and in human HepG2 cells with palmitate-induced insulin resistance. In diabetic mice, persistent subcutaneous perfusion of irisin improved the insulin sensitivity, reduced fasting blood glucose, increased GSK3 and Akt phosphorylation, glycogen content and irisin level, and suppressed GS phosphorylation and PEPCK and G6Pase expression in the liver. Irisin improves glucose homoeostasis by reducing gluconeogenesis via PI3K/Akt/FOXO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via PI3K/Akt/GSK3-mediated GS activation. Irisin may be regarded as a novel therapeutic strategy for insulin resistance and type 2 diabetes. © 2015

  9. Quantitative comparison of pathways of hepatic glycogen repletion in fed and fasted humans

    International Nuclear Information System (INIS)

    Shulman, G.I.; Cline, G.; Schumann, W.C.; Chandramouli, V.; Kumaran, K.; Landau, B.R.

    1990-01-01

    The effect of fasting vs. refeeding on hepatic glycogen repletion by the direct pathway, i.e., glucose----glucose 6-phosphate (G-6-P)----glycogen, was determined. Acetaminophen was administered during an infusion of glucose labeled with [1-13C]- and [6-14C]glucose into four healthy volunteers after an overnight fast and into the same subjects 4 h after breakfast. 13C enrichments in C-1 and C-6 of glucose formed from urinary acetaminophen glucuronide compared with enrichments in C-1 and C-6 of plasma glucose provided an estimate of glycogen formation by the direct pathway. The specific activity of glucose from the glucuronide compared with the specific activity of the plasma glucose, along with the percentages of 14C in C-1 and C-6 of the glucose from the glucuronide, also provided an estimate of the amount of glycogen formed by the direct pathway. The estimates were similar. Those from [6-14C]glucose would have been higher than from [1-13C]glucose if the pentose cycle contribution to overall glucose utilization had been significant. After an overnight fast, during the last hour of infusion, 49 +/- 3% of the glycogen formed was formed via the direct pathway. After breakfast, at similar plasma glucose and insulin concentrations, the percentage increased to 69 +/- 7% (P less than 0.02). Thus the contributions of the pathways to hepatic glycogen formation depend on the dietary state of the individual. For a dietary regimen in which individuals consume multiple meals per day containing at least a moderate amount of carbohydrates most glycogen synthesis occurs by the direct pathway

  10. Decrease of Plasma Glucose by Hibiscus taiwanensis in Type-1-Like Diabetic Rats

    Science.gov (United States)

    Wang, Lin-Yu; Chung, Hsien-Hui

    2013-01-01

    Hibiscus taiwanensis (Malvaceae) is widely used as an alternative herb to treat disorders in Taiwan. In the present study, it is used to screen the effect on diabetic hyperglycemia in streptozotocin-induced diabetic rats (STZ-diabetic rats). The extract of Hibiscus taiwanensis showed a significant plasma glucose-lowering action in STZ-diabetic rats. Stems of Hibiscus taiwanensis are more effective than other parts to decrease the plasma glucose in a dose-dependent manner. Oral administration of Hibiscus taiwanensis three times daily for 3 days into STZ-diabetic rats increased the sensitivity to exogenous insulin showing an increase in insulin sensitivity. Moreover, similar repeated administration of Hibiscus taiwanensis for 3 days in STZ-diabetic rats produced a marked reduction of phosphoenolpyruvate carboxykinase (PEPCK) expression in liver and an increased expression of glucose transporter subtype 4 (GLUT 4) in skeletal muscle. Taken together, our results suggest that Hibiscus taiwanensis has the ability to lower plasma glucose through an increase in glucose utilization via elevation of skeletal GLUT 4 and decrease of hepatic PEPCK in STZ-diabetic rats. PMID:23690841

  11. A Specific ChREBP and PPARα Cross-Talk Is Required for the Glucose-Mediated FGF21 Response

    Directory of Open Access Journals (Sweden)

    Alison Iroz

    2017-10-01

    Full Text Available While the physiological benefits of the fibroblast growth factor 21 (FGF21 hepatokine are documented in response to fasting, little information is available on Fgf21 regulation in a glucose-overload context. We report that peroxisome-proliferator-activated receptor α (PPARα, a nuclear receptor of the fasting response, is required with the carbohydrate-sensitive transcription factor carbohydrate-responsive element-binding protein (ChREBP to balance FGF21 glucose response. Microarray analysis indicated that only a few hepatic genes respond to fasting and glucose similarly to Fgf21. Glucose-challenged Chrebp−/− mice exhibit a marked reduction in FGF21 production, a decrease that was rescued by re-expression of an active ChREBP isoform in the liver of Chrebp−/− mice. Unexpectedly, carbohydrate challenge of hepatic Pparα knockout mice also demonstrated a PPARα-dependent glucose response for Fgf21 that was associated with an increased sucrose preference. This blunted response was due to decreased Fgf21 promoter accessibility and diminished ChREBP binding onto Fgf21 carbohydrate-responsive element (ChoRE in hepatocytes lacking PPARα. Our study reports that PPARα is required for the ChREBP-induced glucose response of FGF21.

  12. Methylphenidate increases glucose uptake in the brain of young and adult rats.

    Science.gov (United States)

    Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L

    2015-10-01

    Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Exponential increase in postprandial blood-glucose exposure with increasing carbohydrate loads using a linear carbohydrate-to-insulin ratio.

    Science.gov (United States)

    Marran, K J; Davey, B; Lang, A; Segal, D G

    2013-04-10

    Postprandial glucose excursions contribute significantly to average blood glucose, glycaemic variability and cardiovascular risk. Carbohydrate counting is a method of insulin dosing that balances carbohydrate load to insulin dose using a fixed ratio. Many patients and current insulin pumps calculate insulin delivery for meals based on a linear carbohydrate-to-insulin relationship. It is our hypothesis that a non-linear relationship exists between the amounts of carbohydrate consumed and the insulin required to cover it. To document blood glucose exposure in response to increasing carbohydrate loads on fixed carbohydrate-to-insulin ratios. Five type 1 diabetic subjects receiving insulin pump therapy with good control were recruited. Morning basal rates and carbohydrate- to-insulin ratios were optimised. A Medtronic glucose sensor was used for 5 days to collect data for area-under-the-curve (AUC) analysis, during which standardised meals of increasing carbohydrate loads were consumed. Increasing carbohydrate loads using a fixed carbohydrate-to-insulin ratio resulted in increasing glucose AUC. The relationship was found to be exponential rather than linear. Late postprandial hypoglycaemia followed carbohydrate loads of >60 g and this was often followed by rebound hyperglycaemia that lasted >6 hours. A non-linear relationship exists between carbohydrates consumed and the insulin required to cover them. This has implications for control of postprandial blood sugars, especially when consuming large carbohydrate loads. Further studies are required to look at the optimal ratios, duration and type of insulin boluses required to cover increasing carbohydrate loads.

  14. Increased concentrations of plasma IL-18 in patients with hepatic dysfunction after hepatectomy.

    Science.gov (United States)

    Shibata, M; Hirota, M; Nozawa, F; Okabe, A; Kurimoto, M; Ogawa, M

    2000-10-01

    We investigated the dynamic aspects of circulatory IL-18 and other inflammatory cytokines in patients who underwent a hepatectomy. In patients with post-operative hepatic dysfunction, plasma concentrations of these cytokines increased, reflecting severe surgical trauma. IL-6, IL-10 and IFN-gamma increased in the early phase, while IL-18 increased in the later phase after 1 week. Interestingly, the increase in the plasma IL-18 concentration was correlated with that in serum bilirubin levels in hepatectomized patients. Hence, the decrease in the hepatic metabolism of IL-18 may cause the plasma accumulation of IL-18. This mechanism was confirmed using rat experiments. Intravenously administered human IL-18 was excreted into bile. Furthermore, the plasma clearance of human IL-18 was prolonged in bile duct-ligated rats. These results suggest that IL-18 is metabolized in the liver and excreted into bile, and an increase in plasma IL-18 in patients with hepatic dysfunction reflects the decreased metabolism in the liver. Copyright 2000 Academic Press.

  15. Hepatic ACAT2 knock down increases ABCA1 and modifies HDL metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Matteo Pedrelli

    Full Text Available OBJECTIVES: ACAT2 is the exclusive cholesterol-esterifying enzyme in hepatocytes and enterocytes. Hepatic ABCA1 transfers unesterified cholesterol (UC to apoAI, thus generating HDL. By changing the hepatic UC pool available for ABCA1, ACAT2 may affect HDL metabolism. The aim of this study was to reveal whether hepatic ACAT2 influences HDL metabolism. DESIGN: WT and LXRα/β double knockout (DOKO mice were fed a western-type diet for 8 weeks. Animals were i.p. injected with an antisense oligonucleotide targeted to hepatic ACAT2 (ASO6, or with an ASO control. Injections started 4 weeks after, or concomitantly with, the beginning of the diet. RESULTS: ASO6 reduced liver cholesteryl esters, while not inducing UC accumulation. ASO6 increased hepatic ABCA1 protein independently of the diet conditions. ASO6 affected HDL lipids (increased UC only in DOKO, while it increased apoE-containing HDL in both genotypes. In WT mice ASO6 led to the appearance of large HDL enriched in apoAI and apoE. CONCLUSIONS: The use of ASO6 revealed a new pathway by which the liver may contribute to HDL metabolism in mice. ACAT2 seems to be a hepatic player affecting the cholesterol fluxes fated to VLDL or to HDL, the latter via up-regulation of ABCA1.

  16. Increased cerebellar PET glucose metabolism corresponds to ataxia in Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Fellgiebel, Andreas; Siessmeier, Thomas; Winterer, Georg; Lüddens, Hartmut; Mann, Klaus; Schmidt, Lutz G; Bartenstein, Peter

    2004-01-01

    To investigate a possible relationship between cerebellar glucose metabolism and recovery from ataxia in the first months of acute Wernicke-Korsakoff syndrome. Two cases of alcoholic Wernicke-Korsakoff syndrome were followed up with the clinical status and cerebral glucose metabolism over a 4- and 9-month period. Initially both patients showed severe ataxia and elevated cerebellar glucose metabolism that decreased corresponding to the restitution of stance and gait. Increased cerebellar glucose metabolism at the onset of the illness may reflect the reorganization process of disturbed motor skills and may indicate cerebellar plasticity.

  17. The transcription factor Prep1 controls hepatic insulin sensitivity and gluconeogenesis by targeting nuclear localization of FOXO1.

    Science.gov (United States)

    Kulebyakin, Konstantin; Penkov, Dmitry; Blasi, Francesco; Akopyan, Zhanna; Tkachuk, Vsevolod

    2016-12-02

    Liver plays a key role in controlling body carbohydrate homeostasis by switching between accumulation and production of glucose and this way maintaining constant level of glucose in blood. Increased blood glucose level triggers release of insulin from pancreatic β-cells. Insulin represses hepatic glucose production and increases glucose accumulation. Insulin resistance is the main cause of type 2 diabetes and hyperglycemia. Currently thiazolidinediones (TZDs) targeting transcriptional factor PPARγ are used as insulin sensitizers for treating patients with type 2 diabetes. However, TZDs are reported to be associated with cardiovascular and liver problems and stimulate obesity. Thus, it is necessary to search new approaches to improve insulin sensitivity. A promising candidate is transcriptional factor Prep1, as it was shown earlier it could affect insulin sensitivity in variety of insulin-sensitive tissues. The aim of the present study was to evaluate a possible involvement of transcriptional factor Prep1 in control of hepatic glucose accumulation and production. We created mice with liver-specific Prep1 knockout and discovered that hepatocytes derived from these mice are much more sensitive to insulin, comparing to their WT littermates. Incubation of these cells with 100 nM insulin results in almost complete inhibition of gluconeogenesis, while in WT cells this repression is only partial. However, Prep1 doesn't affect gluconeogenesis in the absence of insulin. Also, we observed that nuclear content of gluconeogenic transcription factor FOXO1 was greatly reduced in Prep1 knockout hepatocytes. These findings suggest that Prep1 may control hepatic insulin sensitivity by targeting FOXO1 nuclear stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Enhanced glucose tolerance in pancreatic-derived factor (PANDER knockout C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Shari L. Moak

    2014-11-01

    Full Text Available Pancreatic-derived factor (PANDER; also known as FAM3B is a uniquely structured protein strongly expressed within and secreted from the endocrine pancreas. PANDER has been hypothesized to regulate fasting and fed glucose homeostasis, hepatic lipogenesis and insulin signaling, and to serve a potential role in the onset or progression of type 2 diabetes (T2D. Despite having potentially pivotal pleiotropic roles in glycemic regulation and T2D, there has been limited generation of stable animal models for the investigation of PANDER function, and there are no models on well-established genetic murine backgrounds for T2D. Our aim was to generate an enhanced murine model to further elucidate the biological function of PANDER. Therefore, a pure-bred PANDER knockout C57BL/6 (PANKO-C57 model was created and phenotypically characterized with respect to glycemic regulation and hepatic insulin signaling. The PANKO-C57 model exhibited an enhanced metabolic phenotype, particularly with regard to enhanced glucose tolerance. Male PANKO-C57 mice displayed decreased fasting plasma insulin and C-peptide levels, whereas leptin levels were increased as compared with matched C57BL/6J wild-type mice. Despite similar peripheral insulin sensitivity between both groups, hepatic insulin signaling was significantly increased during fasting conditions, as demonstrated by increased phosphorylation of hepatic PKB/Akt and AMPK, along with mature SREBP-1 expression. Insulin stimulation of PANKO-C57 mice resulted in increased hepatic triglyceride and glycogen content as compared with wild-type C57BL/6 mice. In summary, the PANKO-C57 mouse represents a suitable model for the investigation of PANDER in multiple metabolic states and provides an additional tool to elucidate the biological function and potential role in T2D.

  19. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change

    Directory of Open Access Journals (Sweden)

    Moon Ho Do

    2018-06-01

    Full Text Available High fat diet-induced changes in gut microbiota have been linked to intestinal permeability and metabolic endotoxemia, which is related to metabolic disorders. However, the influence of a high-glucose (HGD or high-fructose (HFrD diet on gut microbiota is largely unknown. We performed changes of gut microbiota in HGD- or HFrD-fed C57BL/6J mice by 16S rRNA analysis. Gut microbiota-derived endotoxin-induced metabolic disorders were evaluated by glucose and insulin tolerance test, gut permeability, Western blot and histological analysis. We found that the HGD and HFrD groups had comparatively higher blood glucose and endotoxin levels, fat mass, dyslipidemia, and glucose intolerance without changes in bodyweight. The HGD- and HFrD-fed mice lost gut microbial diversity, characterized by a lower proportion of Bacteroidetes and a markedly increased proportion of Proteobacteria. Moreover, the HGD and HFrD groups had increased gut permeability due to alterations to the tight junction proteins caused by gut inflammation. Hepatic inflammation and lipid accumulation were also markedly increased in the HGD and HFrD groups. High levels of glucose or fructose in the diet regulate the gut microbiota and increase intestinal permeability, which precedes the development of metabolic endotoxemia, inflammation, and lipid accumulation, ultimately leading to hepatic steatosis and normal-weight obesity.

  20. Yin Yang 1 Promotes Hepatic Gluconeogenesis Through Upregulation of Glucocorticoid Receptor

    Science.gov (United States)

    Lu, Yan; Xiong, Xuelian; Wang, Xiaolin; Zhang, Zhijian; Li, Jin; Shi, Guojun; Yang, Jian; Zhang, Huijie; Ning, Guang; Li, Xiaoying

    2013-01-01

    Gluconeogenesis is critical in maintaining blood glucose levels in a normal range during fasting. In this study, we investigated the role of Yin Yang 1 (YY1), a key transcription factor involved in cell proliferation and differentiation, in the regulation of hepatic gluconeogenesis. Our data showed that hepatic YY1 expression levels were induced in mice during fasting conditions and in a state of insulin resistance. Overexpression of YY1 in livers augmented gluconeogenesis, raising fasting blood glucose levels in C57BL/6 mice, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated hyperglycemia in wild-type and diabetic db/db mice. At the molecular level, we further demonstrated that the major mechanism of YY1 in the regulation of hepatic glucose production is to modulate the expression of glucocorticoid receptor. Therefore, our study uncovered for the first time that YY1 participates in the regulation of hepatic gluconeogenesis, which implies that YY1 might serve as a potential therapeutic target for hyperglycemia in diabetes. PMID:23193188

  1. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose.

    Science.gov (United States)

    Powell, David R; Smith, Melinda; Greer, Jennifer; Harris, Angela; Zhao, Sharon; DaCosta, Christopher; Mseeh, Faika; Shadoan, Melanie K; Sands, Arthur; Zambrowicz, Brian; Ding, Zhi-Ming

    2013-05-01

    LX4211 [(2S,3R,4R,5S,6R)-2-(4-chloro-3-(4-ethoxybenzyl)phenyl)-6-(methylthio)tetrahydro-2H-pyran-3,4,5-triol], a dual sodium/glucose cotransporter 1 (SGLT1) and SGLT2 inhibitor, is thought to decrease both renal glucose reabsorption by inhibiting SGLT2 and intestinal glucose absorption by inhibiting SGLT1. In clinical trials in patients with type 2 diabetes mellitus (T2DM), LX4211 treatment improved glycemic control while increasing circulating levels of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). To better understand how LX4211 increases GLP-1 and PYY levels, we challenged SGLT1 knockout (-/-) mice, SGLT2-/- mice, and LX4211-treated mice with oral glucose. LX4211-treated mice and SGLT1-/- mice had increased levels of plasma GLP-1, plasma PYY, and intestinal glucose during the 6 hours after a glucose-containing meal, as reflected by area under the curve (AUC) values, whereas SGLT2-/- mice showed no response. LX4211-treated mice and SGLT1-/- mice also had increased GLP-1 AUC values, decreased glucose-dependent insulinotropic polypeptide (GIP) AUC values, and decreased blood glucose excursions during the 6 hours after a challenge with oral glucose alone. However, GLP-1 and GIP levels were not increased in LX4211-treated mice and were decreased in SGLT1-/- mice, 5 minutes after oral glucose, consistent with studies linking decreased intestinal SGLT1 activity with reduced GLP-1 and GIP levels 5 minutes after oral glucose. These data suggest that LX4211 reduces intestinal glucose absorption by inhibiting SGLT1, resulting in net increases in GLP-1 and PYY release and decreases in GIP release and blood glucose excursions. The ability to inhibit both intestinal SGLT1 and renal SGLT2 provides LX4211 with a novel dual mechanism of action for improving glycemic control in patients with T2DM.

  2. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tolunay Beker Aydemir

    Full Text Available ZIP14 (slc39A14 is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia of acute inflammation. ZIP14 can transport Zn(2+ and non-transferrin-bound Fe(2+ in vitro. Using a Zip14(-/- mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using ZIP14(-/- mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, Zip14(-/- mice absorbed more iron. The Zip14 KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of Zip14-/- mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The Zip14(-/- phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The Zip14 KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are

  3. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK

    Directory of Open Access Journals (Sweden)

    Santiago Vernia

    2016-03-01

    Full Text Available The cJun NH2-terminal kinase (JNK-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21 is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.

  4. Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Damiano, Fabrizio; Siculella, Luisa; Zara, Vincenzo

    2014-06-01

    Hepatic fatty acid synthesis is influenced by several nutritional and hormonal factors. In this study, we have investigated the effects of distinct experimental diets enriched in carbohydrate or in fat on hepatic lipogenesis. Male Wistar rats were divided into four groups and fed distinct experimental diets enriched in carbohydrates (70% w/w) or in fat (20 and 35% w/w). Activity and expression of the mitochondrial citrate carrier and of the cytosolic enzymes acetyl-CoA carboxylase and fatty acid synthetase were analyzed through the study with assessments at 0, 1, 2, 4, and 6 weeks. Liver lipids and plasma levels of lipids, glucose, and insulin were assayed in parallel. Whereas the high-carbohydrate diet moderately stimulated hepatic lipogenesis, a strong inhibition of this anabolic pathway was found in animals fed high-fat diets. This inhibition was time-dependent and concentration-dependent. Moreover, whereas the high-carbohydrate diet induced an increase in plasma triglycerides, the high-fat diets determined an accumulation of triglycerides in liver. An increase in the plasmatic levels of glucose and insulin was observed in all cases. The excess of sucrose in the diet is converted into fat that is distributed by bloodstream in the organism in the form of circulating triglycerides. On the other hand, a high amount of dietary fat caused a strong inhibition of lipogenesis and a concomitant increase in the level of hepatic lipids, thereby highlighting, in these conditions, the role of liver as a reservoir of exogenous fat.

  5. PKB/Akt phosphorylation of ERRγ contributes to insulin-mediated inhibition of hepatic gluconeogenesis.

    Science.gov (United States)

    Kim, Don-Kyu; Kim, Yong-Hoon; Hynx, Debby; Wang, Yanning; Yang, Keum-Jin; Ryu, Dongryeol; Kim, Kyung Seok; Yoo, Eun-Kyung; Kim, Jeong-Sun; Koo, Seung-Hoi; Lee, In-Kyu; Chae, Ho-Zoon; Park, Jongsun; Lee, Chul-Ho; Biddinger, Sudha B; Hemmings, Brian A; Choi, Hueng-Sik

    2014-12-01

    Insulin resistance, a major contributor to the pathogenesis of type 2 diabetes, leads to increased hepatic glucose production (HGP) owing to an impaired ability of insulin to suppress hepatic gluconeogenesis. Nuclear receptor oestrogen-related receptor γ (ERRγ) is a major transcriptional regulator of hepatic gluconeogenesis. In this study, we investigated insulin-dependent post-translational modifications (PTMs) altering the transcriptional activity of ERRγ for the regulation of hepatic gluconeogenesis. We examined insulin-dependent phosphorylation and subcellular localisation of ERRγ in cultured cells and in the liver of C57/BL6, leptin receptor-deficient (db/db), liver-specific insulin receptor knockout (LIRKO) and protein kinase B (PKB) β-deficient (Pkbβ (-/-)) mice. To demonstrate the role of ERRγ in the inhibitory action of insulin on hepatic gluconeogenesis, we carried out an insulin tolerance test in C57/BL6 mice expressing wild-type or phosphorylation-deficient mutant ERRγ. We demonstrated that insulin suppressed the transcriptional activity of ERRγ by promoting PKB/Akt-mediated phosphorylation of ERRγ at S179 and by eliciting translocation of ERRγ from the nucleus to the cytoplasm through interaction with 14-3-3, impairing its ability to promote hepatic gluconeogenesis. In addition, db/db, LIRKO and Pkbβ (-/-) mice displayed enhanced ERRγ transcriptional activity due to a block in PKBβ-mediated ERRγ phosphorylation during refeeding. Finally, the phosphorylation-deficient mutant ERRγ S179A was resistant to the inhibitory action of insulin on HGP. These results suggest that ERRγ is a major contributor to insulin action in maintaining hepatic glucose homeostasis.

  6. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-04-23

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.

  7. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  8. High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs.

    Science.gov (United States)

    Roberts, Brandon L; Zhu, Mingyan; Zhao, Huan; Dillon, Crystal; Appleyard, Suzanne M

    2017-09-01

    Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HT 3 Rs. Decreasing the glucose concentration also decreased both basal and 5-HT 3 R agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HT 3 R activity, and glucokinase. Copyright © 2017 the American Physiological Society.

  9. Benfotiamine prevents increased β-amyloid production in HEK cells induced by high glucose.

    Science.gov (United States)

    Sun, Xiao-Jing; Zhao, Lei; Zhao, Na; Pan, Xiao-Li; Fei, Guo-Qiang; Jin, Li-Rong; Zhong, Chun-Jiu

    2012-10-01

    To determine whether high glucose enhances β-amyloid (Aβ) production in HEK293 Swedish mutant (APPsw) cells with Aβ precursor protein (APP) overexpression, and whether under this condition benfotiamine reduces the increased Aβ production. HEK293 APPsw cells were cultured with different concentrations of glucose for different times. The Aβ content in the supernatant was determined by ELISA. To investigate the mechanism by which benfotiamine reduced Aβ production, glycogen synthase kinase-3 (GSK-3) activity and expression were measured after the cells were cultured with 5.5 g/L glucose for 12 h. With 1.0, 3.0, 4.5, 5.5, 6.5, 7.5, 8.5, or 10.5 g/L glucose, Aβ production by HEK293 APPsw cells was highest in the presence of 5.5 g/L glucose for 6 and 12 h. The difference in Aβ content between 5.5 and 1.0 g/L was most marked after incubation for 12 h. Benfotiamine at 20 and 40 μg/mL significantly reduced Aβ production in cells incubated with 5.5 g/L glucose for 12 h. Moreover, 40 μg/mL benfotiamine significantly enhanced the ratio of phosphorylated GSK-3 to total GSK-3, together with consistent down-regulation of GSK-3 activity. High glucose increases Aβ production by HEK293 APPsw cells while benfotiamine prevents this increase. This is correlated with the modulation of GSK-3 activity.

  10. Endogenous Nutritive Support after Traumatic Brain Injury: Peripheral Lactate Production for Glucose Supply via Gluconeogenesis.

    Science.gov (United States)

    Glenn, Thomas C; Martin, Neil A; McArthur, David L; Hovda, David A; Vespa, Paul; Johnson, Matthew L; Horning, Michael A; Brooks, George A

    2015-06-01

    We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-(2)H2]glucose, i.e., D2-glucose, and [3-(13)C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n=12, all male) were entered into the study after consent of patients' legal representatives. Written and informed consent was obtained from healthy controls (n=6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7±2.2 days (range of days 2-10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was largely cleared by greater (hepatic+renal) glucose production. After TBI, gluconeogenesis from lactate clearance accounted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may provide substrate directly to vital organs of the body, including the injured brain.

