Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi
2015-01-01
Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773
Martin, A.D.
1986-05-09
Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.
Directory of Open Access Journals (Sweden)
Massimo Tinto
2014-08-01
Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.
Time delay in quantum scattering
International Nuclear Information System (INIS)
Tee, R.G.
1978-01-01
As is well known, the knowledge of the scattering cross section and its angular dependence, as a function of energy, is insufficient to determine the phase shifts uniquely. This led Eisenbud and Wigner to propose the measurement of the scattering lifetime or time delay as an additional independent datum. A rigorous time-dependent study of time delay within the framework of Hilbert space formalism is presented. Specifically, Martin's theory of time delay and the validity of the Eisenbud-Wigner time delay formula are extended to spherically symmetric potentials satisfying the asymptotic fall-off rate V(r) → O(r/sup -2-epsilon/). This extension is obtained by use of a maximal estimate of the rate of convergence of the asymptotic condition and the elimination of Martin's requirement that the scattering operator S be three times differentiable with respect to the free-particle Hamiltonian H 0 . Also presented are related results on the total time a quantum particle spends inside some bounded regions in position space. It is then proved that any two free particles having identical distributions of energy and angular momentum take exactly identical expectation values for the transit time across an arbitrary spherical region centered at the origin in position space. Ways to extend this result to nonfree Hamiltonians are indicated. Finally, the relationship between the position operator and the Eisenbud-Wigner time delay operator is examined. It is shown that the usual method of calculating time delay based on the classical analysis of the position operator is not exact
Another definition for time delay
International Nuclear Information System (INIS)
Narnhofer, H.
1980-01-01
Time delay is defined by geometrical considerations which work in classical as well as in quantum mechanics, and its connection with the S-matrix and the virial is proven for potentials with V(x vector) and x vector V(x vector) vanishing as rsup(-1-epsilon) for r -> infinity. (Author)
Creveling, R.
1959-03-17
A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.
PRECISION TIME-DELAY GENERATOR
Carr, B.J.; Peckham, V.D.
1959-06-16
A precision time-delay generator circuit with low jitter is described. The first thyratron has a series resonant circuit and a diode which is connected to the second thyratron. The first thyratron is triggered at the begin-ning of a time delay and a capacitor is discharged through the first thyratron and the diode, thereby, triggering the second thyratron. (T.R.H.) l6l9O The instrument described can measure pressures between sea level and 300,000 ft. The pressure- sensing transducer of the instrument is a small cylindrical tube with a thin foil of titanium-tritium fastened around the inside of the tube. Output is a digital signal which can be used for storage or telemetering more conveniently than an analog signal. (W.D.M.) l6l9l An experimental study was made on rolling contacts in the temperature range of 550 to 1000 deg F. Variables such as material composition, hardness, and operating conditions were investigated in a rolling test stand. Ball bearing tests were run to determine the effect of design parameters, bearing materials, lubricants, and operating conditions. (auth)
Controlling chaos with time-delay feedback
Bleich, Michael Edward
We investigate the application of time-delay feedback to stabilize periodic orbits that are unstable in the absence of control. The control schemes that we consider use feedback that becomes small as the desired controlled state is produced, and actually vanishes in the absence of noise. Time-delay feedback schemes are of interest because they do not require knowledge of the controlled orbit, are applicable to the control of very fast systems, and can be produced with an all-optical technique--the feedback signal is the reflected field of a Fabry-Perot interferometer with appropriate choices of the cavity length and reflectivities of the end mirrors. A linear stability analysis is developed for orbits controlled with time-delay feedback, and used, in addition to numerical simulations, to explore the properties of controlled systems. In particular, we determine which choices of the control parameters, including the feedback gain, that lead to successful control. Three systems are investigated in detail: (1) the driven nonlinear pendulum, a familiar example of a system with only a few degrees of freedom; (2) the complex Ginzburg-Landau equation, an amplitude equation for the spatiotemporal dynamics near a generic instability; and (3) a Swift-Hohenberg type model for the spatio-temporal dynamics of a broad-area semiconductor laser. In the latter two systems we show that unstable traveling wave states can be stabilized by the application of time-delay control, even though in the absence of control these states are unstable to a continuous band of perturbations. Since the feedback can in principle be generated with an all-optical technique, our results indicate that it may be possible to produce controlled high-power coherent states in wide-area semiconductor lasers, a result with important technological ramifications.
Memorized discrete systems and time-delay
Luo, Albert C J
2017-01-01
This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.
Time Delay for Aerial Ammonia Concentration Measurements in Livestock Buildings
Rom; Zhang
2010-01-01
Correct measurements of ammonia concentration in air still present considerable challenges. The high water solubility and polarity can cause it to adsorb on surfaces in the entire sampling system, including sampling lines, filters, valves, pumps and instruments, causing substantial measuring errors and time delays. To estimate time delay characteristics of a Photo Acoustic Multi Gas Monitor 1312 and a Multi Point Sampler continuous measurement of aerial ammonia concentrations at different lev...
Time delay systems theory, numerics, applications, and experiments
Ersal, Tulga; Orosz, Gábor
2017-01-01
This volume collects contributions related to selected presentations from the 12th IFAC Workshop on Time Delay Systems, Ann Arbor, June 28-30, 2015. The included papers present novel techniques and new results of delayed dynamical systems. The topical spectrum covers control theory, numerical analysis, engineering and biological applications as well as experiments and case studies. The target audience primarily comprises research experts in the field of time delay systems, but the book may also be beneficial for graduate students alike. .
Monolithic Time Delay Integrated APD Arrays Project
National Aeronautics and Space Administration — The overall goal of the proposed program by Epitaxial Technologies is to develop monolithic time delay integrated avalanche photodiode (APD) arrays with sensitivity...
Time delay in a multichannel formalism
International Nuclear Information System (INIS)
Haberzettl, Helmut; Workman, Ron
2007-01-01
We reexamine the time-delay formalism of Wigner, Eisenbud, and Smith, which was developed to analyze both elastic and inelastic resonances. An error in the paper of Smith has propagated through the literature. We correct this error and show how the results of Eisenbud and Smith are related. We also comment on some recent time-delay studies, based on Smith's erroneous interpretation of the Eisenbud result
Efficient semiclassical approach for time delays
Kuipers, Jack; Savin, Dmitry V.; Sieber, Martin
2014-12-01
The Wigner time delay, defined by the energy derivative of the total scattering phase shift, is an important spectral measure of an open quantum system characterizing the duration of the scattering event. It is proportional to the trace of the Wigner-Smith matrix Q that also encodes other time-delay characteristics. For chaotic cavities, these quantities exhibit universal fluctuations that are commonly described within random matrix theory. Here, we develop a new semiclassical approach to the time-delay matrix which is formulated in terms of the classical trajectories that connect the exterior and interior regions of the system. This approach is superior to previous treatments because it avoids the energy derivative. We demonstrate the method's efficiency by going beyond previous work in establishing the universality of time-delay statistics for chaotic cavities with perfectly connected leads. In particular, the moment generating function of the proper time-delays (eigenvalues of Q) is found semiclassically for the first five orders in the inverse number of scattering channels for systems with and without time-reversal symmetry. We also show the equivalence of random matrix and semiclassical results for the second moments and for the variance of the Wigner time delay at any channel number.
Relativity time-delay experiments utilizing 'Mariner' spacecraft
Esposito, P. B.; Anderson, J. D.
1974-01-01
Relativity predicts that the transit time of a signal propagated from the earth to a spacecraft and retransmitted back to earth ought to exhibit an additional, variable time delay. The present work describes some of the analytical techniques employed in experiments using Mariner spacecraft designed to test the accuracy of this prediction. Two types of data are analyzed in these relativity experiments; these include phase-coherent, two-way Doppler shift and round-trip, transit-time measurements. Results of Mariner 6 and 7 relativistic time-delay experiments are in agreement with Einstein's theory of general relativity with an uncertainty of 3%.
Time Delay Estimation Algoritms for Echo Cancellation
Directory of Open Access Journals (Sweden)
Kirill Sakhnov
2011-01-01
Full Text Available The following case study describes how to eliminate echo in a VoIP network using delay estimation algorithms. It is known that echo with long transmission delays becomes more noticeable to users. Thus, time delay estimation, as a part of echo cancellation, is an important topic during transmission of voice signals over packetswitching telecommunication systems. An echo delay problem associated with IP-based transport networks is discussed in the following text. The paper introduces the comparative study of time delay estimation algorithm, used for estimation of the true time delay between two speech signals. Experimental results of MATLab simulations that describe the performance of several methods based on cross-correlation, normalized crosscorrelation and generalized cross-correlation are also presented in the paper.
Gravitational Lens Time Delays Using Polarization Monitoring
Directory of Open Access Journals (Sweden)
Andrew Biggs
2017-11-01
Full Text Available Gravitational lens time delays provide a means of measuring the expansion of the Universe at high redshift (and therefore in the ‘Hubble flow’ that is independent of local calibrations. It was hoped that many of the radio lenses found in the JVAS/CLASS survey would yield time delays as these were selected to have flat spectra and are dominated by multiple compact components. However, despite extensive monitoring with the Very Large Array (VLA, time delays have only been measured for three of these systems (out of 22. We have begun a programme to reanalyse the existing VLA monitoring data with the goal of producing light curves in polarized flux and polarization position angle, either to improve delay measurements or to find delays for new sources. Here, we present preliminary results on the lens system B1600+434 which demonstrate the presence of correlated and substantial polarization variability in each image.
Time-delay analyzer with continuous discretization
International Nuclear Information System (INIS)
Bayatyan, G.L.; Darbinyan, K.T.; Mkrtchyan, K.K.; Stepanyan, S.S.
1988-01-01
A time-delay analyzer is described which when triggered by a start pulse of adjustable duration performs continuous discretization of the analyzed signal within nearly 22 ns time intervals, the recording in a memory unit with following slow read-out of the information to the computer and its processing. The time-delay analyzer consists of four CAMAC-VECTOR systems of unit width. With its help one can separate comparatively short, small-amplitude rare signals against the background of quasistationary noise processes. 4 refs.; 3 figs
A simple time-delayed method to control chaotic systems
International Nuclear Information System (INIS)
Chen Maoyin; Zhou Donghua; Shang Yun
2004-01-01
Based on the adaptive iterative learning strategy, a simple time-delayed controller is proposed to stabilize unstable periodic orbits (UPOs) embedded in chaotic attractors. This controller includes two parts: one is a linear feedback part; the other is an adaptive iterative learning estimation part. Theoretical analysis and numerical simulation show the effectiveness of this controller
STEMI time delays: A clinical perspective
M.J. de Boer (Menko Jan); F. Zijlstra (Felix)
2015-01-01
textabstractSTEMI time delays have been introduced as a performance indicator or marker of quality of care. As they are only one part of a very complex medical process, one should be aware of concomitant issues that may be overlooked or even be more important with regard to clinical outcome of STEMI
Time-delayed autosynchronous swarm control.
Biggs, James D; Bennet, Derek J; Dadzie, S Kokou
2012-01-01
In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.
Low-complexity controllers for time-delay systems
Özbay, Hitay; Bonnet, Catherine; Mounier, Hugues
2014-01-01
This volume in the newly established series Advances in Delays and Dynamics (ADD@S) provides a collection of recent results on the design and analysis of Low Complexity Controllers for Time Delay Systems. A widely used indirect method to obtain low order controllers for time delay systems is to design a controller for the reduced order model of the plant. In the dual indirect approach, an infinite dimensional controller is designed first for the original plant model; then, the controller is approximated by keeping track of the degradation in performance and stability robustness measures. The present volume includes new techniques used at different stages of the indirect approach. It also includes new direct design methods for fixed structure and low order controllers. On the other hand, what is meant by low complexity controller is not necessarily low order controller. For example, Smith predictor or similar type of controllers include a copy of the plant internally in the controller, so they are technically ...
4-channel time delayed pulse generator
International Nuclear Information System (INIS)
Wetzel, L.F.S.; Rossi, J.O.; Del Bosco, E.
1987-02-01
It is described the project of a 4-channel delayed pulse generator employed to trigger the plasma centrifuge experiment of the Laboratorio Associado de Plasmas. The circuit delivers pulses with amplitude of 15V, full width at half maximum of 50μs and rise time of 0.7μs. The maximum time delay is 100ms. There are two channels with a fine adjustment of 0-1ms. The system can be manually or automatically driven. (author) [pt
Complex Time-Delay Systems Theory and Applications
Atay, Fatihcan M
2010-01-01
Time delays in dynamical systems arise as an inevitable consequence of finite speeds of information transmission. Realistic models increasingly demand the inclusion of delays in order to properly understand, analyze, design, and control real-life systems. The goal of this book is to present the state-of-the-art in research on time-delay dynamics in the framework of complex systems and networks. While the mathematical theory of delay equations is quite mature, its application to the particular problems of complex systems and complexity is a newly emerging field, and the present volume aims to play a pioneering role in this perspective. The chapters in this volume are authored by renowned experts and cover both theory and applications in a wide range of fields, with examples extending from neuroscience and biology to laser physics and vehicle traffic. Furthermore, all chapters include sufficient introductory material and extensive bibliographies, making the book a self-contained reference for both students and ...
Time delay for aerial ammonia concentration measurements in livestock buildings.
Rom, Hans Benny; Zhang, Guo-Qiang
2010-01-01
Correct measurements of ammonia concentration in air still present considerable challenges. The high water solubility and polarity can cause it to adsorb on surfaces in the entire sampling system, including sampling lines, filters, valves, pumps and instruments, causing substantial measuring errors and time delays. To estimate time delay characteristics of a Photo Acoustic Multi Gas Monitor 1312 and a Multi Point Sampler continuous measurement of aerial ammonia concentrations at different levels was performed. In order to obtain reproducible data, a wind tunnel was used to generate selected concentrations inside and a background concentration representing the air inlet of the tunnel. Four different concentration levels (0.8 ppm, 6.2 ppm, 9.7 ppm and 13.7 ppm) were used in the experiments, with an additional outdoor concentration level as background. The results indicated a substantial time delay when switching between the measuring positions with high and low concentration and vice versa. These properties may course serious errors for estimation of e.g. gas emissions whenever more than one measuring channel is applied. To reduce the measurement errors, some suggestions regarding design of the measurement setup and measuring strategies were presented.
Time Delay for Aerial Ammonia Concentration Measurements in Livestock Buildings
Directory of Open Access Journals (Sweden)
Hans Benny Rom
2010-05-01
Full Text Available Correct measurements of ammonia concentration in air still present considerable challenges. The high water solubility and polarity can cause it to adsorb on surfaces in the entire sampling system, including sampling lines, filters, valves, pumps and instruments, causing substantial measuring errors and time delays. To estimate time delay characteristics of a Photo Acoustic Multi Gas Monitor 1312 and a Multi Point Sampler continuous measurement of aerial ammonia concentrations at different levels was performed. In order to obtain reproducible data, a wind tunnel was used to generate selected concentrations inside and a background concentration representing the air inlet of the tunnel. Four different concentration levels (0.8 ppm, 6.2 ppm, 9.7 ppm and 13.7 ppm were used in the experiments, with an additional outdoor concentration level as background. The results indicated a substantial time delay when switching between the measuring positions with high and low concentration and vice versa. These properties may course serious errors for estimation of e.g. gas emissions whenever more than one measuring channel is applied. To reduce the measurement errors, some suggestions regarding design of the measurement setup and measuring strategies were presented.
Time-delayed fronts from biased random walks
International Nuclear Information System (INIS)
Fort, Joaquim; Pujol, Toni
2007-01-01
We generalize a previous model of time-delayed reaction-diffusion fronts (Fort and Mendez 1999 Phys. Rev. Lett. 82 867) to allow for a bias in the microscopic random walk of particles or individuals. We also present a second model which takes the time order of events (diffusion and reproduction) into account. As an example, we apply them to the human invasion front across the USA in the 19th century. The corrections relative to the previous model are substantial. Our results are relevant to physical and biological systems with anisotropic fronts, including particle diffusion in disordered lattices, population invasions, the spread of epidemics, etc
The Hubble constant estimation using 18 gravitational lensing time delays
Jaelani, Anton T.; Premadi, Premana W.
2014-03-01
Gravitational lens time delay method has been used to estimate the rate of cosmological expansion, called the Hubble constant, H0, independently of the standard candle method. This gravitational lensing method requires a good knowledge of the lens mass distribution, reconstructed using the lens image properties. The observed positions of the images, and the redshifts of the lens and the images serve as strong constraints to the lens equations, which are then solved as a set of simultaneous linear equations. Here we made use of a non-parametric technique to reconstruct the lens mass distribution, which is manifested in a linear equations solver named PixeLens. Input for the calculation is chosen based on prior known parameters obtained from analyzed result of the lens case observations, including time-delay, position angles of the images and the lens, and their redshifts. In this project, 18 fairly well studied lens cases are further grouped according to a number of common properties to examine how each property affects the character of the data, and therefore affects the calculation of H0. The considered lens case properties are lens morphology, number of image, completeness of time delays, and symmetry of lens mass distribution. Analysis of simulation shows that paucity of constraints on mass distribution of a lens yields wide range value of H0, which reflects the uniqueness of each lens system. Nonetheless, gravitational lens method still yields H0 within an acceptable range of value when compared to those determined by many other methods. Grouping the cases in the above manner allowed us to assess the robustness of PixeLens and thereby use it selectively. In addition, we use glafic, a parametric mass reconstruction solver, to refine the mass distribution of one lens case, as a comparison.
On a cellular automaton with time delay for modelling cancer tumors
Energy Technology Data Exchange (ETDEWEB)
Iarosz, K C; Martins, C C; Batista, A M [Departamento de Matematica e EstatIstica, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Viana, R L; Lopes, S R [Departamento de Fisica, Universidade Federal do Parana, 81531-990, Curitiba, PR (Brazil); Caldas, I L [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66316, 05315-970, Sao Paulo, SP (Brazil); Penna, T J P, E-mail: antoniomarcosbatista@gmail.com [Instituto de Fisica, Universidade Federal Fluminense, 24210-340, Niteroi, RJ (Brazil)
2011-03-01
In this work we considered cellular automaton model with time delay. Time delay included in this model reflects the delay between the time in which the site is affected and the time in which its variable is updated. We analyzed the effect of the rules on the dynamics through the cluster counting. According to this cluster counting, the dynamics behavior is investigated. We verified periodic oscillations same as delay differential equation. We also studied the relation between the time delay in the cell cycle and the time to start the metastasis, using suitable numerical diagnostics.
Time-delayed chameleon: Analysis, synchronization and FPGA implementation
Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas
2017-12-01
In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.
Time-Delay System Identification Using Genetic Algorithm
DEFF Research Database (Denmark)
Yang, Zhenyu; Seested, Glen Thane
2013-01-01
Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique. The qual......Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique...
Super-transient scaling in time-delay autonomous Boolean network motifs
Energy Technology Data Exchange (ETDEWEB)
D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)
2016-09-15
Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.
Using Constant Time Delay to Teach Braille Word Recognition
Hooper, Jonathan; Ivy, Sarah; Hatton, Deborah
2014-01-01
Introduction: Constant time delay has been identified as an evidence-based practice to teach print sight words and picture recognition (Browder, Ahlbrim-Delzell, Spooner, Mims, & Baker, 2009). For the study presented here, we tested the effectiveness of constant time delay to teach new braille words. Methods: A single-subject multiple baseline…
Time-delayed chameleon: Analysis, synchronization and FPGA ...
Indian Academy of Sciences (India)
Karthikeyan Rajagopal
2017-12-02
Dec 2, 2017 ... Abstract. In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported ...
Introduction to Focus Issue: Time-delay dynamics
Erneux, Thomas; Javaloyes, Julien; Wolfrum, Matthias; Yanchuk, Serhiy
2017-11-01
The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.
Time-delayed feedback control of diffusion in random walkers
Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U.
2017-07-01
Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.
Workspace visualization and time-delay telerobotic operations
Schenker, P. S.; Bejczy, A. K.
1990-01-01
The paper examines the performance of telerobotic tasks where the operator and robot are physically separated, and a comunication time delay of up to several seconds between them exists. This situation is applicable to space robotic servicing-assembly-maintenance operations on low earth or geosynchronous orbits with a ground-based command station. Attention is given to two developments which address advanced time-delay teleoperations for unstructured tasks: (1) the 'phantom robot', a real-time predictive graphics simulator developed to allow teleoperator eye-to-hand coordination or robot free-space kinematics under a time delay of several seconds; and (2) shared compliance control, a modified form of automatic electromechanical impedance control employed in parallel with manual position control to permit soft contact and grasp compliance with workpiece geometry under a time delay of several seconds.
Time delays and advances in classical and quantum systems
Kolomeitsev, E. E.; Voskresensky, D. N.
2013-11-01
This article reviews positive and negative time delays in various processes of classical and quantum physics. In the beginning, we demonstrate how a time-shifted response of a system to an external perturbation appears in classical mechanics and classical electrodynamics. Then we quantify durations of various quantum mechanical processes. The duration of the quantum tunneling is studied, and an interpretation of the Hartmann paradox is suggested. Time delays and advances appearing in the three-dimensional scattering problem on a central potential are considered. We then discuss delays and advances appearing in quantum field theory and after that we focus on the issue of time delays and advancements in quantum kinetics. We discuss problems of the application of generalized kinetic equations in simulations of the system relaxation toward equilibrium and analyze the kinetic entropy flow. Possible measurements of time delays and advancements in experiments similar to the recent OPERA neutrino experiment are also discussed.
Time-Delay Effects on Constitutive Gene Expression*
International Nuclear Information System (INIS)
Feng Yan-Ling; Wang Dan; Tang Xu-Lei; Dong Jian-Min
2017-01-01
The dynamics of constitutive gene expression with delayed mRNA degradation is investigated, where the intrinsic noise caused by the small number of reactant molecules is introduced. It is found that the oscillatory behavior claimed in previous investigations does not appear in the approximation of small time delay, and the steady state distribution still follows the Poisson law. Furthermore, we introduce the extrinsic noise induced by surrounding environment to explore the effects of this noise and time delay on the Fano factor. Based on a delay Langevin equation and the corresponding Fokker–Planck equation, the distribution of mRNA copy-number is achieved analytically. The time delay and extrinsic noise play similar roles in the gene expression system, that is, they are able to result in the deviation of the Fano factor from 1 evidently. The measured Fano factor for constitutive gene expression is slightly larger than 1, which is perhaps attributed to the time-delay effect. (paper)
A Framework for telerobotics across the time delays of space
National Aeronautics and Space Administration — The proposal will develop a novel intelligent time-delay mitigation framework to be used in bilateral space telerobotics. This framework will consist of master...
The estimation and compensation of processes with time delays
O'Dwyer, Aidan
1996-01-01
The estimation and compensation of processes with time delays have been of interest to academics and practitioners for several decades. A full review of the literature for both model parameter and time delay estimation is presented. Gradient methods of parameter estimation, in open loop, in the time and frequency domains are subsequently considered in detail. Firstly, an algorithm is developed, using an appropriate gradient algorithm, for the estimation of all the parameters of an appropriate...
Stability analysis of linear switching systems with time delays
International Nuclear Information System (INIS)
Li Ping; Zhong Shouming; Cui Jinzhong
2009-01-01
The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.
Optimal Control with Time Delays via the Penalty Method
Directory of Open Access Journals (Sweden)
Mohammed Benharrat
2014-01-01
Full Text Available We prove necessary optimality conditions of Euler-Lagrange type for a problem of the calculus of variations with time delays, where the delay in the unknown function is different from the delay in its derivative. Then, a more general optimal control problem with time delays is considered. Main result gives a convergence theorem, allowing us to obtain a solution to the delayed optimal control problem by considering a sequence of delayed problems of the calculus of variations.
Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi
2013-12-01
Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model
Time-Delay Estimation in Dispersed Spectrum Cognitive Radio Systems
Directory of Open Access Journals (Sweden)
Celebi Hasari
2010-01-01
Full Text Available Time-delay estimation is studied for cognitive radio systems, which facilitate opportunistic use of spectral resources. A two-step approach is proposed to obtain accurate time-delay estimates of signals that occupy multiple dispersed bands simultaneously, with significantly lower computational complexity than the optimal maximum likelihood (ML estimator. In the first step of the proposed approach, an ML estimator is used for each band of the signal in order to estimate the unknown parameters of the signal occupying that band. Then, in the second step, the estimates from the first step are combined in various ways in order to obtain the final time-delay estimate. The combining techniques that are used in the second step are called optimal combining, signal-to-noise ratio (SNR combining, selection combining, and equal combining. It is shown that the performance of the optimal combining technique gets very close to the Cramer-Rao lower bound at high SNRs. These combining techniques provide various mechanisms for diversity combining for time-delay estimation and extend the concept of diversity in communications systems to the time-delay estimation problem in cognitive radio systems. Simulation results are presented to evaluate the performance of the proposed estimators and to verify the theoretical analysis.
The phantom robot - Predictive displays for teleoperation with time delay
Bejczy, Antal K.; Kim, Won S.; Venema, Steven C.
1990-01-01
An enhanced teleoperation technique for time-delayed bilateral teleoperator control is discussed. The control technique selected for time delay is based on the use of a high-fidelity graphics phantom robot that is being controlled in real time (without time delay) against the static task image. Thus, the motion of the phantom robot image on the monitor predicts the motion of the real robot. The real robot's motion will follow the phantom robot's motion on the monitor with the communication time delay implied in the task. Real-time high-fidelity graphics simulation of a PUMA arm is generated and overlaid on the actual camera view of the arm. A simple camera calibration technique is used for calibrated graphics overlay. A preliminary experiment is performed with the predictive display by using a very simple tapping task. The results with this simple task indicate that predictive display enhances the human operator's telemanipulation task performance significantly during free motion when there is a long time delay. It appears, however, that either two-view or stereoscopic predictive displays are necessary for general three-dimensional tasks.
Time-delay effects and simplified control fields in quantum Lyapunov control
International Nuclear Information System (INIS)
Yi, X X; Wu, S L; Wu, Chunfeng; Feng, X L; Oh, C H
2011-01-01
Lyapunov-based quantum control has the advantage that it is free from the measurement-induced decoherence and it includes the instantaneous information of the system in the control. The Lyapunov control is often confronted with time delay in the control fields and difficulty in practical implementations of the control. In this paper, we study the effect of time delay on the Lyapunov control and explore the possibility of replacing the control field with a pulse train or a bang-bang signal. The efficiency of the Lyapunov control is also presented through examining the convergence time of the system. These results suggest that the Lyapunov control is robust against time delay, easy to realize and effective for high-dimensional quantum systems.
Stability and Hopf Bifurcation of a Reaction-Diffusion Neutral Neuron System with Time Delay
Dong, Tao; Xia, Linmao
2017-12-01
In this paper, a type of reaction-diffusion neutral neuron system with time delay under homogeneous Neumann boundary conditions is considered. By constructing a basis of phase space based on the eigenvectors of the corresponding Laplace operator, the characteristic equation of this system is obtained. Then, by selecting time delay and self-feedback strength as the bifurcating parameters respectively, the dynamic behaviors including local stability and Hopf bifurcation near the zero equilibrium point are investigated when the time delay and self-feedback strength vary. Furthermore, the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are obtained by using the normal form and the center manifold theorem for the corresponding partial differential equation. Finally, two simulation examples are given to verify the theory.
Period doubling phenomenon in a class of time delay equations
International Nuclear Information System (INIS)
Oliveira, C.R. de; Malta, C.P.
1985-01-01
The properties of the solution of a nonlinear time delayed differential equation (infinite dimension) as function of two parameters: the time delay tau and another parameter A (nonlinearity) are investigated. After a Hopf bifurcation period doubling may occur and is characterized by Feigenbaum's delta. A strange atractor is obtained after the period doubling cascade and the largest Lyapunov exponent is calculated indicating that the attractor has low dimension. The behaviour of this Liapunov exponent as function of tau is different from its behaviour as function of A. (Author) [pt
Coherence resonance in an excitable system with time delay
International Nuclear Information System (INIS)
Sethia, Gautam C.; Kurths, Juergen; Sen, Abhijit
2007-01-01
We study the noise activated dynamics of a model excitable system that consists of a subcritical Hopf oscillator with a time delayed nonlinear feedback. The coherence of the noise driven pulses of the system exhibits a novel double peaked structure as a function of the noise amplitude. The two peaks correspond to separate optimal noise levels for excitation of single spikes and multiple spikes (bursts) respectively. The relative magnitudes of these peaks are found to be a sensitive function of time delay. The physical significance of our results and its practical implications in various real life systems are discussed
Using a Constant Time Delay Procedure to Teach Foundational Swimming Skills to Children with Autism
Rogers, Laura; Hemmeter, Mary Louise; Wolery, Mark
2010-01-01
The purpose of this study was to evaluate the effectiveness of using a constant time delay procedure to teach foundational swimming skills to three children with autism. The skills included flutter kick, front-crawl arm strokes, and head turns to the side. A multiple-probe design across behaviors and replicated across participants was used.…
LMI optimization approach to stabilization of time-delay chaotic systems
International Nuclear Information System (INIS)
Park, Ju H.; Kwon, O.M.
2005-01-01
Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, this paper proposes a novel control method for stabilization of a class of time-delay chaotic systems. A stabilization criterion is derived in terms of LMIs which can be easily solved by efficient convex optimization algorithms. A numerical example is included to show the advantage of the result derived
Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay
DEFF Research Database (Denmark)
Zhusubaliyev, Z. T.; Mosekilde, Erik; Churilov, A. N.
2015-01-01
of interesting nonlinear dynamic phenomena, including bistability and deterministic chaos. The present paper focuses on the additional complexity that arises when the time delay in the continuous part of the model exceeds the typical bursting interval of the feedback. Under these conditions, the hybrid model...
A time-delayed method for controlling chaotic maps
International Nuclear Information System (INIS)
Chen Maoyin; Zhou Donghua; Shang Yun
2005-01-01
Combining the repetitive learning strategy and the optimality principle, this Letter proposes a time-delayed method to control chaotic maps. This method can effectively stabilize unstable periodic orbits within chaotic attractors in the sense of least mean square. Numerical simulations of some chaotic maps verify the effectiveness of this method
Lag synchronization of chaotic systems with time-delayed linear ...
Indian Academy of Sciences (India)
In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.
Combination synchronization of time-delay chaotic system via robust ...
Indian Academy of Sciences (India)
Ayub Khan
2017-06-01
Jun 1, 2017 ... Combination synchronization of time-delay chaotic system via robust adaptive sliding mode control. AYUB KHAN and SHIKHA. ∗. Department of Mathematics, Jamia Millia Islamia, New Delhi 110 025, India. ∗. Corresponding author. E-mail: sshikha7014@gmail.com. MS received 29 July 2016; revised 25 ...
Introduction to time-delay systems analysis and control
Fridman, Emilia
2014-01-01
The beginning of the 21st century can be characterized as the ”time-delay boom” leading to numerous important results. The purpose of this book is two-fold, to familiarize the non-expert reader with time-delay systems and to provide a systematic treatment of modern ideas and techniques for experts. This book is based on the course ”Introduction to time-delay systems” for graduate students in Engineering and Applied Mathematics that the author taught in Tel Aviv University in 2011-2012 and 2012-2013 academic years. The sufficient background to follow most of the material are the undergraduate courses in mathematics and an introduction to control. The book leads the reader from some basic classical results on time-delay systems to recent developments on Lyapunov-based analysis and design with applications to the hot topics of sampled-data and network-based control. The objective is to provide useful tools that will allow the reader not only to apply the existing methods, but also to develop new ones. It...