  11. A decrease in hepatic microRNA-9 expression impairs gluconeogenesis by targeting FOXO1 in obese mice.

    Science.gov (United States)

    Yan, Caifeng; Chen, Jinfeng; Li, Min; Xuan, Wenying; Su, Dongming; You, Hui; Huang, Yujie; Chen, Nuoqi; Liang, Xiubin

    2016-07-01

    MicroRNA-9 (miR-9) is involved in the regulation of pancreatic beta cell function. However, its role in gluconeogenesis is still unclear. Our objective was to investigate the role of miR-9 in hepatic glucose production (HGP). MiR-9 expression was measured in livers of high-fat diet (HFD) mice and ob/ob mice. The methylation status of the miR-9-3 promoter regions in hepatocytes was determined by the methylation-specific PCR procedure. The binding activity of DNA methyltransferase (DNMT)1, DNMT3a and DNMT3b on the miR-9-3 promoter was detected by chromatin immunoprecipitation (ChIP) and quantitative real-time PCR assays. HGP was evaluated in vitro and in vivo. Glucose tolerance, insulin tolerance and pyruvate tolerance tests were also performed. Reduced miR-9 expression and hypermethylation of the miR-9-3 promoter were observed in the livers of obese mice. Further study showed that the binding of DNMT1, but not of DNMT3a and DNMT3b, to the miR-9-3 promoter was increased in hepatocytes from ob/ob mice. Knockdown of DNMT1 alleviated the decrease in hepatic miR-9 expression in vivo and in vitro. Overexpression of hepatic miR-9 improved insulin sensitivity in obese mice and inhibited HGP. In addition, deletion of hepatic miR-9 led to an increase in random and fasting blood glucose levels in lean mice. Importantly, silenced forkhead box O1 (FOXO1) expression reversed the gluconeogenesis and glucose production in hepatocytes induced by miR-9 deletion. Our observations suggest that the decrease in miR-9 expression contributes to an inappropriately activated gluconeogenesis in obese mice.

  12. Nuclear factor erythroid 2-related factor 2 deletion impairs glucose tolerance and exacerbates hyperglycemia in type 1 diabetic mice.

    Science.gov (United States)

    Aleksunes, Lauren M; Reisman, Scott A; Yeager, Ronnie L; Goedken, Michael J; Klaassen, Curtis D

    2010-04-01

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) induces a battery of cytoprotective genes after oxidative stress. Nrf2 aids in liver regeneration by altering insulin signaling; however, whether Nrf2 participates in hepatic glucose homeostasis is unknown. Compared with wild-type mice, mice lacking Nrf2 (Nrf2-null) have lower basal serum insulin and prolonged hyperglycemia in response to an intraperitoneal glucose challenge. In the present study, blood glucose, serum insulin, urine flow rate, and hepatic expression of glucose-related genes were quantified in male diabetic wild-type and Nrf2-null mice. Type 1 diabetes was induced with a single intraperitoneal dose (200 mg/kg) of streptozotocin (STZ). Histopathology and serum insulin levels confirmed depleted pancreatic beta-cells in STZ-treated mice of both genotypes. Five days after STZ, Nrf2-null mice had higher blood glucose levels than wild-type mice. Nine days after STZ, polyuria occurred in both genotypes with more urine output from Nrf2-null mice (11-fold) than wild-type mice (7-fold). Moreover, STZ-treated Nrf2-null mice had higher levels of serum beta-hydroxybutyrate, triglycerides, and fatty acids 10 days after STZ compared with wild-type mice. STZ reduced hepatic glycogen in both genotypes, with less observed in Nrf2-null mice. Increased urine output and blood glucose in STZ-treated Nrf2-null mice corresponded with enhanced gluconeogenesis (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase)- and reduced glycolysis (pyruvate kinase)-related mRNA expression in their livers. Furthermore, the Nrf2 activator oltipraz lowered blood glucose in wild-type but not Nrf2-null mice administered STZ. Collectively, these data indicate that the absence of Nrf2 worsens hyperglycemia in type I diabetic mice and Nrf2 may represent a therapeutic target for reducing circulating glucose levels.

  13. Silymarin alleviates hepatic oxidative stress and protects against metabolic disorders in high-fat diet-fed mice.

    Science.gov (United States)

    Feng, Bin; Meng, Ran; Huang, Bin; Shen, Shanmei; Bi, Yan; Zhu, Dalong

    2016-01-01

    Silymarin is a potent antioxidant medicine and has been widely used for the treatment of liver diseases over 30 years. Recent studies suggest that silymarin may benefit patients with glucose intolerance. However, the mechanism underlying the action of silymarin is not clarified. The aim of this work was to assess the impact of silymarin on glucose intolerance in high-fat diet (HFD)-fed mice, and explore the potential therapeutic mechanisms. C57BL/6 mice were fed with HFD for 12 weeks, randomized, and treated orally with vehicle saline or silymarin (30 mg/kg) daily for 30 days. We found that silymarin significantly improved HFD-induced body weight gain, glucose intolerance, and insulin resistance in mice. Silymarin treatment reduced HFD-increased oxidative stress indicators (reactive oxygen species, lipid peroxidation, protein oxidation) and restored HFD-down-regulated activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in the plasma and/or liver of the HFD-fed mice. Furthermore, silymarin decreased HFD-up-regulated hepatic NADPH oxidase expression and NF-κB activation in mice. Additionally, silymarin treatment mitigated HFD-increased plasma IL-1β, TNF-α levels, and HFD-enhanced hepatic NO, TLR4, and iNOS expression in mice. These novel data indicate that silymarin has potent anti-diabetic actions through alleviating oxidative stress and inflammatory response, partially by inhibiting hepatic NADPH oxidase expression and the NF-κB signaling.

  14. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Kazumichi Nagasawa

    2013-08-01

    The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control and a low environmental temperature (5°C, cold exposure. Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism.

  15. Psidium guajava Linn. leaf extract affects hepatic glucose transporter-2 to attenuate early onset of insulin resistance consequent to high fructose intake: An experimental study

    Science.gov (United States)

    Mathur, R.; Dutta, Shagun; Velpandian, T.; Mathur, S.R.

    2015-01-01

    Background: Insulin resistance (IR) is amalgam of pathologies like altered glucos metabolism, dyslipidemia, impaired glucose tolerance, non-alcoholic fatty liver disease, and associated with type-II diabetes and cardiometabolic diseases. One of the reasons leading to its increased and early incidence is understood to be a high intake of processed fructose containing foods and beverages by individuals, especially, during critical developmental years. Objective: To investigate the preventive potential of aqueous extract of Psidium guajava leaves (PG) against metabolic pathologies, vis-à-vis, IR, dyslipidemia, hyperleptinemia and hypertension, due to excess fructose intake initiated during developmental years. Materials and Methods: Post-weaning (4 weeks old) male rats were provided fructose (15%) as drinking solution, ad libitum, for 8 weeks and assessed for food and water/fructose intake, body weight, fasting blood sugar, mean arterial pressure, lipid biochemistry, endocrinal (insulin, leptin), histopathological (fatty liver) and immunohistochemical (hepatic glucose transporter [GLUT2]) parameters. Parallel treatment groups were administered PG in doses of 250 and 500 mg/kg/d, po × 8 weeks and assessed for same parameters. Using extensive liquid chromatography-mass spectrometry protocols, PG was analyzed for the presence of phytoconstituents like Myrecetin, Luteolin, Kaempferol and Guavanoic acid and validated to contain Quercetin up to 9.9%w/w. Results: High fructose intake raised circulating levels of insulin and leptin and hepatic GLUT2 expression to promote IR, dyslipidemia, and hypertension that were favorably re-set with PG. Although PG is known for its beneficial role in diabetes mellitus, for the first time we report its potential in the management of lifelong pathologies arising from high fructose intake initiated during developmental years. PMID:25829790

  16. E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia.

    Science.gov (United States)

    Dhurandhar, Emily J; Krishnapuram, Rashmi; Hegde, Vijay; Dubuisson, Olga; Tao, Rongya; Dong, X Charlie; Ye, Jianping; Dhurandhar, Nikhil V

    2012-01-01

    Hepatic steatosis often accompanies obesity and insulin resistance. The cornerstones of steatosis treatment include reducing body weight and dietary fat intake, which are marginally successful over the long term. Ad36, a human adenovirus, may offer a template to overcome these limitations. In vitro and in vivo studies collectively indicate that via its E4orf1 protein, Ad36 improves hyperglycemia, and attenuates hepatic steatosis, despite a high fat diet and without weight loss. Considering that hepatic insulin sensitivity, or the synthesis, oxidation, or export of fatty acid by hepatocytes are the key determinant of hepatic lipid storage, we determined the role of E4orf1 protein in modulating these physiological pathways. For this study, HepG2 cells, or mouse primary hepatocytes were transfected with E4orf1 or the null vector. Glucose output by hepatocytes was determined under gluconeogenic conditions (cAMP and dexamethasone, or glucagon exposure). Also, de-novo lipogenesis, palmitate oxidation, and lipid export as determined by apoB secretion were measured 48 h post transfection. Results show that compared to null vector transfected cells, E4orf1 significantly reduced glucose output in basal and gluconeogenic conditions. E4orf1 reduced de-novo lipogenesis by about 35%, increased complete fatty acid oxidation 2-fold (pE4orf1 transfection was in agreement with these findings. Thus, E4orf1 offers a valuable template to exogenously modulate hepatic glucose and lipid metabolism. Elucidating the underlying molecular mechanism may help develop therapeutic approaches for treating diabetes or non-alcoholic fatty liver disease(NAFLD).

  17. Indomethacin stimulates basal glucose production in humans without changes in concentrations of glucoregulatory hormones

    NARCIS (Netherlands)

    Corssmit, E. P.; Romijn, J. A.; Endert, E.; Sauerwein, H. P.

    1993-01-01

    1. To investigate whether indomethacin affects basal glucose production, we measured hepatic glucose production in six healthy postabsorptive subjects on two occasions: once after administration of indomethacin (150 mg orally) and once after administration of placebo. 2. Glucose production was

  18. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats. A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, T. H.; van der Sluijs, F. H.; Wiegman, C. H.; Baller, J. F.; Gustafson, L. A.; Burger, H. J.; Herling, A. W.; Kuipers, F.; Meijer, A. J.; Reijngoud, D. J.

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in

  19. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats - A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, TH; van der Sluijs, FH; Wiegman, CH; Baller, JFW; Gustafson, LA; Burger, HJ; Herling, AW; Kuipers, F; Meijer, AJ; Reijngoud, DJ

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in

  20. Increased glucose levels are associated with episodic memory in nondiabetic women.

    Science.gov (United States)

    Rolandsson, Olov; Backeström, Anna; Eriksson, Sture; Hallmans, Göran; Nilsson, Lars-Göran

    2008-02-01

    Patients with type 2 diabetes have an increased risk of a reduction in cognitive function. We investigated the hypothesis that plasma glucose is associated with a reduction in episodic and/or semantic memory already in nondiabetic subjects. We linked two large population-based datasets in Sweden: the Betula study, in which a random sample from the population aged 35-85 years was investigated for cognitive function, including episodic and semantic memory; and the Västerbotten Intervention Program, a health survey with subjects aged 40, 50, and 60 years, that includes measuring of fasting and 2-h plasma glucose, along with other risk factors for diabetes and cardiovascular disease. We identified 411 (179 men and 232 women, mean age 50.6 +/- 8.0 years) nondiabetic subjects, free from dementia, who had participated in the two surveys within 6 months. Women had better episodic (score 7.37 +/- 1.42) and semantic memory (score 16.05 +/- 2.76) than men (score 6.59 +/- 1.29 and 15.15 +/- 2.92, respectively, P glucose (fPG) and 2-h plasma glucose (2hPG) were significantly negatively associated with episodic memory (fPG: B -0.198, SE 0.068, beta -0.209, P = 0.004; and 2hPG: B -0.061, SE 0.031, beta -0.148, P = 0.048, respectively) in women but not in men. The association was not found in relation to semantic memory. We conclude that an increase in plasma glucose is associated with impairment in episodic memory in women. This could be explained by a negative effect on the hippocampus caused by raised plasma glucose levels.

  1. Glucose turnover, oxidation, and indices of recycling in severely traumatized patients

    Energy Technology Data Exchange (ETDEWEB)

    Jeevanandam, M.; Young, D.H.; Schiller, W.R. (St. Joseph' s Hospital Medical Center, Phoenix, AZ (USA))

    1990-05-01

    Hyperglycemia is often seen in trauma patients and its etiology is not clearly understood. We have determined parameters of glucose metabolism by using simultaneous primed-constant intravenous infusion of both (6-3H) glucose and (U-14C) glucose in ten severely traumatized hypermetabolic subjects during the early flow phase of injury and in six post-absorptive normal volunteers. The mean rate of glucose production (determined by means of (6-3H) glucose) was 3.96 +/- 0.40 mg/kg/min in trauma patients, which was significantly (p = 0.025) higher than the value of 2.75 +/- 0.13 observed in normal volunteers. Glucose turnover rates determined with (U-14C) glucose as tracer were lower in all subjects. The difference between the turnover rates determined by the two tracers represents an index of recycling of glucose through three-carbon fragments. This recycling index was similar in both groups of subjects in amount (0.24 +/- 0.07 vs. 0.26 +/- 0.08 mg glucose/kg/min) but different when expressed as percentage of total glucose turnover (5.6 +/- 1.4% vs. 9.8 +/- 1.7%; p = 0.05). The absolute rates of glucose clearance, oxidation, and recycling were similar in stressed trauma patients and unstressed controls although the rate of production was increased by 44% due to injury. Post-trauma hyperglycemia was mainly due to an increased hepatic output of glucose and not due to a decreased ability of the tissue to extract glucose from the plasma. Hyperglycemia may be the driving force in the metabolic effects of injury.

  2. Glucose turnover, oxidation, and indices of recycling in severely traumatized patients

    International Nuclear Information System (INIS)

    Jeevanandam, M.; Young, D.H.; Schiller, W.R.

    1990-01-01

    Hyperglycemia is often seen in trauma patients and its etiology is not clearly understood. We have determined parameters of glucose metabolism by using simultaneous primed-constant intravenous infusion of both [6-3H] glucose and [U-14C] glucose in ten severely traumatized hypermetabolic subjects during the early flow phase of injury and in six post-absorptive normal volunteers. The mean rate of glucose production (determined by means of [6-3H] glucose) was 3.96 +/- 0.40 mg/kg/min in trauma patients, which was significantly (p = 0.025) higher than the value of 2.75 +/- 0.13 observed in normal volunteers. Glucose turnover rates determined with [U-14C] glucose as tracer were lower in all subjects. The difference between the turnover rates determined by the two tracers represents an index of recycling of glucose through three-carbon fragments. This recycling index was similar in both groups of subjects in amount (0.24 +/- 0.07 vs. 0.26 +/- 0.08 mg glucose/kg/min) but different when expressed as percentage of total glucose turnover (5.6 +/- 1.4% vs. 9.8 +/- 1.7%; p = 0.05). The absolute rates of glucose clearance, oxidation, and recycling were similar in stressed trauma patients and unstressed controls although the rate of production was increased by 44% due to injury. Post-trauma hyperglycemia was mainly due to an increased hepatic output of glucose and not due to a decreased ability of the tissue to extract glucose from the plasma. Hyperglycemia may be the driving force in the metabolic effects of injury

  3. Transcriptional coactivator NT-PGC-1α promotes gluconeogenic gene expression and enhances hepatic gluconeogenesis.

    Science.gov (United States)

    Chang, Ji Suk; Jun, Hee-Jin; Park, Minsung

    2016-10-01

    The transcriptional coactivator PGC-1α plays a central role in hepatic gluconeogenesis. We previously reported that alternative splicing of the PGC-1α gene produces an additional transcript encoding the truncated protein NT-PGC-1α NT-PGC-1α is co-expressed with PGC-1α and highly induced by fasting in the liver. NT-PGC-1α regulates tissue-specific metabolism, but its role in the liver has not been investigated. Thus, the objective of this study was to determine the role of hepatic NT-PGC-1α in the regulation of gluconeogenesis. Adenovirus-mediated expression of NT-PGC-1α in primary hepatocytes strongly stimulated the expression of key gluconeogenic enzyme genes (PEPCK and G6Pase), leading to increased glucose production. To further understand NT-PGC-1α function in hepatic gluconeogenesis in vivo, we took advantage of a previously reported FL-PGC-1α -/- mouse line that lacks full-length PGC-1α (FL-PGC-1α) but retains a slightly shorter and functionally equivalent form of NT-PGC-1α (NT-PGC-1α 254 ). In FL-PGC-1α -/- mice, NT-PGC-1α 254 was induced by fasting in the liver and recruited to the promoters of PEPCK and G6Pase genes. The enrichment of NT-PGC-1α 254 at the promoters was closely associated with fasting-induced increase in PEPCK and G6Pase gene expression and efficient production of glucose from pyruvate during a pyruvate tolerance test in FL-PGC-1α -/- mice. Moreover, FL-PGC-1α -/- primary hepatocytes showed a significant increase in gluconeogenic gene expression and glucose production after treatment with dexamethasone and forskolin, suggesting that NT-PGC-1α 254 is sufficient to stimulate the gluconeogenic program in the absence of FL-PGC-1α Collectively, our findings highlight the role of hepatic NT-PGC-1α in stimulating gluconeogenic gene expression and glucose production. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  4. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin.

    Science.gov (United States)

    Bergheim, Ina; Weber, Synia; Vos, Miriam; Krämer, Sigrid; Volynets, Valentina; Kaserouni, Seline; McClain, Craig J; Bischoff, Stephan C

    2008-06-01

    Consumption of refined carbohydrates in soft drinks has been postulated to be a key factor in the development of non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to test the effects of ad libitum access to different sugars consumed in drinking water on hepatic fat accumulation. For 8 weeks, C57BL/J6 mice had free access to solutions containing 30% glucose, fructose, sucrose, or water sweetened with artificial sweetener (AS) or plain water. Body weight, caloric intake, hepatic steatosis and lipid peroxidation were assessed. Total caloric intake and weight gain were highest in mice exposed to glucose. In contrast, hepatic lipid accumulation was significantly higher in mice consuming fructose compared to all other groups. Moreover, endotoxin levels in portal blood and lipid peroxidation as well as TNFalpha expression were significantly higher in fructose fed mice than in all other groups. Concomitant treatment of fructose fed mice with antibiotics (e.g., polymyxin B and neomycin) markedly reduced hepatic lipid accumulation in fructose fed mice. These data support the hypothesis that high fructose consumption may not only lead to liver damage through overfeeding but also may be directly pro-inflammatory by increasing intestinal translocation of endotoxin.

  5. Maternal chocolate and sucrose soft drink intake induces hepatic steatosis in rat offspring associated with altered lipid gene expression profile

    DEFF Research Database (Denmark)

    Kjærgaard, Maj; Nilsson, C.; Rosendal, A.

    2014-01-01

    weight gain and adiposity in offspring born to chow-fed dams. Conclusion: Our results suggest that supplementation of chocolate and soft drink during gestation and lactation contributes to early onset of hepatic steatosis associated with changes in hepatic gene expression and lipid handling....... until weaning, giving four dietary groups. Results: At postnatal day 1, offspring from high-fat/high-sucrose-fed dams were heavier and had increased hepatic triglycerides (TG), hepatic glycogen, blood glucose and plasma insulin compared with offspring from chow-fed dams. Hepatic genes involved in lipid...... oxidation, VLDL transport and insulin receptor were down-regulated, whereas FGF21 expression was up-regulated. Independent of postnatal litter size, offspring from high-fat/high-sucrose-fed dams aged 21 days had still increased hepatic TG and up-regulated FGF21 expression, while plasma insulin started...

  6. Duodenal mucosal protein kinase C-δ regulates glucose production in rats.

    Science.gov (United States)

    Kokorovic, Andrea; Cheung, Grace W C; Breen, Danna M; Chari, Madhu; Lam, Carol K L; Lam, Tony K T

    2011-11-01

    Activation of protein kinase C (PKC) enzymes in liver and brain alters hepatic glucose metabolism, but little is known about their role in glucose regulation in the gastrointestinal tract. We investigated whether activation of PKC-δ in the duodenum is sufficient and necessary for duodenal nutrient sensing and regulates hepatic glucose production through a neuronal network in rats. In rats, we inhibited duodenal PKC and evaluated whether nutrient-sensing mechanisms, activated by refeeding, have disruptions in glucose regulation. We then performed gain- and loss-of-function pharmacologic and molecular experiments to target duodenal PKC-δ; we evaluated the impact on glucose production regulation during the pancreatic clamping, while basal levels of insulin were maintained. PKC-δ was detected in the mucosal layer of the duodenum; intraduodenal infusion of PKC inhibitors disrupted glucose homeostasis during refeeding, indicating that duodenal activation of PKC-δ is necessary and sufficient to regulate glucose homeostasis. Intraduodenal infusion of the PKC activator 1-oleoyl-2-acetyl-sn-glycerol (OAG) specifically activated duodenal mucosal PKC-δ and a gut-brain-liver neuronal pathway to reduce glucose production. Molecular and pharmacologic inhibition of duodenal mucosal PKC-δ negated the ability of duodenal OAG and lipids to reduce glucose production. In the duodenal mucosa, PKC-δ regulates glucose homeostasis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Vitamin C and E chronic supplementation differentially affect hepatic insulin signaling in rats.

    Science.gov (United States)

    Ali, Mennatallah A; Eid, Rania M H M; Hanafi, Mervat Y

    2018-02-01

    Vitamin C and vitamin E supplementations and their beneficial effects on type 2 diabetes mellitus (T2DM) have been subjected to countless controversial data. Hence, our aim is to investigate the hepatic molecular mechanisms of any diabetic predisposing risk of the chronic administration of different doses of vitamin E or vitamin C in rats. The rats were supplemented with different doses of vitamin C or vitamin E for eight months. Vitamin C and vitamin E increased fasting blood glucose, insulin, and homeostasis model assessment index for insulin resistance (HOMA). Vitamin C disrupted glucose tolerance by attenuating upstream hepatic insulin action through impairing the phosphorylation and activation of insulin receptor and its subsequent substrates; however, vitamin E showed its effect downstream insulin receptor in the insulin signaling pathway, reducing hepatic glucose transporter-2 (GLUT2) and phosphorylated protein kinase (p-Akt). Moreover, both vitamins showed their antioxidant capabilities [nuclear factor-erythroid-2-related factor 2 (Nrf2), total and reduced glutathione] and their negative effect on Wnt pathway [phosphorylated glycogen synthase kinase-3β (p-GSK-3β)], by altering the previously mentioned parameters, inevitably leading to severe reduction of reactive oxygen species (ROS) below the physiological levels. In conclusion, a detrimental effect of chronic antioxidant vitamins supplementation was detected; leading to insulin resistance and impaired glucose tolerance obviously through different mechanisms. Overall, these findings indicate that the conventional view that vitamins promote health benefits and delay chronic illnesses and aging should be modified or applied with caution. Copyright © 2017. Published by Elsevier Inc.

  8. Impaired fasting glucose and impaired glucose tolerance in children and adolescents with overweight/obesity.

    Science.gov (United States)

    Di Bonito, P; Pacifico, L; Chiesa, C; Valerio, G; Miraglia Del Giudice, E; Maffeis, C; Morandi, A; Invitti, C; Licenziati, M R; Loche, S; Tornese, G; Franco, F; Manco, M; Baroni, M G

    2017-04-01

    To investigate in a large sample of overweight/obese (OW/OB) children and adolescents the prevalence of prediabetic phenotypes such as impaired fasting glucose (IFG) and impaired glucose tolerance (IGT), and to assess their association with cardiometabolic risk (CMR) factors including hepatic steatosis (HS). Population data were obtained from the CARdiometabolic risk factors in children and adolescents in ITALY study. Between 2003 and 2013, 3088 youths (972 children and 2116 adolescents) received oral glucose tolerance test (OGTT) and were included in the study. In 798 individuals, abdominal ultrasound for identification of HS was available. The prevalence of IFG (3.2 vs. 3.3%) and IGT (4.6 vs. 5.0%) was similar between children and adolescents. Children with isolated IGT had a 2-11 fold increased risk of high LDL-C, non-HDL-C, Tg/HDL-C ratio, and low insulin sensitivity, when compared to those with normal glucose tolerance (NGT). No significant association of IFG with any CMR factor was found in children. Among adolescents, IGT subjects, and to a lesser extent those with IFG, showed a worse CMR profile compared to NGT subgroup. In the overall sample, IGT phenotype showed a twofold increased risk of HS compared to NGT subgroup. Our study shows an unexpected similar prevalence of IFG and IGT between children and adolescents with overweight/obesity. The IGT phenotype was associated with a worse CMR profile in both children and adolescents. Phenotyping prediabetes conditions by OGTT should be done as part of prediction and prevention of cardiometabolic diseases in OW/OB youth since early childhood.

  9. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ghada Al-Kafaji

    2013-01-01

    Full Text Available Oxidative damage to mitochondrial DNA (mtDNA has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control, as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy.

  10. Roles of the Gut in Glucose Homeostasis

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Gribble, Fiona; Horowitz, Michael

    2016-01-01

    The gastrointestinal tract plays a major role in the regulation of postprandial glucose profiles. Gastric emptying is a highly regulated process, which normally ensures a limited and fairly constant delivery of nutrients and glucose to the proximal gut. The subsequent digestion and absorption...... of nutrients are associated with the release of a set of hormones that feeds back to regulate subsequent gastric emptying and regulates the release of insulin, resulting in downregulation of hepatic glucose production and deposition of glucose in insulin-sensitive tissues. These remarkable mechanisms normally...... keep postprandial glucose excursions low, regardless of the load of glucose ingested. When the regulation of emptying is perturbed (e.g., pyloroplasty, gastric sleeve or gastric bypass operation), postprandial glycemia may reach high levels, sometimes followed by profound hypoglycemia. This article...

  11. Plasma insulin levels are increased by sertraline in rats under oral glucose overload

    Directory of Open Access Journals (Sweden)

    Gomez R.

    2001-01-01

    Full Text Available Recognition and control of depression symptoms are important to increase patient compliance with treatment and to improve the quality of life of diabetic patients. Clinical studies indicate that selective serotonin reuptake inhibitors (SSRI are better antidepressants for diabetic patients than other drugs. However, preclinical trials have demonstrated that not all SSRI reduce plasma glucose levels. In fact, fluoxetine increases and sertraline decreases glycemia in diabetic and non-diabetic rats. In the present study we evaluated plasma insulin levels during fasting and after glucose overload after treatment with sertraline. Adult male Wistar rats were fasted and treated with saline or 30 mg/kg sertraline and submitted or not to glucose overload (N = 10. Blood was collected and plasma insulin was measured. The mean insulin levels were: fasting group: 25.9 ± 3.86, sertraline + fasting group: 31.10 ± 2.48, overload group: 34.1 ± 3.40, and overload + sertraline group: 43.73 ± 5.14 µU/ml. Insulinemia was significantly increased in the overload + sertraline group. There were no differences between the other groups. No difference in glucose/insulin ratios could be detected between groups. The overload + sertraline group was the only one in which a significant number of individuals exceeded the upper confidence limit of insulin levels. This study demonstrates that sertraline increases glucose-stimulated insulin secretion without any change in peripheral insulin sensitivity.