Lag synchronization of chaotic systems with time-delayed linear
Indian Academy of Sciences (India)
In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.
Stability Criteria for Differential Equations with Variable Time Delays
Schley, D.; Shail, R.; Gourley, S. A.
2002-01-01
Time delays are an important aspect of mathematical modelling, but often result in highly complicated equations which are difficult to treat analytically. In this paper it is shown how careful application of certain undergraduate tools such as the Method of Steps and the Principle of the Argument can yield significant results. Certain delay…
Quadratic theory and feedback controllers for linear time delay systems
International Nuclear Information System (INIS)
Lee, E.B.
1976-01-01
Recent research on the design of controllers for systems having time delays is discussed. Results for the ''open loop'' and ''closed loop'' designs will be presented. In both cases results for minimizing a quadratic cost functional are given. The usefulness of these results is not known, but similar results for the non-delay case are being routinely applied. (author)
Lag synchronization of chaotic systems with time-delayed linear ...
Indian Academy of Sciences (India)
sive control scheme can reduce the control cost significantly, and so it is of great use in practical applications. Now, in this paper, lag synchronization of chaotic systems with time-delayed linear terms will be investigated. The scheme is showed effective through numerical simulations on chaotic systems. The rest of the paper ...
Effect of Magnetic Activity on Ionospheric Time Delay at Low ...
Indian Academy of Sciences (India)
E) using dual frequency (1575.42 and 1227.60 MHz) GPS measurements. Data from GSV4004A GPS Iono- spheric Scintillation and TEC monitor (GISTM) have been chosen to study these effects. This paper presents the results of ionospheric time delay during quiet and disturbed days for the year 2005. Results show that.
On Tuning PI Controllers for Integrating Plus Time Delay Systems
Directory of Open Access Journals (Sweden)
David Di Ruscio
2010-10-01
Full Text Available Some analytical results concerning PI controller tuning based on integrator plus time delay models are worked out and presented. A method for obtaining PI controller parameters, Kp=alpha/(k*tau, and, Ti=beta*tau, which ensures a given prescribed maximum time delay error, dtau_max, to time delay, tau, ratio parameter delta=dau_max/tau, is presented. The corner stone in this method, is a method product parameter, c=alpha*beta. Analytical relations between the PI controller parameters, Ti, and, Kp, and the time delay error parameter, delta, is presented, and we propose the setting, beta=c/a*(delta+1, and, alpha=a/(delta+1, which gives, Ti=c/a*(delta+1*tau, and Kp=a/((delta+1*k*tau, where the parameter, a, is constant in the method product parameter, c=alpha*beta. It also turns out that the integral time, Ti, is linear in, delta, and the proportional gain, Kp, inversely proportional to, delta+1. For the original Ziegler Nichols (ZN method this parameter is approximately, c=2.38, and the presented method may e.g., be used to obtain new modified ZN parameters with increased robustness margins, also documented in the paper.
Truncated predictor feedback for time-delay systems
Zhou, Bin
2014-01-01
This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...
Time Delay Estimation in Room Acoustic Environments: An Overview
Chen, Jingdong; Benesty, Jacob; Huang, Yiteng(Arden)
2006-12-01
Time delay estimation has been a research topic of significant practical importance in many fields (radar, sonar, seismology, geophysics, ultrasonics, hands-free communications, etc.). It is a first stage that feeds into subsequent processing blocks for identifying, localizing, and tracking radiating sources. This area has made remarkable advances in the past few decades, and is continuing to progress, with an aim to create processors that are tolerant to both noise and reverberation. This paper presents a systematic overview of the state-of-the-art of time-delay-estimation algorithms ranging from the simple cross-correlation method to the advanced blind channel identification based techniques. We discuss the pros and cons of each individual algorithm, and outline their inherent relationships. We also provide experimental results to illustrate their performance differences in room acoustic environments where reverberation and noise are commonly encountered.
Time Delay Estimation in Room Acoustic Environments: An Overview
Directory of Open Access Journals (Sweden)
Benesty Jacob
2006-01-01
Full Text Available Time delay estimation has been a research topic of significant practical importance in many fields (radar, sonar, seismology, geophysics, ultrasonics, hands-free communications, etc.. It is a first stage that feeds into subsequent processing blocks for identifying, localizing, and tracking radiating sources. This area has made remarkable advances in the past few decades, and is continuing to progress, with an aim to create processors that are tolerant to both noise and reverberation. This paper presents a systematic overview of the state-of-the-art of time-delay-estimation algorithms ranging from the simple cross-correlation method to the advanced blind channel identification based techniques. We discuss the pros and cons of each individual algorithm, and outline their inherent relationships. We also provide experimental results to illustrate their performance differences in room acoustic environments where reverberation and noise are commonly encountered.
Optimal control for parabolic-hyperbolic system with time delay
International Nuclear Information System (INIS)
Kowalewski, A.
1985-07-01
In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L 2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)
Electrically tunable photonic true-time-delay line.
Barmenkov, Yuri O; Cruz, José Luis; Díez, Antonio; Andrés, Miguel V
2010-08-16
We present a new application of the acousto-optic superlattice modulation of a fiber Bragg grating based on the dynamic phase and group delay properties of this fiber-optic component. We demonstrate a tunable photonic true-time-delay line based on the group delay change of the light reflected from the grating sidebands. The delay is electrically tuned by adjusting the voltage applied to a piezoelectric transducer that generates the acoustic wave propagating along the grating. In our experiments, a true-time delay of 400 ps is continuously adjusted (300 ps within the 3 dB amplitude range of the first sideband), using a 12 cm long uniform grating.
Time Delay Estimation in Room Acoustic Environments: An Overview
Benesty Jacob; Chen Jingdong; Huang Yiteng(Arden)
2006-01-01
Time delay estimation has been a research topic of significant practical importance in many fields (radar, sonar, seismology, geophysics, ultrasonics, hands-free communications, etc.). It is a first stage that feeds into subsequent processing blocks for identifying, localizing, and tracking radiating sources. This area has made remarkable advances in the past few decades, and is continuing to progress, with an aim to create processors that are tolerant to both noise and reverberation. This p...
Adaptive Stabilization for Nonholonomic Systems with Unknown Time Delays
Directory of Open Access Journals (Sweden)
Yuanyuan Wu
2013-01-01
Full Text Available This paper presents an adaptive control strategy for a class of nonholonomic systems in chained form with virtual control coefficients, nonlinear uncertainties, and unknown time delays. State scaling technique and backstepping recursive approach are applied to design a nonlinear state feedback controller, which can guarantee the stabilization of the closed-loop systems. The simulation results are provided to show the effectiveness of the proposed method.
Periodic solutions in reaction–diffusion equations with time delay
International Nuclear Information System (INIS)
Li, Li
2015-01-01
Spatial diffusion and time delay are two main factors in biological and chemical systems. However, the combined effects of them on diffusion systems are not well studied. As a result, we investigate a nonlinear diffusion system with delay and obtain the existence of the periodic solutions using coincidence degree theory. Moreover, two numerical examples confirm our theoretical results. The obtained results can also be applied in other related fields
Detecting robust time-delayed regulation in Mycobacterium tuberculosis
Directory of Open Access Journals (Sweden)
Rajapakse Jagath C
2009-12-01
Full Text Available Abstract Background Time delays are often found in gene regulation though most techniques of building gene regulatory networks are not capable of capturing such phenomena. Here we look at the delays in the DNA repair system of Mycobacterium tuberculosis which is unusually slow in the bacteria. We propose a method based on a skip-chain model to study this phenomena in gene networks. The Viterbi paths of the underlying Markov chains find the most likely regulatory interactions among genes, taking care of very long delays. Using the derived networks, we discuss the delayed regulations and robustness of the DNA damage seen in the bacterium. Results We evaluated our method on time-course gene expressions after DNA damage with Mitocyin C. Several time-delayed interactions were observed with our analysis. The presence of hubs in the networks indicates that a small number of transcriptional factors regulate the rest of the system. We demonstrate the use of priors to overcome over-fitting problem in the generation of networks. We compare our results with the gene networks derived with dynamic Bayesian networks (DBN. Conclusion Different transcription networks are active at different stages, and constant feedback and regulation is maintained throughout the activities of a biological pathway. Skip-chain models are capable of capturing, long distant and the time-delayed regulations. Use of a Dirichlet prior over parameters and Gibbs prior over structure can greatly reduce the over-fitting in the new model.
The generalized Burgers equation with and without a time delay
Directory of Open Access Journals (Sweden)
Nejib Smaoui
2004-01-01
Full Text Available We consider the generalized Burgers equation with and without a time delay when the boundary conditions are periodic with period 2π. For the generalized Burgers equation without a time delay, that is, ut=vuxx−uux+u+h(x, 0
Human-in-the-Loop Operations over Time Delay: NASA Analog Missions Lessons Learned
Rader, Steven N.; Reagan, Marcum L.; Janoiko, Barbara; Johnson, James E.
2013-01-01
Teams at NASA have conducted studies of time-delayed communications as it effects human exploration. In October 2012, the Advanced Exploration Systems (AES) Analog Missions project conducted a Technical Interchange Meeting (TIM) with the primary stakeholders to share information and experiences of studying time delay, to build a coherent picture of how studies are covering the problem domain, and to determine possible forward plans (including how to best communicate study results and lessons learned, how to inform future studies and mission plans, and how to drive potential development efforts). This initial meeting s participants included personnel from multiple NASA centers (HQ, JSC, KSC, ARC, and JPL), academia, and ESA. It included all of the known studies, analog missions, and tests of time delayed communications dating back to the Apollo missions including NASA Extreme Environment Mission Operations (NEEMO), Desert Research and Technology Studies (DRATS/RATS), International Space Station Test-bed for Analog Research (ISTAR), Pavilion Lake Research Project (PLRP), Mars 520, JPL Mars Orbiters/Rovers, Advanced Mission Operations (AMO), Devon Island analog missions, and Apollo experiences. Additionally, the meeting attempted to capture all of the various functional perspectives via presentations by disciplines including mission operations (flight director and mission planning), communications, crew, Capcom, Extra-Vehicular Activity (EVA), Behavioral Health and Performance (BHP), Medical/Surgeon, Science, Education and Public Outreach (EPO), and data management. The paper summarizes the descriptions and results from each of the activities discussed at the TIM and includes several recommendations captured in the meeting for dealing with time delay in human exploration along with recommendations for future development and studies to address this issue.
Multiplicity counting from fission detector signals with time delay effects
Nagy, L.; Pázsit, I.; Pál, L.
2018-03-01
In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).
Comment on ‘Time delays in molecular photoionization’
Baykusheva, Denitsa; Wörner, Hans Jakob
2017-04-01
In a recent article by Hockett et al (2016 J. Phys. B: At. Mol. Opt. Phys. 49 095602), time delays arising in the context of molecular single-photon ionization are investigated from a theoretical point of view. We argue that one of the central equations given in this article is incorrect and present a reformulation that is consistent with the established treatment of angle-dependent scattering delays (Eisenbud 1948 PhD Thesis Princeton University; Wigner 1955 Phys. Rev. 98 145-7 Smith 1960 Phys. Rev. 118 349-6 Nussenzveig 1972 Phys. Rev. D 6 1534-42).
Topology Identification of General Dynamical Network with Distributed Time Delays
International Nuclear Information System (INIS)
Zhao-Yan, Wu; Xin-Chu, Fu
2009-01-01
General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators) are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method. (general)
Time Delayed Stage-Structured Predator-Prey Model with Birth Pulse and Pest Control Tactics
Yan, Mei; Li, Yongfeng; Xiang, Zhongyi
2014-01-01
Normally, chemical pesticides kill not only pests but also their natural enemies. In order to better control the pests, two-time delayed stage-structured predator-prey models with birth pulse and pest control tactics are proposed and analyzed by using impulsive differential equations in present work. The stability threshold conditions for the mature prey-eradication periodic solutions of two models are derived, respectively. The effects of key parameters including killing efficiency rate, pul...
Kordmahalleh, Mina Moradi; Sefidmazgi, Mohammad Gorji; Harrison, Scott H; Homaifar, Abdollah
2017-01-01
The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network
Distance Constrained Based Adaptive Flocking Control for Multiagent Networks with Time Delay
Directory of Open Access Journals (Sweden)
Qing Zhang
2015-01-01
Full Text Available The flocking control of multiagent system is a new type of decentralized control method, which has aroused great attention. The paper includes a detailed research in terms of distance constrained based adaptive flocking control for multiagent system with time delay. Firstly, the program on the adaptive flocking with time delay of multiagent is proposed. Secondly, a kind of adaptive controllers and updating laws are presented. According to the Lyapunov stability theory, it is proved that the distance between agents can be larger than a constant during the motion evolution. What is more, velocities of each agent come to the same asymptotically. Finally, the analytical results can be verified by a numerical example.
Zeidman, Lawrence A; Pandey, Dilip K
2018-01-01
Prior studies have demonstrated superiority of the combined sensory index (CSI) algorithm in diagnosing mild carpal tunnel syndrome (CTS) and have compared presenting symptoms to CTS grade. However, CTS symptoms, signs, and outcomes, including CSI-diagnosed cases, have not been compared with CTS grade. We retrospectively studied 294 CTS hands from 2010 to 2013; stratified them into mild, moderate, and severe grades; and analyzed the association between CTS grade and presenting symptoms/signs and outcomes. Sensorimotor symptoms (P = 0.017) and signs (P < 0.001) were significantly associated with CTS grade. Regardless of CTS grade, 94% of hands improved with surgery compared with 42% with conservative treatment (P < 0.001). Even in mild CTS, 100% improved with surgery vs. 33% with conservative management (P = 0.011). These results corroborate prior studies that compared symptoms to CTS grade and suggest that more objective signs associate even better. CTS grades associate with outcomes, but additional studies are required. Muscle Nerve 57: 45-48, 2018. © 2017 Wiley Periodicals, Inc.
Time Delay Measurements for the Cluster-lensed Sextuple Quasar SDSS J2222+2745
Dahle, H.; Gladders, M. D.; Sharon, K.; Bayliss, M. B.; Rigby, J. R.
2015-11-01
We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS J2222+2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be {τ }{{AB}}=47.7+/- 6.0 days (95% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of {τ }{{CA}}=722+/- 24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60%-75% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and including observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnologi´a e Innovación Productiva (Argentina).
Murguia, C; Fey, Rob H B; Nijmeijer, H
2015-02-01
We study the problem of controlled network synchronization of coupled semipassive systems in the case when the outputs (the coupling variables) and the inputs are subject to constant time-delay (as it is often the case in a networked context). Predictor-based dynamic output feedback controllers are proposed to interconnect the systems on a given network. Using Lyapunov-Krasovskii functional and the notion of semipassivity, we prove that under some mild assumptions, the solutions of the interconnected systems are globally ultimately bounded. Sufficient conditions on the systems to be interconnected, on the network topology, on the coupling dynamics, and on the time-delays that guarantee global state synchronization are derived. A local analysis is provided in which we compare the performance of our predictor-based control scheme against the existing static diffusive couplings available in the literature. We show (locally) that the time-delay that can be induced to the network may be increased by including the predictors in the loop. The results are illustrated by computer simulations of coupled Hindmarsh-Rose neurons.
Murguia, C.; Fey, Rob H. B.; Nijmeijer, H.
2015-02-01
We study the problem of controlled network synchronization of coupled semipassive systems in the case when the outputs (the coupling variables) and the inputs are subject to constant time-delay (as it is often the case in a networked context). Predictor-based dynamic output feedback controllers are proposed to interconnect the systems on a given network. Using Lyapunov-Krasovskii functional and the notion of semipassivity, we prove that under some mild assumptions, the solutions of the interconnected systems are globally ultimately bounded. Sufficient conditions on the systems to be interconnected, on the network topology, on the coupling dynamics, and on the time-delays that guarantee global state synchronization are derived. A local analysis is provided in which we compare the performance of our predictor-based control scheme against the existing static diffusive couplings available in the literature. We show (locally) that the time-delay that can be induced to the network may be increased by including the predictors in the loop. The results are illustrated by computer simulations of coupled Hindmarsh-Rose neurons.
11th International Federation of Automatic Control (IFAC) Workshop on Time-Delay Systems
Fridman, Emilia; Sename, Olivier; Dugard, Luc
2016-01-01
This book mostly results from a selection of papers presented during the 11th IFAC (International Federation of Automatic Control) Workshop on Time-Delay Systems, which took place in Grenoble, France, February 4 - 6, 2013. During this event, 37 papers were presented. Taking into account the reviewers' evaluation and the papers' presentation the best papers have been selected and collected into the present volume. The authors of 13 selected papers were invited to participate to this book and provided a more detailed and improved version of the conference paper. To enrich the book, three more chapters have been included from specialists on time-delay systems who presented their work during the 52nd IEEE Conference on Decision and Control, which held in December 10 - 13, 2013, at Florence, Italy. The content of the book is divided into four main parts as follows: Modeling, Stability analysis, Stabilization and control, and Input-delay systems. Focusing on various topics of time-delay systems, this book will be...
On the time delay between ultra-relativistic particles
Directory of Open Access Journals (Sweden)
Pierre Fleury
2016-09-01
Full Text Available The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.
Control of amplitude chimeras by time delay in oscillator networks
Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna
2017-04-01
We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.
Extreme fluctuations in stochastic network coordination with time delays
Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.
2015-12-01
We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.
Complex systems fractionality, time-delay and synchronization
Sun, Jian-Qiao
2012-01-01
"Complex Systems: Fractionality, Time-delay and Synchronization" covers the most recent developments and advances in the theory and application of complex systems in these areas. Each chapter was written by scientists highly active in the field of complex systems. The book discusses a new treatise on fractional dynamics and control, as well as the new methods for differential delay systems and control. Lastly, a theoretical framework for the complexity and synchronization of complex system is presented. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. It can also serve as a reference book for graduate students in physics, applied mathematics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Jian-Qiao Sun is a Professor at the University of California, Merced, USA.
Time delayed K sup + N reactions and exotic baryon resonances
Kelkar, N G; Khemchandani, K P
2003-01-01
Evidence and hints, from both the theoretical and experimental sides, of exotic baryon resonances with B = S, have been with us for the last 30 years. The poor status of the general acceptance of these Z* resonances is partly due to the prejudice against penta-quark baryons and partly due to the opinion that a proof of the existence of exotic states must be rigorous. This can refer to the quality and amount of data gathered, and also to the analytical methods applied in the study of these resonances. It then seems mandatory that all possibilities and aspects be exploited. We do that by analysing the time delay in K sup + N scattering, encountering clear signals of the exotic Z* resonances close to the pole values found in partial wave analyses.
Stabilizing unstable steady states using extended time-delay autosynchronization.
Chang, Austin; Bienfang, Joshua C.; Hall, G. Martin; Gardner, Jeff R.; Gauthier, Daniel J.
1998-12-01
We describe a method for stabilizing unstable steady states in nonlinear dynamical systems using a form of extended time-delay autosynchronization. Specifically, stabilization is achieved by applying a feedback signal generated by high-pass-filtering in real time the dynamical state of the system to an accessible system parameter or variables. Our technique is easy to implement, does not require knowledge of the unstable steady state coordinates in phase space, automatically tracks changes in the system parameters, and is more robust to broadband noise than previous schemes. We demonstrate the controller's efficacy by stabilizing unstable steady states in an electronic circuit exhibiting low-dimensional temporal chaos. The simplicity and robustness of the scheme suggests that it is ideally suited for stabilizing unstable steady states in ultra-high-speed systems. (c) 1998 American Institute of Physics.
Mathematical model of tuberculosis epidemic with recovery time delay
Iskandar, Taufiq; Chaniago, Natasya Ayuningtia; Munzir, Said; Halfiani, Vera; Ramli, Marwan
2017-12-01
Tuberculosis (TB) is a contagious disease which can cause death. The disease is caused by Mycobacterium Tuberculosis which generally affects lungs and other organs such as lymph gland, intestine, kidneys, uterus, bone, and brain. The spread of TB occurs through the bacteria-contaminated air which is inhaled into the lungs. The symptoms of the TB patients are cough, chest pain, shortness of breath, appetite lose, weight lose, fever, cold, and fatigue. World Health Organization (WHO) reported that Indonesia placed the second in term of the most TB cases after India which has 23 % cases while China is reported to have 10 % cases in global. TB has become one of the greatest death threats in global. One way to countermeasure TB disease is by administering vaccination. However, a medication is needed when one has already infected. The medication can generally take 6 months of time which consists of two phases, inpatient and outpatient. Mathematical models to analyze the spread of TB have been widely developed. One of them is the SEIR type model. In this model the population is divided into four groups, which are suspectible (S), exposed (S), infected (I), recovered (R). In fact, a TB patient needs to undergo medication with a period of time in order to recover. This article discusses a model of TB spread with considering the term of recovery (time delay). The model is developed in SIR type where the population is divided into three groups, suspectible (S), infected (I), and recovered (R). Here, the vaccine is given to the susceptible group and the time delay is considered in the group undergoing the medication.
Start time delays in operating room: Different perspectives
Directory of Open Access Journals (Sweden)
Babita Gupta
2011-01-01
Full Text Available Background: Healthcare expenditure is a serious concern, with escalating costs failing to meet the expectations of quality care. The treatment capacities are limited in a hospital setting and the operating rooms (ORs. Their optimal utilization is vital in efficient hospital management. Starting late means considerable wait time for staff, patients and waste of resources. We planned an audit to assess different perspectives of the residents in surgical specialities and anesthesia and OR staff nurses so as to know the causative factors of operative delay. This can help develop a practical model to decrease start time delays in operating room (ORs. Aims: An audit to assess different perspectives of the Operating room (OR staff with respect to the varied causative factors of operative delay in the OR. To aid in the development of a practical model to decrease start time delays in ORs and facilitate on-time starts at Jai Prakash Narayan Apex Trauma centre (JPNATC, All India Institute of Medical Sciences (AIIMS, New Delhi. Methods: We prepared a questionnaire seeking the five main reasons of delay as per their perspective. Results: The available data was analysed. Analysis of the data demonstrated the common causative factors in start time operative delays as: a lack of proper planning, deficiencies in team work, communication gap and limited availability of trained supporting staff. Conclusions: The preparation of the equipment and required material for the OR cases must be done well in advance. Utilization of newer technology enables timely booking and scheduling of cases. Improved inter-departmental coordination and compliance with preanesthetic instructions needs to be ensured. It is essential that the anesthesiologists perform their work promptly, well in time . and supervise the proceedings as the OR manager. This audit is a step forward in defining the need of effective OR planning for continuous quality improvement.
Algebraic approach to time-delay data analysis for LISA
International Nuclear Information System (INIS)
Dhurandhar, S.V.; Nayak, K. Rajesh; Vinet, J.-Y.
2002-01-01
Cancellation of laser frequency noise in interferometers is crucial for attaining the requisite sensitivity of the triangular three-spacecraft LISA configuration. Raw laser noise is several orders of magnitude above the other noises and thus it is essential to bring it down to the level of other noises such as shot, acceleration, etc. Since it is impossible to maintain equal distances between spacecrafts, laser noise cancellation must be achieved by appropriately combining the six beams with appropriate time delays. It has been shown in several recent papers that such combinations are possible. In this paper, we present a rigorous and systematic formalism based on algebraic geometrical methods involving computational commutative algebra, which generates in principle all the data combinations canceling the laser frequency noise. The relevant data combinations form the first module of syzygies, as it is called in the literature of algebraic geometry. The module is over a polynomial ring in three variables, the three variables corresponding to the three time delays around the LISA triangle. Specifically, we list several sets of generators for the module whose linear combinations with polynomial coefficients generate the entire module. We find that this formalism can also be extended in a straightforward way to cancel Doppler shifts due to optical bench motions. The two modules are in fact isomorphic. We use our formalism to obtain the transfer functions for the six beams and for the generators. We specifically investigate monochromatic gravitational wave sources in the LISA band and carry out the maximization over linear combinations of the generators of the signal-to-noise ratios with the frequency and source direction angles as parameters
Face to phase: pitfalls in time delay estimation from coherency phase
Campfens, S.F.; van der Kooij, Herman; Schouten, Alfred Christiaan
2014-01-01
Coherency phase is often interpreted as a time delay reflecting a transmission delay between spatially separated neural populations. However, time delays estimated from corticomuscular coherency are conflicting and often shorter than expected physiologically. Recent work suggests that
DEFF Research Database (Denmark)
Xue, Weiqi; Mørk, Jesper
2010-01-01
We experimentally demonstrate microwave time delays in a semiconductor optical amplifier by cross gain modulation. In the counter-propagation configuration, ~10.5ps tunable true time delay over a microwave bandwidth of several tens of GHz is obtained.......We experimentally demonstrate microwave time delays in a semiconductor optical amplifier by cross gain modulation. In the counter-propagation configuration, ~10.5ps tunable true time delay over a microwave bandwidth of several tens of GHz is obtained....
Precision cosmology with time delay lenses: high resolution imaging requirements
Energy Technology Data Exchange (ETDEWEB)
Meng, Xiao-Lei; Liao, Kai [Department of Astronomy, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 (China); Treu, Tommaso; Agnello, Adriano [Department of Physics, University of California, Broida Hall, Santa Barbara, CA 93106 (United States); Auger, Matthew W. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Marshall, Philip J., E-mail: xlmeng919@gmail.com, E-mail: tt@astro.ucla.edu, E-mail: aagnello@physics.ucsb.edu, E-mail: mauger@ast.cam.ac.uk, E-mail: liaokai@mail.bnu.edu.cn, E-mail: dr.phil.marshall@gmail.com [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States)
2015-09-01
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation
Precision cosmology with time delay lenses: High resolution imaging requirements
Energy Technology Data Exchange (ETDEWEB)
Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)
2015-09-28
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ_{tot}∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive
Time-delayed subsidies: interspecies population effects in salmon.
Directory of Open Access Journals (Sweden)
Michelle C Nelson
Full Text Available Cross-boundary nutrient inputs can enhance and sustain populations of organisms in nutrient-poor recipient ecosystems. For example, Pacific salmon (Oncorhynchus spp. can deliver large amounts of marine-derived nutrients to freshwater ecosystems through their eggs, excretion, or carcasses. This has led to the question of whether nutrients from one generation of salmon can benefit juvenile salmon from subsequent generations. In a study of 12 streams on the central coast of British Columbia, we found that the abundance of juvenile coho salmon was most closely correlated with the abundance of adult pink salmon from previous years. There was a secondary role for adult chum salmon and watershed size, followed by other physical characteristics of streams. Most of the coho sampled emerged in the spring, and had little to no direct contact with spawning salmon nutrients at the time of sampling in the summer and fall. A combination of techniques suggest that subsidies from spawning salmon can have a strong, positive, time-delayed influence on the productivity of salmon-bearing streams through indirect effects from previous spawning events. This is the first study on the impacts of nutrients from naturally-occurring spawning salmon on juvenile population abundance of other salmon species.
Probing the cosmic distance duality relation using time delay lenses
Energy Technology Data Exchange (ETDEWEB)
Rana, Akshay; Mahajan, Shobhit; Mukherjee, Amitabha [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jain, Deepak [Deen Dayal Upadhyaya College, University of Delhi, Sector-3, Dwarka, New Delhi 110078 (India); Holanda, R.F.L., E-mail: montirana1992@gmail.com, E-mail: djain@ddu.du.ac.in, E-mail: shobhit.mahajan@gmail.com, E-mail: amimukh@gmail.com, E-mail: holanda@uepb.edu.br [Departamento de Física, Universidade Federal de Sergipe, 49100-000, Aracaju—SE (Brazil)
2017-07-01
The construction of the cosmic distance-duality relation (CDDR) has been widely studied. However, its consistency with various new observables remains a topic of interest. We present a new way to constrain the CDDR η( z ) using different dynamic and geometric properties of strong gravitational lenses (SGL) along with SNe Ia observations. We use a sample of 102 SGL with the measurement of corresponding velocity dispersion σ{sub 0} and Einstein radius θ {sub E} . In addition, we also use a dataset of 12 two image lensing systems containing the measure of time delay Δ t between source images. Jointly these two datasets give us the angular diameter distance D {sub A} {sub ol} of the lens. Further, for luminosity distance, we use the 740 observations from JLA compilation of SNe Ia. To study the combined behavior of these datasets we use a model independent method, Gaussian Process (GP). We also check the efficiency of GP by applying it on simulated datasets, which are generated in a phenomenological way by using realistic cosmological error bars. Finally, we conclude that the combined bounds from the SGL and SNe Ia observation do not favor any deviation of CDDR and are in concordance with the standard value (η=1) within 2σ confidence region, which further strengthens the theoretical acceptance of CDDR.
The radio-gamma time delay of the Crab pulsar.
Masnou, J. L.; Agrinier, B.; Barouch, E.; Comte, R.; Costa, E.; Christy, J. C.; Cusumano, G.; Gerardi, G.; Lemoine, D.; Mandrou, P.; Massaro, E.; Matt, G.; Mineo, T.; Niel, M.; Olive, J. F.; Parlier, B.; Sacco, B.; Salvati, M.; Scarsi, L.
1994-10-01
Gamma-ray observations of the pulsar of the Crab nebula, PSR0531+21, have been performed in the low energy range (0.15-4.0 MeV) with FIGARO II, a large area balloon borne NaI(Tl) detector, during two flights performed on 1986 July 11 and 1990 July 9. A Kernel estimator built from the phases of the individual gamma-ray arrival times has allowed an accurate derivation of the radio-gamma time delay from those short duration gamma-ray observations. The gamma-ray pulse is found ahead of the radio pulse by 600+/-145μs and 375+/-148μs for the 1986 and 1990 observations respectively. Both radio-gamma delays could be attributed to variability of the interstellar dispersion since dispersion measures are available from radio measurements respectively two months before the 1986 flight and six days after the 1990 flight. An alternative explanation, particularly from the 1990 observation, could be that maximum gamma-ray and radio emissions originate from spatially different regions of the magnetosphere, distant by about 100 km.
Kang, Bo-Sik; Lee, Jang-Eun; Park, Hyun-Jin
2014-05-15
A commercial electronic tongue was used to discriminate Korean rice wines (makgeolli) brewed from nine cultivars of rice with different amino acid and fatty acid compositions. The E-tongue was applied to establish prediction models with sensory evaluation or LC-MS/MS by partial least squares regression (PLSR). All makgeollis were classified into three groups by principal components analysis, and the separation pattern was affected by rice qualities and yeast fermentation. Makgeolli taste changed from the complicated comprising sweetness, saltiness, and umami to the uncomplicated, such as bitterness and then, sourness, with a decrease of amino acids and fatty acids in the rice. The quantitative correlation between E-tongue and sensory scores or LC-MS/MS by PLSR demonstrated that E-tongue could well predict most of the sensory attributes with relatively acceptable r(2), except for bitterness, but could not predict most of the chemical compounds responsible for taste attributes, except for ribose, lactate, succinate, and tryptophan. Copyright © 2013 Elsevier Ltd. All rights reserved.