  12. Gamma-glutamyltransferase, fatty liver index and hepatic insulin resistance are associated with incident hypertension in two longitudinal studies.

    Science.gov (United States)

    Bonnet, Fabrice; Gastaldelli, Amalia; Pihan-Le Bars, Florence; Natali, Andrea; Roussel, Ronan; Petrie, John; Tichet, Jean; Marre, Michel; Fromenty, Bernard; Balkau, Beverley

    2017-03-01

    We hypothesized that liver markers and the fatty liver index (FLI) are predictive of incident hypertension and that hepatic insulin resistance plays a role. The association between liver markers and incident hypertension was analysed in two longitudinal studies of normotensive individuals, 2565 from the 9-year data from an epidemiological study on the insulin resistance cohort and the 321 from the 3-year 'Relationship between Insulin Sensitivity and Cardiovascular disease' cohort who had a measure of endogenous glucose production. The FLI is calculated from BMI, waist circumference, triglycerides and gamma-glutamyltransferase (GGT) and the hepatic insulin resistance index from endogenous glucose production and fasting insulin. The incidence of hypertension increased across the quartiles groups of both baseline GGT and alanine aminotransferase. After adjustment for sex, age, waist circumference, fasting glucose, smoking and alcohol intake, only GGT was significantly related with incident hypertension [standardized odds ratio: 1.21; 95% confidence interval (1.10-1.34); P = 0.0001]. The change in GGT levels over the follow-up was also related with an increased risk of hypertension, independently of changes in body weight. FLI analysed as a continuous value, or FLI at least 60 at baseline were predictive of incident hypertension in the multivariable model. In the RISC cohort, the hepatic insulin resistance index was positively related with the risk of 3-year incident hypertension [standardized odds ratio: 1.54 (1.07-2.22); P = 0.02]. Baseline GGT and FLI, as well as an increase in GGT over time, were associated with the risk of incident hypertension. Enhanced hepatic insulin resistance predicted the onset of hypertension and may be a link between liver markers and hypertension.

  13. Glucose production during exercise in humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L

    1999-01-01

    at 50.4 +/- 1.5(SE)% maximal O(2) consumption, followed by 30 min at 69.0 +/- 2.2% maximal O(2) consumption. The splanchnic blood flow was estimated by continuous infusion of indocyanine green, and net splanchnic glucose output was calculated as the product of splanchnic blood flow and a-hv blood...... glucose concentration differences. Glucose appearance rate was determined by a primed, continuous infusion of [3-(3)H]glucose and was calculated by using formulas for a modified single compartment in non-steady state. Glucose production was similar whether determined by the a-hv balance technique......The present study compared the arteriohepatic venous (a-hv) balance technique and the tracer-dilution method for estimation of hepatic glucose production during both moderate and heavy exercise in humans. Eight healthy young men (aged 25 yr; range, 23-30 yr) performed semisupine cycling for 40 min...

  14. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two......-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover......, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus...

  15. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism

    DEFF Research Database (Denmark)

    Szekeres, Ferenc; Chadt, Alexandra; Tom, Robby Z

    2012-01-01

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL...... be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice......)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose...

  16. Interactions of obesity and glucose-stimulated insulin secretion in familial hypertriglyceridemia.

    Science.gov (United States)

    Maruhama, Y; Abe, R; Okuguchi, F; Oikawa, S; Ohneda, A; Goto, Y

    1978-06-01

    Plasma lipids and lipoproteins, glucose tolerance, plasma insulin response to glucose load, and liver function were examined in 81 relatives of 12 index cases with primary endogenous hypertriglyceridemia, hyperinsulinemia, and hepatic steatosis, as well as in 90 nonrelatives, including the spouses, as controls. Insulin hypersecretion (with or without glucose intolerance), endogenous hypertriglyceridemia, and abnormal liver function suggesting hepatic steatosis were shown to exist in the relatives mostly in combined fashion. Correlation analysis and stepwise multiple regression analysis revealed that the combined disorder developed on the basis of obesity. The incidence of diabetes mellitus was significantly high in the relatives (14.8 per cent) as compared with the normal Japanese population (3.5 per cent). Although the vertical transmission of the combined disorder was noted in almost all pedigrees, the frequency distribution analysis of insulin response, glucose tolerance, and plasma triglyceride showed the histograms of these variables similarly skewed to the right as compared with those of the controls, with no apparent bimodality. In view of the hitherto suggested role of insulin in triglyceride metabolism, it is concluded that hyperinsulinemia coupled with obesity seems to be the basic trait of this form of familial hypertriglyceridemia and hepatic steatosis, though the mode of transmission remains to be elucidated.

  17. Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy

    International Nuclear Information System (INIS)

    Bassett, M.L.; Mullen, K.D.; Scholz, B.; Fenstermacher, J.D.; Jones, E.A.

    1990-01-01

    Transfer of the inhibitory neurotransmitter gamma-aminobutyric acid across the normal blood-brain barrier is minimal. One prerequisite for gamma-aminobutyric acid in plasma contributing to the neural inhibition of hepatic encephalopathy would be that increased transfer of gamma-aminobutyric acid across the blood-brain barrier occurs in liver failure. The aim of the present study was to determine if brain gamma-aminobutyric acid uptake is increased in rabbits with stage II-III (precoma) hepatic encephalopathy due to galactosamine-induced fulminant hepatic failure. A modification of the Oldendorf intracarotid artery-injection technique was applied. [3H] gamma-aminobutyric acid, [14C] butanol, and 113mIn-labeled serum protein (transferrin) were injected simultaneously 4 s before decapitation. The ipsilateral brain uptake index of gamma-aminobutyric acid was determined from measurements of the 3 isotopes in 5 brain regions. Uncorrected or simple brain uptake indices of [3H] gamma-aminobutyric acid and [113mIn] transferrin were calculated using [14C] butanol as the highly extracted reference compound. The [113mIn] transferrin data were also used to correct the brain uptake index of [3H] gamma-aminobutyric acid for intravascular retention of [3H] gamma-aminobutyric acid. The methodology adopted minimized problems attributable to rapid [3H] gamma-aminobutyric acid metabolism, and slow brain washout and recirculation of the radiolabeled tracers. Both the uncorrected and corrected brain uptake indices of gamma-aminobutyric acid as well as the simple brain uptake index of transferrin were significantly increased in both stage II and III hepatic encephalopathy in all brain regions studied. Moreover, these brain uptake indices were significantly greater in stage III hepatic encephalopathy than in stage II hepatic encephalopathy

  18. Epigenetic regulation of the glucose transporter gene Slc2a1 by β-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice.

    Science.gov (United States)

    Tanegashima, Kosuke; Sato-Miyata, Yukiko; Funakoshi, Masabumi; Nishito, Yasumasa; Aigaki, Toshiro; Hara, Takahiko

    2017-01-01

    We carried out liquid chromatography-tandem mass spectrometry analysis of metabolites in mice. Those metabolome data showed that hepatic glucose content is reduced, but that brain glucose content is unaffected, during fasting, consistent with the priority given to brain glucose consumption during fasting. The molecular mechanisms for this preferential glucose supply to the brain are not fully understood. We also showed that the fasting-induced production of the ketone body β-hydroxybutyrate (β-OHB) enhances expression of the glucose transporter gene Slc2a1 (Glut1) via histone modification. Upon β-OHB treatment, Slc2a1 expression was up-regulated, with a concomitant increase in H3K9 acetylation at the critical cis-regulatory region of the Slc2a1 gene in brain microvascular endothelial cells and NB2a neuronal cells, shown by quantitative PCR analysis and chromatin immunoprecipitation assay. CRISPR/Cas9-mediated disruption of the Hdac2 gene increased Slc2a1 expression, suggesting that it is one of the responsible histone deacetylases (HDACs). These results confirm that β-OHB is a HDAC inhibitor and show that β-OHB plays an important role in fasting-induced epigenetic activation of a glucose transporter gene in the brain. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  19. Combination of diabetes risk factors and hepatic steatosis in Chinese: the Cardiometabolic Risk in Chinese (CRC Study.

    Directory of Open Access Journals (Sweden)

    Jun Liang

    Full Text Available Hepatic steatosis has been related to insulin resistance and increased diabetes risk. We assessed whether combination of diabetes risk factors, evaluated by the Finnish Diabetes Risk Score, was associated with risk of hepatic steatosis in an apparently healthy Chinese population.The study samples were from a community-based health examination survey in central China. In total 1,780 men and women (18-64 y were included in the final analyses. Hepatic steatosis was diagnosed by ultrasonography. We created combination of diabetes risk factors score on basis of age, Body Mass Index, waist circumference, physical activity at least 4 h a week, daily consumption of fruits, berries or vegetables, history of antihypertensive drug treatment, history of high blood glucose. The total risk score is a simple sum of the individual weights, and values range from 0 to 20.Hepatic steatosis was present 18% in the total population. In multivariate models, the odds ratios of hepatic steatosis were 1.20 (95%CI 1.15-1.25 in men and 1.25 (95%CI 1.14-1.37 in women by each unit increase in the combination of diabetes risk factors score, after adjustment for blood pressure, liver enzymes, plasma lipids, and fasting glucose. The area under the receiver operating characteristic curve for hepatic steatosis was 0.78 (95%CI 0.76-0.80, 0.76 in men (95%CI 0.74-0.78 and 0.83 (95%CI 0.79-0.87 in women.Our data suggest that combination of major diabetes risk factors was significantly related to risk of hepatic steatosis in Chinese adults.

  20. Plasma Glucose Level Is Predictive of Serum Ammonia Level After Retrograde Occlusion of Portosystemic Shunts.

    Science.gov (United States)

    Ishikawa, Tsuyoshi; Aibe, Yuki; Matsuda, Takashi; Iwamoto, Takuya; Takami, Taro; Sakaida, Isao

    2017-09-01

    The purpose of this study was to evaluate predictors of reduction in ammonia levels by occlusion of portosystemic shunts (PSS) in patients with cirrhosis. Forty-eight patients with cirrhosis (21 women, 27 men; mean age, 67.8 years) with PSS underwent balloon-occluded retrograde transvenous obliteration (BRTO) at one institution between February 2008 and June 2014. The causes of cirrhosis were hepatitis B in one case, hepatitis C in 20 cases, alcohol in 15 cases, nonalcoholic steatohepatitis in eight cases, and other conditions in four cases. The Child-Pugh classes were A in 24 cases, B in 23 cases, and C in one case. The indication for BRTO was gastric varices in 40 cases and hepatic encephalopathy in eight cases. Testing was conducted before and 1 month after the procedure. Statistical analyses were performed to identify predictors of a clinically significant decline in ammonia levels after BRTO. Occlusion of PSS resulted in a clinically significant decrease in ammonia levels accompanied by increased portal venous flow and improved Child-Pugh score. Univariate analyses showed that a reduction in ammonia levels due to BRTO was significantly related to lower plasma glucose levels, higher RBC counts, and higher hemoglobin concentration before the treatment. Furthermore, multivariate logistic regression identified preoperative plasma glucose level as the strongest independent predictor of a significant ammonia reduction in response to BRTO. In addition, although BRTO resulted in significantly declined ammonia levels in patients with normal glucose tolerance before the procedure, ammonia levels were not significantly decreased after shunt occlusion in patients with diabetes mellitus or impaired glucose tolerance before BRTO, according to 75-g oral glucose tolerance test results. Preoperative plasma glucose level is a useful predictor of clinically significant ammonia reduction resulting from occlusion of PSS in patients with cirrhosis. Even if PSS are present, control

  1. Hexachlorobenzene impairs glucose metabolism in a rat model of porphyria cutanea tarda: a mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazzetti, Marta Blanca; Taira, Maria Cristina; Lelli, Sandra Marcela; Viale, Leonor Carmen San Martin de [Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428BGA, Ciudad Autonoma Buenos Aires (Argentina); Dascal, Eduardo; Basabe, Juan Carlos [Centro de Investigaciones Endocrinologicas (CEDIE). Hospital de Ninos, Dr. Ricardo Gutierrez, C1425EDF, Ciudad Autonoma Buenos Aires (Argentina)

    2004-01-01

    Hexachlobenzene (HCB), one of the most persistent environmental pollutants, induces porphyria cutanea tarda (PCT). The aim of this work was to analyze the effect of HCB on some aspects of glucose metabolism, particularly those related to its neosynthesis in vivo. For this purpose, a time-course study on gluconeogenic enzymes, pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G-6-Pase) and on pyruvate kinase (PK), a glycolytic enzyme, was carried out. Plasma glucose and insulin levels, hepatic glycogen, tryptophan contents, and the pancreatic insulin secretion pattern stimulated by glucose were investigated. Oxidative stress and heme pathway parameters were also evaluated. HCB treatment decreased PC, PEPCK, and G-6-Pase activities. The effect was observed at an early time point and grew as the treatment progressed. Loss of 60, 56, and 37%, respectively, was noted at the end of the treatment when a considerable amount of porphyrins had accumulated in the liver as a result of drastic blockage of uroporphyrinogen decarboxylase (URO-D) (95% inhibition). The plasma glucose level was reduced (one-third loss), while storage of hepatic glucose was stimulated in a time-dependent way by HCB treatment. A decay in the normal plasma insulin level was observed as fungicide intoxication progressed (twice to four times lower). However, normal insulin secretion of perifused pancreatic Langerhans islets stimulated by glucose during the 3rd and 6th weeks of treatment did not prove to be significantly affected. HCB promoted a time-dependent increase in urinary chemiluminiscence (fourfold) and hepatic malondialdehide (MDA) content (fivefold), while the liver tryptophan level was only raised at the longest intoxication times. These results would suggest that HCB treatment does not cause a primary alteration in the mechanism of pancreatic insulin secretion and that the changes induced by the fungicide on insulin levels would be an adaptative

  2. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver.

    Science.gov (United States)

    Theurey, Pierre; Tubbs, Emily; Vial, Guillaume; Jacquemetton, Julien; Bendridi, Nadia; Chauvin, Marie-Agnès; Alam, Muhammad Rizwan; Le Romancer, Muriel; Vidal, Hubert; Rieusset, Jennifer

    2016-04-01

    Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  3. Does bilirubin prevent hepatic steatosis through activation of the PPARα nuclear receptor?

    Science.gov (United States)

    Hinds, Terry D; Adeosun, Samuel O; Alamodi, Abdulhadi A; Stec, David E

    2016-10-01

    Several large population studies have demonstrated a negative correlation between serum bilirubin levels and the development of obesity, hepatic steatosis, and cardiovascular disease. Despite the strong correlative data demonstrating the protective role of bilirubin, the mechanism by which bilirubin can protect against these pathologies remains unknown. Bilirubin has long been known as a powerful antioxidant and also has anti-inflammatory actions, each of which may contribute to the protection afforded by increased levels. We have recently described a novel function of bilirubin as a ligand for the peroxisome proliferator-activated receptor-alpha (PPARα), which we show specifically binds to the nuclear receptor. Bilirubin may function as a selective PPAR modulator (SPPARM) to control lipid accumulation and blood glucose. However, it is not known to what degree bilirubin activation of PPARα is responsible for the protection afforded to reduce hepatic steatosis. We hypothesize that bilirubin, acting as a novel SPPARM, increases hepatic fatty acid metabolism through a PPARα-dependent mechanism which reduces hepatic lipid accumulation and protects against hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Antidiabetic and Antihyperlipidemic Effects of Clitocybe nuda on Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Mei-Hsing Chen

    2014-01-01

    Full Text Available The objective of this study was to evaluate the antihyperlipidemic and antihyperglycemic effects and mechanism of the extract of Clitocybe nuda (CNE, in high-fat- (HF- fed mice. C57BL/6J was randomly divided into two groups: the control (CON group was fed with a low-fat diet, whereas the experimental group was fed with a HF diet for 8 weeks. Then, the HF group was subdivided into five groups and was given orally CNE (including C1: 0.2, C2: 0.5, and C3: 1.0 g/kg/day extracts or rosiglitazone (Rosi or vehicle for 4 weeks. CNE effectively prevented HF-diet-induced increases in the levels of blood glucose, triglyceride, insulin (P<0.001, P<0.01, P<0.05, resp. and attenuated insulin resistance. By treatment with CNE, body weight gain, weights of white adipose tissue (WAT and hepatic triacylglycerol content were reduced; moreover, adipocytes in the visceral depots showed a reduction in size. By treatment with CNE, the protein contents of glucose transporter 4 (GLUT4 were significantly increased in C3-treated group in the skeletal muscle. Furthermore, CNE reduces the hepatic expression of glucose-6-phosphatase (G6Pase and glucose production. CNE significantly increases protein contents of phospho-AMP-activated protein kinase (AMPK in the skeletal muscle and adipose and liver tissues. Therefore, it is possible that the activation of AMPK by CNE leads to diminished gluconeogenesis in the liver and enhanced glucose uptake in skeletal muscle. It is shown that CNE exhibits hypolipidemic effect in HF-fed mice by increasing ATGL expression, which is known to help triglyceride to hydrolyze. Moreover, antidiabetic properties of CNE occurred as a result of decreased hepatic glucose production via G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic states by CNE in HF-fed mice occurred by regulation of GLUT4, G6Pase, ATGL, and AMPK phosphorylation.

  5. PGC-1α functions as a co-suppressor of XBP1s to regulate glucose metabolism

    Directory of Open Access Journals (Sweden)

    Jaemin Lee

    2018-01-01

    Full Text Available Objective: Peroxisome proliferator-activated receptor γ (PPARγ coactivator-1α (PGC-1α promotes hepatic gluconeogenesis by activating HNF4α and FoxO1. PGC-1α expression in the liver is highly elevated in obese and diabetic conditions, leading to increased hepatic glucose production. We previously showed that the spliced form of X-box binding protein 1 (XBP1s suppresses FoxO1 activity and hepatic gluconeogenesis. The shared role of PGC-1α and XBP1s in regulating FoxO1 activity and gluconeogenesis led us to investigate the probable interaction between PGC-1α and XBP1s and its role in glucose metabolism. Methods: We investigated the biochemical interaction between PGC-1α and XBP1s and examined the role of their interaction in glucose homeostasis using animal models. Results: We show that PGC-1α interacts with XBP1s, which plays an anti-gluconeogenic role in the liver by suppressing FoxO1 activity. The physical interaction between PGC-1α and XBP1s leads to suppression of XBP1s activity rather than its activation. Upregulating PGC-1α expression in the liver of lean mice lessens XBP1s protein levels, and reducing PGC-1α levels in obese and diabetic mouse liver restores XBP1s protein induction. Conclusions: Our findings reveal a novel function of PGC-1α as a suppressor of XBP1s function, suggesting that hepatic PGC-1α promotes gluconeogenesis through multiple pathways as a co-activator for HNF4α and FoxO1 and also as a suppressor for anti-gluconeogenic transcription factor XBP1s. Keywords: PGC-1α, XBP1s, Glucose homeostasis, ER stress, UPR, Insulin resistance

  6. Brain glucose sensing, glucokinase and neural control of metabolism and islet function.

    Science.gov (United States)

    Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L

    2014-09-01

    It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel--emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. © 2014 John Wiley & Sons Ltd.

  7. Hepatic p38α regulates gluconeogenesis by suppressing AMPK.

    Science.gov (United States)

    Jing, Yanyan; Liu, Wei; Cao, Hongchao; Zhang, Duo; Yao, Xuan; Zhang, Shengjie; Xia, Hongfeng; Li, Dan; Wang, Yu-cheng; Yan, Jun; Hui, Lijian; Ying, Hao

    2015-06-01

    It is proposed that p38 is involved in gluconeogenesis, however, the genetic evidence is lacking and precise mechanisms remain poorly understood. We sought to delineate the role of hepatic p38α in gluconeogenesis during fasting by applying a loss-of-function genetic approach. We examined fasting glucose levels, performed pyruvate tolerance test, imaged G6Pase promoter activity, as well as determined the expression of gluconeogenic genes in mice with a targeted deletion of p38α in liver. Results were confirmed both in vivo and in vitro by using an adenoviral dominant-negative form of p38α (p38α-AF) and the constitutively active mitogen-activated protein kinase 6, respectively. Adenoviral dominant-negative form of AMP-activated protein kinase α (DN-AMPKα) was employed to test our proposed model. Mice lacking hepatic p38α exhibited reduced fasting glucose level and impaired gluconeogenesis. Interestingly, hepatic deficiency of p38α did not result in an alteration in CREB phosphorylation, but led to an increase in AMPKα phosphorylation. Adenoviral DN-AMPKα could abolish the effect of p38α-AF on gluconeogenesis. Knockdown of up-steam transforming growth factor β-activated kinase 1 decreased the AMPKα phosphorylation induced by p38α-AF, suggesting a negative feedback loop. Consistently, inverse correlations between p38 and AMPKα phosphorylation were observed during fasting and in diabetic mouse models. Importantly, adenoviral p38α-AF treatment ameliorated hyperglycemia in diabetic mice. Our study provides evidence that hepatic p38α functions as a negative regulator of AMPK signaling in maintaining gluconeogenesis, dysregulation of this regulatory network contributes to unrestrained gluconeogenesis in diabetes, and hepatic p38α could be a drug target for hyperglycemia. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  8. Exenatide improves both hepatic and adipose tissue insulin resistance: A dynamic positron emission tomography study.

    Science.gov (United States)

    Gastaldelli, Amalia; Gaggini, Melania; Daniele, Giuseppe; Ciociaro, Demetrio; Cersosimo, Eugenio; Tripathy, Devjit; Triplitt, Curtis; Fox, Peter; Musi, Nicolas; DeFronzo, Ralph; Iozzo, Patricia

    2016-12-01

    Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1-RAs) act on multiple tissues, in addition to the pancreas. Recent studies suggest that GLP-1-RAs act on liver and adipose tissue to reduce insulin resistance (IR). Thus, we evaluated the acute effects of exenatide (EX) on hepatic (Hep-IR) and adipose (Adipo-IR) insulin resistance and glucose uptake. Fifteen male subjects (age = 56 ± 8 years; body mass index = 29 ± 1 kg/m 2 ; A1c = 5.7 ± 0.1%) were studied on two occasions, with a double-blind subcutaneous injection of EX (5 μg) or placebo (PLC) 30 minutes before a 75-g oral glucose tolerance test (OGTT). During OGTT, we measured hepatic (HGU) and adipose tissue (ATGU) glucose uptake with [ 18 F]2-fluoro-2-deoxy-D-glucose/positron emission tomography, lipolysis (RaGly) with [U- 2 H 5 ]-glycerol, oral glucose absorption (RaO) with [U- 13 C 6 ]-glucose, and hepatic glucose production (EGP) with [6,6- 2 H 2 ]-glucose. Adipo-IR and Hep-IR were calculated as (FFA 0-120min ) × (Ins 0-120min ) and (EGP 0-120min ) × (Ins 0-120min ), respectively. EX reduced RaO, resulting in reduced plasma glucose and insulin concentration from 0 to 120 minutes postglucose ingestion. EX decreased Hep-IR (197 ± 28 to 130 ± 37; P = 0.02) and increased HGU of orally administered glucose (23 ± 4 to 232 ± 89 [μmol/min/L]/[μmol/min/kg]; P = 0.003) despite lower insulin (23 ± 5 vs. 41 ± 5 mU/L; P < 0.02). EX enhanced insulin suppression of RaGly by decreasing Adipo-IR (23 ± 4 to 13 ± 3; P = 0.009). No significant effect of insulin was observed on ATGU (EX = 1.16 ± 0.15 vs. PLC = 1.36 ± 0.13 [μmol/min/L]/[μmol/min/kg]). Acute EX administration (1) improves Hep-IR, decreases EGP, and enhances HGU and (2) reduces Adipo-IR, improves the antilipolytic effect of insulin, and reduces plasma free fatty acid levels during OGTT. (Hepatology 2016;64:2028-2037). © 2016 by the American Association for the Study of Liver Diseases.

  9. Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2016-06-01

    Full Text Available The liver is critical for maintaining systemic energy balance during starvation. To understand the role of hepatic fatty acid β-oxidation on this process, we generated mice with a liver-specific knockout of carnitine palmitoyltransferase 2 (Cpt2L−/−, an obligate step in mitochondrial long-chain fatty acid β-oxidation. Fasting induced hepatic steatosis and serum dyslipidemia with an absence of circulating ketones, while blood glucose remained normal. Systemic energy homeostasis was largely maintained in fasting Cpt2L−/− mice by adaptations in hepatic and systemic oxidative gene expression mediated in part by Pparα target genes including procatabolic hepatokines Fgf21, Gdf15, and Igfbp1. Feeding a ketogenic diet to Cpt2L−/− mice resulted in severe hepatomegaly, liver damage, and death with a complete absence of adipose triglyceride stores. These data show that hepatic fatty acid oxidation is not required for survival during acute food deprivation but essential for constraining adipocyte lipolysis and regulating systemic catabolism when glucose is limiting.

  10. Hypothalamic growth hormone receptor (GHR) controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons.

    Science.gov (United States)

    Cady, Gillian; Landeryou, Taylor; Garratt, Michael; Kopchick, John J; Qi, Nathan; Garcia-Galiano, David; Elias, Carol F; Myers, Martin G; Miller, Richard A; Sandoval, Darleen A; Sadagurski, Marianna

    2017-05-01

    The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb)-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (Lepr EYFPΔGHR ). The mice were generated by crossing the Lepr cre on the cre-inducible ROSA26-EYFP mice to GHR L/L mice. Parameters of body composition and glucose homeostasis were evaluated. Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in Lepr EYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in Lepr EYFPΔGHR mice. These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding.

  11. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls.

    Science.gov (United States)

    Fassah, Dilla Mareistia; Jeong, Jin Young; Baik, Myunggi

    2018-04-01

    This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Castration increased the mRNA (3.6 fold; pcastration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; pCastration increased mRNA levels of glycerol kinase (2.7 fold; pCastration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial) (3.5 fold; pCastration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat deposition.

  12. Regional differences in adipocyte lactate production from glucose

    International Nuclear Information System (INIS)

    Newby, F.D.; Sykes, M.N.; DiGirolamo, M.