Robust L2-L∞ Filtering of Time-Delay Jump Systems with Respect to the Finite-Time Interval
Directory of Open Access Journals (Sweden)
Shuping He
2011-01-01
Full Text Available This paper studied the problem of stochastic finite-time boundedness and disturbance attenuation for a class of linear time-delayed systems with Markov jumping parameters. Sufficient conditions are provided to solve this problem. The L2-L∞ filters are, respectively, designed for time-delayed Markov jump linear systems with/without uncertain parameters such that the resulting filtering error dynamic system is stochastically finite-time bounded and has the finite-time interval disturbance attenuation γ for all admissible uncertainties, time delays, and unknown disturbances. By using stochastic Lyapunov-Krasovskii functional approach, it is shown that the filter designing problem is in terms of the solutions of a set of coupled linear matrix inequalities. Simulation examples are included to demonstrate the potential of the proposed results.
Robust stabilizing first-order controllers for a class of time delay systems.
Saadaoui, Karim; Testouri, Sana; Benrejeb, Mohamed
2010-07-01
In this paper, stabilizing regions of a first-order controller for an all poles system with time delay are computed via parametric methods. First, the admissible ranges of one of the controller's parameters are obtained. Then, for a fixed value of this parameter, stabilizing regions in the remaining two parameters are determined using the D-decomposition method. Phase and gain margin specifications are then included in the design. Finally, robust stabilizing first-order controllers are determined for uncertain plants with an interval type uncertainty in the coefficients. Examples are given to illustrate the effectiveness of the proposed method. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Park, Joon-Young [Green Growth Laboratory, Korea Electric Power Research Institute, 65 Munjiro, Yuseong-Gu, Daejeon (Korea, Republic of)], E-mail: asura@kepco.co.kr; Cho, Byung-Hak; Lee, Jae-Kyung [Green Growth Laboratory, Korea Electric Power Research Institute, 65 Munjiro, Yuseong-Gu, Daejeon (Korea, Republic of)
2009-11-15
This paper addresses the trajectory control problem of an underwater inspection robot for nuclear reactor internals. From the viewpoint of control engineering, the trajectory control of the underwater robot is a difficult task due to its nonlinear dynamics, which includes various hydraulic forces such as buoyancy and hydrodynamic damping, the difference between the centres of gravity and buoyancy, and disturbances from a tether cable. To solve such problems, we applied Time Delay Control to the underwater robot. This control law has a very simple structure not requiring nonlinear plant dynamics, and was proven to be highly robust against nonlinearities, uncertainties and disturbances. We confirmed its effectiveness through experiments.
International Nuclear Information System (INIS)
Park, Joon-Young; Cho, Byung-Hak; Lee, Jae-Kyung
2009-01-01
This paper addresses the trajectory control problem of an underwater inspection robot for nuclear reactor internals. From the viewpoint of control engineering, the trajectory control of the underwater robot is a difficult task due to its nonlinear dynamics, which includes various hydraulic forces such as buoyancy and hydrodynamic damping, the difference between the centres of gravity and buoyancy, and disturbances from a tether cable. To solve such problems, we applied Time Delay Control to the underwater robot. This control law has a very simple structure not requiring nonlinear plant dynamics, and was proven to be highly robust against nonlinearities, uncertainties and disturbances. We confirmed its effectiveness through experiments.
Time delay control of power converters: Mixed frame and stationary-frame variants
DEFF Research Database (Denmark)
Blaabjerg, Frede; Loh, P.C.; Tang, Y.
2008-01-01
the positive and negative-sequence fundamental currents, which are known to directly influence the flow of active and reactive power in most energy conversion systems. Moreover, for the tracking or compensation of harmonics, the controllers include a time delay control path in either the synchronous...... simple implementation using mainly delay blocks, were physically tested with a digitally controlled commercial converter system....... an unfiltered angle or by using its equivalent frequency-shifted variant, the tracking abilities of both controllers can also be shown to remain undisturbed even if a distorted grid or back-emf source is intentionally connected to the system. These described performance features, together with the controller...
Long linear arrays with time delay integration and element deselection
Arthurs, C. P.
1997-08-01
GEC-Marconi infra-red has developed a sensor technology based on lateral collection CdHgTe photodiode arrays mounted on custom designed CMOS multiplexer integrated circuits. The availability of submicron silicon processes has enabled a very high degree of functionality to be integrated within the detector thereby simplifying the overall system design. This paper describes a generic architecture that finds particular application for advanced infrared search-and-track, surveillance and high performance imaging applications. These applications require the highest possible performance and are therefore based on time-delay and integration (TDI) to enhance the signal-to-noise ratio, and detector element redundancy with defective element deselection (DED) to give resultant arrays with no dropouts. The detectors have fully variable integration period control, selectable integration capacitors, and a signal-to-noise enhancement capability at low infrared flux levels. The overall power consumption is low rendering the detectors suitable for engine cooling. The architecture is based on a number of unit cell designs and is readily adaptable to a wide range of configurations. The unit capacitor sizes within the design being rescaled to accommodate the required signal levels. In this way the numbers of elements in TDI and the number of TDI channels can be matched to the end application requirements. The architecture is applicable to both long and medium wave detectors. TDI channels are typically composed of 8 or 10 elements and in excess of 700 channels have been demonstrated. The results obtained from a number of prototype detectors are presented.
Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty
Armah, Stephen Kofi
Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining 'go-to-goal', 'avoid-obstacle', and 'follow-wall' controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor's nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized
Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities
Pausder, Heinz-Juergen; Blanken, Chris L.
1993-01-01
Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter flight control has recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effects on handling qualities due to time delays in combination with a high bandwidth vehicle. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was also used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays up to 160 milliseconds over the baseline and bandwidth values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hours of flight time during ten days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities, ADS-33C.
Impact of time delay on the dynamics of SEIR epidemic model using cellular automata
Sharma, Natasha; Gupta, Arvind Kumar
2017-04-01
The delay of an infectious disease is significant when aiming to predict its strength and spreading patterns. In this paper the SEIR (susceptible-exposed-infected-recovered) epidemic spread with time delay is analyzed through a two-dimensional cellular automata model. The time delay corresponding to the infectious span, predominantly, includes death during the latency period in due course of infection. The advancement of whole system is described by SEIR transition function complemented with crucial factors like inhomogeneous population distribution, birth and disease independent mortality. Moreover, to reflect more realistic population dynamics some stochastic parameters like population movement and connections at local level are also considered. The existence and stability of disease free equilibrium is investigated. Two prime behavioral patterns of disease dynamics is found depending on delay. The critical value of delay, beyond which there are notable variations in spread patterns, is computed. The influence of important parameters affecting the disease dynamics on basic reproduction number is also examined. The results obtained show that delay plays an affirmative role to control disease progression in an infected host.
Directory of Open Access Journals (Sweden)
Debeljković Dragutin Lj.
2016-01-01
Full Text Available The heat exchangers are frequently used as constructive elements in various plants and their dynamics is very important. Their operation is usually controlled by manipulating inlet fluid temperatures or mass flow rates. On the basis of the accepted and critically clarified assumptions, a linearized mathematical model of the cross-flow heat exchanger has been derived, taking into account the wall dynamics. The model is based on the fundamental law of energy conservation, covers all heat accumulation storages in the process, and leads to the set of partial differential equations (PDE, which solution is not possible in closed form. In order to overcome this problem the approach based on physical discretization was applied with associated time delay on the positions where it was necessary and unavoidable. This is quite new approach, which represent the further extension of previous results which did not include significant time delay existing in the working media. Simulation results, were derived, showing progress in building such a model suitable for further treatment from the position of analysis as well as the needs for control synthesis problem.
Travelling wave solutions for some time-delayed equations through factorizations
International Nuclear Information System (INIS)
Fahmy, E.S.
2008-01-01
In this work, we use factorization method to find explicit particular travelling wave solutions for the following important nonlinear second-order partial differential equations: The generalized time-delayed Burgers-Huxley, time-delayed convective Fishers, and the generalized time-delayed Burgers-Fisher. Using the particular solutions for these equations we find the general solutions, two-parameter solution, as special cases
Relativistic time delays in the Dirac approach to nucleon-nucleus scattering
International Nuclear Information System (INIS)
Suzuki, T.
1993-01-01
In connection with a characteristic feature of the effective optical potential in the Dirac approach two types of time delays are considered in the relativistic eikonal approximation. One is obtained from the scattering amplitude and the other given by the wave packet motion in the interaction region. These time delays turn out to differ in sign at intermediate energies, in contrast to the agreement between corresponding nonrelativistic time delays. (orig.)
Synchronization of Different Fractional Order Time-Delay Chaotic Systems Using Active Control
Directory of Open Access Journals (Sweden)
Jianeng Tang
2014-01-01
Full Text Available Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.
Chatterjee, Roshmi; Basu, Mousumi
2018-02-01
The well known time transformation method is used here to derive the temporal and spectral electric field distribution at the output end of a multilayer waveguide which consists of different layers of Kerr nonlinear media. A highly nonlinear CS 3-68 glass is considered as one of the materials of the waveguide which mainly comprises of different chalcogenide glass layers. The results indicate that there is sufficient time delay as well as frequency shift between the input and output pulses which is associated with the phenomenon of adiabatic wavelength conversion (AWC). Depending on different arrangements of materials, the time delay and frequency shift can be changed. As a result an input pulse in visible green region can be blue-shifted or red-shifted according to the choices of refractive index of the non-dispersive Kerr nonlinear media. The results show that under certain conditions the input pulse is broadened or compressed for different combinations of materials. This process of AWC also includes the variation of temporal and spectral phase, time delay, temporal peak power etc. For different input pulse shapes the change in time delay is also presented. The study may be useful to find applications of AWC in optical resonators or optical signal processing to be applicable to different photonic devices.
Liu, Jian; Wang, Youguo
2018-03-01
The simultaneous influence of potential asymmetries and time-delayed feedback on stochastic resonance (SR) subject to both periodic force and additive Gaussian white noise is investigated by using two-state theory and small-delay approximation, where three types of asymmetries include well-depth, well-width, and both well-depth and well-width asymmetries, respectively. The asymmetric types and time-delayed feedback determine the behaviors of SR, especially output signal-to-noise ratio (SNR) peaks, optimal additive noise intensity and feedback intensity. Moreover, the largest SNR in asymmetric SR is found to be relatively larger than symmetric one in some cases, whereas in other cases the symmetric SR is superior to asymmetric one, which is of dependence on time delay and feedback intensity. In addition, the SR with well-width asymmetry can suppress stronger noise than that with well-depth asymmetry under the action of same time delay, which is beneficial to weak signal detection.
Stability analysis of fractional-order Hopfield neural networks with time delays.
Wang, Hu; Yu, Yongguang; Wen, Guoguang
2014-07-01
This paper investigates the stability for fractional-order Hopfield neural networks with time delays. Firstly, the fractional-order Hopfield neural networks with hub structure and time delays are studied. Some sufficient conditions for stability of the systems are obtained. Next, two fractional-order Hopfield neural networks with different ring structures and time delays are developed. By studying the developed neural networks, the corresponding sufficient conditions for stability of the systems are also derived. It is shown that the stability conditions are independent of time delays. Finally, numerical simulations are given to illustrate the effectiveness of the theoretical results obtained in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.
The time delay distribution of high energy muons in the EAS
International Nuclear Information System (INIS)
Grishina, N.V.; Kalmykov, N.N.
1981-01-01
One of the experimentally measured characteristics of the extensive air shower (EAS) is the time delays of particles with respect to the arrival time of the shower front, in particular, the muon time delay. The study of the arrival time distribution of low energy ( 5 GeV) muon time delays. These muons can be experimentally studied at the Moscow State University EAS complex array. Knowledge of the muon time delay distribution is also needed for performing the experiments aimed at searching for particles of mass approximately 10 GeV whose existence is in line with the current theoretical notions
Study on the Business Cycle Model with Fractional-Order Time Delay under Random Excitation
Directory of Open Access Journals (Sweden)
Zifei Lin
2017-07-01
Full Text Available Time delay of economic policy and memory property in a real economy system is omnipresent and inevitable. In this paper, a business cycle model with fractional-order time delay which describes the delay and memory property of economic control is investigated. Stochastic averaging method is applied to obtain the approximate analytical solution. Numerical simulations are done to verify the method. The effects of the fractional order, time delay, economic control and random excitation on the amplitude of the economy system are investigated. The results show that time delay, fractional order and intensity of random excitation can all magnify the amplitude and increase the volatility of the economy system.
Theoretical analysis of time delays and streaking effects in XUV photoionization
Su, Jing; Ni, Hongcheng; Becker, Andreas; Jaron-Becker, Agnieszka
2013-01-01
We apply a recently proposed theoretical concept and numerical approach to obtain time delays in extreme ultraviolet (XUV) photoionization of an electron in a short- or long-range potential. The results of our numerical simulations on a space-time grid are compared to those for the well-known Wigner-Smith time delay and different methods to obtain the latter time delay are reviewed. We further use our numerical method to analyze the effect of a near-infrared streaking field on the time delay ...
Visual prediction: psychophysics and neurophysiology of compensation for time delays.
Nijhawan, Romi
2008-04-01
A necessary consequence of the nature of neural transmission systems is that as change in the physical state of a time-varying event takes place, delays produce error between the instantaneous registered state and the external state. Another source of delay is the transmission of internal motor commands to muscles and the inertia of the musculoskeletal system. How does the central nervous system compensate for these pervasive delays? Although it has been argued that delay compensation occurs late in the motor planning stages, even the earliest visual processes, such as phototransduction, contribute significantly to delays. I argue that compensation is not an exclusive property of the motor system, but rather, is a pervasive feature of the central nervous system (CNS) organization. Although the motor planning system may contain a highly flexible compensation mechanism, accounting not just for delays but also variability in delays (e.g., those resulting from variations in luminance contrast, internal body temperature, muscle fatigue, etc.), visual mechanisms also contribute to compensation. Previous suggestions of this notion of "visual prediction" led to a lively debate producing re-examination of previous arguments, new analyses, and review of the experiments presented here. Understanding visual prediction will inform our theories of sensory processes and visual perception, and will impact our notion of visual awareness.
PI Controller Design for Time Delay Systems Using an Extension of the Hermite-Biehler Theorem
Elmadssia, Sami; Saadaoui, Karim; Benrejeb, Mohamed
2013-01-01
We consider stabilizing first-order systems with time delay. The set of all stabilizing proportional-integral PI controllers are determined using an extension of the Hermite-Biehler theorem. The time delay is approximated by a second-order Padé approximation. For uncertain plants, with interval type uncertainty, robust stabilizing PI controllers are determined.
Travelling Solitary Wave Solutions for Generalized Time-delayed Burgers-Fisher Equation
International Nuclear Information System (INIS)
Deng Xijun; Han Libo; Li Xi
2009-01-01
In this paper, travelling wave solutions for the generalized time-delayed Burgers-Fisher equation are studied. By using the first-integral method, which is based on the ring theory of commutative algebra, we obtain a class of travelling solitary wave solutions for the generalized time-delayed Burgers-Fisher equation. A minor error in the previous article is clarified. (general)
A New Method for Calibrating the Time Delay of a Piezoelectric Probe
DEFF Research Database (Denmark)
Hansen, Bengt Hurup
1974-01-01
A simple method for calibrating the time delay of a piezoelectric probe of the type often used in plasma physics is described.......A simple method for calibrating the time delay of a piezoelectric probe of the type often used in plasma physics is described....
Consensus-based distributed estimation in multi-agent systems with time delay
Abdelmawgoud, Ahmed
During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.
New distributions of the statistical time delay of electrical breakdown in nitrogen
International Nuclear Information System (INIS)
Markovic, V Lj; Gocic, S R; Stamenkovic, S N
2006-01-01
Two new distributions of the statistical time delay of electrical breakdown in nitrogen are reported in this paper. The Gaussian and Gauss-exponential distributions of statistical time delay have been obtained on the basis of thousands of time delay measurements on a gas tube with a plane-parallel electrode system. Distributions of the statistical time delay are theoretically founded on binomial distribution for the occurrence of initiating electrons and described by using simple analytical and numerical models. The shapes of distributions depend on the electron yields in the interelectrode space originating from residual states. It is shown that a distribution of the statistical time delay changes from exponential and Gauss-exponential to Gaussian distribution due to the influence of residual ionization
Fundamental and Subharmonic Resonances of Harmonically Oscillation with Time Delay State Feedback
Directory of Open Access Journals (Sweden)
A.F. EL-Bassiouny
2006-01-01
Full Text Available Time delays occur in many physical systems. In particular, when automatic control is used with structural or mechanical systems, there exists a delay between measurement of the system state and corrective action. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. We investigate the fundamental resonance and subharmonic resonance of order one-half of a harmonically oscillation under state feedback control with a time delay. By using the multiple scale perturbation technique, the first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the external excitation-response and frequency-response curves. We analyze the effect of time delay and the other different parameters on these oscillations.
Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction
Directory of Open Access Journals (Sweden)
Keming Tang
2017-11-01
Full Text Available To investigate the effect of electromagnetic induction on the electrical activity of neuron, the variable for magnetic flow is used to improve Hindmarsh–Rose neuron model. Simultaneously, due to the existence of time-delay when signals are propagated between neurons or even in one neuron, it is important to study the role of time-delay in regulating the electrical activity of the neuron. For this end, a four-variable neuron model is proposed to investigate the effects of electromagnetic induction and time-delay. Simulation results suggest that the proposed neuron model can show multiple modes of electrical activity, which is dependent on the time-delay and external forcing current. It means that suitable discharge mode can be obtained by selecting the time-delay or external forcing current, which could be helpful for further investigation of electromagnetic radiation on biological neuronal system.
Generalized synchronization-based multiparameter estimation in modulated time-delayed systems
Ghosh, Dibakar; Bhattacharyya, Bidyut K.
2011-09-01
We propose a nonlinear active observer based generalized synchronization scheme for multiparameter estimation in time-delayed systems with periodic time delay. A sufficient condition for parameter estimation is derived using Krasovskii-Lyapunov theory. The suggested tool proves to be globally and asymptotically stable by means of Krasovskii-Lyapunov method. With this effective method, parameter identification and generalized synchronization of modulated time-delayed systems with all the system parameters unknown, can be achieved simultaneously. We restrict our study for multiple parameter estimation in modulated time-delayed systems with single state variable only. Theoretical proof and numerical simulation demonstrate the effectiveness and feasibility of the proposed technique. The block diagram of electronic circuit for multiple time delay system shows that the method is easily applicable in practical communication problems.
Time Delayed Stage-Structured Predator-Prey Model with Birth Pulse and Pest Control Tactics
Directory of Open Access Journals (Sweden)
Mei Yan
2014-01-01
Full Text Available Normally, chemical pesticides kill not only pests but also their natural enemies. In order to better control the pests, two-time delayed stage-structured predator-prey models with birth pulse and pest control tactics are proposed and analyzed by using impulsive differential equations in present work. The stability threshold conditions for the mature prey-eradication periodic solutions of two models are derived, respectively. The effects of key parameters including killing efficiency rate, pulse period, the maximum birth effort per unit of time of natural enemy, and maturation time of prey on the threshold values are discussed in more detail. By comparing the two threshold values of mature prey-extinction, we provide the fact that the second control tactic is more effective than the first control method.
Stability and Stabilization of Networked Control System with Forward and Backward Random Time Delays
Directory of Open Access Journals (Sweden)
Ye-Guo Sun
2012-01-01
Full Text Available This paper deals with the problem of stabilization for a class of networked control systems (NCSs with random time delay via the state feedback control. Both sensor-to-controller and controller-to-actuator delays are modeled as Markov processes, and the resulting closed-loop system is modeled as a Markovian jump linear system (MJLS. Based on Lyapunov stability theorem combined with Razumikhin-based technique, a new delay-dependent stochastic stability criterion in terms of bilinear matrix inequalities (BMIs for the system is derived. A state feedback controller that makes the closed-loop system stochastically stable is designed, which can be solved by the proposed algorithm. Simulations are included to demonstrate the theoretical result.
Time delay effects on large-scale MR damper based semi-active control strategies
International Nuclear Information System (INIS)
Cha, Y-J; Agrawal, A K; Dyke, S J
2013-01-01
This paper presents a detailed investigation on the robustness of large-scale 200 kN MR damper based semi-active control strategies in the presence of time delays in the control system. Although the effects of time delay on stability and performance degradation of an actively controlled system have been investigated extensively by many researchers, degradation in the performance of semi-active systems due to time delay has yet to be investigated. Since semi-active systems are inherently stable, instability problems due to time delay are unlikely to arise. This paper investigates the effects of time delay on the performance of a building with a large-scale MR damper, using numerical simulations of near- and far-field earthquakes. The MR damper is considered to be controlled by four different semi-active control algorithms, namely (i) clipped-optimal control (COC), (ii) decentralized output feedback polynomial control (DOFPC), (iii) Lyapunov control, and (iv) simple-passive control (SPC). It is observed that all controllers except for the COC are significantly robust with respect to time delay. On the other hand, the clipped-optimal controller should be integrated with a compensator to improve the performance in the presence of time delay. (paper)
Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons
Gu, Huaguang; Zhao, Zhiguo
2015-01-01
The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224
Ferruzzo Correa, Diego P.; Bueno, Átila M.; Castilho Piqueira, José R.
2017-04-01
In this paper we investigate stability conditions for small-amplitude periodic solutions emerging near symmetry-preserving Hopf bifurcations in a time-delayed fully-connected N-node PLL network. The study of this type of systems which includes the time delay between connections has attracted much attention among researchers mainly because the delayed coupling between nodes emerges almost naturally in mathematical modeling in many areas of science such as neurobiology, population dynamics, physiology and engineering. In a previous work it has been shown that symmetry breaking and symmetry preserving Hopf bifurcations can emerge in the parameter space. We analyze the stability along branches of periodic solutions near fully-synchronized Hopf bifurcations in the fixed-point space, based on the reduction of the infinite-dimensional space onto a two-dimensional center manifold in normal form. Numerical results are also presented in order to confirm our analytical results.
Time delay and noise explaining the behaviour of the cell growth in fermentation process
Energy Technology Data Exchange (ETDEWEB)
Ayuobi, Tawfiqullah; Rosli, Norhayati [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)
2015-02-03
This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.
Time delay and noise explaining the behaviour of the cell growth in fermentation process
International Nuclear Information System (INIS)
Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md
2015-01-01
This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process
Determination of time delay between ventricles contraction using impedance measurements
International Nuclear Information System (INIS)
Lewandowska, M; Poliński, A; Wtorek, J
2013-01-01
The paper presents a novel approach to assessment of ventricular dyssynchrony basing on multichannel electrical impedance measurements. Using a proper placement of electrodes, the sensitivity approach allows estimating time difference between chambers contraction from over determined nonlinear system of equations. The theoretical considerations which include Finite Element Method simulations were verified using measurements on healthy 28 year's old woman. The nonlinear least squares method was applied to obtain a time difference between heart chambers contraction. The obtained value was in a good agreement with theoretical values found in literature.
Attosecond time delays in the photoionization of noble gas atoms studied in TDLDA
International Nuclear Information System (INIS)
Magrakvelidze, Maia; Chakraborty, Himadri; Madjet, Mohamed
2015-01-01
We perform time-dependent local density functional calculations of the quantum phase and time delays of valence photoionization of noble gas atoms. Results may be accessed by XUV-IR interferometric metrology. (paper)
Attosecond time delay in the valence photoionization of C240 versus C60
International Nuclear Information System (INIS)
Shi, Kele; Magrakvelidze, Maia; Anstine, Dylan; Chakraborty, Himadri; Madjet, Mohamed
2015-01-01
We investigate effects of electron correlations on the attosecond time delay of the photoionization from HOMO and HOMO-1 electrons in C 240 . A comparison with earlier C 60 results assesses the molecular size effect. (paper)
Identification of fractional-order systems with time delays using block pulse functions
Tang, Yinggan; Li, Ning; Liu, Minmin; Lu, Yao; Wang, Weiwei
2017-07-01
In this paper, a novel method based on block pulse functions is proposed to identify continuous-time fractional-order systems with time delays. First, the operational matrices of block pulse functions for fractional integral operator and time delay operator are derived. Then, these operational matrices are applied to convert the continuous-time fractional-order systems with time delays to an algebraic equation. Finally, the system's parameters along with the differentiation orders and the time delays are all simultaneously estimated through minimizing a quadric error function. The proposed method reduces the computation complexity of the identification process, and also it does not require the system's differentiation orders to be commensurate. The effectiveness of the proposed method are demonstrated by several numerical examples.
Effects of Noise and Time Delay Upon Active Control of Combustion Instabilities
National Research Council Canada - National Science Library
Zinn, Ben
2001-01-01
To improve the performance of practical active control system (ACS) for unstable combustors, the effects of system noise and ACS time delay upon combustion instabilities and the ACS performance were studied...
Yao, Chenggui; Zhan, Meng; Shuai, Jianwei; Ma, Jun; Kurths, Jürgen
2017-12-01
It has been generally believed that both time delay and network structure could play a crucial role in determining collective dynamical behaviors in complex systems. In this work, we study the influence of coupling strength, time delay, and network topology on synchronization behavior in delay-coupled networks of chaotic pendulums. Interestingly, we find that the threshold value of the coupling strength for complete synchronization in such networks strongly depends on the time delay in the coupling, but appears to be insensitive to the network structure. This lack of sensitivity was numerically tested in several typical regular networks, such as different locally and globally coupled ones as well as in several complex networks, such as small-world and scale-free networks. Furthermore, we find that the emergence of a synchronous periodic state induced by time delay is of key importance for the complete synchronization.
Predicting fluctuations-caused regime shifts in a time delayed dynamics of an invading species
Xie, Qingshuang; Wang, Tonghuan; Zeng, Chunhua; Dong, Xiaohui; Guan, Lin
2018-03-01
In this paper, we investigate early warning signals (EWS) of regime shifts in a density-dependent invading population model with time delay, in which the population density is assumed to be disturbed by intrinsic and extrinsic fluctuations. It is shown that the time delay and noises can cause the regime shifts between low and high population density states. The regime shift time (RST) as a function of noise intensity exhibits a maximum, which identifies the signature of the noise-enhanced stability of the low density state, while the time delay weakens the stability of the low density state. Applying the Kramers time technique, we also discuss the intersection point of the RST between low and high population density states, i.e., a critical point in the RST is found. Therefore, the critical point may give an EWS of regime shifts from one alternative state to another one for the changes in the noise parameters and time delay.
Time domain passivity controller for 4-channel time-delay bilateral teleoperation.
Rebelo, Joao; Schiele, Andre
2015-01-01
This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.
Directory of Open Access Journals (Sweden)
Saïda Bedoui
2013-01-01
Full Text Available This paper addresses the problem of simultaneous identification of linear discrete time delay multivariable systems. This problem involves both the estimation of the time delays and the dynamic parameters matrices. In fact, we suggest a new formulation of this problem allowing defining the time delay and the dynamic parameters in the same estimated vector and building the corresponding observation vector. Then, we use this formulation to propose a new method to identify the time delays and the parameters of these systems using the least square approach. Convergence conditions and statistics properties of the proposed method are also developed. Simulation results are presented to illustrate the performance of the proposed method. An application of the developed approach to compact disc player arm is also suggested in order to validate simulation results.
Dynamics and control of a financial system with time-delayed feedbacks
International Nuclear Information System (INIS)
Chen, W.-C.
2008-01-01
Complex behaviors in a financial system with time-delayed feedbacks are discussed in this study via numerical modeling. The system shows complex dynamics such as periodic, quasi-periodic, and chaotic behaviors. Both period doubling and inverse period doubling routes were found in this system. This paper also shows that the attractor merging crisis is a fundamental feature of nonlinear financial systems with time-delayed feedbacks. Control of the deterministic chaos in the financial system can be realized using Pyragas feedbacks
Lyapunov matrices approach to the parametric optimization of time-delay systems
Directory of Open Access Journals (Sweden)
Duda Józef
2015-09-01
Full Text Available In the paper a Lyapunov matrices approach to the parametric optimization problem of time-delay systems with a P-controller is presented. The value of integral quadratic performance index of quality is equal to the value of Lyapunov functional for the initial function of the time-delay system. The Lyapunov functional is determined by means of the Lyapunov matrix
Photonic-Enabled RF Canceller with Tunable Time-Delay Taps
2016-12-05
Photonic -Enabled RF Canceller with Tunable Time-Delay Taps Kenneth E. Kolodziej, Sivasubramaniam Yegnanarayanan, Bradley T. Perry MIT Lincoln...canceller design that uses photonics and a vector modulator architecture to provide a high number of canceller taps with tunable time-delays, which allow...microwave photonics , RF cancellation. I. INTRODUCTION In-Band Full-Duplex (IBFD) technologies are being consid- ered for 5th generation (5G) wireless
Numerical test for hyperbolicity in chaotic systems with multiple time delays
Kuptsov, Pavel V.; Kuznetsov, Sergey P.
2018-03-01
We develop an extension of the fast method of angles for hyperbolicity verification in chaotic systems with an arbitrary number of time-delay feedback loops. The adopted method is based on the theory of covariant Lyapunov vectors and provides an efficient algorithm applicable for systems with high-dimensional phase space. Three particular examples of time-delay systems are analyzed and in all cases the expected hyperbolicity is confirmed.
Adaptive Synchronization of Fractional Neural Networks with Unknown Parameters and Time Delays
Directory of Open Access Journals (Sweden)
Weiyuan Ma
2014-12-01
Full Text Available In this paper, the parameters identification and synchronization problem of fractional-order neural networks with time delays are investigated. Based on some analytical techniques and an adaptive control method, a simple adaptive synchronization controller and parameter update laws are designed to synchronize two uncertain complex networks with time delays. Besides, the system parameters in the uncertain network can be identified in the process of synchronization. To demonstrate the validity of the proposed method, several illustrative examples are presented.
On a new time-delayed feedback control of chaotic systems
International Nuclear Information System (INIS)
Tian Lixin; Xu Jun; Sun Mei; Li Xiuming
2009-01-01
In this paper, using the idea of the successive dislocation feedback method, a new time-delayed feedback control method called the successive dislocation time-delayed feedback control (SDTDFC) is designed. Firstly, the idea of SDTDFC is introduced. Then some analytic sufficient conditions of the chaos control from the SDTDFC approach are derived for stabilization. Finally, some established results are further clarified via a case study of the Lorenz system with the numerical simulations.
Accurate measurement of the time delay in the response of the LIGO gravitational wave detectors
Aso, Yoichi; Goetz, Evan; Kalmus, Peter; Matone, Luca; Márka, Szabolcs; Myers, Joshua; O’Reilly, Brian; Savage, Rick; Schwinberg, Paul; Siemens, Xavier; Sigg, Daniel; Smith, Nicolas
2009-01-01
We present a method to precisely calibrate the time delay in a long baseline gravitational-wave interferometer. An accurate time stamp is crucial for data analysis of gravitational wave detectors, especially when performing coincidence and correlation analyses between multiple detectors. Our method uses an intensity-modulated radiation pressure force to actuate on the mirrors. The time delay is measured by comparing the phase of the signal at the actuation point with the phase of the recorded...
Hopf Bifurcation of a Differential-Algebraic Bioeconomic Model with Time Delay
Directory of Open Access Journals (Sweden)
Xiaojian Zhou
2012-01-01
Full Text Available We investigate the dynamics of a differential-algebraic bioeconomic model with two time delays. Regarding time delay as a bifurcation parameter, we show that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Using the theories of normal form and center manifold, we also give the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Numerical tests are provided to verify our theoretical analysis.