    1988-01-01

    Having shown that lactate is an important product of glucose metabolism by rat epididymal adipocytes, the authors investigated possible regional differences in adipocyte lactate production and the role of the animals' nutritional state and stage of development. [U- 14 C]glucose metabolism, lactate production, and response to insulin were measured in fat cells isolated from four adipose regions from young lean and older fatter rats, killed either in the fed state or after fasting for 48 h. In the absence of insulin, mesenteric fat cells from either age group metabolized significantly more glucose per cell and converted more glucose to lactate than cells from other depots, regardless of nutritional state. Adipocytes from fasted lean rats showed a significant increase in the relative glucose conversion to lactate in all depots when compared with cells from fed lean rats. Fasting of older fatter rats, however, had limited effects on the relative adipocyte glucose conversion to lactate since lactate production was already high. Mesenteric fat cells had the lowest relative response to insulin, possibly due to the high basal rate of glucose metabolism. These findings indicate that differences exist among adipose regions in the rates of glucose metabolism, lactate production and response to insulin. The anatomical location of the mesenteric adipose depot, coupled with a high metabolic rate and blood perfusion, suggests that mesenteric adipocytes may provide a unique and more direct contribution of metabolic substrates for hepatic metabolism than adipocytes from other depots

  13. Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity

    DEFF Research Database (Denmark)

    Wang, Yiguo; Inoue, Hiroshi; Ravnskjær, Kim

    2010-01-01

    Under fasting conditions, increases in circulating concentrations of pancreatic glucagon maintain glucose homeostasis through induction of gluconeogenic genes by the CREB coactivator CRTC2. Hepatic CRTC2 activity is elevated in obesity, although the extent to which this cofactor contributes to at...

  14. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC-1alpha

    National Research Council Canada - National Science Library

    Puigserver, Pere

    2007-01-01

    ... hepatic glucose production. This investigation has a define scope to specifically test how these proteins control the acetylation status of PGC-1alpha and what is the functional effect in blood glucose levels...

  15. CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis

    Science.gov (United States)

    Oh, Kyoung-Jin; Han, Hye-Sook; Kim, Min-Jung; Koo, Seung-Hoi

    2013-01-01

    Liver plays a major role in maintaining glucose homeostasis in mammals. Under fasting conditions, hepatic glucose production is critical as a source of fuel to maintain the basic functions in other tissues, including skeletal muscle, red blood cells, and the brain. Fasting hormones glucagon and cortisol play major roles during the process, in part by activating the transcription of key enzyme genes in the gluconeogenesis such as phosphoenol pyruvate carboxykinase (PEPCK) and glucose 6 phosphatase catalytic subunit (G6Pase). Conversely, gluconeogenic transcription is repressed by pancreatic insulin under feeding conditions, which effectively inhibits transcriptional activator complexes by either promoting post-translational modifications or activating transcriptional inhibitors in the liver, resulting in the reduction of hepatic glucose output. The transcriptional regulatory machineries have been highlighted as targets for type 2 diabetes drugs to control glycemia, so understanding of the complex regulatory mechanisms for transcription circuits for hepatic gluconeogenesis is critical in the potential development of therapeutic tools for the treatment of this disease. In this review, the current understanding regarding the roles of two key transcriptional activators, CREB and FoxO1, in the regulation of hepatic gluconeogenic program is discussed. [BMB Reports 2013; 46(12): 567-574] PMID:24238363

  16. Weight loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of the morbidly obese.

    Science.gov (United States)

    Tuulari, Jetro J; Karlsson, Henry K; Hirvonen, Jussi; Hannukainen, Jarna C; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo

    2013-08-01

    Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not different between groups. However, the hyperinsulinemic clamp increased brain glucose metabolism in a widespread manner in the obese but not control subjects, and brain glucose metabolism was significantly higher during clamp in obese than in control subjects. After follow-up, 6 months postoperatively, the increase in glucose metabolism was no longer observed, and this attenuation was coupled with improved peripheral insulin sensitivity after weight loss. We conclude that obesity is associated with increased insulin-stimulated glucose metabolism in the brain and that this abnormality can be reversed by bariatric surgery.

  17. Hyperammonemia Is Associated with Increasing Severity of Both Liver Cirrhosis and Hepatic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Abidullah Khan

    2016-01-01

    Full Text Available Background. Hyperammonemia resulting from chronic liver disease (CLD can potentially challenge and damage any organ system of the body, particularly the brain. However, there is still some controversy regarding the diagnostic or prognostic values of serum ammonia in patients with over hepatic encephalopathy, especially in the setting of acute-on-chronic or chronic liver failure. Moreover, the association of serum ammonia with worsening Child-Pugh grade of liver cirrhosis has not been studied. Objective. This study was conducted to solve the controversy regarding the association between hyperammonemia and cirrhosis, especially hepatic encephalopathy in chronically failed liver. Material and Methods. In this study, 171 cirrhotic patients had their serum ammonia measured and analyzed by SPSS version 16. Chi-squared test and one-way ANOVA were applied. Results. The study had 110 male and 61 female participants. The mean age of all the participants in years was 42.33±7.60. The mean duration (years of CLD was 10.15±3.53 while the mean Child-Pugh (CP score was 8.84±3.30. Chronic viral hepatitis alone was responsible for 71.3% of the cases. Moreover, 86.5% of participants had hepatic encephalopathy (HE. The frequency of hyperammonemia was 67.3%, more frequent in males (N=81, z-score = 2.4, and P<0.05 than in females (N=34, z-score = 2.4, and P<0.05, and had a statistically significant relationship with increasing CP grade of cirrhosis (χ2(2 = 27.46, P<0.001, Phi = 0.40, and P<0.001. Furthermore, serum ammonia level was higher in patients with hepatic encephalopathy than in those without it; P<0.001. Conclusion. Hyperammonemia is associated with both increasing Child-Pugh grade of liver cirrhosis and hepatic encephalopathy.

  18. Increased VLDL-triglyceride secretion precedes impaired control of endogenous glucose production in obese, normoglycemic men.

    Science.gov (United States)

    Sørensen, Lars P; Søndergaard, Esben; Nellemann, Birgitte; Christiansen, Jens S; Gormsen, Lars C; Nielsen, Søren

    2011-09-01

    To assess basal and insulin-mediated VLDL-triglyceride (TG) kinetics and the relationship between VLDL-TG secretion and hepatic insulin resistance assessed by endogenous glucose production (EGP) in obese and lean men. A total of 12 normoglycemic, obese (waist-to-hip ratio >0.9, BMI >30 kg/m(2)) and 12 lean (BMI 20-25 kg/m(2)) age-matched men were included. Ex vivo-labeled [1-(14)C]VLDL-TGs and [3-(3)H]glucose were infused postabsorptively and during a hyperinsulinemic-euglycemic clamp to determine VLDL-TG kinetics and EGP. Body composition was determined by dual X-ray absorptiometry and computed tomography scanning. Energy expenditure and substrate oxidation rates were measured by indirect calorimetry. Basal VLDL-TG secretion rates were increased in obese compared with lean men (1.25 ± 0.34 vs. 0.86 ± 0.34 μmol/kg fat-free mass [FFM]/min; P = 0.011), whereas there was no difference in clearance rates (150 ± 56 vs. 162 ± 77 mL/min; P = NS), resulting in greater VLDL-TG concentrations (0.74 ± 0.40 vs. 0.38 ± 0.20 mmol/L; P = 0.011). The absolute insulin-mediated suppression of VLDL-TG secretion was similar in the groups. However, the percentage reduction (-36 ± 18 vs. -54 ± 10%; P = 0.008) and achieved VLDL-TG secretion rates (0.76 ± 0.20 vs. 0.41 ± 0.19 μmol/kg FFM/min; P lean men (-17 ± 18 vs. 7 ± 20%; P = 0.007), resulting in less percentage reduction of VLDL-TG concentrations in obese men (-22 ± 20 vs. -56 ± 11%; P < 0.001). Insulin-suppressed EGP was similar (0.4 [0.0-0.8] vs. 0.1 [0.0-1.2] mg/kg FFM/min (median [range]); P = NS), and the percentage reduction was equivalent (-80% [57-98] vs. -98% [49-100], P = NS). Insulin-mediated glucose disposal was significantly reduced in obese men. Basal VLDL-TG secretion rates are increased in normoglycemic but insulin-resistant, obese men, resulting in hypertriglyceridemia. Insulin-mediated suppression of EGP is preserved in obese men, whereas suppression of VLDL-TG secretion is less pronounced in obese

  19. Euterpe oleracea Mart.-Derived Polyphenols Protect Mice from Diet-Induced Obesity and Fatty Liver by Regulating Hepatic Lipogenesis and Cholesterol Excretion.

    Science.gov (United States)

    de Oliveira, Paola Raquel B; da Costa, Cristiane A; de Bem, Graziele F; Cordeiro, Viviane S C; Santos, Izabelle B; de Carvalho, Lenize C R M; da Conceição, Ellen Paula S; Lisboa, Patrícia Cristina; Ognibene, Dayane T; Sousa, Pergentino José C; Martins, Gabriel R; da Silva, Antônio Jorge R; de Moura, Roberto S; Resende, Angela C

    2015-01-01

    The aim of this study was to investigate the effect of a polyphenol-rich Açaí seed extract (ASE, 300 mg/kg-1d-1) on adiposity and hepatic steatosis in mice that were fed a high-fat (HF) diet and its underlying mechanisms based on hepatic lipid metabolism and oxidative stress. Four groups were studied: C57BL/6 mice that were fed with standard diet (10% fat, Control), 10% fat + ASE (ASE), 60% fat (HF), and 60% fat + ASE (HF + ASE) for 12 weeks. We evaluated the food intake, body weight gain, serum glucose and lipid profile, hepatic cholesterol and triacyglycerol (TG), hepatic expression of pAMPK, lipogenic proteins (SREBP-1c, pACC, ACC, HMG-CoA reductase) and cholesterol excretion transporters, ABCG5 and ABCG8. We also evaluated the steatosis in liver sections and oxidative stress. ASE reduced body weight gain, food intake, glucose levels, accumulation of cholesterol and TG in the liver, which was associated with a reduction of hepatic steatosis. The increased expressions of SREBP-1c and HMG-CoA reductase and reduced expressions of pAMPK and pACC/ACC in HF group were antagonized by ASE. The ABCG5 and ABCG8 transporters expressions were increased by the extract. The antioxidant effect of ASE was demonstrated in liver of HF mice by restoration of SOD, CAT and GPx activities and reduction of the increased levels of malondialdehyde and protein carbonylation. In conclusion, ASE substantially reduced the obesity and hepatic steatosis induced by HF diet by reducing lipogenesis, increasing cholesterol excretion and improving oxidative stress in the liver, providing a nutritional resource for prevention of obesity-related adiposity and hepatic steatosis.

  20. The Role of Leptin in Maintaining Plasma Glucose During Starvation.

    Science.gov (United States)

    Perry, Rachel J; Shulman, Gerald I

    2018-03-01

    For 20 years it has been known that concentrations of leptin, a hormone produced by the white adipose tissue (WAT) largely in proportion to body fat, drops precipitously with starvation, particularly in lean humans and animals. The role of leptin to suppress the thyroid and reproductive axes during a prolonged fast has been well defined; however, the impact of leptin on metabolic regulation has been incompletely understood. However emerging evidence suggests that, in starvation, hypoleptinemia increases activity of the hypothalamic-pituitary-adrenal axis, promoting WAT lipolysis, increasing hepatic acetyl-CoA concentrations, and maintaining euglycemia. In addition, leptin may be largely responsible for mediating a shift from a reliance upon glucose metabolism (absorption and glycogenolysis) to fat metabolism (lipolysis increasing gluconeogenesis) which preserves substrates for the brain, heart, and other critical organs. In this way a leptin-mediated glucose-fatty acid cycle appears to maintain glycemia and permit survival in starvation.

  1. Notes from the field: deaths from acute hepatitis B virus infection associated with assisted blood glucose monitoring in an assisted-living facility--North Carolina, August-October 2010.

    Science.gov (United States)

    2011-02-18

    Sharing of blood glucose monitoring equipment in assisted-living facilities has resulted in at least 16 outbreaks of hepatitis B virus (HBV) infection in the United States since 2004. On October 12, 2010, the North Carolina Division of Public Health (NCDPH) and the Wayne County Health Department were notified by a local hospital of four residents of a single assisted-living facility with suspected acute HBV infection. NCDPH requested HBV testing of all persons who had resided in the facility during January 1-October 13, 2010, and defined an outbreak-associated case as either 1) positive hepatitis B surface antigen and core immunoglobulin M (IgM) results or 2) clinical evidence of acute hepatitis (jaundice or serum aminotransferase levels twice the upper limit of normal) with onset ≥6 weeks after admission to the facility. Records were reviewed for potential health-care-associated exposures and HBV-related risk factors. Infection control practices were assessed through observations and interviews with facility staff.

  2. Increasing Contact with Hepatitis E Virus in Red Deer, Spain

    Science.gov (United States)

    Casas, Maribel; Martín, Marga; Vicente, Joaquín; Segalés, Joaquim; de la Fuente, José; Gortázar, Christian

    2010-01-01

    To describe the epidemiology of hepatitis E virus (HEV) in red deer in mainland Spain, we tested red deer for HEV RNA and antibodies. Overall, 10.4% and 13.6% of serum samples were positive by ELISA and reverse transcription–PCR, respectively. The increasing prevalence suggests a potential risk for humans. PMID:21122241

  3. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling.

    Science.gov (United States)

    Deng, Xiuling; Wang, Jiliang; Jiao, Li; Utaipan, Tanyarath; Tuma-Kellner, Sabine; Schmitz, Gerd; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2016-05-01

    PLA2G6 or GVIA calcium-independent PLA2 (iPLA2β) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2β is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2β-null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2β could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob-PKO mice. Here we observed an improvement in ob/ob-PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of β-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2β deficiency in ob/ob-PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2β deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2β in severe obesity associated NAFLD. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Discovery and structure-activity relationships study of thieno[2,3-b]pyridine analogues as hepatic gluconeogenesis inhibitors.

    Science.gov (United States)

    Ma, Fei; Liu, Jian; Zhou, Tingting; Lei, Min; Chen, Jing; Wang, Xiachang; Zhang, Yinan; Shen, Xu; Hu, Lihong

    2018-05-25

    Type 2 diabetes mellitus (T2DM) is a chronic, complex and multifactorial metabolic disorder, and targeting gluconeogenesis inhibition is a promising strategy for anti-diabetic drug discovery. This study discovered a new class of thieno[2,3-b]pyridine derivatives as hepatic gluconeogenesis inhibitors. First, a hit compound (DMT: IC 50  = 33.8 μM) characterized by a thienopyridine core was identified in a cell-based screening of our privileged small molecule library. Structure activity relationships (SARs) study showed that replaced the CF 3 in the thienopyridine core could improve the potency and led to the discovery of 8e (IC 50  = 16.8 μM) and 9d (IC 50  = 12.3 μM) with potent inhibition of hepatic glucose production and good drug-like properties. Furthermore, the mechanism of 8e for the inhibition of hepatic glucose production was also identified, which could be effective through the reductive expression of the mRNA transcription level of gluconeogenic genes, including glucose-6-phosphatase (G6Pase) and hepatic phosphoenolpyruvate carboxykinase (PEPCK). Additionally, 8e could also reduce the fasting blood glucose and improve the oral glucose tolerance and pyruvate tolerance in db/db mice. The optimization of this class of derivatives had provided us a start point to develop new anti-hepatic gluconeogenesis agents. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Correlation of reversely increased level of plasma glucose during pregnancy to the pregnancy outcome

    Directory of Open Access Journals (Sweden)

    Xiao-ya SHEN

    2017-02-01

    Full Text Available Objective To explore the correlation of the reversely increased results of 75g oral glucose tolerance test (OGTT during pregnancy to the pregnancy outcome, so as to provide a reliable theoretical basis of the early intervention for the pregnant women with high plasma glucose. Methods The clinical data of 461 cases were retrospectively analyzed. Patients were chosen from the pregnant women undergoing routine antenatal examination in our hospital during 2014. According to the results of 75g OGTT, 226 patients were analyzed as the observation group, in whom the level of postprandial 2-hour plasma glucose was higher than that of postprandial 1-hour plasma glucose. Meanwhile 235 pregnant women with or without gestational diabetes mellitus (GDM were randomly selected as the control group. Results The levels of fasting plasma glucose and 1-hour postprandial plasma glucose were lower, but those of 2-hour postprandial plasma glucose was higher in observation group than in control group (P0.05 in the incidences of polyhydramnios, oligohydramnios, fetal growth restriction (FGR, premature labor (PTL, pregnancy induced hypertension (PIH, complicated with premature rupture of membrane (PROM, intrauterine fetal death (IUFD and non scar uterus cesarean section rate (CSR. Compared with the observation group, the rates of neonatal dysplasia and neonatal asphyxia and the newborn transfer rate were lower in the control group, of which the newborn transfer rate was statistically different (P<0.01. Conclusions There might be a delayed plasma glucose metabolism in the patients with reversely increased result of 75g OGTT during pregnancy, which may affect the long-term prognosis of the newborn. Therefore, more attention should be paid to such patients with reversely increased result of 75g OGTT. DOI: 10.11855/j.issn.0577-7402.2017.01.09

  6. Effects of Low-Molecular-Weight Fucoidan and High Stability Fucoxanthin on Glucose Homeostasis, Lipid Metabolism, and Liver Function in a Mouse Model of Type II Diabetes

    Directory of Open Access Journals (Sweden)

    Hong-Ting Victor Lin

    2017-04-01

    Full Text Available The combined effects of low-molecular-weight fucoidan (LMF and fucoxanthin (Fx in terms of antihyperglycemic, antihyperlipidemic, and hepatoprotective activities were investigated in a mouse model of type II diabetes. The intake of LMF, Fx, and LMF + Fx lowered the blood sugar and fasting blood sugar levels, and increased serum adiponectin levels. The significant decrease in urinary sugar was only observed in LMF + Fx supplementation. LMF and Fx had ameliorating effects on the hepatic tissue of db/db mice by increasing hepatic glycogen and antioxidative enzymes, and LMF was more effective than Fx at improving hepatic glucose metabolism. As for glucose and lipid metabolism in the adipose tissue, the expression of insulin receptor substrate (IRS-1, glucose transporter (GLUT, peroxisome proliferator-activated receptor gamma (PPARγ, and uncoupling protein (UCP-1 mRNAs in the adipose tissue of diabetic mice was significantly upregulated by Fx and LMF + Fx, and levels of inflammatory adipocytokines, such as adiponectin, tumor necrosis factor-α (TNF-α, and interleukin-6 (IL-6, were significantly modulated only by LMF + Fx supplementation. The efficacy of LMF + Fx supplementation on the decrease in urinary sugar and on glucose and lipid metabolism in the white adipose tissue of db/db mice was better than that of Fx or LMF alone, indicating the occurrence of a synergistic effect of LMF and Fx.

  7. Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose.

    Science.gov (United States)

    Beltramo, E; Berrone, E; Buttiglieri, S; Porta, M

    2004-01-01

    High glucose induces pathological alterations in small and large vessels, possibly through increased formation of AGE, activation of aldose reductase and protein kinase C, and increased flux through the hexosamine pathway. We showed previously that thiamine and benfotiamine correct delayed replication and increase lactate production in endothelial cells subjected to high glucose. We now aim at verifying the effects of thiamine and benfotiamine on cell cycle, apoptosis, and expression of adhesion molecules in endothelial cells and pericytes, under high ambient glucose. Human umbilical vein endothelial cells and bovine retinal pericytes were cultured in normal (5.6 mmol/L) or high (28 mmol/L) glucose, with or without thiamine or benfotiamine, 50 or 100 micro mol/L. Apoptosis was determined by two separate ELISA methods, measuring DNA fragmentation and caspase-3 activity, respectively. Cell cycle and integrin subunits alpha3, alpha5, and beta1 concentration were measured by flow cytometry. Apoptosis was increased in high glucose after 3 days of culture, both in endothelium and pericytes. Thiamine and benfotiamine reversed such effects. Neither cell cycle traversal nor integrin concentrations were modified in these experimental conditions. Thiamine and benfotiamine correct increased apoptosis due to high glucose in cultured vascular cells. Further elucidations of the mechanisms through which they work could help set the basis for clinical use of this vitamin in the prevention and/or treatment of diabetic microangiopathy. Copyright 2004 John Wiley & Sons, Ltd.

  8. Exendin-4 Inhibits Hepatic Lipogenesis by Increasing β-Catenin Signaling.

    Directory of Open Access Journals (Sweden)

    Mi Hae Seo

    Full Text Available The aim of this study is to investigate whether the beneficial effect of exendin-4 on hepatic steatosis is mediated by β-catenin signaling. After the HepG2 human hepatoma cells were treated with PA for 24 hours, total triglycerides levels were increased in a dose-dependent manner, and the expression levels of perilipin family members were upregulated in cells treated with 400 μM PA. For our in vitro model of hepatic steatosis, HepG2 cells were treated with 400 μM palmitic acid (PA in the presence or absence of 100 nM exendin-4 for 24 hours. PA increased the expression of lipogenic genes, such as sterol regulatory element-binding protein 1c (SREBP-1c, peroxisome proliferator-activated receptor gamma (PPARγ, stearoyl-CoA desaturase 1 (SCD1, fatty acid synthase (FAS, and acetyl-CoA carboxylase (ACC and triglyceride synthesis-involved genes, such as diacylglycerol acyltransferase 1 (DGAT1 and diacylglycerol acyltransferase 2 (DGAT2 in HepG2 cells, whereas exendin-4 treatment significantly prevented the upregulation of SREBP-1c, PPARγ, SCD1, FAS, ACC, DGAT1 and DGAT2. Moreover, exendin-4 treatment increased the expression of phosphorylated glycogen synthase kinase-3 beta (GSK-3β in the cytosolic fraction and the expression of β-catenin and transcription factor 4 (TCF4 in the nuclear fraction. In addition, siRNA-mediated inhibition of β-catenin upregulated the expression of lipogenic transcription factors. The protective effects of exendin-4 on intracellular triglyceride content and total triglyceride levels were not observed in cells treated with the β-catenin inhibitor IWR-1. These data suggest that exendin-4 treatment improves hepatic steatosis by inhibiting lipogenesis via activation of Wnt/β-catenin signaling.

  9. Embryonic protein undernutrition by albumen removal programs the hepatic amino acid and glucose metabolism during the perinatal period in an avian model.

    Directory of Open Access Journals (Sweden)

    Els Willems

    Full Text Available Different animal models have been used to study the effects of prenatal protein undernutrition and the mechanisms by which these occur. In mammals, the maternal diet is manipulated, exerting both direct nutritional and indirect hormonal effects. Chicken embryos develop independent from the hen in the egg. Therefore, in the chicken, the direct effects of protein deficiency by albumen removal early during incubation can be examined. Prenatal protein undernutrition was established in layer-type eggs by the partial replacement of albumen by saline at embryonic day 1 (albumen-deprived group, compared to a mock-treated sham and a non-treated control group. At hatch, survival of the albumen-deprived group was lower compared to the control and sham group due to increased early mortality by the manipulation. No treatment differences in yolk-free body weight or yolk weight could be detected. The water content of the yolk was reduced, whereas the water content of the carcass was increased in the albumen-deprived group, compared to the control group, indicating less uptake of nutrients from the yolk. At embryonic day 16, 20 and at hatch, plasma triiodothyronine (T3, corticosterone, lactate or glucose concentrations and hepatic glycogen content were not affected by treatment. At embryonic day 20, the plasma thyroxine (T4 concentrations of the albumen-deprived embryos was reduced compared to the control group, indicating a decreased metabolic rate. Screening for differential protein expression in the liver at hatch using two-dimensional difference gel electrophoresis revealed not only changed abundance of proteins important for amino acid metabolism, but also of enzymes related to energy and glucose metabolism. Interestingly, GLUT1, a glucose transporter, and PCK2 and FBP1, two out of three regulatory enzymes of the gluconeogenesis were dysregulated. No parallel differences in gene expressions causing the differences in protein abundance could be detected

  10. Orphan Nuclear Receptor Small Heterodimer Partner Negatively Regulates Growth Hormone-mediated Induction of Hepatic Gluconeogenesis through Inhibition of Signal Transducer and Activator of Transcription 5 (STAT5) Transactivation*

    Science.gov (United States)

    Kim, Yong Deuk; Li, Tiangang; Ahn, Seung-Won; Kim, Don-Kyu; Lee, Ji-Min; Hwang, Seung-Lark; Kim, Yong-Hoon; Lee, Chul-Ho; Lee, In-Kyu; Chiang, John Y. L.; Choi, Hueng-Sik

    2012-01-01

    Growth hormone (GH) is a key metabolic regulator mediating glucose and lipid metabolism. Ataxia telangiectasia mutated (ATM) is a member of the phosphatidylinositol 3-kinase superfamily and regulates cell cycle progression. The orphan nuclear receptor small heterodimer partner (SHP: NR0B2) plays a pivotal role in regulating metabolic processes. Here, we studied the role of ATM on GH-dependent regulation of hepatic gluconeogenesis in the liver. GH induced phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase gene expression in primary hepatocytes. GH treatment and adenovirus-mediated STAT5 overexpression in hepatocytes increased glucose production, which was blocked by a JAK2 inhibitor, AG490, dominant negative STAT5, and STAT5 knockdown. We identified a STAT5 binding site on the PEPCK gene promoter using reporter assays and point mutation analysis. Up-regulation of SHP by metformin-mediated activation of the ATM-AMP-activated protein kinase pathway led to inhibition of GH-mediated induction of hepatic gluconeogenesis, which was abolished by an ATM inhibitor, KU-55933. Immunoprecipitation studies showed that SHP physically interacted with STAT5 and inhibited STAT5 recruitment on the PEPCK gene promoter. GH-induced hepatic gluconeogenesis was decreased by either metformin or Ad-SHP, whereas the inhibition by metformin was abolished by SHP knockdown. Finally, the increase of hepatic gluconeogenesis following GH treatment was significantly higher in the liver of SHP null mice compared with that of wild-type mice. Overall, our results suggest that the ATM-AMP-activated protein kinase-SHP network, as a novel mechanism for regulating hepatic glucose homeostasis via a GH-dependent pathway, may be a potential therapeutic target for insulin resistance. PMID:22977252

  11. Transmission of hepatitis B virus among persons undergoing blood glucose monitoring in long-term-care facilities--Mississippi, North Carolina, and Los Angeles County, California, 2003-2004.