Dynamics and control of a financial system with time-delayed feedbacks
Energy Technology Data Exchange (ETDEWEB)
Chen, W.-C. [Department of Information Management, Yuanpei University, No. 306, Yuanpei St., Hsinchu, Taiwan 30015 (China)], E-mail: wcc137@mail.yust.edu.tw
2008-08-15
Complex behaviors in a financial system with time-delayed feedbacks are discussed in this study via numerical modeling. The system shows complex dynamics such as periodic, quasi-periodic, and chaotic behaviors. Both period doubling and inverse period doubling routes were found in this system. This paper also shows that the attractor merging crisis is a fundamental feature of nonlinear financial systems with time-delayed feedbacks. Control of the deterministic chaos in the financial system can be realized using Pyragas feedbacks.
Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay
Novi W, Cascarilla; Lestari, Dwi
2016-02-01
This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.
A Fast Time-Delay Calculation Method in Through-Wall-Radar Detection Scenario
Directory of Open Access Journals (Sweden)
Zhang Qi
2016-01-01
Full Text Available In TWR (Through Wall Radar signal processing procedure, time delay estimation is one of the key steps in target localization and high resolution imaging. In time domain imaging procedure such as back projection imaging algorithm, round trip propagation time delay at the path of “transmitter-target-receiver” needs to be calculated for each pixel in imaging region. In typical TWR scenario, transmitter and receiver are at one side and targets at the other side of a wall. Based on two-dimensional searching algorithm or solving two variables equation of four times, traditional time delay calculation algorithms are complex and time consuming, and cannot be used to real-time imaging procedure. In this paper, a new fast time-delay (FTD algorithm is presented. Because of that incident angle at one side equals to refracting angle at the other side, an equation of lateral distance through the wall can be established. By solving this equation, the lateral distance can be obtained and total propagation time delay can be calculated subsequently. Through processing simulation data, the result shows that new algorithm can be applied effectively to real-time time-delay calculation in TWR signal processing.
Measurement of time delays in gated radiotherapy for realistic respiratory motions
Energy Technology Data Exchange (ETDEWEB)
Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L., E-mail: Wendy.Smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada)
2014-09-15
Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients
Measurement of time delays in gated radiotherapy for realistic respiratory motions
International Nuclear Information System (INIS)
Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L.
2014-01-01
Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients
Improving dynamic performance of proton-exchange membrane fuel cell system using time delay control
Kim, Young-Bae
Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system.
Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; Collett, Thomas E.
2018-03-01
Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ∼2 over previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Accounting for microlensing, the 1–2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.
Highly sensitive inference of time-delayed gene regulation by network deconvolution.
Chen, Haifen; Mundra, Piyushkumar A; Zhao, Li Na; Lin, Feng; Zheng, Jie
2014-01-01
Gene regulatory network (GRN) is a fundamental topic in systems biology. The dynamics of GRN can shed light on the cellular processes, which facilitates the understanding of the mechanisms of diseases when the processes are dysregulated. Accurate reconstruction of GRN could also provide guidelines for experimental biologists. Therefore, inferring gene regulatory networks from high-throughput gene expression data is a central problem in systems biology. However, due to the inherent complexity of gene regulation, noise in measuring the data and the short length of time-series data, it is very challenging to reconstruct accurate GRNs. On the other hand, a better understanding into gene regulation could help to improve the performance of GRN inference. Time delay is one of the most important characteristics of gene regulation. By incorporating the information of time delays, we can achieve more accurate inference of GRN. In this paper, we propose a method to infer time-delayed gene regulation based on cross-correlation and network deconvolution (ND). First, we employ cross-correlation to obtain the probable time delays for the interactions between each target gene and its potential regulators. Then based on the inferred delays, the technique of ND is applied to identify direct interactions between the target gene and its regulators. Experiments on real-life gene expression datasets show that our method achieves overall better performance than existing methods for inferring time-delayed GRNs. By taking into account the time delays among gene interactions, our method is able to infer GRN more accurately. The effectiveness of our method has been shown by the experiments on three real-life gene expression datasets of yeast. Compared with other existing methods which were designed for learning time-delayed GRN, our method has significantly higher sensitivity without much reduction of specificity.
An Epidemic Model of Computer Worms with Time Delay and Variable Infection Rate
Directory of Open Access Journals (Sweden)
Yu Yao
2018-01-01
Full Text Available With rapid development of Internet, network security issues become increasingly serious. Temporary patches have been put on the infectious hosts, which may lose efficacy on occasions. This leads to a time delay when vaccinated hosts change to susceptible hosts. On the other hand, the worm infection is usually a nonlinear process. Considering the actual situation, a variable infection rate is introduced to describe the spread process of worms. According to above aspects, we propose a time-delayed worm propagation model with variable infection rate. Then the existence condition and the stability of the positive equilibrium are derived. Due to the existence of time delay, the worm propagation system may be unstable and out of control. Moreover, the threshold τ0 of Hopf bifurcation is obtained. The worm propagation system is stable if time delay is less than τ0. When time delay is over τ0, the system will be unstable. In addition, numerical experiments have been performed, which can match the conclusions we deduce. The numerical experiments also show that there exists a threshold in the parameter a, which implies that we should choose appropriate infection rate β(t to constrain worm prevalence. Finally, simulation experiments are carried out to prove the validity of our conclusions.
Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach
Directory of Open Access Journals (Sweden)
Oliveira Rui
2010-09-01
Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.
A Fault Prognosis Strategy Based on Time-Delayed Digraph Model and Principal Component Analysis
Directory of Open Access Journals (Sweden)
Ningyun Lu
2012-01-01
Full Text Available Because of the interlinking of process equipments in process industry, event information may propagate through the plant and affect a lot of downstream process variables. Specifying the causality and estimating the time delays among process variables are critically important for data-driven fault prognosis. They are not only helpful to find the root cause when a plant-wide disturbance occurs, but to reveal the evolution of an abnormal event propagating through the plant. This paper concerns with the information flow directionality and time-delay estimation problems in process industry and presents an information synchronization technique to assist fault prognosis. Time-delayed mutual information (TDMI is used for both causality analysis and time-delay estimation. To represent causality structure of high-dimensional process variables, a time-delayed signed digraph (TD-SDG model is developed. Then, a general fault prognosis strategy is developed based on the TD-SDG model and principle component analysis (PCA. The proposed method is applied to an air separation unit and has achieved satisfying results in predicting the frequently occurred “nitrogen-block” fault.
Stability and oscillation of two coupled Duffing equations with time delay state feedback
International Nuclear Information System (INIS)
El-Bassiouny, A F
2006-01-01
This paper presents an analytical study of the simultaneous principal parametric resonances of two coupled Duffing equations with time delay state feedback. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. The method of multiple scales is used to determine a set of ordinary differential equations governing the modulation of the amplitudes and phases of the two modes. The first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the frequency-response curves. We analyse the effect of time delay and the other different parameters on these oscillations. The stability of the fixed points is examined by using the variational method. Numerical solutions are carried out and graphical representations of the results are presented and discussed. Increasing in the time delay τ given decreasing and increasing in the regions of definition and stability respectively and the first mode has decreased magnitudes. The multivalued solutions disappear when decreasing the coefficients of cubic nonlinearities of the second mode α 3 and the detuning parameter σ 2 respectively. Both modes shift to the left for increasing linear feedback gain v 1 and the coefficient of parametric excitation f 1 respectively
Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks
Wang, Zhen; Campbell, Sue Ann
2017-11-01
We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with ZN symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.
Non-Gaussian noise-weakened stability in a foraging colony system with time delay
Dong, Xiaohui; Zeng, Chunhua; Yang, Fengzao; Guan, Lin; Xie, Qingshuang; Duan, Weilong
2018-02-01
In this paper, the dynamical properties in a foraging colony system with time delay and non-Gaussian noise were investigated. Using delay Fokker-Planck approach, the stationary probability distribution (SPD), the associated relaxation time (ART) and normalization correlation function (NCF) are obtained, respectively. The results show that: (i) the time delay and non-Gaussian noise can induce transition from a single peak to double peaks in the SPD, i.e., a type of bistability occurring in a foraging colony system where time delay and non-Gaussian noise not only cause transitions between stable states, but also construct the states themselves. Numerical simulations are presented and are in good agreement with the approximate theoretical results; (ii) there exists a maximum in the ART as a function of the noise intensity, this maximum for ART is identified as the characteristic of the non-Gaussian noise-weakened stability of the foraging colonies in the steady state; (iii) the ART as a function of the noise correlation time exhibits a maximum and a minimum, where the minimum for ART is identified as the signature of the non-Gaussian noise-enhanced stability of the foraging colonies; and (iv) the time delay can enhance the stability of the foraging colonies in the steady state, while the departure from Gaussian noise can weaken it, namely, the time delay and departure from Gaussian noise play opposite roles in ART or NCF.
Rosinberg, M. L.; Munakata, T.; Tarjus, G.
2015-04-01
Response lags are generic to almost any physical system and often play a crucial role in the feedback loops present in artificial nanodevices and biological molecular machines. In this paper, we perform a comprehensive study of small stochastic systems governed by an underdamped Langevin equation and driven out of equilibrium by a time-delayed continuous feedback control. In their normal operating regime, these systems settle in a nonequilibrium steady state in which work is permanently extracted from the surrounding heat bath. By using the Fokker-Planck representation of the dynamics, we derive a set of second-law-like inequalities that provide bounds to the rate of extracted work. These inequalities involve additional contributions characterizing the reduction of entropy production due to the continuous measurement process. We also show that the non-Markovian nature of the dynamics requires a modification of the basic relation linking dissipation to the breaking of time-reversal symmetry at the level of trajectories. The modified relation includes a contribution arising from the acausal character of the reverse process. This, in turn, leads to another second-law-like inequality. We illustrate the general formalism with a detailed analytical and numerical study of a harmonic oscillator driven by a linear feedback, which describes actual experimental setups.
A note on chaotic synchronization of time-delay secure communication systems
International Nuclear Information System (INIS)
Li Demin; Wang Zidong; Zhou Jie; Fang Jianan; Ni Jinjin
2008-01-01
In a real world, the signals are often transmitted through a hostile environment, and therefore the secure communication system has attracted considerable research interests. In this paper, the observer-based chaotic synchronization problem is studied for a class of time-delay secure communication systems. The system under consideration is subject to delayed state and nonlinear disturbances. The time-delay is allowed to be time-varying, and the nonlinearities are assumed to satisfy global Lipschitz conditions. The problem addressed is the design of a synchronization scheme such that, for the admissible time-delay as well as nonlinear disturbances, the response system can globally synchronize the driving system. An effective algebraic matrix inequality approach is developed to solve the chaotic synchronization problem. A numerical example is presented to show the effectiveness and efficiency of the proposed secure communication scheme
Identification of non-minimum phase processes with time delay in the presence of measurement noise.
Bajarangbali; Majhi, Somanath
2015-07-01
Time domain based generalized analytical expressions are derived to estimate the exact model parameters of a class of stable non-minimum phase (NMP) processes with time delay. The novelty of the proposed method lies in generalizing a second order plus time delay (SOPDT) NMP process model in terms of a class of models like first order plus time delay (FOPDT), SOPDT underdamped, critically damped and integrating processes. The mathematical expressions are employed to estimate four accurate parameters at a time. Relay with hysteresis reduces the effect of noise and further mitigation of noise is achieved through a denoising block yielding a clean process output. Processes modeled in the form of transfer functions are considered to validate the technique. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Economy with the time delay of information flow—The stock market case
Miśkiewicz, Janusz
2012-02-01
Any decision process requires information about the past and present state of the system, but in an economy acquiring data and processing it is an expensive and time-consuming task. Therefore, the state of the system is often measured over some legal interval, analysed after the end of well defined time periods and the results announced much later before any strategic decision is envisaged. The various time delay roles have to be crucially examined. Here, a model of stock market coupled with an economy is investigated to emphasise the role of the time delay span on the information flow. It is shown that the larger the time delay the more important the collective behaviour of agents since one observes time oscillations in the absolute log-return autocorrelations.
Hopf bifurcation analysis of Chen circuit with direct time delay feedback
International Nuclear Information System (INIS)
Hai-Peng, Ren; Wen-Chao, Li; Ding, Liu
2010-01-01
Direct time delay feedback can make non-chaotic Chen circuit chaotic. The chaotic Chen circuit with direct time delay feedback possesses rich and complex dynamical behaviours. To reach a deep and clear understanding of the dynamics of such circuits described by delay differential equations, Hopf bifurcation in the circuit is analysed using the Hopf bifurcation theory and the central manifold theorem in this paper. Bifurcation points and bifurcation directions are derived in detail, which prove to be consistent with the previous bifurcation diagram. Numerical simulations and experimental results are given to verify the theoretical analysis. Hopf bifurcation analysis can explain and predict the periodical orbit (oscillation) in Chen circuit with direct time delay feedback. Bifurcation boundaries are derived using the Hopf bifurcation analysis, which will be helpful for determining the parameters in the stabilisation of the originally chaotic circuit
Instability in time-delayed switched systems induced by fast and random switching
Guo, Yao; Lin, Wei; Chen, Yuming; Wu, Jianhong
2017-07-01
In this paper, we consider a switched system comprising finitely or infinitely many subsystems described by linear time-delayed differential equations and a rule that orchestrates the system switching randomly among these subsystems, where the switching times are also randomly chosen. We first construct a counterintuitive example where even though all the time-delayed subsystems are exponentially stable, the behaviors of the randomly switched system change from stable dynamics to unstable dynamics with a decrease of the dwell time. Then by using the theories of stochastic processes and delay differential equations, we present a general result on when this fast and random switching induced instability should occur and we extend this to the case of nonlinear time-delayed switched systems as well.
International Nuclear Information System (INIS)
Jin, Maolin; Chang, Pyung Hun
2009-01-01
This work presents two simple and robust techniques based on time delay estimation for the respective control and synchronization of chaos systems. First, one of these techniques is applied to the control of a chaotic Lorenz system with both matched and mismatched uncertainties. The nonlinearities in the Lorenz system is cancelled by time delay estimation and desired error dynamics is inserted. Second, the other technique is applied to the synchronization of the Lue system and the Lorenz system with uncertainties. The synchronization input consists of three elements that have transparent and clear meanings. Since time delay estimation enables a very effective and efficient cancellation of disturbances and nonlinearities, the techniques turn out to be simple and robust. Numerical simulation results show fast, accurate and robust performance of the proposed techniques, thereby demonstrating their effectiveness for the control and synchronization of Lorenz systems.
Cucker-Smale model with normalized communication weights and time delay
Choi, Young-Pil
2017-03-06
We study a Cucker-Smale-type system with time delay in which agents interact with each other through normalized communication weights. We construct a Lyapunov functional for the system and provide sufficient conditions for asymptotic flocking, i.e., convergence to a common velocity vector. We also carry out a rigorous limit passage to the mean-field limit of the particle system as the number of particles tends to infinity. For the resulting Vlasov-type equation we prove the existence, stability and large-time behavior of measure-valued solutions. This is, to our best knowledge, the first such result for a Vlasov-type equation with time delay. We also present numerical simulations of the discrete system with few particles that provide further insights into the flocking and oscillatory behaviors of the particle velocities depending on the size of the time delay.
Time delay for resonant vibrational excitation in electron--molecule collisions
International Nuclear Information System (INIS)
Gauyacq, J.P.
1990-01-01
An analysis of the time delay associated with vibrational excitation in electron--molecule collision is presented. It consists of a direct study of the time dependence of the process for three model systems. An electron wave packet, that is narrow in time, is sent on the target and the amplitudes in the different inelastic channels are studied as functions of time. The time delay is found to correspond to very different time effects: broadenings, shifts in time of the wave packet, but also complex distortions that cannot be represented by a time delay. The direct analysis of the scattered wave also provides new insights into the vibrational excitation process. It should be a useful tool to analyze complex collision processes
Omer, Muhammad
2012-07-01
This paper presents a new method of time delay estimation (TDE) using low sample rates of an impulsive acoustic source in a room environment. The proposed method finds the time delay from the room impulse response (RIR) which makes it robust against room reverberations. The RIR is considered a sparse phenomenon and a recently proposed sparse signal reconstruction technique called orthogonal clustering (OC) is utilized for its estimation from the low rate sampled received signal. The arrival time of the direct path signal at a pair of microphones is identified from the estimated RIR and their difference yields the desired time delay. Low sampling rates reduce the hardware and computational complexity and decrease the communication between the microphones and the centralized location. The performance of the proposed technique is demonstrated by numerical simulations and experimental results. © 2012 IEEE.
Robust H∞ Control of Neutral System with Time-Delay for Dynamic Positioning Ships
Directory of Open Access Journals (Sweden)
Dawei Zhao
2015-01-01
Full Text Available Due to the input time-delay existing in most thrust systems of the ships, the robust H∞ controller is designed for the ship dynamic positioning (DP system with time-delay. The input delay system is turned to a neutral time-delay system by a state-derivative control law. The less conservative result is derived for the neutral system with state-derivative feedback by the delay-decomposition approach and linear matrix inequality (LMI. Finally, the numerical simulations demonstrate the asymptotic stability and robustness of the controller and verify that the designed DP controller is effective in the varying environment disturbances of wind, waves, and ocean currents.
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2014-07-01
Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Long-time behavior for suspension bridge equations with time delay
Park, Sun-Hye
2018-04-01
In this paper, we consider suspension bridge equations with time delay of the form u_{tt}(x,t) + Δ ^2 u (x,t) + k u^+ (x,t) + a_0 u_t (x,t) + a_1 u_t (x, t- τ ) + f(u(x,t)) = g(x). Many researchers have studied well-posedness, decay rates of energy, and existence of attractors for suspension bridge equations without delay effects. But, as far as we know, there is no work about suspension equations with time delay. In addition, there are not many studies on attractors for other delayed systems. Thus we first provide well-posedness for suspension equations with time delay. And then show the existence of global attractors and the finite dimensionality of the attractors by establishing energy functionals which are related to the norm of the phase space to our problem.
Directory of Open Access Journals (Sweden)
Huitao Zhao
2013-01-01
Full Text Available A ratio-dependent predator-prey model with two time delays is studied. By means of an iteration technique, sufficient conditions are obtained for the global attractiveness of the positive equilibrium. By comparison arguments, the global stability of the semitrivial equilibrium is addressed. By using the theory of functional equation and Hopf bifurcation, the conditions on which positive equilibrium exists and the quality of Hopf bifurcation are given. Using a global Hopf bifurcation result of Wu (1998 for functional differential equations, the global existence of the periodic solutions is obtained. Finally, an example for numerical simulations is also included.
Directory of Open Access Journals (Sweden)
Rong Li
2018-01-01
Full Text Available This paper investigates a class of nonlinear time-delayed systems with output prescribed performance constraint. The neural network and DOB (disturbance observer are designed to tackle the uncertainties and external disturbance, and prescribed performance function is constructed for the output prescribed performance constrained problem. Then the robust controller is designed by using adaptive backstepping method, and the stability analysis is considered by using Lyapunov-Krasovskii. Furthermore, the proposed method is employed into the unmanned helicopter system with time-delay aerodynamic uncertainty. Finally, the simulation results illustrate that the proposed robust prescribed performance control system achieved a good control performance.
Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: A Functional Approach
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2003-01-01
In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unsteady aerodynamics are considered linear. The implications of the presence of time delays in the linear/nonlinear feedback control and of geometrical parameters on the aeroelasticity of lifting surfaces are analyzed and conclusions on their implications are highlighted.
Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems
International Nuclear Information System (INIS)
Ghosh, Dibakar; Chowdhury, A. Roy
2010-01-01
In this Letter, dual synchronization in modulated time delay system using delay feedback controller is proposed. Based on Lyapunov stability theory, we suggest a general method to achieve the dual-anticipating, dual, dual-lag synchronization of time-delayed chaotic systems and we find both its existing and sufficient stability conditions. Numerically it is shown that the dual synchronization is also possible when driving system contain two completely different systems. Effect of parameter mismatch on dual synchronization is also discussed. As an example, numerical simulations for the Mackey-Glass and Ikeda systems are conducted, which is in good agreement with the theoretical analysis.
The Application of Time-Delay Dependent H∞ Control Model in Manufacturing Decision Optimization
Directory of Open Access Journals (Sweden)
Haifeng Guo
2015-01-01
Full Text Available This paper uses a time-delay dependent H∞ control model to analyze the effect of manufacturing decisions on the process of transmission from resources to capability. We establish a theoretical framework of manufacturing management process based on three terms: resource, manufacturing decision, and capability. Then we build a time-delay H∞ robust control model to analyze the robustness of manufacturing management. With the state feedback controller between manufacturing resources and decision, we find that there is an optimal decision to adjust the process of transmission from resources to capability under uncertain environment. Finally, we provide an example to prove the robustness of this model.
Network Synchronization in a Noisy Environment with Time Delays: Fundamental Limits and Trade-Offs
Hunt, D.; Korniss, G.; Szymanski, B. K.
2010-08-01
We study the effects of nonzero time delays in stochastic synchronization problems with linear couplings in an arbitrary network. Using the known exact threshold value from the theory of differential equations with delays, we provide the synchronizability threshold for an arbitrary network. Further, by constructing the scaling theory of the underlying fluctuations, we establish the absolute limit of synchronization efficiency in a noisy environment with uniform time delays, i.e., the minimum attainable value of the width of the synchronization landscape. Our results also have strong implications for optimization and trade-offs in network synchronization with delays.
Graphical Evaluation of Time-Delay Compensation Techniques for Digitally Controlled Converters
DEFF Research Database (Denmark)
Lu, Minghui; Wang, Xiongfei; Loh, Poh Chiang
2018-01-01
A main design constraint of the digitally controlled power electronics converters is the time delay of control systems, which may lead to the reduced control loop bandwidth and even unstable dynamics. Numerous time-delay compensation methods have been developed, of which the model-free schemes...... are independent to model accuracy whereas the model-based alternatives are sensitive to system modeling. This paper first presents a graphical illustration of four model-free delay compensation techniques, where their principles and performances are intuitively elaborated and compared by means of the impulse area....... Simulations and experimental test results validate the effectiveness of the graphical comparisons and the proposed approach....
Energy Technology Data Exchange (ETDEWEB)
Novaes, Marcel [Instituto de Física, Universidade Federal de Uberlândia, Ave. João Naves de Ávila, 2121, Uberlândia, MG 38408-100 (Brazil)
2015-06-15
We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
International Nuclear Information System (INIS)
Feng Cun-Fang; Wang Ying-Hai
2011-01-01
Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach. (general)
Time delay between singly and doubly ionizing wavepackets in laser-driven helium
International Nuclear Information System (INIS)
Parker, J S; Doherty, B J S; Meharg, K J; Taylor, K T
2003-01-01
We present calculations of the time delay between single and double ionization of helium, obtained from full-dimensionality numerical integrations of the helium-laser Schroedinger equation. The notion of a quantum mechanical time delay is defined in terms of the interval between correlated bursts of single and double ionization. Calculations are performed at 390 and 780 nm in laser intensities that range from 2 x 10 14 to 14 x 10 14 Wcm -2 . We find results consistent with the rescattering model of double ionization but supporting its classical interpretation only at 780 nm. (letter to the editor)
Reconstruction of ensembles of coupled time-delay systems from time series.
Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P
2014-06-01
We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.
ANOMALY NETWORK INTRUSION DETECTION SYSTEM BASED ON DISTRIBUTED TIME-DELAY NEURAL NETWORK (DTDNN
Directory of Open Access Journals (Sweden)
LAHEEB MOHAMMAD IBRAHIM
2010-12-01
Full Text Available In this research, a hierarchical off-line anomaly network intrusion detection system based on Distributed Time-Delay Artificial Neural Network is introduced. This research aims to solve a hierarchical multi class problem in which the type of attack (DoS, U2R, R2L and Probe attack detected by dynamic neural network. The results indicate that dynamic neural nets (Distributed Time-Delay Artificial Neural Network can achieve a high detection rate, where the overall accuracy classification rate average is equal to 97.24%.
Hydrodynamic Cucker-Smale model with normalized communication weights and time delay
Choi, Young-Pil
2017-07-17
We study a hydrodynamic Cucker-Smale-type model with time delay in communication and information processing, in which agents interact with each other through normalized communication weights. The model consists of a pressureless Euler system with time delayed non-local alignment forces. We resort to its Lagrangian formulation and prove the existence of its global in time classical solutions. Moreover, we derive a sufficient condition for the asymptotic flocking behavior of the solutions. Finally, we show the presence of a critical phenomenon for the Eulerian system posed in the spatially one-dimensional setting.
Adibi, Atoosa; Shahbazi, Ali
2014-01-01
Background Bolus tracking can individualize time delay for the start of scans in spiral computed tomography (CT). Objectives We compared automatic bolus tracking method with fixed time-delay technique in biphasic contrast enhancement during multidetector CT of abdomen. Patients and Methods Adult patients referred for spiral CT of the abdomen were randomized into two groups; in group 1, the arterial and portal phases of spiral scans were started 25 s and 55 s after the start of contrast material administration; in group 2, using the automatic bolus tracking software, repetitive monitoring scans were performed within the lumen of the descending aorta as the region of interest with the threshold of starting the diagnostic scans as 60 HU. The contrast enhancement of the aorta, liver, and spleen were compared between the groups. Results Forty-eight patients (23 males, 25 females, mean age=56.4±13.5 years) were included. The contrast enhancement of the aorta, liver, and spleen at the arterial phase was similar between the two groups (P>0.05). Regarding the portal phase, the aorta and spleen were more enhanced in the bolus-tracking group (P<0.001). The bolus tracking provided more homogeneous contrast enhancement among different patients than the fixed time-delay technique in the liver at portal phase, but not at the arterial phase. Conclusions The automatic bolus-tracking method, results in higher contrast enhancement of the aorta and spleen at the portal phase, but has no effect on liver enhancement. However, bolus tracking is associated with reduced variability for liver enhancement among different patients. PMID:24693300
Aikin, Kathryn J; Southwell, Brian G; Paquin, Ryan S; Rupert, Douglas J; O'Donoghue, Amie C; Betts, Kevin R; Lee, Philip K
Prescription drug television advertisements containing potentially consequential misinformation sometimes appear in the United States. When that happens, the U.S. Food and Drug Administration can request that companies distribute corrective advertisements to address misinformation and inaccurate claims. Previous research has demonstrated effectiveness in corrective advertising for various products. The present article builds on that work with a randomized experimental study (n = 6454) of corrective advertising investigating the extent to which visual similarity matters between violative and corrective ads and the extent to which time delay matters between violative and corrective advertisement exposure. Our study sample included overweight or obese U.S. adults recruited from an existing online consumer panel representative of the U.S. adult population. We created a brand for a fictitious prescription weight-loss drug and produced corresponding direct-to-consumer (DTC) television ads. All participants viewed the same violative ad, but were randomly assigned to view corrective ads with different levels of visual similarity and exposure time delay using a 4 × 4 between-subjects factorial design. Results suggest corrective ad exposure can influence consumer perceptions of drug efficacy, risks, and benefits previously established by violative ads that overstated drug efficacy, broadened drug indication, and omitted important risk information. Corrective ads also can weaken consumer intentions to consider and investigate a drug. However, ad similarity does not appear to affect consumer perceptions and preferences. Although we found that the effects of violative ad exposure tend to diminish over time, the length of the delay between violative and corrective ad exposure has limited influence. An exception to this was observed with regard to recall of drug benefits and risks, where the impact of corrective ad exposure increases with greater time delay. These results
DEFF Research Database (Denmark)
Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.
2017-01-01
This paper focuses on a multi-agent based distributed coordinated control for radial DC microgrid considering trans-mission time delays. Firstly, a two-level multi-agent system is constructed, where local control is formulated based on local states and executed by means of the first-level agent...
The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays
Energy Technology Data Exchange (ETDEWEB)
Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2017-04-15
We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.
Effect of Magnetic Activity on Ionospheric Time Delay at Low Latitude
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... The purpose of this work is to investigate the effect of magnetic activity on ionospheric time delay at low latitude Station Bhopal (geom. lat. 23.2°N, geom. long. 77.6°E) using ... Space Science Laboratory, Department of Physics, Barkatullah University, Bhopal 462 026, India. National Institute of Technical, ...
The Impact of a Time Delay on the Depleted Proportion of the Viral ...
African Journals Online (AJOL)
Journal of the Nigerian Association of Mathematical Physics ... While the impact of the variability of the reproductive rate of the infected cell on the viral load of the virions is an on-going research activity, the inclusion of a time delay which mimics the African culture of diverse health inhibiting belief system is a new numerical ...
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
Stability bound analysis of singularly perturbed systems with time-delay
Directory of Open Access Journals (Sweden)
Sun Fengqi
2013-01-01
Full Text Available This paper considers the stability bound problem of singularly perturbed systems with time-delay. Some stability criteria are derived by constructing appropriate Lyapunov-Krasovskii functionals. The proposed criteria are less conservative than the existing ones. Two numerical examples are given to illustrate the advantages and effectiveness of the proposed methods.
The effects of resonances on time delay estimation for water leak detection in plastic pipes
Almeida, Fabrício C. L.; Brennan, Michael J.; Joseph, Phillip F.; Gao, Yan; Paschoalini, Amarildo T.
2018-04-01
In the use of acoustic correlation methods for water leak detection, sensors are placed at pipe access points either side of a suspected leak, and the peak in the cross-correlation function of the measured signals gives the time difference (delay) between the arrival times of the leak noise at the sensors. Combining this information with the speed at which the leak noise propagates along the pipe, gives an estimate for the location of the leak with respect to one of the measurement positions. It is possible for the structural dynamics of the pipe system to corrupt the time delay estimate, which results in the leak being incorrectly located. In this paper, data from test-rigs in the United Kingdom and Canada are used to demonstrate this phenomenon, and analytical models of resonators are coupled with a pipe model to replicate the experimental results. The model is then used to investigate which of the two commonly used correlation algorithms, the Basic Cross-Correlation (BCC) function or the Phase Transform (PHAT), is more robust to the undesirable structural dynamics of the pipe system. It is found that time delay estimation is highly sensitive to the frequency bandwidth over which the analysis is conducted. Moreover, it is found that the PHAT is particularly sensitive to the presence of resonances and can give an incorrect time delay estimate, whereas the BCC function is found to be much more robust, giving a consistently accurate time delay estimate for a range of dynamic conditions.
Dynamic analysis of high-order Cohen-Grossberg neural networks with time delay
International Nuclear Information System (INIS)
Chen Zhang; Zhao Donghua; Ruan Jiong
2007-01-01
In this paper, a class of high-order Cohen-Grossberg neural networks with time delay is studied. Several sufficient conditions are obtained for global asymptotic stability and global exponential stability using Lyapunov and LMI method. Finally, two examples are given to illustrate the effectiveness of our method
Communication key using delay times in time-delayed chaos synchronization
International Nuclear Information System (INIS)
Kim, Chil-Min; Kye, Won-Ho; Rim, Sunghwan; Lee, Soo-Young
2004-01-01
We propose an efficient key scheme, which can generate a great number of communication keys, for communication using chaos synchronization. We have attained the keys from delay times of time-delay coupled chaotic systems. We explain the scheme and the efficiency by coupling Henon and logistic maps and illustrate them by coupling Navier-Stokes and Lorenz equations as a continuous system
Using convolutional decoding to improve time delay and phase estimation in digital communications
Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM
2010-01-26
The time delay and/or phase of a communication signal received by a digital communication receiver can be estimated based on a convolutional decoding operation that the communication receiver performs on the received communication signal. If the original transmitted communication signal has been spread according to a spreading operation, a corresponding despreading operation can be integrated into the convolutional decoding operation.