    Science.gov (United States)

    2005-03-11

    Regular monitoring of blood glucose levels is an important component of routine diabetes care. Capillary blood is typically sampled with the use of a fingerstick device and tested with a portable glucometer. Because of outbreaks of hepatitis B virus (HBV) infections associated with glucose monitoring, CDC and the Food and Drug Administration (FDA) have recommended since 1990 that fingerstick devices be restricted to individual use. This report describes three recent outbreaks of HBV infection among residents in long-term-care (LTC) facilities that were attributed to shared devices and other breaks in infection-control practices related to blood glucose monitoring. Findings from these investigations and previous reports suggest that recommendations concerning standard precautions and the reuse of fingerstick devices have not been adhered to or enforced consistently in LTC settings. The findings underscore the need for education, training, adherence to standard precautions, and specific infection-control recommendations targeting diabetes-care procedures in LTC settings.

  12. [The limitation of glucose catabolism as a factor in protection during hypoxia].

    Science.gov (United States)

    Burbello, A T; Vishvtseva, V V; Denisenko, P P; Safonova, A F; Dobrokhotova, E G

    1995-01-01

    Violuric acid was first shown to have antihypoxic and antioxidative properties, to exert protective action in sodium nitrite-induced hemic hypoxia. Hepatic glucose and glucogen levels increased, the activity of glucose-6- phosphodihydrogenase enhanced, while that of lactate dehydrogenase and alkaline phosphatase decreased, the content of cAMP restored, whereas cGMP and 2,3-diphosphoglycerate levels decreased to a greater extent. The action of violuric acid was especially evident at the ultrastructural level-the ultrastructure of brush receptor elements in anoxia in the presence of violuric acid's action retained all the features characteristic for intact animals, which was accompanied by a significant accumulation of glycogen in the neuroplasm.

  13. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  14. Predictive models of glucose control: roles for glucose-sensing neurones

    Science.gov (United States)

    Kosse, C.; Gonzalez, A.; Burdakov, D.

    2018-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the ‘fast’ senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they

  15. Predictive models of glucose control: roles for glucose-sensing neurones.

    Science.gov (United States)

    Kosse, C; Gonzalez, A; Burdakov, D

    2015-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the 'fast' senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they stimulate

  16. Lipogenesis and glucose production in dwarf carrier and normal lines of chicks

    International Nuclear Information System (INIS)

    Rosebrough, R.W.; McMurtry, J.P.; Steele, N.C.

    1986-01-01

    Diets containing 13, 16, 19, or 23% protein and 70% carbohydrate calories were fed to dwarf heterozygote (dw) and normal (Dw) chickens to determine the effects of age (weeks) and protein on intermediary metabolism. In vitro lipogenesis (IVL) was determined by the incorporation of acetate (10 and 20 mM 2 14 C-Acet/2hr) into hepatic fatty acids. Net glucose production (NGP) was determined as the difference in media glucose in the presence or absence of 10 mM pyruvate. Values were expressed per unit of relative liver size (μmoles/100 g BWt). Serum insulin (INS; ng/ml) was determined by homologous radioimmunoassay. Results indicate that although INS was greater in Dw than in dw, this difference was not reflected in a decreased rate of glucose production to accompany the difference in IVL between the two lines. Moreover, an increase in dietary protein resulted in a decrease in IVL but an increase in INS

  17. Glucagon-like-peptide-1 secretion from canine L-cells is increased by glucose-dependent-insulinotropic peptide but unaffected by glucose

    DEFF Research Database (Denmark)

    Damholt, A B; Buchan, A M; Kofod, Hans

    1998-01-01

    dependently stimulated the release of GLP-1 and resulted in a 2-fold increase at 100 nM GIP. This effect was fully inhibited by 10 nM somatostatin. However, neither basal or GIP stimulated GLP-1 secretion were affected by ambient glucose concentrations from 5-25 mM. The receptor-independent secretagogues beta...... but not by staurosporine. These results indicate that glucose does not directly stimulate canine L-cells. It is more probable that glucose releases GIP from the upper intestine that in turn stimulates GLP-1 secretion. The ability of GIP to stimulate GLP-1 secretion is probably mediated through activation of protein kinase...

  18. Galanin enhances systemic glucose metabolism through enteric Nitric Oxide Synthase-expressed neurons

    Directory of Open Access Journals (Sweden)

    Anne Abot

    2018-04-01

    Full Text Available Objective: Decreasing duodenal contraction is now considered as a major focus for the treatment of type 2 diabetes. Therefore, identifying bioactive molecules able to target the enteric nervous system, which controls the motility of intestinal smooth muscle cells, represents a new therapeutic avenue. For this reason, we chose to study the impact of oral galanin on this system in diabetic mice. Methods: Enteric neurotransmission, duodenal contraction, glucose absorption, modification of gut–brain axis, and glucose metabolism (glucose tolerance, insulinemia, glucose entry in tissue, hepatic glucose metabolism were assessed. Results: We show that galanin, a neuropeptide expressed in the small intestine, decreases duodenal contraction by stimulating nitric oxide release from enteric neurons. This is associated with modification of hypothalamic nitric oxide release that favors glucose uptake in metabolic tissues such as skeletal muscle, liver, and adipose tissue. Oral chronic gavage with galanin in diabetic mice increases insulin sensitivity, which is associated with an improvement of several metabolic parameters such as glucose tolerance, fasting blood glucose, and insulin. Conclusion: Here, we demonstrate that oral galanin administration improves glucose homeostasis via the enteric nervous system and could be considered a therapeutic potential for the treatment of T2D. Keywords: Galanin, Enteric nervous system, Diabetes

  19. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls

    Science.gov (United States)

    Fassah, Dilla Mareistia; Jeong, Jin Young

    2018-01-01

    Objective This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Methods Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Results Castration increased the mRNA (3.6 fold; pgluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat deposition. PMID:29502393

  20. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Xuemei Shi

    2017-11-01

    Conclusions: We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity.

  1. E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Emily J Dhurandhar

    Full Text Available Hepatic steatosis often accompanies obesity and insulin resistance. The cornerstones of steatosis treatment include reducing body weight and dietary fat intake, which are marginally successful over the long term. Ad36, a human adenovirus, may offer a template to overcome these limitations. In vitro and in vivo studies collectively indicate that via its E4orf1 protein, Ad36 improves hyperglycemia, and attenuates hepatic steatosis, despite a high fat diet and without weight loss. Considering that hepatic insulin sensitivity, or the synthesis, oxidation, or export of fatty acid by hepatocytes are the key determinant of hepatic lipid storage, we determined the role of E4orf1 protein in modulating these physiological pathways. For this study, HepG2 cells, or mouse primary hepatocytes were transfected with E4orf1 or the null vector. Glucose output by hepatocytes was determined under gluconeogenic conditions (cAMP and dexamethasone, or glucagon exposure. Also, de-novo lipogenesis, palmitate oxidation, and lipid export as determined by apoB secretion were measured 48 h post transfection. Results show that compared to null vector transfected cells, E4orf1 significantly reduced glucose output in basal and gluconeogenic conditions. E4orf1 reduced de-novo lipogenesis by about 35%, increased complete fatty acid oxidation 2-fold (p<0.0001, and apoB secretion 1.5 fold(p<0.003. Response of key signaling molecules to E4orf1 transfection was in agreement with these findings. Thus, E4orf1 offers a valuable template to exogenously modulate hepatic glucose and lipid metabolism. Elucidating the underlying molecular mechanism may help develop therapeutic approaches for treating diabetes or non-alcoholic fatty liver disease(NAFLD.

  2. Increasing ICA512 autoantibody titers predict development of abnormal oral glucose tolerance tests.

    Science.gov (United States)

    Sanda, Srinath

    2018-03-01

    Determine if autoantibody titer magnitude and variability predict glucose abnormalities in subjects at risk for type 1 diabetes. Demographic information, longitudinal autoantibody titers, and oral glucose tolerance test (OGTT) data were obtained from the TrialNet Pathway to Prevention study. Subjects (first and second degree relatives of individuals with type 1 diabetes) with at least 2 diabetes autoantibodies were selected for analysis. Autoantibody titer means were calculated for each subject for the duration of study participation and the relationship between titer tertiles and glucose value tertiles from OGTTs (normal, impaired, and diabetes) was assessed with a proportional odds ordinal regression model. A matched pairs analysis was used to examine the relationship between changes in individual autoantibody titers and 120-minute glucose values. Titer variability was quantified using cumulative titer standard deviations. We studied 778 subjects recruited in the TrialNet Pathway to Prevention study between 2006 and 2014. Increased cumulative mean titer values for both ICA512 and GAD65 (estimated increase in proportional odds = 1.61, 95% CI = 1.39, 1.87, P < 1 × 10 -9 and 1.17, 95% CI = 1.03, 1.32, P = .016, respectively) were associated with peak 120-minute glucose values. While fluctuating titer levels were observed in some subjects, no significant relationship between titer standard deviation and glucose values was observed. ICA512 autoantibody titers associate with progressive abnormalities in glucose metabolism in subjects at risk for type 1 diabetes. Fluctuations in autoantibody titers do not correlate with lower rates of progression to clinical disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    Science.gov (United States)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  4. Effect of glucagon-like peptide-1 (proglucagon 78-107amide) on hepatic glucose production in healthy man

    DEFF Research Database (Denmark)

    Hvidberg, A; Nielsen, M T; Hilsted, J

    1994-01-01

    at rates of 25 and 75 pmol.kg-1.h-1 into eight healthy volunteers after an overnight fast and measured plasma concentrations of glucose, insulin, and glucagon and glucose turnover by a technique involving infusion of 3-3H-glucose. Plasma levels of GLP-1 increased by 21.3 +/- 3.1 and 75.4 +/- 3.2 pmol....../L during the infusion, changes that were within physiologic limits. In a control experiment only saline was infused. During GLP-1 infusion, plasma glucose level decreased significantly (from 5.3 +/- 0.1 to 4.7 +/- 0.1 and 4.3 +/- 0.1 pmol/L at the end of the two infusion periods). Despite this, plasma...... insulin level increased significantly (from 20.5 +/- 2.9 to a peak value of 33.5 +/- 5.2 pmol/L during the second period), and plasma glucagon level decreased (from 9.3 +/- 1.7 to 7.1 +/- 1.0 pmol/L). Glucose rate of appearance (Ra) decreased significantly to 75% +/- 6% of the preinfusion values during...

  5. Increased in vivo glucose utilization in 30-day-old obese Zucker rat: Role of white adipose tissue

    International Nuclear Information System (INIS)

    Krief, S.; Bazin, R.; Dupuy, F.; Lavau, M.

    1988-01-01

    In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by [3- 3 H]glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia. In obese compared with lean rats, tissue glucose uptake was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart in proximal intestine, and in total muscular mass of limbs. The data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake

  6. Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; O'Neill, Hayley M; Kleinert, Maximilian

    2015-01-01

    INTRODUCTION: Members of the interleukin-6 (IL-6) family, IL-6 and ciliary neurotrophic factor (CNTF) have been shown to increase glucose uptake and fatty acid oxidation in skeletal muscle. However, the metabolic effects of another family member, leukemia inhibitory factor (LIF), are not well...

  7. Proton MR spectroscopic features of chronic hepatitis and liver cirrhosis

    International Nuclear Information System (INIS)

    Cho, Soon Gu; Chung, Won Kyun; Kim, Young Soo; Choi, Won; Shin, Seok Hwan; Kim, Hyung Jin; Suh, Chang Hae

    2000-01-01

    The purpose of this study was to evaluate change in the proton MR spectroscopic ( 1 H-MRS) features of the liver according to changes in the severity of the chronic hepatitis spectrum (normal-chronic hepatitis-liver cirrhosis), and to determine the possibility of replacing liver biopsy by 1 H-MRS. Sixty profiles of 1 H-MRS features from 15 normal volunteers, 30 cases of chronic hepatitis, and 15 of liver cirrhosis were evaluated. All cases of chronic hepatitis and liver cirrhosis were confirmed by biopsy, and histopathologic disease severity was categorized according to Ludwig's classification. Using the STEAM (STimulated Echo-Aquisition Mode) sequence, 1 H-MRS was performed. The ratios of peak areas of (glutamate + glutamine)/lipid, phosphomonoesters/lipid, (glycogen + glucose)/lipid, and (3.9-4.1 ppm unknown peak)/lipid and their mean and standard deviation were calculated in normal, chronic hepatitis stages I and II, and early and late liver cirrhosis groups and the results were compared between these groups. One-way variable analysis was applied to the statistics. Mean and standard deviation of phosphomonoesters/lipid in the normal, chronic hepatitis grades I and II, and early and late liver cirrhosis groups were 0.0146±0.0090, 0.0222±0.0170, 0.0341±0.0276, 0.0698±0.0360, and 0.0881±0.0276, respectively, and (glycogen + glucose)/lipid were 0.0403±0.0267, 0.0922±0.0377, 0.1230±0.0364, 0.1853±0.0667, 0.2325±0.1071, respectively. These results implied that the ratio of the above metabolites to lipid content increased according to increasing disease severity (p less than 0.05). For (glutamate + glutamine)/lipid however, the ratios for each group were 0.0204±0.0067, 0.0117±0.0078, 0.0409±0.0167, 0.0212±0.0103, and 0.0693±0.0371, respectively, and there was no correlation with disease severity. In the chronic hepatitis grades I and II, and early and late liver cirrhosis groups, the ratios for (3.9-4.1 ppm unknown peak)/lipid were 0.0302±0.0087, 0

  8. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle.

    Science.gov (United States)

    Sun, Xiao-Jian; Kim, Soohyun Park; Zhang, Dongming; Sun, Helen; Cao, Qi; Lu, Xin; Ying, Zhekang; Li, Liwu; Henry, Robert R; Ciaraldi, Theodore P; Taylor, Simeon I; Quon, Michael J

    2017-07-21

    Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice ( versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Long-term obestatin treatment of mice type 2 diabetes increases insulin sensitivity and improves liver function.

    Science.gov (United States)

    Kołodziejski, Paweł A; Pruszyńska-Oszmałek, Ewa; Strowski, Mathias Z; Nowak, Krzysztof W

    2017-06-01

    Obestatin and ghrelin are peptides encoded by the preproghrelin gene. Obestatin inhibits food intake, in addition to regulation of glucose and lipid metabolism. Here, we test the ability of obestatin at improving metabolic control and liver function in type 2 diabetic animals (type 2 diabetes mellitus). The effects of chronic obestatin treatment of mice with experimentally induced type 2 diabetes mellitus on serum levels of glucose and lipids, and insulin sensitivity are characterized. In addition, alterations of hepatic lipid and glycogen contents are evaluated. Obestatin reduced body weight and decreased serum glucose, fructosamine, and β-hydroxybutyrate levels, as well as total and low-density lipoprotein fractions of cholesterol. In addition, obestatin increased high-density lipoproteins cholesterol levels and enhanced insulin sensitivity in mice with type 2 diabetes mellitus. Moreover, obestatin diminished liver mass, hepatic triglycerides and cholesterol contents, while glycogen content was higher in livers of healthy and mice with type 2 diabetes mellitus treated with obestatin. These changes were accompanied by reduction of increased alanine aminotransferase, aspartate aminotransferase, and gamma glutamyl transpeptidase in T2DM mice with type 2 diabetes mellitus. Obestatin increased adiponectin levels and reduced leptin concentration. Obestatin influenced the expression of genes involved in lipid and carbohydrate metabolism by increasing Fabp5 and decreasing G6pc, Pepck, Fgf21 mRNA in the liver. Obestatin increased both, AKT and AMPK phosphorylation, and sirtuin 1 (SIRT1) protein levels as well as mRNA expression in the liver. Obestatin improves metabolic abnormalities in type 2 diabetes mellitus, restores hepatic lipid contents and decreases hepatic enzymes. Therefore, obestatin could potentially have a therapeutic relevance in treating of insulin resistance and metabolic dysfunctions in type 2 diabetes mellitus.

  10. NRG1-Fc improves metabolic health via dual hepatic and central action.

    Science.gov (United States)

    Zhang, Peng; Kuang, Henry; He, Yanlin; Idiga, Sharon O; Li, Siming; Chen, Zhimin; Yang, Zhao; Cai, Xing; Zhang, Kezhong; Potthoff, Matthew J; Xu, Yong; Lin, Jiandie D

    2018-03-08

    Neuregulins (NRGs) are emerging as an important family of signaling ligands that regulate glucose and lipid homeostasis. NRG1 lowers blood glucose levels in obese mice, whereas the brown fat-enriched secreted factor NRG4 protects mice from high-fat diet-induced insulin resistance and hepatic steatosis. However, the therapeutic potential of NRGs remains elusive, given the poor plasma half-life of the native ligands. Here, we engineered a fusion protein using human NRG1 and the Fc domain of human IgG1 (NRG1-Fc) that exhibited extended half-life in circulation and improved potency in receptor signaling. We evaluated its efficacy in improving metabolic parameters and dissected the mechanisms of action. NRG1-Fc treatment triggered potent AKT activation in the liver, lowered blood glucose, improved insulin sensitivity, and suppressed food intake in obese mice. NRG1-Fc acted as a potent secretagogue for the metabolic hormone FGF21; however, the latter was largely dispensable for its metabolic effects. NRG1-Fc directly targeted the hypothalamic POMC neurons to promote membrane depolarization and increase firing rate. Together, NRG1-Fc exhibits improved pharmacokinetic properties and exerts metabolic benefits through dual inhibition of hepatic gluconeogenesis and caloric intake.

  11. Hepatic glycogen in humans. II. Gluconeogenetic formation after oral and intravenous glucose

    International Nuclear Information System (INIS)

    Radziuk, J.

    1989-01-01

    The amount of glycogen that is formed by gluconeogenetic pathways during glucose loading was quantitated in human subjects. Oral glucose loading was compared with its intravenous administration. Overnight-fasted subjects received a constant infusion or [3- 3 H]glucose and a marker for gluconeogenesis, [U- 14 C]lactate or sodium [ 14 C]bicarbonate [ 14 C]bicarbonate. An unlabeled glucose load was then administered. Postabsorptively, or after glucose infusion was terminated, a third tracer ([6- 3 H]glucose) infusion was initiated along with a three-step glucagon infusion. Without correcting for background stimulation of [ 14 C]glucose production or for dilution of 14 C with citric acid cycle carbon in the oxaloacetate pool, the amount of glycogen mobilized by the glucagon infusion that was produced by gluconeogenesis during oral glucose loading was 2.9 +/- 0.7 g calculated from [U- 14 C]-lactate incorporation and 7.4 +/- 1.3 g calculated using [ 14 C]bicarbonate as a gluconeogenetic marker. During intravenous glucose administration the latter measurement also yielded 7.2 +/- 1.1 g. When the two corrections above are applied, the respective quantities became 5.3 +/- 1.7 g for [U- 14 C]lactate as tracer and 14.7 +/- 4.3 and 13.9 +/- 3.6 g for oral and intravenous glucose with [ 14 C]bicarbonate as tracer (P less than 0.05, vs. [ 14 C]-lactate as tracer). When [2- 14 C]acetate was infused, the same amount of label was incorporated into mobilized glycogen regardless of which route of glucose administration was used. Comparison with previous data also suggests that 14 CO 2 is a potentially useful marker for the gluconeogenetic process in vivo

  12. Glucose Homeostasis, Pancreatic Endocrine Function, and Outcomes in Advanced Heart Failure.

    Science.gov (United States)

    Melenovsky, Vojtech; Benes, Jan; Franekova, Janka; Kovar, Jan; Borlaug, Barry A; Segetova, Marketa; Tura, Andrea; Pelikanova, Tereza

    2017-08-07

    The mechanisms and relevance of impaired glucose homeostasis in advanced heart failure (HF) are poorly understood. The study goals were to examine glucose regulation, pancreatic endocrine function, and metabolic factors related to prognosis in patients with nondiabetic advanced HF. In total, 140 advanced HF patients without known diabetes mellitus and 21 sex-, age-, and body mass index-matched controls underwent body composition assessment, oral glucose tolerance testing, and measurement of glucose-regulating hormones to model pancreatic β-cell secretory response. Compared with controls, HF patients had similar fasting glucose and insulin levels but higher levels after oral glucose tolerance testing. Insulin secretion was not impaired, but with increasing HF severity, there was a reduction in glucose, insulin, and insulin/glucagon ratio-a signature of starvation. The insulin/C-peptide ratio was decreased in HF, indicating enhanced insulin clearance, and this was correlated with lower cardiac output, hepatic insufficiency, right ventricular dysfunction, and body wasting. After a median of 449 days, 41% of patients experienced an adverse event (death, urgent transplant, or assist device). Increased glucagon and, paradoxically, low fasting plasma glucose displayed the strongest relations to outcome ( P =0.01). Patients in the lowest quartile of fasting plasma glucose (3.8-5.1 mmol·L -1 , 68-101 mg·dL -1 ) had 3-times higher event risk than in the top quartile (6.0-7.9 mmol·L -1 , 108-142 mg·dL -1 ; relative risk: 3.05 [95% confidence interval, 1.46-6.77]; P =0.002). Low fasting plasma glucose and increased glucagon are robust metabolic predictors of adverse events in advanced HF. Pancreatic insulin secretion is preserved in advanced HF, but levels decrease with increasing HF severity due to enhanced insulin clearance that is coupled with right heart failure and cardiac cachexia. © 2017 The Authors. Published on behalf of the American Heart Association, Inc

  13. Isolated hyperglycaemia does not increase VLDL-triacylglycerol secretion in type 1 diabetic men

    DEFF Research Database (Denmark)

    Johansen, Rakel Fuglsang; Søndergaard, Esben; Sørensen, Lars Peter

    2015-01-01

    AIMS/HYPOTHESIS: In type 1 diabetes, abnormalities of both glucose and lipoprotein metabolism are seen. The relationship between these factors is not understood, but studies indicate that hyperglycaemia may increase hepatic VLDL-triacylglycerol (VLDL-TG) secretion and reduce VLDL-TG fatty acid...

  14. Splanchnic blood flow and hepatic glucose production in exercising humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L

    2001-01-01

    The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin-converti......The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin......-converting enzyme (ACE) blockade] or without (control) administration of the ACE inhibitor enalapril (10 mg iv). Splanchnic blood flow was estimated by indocyanine green, and splanchnic substrate exchange was determined by the arteriohepatic venous difference. Exercise led to an approximately 20-fold increase (P ...-blockade group vs. the control group, hormones, metabolites, VO(2), and RER followed the same pattern of changes in ACE-blockade and control groups during exercise. Splanchnic blood flow (at rest: 1.67 +/- 0.12, ACE blockade; 1.59 +/- 0.18 l/min, control) decreased during moderate exercise (0.78 +/- 0.07, ACE...

  15. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons

    Science.gov (United States)

    Shi, Xuemei; Zhou, Fuguo; Li, Xiaojie; Chang, Benny; Li, Depei; Wang, Yi; Tong, Qingchun; Xu, Yong; Fukuda, Makoto; Zhao, Jean J.; Li, Defa; Burrin, Douglas G.; Chan, Lawrence; Guan, Xinfu

    2013-01-01

    Glucagon-like peptides (GLP-1/2) are co-produced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We show that mice lacking GLP-2 receptor (GLP-2R) in POMC neurons display glucose intolerance and hepatic insulin resistance. GLP-2R activation in POMC neurons is required for GLP-2 to enhance insulin-mediated suppression of hepatic glucose production (HGP) and gluconeogenesis. GLP-2 directly modulates excitability of POMC neurons in GLP-2R- and PI3K-dependent manners. GLP-2 initiates GLP-2R-p85α interaction and facilitates PI3K-Akt-dependent FoxO1 nuclear exclusion in POMC neurons. Central GLP-2 suppresses basal HGP and enhances insulin sensitivity, which are abolished in POMC-p110α KO mice. Thus, CNS GLP-2 plays a key physiological role in the control of hepatic glucose production through activating PI3K-dependent modulation of membrane excitability and nuclear transcription of POMC neurons in the brain. PMID:23823479

  16. Increasing Coverage of Hepatitis B Vaccination in China

    OpenAIRE

    Wang, Shengnan; Smith, Helen; Peng, Zhuoxin; Xu, Biao; Wang, Weibing

    2016-01-01

    Abstract This study used a system evaluation method to summarize China's experience on improving the coverage of hepatitis B vaccine, especially the strategies employed to improve the uptake of timely birth dosage. Identifying successful methods and strategies will provide strong evidence for policy makers and health workers in other countries with high hepatitis B prevalence. We conducted a literature review included English or Chinese literature carried out in mainland China, using PubMed, ...

  17. Use of HOMA-IR in hepatitis C.

    Science.gov (United States)

    Eslam, M; Kawaguchi, T; Del Campo, J A; Sata, M; Khattab, M Abo-Elneen; Romero-Gomez, M

    2011-10-01

    Chronic infection with hepatitis C virus (HCV) can induce insulin resistance (IR) in a genotype-dependent manner and contributes to steatosis, progression of fibrosis and resistance to interferon plus ribavirin therapy. Our understanding of HCV-induced IR has improved considerably over the years, but certain aspects concerning its evaluation still remain elusive to clinical researchers. One of the most important issues is elucidating the ideal method for assessment of IR in the setting of hepatitis C. The hyperinsulinaemic euglycaemic clamp is the gold standard method for determining insulin sensitivity, but is impractical as it is labour intensive and time-consuming. To date, all human studies except for four where IR was evaluated in the HCV setting, an estimation of IR has been used rather than direct measurements of insulin-mediated glucose uptake. The most commonly used estimation in the HCV population is the homeostasis model assessment of insulin resistance (HOMA-IR) which is calculated from a single measurement of fasting insulin and glucose. In this article, we review the use and reporting of HOMA in the literature and provide guidance on its appropriate as well as inappropriate use in the hepatitis setting. © 2011 Blackwell Publishing Ltd.

  18. (−-Epicatechin-3-O-β-d-allopyranoside from Davallia formosana, Prevents Diabetes and Hyperlipidemia by Regulation of Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Chun-Ching Shih

    2015-10-01

    Full Text Available The purpose of this experiment was to determine the antidiabetic and lipid-lowering effects of (−-epicatechin-3-O-β-d-allopyranoside (BB from the roots and stems of Davallia formosana in mice. Animal treatment was induced by high-fat diet (HFD or low-fat diet (control diet, CD. After eight weeks of HFD or CD exposure, the HFD mice were treating with BB or rosiglitazone (Rosi or fenofibrate (Feno or water through gavage for another four weeks. However, at 12 weeks, the HFD-fed group had enhanced blood levels of glucose, triglyceride (TG, and insulin. BB treatment significantly decreased blood glucose, TG, and insulin levels. Moreover, visceral fat weights were enhanced in HFD-fed mice, accompanied by increased blood leptin concentrations and decreased adiponectin levels, which were reversed by treatment with BB. Muscular membrane protein levels of glucose transporter 4 (GLUT4 were reduced in HFD-fed mice and significantly enhanced upon administration of BB, Rosi, and Feno. Moreover, BB treatment markedly increased hepatic and skeletal muscular expression levels of phosphorylation of AMP-activated (adenosine monophosphate protein kinase (phospho-AMPK. BB also decreased hepatic mRNA levels of phosphenolpyruvate carboxykinase (PEPCK, which are associated with a decrease in hepatic glucose production. BB-exerted hypotriglyceridemic activity may be partly associated with increased mRNA levels of peroxisome proliferator activated receptor α (PPARα, and with reduced hepatic glycerol-3-phosphate acyltransferase (GPAT mRNA levels in the liver, which decreased triacylglycerol synthesis. Nevertheless, we demonstrated BB was a useful approach for the management of type 2 diabetes and dyslipidemia in this animal model.

  19. Diabetes mellitus, insulin resistance and hepatitis C virus infection: A contemporary review.

    Science.gov (United States)

    Desbois, Anne-Claire; Cacoub, Patrice

    2017-03-07

    To summarise the literature data on hepatitis C virus (HCV)-infected patients concerning the prevalence of glucose abnormalities and associated risk. We conducted a PubMed search and selected all studies found with the key words "HCV" or "hepatitis C virus" and "diabetes" or "insulin resistance". We included only comparative studies written in English or in French, published from January 2000 to April 2015. We collected the literature data on HCV-infected patients concerning the prevalence of glucose abnormalities [diabetes mellitus (DM) and insulin resistance (IR)] and associated risk [ i.e ., severe liver fibrosis, response to antivirals, and the occurrence of hepatocellular carcinoma (HCC)]. HCV infection is significantly associated with DM/IR compared with healthy volunteers and patients with hepatitis B virus infection. Glucose abnormalities were associated with advanced liver fibrosis, lack of sustained virologic response to interferon alfa-based treatment and with a higher risk of HCC development. As new antiviral therapies may offer a cure for HCV infection, such data should be taken into account, from a therapeutic and preventive point of view, for liver and non-liver consequences of HCV disease. The efficacy of antidiabetic treatment in improving the response to antiviral treatment and in decreasing the risk of HCC has been reported by some studies but not by others. Thus, the effects of glucose abnormalities correction in reducing liver events need further studies. Glucose abnormalities are strongly associated with HCV infection and show a negative impact on the main liver related outcomes.

  20. Comparison of association of diabetes mellitus in hepatitis C virus infection and hepatitis B virus infection

    International Nuclear Information System (INIS)

    Khan, I.A.; Bukhari, M.H.; Khokhar, M.S.

    2013-01-01

    Background: While patients with liver disease are known to have a higher prevalence of glucose intolerance, preliminary studies suggest that hepatitis C virus (HCV) infection may be an additional risk factor for the development of diabetes mellitus (DM). Objective: The presented study was aimed to study and determine a relationship between the relative proportions of Diabetes Mellitus in patients suffering from HCV infection. Study Design: This cross sectional study. Study Settings: Patients were registered from outdoor as well as indoor departments of different teaching hospitals (Services hospital Lahore and medical departments in Jinnah hospital, Mayo hospital, Sir Ganga Ram hospital) in Lahore, Pakistan. Methods: This cross sectional study was comprised of age and sex matched 258 patients of viral hepatitis B infection and viral hepatitis C infection, conducted at Hepatitis Clinic Services Hospital, affiliated with Post Graduate Medical Institute, Lahore. Diagnosis of HBV was made with evidence of hepatitis B surface antigen, HCV infection was diagnosed if patient was sero positive for anti HCV (ELISA methods) and HCV - RNA (By PCR). Diabetes Mellitus was diagnosed after fulfilling the American Diabetic Association Criteria, from November, 2000 to September, 2002. Results: A total of 318 patients were registered, out of which 258 cases fulfilled the inclusion criteria, 164 hepatitis C infected and 94 hepatitis B infected cases, 16.46% hepatitis C infected cases were diagnosed as diabetics while 4.25% hepatitis B infected cases were diagnosed as diabetics. Conclusion: This study concludes that there is high Association and relationship of Diabetes Mellitus with Hepatitis C virus infection as compared with Hepatitis B virus infection. (author)

  1. Glucose intolerance develops prior to increased adiposity and accelerated cessation of estrous cyclicity in female growth-restricted rats

    Science.gov (United States)

    Intapad, Suttira; Dasinger, John Henry; Brown, Andrew D.; Fahling, Joel M.; Esters, Joyee; Alexander, Barbara T.

    2015-01-01

    Background The incidence of metabolic disease increases in early menopause. Low birth weight influences the age at menopause. Thus, this study tested the hypothesis that intrauterine growth restriction programs early reproductive aging and impaired glucose homeostasis in female rats. Methods Estrous cyclicity, body composition, and glucose homeostasis were determined in female control and growth-restricted rats at 6 and 12 months of age; sex steroids at 12 months. Results Glucose intolerance was present at 6 months of age prior to cessation of estrous cyclicity and increased adiposity in female growth-restricted rats. However, female growth-restricted rats exhibited persistent estrus and a significant increase in adiposity, fasting glucose and testosterone at 12 months of age (Pgrowth-restricted rats (Pgrowth programmed glucose intolerance that developed prior to early estrous acyclicity; yet, fasting glucose levels were elevated in conjunction with increased adiposity, accelerated cessation of estrous cyclicity and a shift towards testosterone excess at 12 months of age in female growth-restricted rats. PMID:26854801

  2. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2010-03-01

    Full Text Available Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated.Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation.These results suggest that AMPK-mediated PLD1 activation is required for (14C-glucose

  3. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo

    International Nuclear Information System (INIS)

    Chen, P.-J.; Padgett, William T.; Moore, Tanya; Winnik, Witold; Lambert, Guy R.; Thai, Sheau-Fung; Hester, Susan D.; Nesnow, Stephen

    2009-01-01

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  4. Maltitol inhibits small intestinal glucose absorption and increases insulin mediated muscle glucose uptake ex vivo but not in normal and type 2 diabetic rats.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2017-02-01

    This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.

  5. Intermittent hypoxia impairs glucose homeostasis in C57BL6/J mice: partial improvement with cessation of the exposure.

    Science.gov (United States)

    Polak, Jan; Shimoda, Larissa A; Drager, Luciano F; Undem, Clark; McHugh, Holly; Polotsky, Vsevolod Y; Punjabi, Naresh M

    2013-10-01

    Obstructive sleep apnea is associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Although several studies have suggested that intermittent hypoxia in obstructive sleep apnea may induce abnormalities in glucose homeostasis, it remains to be determined whether these abnormalities improve after discontinuation of the exposure. The objective of this study was to delineate the effects of intermittent hypoxia on glucose homeostasis, beta cell function, and liver glucose metabolism and to investigate whether the impairments improve after the hypoxic exposure is discontinued. C57BL6/J mice were exposed to 14 days of intermittent hypoxia, 14 days of intermittent air, or 7 days of intermittent hypoxia followed by 7 days of intermittent air (recovery paradigm). Glucose and insulin tolerance tests were performed to estimate whole-body insulin sensitivity and calculate measures of beta cell function. Oxidative stress in pancreatic tissue and glucose output from isolated hepatocytes were also assessed. Intermittent hypoxia increased fasting glucose levels and worsened glucose tolerance by 67% and 27%, respectively. Furthermore, intermittent hypoxia exposure was associated with impairments in insulin sensitivity and beta cell function, an increase in liver glycogen, higher hepatocyte glucose output, and an increase in oxidative stress in the pancreas. While fasting glucose levels and hepatic glucose output normalized after discontinuation of the hypoxic exposure, glucose intolerance, insulin resistance, and impairments in beta cell function persisted. Intermittent hypoxia induces insulin resistance, impairs beta cell function, enhances hepatocyte glucose output, and increases oxidative stress in the pancreas. Cessation of the hypoxic exposure does not fully reverse the observed changes in glucose metabolism.

  6. Reversible cortical blindness in a case of hepatic encephalopathy

    Directory of Open Access Journals (Sweden)

    Amlan Kanti Biswas

    2016-01-01

    Full Text Available Hepatic encephalopathy is a frequent and often fatal manifestation of chronic liver disease. The pathogenesis of hepatic encephalopathy is believed to be multifactorial including impaired blood-brain barrier function, imbalance between the excitatory and inhibitory neurotransmitters in cortex, accumulation of various toxic and false neurotransmitters, and lack of nutrients like oxygen and glucose. Signs and symptoms of hepatic encephalopathy varies and commonly ranges from personality changes, disturbed consciousness, sleep pattern alternation, intellectual deterioration, speech disturbances, asterixis to frank coma and even death. Reversible or transient cortical blindness is rare manifestation of hepatic encephalopathy. It may even precede the phase of altered consciousness in such patients. Very few similar cases have been reported worldwide. Hence, we would like to report a case of transient cortical blindness in a patient of hepatic encephalopathy.

  7. ILDR2: an endoplasmic reticulum resident molecule mediating hepatic lipid homeostasis.

    Directory of Open Access Journals (Sweden)

    Kazuhisa Watanabe

    Full Text Available Ildr2, a modifier of diabetes susceptibility in obese mice, is expressed in most organs, including islets and hypothalamus, with reduced levels in livers of diabetes-susceptible B6.DBA mice congenic for a 1.8 Mb interval of Chromosome 1. In hepatoma and neuronal cells, ILDR2 is primarily located in the endoplasmic reticulum membrane. We used adenovirus vectors that express shRNA or are driven by the CMV promoter, respectively, to knockdown or overexpress Ildr2 in livers of wild type and ob/ob mice. Livers in knockdown mice were steatotic, with increased hepatic and circulating triglycerides and total cholesterol. Increased circulating VLDL, without reduction in triglyceride clearance suggests an effect of reduced hepatic ILDR2 on hepatic cholesterol clearance. In animals that overexpress Ildr2, hepatic triglyceride and total cholesterol levels were reduced, and strikingly so in ob/ob mice. There were no significant changes in body weight, energy expenditure or glucose/insulin homeostasis in knockdown or overexpressing mice. Knockdown mice showed reduced expression of genes mediating synthesis and oxidation of hepatic lipids, suggesting secondary suppression in response to increased hepatic lipid content. In Ildr2-overexpressing ob/ob mice, in association with reduced liver fat content, levels of transcripts related to neutral lipid synthesis and cholesterol were increased, suggesting "relief" of the secondary suppression imposed by lipid accumulation. Considering the fixed location of ILDR2 in the endoplasmic reticulum, we investigated the possible participation of ILDR2 in ER stress responses. In general, Ildr2 overexpression was associated with increases, and knockdown with decreases in levels of expression of molecular components of canonical ER stress pathways. We conclude that manipulation of Ildr2 expression in liver affects both lipid homeostasis and ER stress pathways. Given these reciprocal interactions, and the relatively extended time

  8. Vaccinium bracteatum Thunb. Leaves' polysaccharide alleviates hepatic gluconeogenesis via the downregulation of miR-137.

    Science.gov (United States)

    Qian, Hai-Feng; Li, Yan; Wang, Li

    2017-11-01

    Vaccinium bracteatum Thunb.(VBT) is a traditional Chinese herb that recorded has an effect of hypoglycemic. We previous discovered a dose-dependent anti-diabetic function of VBT. leaves' polysaccharide (VBTLP), but little is known about its underlying molecular mechanism. Therefore, we hypothesized that VBTLP would decrease hepatic gluconeogenesis to improve glucose metabolism in mice. To test this hypothesis, glucose tolerance test was performed to evaluate the effect of VBTLP on mice hepatic gluconeogenesis. Western blot and RT-PCR were performed to measure both in vivo and in vitro gene regulation under VBTLP treatment. Online bioinformatic analysis was performed to discover a target candidate, miR-137 of LKB1 and AMPK under VBTLP treatment, and the luciferase assay was conducted to validate it. Here we found that VBT. leaves' polysaccharide (VBTLP) decreased hepatic gluconeogenesis via activation of LKB1/AMPK axis in vivo and in vitro. Mechanistic studies reveal that miR-137 regulates hepatic glucose homeostasis by directly targeting AMPK and LKB1. Furthermore, we shown that VBTLP decreased hepatic miR-137 level, which might contribute to activation of LKB1/AMPK and downregulation of gluconeogenesis. Taken together, our study shown that the mechanisms might involve in VBTLP hypoglycemic effect, alleviates hepatic gluconeogenesis via the downregulation of miR-137. Our findings provide guidance in developing novel, safe and effective therapies for T2DM. Copyright © 2017. Published by Elsevier Masson SAS.

  9. A brain-liver circuit regulates glucose homeostasis.

    Science.gov (United States)

    Pocai, Alessandro; Obici, Silvana; Schwartz, Gary J; Rossetti, Luciano

    2005-01-01

    Increased glucose production (GP) is the major determinant of fasting hyperglycemia in diabetes mellitus. Previous studies suggested that lipid metabolism within specific hypothalamic nuclei is a biochemical sensor for nutrient availability that exerts negative feedback on GP. Here we show that central inhibition of fat oxidation leads to selective activation of brainstem neurons within the nucleus of the solitary tract and the dorsal motor nucleus of the vagus and markedly decreases liver gluconeogenesis, expression of gluconeogenic enzymes, and GP. These effects require central activation of ATP-dependent potassium channels (K(ATP)) and descending fibers within the hepatic branch of the vagus nerve. Thus, hypothalamic lipid sensing potently modulates glucose metabolism via neural circuitry that requires the activation of K(ATP) and selective brainstem neurons and intact vagal input to the liver. This crosstalk between brain and liver couples central nutrient sensing to peripheral nutrient production and its disruption may lead to hyperglycemia.

  10. Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT

    International Nuclear Information System (INIS)

    Ganeshan, B.; Miles, K.A.; Young, R.C.D.; Chatwin, C.R.

    2007-01-01

    Aim: To determine how hepatic entropy and uniformity of computed tomography (CT) images of the liver change after the administration of contrast material and to assess whether these additional parameters are more sensitive to tumour-related changes in the liver than measurements of hepatic attenuation or perfusion. Materials and methods: Hepatic attenuation, entropy, uniformity, and perfusion were measured using multi-phase CT following resection of colorectal cancer. Based on conventional CT and fluorodeoxyglucose positron emission tomography, 12 patients were classified as having no evidence of malignancy, eight with extra-hepatic tumours only, and eight with metastatic liver disease. Results: Hepatic attenuation and entropy increased after CM administration whereas uniformity decreased. Unlike hepatic attenuation, entropy and uniformity changed maximally in the arterial phase. No significant differences in hepatic perfusion or attenuation were found between patient groups, whereas arterial-phase entropy was lower (p = 0.034) and arterial-phase uniformity was higher (p = 0.034) in apparently disease-free areas of liver in patients with hepatic metastases compared with those with no metastases. Conclusion: Temporal changes in hepatic entropy and uniformity differ from those for hepatic attenuation. By reflecting the distribution of hepatic enhancement, these additional parameters are more sensitive to tumour-related changes in the liver than measurements of hepatic attenuation or perfusion

  11. Ursolic acid increases glucose uptake through the PI3K signaling pathway in adipocytes.

    Directory of Open Access Journals (Sweden)

    Yonghan He

    Full Text Available BACKGROUND: Ursolic acid (UA, a triterpenoid compound, is reported to have a glucose-lowering effect. However, the mechanisms are not fully understood. Adipose tissue is one of peripheral tissues that collectively control the circulating glucose levels. OBJECTIVE: The objective of the present study was to determine the effect and further the mechanism of action of UA in adipocytes. METHODS AND RESULTS: The 3T3-L1 preadipocytes were induced to differentiate and treated with different concentrations of UA. NBD-fluorescent glucose was used as the tracer to measure glucose uptake and Western blotting used to determine the expression and activity of proteins involved in glucose transport. It was found that 2.5, 5 and 10 µM of UA promoted glucose uptake in a dose-dependent manner (17%, 29% and 35%, respectively. 10 µM UA-induced glucose uptake with insulin stimulation was completely blocked by the phosphatidylinositol (PI 3-kinase (PI3K inhibitor wortmannin (1 µM, but not by SB203580 (10 µM, the inhibitor of mitogen-activated protein kinase (MAPK, or compound C (2.5 µM, the inhibitor of AMP-activated kinase (AMPK inhibitor. Furthermore, the downstream protein activities of the PI3K pathway, phosphoinositide-dependent kinase (PDK and phosphoinositide-dependent serine/threoninekinase (AKT were increased by 10 µM of UA in the presence of insulin. Interestingly, the activity of AS160 and protein kinase C (PKC and the expression of glucose transporter 4 (GLUT4 were stimulated by 10 µM of UA under either the basal or insulin-stimulated status. Moreover, the translocation of GLUT4 from cytoplasm to cell membrane was increased by UA but decreased when the PI3K inhibitor was applied. CONCLUSIONS: Our results suggest that UA stimulates glucose uptake in 3T3-L1 adipocytes through the PI3K pathway, providing important information regarding the mechanism of action of UA for its anti-diabetic effect.

  12. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats.

    Directory of Open Access Journals (Sweden)

    Soo Jin Yang

    Full Text Available BACKGROUND: Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ on hepatic steatosis. METHODS: To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg⁻¹·day⁻¹ by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes. RESULTS: RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α and Forkhead box O1 (Foxo1 in rat livers. AMP-activated protein kinase (AMPK phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035, suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects. CONCLUSION: Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.

  13. Limited but increasing use of treatment for hepatitis C across Europe in patients coinfected with HIV and hepatitis

    DEFF Research Database (Denmark)

    Mocroft, A; Rockstroh, J; Soriano, V

    2006-01-01

    Uptake of hepatitis C (HCV) treatment in HIV-coinfected patients is not well described. Of 2356 HCV-seropositive patients, 180 (7.6%) started HCV treatment with interferon-based therapies. In multivariate Poisson-regression models, there was a 38% increase per year in the incidence of starting HCV...... treatment (95% CI 26 - 51%, ppatients, it remains infrequent and variable...

  14. The pancreas in {beta}-thalassemia major: MR imaging features and correlation with iron stores and glucose disturbunces

    Energy Technology Data Exchange (ETDEWEB)

    Papakonstantinou, Olympia [University Hospital of Heraklion, Medical School of Crete, Department of Radiology, Heraklion, Crete (Greece); Attikon Hospital, 2nd Department of Radiology, Athens (Greece); Ladis, Vasilios; Kostaridou, Stavroula; Berdousi, Helen; Kattamis, Christos [Thalassemia Unit, University of Athens, ' ' Aghia Sophia' ' Children' s Hospital, Athens (Greece); Maris, Thomas; Gourtsoyiannis, Nicholas [University Hospital of Heraklion, Medical School of Crete, Department of Radiology, Heraklion, Crete (Greece)

    2007-06-15

    The study aims at describing the MR features of pancreas in beta-thalassemia major, investigating the relations between MR findings and glucose disturbances and between hepatic and pancreatic siderosis. Signal intensity ratios of the pancreas and liver to right paraspinous muscle (P/M, L/M) were retrospectively assessed on abdominal MR imaging studies of 31 transfusion-dependent patients with beta-thalassemia major undergoing quantification of hepatic siderosis and 10 healthy controls, using T1- (120/4/90), intermediate in and out of phase - (120/2.7, 4/20), and T2*-(120/15/20) weighted GRE sequences. Using the signal drop of the liver and pancreas on opposed phase images, we recorded serum ferritin and results of oral glucose tolerance test (OGTT). Decreased L/M and P/M on at least the T2* sequence were noticed in 31/31 and 30/31 patients, respectively, but no correlation between P/M and L/M was found. Patients with pathologic OGTT displayed a higher degree of hepatic siderosis (p < 0.04) and signal drop of pancreas on opposed phase imaging (p < 0.025), implying fatty replacement of pancreas. P/M was neither correlated with glucose disturbances nor serum ferritin. Iron deposition in the pancreas cannot be predicted by the degree of hepatic siderosis in beta-thalassemia major. Fatty replacement of the pancreas is common and may be associated with glucose disturbances. (orig.)

  15. The pancreas in β-thalassemia major: MR imaging features and correlation with iron stores and glucose disturbunces

    International Nuclear Information System (INIS)

    Papakonstantinou, Olympia; Ladis, Vasilios; Kostaridou, Stavroula; Berdousi, Helen; Kattamis, Christos; Maris, Thomas; Gourtsoyiannis, Nicholas

    2007-01-01

    The study aims at describing the MR features of pancreas in beta-thalassemia major, investigating the relations between MR findings and glucose disturbances and between hepatic and pancreatic siderosis. Signal intensity ratios of the pancreas and liver to right paraspinous muscle (P/M, L/M) were retrospectively assessed on abdominal MR imaging studies of 31 transfusion-dependent patients with beta-thalassemia major undergoing quantification of hepatic siderosis and 10 healthy controls, using T1- (120/4/90), intermediate in and out of phase - (120/2.7, 4/20), and T2*-(120/15/20) weighted GRE sequences. Using the signal drop of the liver and pancreas on opposed phase images, we recorded serum ferritin and results of oral glucose tolerance test (OGTT). Decreased L/M and P/M on at least the T2* sequence were noticed in 31/31 and 30/31 patients, respectively, but no correlation between P/M and L/M was found. Patients with pathologic OGTT displayed a higher degree of hepatic siderosis (p < 0.04) and signal drop of pancreas on opposed phase imaging (p < 0.025), implying fatty replacement of pancreas. P/M was neither correlated with glucose disturbances nor serum ferritin. Iron deposition in the pancreas cannot be predicted by the degree of hepatic siderosis in beta-thalassemia major. Fatty replacement of the pancreas is common and may be associated with glucose disturbances. (orig.)

  16. Ginsenoside Compound K suppresses the hepatic gluconeogenesis via activating adenosine-5'monophosphate kinase: A study in vitro and in vivo.

    Science.gov (United States)

    Wei, Shengnan; Li, Wei; Yu, Yang; Yao, Fan; A, Lixiang; Lan, Xiaoxin; Guan, Fengying; Zhang, Ming; Chen, Li

    2015-10-15

    Compound K (CK) is a final intestinal metabolite of protopanaxadiol-type ginsenoside. We have reported that CK presented anti-diabetic effect via diminishing the expressions of hepatic gluconeogenesis key enzyme. Here, we further explore the possible mechanism of CK on suppression hepatic gluconeogenesis via activation of adenosine-5'monophosphate kinase (AMPK) on type 2 diabetes mice in vivo and in HepG2 cells. Type 2 diabetes mice model was developed by high fat diet combined with STZ injection. 30mg/kg/d CK was orally administrated for 4weeks, the fasting blood glucose level and 2h OGTT were conducted, and the protein expression of AMPK, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) were examined. The mechanism of Compound K on hepatic gluconeogenesis was further explored in HepG2 hepatocytes. Glucose production, the protein expression of AMPK, PEPCK, G6pase and PGC-1α, hepatic nuclear factor 4α (HNF-4α) and forkhead transcription factor O1 (FOXO1) were determined after Compound K treatment at the presence of AMPK inhibitor Compound C. We observed that CK inhibited the expression of PEPCK and G6Pase in the liver and in HepG2 hepatocytes. Meanwhile, CK treatment remarkably increased the activation of AMPK, while decreasing the expressions of PGC-1α, HNF-4α and FOXO1. However, AMPK inhibitor Compound C could reverse these effects of CK on gluconeogenesis in part. The results indicated that the effect of CK on suppression hepatic gluconeogenesis might be via the activation the AMPK activity. Copyright © 2015. Published by Elsevier Inc.

  17. Genetic disruption of SOD1 gene causes glucose intolerance and impairs β-cell function.

    Science.gov (United States)

    Muscogiuri, Giovanna; Salmon, Adam B; Aguayo-Mazzucato, Cristina; Li, Mengyao; Balas, Bogdan; Guardado-Mendoza, Rodolfo; Giaccari, Andrea; Reddick, Robert L; Reyna, Sara M; Weir, Gordon; Defronzo, Ralph A; Van Remmen, Holly; Musi, Nicolas

    2013-12-01

    Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow-fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction.

  18. Effect of aspirin and prostaglandins on the carbohydrate metabolism in albino rats.: glucose oxidation through different pathways and glycolytic enzymes

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Ramakrishnan, S.

    1980-01-01

    The effect of chronic and acute doses of aspirin and prostaglandins F2α and E2 individually on the oxidation of glucose through Embden Meyerhof-TCA cycle and pentose phosphate pathways and some key glycolytic enzymes of liver were studied in male albino rats. Studies were extended to find the combined effect of PGF2α and E2 with an acute dose of aspirin. There was increased utilisation of both 1- 14 C glucose and 6- 14 C glucose on aspirin treatment. However, the metabolism through the EM-TCA pathway was more pronounced as shown by a reduced ratio of 14 CO 2 from 1- 14 C and 6- 14 C glucose. Two hepatic key glycolytic enzymes viz. hexokinase and pyruvate kinase were increased due to aspirin treatment. Withdrawal of aspirin corrected the above impaired carbohydrate metabolism in liver. Prostaglandin F2α also caused a reduction in the utilisation of 1- 14 C glucose, while PGE2 recorded an increase in the utilisation of both 1- 14 C and 6- 14 C glucose when compared to controls, indicating that different members of prostaglandins could affect metabolisms and differently. Administration of the PGs and aspirin together showed an increase in the utilisation of 6- 14 C glucose. (auth.)

  19. Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells

    Science.gov (United States)

    Kim, Dae Jung; Kang, Yun Hwan; Kim, Kyoung Kon; Kim, Tae Woo; Park, Jae Bong

    2017-01-01

    BACKGROUND/OBJECTIVES Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. MATERIALS/METHODS Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha (HNF-1α), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta (GSK-3β) expression levels. The α-glucosidase inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. RESULTS CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through HNF-1α expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and GSK-3β, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of α-glucosidase inhibitory activity than that from acarbose. CONCLUSION CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment. PMID:28584574

  20. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  1. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    International Nuclear Information System (INIS)

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodríguez-Rey, J.C.