Robust stability of bidirectional associative memory neural networks with time delays
International Nuclear Information System (INIS)
Park, Ju H.
2006-01-01
Based on the Lyapunov-Krasovskii functionals combined with linear matrix inequality approach, a novel stability criterion is proposed for asymptotic stability of bidirectional associative memory neural networks with time delays. A novel delay-dependent stability criterion is given in terms of linear matrix inequalities, which can be solved easily by various optimization algorithms
Inverse chaos synchronization in linearly and nonlinearly coupled systems with multiple time-delays
International Nuclear Information System (INIS)
Shahverdiev, E.M.; Hashimov, R.H.; Nuriev, R.A.; Hashimova, L.H.; Huseynova, E.M.; Shore, K.A.
2005-04-01
We report on inverse chaos synchronization between two unidirectionally linearly and nonlinearly coupled chaotic systems with multiple time-delays and find the existence and stability conditions for different synchronization regimes. We also study the effect of parameter mismatches on synchonization regimes. The method is tested on the famous Ikeda model. Numerical simulations fully support the analytical approach. (author)
Absolute stability of nonlinear systems with time delays and applications to neural networks
Directory of Open Access Journals (Sweden)
Xinzhi Liu
2001-01-01
Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.
Eliminating oscillations in the Internet by time-delayed feedback control
International Nuclear Information System (INIS)
Liu Chenglin; Tian Yuping
2008-01-01
In this paper, a time-delayed feedback control method is applied to congestion control in order to eliminate oscillations in the Internet. The stability of the proposed control method is demonstrated based on frequency-domain analysis. The effectiveness of the method is illustrated using simulation
The Impact of Time Delays in Network Synchronization in a Noisy Environment
Korniss, G.
2012-02-01
Coordinating, distributing, and balancing resources in networks is a complex task and it is very sensitive to time delays. To understand and manage the collective response in these coupled interacting systems, one must understand the interplay of stochastic effects, network connections, and time delays. In synchronization and coordination problems in coupled interacting systems individual units attempt to adjust their local state variables (e.g., pace, orientation, load) in a decentralized fashion. They interact or communicate only with their local neighbors in the network, often with explicit or implicit intention to improve global performance. Applications of the corresponding models range from physics, biology, computer science to control theory. I will discuss the effects of nonzero time delays in stochastic synchronization problems with linear couplings in an arbitrary network. Further, by constructing the scaling theory of the underlying fluctuations, we establish the absolute limit of synchronization efficiency in a noisy environment with uniform time delays, i.e., the minimum attainable value of the width of the synchronization landscape.ootnotetextD. Hunt, G. Korniss, and B.K. Szymanski, Phys. Rev. Lett. 105, 068701 (2010). These results have also strong implications for optimization and trade-offs in network synchronization with delays.
Integral equations of fractional order with multiple time delays in Banach spaces
Directory of Open Access Journals (Sweden)
Mouffak Benchohra
2012-04-01
Full Text Available In this article, we give sufficient conditions for the existence of solutions for an integral equation of fractional order with multiple time delays in Banach spaces. Our main tool is a fixed point theorem of Monch type associated with measures of noncompactness. Our results are illustrated by an example.
Ma, Huanfei; Leng, Siyang; Tao, Chenyang; Ying, Xiong; Kurths, Jürgen; Lai, Ying-Cheng; Lin, Wei
2017-07-01
Data-based and model-free accurate identification of intrinsic time delays and directional interactions is an extremely challenging problem in complex dynamical systems and their networks reconstruction. A model-free method with new scores is proposed to be generally capable of detecting single, multiple, and distributed time delays. The method is applicable not only to mutually interacting dynamical variables but also to self-interacting variables in a time-delayed feedback loop. Validation of the method is carried out using physical, biological, and ecological models and real data sets. Especially, applying the method to air pollution data and hospital admission records of cardiovascular diseases in Hong Kong reveals the major air pollutants as a cause of the diseases and, more importantly, it uncovers a hidden time delay (about 30-40 days) in the causal influence that previous studies failed to detect. The proposed method is expected to be universally applicable to ascertaining and quantifying subtle interactions (e.g., causation) in complex systems arising from a broad range of disciplines.
Effect of wave-function localization on the time delay in photoemission from surfaces
International Nuclear Information System (INIS)
Zhang, C.-H.; Thumm, U.
2011-01-01
We investigate streaking time delays in the photoemission from a solid model surface as a function of the degree of localization of the initial-state wave functions. We consider a one-dimensional slab with lattice constant a latt of attractive Gaussian-shaped core potentials of width σ. The parameter σ/a latt thus controls the overlap between adjacent core potentials and localization of the electronic eigenfunctions on the lattice points. Small values of σ/a latt latt > or approx 0.4. By numerically solving the time-dependent Schroedinger equation, we calculate photoemission spectra from which we deduce a characteristic bimodal shape of the band-averaged photoemission time delay: as the slab eigenfunctions become increasingly delocalized, the time delay quickly decreases near σ/a latt =0.3 from relatively large values below σ/a latt ∼0.2 to much smaller delays above σ/a latt ∼0.4. This change in wave-function localization facilitates the interpretation of a recently measured apparent relative time delay between the photoemission from core and conduction-band levels of a tungsten surface.
A unified approach for impulsive lag synchronization of chaotic systems with time delay
International Nuclear Information System (INIS)
Li Chuandong; Liao Xiaofeng; Zhang Rong
2005-01-01
In this paper, we propose a unified approach for impulsive lag-synchronization of a class of chaotic systems with time delay by employing the stability theory of impulsive delayed differential equations. Three well-known delayed chaotic systems are presented to illustrate our results. Also, the estimates of the stable regions for these systems are given, respectively
Introducing time delay in the evolution of new technology: the case study of nanotechnology
Georgalis, Evangelos E.; Aifantis, Elias C.
2013-12-01
Starting with Feynman's "There's Plenty of Room at the Bottom" prophetic lecture at Caltech in the 1960s, the term "nanotechnology" was first coined in the scientific literature in the 1980s. This was followed by the unprecedented growth in the corresponding scientific field in 2000 due to the financial incentive provided by President Clinton in the US, followed up by similar efforts in Europe, Japan, China and Russia. Today, nanotechnology has become a driving force for economic development, with applications in all fields of engineering, information technology, transport and energy, as well as biology and medicine. Thus, it is important to forecast its future growth and evolution on the basis of two different criteria: (1) the government and private capital invested in related activities, and (2) the number of scientific publications and popular articles dedicated to this field. This article aims to extract forecasts on the evolution of nanotechnology, using the standard logistic equation that result in familiar sigmoid curves, as well as to explore the effect of time delay on its evolution. Time delay is commonly known from previous biological and ecological models, in which time lag is either already known or can be experimentally measured. In contrast, in the case of a new technology, we must first define the method for determining time delay and then interpret its existence and role. Then we describe the implications that time delay may have on the stability of the sigmoidal behavior of nanotechnology evolution and on the related oscillations that may appear.
Impacts of Wake Effect and Time Delay on the Dynamic Analysis of Wind Farms Models
El-Fouly, Tarek H. M.; El-Saadany, Ehab F.; Salama, Magdy M. A.
2008-01-01
This article investigates the impacts of proper modeling of the wake effects and wind speed delays, between different wind turbines' rows, on the dynamic performance accuracy of the wind farms models. Three different modeling scenarios were compared to highlight the impacts of wake effects and wind speed time-delay models. In the first scenario,…
An improved condition for master-slave synchronization of Lur'e systems with time delay
International Nuclear Information System (INIS)
Xiang, Ji; Li, Yanjun; Wei, Wei
2007-01-01
In this Letter, a new sufficient condition is proposed for master-slave synchronization of Lur'e system with time delay. This condition is constructed on the new integral inequality method such that the obtained result is much sharper than that in [M.E.Y. Yalcin, J.A.K. Suykens, J. Vandewalle, Int. J. Bifur. Chaos 11 (2001) 1707
An analysis of global robust stability of neural networks with discrete time delays
International Nuclear Information System (INIS)
Ozcan, Neyir; Arik, Sabri
2006-01-01
This Letter presents a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for neural networks with discrete time delays. The obtained condition can be easily verified as it is in terms of the network parameters only. Some numerical examples are given to compare our results with previous robust stability results derived in the literature
Effect of Magnetic Activity on Ionospheric Time Delay at Low Latitude
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... The purpose of this work is to investigate the effect of magnetic activity on ionospheric time delay at low latitude Station Bhopal (geom. lat. 23.2°N, geom. long. 77.6°E) using dual frequency (1575.42 and 1227.60 MHz) GPS measurements. Data from GSV4004A GPS Ionospheric Scintillation and TEC ...
Feedback control of a dc servomotor with time delays subjected to disturbance signals
Directory of Open Access Journals (Sweden)
Arif Ankaralı
2017-08-01
Full Text Available The time delay imposed in the wireless control systems makes it difficult to guarantee stable response in many cases. Especially, delays in feedforward path combined with feedback path may result in some stability problems of the controlled system response. For the remote control of servomotors used on unmanned aerial or underwater vehicles, space manipulators and humanoid robots time delays has got great importance in real time remote control of those systems. The time delay in the feedforward path may be caused by computer control algorithm processing, buffering, transmitting process of control signals through antenna, receiving process of control signals through antenna on the vehicle and the complementary hardware processing. Similarly, on the feedback path, position feedback signal measured by encoder is transmitted in reverse order of the control signal with some delay time. In this paper, the PID control of a DC servomotor with constant time delays will be discussed in detail. After specifying the effects of the delays in the system, Smith predictor will be added to the model to minimize the undesired effects on the output response of the servomotor. For the wireless control of the servomotors actuating some mechanical systems, a modified Smith predictor is designed to drive the system efficiently to take care of the disturbance effects coming from the dynamics of the driven parts. The success of the calculated predictors together with the tuned PID controller and the controllable range for disturbance to controller signal ratio are shown on a low power DC servomotor by simulations.
The time delay of patients presenting with symptoms of TB at TC ...
African Journals Online (AJOL)
Tuberculosis (TB) is a major health problem in South Africa. The early detection and treatment of TB cases are essential. The impression of senior staff working at the TC Newman Community Health Centre (TCN), Paarl was that there often is an unnecessary time delay between the presentation of TB symptoms and the ...
Development of a Marx-coupled trigger generator with high voltages and low time delay
Hu, Yixiang; Zeng, Jiangtao; Sun, Fengju; Cong, Peitian; Su, Zhaofeng; Yang, Shi; Zhang, Xinjun; Qiu, Ai'ci
2016-10-01
Coupled by the Marx of the "JianGuang-I" facility, a high voltage, low time-delay trigger generator was developed. Working principles of this trigger generator and its key issues were described in detail. Structures of this generator were also carefully designed and optimized. Based on the "JianGuang-I" Marx generator, a test stand was established. And a series of experiment tests were carried out to the study performance of this trigger generator. Experiment results show that the output voltage of this trigger generator can be continuously adjusted from 58 kV to 384 kV. The time delay (from the beginning of the Marx-discharging pulse to the time that the output pulse of the trigger generator arises) of this trigger pulse is about 200 ns and its peak time (0%˜100%) is less than 50 ns. Experiment results also indicate that the time-delay jitter of trigger voltages decreases rapidly with the increase in the peak voltage of trigger pulses. When the trigger voltage is higher than 250 kV, the time-delay jitters (the standard deviation) are less than 7.7 ns.
Using GeneReg to construct time delay gene regulatory networks
Directory of Open Access Journals (Sweden)
Qian Ziliang
2010-05-01
Full Text Available Abstract Background Understanding gene expression and regulation is essential for understanding biological mechanisms. Because gene expression profiling has been widely used in basic biological research, especially in transcription regulation studies, we have developed GeneReg, an easy-to-use R package, to construct gene regulatory networks from time course gene expression profiling data; More importantly, this package can provide information about time delays between expression change in a regulator and that of its target genes. Findings The R package GeneReg is based on time delay linear regression, which can generate a model of the expression levels of regulators at a given time point against the expression levels of their target genes at a later time point. There are two parameters in the model, time delay and regulation coefficient. Time delay is the time lag during which expression change of the regulator is transmitted to change in target gene expression. Regulation coefficient expresses the regulation effect: a positive regulation coefficient indicates activation and negative indicates repression. GeneReg was implemented on a real Saccharomyces cerevisiae cell cycle dataset; more than thirty percent of the modeled regulations, based entirely on gene expression files, were found to be consistent with previous discoveries from known databases. Conclusions GeneReg is an easy-to-use, simple, fast R package for gene regulatory network construction from short time course gene expression data. It may be applied to study time-related biological processes such as cell cycle, cell differentiation, or causal inference.
Directory of Open Access Journals (Sweden)
Peilu Liu
2017-10-01
Full Text Available In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA. In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.
Time delays prior to movement alter the drawing kinematics of elderly adults
Romero, DH; Van Gemmert, AWA; Adler, CH; Bekkering, H; Stelmach, GE
Position sense has been found to decay as a function of the time delay the limb remains in a static position prior to movement onset. Position sense has also been found to deteriorate as a function of aging, with increased reliance on vision by the elderly. This study investigated whether the
Time delays prior to movement alter the drawing kinematics of elderly adults
Romero, D.H.; Gemmert, A.W.A. van; Adler, C.H.; Bekkering, H.; Stelmach, G.E.
2003-01-01
Position sense has been found to decay as a function of the time delay the limb remains in a static position prior to movement onset. Position sense has also been found to deteriorate as a function of aging, with increased reliance on vision by the elderly. This study investigated whether the
On the choice of lens density profile in time delay cosmography
Sonnenfeld, Alessandro
2018-03-01
Time delay lensing is a mature and competitive cosmological probe. However, it is limited in accuracy by the well-known problem of the mass-sheet degeneracy: too rigid assumptions on the density profile of the lens can potentially bias the inference on cosmological parameters. I investigate the degeneracy between the choice of the lens density profile and the inference on the Hubble constant, focusing on double image systems. By expanding lensing observables in terms of the local derivatives of the lens potential around the Einstein radius, and assuming circular symmetry, I show that 3 degrees of freedom in the radial direction are necessary to achieve a few per cent accuracy in the time-delay distance. Additionally, while the time delay is strongly dependent on the second derivative of the potential, observables typically used to constrain lens models in time-delay studies, such as image position and radial magnification information, are mostly sensitive to the first and third derivatives, making it very challenging to accurately determine time-delay distances with lensing data alone. Tests on mock observations show that the assumption of a power-law density profile results in a 5 per cent average bias on H0, with a 6 per cent scatter. Using a more flexible model and adding unbiased velocity dispersion constraints allows me to obtain an inference with 1 per cent accuracy. A power-law model can still provide 3 per cent accuracy if velocity dispersion measurements are used to constrain its slope. Although this study is based on the assumption of axisymmetry, its main findings can be generalized to cases with moderate ellipticity.
LENS MODEL AND TIME DELAY PREDICTIONS FOR THE SEXTUPLY LENSED QUASAR SDSS J2222+2745
Energy Technology Data Exchange (ETDEWEB)
Sharon, Keren; Johnson, Traci L.; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Bayliss, Matthew B. [Colby College, 5800 Mayflower Hill, Waterville, 04901, Maine (United States); Dahle, Håkon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael K.; Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Whitaker, Katherine E. [Department of Astronomy, University of Massachusetts-Amherst, Amherst, MA 01003 (United States); Wuyts, Eva, E-mail: kerens@umich.edu [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, D-85741 Garching (Germany)
2017-01-20
SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τ {sub AB} = 47.7 ± 6.0 days and τ {sub AC} = −722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τ {sub AD} = 502 ± 68 days, τ {sub AE} = 611 ± 75 days, and τ {sub AF} = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift , indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.
Pitkin, M.; Doolan, S.; McMenamin, L.; Wette, K.
2018-02-01
The frequencies and phases of emission from extra-solar sources measured by Earth-bound observers are modulated by the motions of the observer with respect to the source, and through relativistic effects. These modulations depend critically on the source's sky-location. Precise knowledge of the modulations are required to coherently track the source's phase over long observations, for example, in pulsar timing, or searches for continuous gravitational waves. The modulations can be modelled as sky-location and time dependent time delays that convert arrival times at the observer to the inertial frame of the source, which can often be the solar system barycentre (SSB). We study the use of Reduced Order Modelling for speeding up the calculation of this time delay for any sky-location. We find that the time delay model can be decomposed into just four basis vectors, and with these the delay for any sky-location can be reconstructed to sub-nanosecond accuracy. When compared to standard routines for time delay calculation in gravitational wave searches, using the reduced basis can lead to speed-ups of 30 times. We have also studied components of time delays for sources in binary systems. Assuming eccentricities speed-ups of a factor of 10, or factors of two when interpolating the basis for different orbital periods or time stamps. In long-duration phase-coherent searches for sources with sky-position uncertainties, or binary parameter uncertainties, these speed-ups could allow enhancements in their scopes without large additional computational burdens.
A novel control framework for nonlinear time-delayed dual-master/single-slave teleoperation.
Ghorbanian, A; Rezaei, S M; Khoogar, A R; Zareinejad, M; Baghestan, K
2013-03-01
A novel trilateral control architecture for the Dual-master/Single-slave teleoperation is proposed in this paper. This framework has been used in surgical training and rehabilitation applications. In this structure, the slave motion has been controlled by weighted summation of signals transmitted by the operator referring to task control authority through the dominance factors. The nonlinear dynamics for telemanipulators are considered which were considered as disregarded issues in previous studies of this field. Bounded variable time-delay has been considered which affects the transmitted signals in the communication channels. Two types of controllers have been offered and an appropriate stability analysis for each controller has been demonstrated. The first controller includes Proportional with dissipative gains (P+d). The second one contains Proportional and Derivative with dissipative gains (PD+d). In both cases, the stability of the trilateral control framework is preserved by choosing appropriate controller's gains. It is shown that these controllers attempt to coordinate the positions of telemanipulators in the free motion condition. The stability of the Dual-master/Single-slave teleoperation has been proved by an appropriate Lyapunov like function and the stability conditions have been studied. In addition the proposed PD+d control architecture is modified for trilateral teleoperation with internet communication between telemanipulators that caused such communication complications as packet loss, data duplication and swapping. A number of experiments have been conducted with various levels of dominance factor to validate the effectiveness of the new control architecture. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Odour-tracking capability of a silkmoth driving a mobile robot with turning bias and time delay
International Nuclear Information System (INIS)
Ando, N; Emoto, S; Kanzaki, R
2013-01-01
The reconstruction of mechanisms behind odour-tracking behaviours of animals is expected to enable the development of biomimetic robots capable of adaptive behaviour and effectively locating odour sources. However, because the behavioural mechanisms of animals have not been extensively studied, their behavioural capabilities cannot be verified. In this study, we have employed a mobile robot driven by a genuine insect (insect-controlled robot) to evaluate the behavioural capabilities of a biological system implemented in an artificial system. We used a male silkmoth as the ‘driver’ and investigated its behavioural capabilities to imposed perturbations during odour tracking. When we manipulated the robot to induce the turning bias, it located the odour source by compensatory turning of the on-board moth. Shifting of the orientation paths to the odour plume boundaries and decreased orientation ability caused by covering the visual field suggested that the moth steered with bilateral olfaction and vision to overcome the bias. An evaluation of the time delays of the moth and robot movements suggested an acceptable range for sensory-motor processing when the insect system was directly applied to artificial systems. Further evaluations of the insect-controlled robot will provide a ‘blueprint’ for biomimetic robots and strongly promote the field of biomimetics. (paper)
Directory of Open Access Journals (Sweden)
Segundo Álvaro Muñoz Ohmen
2014-03-01
de derivados cárnicos, y el marinado no determinó un comportamiento diferente al control durante el tiempo estudiado. / In order to determine the nature of the fluid and observe the effect on viscosity, were evaluated brines for chicken marinated with 4% solids , comprising salt (2% constant in the brine, soy protein (PV, phosphates and inulin (I, the latter in concentrations ranging from 0 to 2%, resulting in seven treatments, including a control sample without I. All brines showed rheological behavior of a Newtonian fluid. Brines with the highest percentages of vegetable protein had higher viscosity values. Brine 2 with I at 1% was selected as the best by their viscosity (application conditions and protein concentration and phosphates (Legislation, the brine was applied to eighteen chicken breasts, injected at 5, 10, and 15% to evaluate their effect on retention capacity calculated by thawing and cooking losses; was also conducted sensory analysis to observe their effects on the properties of texture, color, aroma, flavor and overall quality. At a higher level of the brine injection, holding capacity also increases, and this trend is maintained after the cooking process. Retention capacity increased to high levels of injection of brine and this tendency is the same after cooking. The ention capacity of treating brine injection 5% with and without I, showed significant differences between 15% with I. Statistical analysis shows that there are significant differences between the treatment to 15% compared to injection levels to 5%, with and without inulin. Sensory analysis of color, flavor and aroma to the chicken breasts in all treatments had better values than those of juiciness and hardness, indicating it may be necessary to influence the activation of meat proteins to improve these properties by varying the formulation. The breasts were analyzed within microbiological parameters established by Colombian law for this type of meat products. The marinade did not
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
Peng, Xiao; Wu, Huaiqin; Song, Ka; Shi, Jiaxin
2017-10-01
This paper is concerned with the global Mittag-Leffler synchronization and the synchronization in finite time for fractional-order neural networks (FNNs) with discontinuous activations and time delays. Firstly, the properties with respect to Mittag-Leffler convergence and convergence in finite time, which play a critical role in the investigation of the global synchronization of FNNs, are developed, respectively. Secondly, the novel state-feedback controller, which includes time delays and discontinuous factors, is designed to realize the synchronization goal. By applying the fractional differential inclusion theory, inequality analysis technique and the proposed convergence properties, the sufficient conditions to achieve the global Mittag-Leffler synchronization and the synchronization in finite time are addressed in terms of linear matrix inequalities (LMIs). In addition, the upper bound of the setting time of the global synchronization in finite time is explicitly evaluated. Finally, two examples are given to demonstrate the validity of the proposed design method and theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
A new algorithm for time-delay estimation in ultrasonic echo signals.
Shaswary, Elyas; Tavakkoli, Jahan; Xu, Yuan
2015-01-01
Time-delay estimation determines the relative displacement between two ultrasound echo signals. In this paper, we propose a new time-delay estimation algorithm which uses only the sign function to obtain the corresponding timedelay estimate. The performance of the proposed algorithm was compared with two established algorithms, i.e., normalized cross-correlation (NCC) and sum of squared differences (SSD), using metrics such as statistical analysis and computational time. All simulated ultrasound echo signals were generated using ultrasound simulation software. The results indicated that overall, the proposed algorithm had similar accuracy and precision compared with the NCC and SSD algorithms; however, the computational time of the proposed algorithm was about 70% less than NCC and SSD, which showed a significant improvement.
Effects of the time delays in a non linear pendular Fabry-Perot
International Nuclear Information System (INIS)
Tourrenc, P.; Deruelle, N.
1985-01-01
We study a one arm pendular Fabry-Perot interferometer with specifications corresponding to the two arms interferometers designed to detect gravitational radiation. We consider the non linearities originating from the radiation force and the effects of time delays due to the finite length of the arm. We derive the exact and the associated ''predictivised'' equations for the motion of the suspended mirror. We show that effects of time delays increase considerably the stability of the device when the optical relaxation time is of the order of the period of the pendulum, a case of relevance when light is recycled. However the thermal noise does not seem to be much modified when calculated within a simple approximation scheme
Robustness analysis of uncertain dynamical neural networks with multiple time delays.
Senan, Sibel
2015-10-01
This paper studies the problem of global robust asymptotic stability of the equilibrium point for the class of dynamical neural networks with multiple time delays with respect to the class of slope-bounded activation functions and in the presence of the uncertainties of system parameters of the considered neural network model. By using an appropriate Lyapunov functional and exploiting the properties of the homeomorphism mapping theorem, we derive a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of neural networks with multiple time delays. The obtained stability condition basically relies on testing some relationships imposed on the interconnection matrices of the neural system, which can be easily verified by using some certain properties of matrices. An instructive numerical example is also given to illustrate the applicability of our result and show the advantages of this new condition over the previously reported corresponding results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Zhichen; Bai, Yan; Huang, Congzhi; Yan, Huaicheng
2017-05-01
This paper investigates the stability and stabilization problems for interval time-delay systems. By introducing a new delay partitioning approach, various Lyapunov-Krasovskii functionals with triple-integral terms are established to make full use of system information. In order to reduce the conservatism, improved integral inequalities are developed for estimation of double integrals, which show remarkable outperformance over the Jensen and Wirtinger ones. Particularly, the relationship between the time-delay and each subinterval is taken into consideration. The resulting stability criteria are less conservative than some recent methods. Based on the derived condition, the state-feedback controller design approach is also given. Finally, the numerical examples and the application to inverted pendulum system are provided to illustrate the effectiveness of the proposed approaches. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Internet based gripper teleoperation with random time delay by using haptic feedback and SEMG
Xu, Xiaonong; Song, Aiguo; Zhang, Huatao; Ji, Peng
2016-10-01
Random time delay may cause instability in the internet based teleoperation system. Transparency and intuitiveness are also very important for operator to control the system to accurately perform the desired action, especially for the gripper teleoperation system. This paper presents a new grip force control method of gripper teleoperation system with haptic feedback. The system employs the SEMG signal as the control parameter in order to enhance the intuitive control experience for operator. In order to eliminate the impacts on the system stability caused by random time delay, a non-time based teleoperation method is applied to the control process. Besides, neural network and designed fuzzy logic controller is also utilized to improve this control method. The effectiveness of the proposed method is demonstrated by experiment results.
Path Tracking Control of Automatic Parking Cloud Model considering the Influence of Time Delay
Directory of Open Access Journals (Sweden)
Yiding Hua
2017-01-01
Full Text Available This paper establishes the kinematic model of the automatic parking system and analyzes the kinematic constraints of the vehicle. Furthermore, it solves the problem where the traditional automatic parking system model fails to take into account the time delay. Firstly, based on simulating calculation, the influence of time delay on the dynamic trajectory of a vehicle in the automatic parking system is analyzed under the transverse distance Dlateral between different target spaces. Secondly, on the basis of cloud model, this paper utilizes the tracking control of an intelligent path closer to human intelligent behavior to further study the Cloud Generator-based parking path tracking control method and construct a vehicle path tracking control model. Moreover, tracking and steering control effects of the model are verified through simulation analysis. Finally, the effectiveness and timeliness of automatic parking controller in the aspect of path tracking are tested through a real vehicle experiment.
Robust H∞ filtering for a class of complex networks with stochastic packet dropouts and time delays.
Zhang, Jie; Lyu, Ming; Karimi, Hamid Reza; Guo, Pengfei; Bo, Yuming
2014-01-01
The robust H∞ filtering problem is investigated for a class of complex network systems which has stochastic packet dropouts and time delays, combined with disturbance inputs. The packet dropout phenomenon occurs in a random way and the occurrence probability for each measurement output node is governed by an individual random variable. Besides, the time delay phenomenon is assumed to occur in a nonlinear vector-valued function. We aim to design a filter such that the estimation error converges to zero exponentially in the mean square, while the disturbance rejection attenuation is constrained to a given level by means of the H∞ performance index. By constructing the proper Lyapunov-Krasovskii functional, we acquire sufficient conditions to guarantee the stability of the state detection observer for the discrete systems, and the observer gain is also derived by solving linear matrix inequalities. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.
An optimal PID controller via LQR for standard second order plus time delay systems.
Srivastava, Saurabh; Misra, Anuraag; Thakur, S K; Pandit, V S
2016-01-01
An improved tuning methodology of PID controller for standard second order plus time delay systems (SOPTD) is developed using the approach of Linear Quadratic Regulator (LQR) and pole placement technique to obtain the desired performance measures. The pole placement method together with LQR is ingeniously used for SOPTD systems where the time delay part is handled in the controller output equation instead of characteristic equation. The effectiveness of the proposed methodology has been demonstrated via simulation of stable open loop oscillatory, over damped, critical damped and unstable open loop systems. Results show improved closed loop time response over the existing LQR based PI/PID tuning methods with less control effort. The effect of non-dominant pole on the stability and robustness of the controller has also been discussed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Does a deformation of special relativity imply energy dependent photon time delays?
Carmona, J. M.; Cortés, J. L.; Relancio, J. J.
2018-01-01
Theoretical arguments in favor of energy dependent photon time delays from a modification of special relativity (SR) have met with recent gamma ray observations that put severe constraints on the scale of such deviations. We review the case of the generality of this theoretical prediction in the case of a deformation of SR and find that, at least in the simple model based on the analysis of photon worldlines which is commonly considered, there are many scenarios compatible with a relativity principle which do not contain a photon time delay. This will be the situation for any modified dispersion relation which reduces to E=\\vert p\\vert for photons, independently of the quantum structure of spacetime. This fact opens up the possibility of a phenomenologically consistent relativistic generalization of SR with a new mass scale many orders of magnitude below the Planck mass.
Exponential stability of uncertain stochastic neural networks with mixed time-delays
International Nuclear Information System (INIS)
Wang Zidong; Lauria, Stanislao; Fang Jian'an; Liu Xiaohui
2007-01-01
This paper is concerned with the global exponential stability analysis problem for a class of stochastic neural networks with mixed time-delays and parameter uncertainties. The mixed delays comprise discrete and distributed time-delays, the parameter uncertainties are norm-bounded, and the neural networks are subjected to stochastic disturbances described in terms of a Brownian motion. The purpose of the stability analysis problem is to derive easy-to-test criteria under which the delayed stochastic neural network is globally, robustly, exponentially stable in the mean square for all admissible parameter uncertainties. By resorting to the Lyapunov-Krasovskii stability theory and the stochastic analysis tools, sufficient stability conditions are established by using an efficient linear matrix inequality (LMI) approach. The proposed criteria can be checked readily by using recently developed numerical packages, where no tuning of parameters is required. An example is provided to demonstrate the usefulness of the proposed criteria
General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies
Kopeikin, Sergei
2003-01-01
The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.
Network coordination and synchronization in a noisy environment with time delays
Hunt, D.; Szymanski, B. K.; Korniss, G.
2012-11-01
We study the effects of nonzero time delays in stochastic synchronization problems with linear couplings in complex networks. We consider two types of time delays: transmission delays between interacting nodes and local delays at each node (due to processing, cognitive, or execution delays). By investigating the underlying fluctuations for several delay schemes, we obtain the synchronizability threshold (phase boundary) and the scaling behavior of the width of the synchronization landscape, in some cases for arbitrary networks and in others for specific weighted networks. Numerical computations allow the behavior of these networks to be explored when direct analytical results are not available. We comment on the implications of these findings for simple locally or globally weighted network couplings and possible trade-offs present in such systems.
Network coordination and synchronization in a noisy environment with time delays.
Hunt, D; Szymanski, B K; Korniss, G
2012-11-01
We study the effects of nonzero time delays in stochastic synchronization problems with linear couplings in complex networks. We consider two types of time delays: transmission delays between interacting nodes and local delays at each node (due to processing, cognitive, or execution delays). By investigating the underlying fluctuations for several delay schemes, we obtain the synchronizability threshold (phase boundary) and the scaling behavior of the width of the synchronization landscape, in some cases for arbitrary networks and in others for specific weighted networks. Numerical computations allow the behavior of these networks to be explored when direct analytical results are not available. We comment on the implications of these findings for simple locally or globally weighted network couplings and possible trade-offs present in such systems.