    2014-01-01

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity

  2. High Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2011-01-01

    Full Text Available Metallothionein (MT is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2 are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by streptozotocin, and renal tissues were stained with antibodies for MT-1/-2. MT-1/-2 expression was also evaluated in mProx24 cells, a mouse renal proximal tubular epithelial cell line, stimulated with high glucose medium and pretreated with the antioxidant vitamin E. MT-1/-2 expression was gradually and dramatically increased, mainly in the proximal tubular epithelial cells and to a lesser extent in the podocytes in diabetic rats, but was hardly observed in control rats. MT-1/-2 expression was also increased by high glucose stimulation in mProx24 cells. Because the induction of MT was suppressed by pretreatment with vitamin E, the expression of MT-1/-2 is induced, at least in part, by high glucose-induced oxidative stress. These observations suggest that MT-1/-2 is induced in renal proximal tubular epithelial cells as an antioxidant to protect the kidney from oxidative stress, and may offer a novel therapeutic target against diabetic nephropathy.

  3. Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM

    International Nuclear Information System (INIS)

    Mitrakou, A.; Kelley, D.; Veneman, T.; Jenssen, T.; Pangburn, T.; Reilly, J.; Gerich, J.

    1990-01-01

    To assess the role of muscle and liver in the pathogenesis of postprandial hyperglycemia in non-insulin-dependent diabetes mellitus (NIDDM), we administered an oral glucose load enriched with [14C]glucose to 10 NIDDM subjects and 10 age- and weight-matched nondiabetic volunteers and compared muscle glucose disposal by measuring forearm balance of glucose, lactate, alanine, O2, and CO2. In addition, we used the dual-lable isotope method to compare overall rates of glucose appearance (Ra) and disappearance (Rd), suppression of endogenous glucose output, and splanchnic glucose sequestration. During the initial 1-1.5 h after glucose ingestion, plasma glucose increased by approximately 8 mM in NIDDM vs. approximately 3 mM in nondiabetic subjects (P less than 0.01); overall glucose Ra was nearly 11 g greater in NIDDM than nondiabetic subjects, but glucose Rd was not significantly different in NIDDM and nondiabetic subjects. The greater overall glucose Ra of NIDDM subjects was due to 6.8 g greater endogenous glucose output (13.7 +/- 1.1 vs. 6.8 +/- 1.0 g, P less than 0.01) and 3.8 g less oral glucose splanchnic sequestration of the oral load (31.4 +/- 1.5 vs. 27.5 +/- 0.9 g, P less than 0.05). Although glucose taken up by muscle was not significantly different in NIDDM and nondiabetic subjects (39.3 +/- 3.5 vs. 41.0 +/- 2.5 g/5 h), a greater amount of the glucose taken up by muscle in NIDDM was released as lactate and alanine (11.7 +/- 1.0 vs. 5.2 +/- 0.3 g in nondiabetic subjects, P less than 0.01), and less was stored (11.7 +/- 1.3 vs. 16.9 +/- 1.5 g, P less than 0.05). We conclude that increased systemic glucose delivery, due primarily to reduced suppression of endogenous hepatic glucose output and, to a lesser extent, reduced splanchnic glucose sequestration, is the predominant factor responsible for postprandial hyperglycemia in NIDDM

  4. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  5. Low Adiponectin Levels and Increased Risk of Type 2 Diabetes in Patients With Myocardial Infarction

    DEFF Research Database (Denmark)

    Lindberg, Søren; Jensen, Jan S; Pedersen, Sune H

    2014-01-01

    OBJECTIVE: Patients with acute myocardial infarction (MI) have increased risk of developing type 2 diabetes mellitus (T2DM). Adiponectin is an insulin-sensitizing hormone produced in adipose tissue, directly suppressing hepatic gluconeogenesis, stimulating fatty acid oxidation and glucose uptake...... 5.3-6.1]) 6% (n = 38) developed T2DM. Risk of T2DM was analyzed using a competing risk analysis. RESULTS: Low adiponectin levels were associated with increased risk of T2DM (P age, sex, hypertension, hypercholesterolemia, current smoking.......001). Importantly, plasma adiponectin added to the predictive value of blood glucose, with the combination of high blood glucose and low plasma adiponectin, vastly increasing the risk of developing T2DM (HR 9.6 [3.7-25.3]; P

  6. Limited but increasing use of treatment for hepatitis C across Europe in patients coinfected with HIV and hepatitis

    DEFF Research Database (Denmark)

    Mocroft, A; Rockstroh, J; Soriano, V

    2006-01-01

    Uptake of hepatitis C (HCV) treatment in HIV-coinfected patients is not well described. Of 2356 HCV-seropositive patients, 180 (7.6%) started HCV treatment with interferon-based therapies. In multivariate Poisson-regression models, there was a 38% increase per year in the incidence of starting HCV...... treatment (95% CI 26 - 51%, pHIV-coinfected patients, it remains infrequent and variable...

  7. 3,5 Diiodo-L-Thyronine (T2 Does Not Prevent Hepatic Steatosis or Insulin Resistance in Fat-Fed Sprague Dawley Rats.

    Directory of Open Access Journals (Sweden)

    Daniel F Vatner

    Full Text Available Thyroid hormone mimetics are alluring potential therapies for diseases like dyslipidemia, nonalcoholic fatty liver disease (NAFLD, and insulin resistance. Though diiodothyronines are thought inactive, pharmacologic treatment with 3,5- Diiodo-L-Thyronine (T2 reportedly reduces hepatic lipid content and improves glucose tolerance in fat-fed male rats. To test this, male Sprague Dawley rats fed a safflower-oil based high-fat diet were treated with T2 (0.25 mg/kg-d or vehicle. Neither 10 nor 30 days of T2 treatment had an effect on weight, adiposity, plasma fatty acids, or hepatic steatosis. Insulin action was quantified in vivo by a hyperinsulinemic-euglycemic clamp. T2 did not alter fasting plasma glucose or insulin concentration. Basal endogenous glucose production (EGP rate was unchanged. During the clamp, there was no difference in insulin stimulated whole body glucose disposal. Insulin suppressed EGP by 60% ± 10 in T2-treated rats as compared with 47% ± 4 suppression in the vehicle group (p = 0.32. This was associated with an improvement in hepatic insulin signaling; insulin stimulated Akt phosphorylation was ~2.5 fold greater in the T2-treated group as compared with the vehicle-treated group (p = 0.003. There was no change in expression of genes thought to mediate the effect of T2 on hepatic metabolism, including genes that regulate hepatic lipid oxidation (ppara, carnitine palmitoyltransferase 1a, genes that regulate hepatic fatty acid synthesis (srebp1c, acetyl coa carboxylase, fatty acid synthase, and genes involved in glycolysis and gluconeogenesis (L-pyruvate kinase, glucose 6 phosphatase. Therefore, in contrast with previous reports, in Sprague Dawley rats fed an unsaturated fat diet, T2 administration failed to improve NAFLD or whole body insulin sensitivity. Though there was a modest improvement in hepatic insulin signaling, this was not associated with significant differences in hepatic insulin action. Further study will be

  8. Increased risk of hepatocellular carcinoma in patients with chronic hepatitis C

    DEFF Research Database (Denmark)

    Hallager, Sofie; Weis, Nina

    2014-01-01

    Chronic hepatitis C (CHC) frequently leads to cirrhosis with an increased risk of hepatocellular carcinomas (HCC). CHC therapy is currently changing for the better whereas prognosis for HCC remains dismal if not detected early and thus regular screening in cirrhotic CHC patients for HCC...... is recommended. CHC is known to be underdiagnosed in Denmark where it is up to the involved physician to screen for risk factors for CHC and increase the patient's chance of a cure for CHC with therapy....

  9. The effect of recombinant human growth hormone with or without rosiglitazone on hepatic fat content in HIV-1-infected individuals: a randomized clinical trial.

    Science.gov (United States)

    Kotler, Donald P; He, Qing; Engelson, Ellen S; Albu, Jeanine B; Glesby, Marshall J

    2016-01-01

    Hepatic fat is related to insulin resistance (IR) and visceral adipose tissue (VAT) in HIV+ and uninfected individuals. Growth hormone (GH) reduces VAT but increases IR. We evaluated the effects of recombinant human GH (rhGH) and rosiglitazone (Rosi) on hepatic fat in a substudy of a randomized controlled trial. HIV+ subjects with abdominal obesity and IR (QUICKI≤0.33) were randomized to rhGH 3 mg daily, Rosi 4 mg twice daily, the combination or double placebo. Hepatic fat was measured by magnetic resonance spectroscopy, visceral fat by MRI and IR by frequently sampled intravenous glucose tolerance tests at baseline and week 12. 31 subjects were studied at both time points. Significant correlations between hepatic fat and VAT (r=0.41; P=0.02) and QUICKI (r=0.39; P<0.05) were seen at baseline. IR rose with rhGH but not Rosi. When rhGH treatment groups were combined, hepatic fat expressed as percentage change decreased significantly (P<0.05) but did not change in Rosi (P=0.71). There were no correlations between changes in hepatic fat and VAT (P=0.4) or QUICKI (P=0.6). In a substudy of 21 subjects, a trend was noticed between changes in hepatic fat and serum insulin-like growth factor-1 (IGF-1; P=0.09). Hepatic fat correlates significantly with both VAT and IR, but changes in hepatic fat do not correlate with changes in VAT and glucose metabolism. Hepatic fat content is reduced by rhGH but Rosi has no effect. These results suggest an independent effect of GH or IGF-1 on hepatic fat. The study was registered at Clinicaltrials.gov (NCT00130286).

  10. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity.

    Science.gov (United States)

    Shi, Xuemei; Chacko, Shaji; Li, Feng; Li, Depei; Burrin, Douglas; Chan, Lawrence; Guan, Xinfu

    2017-11-01

    Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected excitatory hM3Dq-mCherry AAV into their brainstem NTS. We characterized the metabolic impact of PPG neuron activation on glucose homeostasis and insulin sensitivity using stable isotopic tracers coupled with hyperinsulinemic euglycemic clamp. We showed that after ip injection of clozapine N-oxide, Gcg-Cre lean mice transduced with hM3Dq in the brainstem NTS downregulated basal endogenous glucose production and enhanced glucose tolerance following ip glucose tolerance test. Moreover, acute activation of PPG neurons NTS enhanced whole-body insulin sensitivity as indicated by increased glucose infusion rate as well as augmented insulin-suppression of endogenous glucose production and gluconeogenesis. In contrast, insulin-stimulation of glucose disposal was not altered significantly. We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. PCB 126 and Other Dioxin-Like PCBs Specifically Suppress Hepatic PEPCK Expression via the Aryl Hydrocarbon Receptor

    Science.gov (United States)

    Zhang, Wenshuo; Sargis, Robert M.; Volden, Paul A.; Carmean, Christopher M.; Sun, Xiao J.; Brady, Matthew J.

    2012-01-01

    Dioxins and dioxin-like compounds encompass a group of structurally related heterocyclic compounds that bind to and activate the aryl hydrocarbon receptor (AhR). The prototypical dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic industrial byproduct that incites numerous adverse physiological effects. Global commercial production of the structurally similar polychlorinated biphenyls (PCBs), however, commenced early in the 20th century and continued for decades; dioxin-like PCBs therefore contribute significantly to total dioxin-associated toxicity. In this study, PCB 126, the most potent dioxin-like PCB, was evaluated with respect to its direct effects on hepatic glucose metabolism using primary mouse hepatocytes. Overnight treatment with PCB 126 reduced hepatic glycogen stores in a dose-dependent manner. Additionally, PCB 126 suppressed forskolin-stimulated gluconeogenesis from lactate. These effects were independent of acute toxicity, as PCB 126 did not increase lactate dehydrogenase release nor affect lipid metabolism or total intracellular ATP. Interestingly, provision of cells with glycerol instead of lactate as the carbon source completely restored hepatic glucose production, indicating specific impairment in the distal arm of gluconeogenesis. In concordance with this finding, PCB 126 blunted the forskolin-stimulated increase in phosphoenolpyruvate carboxykinase (PEPCK) mRNA levels without affecting glucose-6-phosphatase expression. Myricetin, a putative competitive AhR antagonist, reversed the suppression of PEPCK induction by PCB 126. Furthermore, other dioxin-like PCBs demonstrated similar effects on PEPCK expression in parallel with their ability to activate AhR. It therefore appears that AhR activation mediates the suppression of PEPCK expression by dioxin-like PCBs, suggesting a role for these pollutants as disruptors of energy metabolism. PMID:22615911

  12. PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Wenshuo Zhang

    Full Text Available Dioxins and dioxin-like compounds encompass a group of structurally related heterocyclic compounds that bind to and activate the aryl hydrocarbon receptor (AhR. The prototypical dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a highly toxic industrial byproduct that incites numerous adverse physiological effects. Global commercial production of the structurally similar polychlorinated biphenyls (PCBs, however, commenced early in the 20(th century and continued for decades; dioxin-like PCBs therefore contribute significantly to total dioxin-associated toxicity. In this study, PCB 126, the most potent dioxin-like PCB, was evaluated with respect to its direct effects on hepatic glucose metabolism using primary mouse hepatocytes. Overnight treatment with PCB 126 reduced hepatic glycogen stores in a dose-dependent manner. Additionally, PCB 126 suppressed forskolin-stimulated gluconeogenesis from lactate. These effects were independent of acute toxicity, as PCB 126 did not increase lactate dehydrogenase release nor affect lipid metabolism or total intracellular ATP. Interestingly, provision of cells with glycerol instead of lactate as the carbon source completely restored hepatic glucose production, indicating specific impairment in the distal arm of gluconeogenesis. In concordance with this finding, PCB 126 blunted the forskolin-stimulated increase in phosphoenolpyruvate carboxykinase (PEPCK mRNA levels without affecting glucose-6-phosphatase expression. Myricetin, a putative competitive AhR antagonist, reversed the suppression of PEPCK induction by PCB 126. Furthermore, other dioxin-like PCBs demonstrated similar effects on PEPCK expression in parallel with their ability to activate AhR. It therefore appears that AhR activation mediates the suppression of PEPCK expression by dioxin-like PCBs, suggesting a role for these pollutants as disruptors of energy metabolism.

  13. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21.

    Science.gov (United States)

    Li, Yu; Wong, Kimberly; Giles, Amber; Jiang, Jianwei; Lee, Jong Woo; Adams, Andrew C; Kharitonenkov, Alexei; Yang, Qin; Gao, Bin; Guarente, Leonard; Zang, Mengwei

    2014-02-01

    The hepatocyte-derived hormone fibroblast growth factor 21 (FGF21) is a hormone-like regulator of metabolism. The nicotinamide adenine dinucleotide-dependent deacetylase SIRT1 regulates fatty acid metabolism through multiple nutrient sensors. Hepatic overexpression of SIRT1 reduces steatosis and glucose intolerance in obese mice. We investigated mechanisms by which SIRT1 controls hepatic steatosis in mice. Liver-specific SIRT1 knockout (SIRT1 LKO) mice and their wild-type littermates (controls) were divided into groups that were placed on a normal chow diet, fasted for 24 hours, or fasted for 24 hours and then fed for 6 hours. Liver tissues were collected and analyzed by histologic examination, gene expression profiling, and real-time polymerase chain reaction assays. Human HepG2 cells were incubated with pharmacologic activators of SIRT1 (resveratrol or SRT1720) and mitochondrion oxidation consumption rate and immunoblot analyses were performed. FGF21 was overexpressed in SIRT1 LKO mice using an adenoviral vector. Energy expenditure was assessed by indirect calorimetry. Prolonged fasting induced lipid deposition in livers of control mice, but severe hepatic steatosis in SIRT1 LKO mice. Gene expression analysis showed that fasting up-regulated FGF21 in livers of control mice but not in SIRT1 LKO mice. Decreased hepatic and circulating levels of FGF21 in fasted SIRT1 LKO mice were associated with reduced hepatic expression of genes involved in fatty acid oxidation and ketogenesis, and increased expression of genes that control lipogenesis, compared with fasted control mice. Resveratrol or SRT1720 each increased the transcriptional activity of the FGF21 promoter (-2070/+117) and levels of FGF21 messenger RNA and protein in HepG2 cells. Surprisingly, SIRT1 LKO mice developed late-onset obesity with impaired whole-body energy expenditure. Hepatic overexpression of FGF21 in SIRT1 LKO mice increased the expression of genes that regulate fatty acid oxidation, decreased

  14. Novel PPARα agonist MHY553 alleviates hepatic steatosis by increasing fatty acid oxidation and decreasing inflammation during aging.

    Science.gov (United States)

    Kim, Seong Min; Lee, Bonggi; An, Hye Jin; Kim, Dae Hyun; Park, Kyung Chul; Noh, Sang-Gyun; Chung, Ki Wung; Lee, Eun Kyeong; Kim, Kyung Mok; Kim, Do Hyun; Kim, Su Jeong; Chun, Pusoon; Lee, Ho Jeong; Moon, Hyung Ryong; Chung, Hae Young

    2017-07-11

    Hepatic steatosis is frequently observed in obese and aged individuals. Because hepatic steatosis is closely associated with metabolic syndromes, including insulin resistance, dyslipidemia, and inflammation, numerous efforts have been made to develop compounds that ameliorate it. Here, a novel peroxisome proliferator-activated receptor (PPAR) α agonist, 4-(benzo[d]thiazol-2-yl)benzene-1,3-diol (MHY553) was developed, and investigated its beneficial effects on hepatic steatosis using young and old Sprague-Dawley rats and HepG2 cells.Docking simulation and Western blotting confirmed that the activity of PPARα, but not that of the other PPAR subtypes, was increased by MHY553 treatment. When administered orally, MHY553 markedly ameliorated aging-induced hepatic steatosis without changes in body weight and serum levels of liver injury markers. Consistent with in vivo results, MHY553 inhibited triglyceride accumulation induced by a liver X receptor agonist in HepG2 cells. Regarding underlying mechanisms, MHY553 stimulated PPARα translocation into the nucleus and increased mRNA levels of its downstream genes related to fatty acid oxidation, including CPT-1A and ACOX1, without apparent change in lipogenesis signaling. Furthermore, MHY553 significantly suppresses inflammatory mRNA expression in old rats. In conclusion, MHY553 is a novel PPARα agonist that improved aged-induced hepatic steatosis, in part by increasing β-oxidation signaling and decreasing inflammation in the liver. MHY553 is a potential pharmaceutical agent for treating hepatic steatosis in aging.

  15. Inflammatory stress increases hepatic CD36 translational efficiency via activation of the mTOR signalling pathway.

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    Full Text Available Inflammatory stress is an independent risk factor for the development of non-alcoholic fatty liver disease (NAFLD. Although CD36 is known to facilitate long-chain fatty acid uptake and contributes to NAFLD progression, the mechanisms that link inflammatory stress to hepatic CD36 expression and steatosis remain unclear. As the mammalian target of rapamycin (mTOR signalling pathway is involved in CD36 translational activation, this study was undertaken to investigate whether inflammatory stress enhances hepatic CD36 expression via mTOR signalling pathway and the underlying mechanisms. To induce inflammatory stress, we used tumour necrosis factor alpha (TNF-α and interleukin-6 (IL-6 stimulation of the human hepatoblastoma HepG2 cells in vitro and casein injection in C57BL/6J mice in vivo. The data showed that inflammatory stress increased hepatic CD36 protein levels but had no effect on mRNA expression. A protein degradation assay revealed that CD36 protein stability was not different between HepG2 cells treated with or without TNF-α or IL-6. A polysomal analysis indicated that CD36 translational efficiency was significantly increased by inflammatory stress. Additionally, inflammatory stress enhanced the phosphorylation of mTOR and its downstream translational regulators including p70S6K, 4E-BP1 and eIF4E. Rapamycin, an mTOR-specific inhibitor, reduced the phosphorylation of mTOR signalling pathway and decreased the CD36 translational efficiency and protein level even under inflammatory stress resulting in the alleviation of inflammatory stress-induced hepatic lipid accumulation. This study demonstrates that the activation of the mTOR signalling pathway increases hepatic CD36 translational efficiency, resulting in increased CD36 protein expression under inflammatory stress.

  16. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.

    Science.gov (United States)

    Matsen, Miles E; Thaler, Joshua P; Wisse, Brent E; Guyenet, Stephan J; Meek, Thomas H; Ogimoto, Kayoko; Cubelo, Alex; Fischer, Jonathan D; Kaiyala, Karl J; Schwartz, Michael W; Morton, Gregory J

    2013-04-01

    Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)β-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a β(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.

  17. Inhibition of intestinal bile acid transporter Slc10a2 improves triglyceride metabolism and normalizes elevated plasma glucose levels in mice.

    Directory of Open Access Journals (Sweden)

    Thomas Lundåsen

    Full Text Available Interruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2 and ob/ob mice treated with a specific inhibitor of Slc10a2. Plasma TG levels were reduced in Slc10a2-deficient mice, and when challenged with a sucrose-rich diet, they displayed a reduced response in hepatic TG production as observed from the mRNA levels of several key enzymes in fatty acid synthesis. This effect was paralleled by a diminished induction of mature sterol regulatory element-binding protein 1c (Srebp1c. Unexpectedly, the SR-diet induced intestinal fibroblast growth factor (FGF 15 mRNA and normalized bile acid synthesis in Slc10a2-/- mice. Pharmacologic inhibition of Slc10a2 in diabetic ob/ob mice reduced serum glucose, insulin and TGs, as well as hepatic mRNA levels of Srebp1c and its target genes. These responses are contrary to those reported following treatment of mice with a bile acid binding resin. Moreover, when key metabolic signal transduction pathways in the liver were investigated, those of Mek1/2-Erk1/2 and Akt were blunted after treatment of ob/ob mice with the Slc10a2 inhibitor. It is concluded that abrogation of Slc10a2 reduces hepatic Srebp1c activity and serum TGs, and in the diabetic ob/ob model it also reduces glucose and insulin levels. Hence, targeting of Slc10a2 may be a promising strategy to treat hypertriglyceridemia and diabetes.

  18. Association between iron level, glucose impairment and increased DNA damage during pregnancy.

    Science.gov (United States)

    Zein, Salam; Rachidi, Samar; Shami, Nadine; Sharara, Iman; Cheikh-Ali, Khawla; Gauchez, Anne-Sophie; Moulis, Jean-Marc; Ayoubi, Jean-Marc; Salameh, Pascale; Hininger-Favier, Isabelle

    2017-09-01

    Elevated circulating ferritin has been reported to increase the risk of gestational diabetes mellitus (GDM). When high ferritin translates into high iron stores, iron excess is also a condition leading to free radical damage. We aimed to evaluate the relationship between oxidative stress (OS) induced by iron status and GDM risk in non iron-supplemented pregnant women. This was a pilot observational study conducted on 93 non-anemic pregnant women. Iron status was assessed at the first trimester of gestation. Blood sampling was done at 24-28 weeks' gestation for oral glucose tolerance test (OGTT), insulin and biological markers of oxidative damage tests. A significant increase in DNA damage was found in patients who developed GDM. Women with elevated DNA damage had a six-fold increased risk of developing GDM (Exp (B)=6.851, P=0.038; 95% CI [1.108-42.375]). The serum ferritin levels at first trimester were significantly correlated to lipid peroxidation (rho=0.24, p=0.012). The stratified analysis suggests that ferritin is a modifying factor for the correlation of oxidative stress (OS) and glucose intolerance. Moderate ferritin levels due to iron intake without iron-supplement, at early pregnancy is a modifying factor for the correlation of oxidative damage and glucose intolerance in pregnant women. Larger studies to evaluate the risk of food iron intake induced increased oxidative damage in offspring are warranted to propose nutrition advice regarding iron intake in women with a high risk of GDM. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Human hepatic carbohydrate metabolism. Dynamic observation using 13C MRS without proton decoupling

    International Nuclear Information System (INIS)

    Ikehira, H.; Obata, T.; Koga, M.; Yoshida, K.

    1997-01-01

    Purpose: Dynamic natural-abundance 13 C MR spectroscopy (MRS) studies without proton decoupling were performed in the human liver using commercial 1.5 T MR equipment. Material and methods: A single tuned custom-made circular surface coil with an OD of 20 cm operating at 16.04 MHz was used for the 13 C study. Seventy-five grams of glucose dissolved in water was administered for the natural-abundance 13 C-MRS dynamic study which lasted for approximately 40 to 60 min. Data acquisition was broken into 20-min and 1.7-min blocks. Localized proton shimming with a whole-body coil was performed with sufficient volume to include the observing area of the surface coil; the line width of the water signal was less than 20 Hz. Results and Conclusion: The glucose and glycogen spectra were clearly visible at 80 to 120 ppm after oral administration of the glucose solution. These data demonstrate that dynamic hepatic carbohydrate metabolism can be observed with commercially available MR equipment. Given that the human hepatic glycogen pool reaches maximum level within less than 10 min, this technique should provide a direct diagnosis of hepatic carbohydrate metabolic disorders. (orig.)

  20. Correlation of hepatic 18F-fluorodeoxyglucose uptake with fatty liver

    International Nuclear Information System (INIS)

    An, Young Sil; Yoon, Joon Kee; Hong, Seon Pyo; Joh, Chul Woo; Yoon, Seok Nam

    2006-01-01

    Liver demonstrates heterogeneous FDG uptake and sometimes it shows abnormally increased uptake even though there is no malignant tissue. However, there was no previous study to correlate these various pattern of hepatic FDG uptake with benign liver disease. Therefore, we evaluated the significance of hepatic FDG uptake associated with various clinical factors including fatty liver, liver function tests and lipid profiles. We reviewed a total of 188 patients (male/female: 120/68, mean age: 50 ± 9) who underwent PET/CT for screening of malignancy. Patients with DM, impaired glucose tolerance, previous severe hepatic disease or long-term medication history were excluded. The FDG uptake in liver was analyzed semi-quantitatively using ROI on transaxial images (segment 8) and we compared mean standardized uptake value (SUV) between fatty liver and non-fatty liver group. We also evaluated the correlation between hepatic FDG uptake and various clinical factors including serum liver function test (ALT, AST), γ -GT, total cholesterol and triglyceride concentration. The effect of alcoholic history and body mass index on hepatic FDG uptake was analyzed within the fatty liver patients. The hepatic FDG uptake of fatty liver group was significantly higher than that of non-fatty liver group. Serum total cholesterol and triglyceride concentration showed significant correlation with hepatic FDG uptake. However, there was no significant correlation between other factors (ALT, AST, and γ -GT) and FDG uptake. Also there was no difference of mean SUV between normal and abnormal groups on the basis of alcoholic history and body mass index within fatty liver patients. Fatty liver and high serum triglyceride concentration were the independent factors affecting hepatic FDG uptake according to multivariate analysis. In conclusion, hepatic FDG uptake was strongly correlated with fatty liver and serum triglyceride concentration

  1. Intermittent Hypoxia Impairs Glucose Homeostasis in C57BL6/J Mice: Partial Improvement with Cessation of the Exposure

    Science.gov (United States)

    Polak, Jan; Shimoda, Larissa A.; Drager, Luciano F.; Undem, Clark; McHugh, Holly; Polotsky, Vsevolod Y.; Punjabi, Naresh M.