Direct determination of scattering time delays using the R-matrix propagation method
International Nuclear Information System (INIS)
Walker, R.B.; Hayes, E.F.
1989-01-01
A direct method for determining time delays for scattering processes is developed using the R-matrix propagation method. The procedure involves the simultaneous generation of the global R matrix and its energy derivative. The necessary expressions to obtain the energy derivative of the S matrix are relatively simple and involve many of the same matrix elements required for the R-matrix propagation method. This method is applied to a simple model for a chemical reaction that displays sharp resonance features. The test results of the direct method are shown to be in excellent agreement with the traditional numerical differentiation method for scattering energies near the resonance energy. However, for sharp resonances the numerical differentiation method requires calculation of the S-matrix elements at many closely spaced energies. Since the direct method presented here involves calculations at only a single energy, one is able to generate accurate energy derivatives and time delays much more efficiently and reliably
Model Predictive Load Frequency Control of two-area Interconnected Time Delay Power System with TCSC
Deng, Yan; Liu, Wenze
2017-05-01
In order to reduce the influence of non-linear constraint and time delay on load frequency control of interconnected power system, this paper, based on Model Predictive Control (MPC), designed a load frequency control scheme for two-area interconnected power system with TCSC device. First, considering the Generation Rate Constraint (GRC) and time delay, this paper builds the dynamics model of two-area interconnected power system with Thyristor Controlled Series Compensation device (TCSC). Then the whole system is decomposed into two subsystems. And each subsystem has its own local area MPC controller. Second, collaborative control is implemented by integrating the control information (measurement value, predictive value, etc.) of subsystems’ MPC controllers into the local control goal. In the end, under consideration of physical constraints, the Matlab simulation is conducted. The calculation results showed that the MPC strategy has better dynamic performance and robustness compared to the traditional PI control.
A frequency-domain method for solving linear time delay systems with constant coefficients
Jin, Mengshi; Chen, Wei; Song, Hanwen; Xu, Jian
2018-03-01
In an active control system, time delay will occur due to processes such as signal acquisition and transmission, calculation, and actuation. Time delay systems are usually described by delay differential equations (DDEs). Since it is hard to obtain an analytical solution to a DDE, numerical solution is of necessity. This paper presents a frequency-domain method that uses a truncated transfer function to solve a class of DDEs. The theoretical transfer function is the sum of infinite items expressed in terms of poles and residues. The basic idea is to select the dominant poles and residues to truncate the transfer function, thus ensuring the validity of the solution while improving the efficiency of calculation. Meanwhile, the guideline of selecting these poles and residues is provided. Numerical simulations of both stable and unstable delayed systems are given to verify the proposed method, and the results are presented and analysed in detail.
International Nuclear Information System (INIS)
Sudheer, K. Sebastian; Sabir, M.
2011-01-01
In this Letter we consider modified function projective synchronization of unidirectionally coupled multiple time-delayed Rossler chaotic systems using adaptive controls. Recently, delay differential equations have attracted much attention in the field of nonlinear dynamics. The high complexity of the multiple time-delayed systems can provide a new architecture for enhancing message security in chaos based encryption systems. Adaptive control can be used for synchronization when the parameters of the system are unknown. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems are function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.
Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal
International Nuclear Information System (INIS)
Yong-Feng, Guo; Wei, Xu; Liang, Wang
2010-01-01
This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker–Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time τ on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears. (general)
Directory of Open Access Journals (Sweden)
Xue-Lian Jin
2017-01-01
Full Text Available The exponential stability of the monotubular heat exchanger equation with boundary observation possessing a time delay and inner control was investigated. Firstly, the close-loop system was translated into an abstract Cauchy problem in the suitable state space. A uniformly bounded C0-semigroup generated by the close-loop system, which implies that the unique solution of the system exists, was shown. Secondly, the spectrum configuration of the closed-loop system was analyzed and the eventual differentiability and the eventual compactness of the semigroup were shown by the resolvent estimates on some resolvent sets. This implies that the spectrum-determined growth assumption holds. Finally, a sufficient condition, which is related to the physical parameters in the system and is independent of the time delay, of the exponential stability of the closed-loop system was given.
Role of time delay on intracellular calcium dynamics driven by non-Gaussian noises.
Duan, Wei-Long; Zeng, Chunhua
2016-04-28
Effect of time delay (τ) on intracellular calcium dynamics with non-Gaussian noises in transmission processes of intracellular Ca(2+) is studied by means of second-order stochastic Runge-Kutta type algorithm. By simulating and analyzing time series, normalized autocorrelation function, and characteristic correlation time of cytosolic and calcium store's Ca(2+) concentration, the results exhibit: (i) intracellular calcium dynamics's time coherence disappears and stability strengthens as τ → 0.1s; (ii) for the case of τ short, but they trend to a level line as τ → 0.1s, and for the case of τ > 0.1s, they show different variation as τ increases, the former changes from underdamped motion to a level line, but the latter changes from damped motion to underdamped motion; and (iii) at the moderate value of time delay, reverse resonance occurs both in cytosol and calcium store.
Spectrum optimization-based chaotification using time-delay feedback control
International Nuclear Information System (INIS)
Zhou Jiaxi; Xu Daolin; Zhang Jing; Liu Chunrong
2012-01-01
Highlights: ► A time-delay feedback controller is designed for chaotification. ► A spectrum optimization method is proposed to determine chaotification parameters. ► Numerical examples verify the spectrum optimization- based chaotification method. ► Engineering application in line spectrum reconfiguration is demonstrated. - Abstract: In this paper, a spectrum optimization method is developed for chaotification in conjunction with an application in line spectrum reconfiguration. A key performance index (the objective function) based on Fourier spectrum is specially devised with the idea of suppressing spectrum spikes and broadening frequency band. Minimization of the index empowered by a genetic algorithm enables to locate favorable parameters of the time-delay feedback controller, by which a line spectrum of harmonic vibration can be transformed into a broad-band continuous spectrum of chaotic motion. Numerical simulations are carried out to verify the feasibility of the method and to demonstrate its effectiveness of chaotifying a 2-DOFs linear mechanical system.
Signal Subspace Smoothing Technique for Time Delay Estimation Using MUSIC Algorithm.
Sun, Meng; Wang, Yide; Le Bastard, Cédric; Pan, Jingjing; Ding, Yuehua
2017-12-10
In civil engineering, Time Delay Estimation (TDE) is one of the most important tasks for the media structure and quality evaluation. In this paper, the MUSIC algorithm is applied to estimate the time delay. In practice, the backscattered echoes are highly correlated (even coherent). In order to apply the MUSIC algorithm, an adaptation of signal subspace smoothing is proposed to decorrelate the correlation between echoes. Unlike the conventional sub-band averaging techniques, we propose to directly use the signal subspace, which can take full advantage of the signal subspace and reduce the influence of noise. Moreover, the proposed method is adapted to deal with any radar pulse shape. The proposed method is tested on both numerical and experimental data. Both results show the effectiveness of the proposed method.
Application of ARIMA(1,1,0 Model for Predicting Time Delay of Search Engine Crawlers
Directory of Open Access Journals (Sweden)
Jeeva JOSE
2013-01-01
Full Text Available World Wide Web is growing at a tremendous rate in terms of the number of visitors and number of web pages. Search engine crawlers are highly automated programs that periodically visit the web and index web pages. The behavior of search engines could be used in analyzing server load, quality of search engines, dynamics of search engine crawlers, ethics of search engines etc. The more the number of visits of a crawler to a web site, the more it contributes to the workload. The time delay between two consecutive visits of a crawler determines the dynamicity of the crawlers. The ARIMA(1,1,0 Model in time series analysis works well with the forecasting of the time delay between the visits of search crawlers at web sites. We considered 5 search engine crawlers, all of which could be modeled using ARIMA(1,1,0.The results of this study is useful in analyzing the server load.
Effects of time delay on stochastic resonance of the stock prices in financial system
Li, Jiang-Cheng; Li, Chun; Mei, Dong-Cheng
2014-06-01
The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing.
Chaos synchronization in time-delayed systems with parameter mismatches and variable delay times
International Nuclear Information System (INIS)
Shahverdiev, E.M.; Nuriev, R.A.; Hashimov, R.H.; Shore, K.A.
2004-06-01
We investigate synchronization between two undirectionally linearly coupled chaotic nonidentical time-delayed systems and show that parameter mismatches are of crucial importance to achieve synchronization. We establish that independent of the relation between the delay time in the coupled systems and the coupling delay time, only retarded synchronization with the coupling delay time is obtained. We show that with parameter mismatch or without it neither complete nor anticipating synchronization occurs. We derive existence and stability conditions for the retarded synchronization manifold. We demonstrate our approach using examples of the Ikeda and Mackey Glass models. Also for the first time we investigate chaos synchronization in time-delayed systems with variable delay time and find both existence and sufficient stability conditions for the retarded synchronization manifold with the coupling-delay lag time. (author)
Teaching memorized spelling with a microcomputer: time delay and computer-assisted instruction.
Stevens, K B; Blackhurst, A E; Slaton, D B
1991-01-01
A computer-assisted instruction program was evaluated that used a constant time-delay procedure to teach 5 students 18 spelling words. In addition to delivering the instructional procedure, the program managed the presentation of training content based on individual student responding and collected instructional data on individual student performance. The procedure was effective at teaching 4 of the 5 students the words, and generalization occurred from the computer-delivered keyboard respons...
Asymptotic solution for the El Niño time delay sea—air oscillator model
International Nuclear Information System (INIS)
Mo Jia-Qi; Lin Wan-Tao; Lin Yi-Hua
2011-01-01
A sea—air oscillator model is studied using the time delay theory. The aim is to find an asymptotic solving method for the El Niño-southern oscillation (ENSO) model. Employing the perturbed method, an asymptotic solution of the corresponding problem is obtained. Thus we can obtain the prognoses of the sea surface temperature (SST) anomaly and the related physical quantities. (general)
Directory of Open Access Journals (Sweden)
Xueling Jiang
2014-01-01
Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.
Basins of attraction of the bistable region of time-delayed cutting dynamics.
Yan, Yao; Xu, Jian; Wiercigroch, Marian
2017-09-01
This paper investigates the effects of bistability in a nonsmooth time-delayed dynamical system, which is often manifested in science and engineering. Previous studies on cutting dynamics have demonstrated persistent coexistence of chatter and chatter-free responses in a bistable region located in the linearly stable zone. As there is no widely accepted definition of basins of attraction for time-delayed systems, bistable regions are coined as unsafe zones (UZs). Hence, we have attempted to define the basins of attraction and stability basins for a typical delayed system to get insight into the bistability in systems with time delays. Special attention was paid to the influences of delayed initial conditions, starting points, and states at time zero on the long-term dynamics of time-delayed systems. By using this concept, it has been confirmed that the chatter is prone to occur when the waviness frequency in the workpiece surface coincides with the effective natural frequency of the cutting process. Further investigations unveil a thin "boundary layer" inside the UZ in the immediate vicinity of the stability boundary, in which we observe an extremely fast growth of the chatter basin stability. The results reveal that the system is more stable when the initial cutting depth is smaller. The physics of the tool deflection at the instant of the tool-workpiece engagement is used to evaluate the cutting safety, and the safe level could be zero when the geometry of tool engagement is unfavorable. Finally, the basins of attraction are used to quench the chatter by a single strike, where the resultant "islands" offer an opportunity to suppress the chatter even when the cutting is very close to the stability boundary.
Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics
DEFF Research Database (Denmark)
Öhman, Filip; Yvind, Kresten; Mørk, Jesper
2007-01-01
We have investigated the slowand fast light properties of a semiconductor waveguide device employing concatenated gain and absorber sections. This letter presents the experimental results as well as theoretical modeling. A large phase shift of 110 and a true-time delay of more than 150 ps are dem...... are demonstrated. The combination of amplitude and phase control of the modulated signal shows great promise for applications within microwave photonics....
Time-Delay Artificial Neural Network Computing Models for Predicting Shelf Life of Processed Cheese
Sumit Goyal; Gyanendra Kumar Goyal
2012-01-01
This paper presents the capability of Time–delay artificial neural network models for predicting shelf life of processed cheese. Datasets were divided into two subsets (30 for training and 6 for validation). Models with single and multi layers were developed and compared with each other. Mean Square Error, Root Mean Square Error, Coefficient of Determination and Nash -
Sutcliffo Coefficient were used as performance evaluators, Time- delay model predicted the shelf life of...
Directory of Open Access Journals (Sweden)
Jing Wang
2012-01-01
Full Text Available The stabilization problem of a wireless networked control system is considered in this paper. Both time delay and packet loss exist simultaneously in the wireless network. The system is modeled as an asynchronous dynamic system (ADS with unstable subsystems. A sufficient condition for the system to be stable is presented. A numerical example is given to demonstrate the effectiveness of the proposed approach.
Adaptive Neural Control for a Class of Outputs Time-Delay Nonlinear Systems
Directory of Open Access Journals (Sweden)
Ruliang Wang
2012-01-01
Full Text Available This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems with perturbed or no. Based on RBF neural networks, the radius basis function (RBF neural networks is employed to estimate the unknown continuous functions. The proposed control guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the effectiveness of the proposed control scheme.
Global dissipativity of continuous-time recurrent neural networks with time delay
International Nuclear Information System (INIS)
Liao Xiaoxin; Wang Jun
2003-01-01
This paper addresses the global dissipativity of a general class of continuous-time recurrent neural networks. First, the concepts of global dissipation and global exponential dissipation are defined and elaborated. Next, the sets of global dissipativity and global exponentially dissipativity are characterized using the parameters of recurrent neural network models. In particular, it is shown that the Hopfield network and cellular neural networks with or without time delays are dissipative systems
Improved result on stability analysis of discrete stochastic neural networks with time delay
International Nuclear Information System (INIS)
Wu Zhengguang; Su Hongye; Chu Jian; Zhou Wuneng
2009-01-01
This Letter investigates the problem of exponential stability for discrete stochastic time-delay neural networks. By defining a novel Lyapunov functional, an improved delay-dependent exponential stability criterion is established in terms of linear matrix inequality (LMI) approach. Meanwhile, the computational complexity of the newly established stability condition is reduced because less variables are involved. Numerical example is given to illustrate the effectiveness and the benefits of the proposed method.
Time delay generation at high frequency using SOA based slow and fast light.
Berger, Perrine; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel; Alouini, Mehdi
2011-10-24
We show how Up-converted Coherent Population Oscillations (UpCPO) enable to get rid of the intrinsic limitation of the carrier lifetime, leading to the generation of time delays at any high frequencies in a single SOA device. The linear dependence of the RF phase shift with respect to the RF frequency is theoretically predicted and experimentally evidenced at 16 and 35 GHz. © 2011 Optical Society of America
A periodic two-patch SIS model with time delay and transport-related infection.
Liu, Junli; Bai, Zhenguo; Zhang, Tailei
2018-01-21
In this paper, we propose a periodic SIS epidemic model with time delay and transport-related infection in a patchy environment. The basic reproduction number R 0 is derived which determines the global dynamics of the model system: if R 0 1. Numerical simulations are performed to confirm the analytical results and to explore the dependence of R 0 on the transport-related infection parameters and the amplitude of fluctuations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synchronization of Time-Delay Chaotic System in Presence of Noise
Directory of Open Access Journals (Sweden)
Min Lei
2012-09-01
Full Text Available Chaotic synchronization, as a key technique of chaotic secure communication, has received much attention in recent years. This paper proposes a nonlinear synchronization scheme for the time-delay chaotic system in the presence of noise. In this scheme, an integrator is introduced to suppress the influence of channel noise in the synchronization process. The experimental results demonstrate the effectiveness and feasibility of the proposed scheme which is strongly robust against noises, especially the high-frequency noises.
Observer Design for a Time Delay System via the Razumikhin Approach
Czech Academy of Sciences Publication Activity Database
Rehák, Branislav
2017-01-01
Roč. 19, č. 6 (2017), s. 2226-2231 ISSN 1561-8625 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : observer * time-delay system * input-to-state stability * quantization Subject RIV: BC - Control System s Theory OBOR OECD: Automation and control system s Impact factor: 1.421, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/asjc.1507/full
A note on Burgers' equation with time delay: Instability via finite-time blow-up
International Nuclear Information System (INIS)
Jordan, P.M.
2008-01-01
Burgers' equation with time delay is considered. Using the Cole-Hopf transformation, the exact solution of this nonlinear partial differential equation (PDE) is determined in the context of a (seemingly) well-posed initial-boundary value problem (IBVP) involving homogeneous Dirichlet data. The solution obtained, however, is shown to exhibit a delay-induced instability, suffering blow-up in finite-time
Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations
International Nuclear Information System (INIS)
Udaltsov, Vladimir S.; Goedgebuer, Jean-Pierre; Larger, Laurent; Cuenot, Jean-Baptiste; Levy, Pascal; Rhodes, William T.
2003-01-01
We report that signal encoding with high-dimensional chaos produced by delayed feedback systems with a strong nonlinearity can be broken. We describe the procedure and illustrate the method with chaotic waveforms obtained from a strongly nonlinear optical system that we used previously to demonstrate signal encryption/decryption with chaos in wavelength. The method can be extended to any systems ruled by nonlinear time-delayed differential equations
Directory of Open Access Journals (Sweden)
Chang Yu-Te
2008-11-01
Full Text Available Abstract Background Gene networks in nanoscale are of nonlinear stochastic process. Time delays are common and substantial in these biochemical processes due to gene transcription, translation, posttranslation protein modification and diffusion. Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering and biochemical process delay compensation in gene networks is crucial to understand the signal processing in gene networks and the design of noise-tolerant and delay-robust gene circuits for synthetic biology. Results A nonlinear stochastic dynamic model with multiple time delays is proposed for describing a gene network under process delays, intrinsic molecular fluctuations, and extrinsic molecular noises. Then, the stochastic biochemical processing scheme of gene regulatory networks for attenuating these molecular noises and compensating process delays is investigated from the nonlinear signal processing perspective. In order to improve the robust stability for delay toleration and noise filtering, a robust gene circuit for nonlinear stochastic time-delay gene networks is engineered based on the nonlinear robust H∞ stochastic filtering scheme. Further, in order to avoid solving these complicated noise-tolerant and delay-robust design problems, based on Takagi-Sugeno (T-S fuzzy time-delay model and linear matrix inequalities (LMIs technique, a systematic gene circuit design method is proposed to simplify the design procedure. Conclusion The proposed gene circuit design method has much potential for application to systems biology, synthetic biology and drug design when a gene regulatory network has to be designed for improving its robust stability and filtering ability of disease-perturbed gene network or when a synthetic gene network needs to perform robustly under process delays and molecular noises.
International Nuclear Information System (INIS)
Arik, Sabri
2006-01-01
This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature
Global asymptotic stability of a larger class of neural networks with constant time delay
International Nuclear Information System (INIS)
Arik, Sabri
2003-01-01
This Letter presents some new sufficient conditions for the uniqueness and global asymptotic stability (GAS) of the equilibrium point for a larger class of neural networks with constant time delay. It is shown that the use of a more general type of Lyapunov-Krasovskii functional enables us to establish global asymptotic stability of a larger class of delayed neural networks than those considered in some previous papers
Power-Level Control for MHTGRs with Time-Delay in Helium Temperature Measurement
Dong, Zhe
2014-06-01
The modular high temperature gas-cooled reactor (MHTGR), which has the inherent safety feature, high thermal efficiency and satisfactory economic feasibility, can be applied for electricity and process heat production. Power-level control is an important technique for providing both the stable operation and load-following performance. Since the coolant temperature sensors of an MHTGR are usually installed near the primary side of the corresponding steam generator, there must be time-delay effect in the feedback loop of the coolant temperatures. Moreover, the measurement signal transducing may also induce time-delay effect. Therefore, it is meaningful to give the power-level control design method by considering this time-delay effect. In this paper, a simple output-feedback power-level control is proposed for the MHTGRs by using the delayed measurement signal of average reactor coolant temperature. In the aspect of theoretical analysis, a sufficient condition, under which it is well guaranteed that this newly-built power-level control is a globally asymptotic stabilizer, is firstly given. In the aspect of verification, numerical simulation results not only verify the feasibility of the theoretical results but also show the relationship between the performance and values of parameters of this novel power-level controller. The meaning of this work lies in two aspects. The first one is deeply revealing the relationship between the closed-loop stability and values of the controller parameters. The second one is giving the approach of designing a simple and effective power-level control strategy to suppress the negative influence induced by the time-delay in the feedback loop of the coolant temperatures.
Basins of attraction of the bistable region of time-delayed cutting dynamics
Yan, Yao; Xu, Jian; Wiercigroch, Marian
2017-09-01
This paper investigates the effects of bistability in a nonsmooth time-delayed dynamical system, which is often manifested in science and engineering. Previous studies on cutting dynamics have demonstrated persistent coexistence of chatter and chatter-free responses in a bistable region located in the linearly stable zone. As there is no widely accepted definition of basins of attraction for time-delayed systems, bistable regions are coined as unsafe zones (UZs). Hence, we have attempted to define the basins of attraction and stability basins for a typical delayed system to get insight into the bistability in systems with time delays. Special attention was paid to the influences of delayed initial conditions, starting points, and states at time zero on the long-term dynamics of time-delayed systems. By using this concept, it has been confirmed that the chatter is prone to occur when the waviness frequency in the workpiece surface coincides with the effective natural frequency of the cutting process. Further investigations unveil a thin "boundary layer" inside the UZ in the immediate vicinity of the stability boundary, in which we observe an extremely fast growth of the chatter basin stability. The results reveal that the system is more stable when the initial cutting depth is smaller. The physics of the tool deflection at the instant of the tool-workpiece engagement is used to evaluate the cutting safety, and the safe level could be zero when the geometry of tool engagement is unfavorable. Finally, the basins of attraction are used to quench the chatter by a single strike, where the resultant "islands" offer an opportunity to suppress the chatter even when the cutting is very close to the stability boundary.
Directory of Open Access Journals (Sweden)
Il Young Song
2015-01-01
Full Text Available This paper focuses on estimation of a nonlinear function of state vector (NFS in discrete-time linear systems with time-delays and model uncertainties. The NFS represents a multivariate nonlinear function of state variables, which can indicate useful information of a target system for control. The optimal nonlinear estimator of an NFS (in mean square sense represents a function of the receding horizon estimate and its error covariance. The proposed receding horizon filter represents the standard Kalman filter with time-delays and special initial horizon conditions described by the Lyapunov-like equations. In general case to calculate an optimal estimator of an NFS we propose using the unscented transformation. Important class of polynomial NFS is considered in detail. In the case of polynomial NFS an optimal estimator has a closed-form computational procedure. The subsequent application of the proposed receding horizon filter and nonlinear estimator to a linear stochastic system with time-delays and uncertainties demonstrates their effectiveness.
Shared control on lunar spacecraft teleoperation rendezvous operations with large time delay
Ya-kun, Zhang; Hai-yang, Li; Rui-xue, Huang; Jiang-hui, Liu
2017-08-01
Teleoperation could be used in space on-orbit serving missions, such as object deorbits, spacecraft approaches, and automatic rendezvous and docking back-up systems. Teleoperation rendezvous and docking in lunar orbit may encounter bottlenecks for the inherent time delay in the communication link and the limited measurement accuracy of sensors. Moreover, human intervention is unsuitable in view of the partial communication coverage problem. To solve these problems, a shared control strategy for teleoperation rendezvous and docking is detailed. The control authority in lunar orbital maneuvers that involves two spacecraft as rendezvous and docking in the final phase was discussed in this paper. The predictive display model based on the relative dynamic equations is established to overcome the influence of the large time delay in communication link. We discuss and attempt to prove via consistent, ground-based simulations the relative merits of fully autonomous control mode (i.e., onboard computer-based), fully manual control (i.e., human-driven at the ground station) and shared control mode. The simulation experiments were conducted on the nine-degrees-of-freedom teleoperation rendezvous and docking simulation platform. Simulation results indicated that the shared control methods can overcome the influence of time delay effects. In addition, the docking success probability of shared control method was enhanced compared with automatic and manual modes.
Zetterlind, Virgil E., III; Magee, Eric P.
2002-06-01
This study extends branch point tolerant phase reconstructor research to examine the effect of finite time delays and measurement error on system performance. Branch point tolerant phase reconstruction is particularly applicable to atmospheric laser weapon and communication systems, which operate in extended turbulence. We examine the relative performance of a least squares reconstructor, least squares plus hidden phase reconstructor, and a Goldstein branch point reconstructor for various correction time-delays and measurement noise scenarios. Performance is evaluated using a wave-optics simulation that models a 100km atmospheric propagation of a point source beacon to a transmit/receive aperture. Phase-only corrections are then calculated using the various reconstructor algorithms and applied to an outgoing uniform field. Point Strehl is used as the performance metric. Results indicate that while time delays and measurement noise reduce the performance of branch point tolerant reconstructors, these reconstructors can still outperform least squares implementations in many cases. We also show that branch point detection becomes the limiting factor in measurement noise corrupted scenarios.
Stabilization of time-delay neural networks via delayed pinning impulses
International Nuclear Information System (INIS)
Liu, Xinzhi; Zhang, Kexue; Xie, Wei-Chau
2016-01-01
This paper studies the pinning stabilization problem of time-delay neural networks. A new pinning delayed-impulsive controller is proposed to stabilize the neural networks with delays. First, we consider the general nonlinear time-delay systems with delayed impulses, and establish several global exponential stability criteria by employing the method of Lyapunov functionals. Our results are then applied to obtain sufficient conditions under which the proposed pinning controller can exponentially stabilize the time-delay neural networks. It is shown that the global exponential stabilization of delayed neural networks can be effectively realized by controlling a small portion of neurons in the networks via delayed impulses, and, for fixed impulsive control gain, increasing the impulse delay or decreasing the number of neurons to be pinned at the impulsive moments will lead to high frequency of impulses added the corresponding neurons. Numerical examples are provided to illustrate the theoretical results, which demonstrate that our results are less conservative than the results reported in the existing literatures when the proposed pinning controller reduces to the delayed impulsive controller.
Franklin, Timothy C; Granata, Kevin P; Madigan, Michael L; Hendricks, Scott L
2008-08-01
Linear stability methods were applied to a biomechanical model of the human musculoskeletal spine to investigate effects of reflex gain and reflex delay on stability. Equations of motion represented a dynamic 18 degrees-of-freedom rigid-body model with time-delayed reflexes. Optimal muscle activation levels were identified by minimizing metabolic power with the constraints of equilibrium and stability with zero reflex time delay. Muscle activation levels and associated muscle forces were used to find the delay margin, i.e., the maximum reflex delay for which the system was stable. Results demonstrated that stiffness due to antagonistic co-contraction necessary for stability declined with increased proportional reflex gain. Reflex delay limited the maximum acceptable proportional reflex gain, i.e., long reflex delay required smaller maximum reflex gain to avoid instability. As differential reflex gain increased, there was a small increase in acceptable reflex delay. However, differential reflex gain with values near intrinsic damping caused the delay margin to approach zero. Forward-dynamic simulations of the fully nonlinear time-delayed system verified the linear results. The linear methods accurately found the delay margin below which the nonlinear system was asymptotically stable. These methods may aid future investigations in the role of reflexes in musculoskeletal stability.
Dynamical Behaviors in Complex-Valued Love Model With or Without Time Delays
Deng, Wei; Liao, Xiaofeng; Dong, Tao
2017-12-01
In this paper, a novel version of nonlinear model, i.e. a complex-valued love model with two time delays between two individuals in a love affair, has been proposed. A notable feature in this model is that we separate the emotion of one individual into real and imaginary parts to represent the variation and complexity of psychophysiological emotion in romantic relationship instead of just real domain, and make our model much closer to reality. This is because love is a complicated cognitive and social phenomenon, full of complexity, diversity and unpredictability, which refers to the coexistence of different aspects of feelings, states and attitudes ranging from joy and trust to sadness and disgust. By analyzing associated characteristic equation of linearized equations for our model, it is found that the Hopf bifurcation occurs when the sum of time delays passes through a sequence of critical value. Stability of bifurcating cyclic love dynamics is also derived by applying the normal form theory and the center manifold theorem. In addition, it is also shown that, for some appropriate chosen parameters, chaotic behaviors can appear even without time delay.
Accurate measurement of the time delay in the response of the LIGO gravitational wave detectors
Energy Technology Data Exchange (ETDEWEB)
Aso, Yoichi; Kalmus, Peter; Matone, Luca; Marka, Szabolcs [Department of Physics, Columbia University, New York, NY 10027 (United States); Goetz, Evan [University of Michigan, Ann Arbor, MI 48109 (United States); Myers, Joshua; Savage, Rick; Schwinberg, Paul; Sigg, Daniel [LIGO Hanford Observatory, Richland, WA 99352 (United States); O' Reilly, Brian [LIGO Livingston Observatory, Livingston, LA 70754 (United States); Siemens, Xavier [Department of Physics, University of Wisconsin at Milwaukee, Milwaukee, WI 53211 (United States); Smith, Nicolas, E-mail: aso@caltech.ed [LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2009-03-07
We present a method to precisely calibrate the time delay in a long baseline gravitational-wave interferometer. An accurate time stamp is crucial for data analysis of gravitational wave detectors, especially when performing coincidence and correlation analyses between multiple detectors. Our method uses an intensity-modulated radiation pressure force to actuate on the mirrors. The time delay is measured by comparing the phase of the signal at the actuation point with the phase of the recorded signal within the calibrated data stream used for gravitational wave searches. Because the signal-injection path is independent of the interferometer's control system, which is used for the standard calibration, this method can be an independent verification of the timing error in the system. A measurement performed with the 4 km interferometer at the LIGO Hanford Observatory shows a 1 mus relative accuracy when averaging over 50 min. Our understanding of the systematic time delay in the detector response has reached the level of 10 mus.
Stochastic Dynamics of a Time-Delayed Ecosystem Driven by Poisson White Noise Excitation
Directory of Open Access Journals (Sweden)
Wantao Jia
2018-02-01
Full Text Available We investigate the stochastic dynamics of a prey-predator type ecosystem with time delay and the discrete random environmental fluctuations. In this model, the delay effect is represented by a time delay parameter and the effect of the environmental randomness is modeled as Poisson white noise. The stochastic averaging method and the perturbation method are applied to calculate the approximate stationary probability density functions for both predator and prey populations. The influences of system parameters and the Poisson white noises are investigated in detail based on the approximate stationary probability density functions. It is found that, increasing time delay parameter as well as the mean arrival rate and the variance of the amplitude of the Poisson white noise will enhance the fluctuations of the prey and predator population. While the larger value of self-competition parameter will reduce the fluctuation of the system. Furthermore, the results from Monte Carlo simulation are also obtained to show the effectiveness of the results from averaging method.
Stability and Relative Stability of Linear Systems with Many Constant Time Delays. Ph.D. Thesis
Barker, Larry Keith
1976-01-01
A method of determining the stability of linear systems with many constant time delays is developed. This technique, an extension of the tau-decomposition method, is used to examine not only the stability but also the relative stability of retarded systems with many delays and a class of neutral equations with one delay. Analytical equations are derived for partitioning the delay space of a retarded system with two time delays. The stability of the system in each of the regions defined by the partitioning curves in the parameter plane is determined using the extended tau-decomposition method. In addition, relative stability boundaries are defined using the extended tau-decompositon method in association with parameter plane techniques. Several applications of the extended tau-decomposition method are presented and compared with stability results obtained from other analyses. In all cases the results obtained using the method outlined herein coincide with and extend those of previous investigations. The extended tau-decomposition method applied to systems with time delays requires less computational effort and yields more complete stability analyses than previous techniques.
Tuning of IMC based PID controllers for integrating systems with time delay.
Kumar, D B Santosh; Padma Sree, R
2016-07-01
Design of Proportional Integral and Derivative (PID) controllers based on IMC principles for various types of integrating systems with time delay is proposed. PID parameters are given in terms of process model parameters and a tuning parameter. The tuning parameter is IMC filter time constant. In the present work, the IMC filter (Q) is chosen in such a manner that the order of the denominator of IMC controller is one less than the order of the numerator. The IMC filter time constant (λ) is tuned in such a way that a good compromise is made between performance and robustness for both servo and regulatory problems. To improve servo response of the controller a set point filter is designed such that the closed loop response is similar to that of first order plus time delay system. The proposed controller design method is applied to various transfer function models and to the non-linear model equations of jacketed CSTR to demonstrate its applicability and effectiveness. The performance of the proposed controller is compared with the recently reported methods in terms of IAE and ITAE. The smooth functioning of the controller is determined in terms of total variation and compared with recently reported methods. Simulation studies are carried out on various integrating systems with time delay to show the effectiveness and superiority of the proposed controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
The giant acoustic atom - a single quantum system with a deterministic time delay
Guo, Lingzhen; Grimsmo, Arne; Frisk Kockum, Anton; Pletyukhov, Mikhail; Johansson, Göran
2017-04-01
We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. Furthermore, we find the short-time dynamics of the giant atom for arbitrary drive strength by a numerically exact method for open quantum systems with a finite-time-delay feedback loop. L. G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).
Time Delay for the Initiation of an Emergency Shutdown at the Peruvian Nuclear Reactor RP-10
International Nuclear Information System (INIS)
Ramon, A.; Ovalle, E.; Canaza, D.; Salazar, A.; Zapata, A.; Felix, J.; Arrieta, R.; Vela, M.
2008-01-01
In this paper we show the measurement of the time delay for the initiation of an emergency shutdown state at the RP-10 Reactor. This time delay is the one corresponding to the delay between the detection of a signal of any fixed limit and the start of a protective action to get the reactor in a safety state. The experimental method used is based on monitoring two signals in an oscilloscope, one signal is the elected initiate event and the other is the de-energizing of electromagnets of the security bars. The time delay for each safety and control rods, was measured for seven energizing current values in a range of 36 - 52 mA. The results showed that the minimum value is (84 ± 1.26) ms and the maximum is (108 ± 1.60) ms. In all cases it is noted that, the delay time is less than the limit values prefixed down in the reactor safety report. (authors)
Time Delay for the Initiation of an Emergency Shutdown at the Peruvian Nuclear Reactor RP-10
Energy Technology Data Exchange (ETDEWEB)
Ramon, A.; Ovalle, E.; Canaza, D.; Salazar, A.; Zapata, A.; Felix, J.; Arrieta, R.; Vela, M. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima (Peru)
2008-07-01
In this paper we show the measurement of the time delay for the initiation of an emergency shutdown state at the RP-10 Reactor. This time delay is the one corresponding to the delay between the detection of a signal of any fixed limit and the start of a protective action to get the reactor in a safety state. The experimental method used is based on monitoring two signals in an oscilloscope, one signal is the elected initiate event and the other is the de-energizing of electromagnets of the security bars. The time delay for each safety and control rods, was measured for seven energizing current values in a range of 36 - 52 mA. The results showed that the minimum value is (84 {+-} 1.26) ms and the maximum is (108 {+-} 1.60) ms. In all cases it is noted that, the delay time is less than the limit values prefixed down in the reactor safety report. (authors)
Shin, Yun-Ho; Kim, Kwang-Joon
2009-04-01
As environmental vibration requirements on precision equipment become more stringent, the use of pneumatic isolators has become more popular and their performance is subsequently required to be further improved. Dynamic performance of passive pneumatic isolators is related to various design parameters in a complicated manner and that in low-frequency range is limited by resonance frequency or volume of pneumatic chambers in practice. In this study, an active control technique, called as time delay control, is applied to a pneumatic isolator to enhance the isolation performance in the low frequency range where the passive techniques have difficulties. This time delay control technique is taken especially because it is known to be useful for the low frequency control. The procedure of applying the time delay control technique to the pneumatic isolator is presented, together with how to resolve distortion problems in actuator dynamics in implementing the active control technique into a pneumatic system. Effectiveness of the technique in enhancement of transmissibility performance is shown based on simulation as well as experiments. Comparisons with passive pneumatic isolators are also presented.
Time delay and duration of ionospheric total electron content responses to geomagnetic disturbances
Directory of Open Access Journals (Sweden)
J. Liu
2010-03-01
Full Text Available Although positive and negative signatures of ionospheric storms have been reported many times, global characteristics such as the time of occurrence, time delay and duration as well as their relations to the intensity of the ionospheric storms have not received enough attention. The 10 years of global ionosphere maps (GIMs of total electron content (TEC retrieved at Jet Propulsion Laboratory (JPL were used to conduct a statistical study of the time delay of the ionospheric responses to geomagnetic disturbances. Our results show that the time delays between geomagnetic disturbances and TEC responses depend on season, magnetic local time and magnetic latitude. In the summer hemisphere at mid- and high latitudes, the negative storm effects can propagate to the low latitudes at post-midnight to the morning sector with a time delay of 4–7 h. As the earth rotates to the sunlight, negative phase retreats to higher latitudes and starts to extend to the lower latitude toward midnight sector. In the winter hemisphere during the daytime and after sunset at mid- and low latitudes, the negative phase appearance time is delayed from 1–10 h depending on the local time, latitude and storm intensity compared to the same area in the summer hemisphere. The quick response of positive phase can be observed at the auroral area in the night-side of the winter hemisphere. At the low latitudes during the dawn-noon sector, the ionospheric negative phase responses quickly with time delays of 5–7 h in both equinoctial and solsticial months. Our results also manifest that there is a positive correlation between the intensity of geomagnetic disturbances and the time duration of both the positive phase and negative phase. The durations of both negative phase and positive phase have clear latitudinal, seasonal and magnetic local time (MLT dependence. In the winter hemisphere, long durations for the positive phase are 8–11 h and 12–14 h during the daytime at middle
Akimenko, Vitalii; Anguelov, Roumen
2017-12-01
In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.
Directory of Open Access Journals (Sweden)
Dan Ye
2013-01-01
Full Text Available This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.
International Nuclear Information System (INIS)
Tal, Balazs; Bencze, Attila; Zoletnik, Sandor; Veres, Gabor; Por, Gabor
2011-01-01
Time delay estimation methods (TDE) are well-known techniques to investigate poloidal flows in hot magnetized plasmas through the propagation properties of turbulent structures in the medium. One of these methods is based on the estimation of the time lag at which the cross-correlation function (CCF) estimation reaches its maximum value. The uncertainty of the peak location refers to the smallest determinable flow velocity modulation, and therefore the standard deviation of the time delay imposes important limitation to the measurements. In this article, the relative standard deviation of the CCF estimation and the standard deviation of its peak location are calculated analytically using a simple model of turbulent signals. This model assumes independent (non interacting) overlapping events (coherent structures) with randomly distributed spatio-temporal origins moving with background flow. The result of our calculations is the derivation of a general formula for the CCF variance, which is valid not exclusively in the high event density limit, but also for arbitrary event densities. Our formula reproduces the well known expression for high event densities previously published in the literature. In this paper we also present a derivation of the variance of time delay estimation that turns out to be inversely proportional to the applied time window. The derived formulas were tested in real plasma measurements. The calculations are an extension of the earlier work of Bencze and Zoletnik [Phys. Plasmas 12, 052323 (2005)] where the autocorrelation-width technique was developed. Additionally, we show that velocities calculated by a TDE method possess a broadband noise which originates from this variance, its power spectral density cannot be decreased by worsening the time resolution and can be coherent with noises of other velocity measurements where the same turbulent structures are used. This noise should not be confused with the impact of zero mean frequency zonal flow
NeamÅ£u, Mihaela; Stoian, Dana; Navolan, Dan Bogdan
2014-12-01
In the present paper we provide a mathematical model that describe the hypothalamus-pituitary-thyroid axis in autoimmune (Hashimoto's) thyroiditis. Since there is a spatial separation between thyroid and pituitary gland in the body, time is needed for transportation of thyrotropin and thyroxine between the glands. Thus, the distributed time delays are considered as both weak and Dirac kernels. The delayed model is analyzed regarding the stability and bifurcation behavior. The last part contains some numerical simulations to illustrate the effectiveness of our results and conclusions.
Quasipolynomial Approach to Simultaneous Robust Control of Time-Delay Systems
Directory of Open Access Journals (Sweden)
Nikolaj Semenič
2014-01-01
Full Text Available A control law for retarded time-delay systems is considered, concerning infinite closed-loop spectrum assignment. An algebraic method for spectrum assignment is presented with a unique optimization algorithm for minimization of spectral abscissa and effective shaping of the chains of infinitely many closed-loop poles. Uncertainty of plant delays of a certain structure is considered in a sense of a robust simultaneous stabilization. Robust performance is achieved using mixed sensitivity design, which is incorporated into the addressed control law.
Controller Design of Multiinput Multioutput Time-Delay Large-Scale System
Directory of Open Access Journals (Sweden)
Chia-Wei Lin
2013-01-01
Full Text Available The paper presents a novel feedback linearization controller of nonlinear multiinput multioutput time-delay large-scale systems to obtain both the tracking and almost disturbance decoupling (ADD performances. The significant contribution of this paper is to build up a control law such that the overall closed-loop system is stable for given initial condition and bounded tracking trajectory with the input-to-state-stability characteristic and almost disturbance decoupling performance. We have simulated the two-inverted-pendulum system coupled by a spring for networked control systems which has been used as a test bed for the study of decentralized control of large-scale systems.
Ponomarenko, V I; Kulminskiy, D D; Prokhorov, M D
2017-08-01
We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in the network results from the presence of bistable states with substantially different frequencies in coupled oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators remain asynchronous.
Thompson, L. L.; Mccann, D. H.
1978-01-01
The visible focal plane of the Thematic Mapper, the next generation sensor system for application to earth resource survey, uses complex hybrid assembly techniques to interface silicon photodiodes to JFET preamplifiers. This complexity can be ameliorated by the use of a 20-channel time-delay-and-integration (TDI) CCD with nine stages of integration per channel. By going to a CCD array operating in a TDI mode, over 700 individual op amps can be replaced with only 48 op amps. Smooth spectral response and 70% quantum efficiency have been provided by using doped tin oxide gates over the imaging region.
Generalized Projective Synchronization between Two Different Neural Networks with Mixed Time Delays
Directory of Open Access Journals (Sweden)
Xuefei Wu
2012-01-01
Full Text Available The generalized projective synchronization (GPS between two different neural networks with nonlinear coupling and mixed time delays is considered. Several kinds of nonlinear feedback controllers are designed to achieve GPS between two different such neural networks. Some results for GPS of these neural networks are proved theoretically by using the Lyapunov stability theory and the LaSalle invariance principle. Moreover, by comparison, we determine an optimal nonlinear controller from several ones and provide an adaptive update law for it. Computer simulations are provided to show the effectiveness and feasibility of the proposed methods.
Exploring super-gaussianity towards robust information-theoretical time delay estimation
DEFF Research Database (Denmark)
Petsatodis, Theodoros; Talantzis, Fotios; Boukis, Christos
2013-01-01
Time delay estimation (TDE) is a fundamental component of speaker localization and tracking algorithms. Most of the existing systems are based on the generalized cross-correlation method assuming gaussianity of the source. It has been shown that the distribution of speech, captured with far...... the effect upon TDE when modeling the source signal with different speech-based distributions. An information theoretical TDE method indirectly encapsulating higher order statistics (HOS) formed the basis of this work. The underlying assumption of Gaussian distributed source has been replaced...
Liu, Wanli
2017-03-08
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.
Hawking fluxes and anomalies in rotating regular black holes with a time-delay
International Nuclear Information System (INIS)
Takeuchi, Shingo
2016-01-01
Based on the anomaly cancellation method we compute the Hawking fluxes (the Hawking thermal flux and the total flux of energy-momentum tensor) from a four-dimensional rotating regular black hole with a time-delay. To this purpose, in the three metrics proposed in [1], we try to perform the dimensional reduction in which the anomaly cancellation method is feasible at the near-horizon region in a general scalar field theory. As a result we can demonstrate that the dimensional reduction is possible in two of those metrics. Hence we perform the anomaly cancellation method and compute the Hawking fluxes in those two metrics. Our Hawking fluxes involve three effects: (1) quantum gravity effect regularizing the core of the black holes, (2) rotation of the black hole, (3) time-delay. Further in this paper toward the metric in which the dimensional could not be performed, we argue that it would be some problematic metric, and mention its cause. The Hawking fluxes we compute in this study could be considered to correspond to more realistic Hawking fluxes. Further what Hawking fluxes can be obtained from the anomaly cancellation method would be interesting in terms of the relation between a consistency of quantum field theories and black hole thermodynamics. (paper)
MONITORING SHORT-TERM COSMIC-RAY SPECTRAL VARIATIONS USING NEUTRON MONITOR TIME-DELAY MEASUREMENTS
Energy Technology Data Exchange (ETDEWEB)
Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Nutaro, T.; Rujiwarodom, M.; Tooprakai, P. [Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C. [Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190 (Thailand); Asavapibhop, B. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Bieber, J. W.; Clem, J.; Evenson, P. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Munakata, K., E-mail: david.ruf@mahidol.ac.th [Physics Department, Shinshu University, Matsumoto, Nagano 390-8621 (Japan)
2016-01-20
Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007–2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.
Moradi, Hojjatullah; Majd, Vahid Johari
2016-05-01
In this paper, the problem of robust stability of nonlinear genetic regulatory networks (GRNs) is investigated. The developed method is an integral sliding mode control based redesign for a class of perturbed dissipative switched GRNs with time delays. The control law is redesigned by modifying the dissipativity-based control law that was designed for the unperturbed GRNs with time delays. The switched GRNs are switched from one mode to another based on time, state, etc. Although, the active subsystem is known in any instance, but the switching law and the transition probabilities are not known. The model for each mode is considered affine with matched and unmatched perturbations. The redesigned control law forces the GRN to always remain on the sliding surface and the dissipativity is maintained from the initial time in the presence of the norm-bounded perturbations. The global stability of the perturbed GRNs is maintained if the unperturbed model is globally dissipative. The designed control law for the perturbed GRNs guarantees robust exponential or asymptotic stability of the closed-loop network depending on the type of stability of the unperturbed model. The results are applied to a nonlinear switched GRN, and its convergence to the origin is verified by simulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Optimal design of PID controller for second order plus time delay systems
International Nuclear Information System (INIS)
Srivastava, S.; Misra, A.; Kumar, Y.; Thakur, S.K.
2015-01-01
It is well known that the effect of time delay in the forward path of control loop deteriorates the system performance and at the same time makes it difficult to compute the optimum PID controller parameters of the feedback control systems. PI/PID controller is most popular and used more than 80% in industries as well as in accelerators lab due to its simple structure and appropriate robustness. At VECC we have planned to use a PID controller for the speed control of DC motor which will be used to adjust the solenoid coil position of the 2.45 GHz microwave ion source for optimum performance during the online operation. In this paper we present a comparison of the two methods which have been used to design the optimum PID controller parameters: one by optimizing different time domain performance indices such as lAE, ITSE etc. and other using analytical formulation based on Linear Quadratic Regulator (LQR). We have performed numerical simulations using MATLAB and compare the closed loop time response performance measures using the PID parameters obtained from above mentioned two methods on a second order transfer function of a DC motor with time delay. (author)
Nonlinear Control and Synchronization with Time Delays of Multiagent Robotic Systems
Directory of Open Access Journals (Sweden)
Yassine Bouteraa
2011-01-01
Full Text Available We investigate the cooperative control and global asymptotic synchronization Lagrangian system groups, such as industrial robots. The proposed control approach works to accomplish multirobot systems synchronization under an undirected connected communication topology. The control strategy is to synchronize each robot in position and velocity to others robots in the network with respect to the common desired trajectory. The cooperative robot network only requires local neighbor-to-neighbor information exchange between manipulators and does not assume the existence of an explicit leader in the team. It is assumed that network robots have the same number of joints and equivalent joint work spaces. A combination of the lyapunov-based technique and the cross-coupling method has been used to establish the multirobot system asymptotic stability. The developed control combines trajectory tracking and coordination algorithms. To address the time-delay problem in the cooperative network communication, the suggested synchronization control law is shown to synchronize multiple robots as well as to track given trajectory, taking into account the presence of the time delay. To this end, Krasovskii functional method has been used to deal with the delay-dependent stability problem.
Forced phase-locked response of a nonlinear system with time delay after Hopf bifurcation
International Nuclear Information System (INIS)
Ji, J.C.; Hansen, Colin H.
2005-01-01
The trivial equilibrium of a nonlinear autonomous system with time delay may become unstable via a Hopf bifurcation of multiplicity two, as the time delay reaches a critical value. This loss of stability of the equilibrium is associated with two coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. The resultant dynamic behaviour of the corresponding nonlinear non-autonomous system in the neighbourhood of the Hopf bifurcation is investigated based on the reduction of the infinite-dimensional problem to a four-dimensional centre manifold. As a result of the interaction between the Hopf bifurcating periodic solutions and the external periodic excitation, a primary resonance can occur in the forced response of the system when the forcing frequency is close to the Hopf bifurcating periodic frequency. The method of multiple scales is used to obtain four first-order ordinary differential equations that determine the amplitudes and phases of the phase-locked periodic solutions. The first-order approximations of the periodic solutions are found to be in excellent agreement with those obtained by direct numerical integration of the delay-differential equation. It is also found that the steady state solutions of the nonlinear non-autonomous system may lose their stability via either a pitchfork or Hopf bifurcation. It is shown that the primary resonance response may exhibit symmetric and asymmetric phase-locked periodic motions, quasi-periodic motions, chaotic motions, and coexistence of two stable motions
Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method
International Nuclear Information System (INIS)
Souza de Paula, Aline; Savi, Marcelo Amorim
2009-01-01
Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, highlighting some difficulties to achieve the stabilization of the desired orbit.
Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays
Nguimdo, Romain Modeste
2018-03-01
Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.
A discrete event simulation model for evaluating time delays in a pipeline network
Energy Technology Data Exchange (ETDEWEB)
Spricigo, Deisi; Muggiati, Filipe V.; Lueders, Ricardo; Neves Junior, Flavio [Federal University of Technology of Parana (UTFPR), Curitiba, PR (Brazil)
2009-07-01
Currently in the oil industry the logistic chain stands out as a strong candidate to obtain highest profit, since recent studies have pointed out to a cost reduction by adoption of better policies for distribution of oil derivatives, particularly those where pipelines are used to transport products. Although there are models to represent transfers of oil derivatives in pipelines, they are quite complex and computationally burden. In this paper, we are interested on models that are less detailed in terms of fluid dynamics but provide more information about operational decisions in a pipeline network. We propose a discrete event simulation model in ARENA that allows simulating a pipeline network based on average historical data. Time delays for transferring different products can be evaluated through different routes. It is considered that transport operations follow a historical behavior and average time delays can thus be estimated within certain bounds. Due to its stochastic nature, time quantities are characterized by average and dispersion measures. This allows comparing different operational scenarios for product transportation. Simulation results are compared to data obtained from a real world pipeline network and different scenarios of production and demand are analyzed. (author)
Angular dependence of the attosecond time delay in the H 2 + ion
Kheifets, Anatoli; Serov, Vladislav
2016-05-01
Angular dependence of attosecond time delay relative to polarization of light can now be measured using combination of RABBITT and COLTRIMS techniques. This dependence brings particularly useful information in molecules where it is sensitive to the orientation of the molecular axis. Here we extend the theoretical studies of and consider a molecular ion H2+in combination of an attosecond pulse train and a dressing IR field which is a characteristic set up of a RABBIT measurement. We solve the time-dependent Schrödinger equation using a fast spherical Bessel transformation (SBT) for the radial variable, a discrete variable representation for the angular variables and a split-step technique for the time evolution. The use of SBT ensures correct phase of the wave function for a long time evolution which is especially important in time delay calculations. To speed up computations, we implement an expanding coordinate (EC) system which allows us to reach space sizes and time periods unavailable by other techniques. Australian Research Council DP120101805.
Associative memory based on synchronized firing of spiking neurons with time-delayed interactions
Yoshioka, Masahiko; Shiino, Masatoshi
1998-09-01
We study associative memory of a neural network of spiking neurons with time-delayed synaptic interactions incorporating the time taken by an action potential to propagate along the axon. Individual spiking neurons are described by a set of nonlinear differential equations capable of exhibiting excitability such as that of Hodgkin-Huxley and FitzHugh neurons. When a simple learning rule of the autocorrelation type based on random patterns is assumed, memory retrieval is shown to be accompanied by synchronized firing of neurons. The reduced dynamics with a few degrees of freedom of the network with a finite number of stored patterns is analytically derived in the limit of infinitely many neurons. The dependence of the appearance of retrieval states on the distribution of time delay and on the size of refractory period given implicitly in the model is obtained, showing good agreement between the result of numerical simulations and that obtained from the reduced dynamics. The behavior of the network with an extensive number of patterns is also investigated and an approximate analysis is presented to discuss the storage capacity.
Linear-control-based synchronization of coexisting attractor networks with time delays
International Nuclear Information System (INIS)
Yun-Zhong, Song
2010-01-01
This paper introduces the concept of linear-control-based synchronization of coexisting attractor networks with time delays. Within the new framework, closed loop control for each dynamic node is realized through linear state feedback around its own arena in a decentralized way, where the feedback matrix is determined through consideration of the coordination of the node dynamics, the inner connected matrix and the outer connected matrix. Unlike previously existing results, the feedback gain matrix here is decoupled from the inner matrix; this not only guarantees the flexible choice of the gain matrix, but also leaves much space for inner matrix configuration. Synchronization of coexisting attractor networks with time delays is made possible in virtue of local interaction, which works in a distributed way between individual neighbours, and the linear feedback control for each node. Provided that the network is connected and balanced, synchronization will come true naturally, where theoretical proof is given via a Lyapunov function. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme. (general)
Effects of time delay on stochastic resonance of the stock prices in financial system
International Nuclear Information System (INIS)
Li, Jiang-Cheng; Li, Chun; Mei, Dong-Cheng
2014-01-01
The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing. - Highlights: • The effects of delay time on stochastic resonance of the stock prices was investigated. • There is an optimal critical value of delay time maximally enhances the reverse-resonance • The reverse-resonance increases with the delay time increasing as the delay time takes value below the critical value • The reverse-resonance decrease with the delay time increasing as the delay time takes value above the critical value
Emergent bimodality and switch induced by time delays and noises in a synthetic gene circuit
Zhang, Chun; Du, Liping; Xie, Qingshuang; Wang, Tonghuan; Zeng, Chunhua; Nie, Linru; Duan, Weilong; Jia, Zhenglin; Wang, Canjun
2017-10-01
Based on the kinetic model for obtaining emergent bistability proposed by Tan et al. (2009), the effects of the fluctuations of protein synthesis rate and maximum dilution rate, the cross-correlation between two noises, and the time delay and the strength of the feedback loop in the synthetic gene circuit have been investigated through theoretical analysis and numerical simulation. Our results show that: (i) the fluctuations of protein synthesis rate and maximum dilution rate enhance the emergent bimodality of the probability distribution phenomenon, while the cross-correlation between two noises(λ), the time delay(τ) and the strength of the feedback loop(K) cause it to disappear; and (ii) the mean first passage time(MFPT) as functions of the noise strengths exhibits a maximum, this maximum is called noise-delayed switching (NDS) of the high concentration state. The NDS phenomenon shows that the noise can modify the stability of a metastable system in a counterintuitive way, the system remains in the metastable state for a longer time compared to the deterministic case. And the τ and the K enhances the stability of the ON state. The physical mechanisms for the switch between the ON and OFF states can be explained from the point of view of the effective potential.
Effects of time delay on stochastic resonance of the stock prices in financial system
Energy Technology Data Exchange (ETDEWEB)
Li, Jiang-Cheng [Department of Physics, Yunnan University, Kunming, 650091 (China); Li, Chun [Department of Computer Science, Puer Teachers' College, Puer 665000 (China); Mei, Dong-Cheng, E-mail: meidch@ynu.edu.cn [Department of Physics, Yunnan University, Kunming, 650091 (China)
2014-06-13
The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing. - Highlights: • The effects of delay time on stochastic resonance of the stock prices was investigated. • There is an optimal critical value of delay time maximally enhances the reverse-resonance • The reverse-resonance increases with the delay time increasing as the delay time takes value below the critical value • The reverse-resonance decrease with the delay time increasing as the delay time takes value above the critical value.
International Nuclear Information System (INIS)
Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.
2010-01-01
We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delay time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.
Directory of Open Access Journals (Sweden)
G. Peláez
2007-01-01
Full Text Available An investigation of the response of a physical pendulum to time delay filtered inputs was conducted. It was shown that the physical pendulum model is more accurate than the simple pendulum for modelling the dynamic response of overhead cranes with loads hanging from hooks. Based on the physical pendulum model a Specified Time Delay filter for an experimental mini overhead crane was synthesized. While somewhat limited in the scope by the hardware conditions placed in the system, the results provide basic insights into the successful application of the Time Delay Filtering method to overhead cranes.
International Nuclear Information System (INIS)
Wang Huijuan; Ren Zhi
2011-01-01
Competition of spatial and temporal instabilities under time delay near the codimension-two Turing-Hopf bifurcations is studied in a reaction-diffusion equation. The time delay changes remarkably the oscillation frequency, the intrinsic wave vector, and the intensities of both Turing and Hopf modes. The application of appropriate time delay can control the competition between the Turing and Hopf modes. Analysis shows that individual or both feedbacks can realize the control of the transformation between the Turing and Hopf patterns. Two-dimensional numerical simulations validate the analytical results. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Wang, Zhen; Wang, Xiaohong; Li, Yuxia; Huang, Xia
2017-12-01
In this paper, the problems of stability and Hopf bifurcation in a class of fractional-order complex-valued single neuron model with time delay are addressed. With the help of the stability theory of fractional-order differential equations and Laplace transforms, several new sufficient conditions, which ensure the stability of the system are derived. Taking the time delay as the bifurcation parameter, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence of Hopf bifurcation is determined. Finally, two representative numerical examples are given to show the effectiveness of the theoretical results.
Analysis of the effects of time delay in clock recovery circuits based on Phase-locked loops
DEFF Research Database (Denmark)
Zibar, Darko; Oxenløwe, Leif Katsuo; Clausen, Anders
2004-01-01
Influence of time delay in a balanced optical phase-locked loops (OPLL) with a proportional integrator (Pl) filter is investigated using a delayed differential equation (DDE) is investigated. The limitations, which a time delay imposes on the Pl filter bandwidth, at increasing values of loop gain......, are investigated by numerical simulations. Furthermore, simple expressions governing the stability properties of the loop, in the presence of time delay, are derived. For this purpose, three standard loop filters are considered: a Pl filter, a low pass (LP) filter and an active lag (AL) filter. The derived...
Huang, Chengdai; Cao, Jinde; Xiao, Min; Alsaedi, Ahmed; Hayat, Tasawar
2018-04-01
This paper is comprehensively concerned with the dynamics of a class of high-dimension fractional ring-structured neural networks with multiple time delays. Based on the associated characteristic equation, the sum of time delays is regarded as the bifurcation parameter, and some explicit conditions for describing delay-dependent stability and emergence of Hopf bifurcation of such networks are derived. It reveals that the stability and bifurcation heavily relies on the sum of time delays for the proposed networks, and the stability performance of such networks can be markedly improved by selecting carefully the sum of time delays. Moreover, it is further displayed that both the order and the number of neurons can extremely influence the stability and bifurcation of such networks. The obtained criteria enormously generalize and improve the existing work. Finally, numerical examples are presented to verify the efficiency of the theoretical results.
Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars, Phase I
National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...
Courbin, F.; Bonvin, V.; Buckley-Geer, E.; Fassnacht, C. D.; Frieman, J.; Lin, H.; Marshall, P. J.; Suyu, S. H.; Treu, T.; Anguita, T.; Motta, V.; Meylan, G.; Paic, E.; Tewes, M.; Agnello, A.; Chao, D. C.-Y.; Chijani, M.; Gilman, D.; Rojas, K.; Williams, P.; Hempel, A.; Kim, S.; Lachaume, R.; Rabus, M.; Abbott, T. M. C.; Allam, S.; Annis, J.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Flaugher, B.; Fosalba, P.; García-Bellido, J.; Gaztanaga, E.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Nord, B.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Tucker, D. L.; Walker, A. R.; Wester, W.
2018-01-01
We present time-delay measurements for the new quadruple imaged quasar DES J0408-5354, the first quadruple imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2 m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data qualityallows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, and hence making the time delay measurement very robust against microlensing. In only seven months we very accurately measured one of the time delays in DES J0408-5354: Δt(AB) = -112.1 ± 2.1 days (1.8%) using only the MPIA 2.2 m data. In combination with data taken with the 1.2 m Euler Swiss telescope, we also measured two delays involving the D component of the system Δt(AD) = -155.5 ± 12.8 days (8.2%) and Δt(BD) = -42.4 ± 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep Hubble Space Telescope (HST) imaging or ground-based adaptive optics (AO), and information on the velocity field of the lensing galaxy. Lightcurves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A71
Kuroda, Akio; Taniguchi, Satoshi; Akehi, Yuko; Mori, Hiroyasu; Tamaki, Motoyuki; Suzuki, Reiko; Otsuka, Yinhua; Matsuhisa, Munehide
2017-11-01
Glucose values of continuous glucose monitoring (CGM) have time delays compared with plasma glucose (PG) values. The artificial pancreas (STG-55, Nikkiso, Japan) (AP), which measures venous blood glucose directly, also has a time delay because of the long tubing lines from sampling vessel to the glucose sensor. We investigate accuracy and time delay of CGM and AP in comparison with PG values during 2-step glucose clamp study. Seven patients with type 2 diabetes and 2 healthy volunteers were included in this study. CGM (Enlite sensor, Medtronic, Northridge, CA, USA) was attached on the day before the experiment. Hyperglycemic (200 mg/dL) clamp was performed for 90 minutes, followed by euglycemic (100 mg/dL) hyperinsulinemic (100 μU/mL) clamp for 90-120 minutes using AP. CGM sensor glucose was calibrated just before and after the clamp study. AP and CGM values were compared with PG values. AP values were significantly lower than PG values at 5, 30 minute during hyperglycemic clamp. In comparison, CGM value at 0 minute was significantly higher, and its following values were almost significantly lower than PG values. The time delay of AP and CGM values to reach maximum glucose levels were 5.0 ± 22.3 (NS) and 28.6 ± 32.5 ( P < .05) min, respectively. Mean absolute rate difference of CGM was significantly higher than AP (24.0 ± 7.6 vs 15.3 ± 4.6, P < .05) during glucose rising period (0-45 min); however, there were no significant differences during other periods. Both CGM and AP failed to follow plasma glucose values during nonphysiologically rapid glucose rising, but indicated accurate values during physiological glucose change.