    2013-01-01

    Objectives: Obstructive sleep apnea is associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Although several studies have suggested that intermittent hypoxia in obstructive sleep apnea may induce abnormalities in glucose homeostasis, it remains to be determined whether these abnormalities improve after discontinuation of the exposure. The objective of this study was to delineate the effects of intermittent hypoxia on glucose homeostasis, beta cell function, and liver glucose metabolism and to investigate whether the impairments improve after the hypoxic exposure is discontinued. Interventions: C57BL6/J mice were exposed to 14 days of intermittent hypoxia, 14 days of intermittent air, or 7 days of intermittent hypoxia followed by 7 days of intermittent air (recovery paradigm). Glucose and insulin tolerance tests were performed to estimate whole-body insulin sensitivity and calculate measures of beta cell function. Oxidative stress in pancreatic tissue and glucose output from isolated hepatocytes were also assessed. Results: Intermittent hypoxia increased fasting glucose levels and worsened glucose tolerance by 67% and 27%, respectively. Furthermore, intermittent hypoxia exposure was associated with impairments in insulin sensitivity and beta cell function, an increase in liver glycogen, higher hepatocyte glucose output, and an increase in oxidative stress in the pancreas. While fasting glucose levels and hepatic glucose output normalized after discontinuation of the hypoxic exposure, glucose intolerance, insulin resistance, and impairments in beta cell function persisted. Conclusions: Intermittent hypoxia induces insulin resistance, impairs beta cell function, enhances hepatocyte glucose output, and increases oxidative stress in the pancreas. Cessation of the hypoxic exposure does not fully reverse the observed changes in glucose metabolism. Citation: Polak J; Shimoda LA; Drager LF; Undem C; McHugh H; Polotsky VY; Punjabi NM

  2. A whole-body model for glycogen regulation reveals a critical role for substrate cycling in maintaining blood glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2011-12-01

    Full Text Available Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and fasting conditions in the context of a whole-body model. The model was validated against previous experimental results concerning glycogen phosphorylase a (active and glycogen synthase a dynamics. The model qualitatively reproduced physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile cycling, priming the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the incorporation of mathematical descriptions of these networks into "whole-body" contextual models that mimic in vivo conditions.

  3. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis.

    Science.gov (United States)

    Wang, Yan; Quagliarini, Fabiana; Gusarova, Viktoria; Gromada, Jesper; Valenzuela, David M; Cohen, Jonathan C; Hobbs, Helen H

    2013-10-01

    Angiopoietin-like protein (ANGPTL)8 (alternatively called TD26, RIFL, Lipasin, and Betatrophin) is a newly recognized ANGPTL family member that has been implicated in both triglyceride (TG) and glucose metabolism. Hepatic overexpression of ANGPTL8 causes hypertriglyceridemia and increased insulin secretion. Here we examined the effects of inactivating Angptl8 on TG and glucose metabolism in mice. Angptl8 knockout (Angptl8(-/-)) mice gained weight more slowly than wild-type littermates due to a selective reduction in adipose tissue accretion. Plasma levels of TGs of the Angptl8(-/-) mice were similar to wild-type animals in the fasted state but paradoxically decreased after refeeding. The lower TG levels were associated with both a reduction in very low density lipoprotein secretion and an increase in lipoprotein lipase (LPL) activity. Despite the increase in LPL activity, the uptake of very low density lipoprotein-TG is markedly reduced in adipose tissue but preserved in hearts of fed Angptl8(-/-) mice. Taken together, these data indicate that ANGPTL8 plays a key role in the metabolic transition between fasting and refeeding; it is required to direct fatty acids to adipose tissue for storage in the fed state. Finally, glucose and insulin tolerance testing revealed no alterations in glucose homeostasis in mice fed either a chow or high fat diet. Thus, although absence of ANGPTL8 profoundly disrupts TG metabolism, we found no evidence that it is required for maintenance of glucose homeostasis.

  4. Hepatic and extrahepatic responses to insulin in NIDDM and nondiabetic humans. Assessment in absence of artifact introduced by tritiated nonglucose contaminants

    International Nuclear Information System (INIS)

    Butler, P.C.; Kryshak, E.J.; Schwenk, W.F.; Haymond, M.W.; Rizza, R.A.

    1990-01-01

    It is well established that patients with non-insulin-dependent diabetes mellitus (NIDDM) are resistant to insulin. However, the contribution of hepatic and extrahepatic tissues to insulin resistance remains controversial. The uncertainty may be at least in part due to errors introduced by the unknowing use in previous studies of impure isotopes to measure glucose turnover. To determine hepatic and extrahepatic responses to insulin in the absence of these errors, steady-state glucose turnover was measured simultaneously with [6-3H]- and [6-14C]glucose during sequential 5- and 4-h infusions of insulin at rates of 0.4 and 10 mU.kg-1.min-1 in diabetic and nondiabetic subjects. At low insulin concentrations, [6-3H]- and [6-14C]glucose gave similar estimates of glucose turnover. Hepatic glucose release was equal to but not below zero in the nondiabetic subjects, but persistent glucose release (P less than 0.001) and decreased glucose uptake (P less than 0.001) was observed in the diabetic patients. At high insulin concentrations, both isotopes underestimated glucose turnover during the 1st h after initiation of the high-dose insulin infusion. More time (P less than 0.05) was required to reachieve steady state in NIDDM than nondiabetic subjects. At steady state, [6-3H]- but not [6-14C]glucose systematically underestimated (P less than 0.05) glucose turnover in both groups due to the presence of a tritiated nonglucose contaminant. The percentage of radioactivity in plasma due to tritiated contaminants was linearly related to turnover

  5. Shared genetic effects between hepatic steatosis and fibrosis: A prospective twin study

    Science.gov (United States)

    Cui, Jeffrey; Chen, Chi-Hua; Lo, Min-Tzu; Schork, Nicholas; Bettencourt, Ricki; Gonzalez, Monica P; Bhatt, Archana; Hooker, Jonathan; Shaffer, Katherine; Nelson, Karen E; Long, Michelle T; Brenner, David A; Sirlin, Claude B; Loomba, Rohit

    2016-01-01

    Introduction Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic risk factors including hypertension and dyslipidemia, and may progress to liver fibrosis. Previous studies have shown that hepatic steatosis and fibrosis are heritable but whether they have a significant shared gene effect is unknown. This study aimed to examine the shared gene effects between hepatic steatosis, fibrosis, and their associations with metabolic risk factors. Methods This is a cross-sectional analysis of a prospective cohort of well-characterized, community-dwelling twins (45 monozygotic, 20 dizygotic twin pairs, 130 total subjects) from Southern California. Hepatic steatosis was assessed with MRI-proton density fat fraction (MRI-PDFF) and hepatic fibrosis was assessed with magnetic resonance elastography (MRE). A standard bivariate twin AE model was used to estimate the proportion of phenotypic variance between two phenotypes accounted for by additive genetic effects (A) and individual-specific environmental effects (E). Genetic correlations (rG) estimated from this model represent the degree to which the genetic determinants of two phenotypes overlap. Results The mean (±SD) age and BMI were 47.1 (±21.9) years and 26.9 (±6.5) kg/m2, respectively. 20% (26/130) of the cohort had hepatic steatosis (MRI-PDFF ≥5%) and 8.2% (10/122) had hepatic fibrosis (MRE ≥3Kpa). Blood pressure (systolic and diastolic), triglycerides, glucose, homeostatic model assessment of insulin resistance (HOMA-IR), insulin, hemoglobin A1c (HbA1c), and low high-density lipoprotein (HDL) had significant shared gene effects with hepatic steatosis. Triglycerides, glucose, HOMA-IR, insulin, HbA1c, and low HDL had significant shared gene effects with hepatic fibrosis. Hepatic steatosis and fibrosis had a highly significant shared gene effect of 0.756 (95% CI: 0.716–1, psteatosis pathogenesis may also be involved with fibrosis pathogenesis. PMID:27315352

  6. The Influence of Macronutrients on Splanchnic and Hepatic Lymphocytes in Aging Mice.

    Science.gov (United States)

    Le Couteur, David G; Tay, Szun S; Solon-Biet, Samantha; Bertolino, Patrick; McMahon, Aisling C; Cogger, Victoria C; Colakoglu, Feyza; Warren, Alessandra; Holmes, Andrew J; Pichaud, Nicolas; Horan, Martin; Correa, Carolina; Melvin, Richard G; Turner, Nigel; Ballard, J William O; Ruohonen, Kari; Raubenheimer, David; Simpson, Stephen J

    2015-12-01

    There is a strong association between aging, diet, and immunity. The effects of macronutrients and energy intake on splanchnic and hepatic lymphocytes were studied in 15 month old mice. The mice were ad-libitum fed 1 of 25 diets varying in the ratios and amounts of protein, carbohydrate, and fat over their lifetime. Lymphocytes in liver, spleen, Peyers patches, mesenteric lymph nodes, and inguinal lymph nodes were evaluated using flow cytometry. Low protein intake reversed aging changes in splenic CD4 and CD8 T cells, CD4:CD8 T cell ratio, memory/effector CD4 T cells and naïve CD4 T cells. A similar influence of total caloric intake in these ad-libitum fed mice was not apparent. Protein intake also influenced hepatic NK cells and B cells, while protein to carbohydrate ratio influenced hepatic NKT cells. Hepatosteatosis was associated with increased energy and fat intake and changes in hepatic Tregs, effector/memory T, and NK cells. Hepatic NK cells were also associated with body fat, glucose tolerance, and leptin levels while hepatic Tregs were associated with hydrogen peroxide production by hepatic mitochondria. Dietary macronutrients, particularly protein, influence splanchnic lymphocytes in old age, with downstream associations with mitochondrial function, liver pathology, and obesity-related phenotype. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Increased basal glucose production in type 1 Gaucher's disease

    NARCIS (Netherlands)

    Corssmit, E. P.; Hollak, C. E.; Endert, E.; van Oers, M. H.; Sauerwein, H. P.; Romijn, J. A.

    1995-01-01

    To evaluate the metabolic effects of Gaucher's disease, glucose metabolism and parameters of fat metabolism were studied by indirect calorimetry and primed continuous infusion of [3-3H]glucose in seven clinically stable untreated patients with type 1 Gaucher's disease and in seven healthy matched

  8. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls

    Directory of Open Access Journals (Sweden)

    Dilla Mareistia Fassah

    2018-04-01

    Full Text Available Objective This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Methods Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10 and steers (n = 10 of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Results Castration increased the mRNA (3.6 fold; p<0.01 and protein levels (1.4 fold; p< 0.05 of pyruvate carboxylase and mitochondrial phosphoenolpyruvate carboxykinase genes (1.7 fold; p<0.05. Hepatic mRNA levels of genes encoding the glycolysis enzymes were not changed by castration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; p<0.05 and lactate dehydrogenase B (2.2 fold; p<0.01 genes for lactate utilization. Castration increased mRNA levels of glycerol kinase (2.7 fold; p<0.05 and glycerol-3-phosphate dehydrogenase 1 (1.5 fold; p<0.05 genes for glycerol utilization. Castration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial (3.5 fold; p<0.01 and acyl-CoA synthetase short chain family member 3 (1.3 fold; p = 0.06 genes for propionate incorporation. Conclusion Castration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular

  9. Changing Epidemiological Characteristics of Hepatitis A in Zhejiang Province, China: Increased Susceptibility in Adults.

    Science.gov (United States)

    Wang, Zhifang; Chen, Yaping; Xie, Shuyun; Lv, Huakun

    2016-01-01

    Hepatitis A is a common acute hepatitis caused by hepatitis A virus (HAV). Annually, it affects 1.4 million people worldwide. Between 1991 and 1994, HAV infections were highly endemic in Zhejiang Province (China), with 78,720 reported HAV infections per year. Hepatitis A vaccine came on the market in 1995 and was implemented for voluntary immunization. Since 2008, hepatitis A vaccine has been integrated into the national childhood routine immunization program. To understand the current epidemiological profile of hepatitis A in Zhejiang Province since hepatitis A vaccine has been available for nearly two decades. This study used the 2005-2014 National Notifiable Diseases Reporting System data to evaluate the incidence rate of notified hepatitis A cases in Zhejiang Province. The overall trend of incidence rate of notified hepatitis A cases significantly decreased from 2005 to 2014 (Pstrategy with hepatitis A vaccine seemed to be effective in decreasing notified hepatitis A incidence rate in individuals aged ≤19 years. Those aged ≥20 years were observed to be the most susceptible population. The vast majority of hepatitis A cases were notified among Laborers. Therefore, we strongly suggest that future preventive and control measures should focus more on adults, particularly Laborers, in addition to the current childhood hepatitis A vaccination programme.

  10. Insulin Induces an Increase in Cytosolic Glucose Levels in 3T3-L1 Cells with Inhibited Glycogen Synthase Activation

    Directory of Open Access Journals (Sweden)

    Helena H. Chowdhury

    2014-10-01

    Full Text Available Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway.

  11. The constitutive activation of Egr-1/C/EBPa mediates the development of type 2 diabetes mellitus by enhancing hepatic gluconeogenesis.

    Science.gov (United States)

    Shen, Ning; Jiang, Shan; Lu, Jia-Ming; Yu, Xiao; Lai, Shan-Shan; Zhang, Jing-Zi; Zhang, Jin-Long; Tao, Wei-Wei; Wang, Xiu-Xing; Xu, Na; Xue, Bin; Li, Chao-Jun

    2015-02-01

    The sequential secretion of insulin and glucagon delicately maintains glucose homeostasis by inhibiting or enhancing hepatic gluconeogenesis during postprandial or fasting states, respectively. Increased glucagon/insulin ratio is believed to be a major cause of the hyperglycemia seen in type 2 diabetes. Herein, we reveal that the early growth response gene-1 (Egr-1) can be transiently activated by glucagon in hepatocytes, which mediates glucagon-regulated gluconeogenesis by increasing the expression of gluconeogenesis genes. Blockage of Egr-1 function in the liver of mice led to lower fasting blood glucose, better pyruvate tolerance, and higher hepatic glycogen content. The mechanism analysis demonstrated that Egr-1 can directly bind to the promoter of C/EBPa and regulate the expression of gluconeogenesis genes in the later phase of glucagon stimulation. The transient increase of Egr-1 by glucagon kept the glucose homeostasis after fasting for longer periods of time, whereas constitutive Egr-1 elevation found in the liver of db/db mice and high serum glucagon level overactivated the C/EBPa/gluconeogenesis pathway and resulted in hyperglycemia. Blockage of Egr-1 activation in prediabetic db/db mice was able to delay the progression of diabetes. Our results suggest that dysregulation of Egr-1/C/EBPa on glucagon stimulation may provide an alternative mechanistic explanation for type 2 diabetes. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats.

    Science.gov (United States)

    Faria, Juliana A; Kinote, Andrezza; Ignacio-Souza, Letícia M; de Araújo, Thiago M; Razolli, Daniela S; Doneda, Diego L; Paschoal, Lívia B; Lellis-Santos, Camilo; Bertolini, Gisele L; Velloso, Lício A; Bordin, Silvana; Anhê, Gabriel F

    2013-07-15

    Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.

  13. The effect of recombinant human growth hormone with or without rosiglitazone on hepatic fat content in HIV-1 infected individuals; a randomized clinical trial

    Science.gov (United States)

    Kotler, Donald P; He, Qing; Engelson, Ellen S; Albu, Jeanine B; Glesby, Marshall J

    2016-01-01

    Background Hepatic fat is related to insulin resistance (IR) and visceral adipose tissue (VAT) in HIV+ and uninfected individuals. Growth hormone (GH) reduces VAT but increases IR. We evaluated the effects of recombinant human GH (rhGH) and rosiglitazone (Rosi) on hepatic fat in a substudy of a randomized controlled trial. Methods HIV+ subjects with abdominal obesity and IR (QUICKI ≤ 0.33) were randomized to rhGH 3 mg daily, Rosi 4 mg twice daily, the combination, or double placebo. Hepatic fat was measured by magnetic resonance spectroscopy (MRS), visceral fat by MRI, and IR by frequently sampled IV glucose tolerance tests at baseline and week 12. Results 31 subjects were studied at both time points. Significant correlations between hepatic fat and VAT (r = 0.41, p=0.02) and QUICKI (r = 0.39, p<0.05) were seen at baseline. Insulin resistance rose with rhGH but not Rosi. When rhGH treatment groups were combined, hepatic fat expressed as percent change decreased significantly (p<0.05) but did not change in Rosi (p=0.71). There were no correlations between changes in hepatic fat and VAT (p=0.4) or QUICKI (p=0.6). In a substudy of 21 subjects, a trend was noticed between changes in hepatic fat and serum IGF-1 (p=0.09). Conclusions Hepatic fat correlates significantly with both VAT and IR, but changes in hepatic fat do not correlate with changes in VAT and glucose metabolism. Hepatic fat content is reduced by rhGH but Rosi has no effect. These results suggest an independent effect of growth hormone or IGF-1 on hepatic fat. The study was registered at Clinicaltrials.gov (NCT00130286). PMID:25536669

  14. Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jun, E-mail: hustzhj@hust.edu.cn; Xu, Gang; Bai, Zhaoshuai; Li, Kaicheng; Yan, Junyan; Li, Fen; Ma, Shuai; Xu, Huibi; Huang, Kaixun, E-mail: hxxzrf@hust.edu.cn

    2015-12-15

    Recent evidence suggests a potential pro-diabetic effect of selenite treatment in type 2 diabetics; however, the underlying mechanisms remain elusive. Here we investigated the effects and the underlying mechanisms of selenite treatment in a nongenetic mouse model of type 2 diabetes. High-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice were orally gavaged with selenite at 0.5 or 2.0 mg/kg body weight/day or vehicle for 4 weeks. High-dose selenite treatment significantly elevated fasting plasma insulin levels and insulin resistance index, in parallel with impaired glucose tolerance, insulin tolerance and pyruvate tolerance. High-dose selenite treatment also attenuated hepatic IRS1/Akt/FoxO1 signaling and pyruvate kinase gene expressions, but elevated the gene expressions of phosphoenolpyruvate carboxyl kinase (PEPCK), glucose 6-phosphatase (G6Pase), peroxisomal proliferator-activated receptor-γ coactivator 1α (PGC-1α) and selenoprotein P (SelP) in the liver. Furthermore, high-dose selenite treatment caused significant increases in MDA contents, protein carbonyl contents, and a decrease in GSH/GSSG ratio in the liver, concurrent with enhanced ASK1/MKK4/JNK signaling. Taken together, these findings suggest that high-dose selenite treatment exacerbates hepatic insulin resistance in mouse model of type 2 diabetes, at least in part through oxidative stress-mediated JNK pathway, providing new mechanistic insights into the pro-diabetic effect of selenite in type 2 diabetes. - Highlights: • Selenite exacerbates hepatic insulin resistance in HFD/STZ-induced diabetic mice. • Selenite elevates hepatic gluconeogenesis and reduces glycolysis in diabetic mice. • Selenite exacerbates hepatic oxidative stress and triggers JNK signaling pathway. • Selenite elevates hepatic selenoprotein P expression in diabetic mice.

  15. Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway

    International Nuclear Information System (INIS)

    Zhou, Jun; Xu, Gang; Bai, Zhaoshuai; Li, Kaicheng; Yan, Junyan; Li, Fen; Ma, Shuai; Xu, Huibi; Huang, Kaixun

    2015-01-01

    Recent evidence suggests a potential pro-diabetic effect of selenite treatment in type 2 diabetics; however, the underlying mechanisms remain elusive. Here we investigated the effects and the underlying mechanisms of selenite treatment in a nongenetic mouse model of type 2 diabetes. High-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice were orally gavaged with selenite at 0.5 or 2.0 mg/kg body weight/day or vehicle for 4 weeks. High-dose selenite treatment significantly elevated fasting plasma insulin levels and insulin resistance index, in parallel with impaired glucose tolerance, insulin tolerance and pyruvate tolerance. High-dose selenite treatment also attenuated hepatic IRS1/Akt/FoxO1 signaling and pyruvate kinase gene expressions, but elevated the gene expressions of phosphoenolpyruvate carboxyl kinase (PEPCK), glucose 6-phosphatase (G6Pase), peroxisomal proliferator-activated receptor-γ coactivator 1α (PGC-1α) and selenoprotein P (SelP) in the liver. Furthermore, high-dose selenite treatment caused significant increases in MDA contents, protein carbonyl contents, and a decrease in GSH/GSSG ratio in the liver, concurrent with enhanced ASK1/MKK4/JNK signaling. Taken together, these findings suggest that high-dose selenite treatment exacerbates hepatic insulin resistance in mouse model of type 2 diabetes, at least in part through oxidative stress-mediated JNK pathway, providing new mechanistic insights into the pro-diabetic effect of selenite in type 2 diabetes. - Highlights: • Selenite exacerbates hepatic insulin resistance in HFD/STZ-induced diabetic mice. • Selenite elevates hepatic gluconeogenesis and reduces glycolysis in diabetic mice. • Selenite exacerbates hepatic oxidative stress and triggers JNK signaling pathway. • Selenite elevates hepatic selenoprotein P expression in diabetic mice.

  16. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity

    Science.gov (United States)

    The etiology of type 2 diabetes often involves diet-induced obesity (DIO), which is associated with elevated plasma fatty acids and lipoprotein associated triglycerides. Since aberrant hepatic fatty acid uptake may contribute to this, we investigated whether increased expression of a fatty acid tran...

  17. Blood lipids analysis in patients with hepatitis and hepatic fibrosis

    International Nuclear Information System (INIS)

    Si Jianhong

    2007-01-01

    Objective: To investigate the correlationship between blood hepatic fibrosis markers and blood lipids levels. Methods: Serum hepatic fibrosis markers (HA, PC III, IV-C, LN) levels were determined with RIA and serum lipids (TG, TCh HDL; LDL, apoA1, apoB) were measured with biochemical methods in 98 patients with hepatitis in various stages and 50 controls. Liver biopsy was done in all the hepatitis patients. Results: Hepatic fibrosis was classified into 5 grades (S0-S4) according to the pathology shown in the biopsy specimen. The serum lipid levels decreased along with the increase of severity of fibrosis from S0 to S4. Levels in S4 patients were significantly lower than those in controls (P 0.05). Conclusion: The serum hepatic fibrosis markers levels increased and lipids levels decreased along with the progress of hepatitis from acute to cirrhosis. (authors)

  18. Chloroquine Increases Glucose Uptake via Enhancing GLUT4 Translocation and Fusion with the Plasma Membrane in L6 Cells

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2016-05-01

    Full Text Available Background/Aims: Chloroquine can induce an increase in the cellular uptake of glucose; however, the underlying mechanism is unclear. Methods: In this study, translocation of GLUT4 and intracellular Ca2+ changes were simultaneously observed by confocal microscope in L6 cells stably over-expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM was traced using HA-GLUT4-GFP. Glucose uptake was measured using a cell-based glucose uptake assay. GLUT4 protein was detected by Western blotting and mRNA level was detected by RT-PCR. Results: We found that chloroquine induced significant increases in glucose uptake, glucose transporter GLUT4 translocation to the plasma membrane (GTPM, GLUT4 fusion with the PM, and intracellular Ca2+ in L6 muscle cells. Chloroquine-induced increases of GTPM and intracellular Ca2+ were inhibited by Gallein (Gβγ inhibitor and U73122 (PLC inhibitor. However, 2-APB (IP3R blocker only blocked the increase in intracellular Ca2+ but did not inhibit GTPM increase. These results indicate that chloroquine, via the Gβγ-PLC-IP3-IP3R pathway, induces elevation of Ca2+, and this Ca2+ increase does not play a role in chloroqui-ne-evoked GTPM increase. However, GLUT4 fusion with the PM and glucose uptake were significantly inhibited with BAPTA-AM. This suggests that Ca2+ enhances GLUT4 fusion with the PM resulting in glucose uptake increase. Conclusion: Our data indicate that chloroquine via Gβγ-PLC-IP3-IP3R induces Ca2+ elevation, which in turn promotes GLUT4 fusion with the PM. Moreover, chloroquine can enhance GLUT4 trafficking to the PM. These mechanisms eventually result in glucose uptake increase in control and insulin-resistant L6 cells. These findings suggest that chloroquine might be a potential drug for improving insulin tolerance in diabetic patients.

  19. Dissociation of hepatic insulin resistance from susceptibility of nonalcoholic fatty liver disease induced by a high-fat and high-carbohydrate diet in mice.

    Science.gov (United States)

    Asai, Akihiro; Chou, Pauline M; Bu, Heng-Fu; Wang, Xiao; Rao, M Sambasiva; Jiang, Anthony; DiDonato, Christine J; Tan, Xiao-Di

    2014-03-01

    Liver steatosis in nonalcoholic fatty liver disease is affected by genetics and diet. It is associated with insulin resistance (IR) in hepatic and peripheral tissues. Here, we aimed to characterize the severity of diet-induced steatosis, obesity, and IR in two phylogenetically distant mouse strains, C57BL/6J and DBA/2J. To this end, mice (male, 8 wk old) were fed a high-fat and high-carbohydrate (HFHC) or control diet for 16 wk followed by the application of a combination of classic physiological, biochemical, and pathological studies to determine obesity and hepatic steatosis. Peripheral IR was characterized by measuring blood glucose level, serum insulin level, homeostasis model assessment of IR, glucose intolerance, insulin intolerance, and AKT phosphorylation in adipose tissues, whereas the level of hepatic IR was determined by measuring insulin-triggered hepatic AKT phosphorylation. We discover