Adibi, Atoosa; Shahbazi, Ali
2014-01-01
Background Bolus tracking can individualize time delay for the start of scans in spiral computed tomography (CT). Objectives We compared automatic bolus tracking method with fixed time-delay technique in biphasic contrast enhancement during multidetector CT of abdomen. Patients and Methods Adult patients referred for spiral CT of the abdomen were randomized into two groups; in group 1, the arterial and portal phases of spiral scans were started 25 s and 55 s after the start of contrast materi...
Energy Technology Data Exchange (ETDEWEB)
Patanarapeelert, K. [Faculty of Science, Department of Mathematics, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Frank, T.D. [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany)]. E-mail: tdfrank@uni-muenster.de; Friedrich, R. [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany); Beek, P.J. [Faculty of Human Movement Sciences and Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam (Netherlands); Tang, I.M. [Faculty of Science, Department of Physics, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand)
2006-12-18
A method is proposed to identify deterministic components of stable and unstable time-delayed systems subjected to noise sources with finite correlation times (colored noise). Both neutral and retarded delay systems are considered. For vanishing correlation times it is shown how to determine their noise amplitudes by minimizing appropriately defined Kullback measures. The method is illustrated by applying it to simulated data from stochastic time-delayed systems representing delay-induced bifurcations, postural sway and ship rolling.
Measurement in Sensory Modulation: The Sensory Processing Scale Assessment
Miller, Lucy J.; Sullivan, Jillian C.
2014-01-01
OBJECTIVE. Sensory modulation issues have a significant impact on participation in daily life. Moreover, understanding phenotypic variation in sensory modulation dysfunction is crucial for research related to defining homogeneous groups and for clinical work in guiding treatment planning. We thus evaluated the new Sensory Processing Scale (SPS) Assessment. METHOD. Research included item development, behavioral scoring system development, test administration, and item analyses to evaluate reliability and validity across sensory domains. RESULTS. Items with adequate reliability (internal reliability >.4) and discriminant validity (p sensory modulation (scale reliability >.90; discrimination between group effect sizes >1.00). This scale has the potential to aid in differential diagnosis of sensory modulation issues. PMID:25184464
Directory of Open Access Journals (Sweden)
Pengfei Guo
2014-01-01
Full Text Available This paper deals with the fault detection problem for a class of discrete-time wireless networked control systems described by switching topology with uncertainties and disturbances. System states of each individual node are affected not only by its own measurements, but also by other nodes’ measurements according to a certain network topology. As the topology of system can be switched in a stochastic way, we aim to design H∞ fault detection observers for nodes in the dynamic time-delay systems. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are acquired to guarantee the existence of the filters satisfying the H∞ performance constraint, and observer gains are derived by solving linear matrix inequalities. Finally, an illustrated example is provided to verify the effectiveness of the theoretical results.
Act-and-wait time-delayed feedback control of autonomous systems
Pyragas, Viktoras; Pyragas, Kestutis
2018-02-01
Recently an act-and-wait modification of time-delayed feedback control has been proposed for the stabilization of unstable periodic orbits in nonautonomous dynamical systems (Pyragas and Pyragas, 2016 [30]). The modification implies a periodic switching of the feedback gain and makes the closed-loop system finite-dimensional. Here we extend this modification to autonomous systems. In order to keep constant the phase difference between the controlled orbit and the act-and-wait switching function an additional small-amplitude periodic perturbation is introduced. The algorithm can stabilize periodic orbits with an odd number of real unstable Floquet exponents using a simple single-input single-output constraint control.
A new delay-independent condition for global robust stability of neural networks with time delays.
Samli, Ruya
2015-06-01
This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Predictor-based stabilization for chained form systems with input time delay
Directory of Open Access Journals (Sweden)
Mnif Faïçal
2016-12-01
Full Text Available This note addresses the stabilization problem of nonlinear chained-form systems with input time delay. We first employ the so-called σ-process transformation that renders the feedback system under a linear form. We introduce a particular transformation to convert the original system into a delay-free system. Finally, we apply a state feedback control, which guarantees a quasi-exponential stabilization to all the system states, which in turn converge exponentially to zero. Then we employ the so-called -type control to achieve a quasi-exponential stabilization of the subsequent system. A simulation example illustrated on the model of a wheeled mobile robot is provided to demonstrate the effectiveness of the proposed approach.
Robust decentralised PI based LFC design for time delay power systems
International Nuclear Information System (INIS)
Bevrani, Hassan; Hiyama, Takashi
2008-01-01
In this paper, two robust decentralised proportional integral (PI) control designs are proposed for load frequency control (LFC) with communication delays. In both methodologies, the PI based LFC problem is reduced to a static output feedback (SOF) control synthesis for a multiple delay system. The first one is based on the optimal H ∞ control design using a linear matrix inequalities (LMI) technique. The second control design gives a suboptimal solution using a developed iterative linear matrix inequalities (ILMI) algorithm via the mixed H 2 /H ∞ control technique. The control strategies are suitable for LFC applications that usually employ PI control. The proposed control strategies are applied to a three control area power system with time delays and load disturbance to demonstrate their robustness
Wavepacket dynamics of a Rydberg atom monitored by a pair of time-delayed laser pulses
Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Liu, HongPing
2018-02-01
We have investigated the Rydberg state population of an argon atom by an intense laser pulse and its wavepacket dynamics monitored by another successive laser pulse in the tunneling regime. A wavepacket comprising a superposition of close high-lying Rydberg states is irradiated by a multicycle laser pulse, where the sub-wave components in the wavepacket have fixed relative phases. A time-delayed second laser pulse is employed to apply on the excited Rydberg atom. If the time is properly chosen, one of the sub-wave components will be guided towards the ionization area while the rest remains intact. By means of this pump–probe technique, we could control and monitor the Rydberg wavepacket dynamics and reveal some interesting phenomenon such as the survival rate of individual Rydberg states related to the classical orbital period of electron.
Accuracy study of time delay estimation techniques in laser pulse ranger
Yang, Jinliang; Wang, Xingshu; Gao, Yang
2013-12-01
Time-of-flight measurement by using laser pulses is an alternative method in laser range finding and laser scanning, the echo pulses originating from backscattering of the emitted laser pulse on targets is detected by optical receiver. The distance of target can be obtained by measuring the round-trip time. Time-of-arrival estimation may be based on schemes such as constant-fraction discriminator (CFD) in analog electronics. In contrast, as sampled signals are available, time delay estimation may be based on schemes like direct cross-correlation function (CCF) and average square difference function (ASDF) in digital electronics. By the way, constant-fraction discriminator can also be used in digital electronics. All this three methods are analyzed and compared with each other. It is shown that estimators based on CCF and ASDF are more precise than conventional CFD based estimator.
A Heterogeneous Agent Model of Asspet Price with Three Time Delays
Directory of Open Access Journals (Sweden)
Akio Matsumoto
2016-09-01
Full Text Available This paper considers a continuous-time heterogeneous agent model ofa ...nancial market with one risky asset, two types of agents (i.e., thefundamentalists and the chartists, and three time delays. The chartistdemand is determined through a nonlinear function of the di¤erence be-tween the current price and a weighted moving average of the delayedprices whereas the fundamentalist demand is governed by the di¤erencebetween the current price and the fundamental value. The asset price dy-namics is described by a nonlinear delay di¤erential equation. Two mainresults are analytically and numerically shown:(i the delay destabilizes the market price and generates cyclic oscillationsaround the equilibrium;(ii under multiple delays, stability loss and gain repeatedly occurs as alength of the delay increases.
Isolation of gravitational waves from displacement noise and utility of a time-delay device
International Nuclear Information System (INIS)
Somiya, Kentaro; Goda, Keisuke; Chen, Yanbei; Mikhailov, Eugeniy E
2007-01-01
Interferometers with kilometer-scale arms have been built for gravitational-wave detections on the ground; ones with much longer arms are being planned for space-based detection. One fundamental motivation for long baseline interferometry is from displacement noise. In general, the longer the arm length L, the larger the motion the gravitational-wave induces on the test masses, until L becomes comparable to the gravitational wavelength. Recently, schemes have been invented, in which displacement noise can be evaded by employing differences between the influence of test-mass motions and that of gravitational waves on light propagation. However, in these schemes, such differences only becomes significant when Lapproaches the gravitational wavelength. In this paper, we explore a use of artificial time delay in displacement-noise-free interferometers, which will shift the frequency band of the effect being significant and may improve their shot-noise-limited sensitivity at low frequencies
Isolation of gravitational waves from displacement noise and utility of a time-delay device
Energy Technology Data Exchange (ETDEWEB)
Somiya, Kentaro [Max-Planck Institut fuer Gravitationsphysik, Am Muehlenberg 1, 14476 Potsdam (Germany); Goda, Keisuke [LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chen, Yanbei [Max-Planck Institut fuer Gravitationsphysik, Am Muehlenberg 1, 14476 Potsdam (Germany); Mikhailov, Eugeniy E [Department of Physics, College of William and Mary, Williamsburg, VA 23187 (United States)
2007-05-15
Interferometers with kilometer-scale arms have been built for gravitational-wave detections on the ground; ones with much longer arms are being planned for space-based detection. One fundamental motivation for long baseline interferometry is from displacement noise. In general, the longer the arm length L, the larger the motion the gravitational-wave induces on the test masses, until L becomes comparable to the gravitational wavelength. Recently, schemes have been invented, in which displacement noise can be evaded by employing differences between the influence of test-mass motions and that of gravitational waves on light propagation. However, in these schemes, such differences only becomes significant when Lapproaches the gravitational wavelength. In this paper, we explore a use of artificial time delay in displacement-noise-free interferometers, which will shift the frequency band of the effect being significant and may improve their shot-noise-limited sensitivity at low frequencies.
A Modified Time-Delay Addition Method to Extract Resistive Leakage Current of MOSA
Khodsuz, Masume; Mirzaie, Mohammad
2016-12-01
Metal oxide surge arresters are one of the most important equipment for power system protection against switching and lightning over-voltages. High-energy stresses and environmental features are the main factors which degrade surge arresters. In order to verify surge arresters good condition, their monitoring is necessary. The majority of surge arrester monitoring techniques is based on total leakage current decomposition of their capacitive and resistive components. This paper introduces a new approach based on time-delay addition method to extract the resistive current from the total leakage current without measuring voltage signal. Surge arrester model for calculating leakage current has been performed in ATP-EMTP. In addition, the signal processing has been done using MATLAB software. To show the accuracy of the proposed method, experimental tests have been performed to extract resistive leakage current by the proposed method.
Modeling the effect of time delay on the conservation of forestry biomass
International Nuclear Information System (INIS)
Misra, A.K.; Lata, Kusum
2013-01-01
In this paper, we have studied the effect of time delay on conservation of forestry biomass by proposing a non-linear mathematical model. In the modeling process, it is assumed that the density of forestry biomass depletes due to the presence of human population and it is being conserved by applying some technological efforts. The analysis of model shows that the density of forestry biomass may be conserved if the technological effort is applied within the appropriate time. A longer delay in applying technological effort for its conservation destabilizes the system. The direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by applying the normal form theory and the center manifold theorem. Numerical simulations are given to illustrate the mathematical results.
Energy Technology Data Exchange (ETDEWEB)
Novaes, Marcel [Instituto de Física, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, MG 38408-100 (Brazil)
2015-06-15
We consider S-matrix correlation functions for a chaotic cavity having M open channels, in the absence of time-reversal invariance. Relying on a semiclassical approximation, we compute the average over E of the quantities Tr[S{sup †}(E − ϵ) S(E + ϵ)]{sup n}, for general positive integer n. Our result is an infinite series in ϵ, whose coefficients are rational functions of M. From this, we extract moments of the time delay matrix Q = − iħS{sup †}dS/dE and check that the first 8 of them agree with the random matrix theory prediction from our previous paper [M. Novaes, J. Math. Phys. 56, 062110 (2015)].
International Nuclear Information System (INIS)
Pyragas, V.; Pyragas, K.
2011-01-01
We propose a simple adaptive delayed feedback control algorithm for stabilization of unstable periodic orbits with unknown periods. The state dependent time delay is varied continuously towards the period of controlled orbit according to a gradient-descent method realized through three simple ordinary differential equations. We demonstrate the efficiency of the algorithm with the Roessler and Mackey-Glass chaotic systems. The stability of the controlled orbits is proven by computation of the Lyapunov exponents of linearized equations. -- Highlights: → A simple adaptive modification of the delayed feedback control algorithm is proposed. → It enables the control of unstable periodic orbits with unknown periods. → The delay time is varied continuously according to a gradient descend method. → The algorithm is embodied by three simple ordinary differential equations. → The validity of the algorithm is proven by computation of the Lyapunov exponents.
Krein Space-Based H∞ Fault Estimation for Discrete Time-Delay Systems
Directory of Open Access Journals (Sweden)
Xinmin Song
2014-01-01
Full Text Available This paper investigates the finite-time H∞ fault estimation problem for linear time-delay systems, where the delay appears in both state and measurement equations. Firstly, the design of finite horizon H∞ fault estimation is converted into a minimum problem of certain quadratic form. Then we introduce a stochastic system in Krein space, and a sufficient and necessary condition for the minimum is derived by applying innovation analysis approach and projection theory. Finally, a solution to the H∞ fault estimation is obtained by recursively computing a partial difference Riccati equation, which has the same dimension as the original system. Compared with the conventional augmented approach, the solving of a high dimension Riccati equation is avoided.
A Dynamic Analysis of the Business Cycle Model with a Fixed-time Delay
Directory of Open Access Journals (Sweden)
Yuhang Zheng
2017-07-01
Full Text Available In business activities, there is a certain time lag effect in investment and capital stock, which would affect the dynamic behavior of the business cycle model and then complicate the economic stability adjustment made through investment policies. Considering the influence on investment activities caused by the expectation time about capital stock, this paper, employing the Hopf bifurcation theory, with the delay in investment as the bifurcation parameter, not only studies the equilibrium stability of the business cycle model with a fixed-time delay, but also discusses the formation conditions of the business cycle. The research discovers that the investment lag during the investing process and the expectation time about the capital stock are two crucial incentives of the business cycle; meanwhile, the expecting equilibrium target can be met through the adjustment of the government investment policies. These findings may serve as guidelines in stabilizing the business cycle and making relative economic policies. The conclusion is verified through numerical simulation.
Directory of Open Access Journals (Sweden)
Koofigar Hamid Reza
2017-09-01
Full Text Available A robust auxiliary wide area damping controller is proposed for a unified power flow controller (UPFC. The mixed H2 / H∞ problem with regional pole placement, resolved by linear matrix inequality (LMI, is applied for controller design. Based on modal analysis, the optimal wide area input signals for the controller are selected. The time delay of input signals, due to electrical distance from the UPFC location is taken into account in the design procedure. The proposed controller is applied to a multi-machine interconnected power system from the IRAN power grid. It is shown that the both transient and dynamic stability are significantly improved despite different disturbances and loading conditions.
Robust Fault Tolerant Control for a Class of Time-Delay Systems with Multiple Disturbances
Directory of Open Access Journals (Sweden)
Songyin Cao
2013-01-01
Full Text Available A robust fault tolerant control (FTC approach is addressed for a class of nonlinear systems with time delay, actuator faults, and multiple disturbances. The first part of the multiple disturbances is supposed to be an uncertain modeled disturbance and the second one represents a norm-bounded variable. First, a composite observer is designed to estimate the uncertain modeled disturbance and actuator fault simultaneously. Then, an FTC strategy consisting of disturbance observer based control (DOBC, fault accommodation, and a mixed H2/H∞ controller is constructed to reconfigure the considered systems with disturbance rejection and attenuation performance. Finally, simulations for a flight control system are given to show the efficiency of the proposed approach.
Hashemi, Mahnaz; Ghaisari, Jafar; Askari, Javad
2015-07-01
This paper investigates an adaptive controller for a class of Multi Input Multi Output (MIMO) nonlinear systems with unknown parameters, bounded time delays and in the presence of unknown time varying actuator failures. The type of considered actuator failure is one in which some inputs may be stuck at some time varying values where the values, times and patterns of the failures are unknown. The proposed approach is constructed based on a backstepping design method. The boundedness of all the closed-loop signals is guaranteed and the tracking errors are proved to converge to a small neighborhood of the origin. The proposed approach is employed for a double inverted pendulums benchmark and a chemical reactor system. The simulation results show the effectiveness of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Stabilization and PID tuning algorithms for second-order unstable processes with time-delays.
Seer, Qiu Han; Nandong, Jobrun
2017-03-01
Open-loop unstable systems with time-delays are often encountered in process industry, which are often more difficult to control than stable processes. In this paper, the stabilization by PID controller of second-order unstable processes, which can be represented as second-order deadtime with an unstable pole (SODUP) and second-order deadtime with two unstable poles (SODTUP), is performed via the necessary and sufficient criteria of Routh-Hurwitz stability analysis. The stability analysis provides improved understanding on the existence of a stabilizing range of each PID parameter. Three simple PID tuning algorithms are proposed to provide desired closed-loop performance-robustness within the stable regions of controller parameters obtained via the stability analysis. The proposed PID controllers show improved performance over those derived via some existing methods. Copyright © 2017. Published by Elsevier Ltd.
Can short time delays influence the variability of the solar cycle?
Jouve, Laurène; Proctor, Michael R. E.; Lesur, Geoffroy
2011-08-01
We present the effects of introducing results of 3D MHD simulations of buoyant magnetic fields in the solar convection zone in 2D mean-field Babcock-Leighton models. In particular, we take into account the time delay introduced by the rise time of the toroidal structures from the base of the convection zone to the solar surface. We find that the delays produce large temporal modulation of the cycle amplitude even when strong and thus rapidly rising flux tubes are considered. The study of a reduced model reveals that aperiodic modulations of the solar cycle appear after a sequence of period doubling bifurcations typical of non-linear systems. We also discuss the memory of such systems and the conclusions which may be drawn concerning the actual solar cycle variability.
Robust stability for stochastic bidirectional associative memory neural networks with time delays
Shu, H. S.; Lv, Z. W.; Wei, G. L.
2008-02-01
In this paper, the asymptotic stability is considered for a class of uncertain stochastic bidirectional associative memory neural networks with time delays and parameter uncertainties. The delays are time-invariant and the uncertainties are norm-bounded that enter into all network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov-Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed criteria.
Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems
Nguyen, Nhan
2006-01-01
This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.
Application of Time Delay Consideration on Bridge Vibration Control Method with Active Tendons
Directory of Open Access Journals (Sweden)
Lezin Seba MINSILI
2010-12-01
Full Text Available For many years bridge structures have been designed or constructed as passive structures that rely on their mass and solidity to resist external forces, while being incapable of adapting to the dynamics of an ever-changing environment. When the rigidity assumption is not met in particular for high-rise structures like bridge towers, a proper dynamic model should be established and conclusions made on the differential vibration of the tower when it is investigated out of the bridge system. The present work outlines a vibration control method by tendons on the tower of cable supported structures considering time delay effects, based on the discrete-time Linearization of the Feedback Gain Matrix. The efficiency of this vibration control method first proposed on the design process of a local bridge in Cameroon, is more compatible to the control of civil structures and is of great interest in accordance with simulation results.
Market-based control strategy for long-span structures considering the multi-time delay issue
Li, Hongnan; Song, Jianzhu; Li, Gang
2017-01-01
To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2 N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.
Longitudinal Outcomes of Start Time Delay on Sleep, Behavior, and Achievement in High School
Thacher, Pamela V.; Onyper, Serge V.
2016-01-01
Study Objectives: To establish whether sleep, health, mood, behavior, and academics improved after a 45-minute delay in high school start time, and whether changes persisted longitudinally. Methods: We collected data from school records and student self-report across a number of domains at baseline (May 2012) and at two follow-up time points (November 2012 and May 2013), at a public high school in upstate New York. Students enrolled during academic years (AY) 2011–2012 and 2012–2013 completed the Pittsburgh Sleep Quality Index; the DASS-21; the “Owl-Lark” Scale; the Daytime Sleepiness Index; and a brief self-report of health. Reports from school records regarding attendance, tardiness, disciplinary violations, and academic performance were collected for AY 2010–2011 through 2013–2014. Results: Students delayed but did not extend their sleep period; we found lasting improvements in tardiness and disciplinary violations after the start-time delay, but no changes to other variables. At the first follow-up, students reported 20 minutes longer sleep, driven by later rise times and stable bed times. At the second follow-up, students maintained later rise times but delayed bedtimes, returning total sleep to baseline levels. A delay in rise time, paralleling the delay in the start time that occurred, resulted in less tardiness and decreased disciplinary incidents, but larger improvements to sleep patterns may be necessary to affect health, attendance, sleepiness, and academic performance. Conclusions: Later start times improved tardiness and disciplinary issues at this school district. A delay in start time may be a necessary but not sufficient means to increase sleep time and may depend on preexisting individual differences. Commentary: A commentary on this article appears in this issue on page 267. Citation: Thacher PV, Onyper SV. Longitudinal outcomes of start time delay on sleep, behavior, and achievement in high school. SLEEP 2016;39(2):271–281. PMID
Cao, W; Campbell, B C V; Dong, Q; Davis, S M; Yan, B
2014-09-01
Collateral vessel status is strongly associated with clinical outcome in ischemic stroke but can be challenging to assess. The aim of this study was to develop a tomography perfusion source imaging-based assessment of collateral vessel status. Consecutive patients with ischemic stroke who received intravenous thrombolysis or intra-arterial reperfusion therapy after CTP were retrospectively analyzed. In those with middle cerebral artery or internal carotid artery occlusion, CT perfusion source imaging was used to identify the relative filling time delay between the normal MCA Sylvian branches and those in the affected hemisphere. Receiver operating characteristic analysis and logistic regression were used to assess the association of the relative filling time delay with the 24-hour Alberta Stroke Program Early CT Score based on noncontrast CT and the 90-day modified Rankin Scale score. There were 217 patients treated in 2009-2011 who had CTP data, of whom 60 had MCA or ICA occlusion and 55 had 90-day mRS data. The intraclass correlation coefficient for relative filling time delay was 0.95. Relative filling time delay was correlated with 24-hour ASPECTS (Spearman ρ=-0.674; Prelative filling time delay was associated with poor radiologic outcome (ASPECTS, 0-7) (area under the curve=0.79, Prelative filling time delay with poor outcome remained significant, independent of age, sex, and baseline National Institutes of Health Stroke Scale score. Relative filling time delay is a useful independent predictor of clinical outcome after ischemic stroke. © 2014 by American Journal of Neuroradiology.
Understanding Sensory Integration. ERIC Digest.
DiMatties, Marie E.; Sammons, Jennifer H.
This brief paper summarizes what is known about sensory integration and sensory integration dysfunction (DSI). It outlines evaluation of DSI, treatment approaches, and implications for parents and teachers, including compensatory strategies for minimizing the impact of DSI on a child's life. Review of origins of sensory integration theory in the…
Time delay and profit accumulation effect on a mine-based uranium market clearing model
International Nuclear Information System (INIS)
Auzans, Aris; Teder, Allan; Tkaczyk, Alan H.
2016-01-01
Highlights: • Improved version of a mine-based uranium market clearing model for the front-end uranium market and enrichment industries is proposed. • A profit accumulation algorithm and time delay function provides more realistic uranium mine decision making process. • Operational decision delay increased uranium market price volatility. - Abstract: The mining industry faces a number of challenges such as market volatility, investment safety, issues surrounding employment and productivity. Therefore, computer simulations are highly relevant in order to reduce financial risks associated with these challenges. In the mining industry, each firm must compete with other mines and the basic target is profit maximization. The aim of this paper is to evaluate the world uranium (U) supply by simulating financial management challenges faced by an individual U mine that are caused by a variety of regulation issues. In this paper front-end nuclear fuel cycle tool is used to simulate market conditions and the effects they have on the stability of U supply. An individual U mine’s exit or entry in the market might cause changes in the U supply side which can increase or decrease the market price. In this paper we offer a more advanced version of a mine-based U market clearing model. The existing U market model incorporates the market of primary U from uranium mines with secondary uranium (depleted uranium DU), enriched uranium (HEU) and enrichment services. In the model each uranium mine acts as an independent agent that is able to make operational decisions based on the market price. This paper introduces a more realistic decision making algorithm of individual U mine that adds constraints to production decisions. The authors added an accumulated profit model, which allows for the profits accumulated to cover any possible future economic losses and the time-delay algorithm to simulate delayed process of reopening a U mine. The U market simulation covers time period 2010
Time delay and profit accumulation effect on a mine-based uranium market clearing model
Energy Technology Data Exchange (ETDEWEB)
Auzans, Aris [Institute of Physics, University of Tartu, Ostwaldi 1, EE-50411 Tartu (Estonia); Teder, Allan [School of Economics and Business Administration, University of Tartu, Narva mnt 4, EE-51009 Tartu (Estonia); Tkaczyk, Alan H., E-mail: alan@ut.ee [Institute of Physics, University of Tartu, Ostwaldi 1, EE-50411 Tartu (Estonia)
2016-12-15
Highlights: • Improved version of a mine-based uranium market clearing model for the front-end uranium market and enrichment industries is proposed. • A profit accumulation algorithm and time delay function provides more realistic uranium mine decision making process. • Operational decision delay increased uranium market price volatility. - Abstract: The mining industry faces a number of challenges such as market volatility, investment safety, issues surrounding employment and productivity. Therefore, computer simulations are highly relevant in order to reduce financial risks associated with these challenges. In the mining industry, each firm must compete with other mines and the basic target is profit maximization. The aim of this paper is to evaluate the world uranium (U) supply by simulating financial management challenges faced by an individual U mine that are caused by a variety of regulation issues. In this paper front-end nuclear fuel cycle tool is used to simulate market conditions and the effects they have on the stability of U supply. An individual U mine’s exit or entry in the market might cause changes in the U supply side which can increase or decrease the market price. In this paper we offer a more advanced version of a mine-based U market clearing model. The existing U market model incorporates the market of primary U from uranium mines with secondary uranium (depleted uranium DU), enriched uranium (HEU) and enrichment services. In the model each uranium mine acts as an independent agent that is able to make operational decisions based on the market price. This paper introduces a more realistic decision making algorithm of individual U mine that adds constraints to production decisions. The authors added an accumulated profit model, which allows for the profits accumulated to cover any possible future economic losses and the time-delay algorithm to simulate delayed process of reopening a U mine. The U market simulation covers time period 2010
Farrell, A. K.; McNutt, S. R.
2016-12-01
A set of 13 teleseismic earthquakes sourced to the NW (4, Japan Subduction Zone), SE (5, South Sandwich Subduction Zone), and SW (4, Kermadec-Tonga Subduction Zones) was studied to determine how wave propagation was affected by a presumed magma body beneath Uturuncu. The number of events is small but the events have good signal-to-noise ratios and very similar waveforms for each event so that reliable measurements could be made of arrival times and amplitudes. Attenuation of amplitudes occurs in a NW-SE trend beneath the volcano, 14 by 33 km, with calculated values of quality factor Qas low as 1.7, suggesting strong seismic attenuation. Relative time delays (between the theoretical and observed travel times) of up to 0.8 sec were also observed. The pattern of attenuation and relative time delays together showed four trends: fast and not attenuated (normal crust), slow and attenuated (partial melt), fast and attenuated (likely high fracture density), and slow but not attenuated (possible deep low Vp structure). Results suggest partial melt as high as 16-60% in a region of low Bouguer gravity, high Vp/Vs, persistent seismicity, and overlapping a locus of uplift. Realistically, percent partial melt values above 30% are unlikely and therefore, to account for this, the anomaly would need to have a greater thickness along the raypath for the stations showing 30% or more, thus giving a mean partial melt zone thickness of 24.7 km for an assumed uniform percent partial melt value of 20%. Additionally, there is evidence of reflected phases from some local earthquakes interacting with the top of the mid-crustal magma body. These can be used to reduce depth uncertainty in earthquake locations as well as to determine parameters of the magma body itself, such as determining whether the contact with the country rock is sharp or gradual, resolving the presence and direction of anisotropy, and estimating whether the surface of the magma body is flat or irregular.
Directory of Open Access Journals (Sweden)
Chiang-Cheng Chiang
2013-01-01
Full Text Available The tracking control problem of uncertain nonlinear time-delay systems with unknown dead-zone input is tackled by a robust adaptive fuzzy control scheme. Because the nonlinear gain function and the uncertainties of the controlled system including matched and unmatched uncertainties are supposed to be unknown, fuzzy logic systems are employed to approximate the nonlinear gain function and the upper bounded functions of these uncertainties. Moreover, the upper bound of the uncertainty caused by the fuzzy modeling error is also estimated. According to these learning fuzzy models and some feasible adaptive laws, a robust adaptive fuzzy tracking controller is developed in this paper without constructing the dead-zone inverse. Based on the Lyapunov stability theorem, the proposed controller not only guarantees that the robust stability of the whole closed-loop system in the presence of uncertainties and unknown dead-zone input can be achieved, but it also obtains that the output tracking error can converge to a neighborhood of zero exponentially. Some simulation results are provided to demonstrate the effectiveness and performance of the proposed approach.
Delay-dependent stability of neural networks of neutral type with time delay in the leakage term
Li, Xiaodi; Cao, Jinde
2010-07-01
This paper studies the global asymptotic stability of neural networks of neutral type with mixed delays. The mixed delays include constant delay in the leakage term (i.e. 'leakage delay'), time-varying delays and continuously distributed delays. Based on the topological degree theory, Lyapunov method and linear matrix inequality (LMI) approach, some sufficient conditions are derived ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point, which are dependent on both the discrete and distributed time delays. These conditions are expressed in terms of LMI and can be easily checked by the MATLAB LMI toolbox. Even if there is no leakage delay, the obtained results are less restrictive than some recent works. It can be applied to neural networks of neutral type with activation functions without assuming their boundedness, monotonicity or differentiability. Moreover, the differentiability of the time-varying delay in the non-neutral term is removed. Finally, two numerical examples are given to show the effectiveness of the proposed method.
Self-excited vibration control for axially fast excited beam by a time delay state feedback
International Nuclear Information System (INIS)
Hamdi, Mustapha; Belhaq, Mohamed
2009-01-01
This work examines the control of self-excited vibration of a simply-supported beam subjected to an axially high-frequency excitation. The investigation of the resonant cases are not considered in this paper. The control is implemented via a corrective position feedback with time delay. The objective of this control is to eliminate the undesirable self-excited vibrations with an appropriate choice of parameters. The issue of stability is also addressed in this paper. Using the technique of direct partition of motion, the dynamic of discretized equations is separated into slow and fast components. The multiple scales method is then performed on the slow dynamic to obtain a slow flow for the amplitude and phase. Analysis of this slow flow provides analytical approximations locating regions in parameters space where undesirable self-excited vibration can be eliminated. A numerical study of these regions is performed on the original discretized system and compared to the analytical prediction showing a good agreement.
The Trade-Off Mechanism in Mammalian Circadian Clock Model with Two Time Delays
Yan, Jie; Kang, Xiaxia; Yang, Ling
Circadian clock is an autonomous oscillator which orchestrates the daily rhythms of physiology and behaviors. This study is devoted to explore how a positive feedback loop affects the dynamics of mammalian circadian clock. We simplify an experimentally validated mathematical model in our previous work, to a nonlinear differential equation with two time delays. This simplified mathematical model incorporates the pacemaker of mammalian circadian clock, a negative primary feedback loop, and a critical positive auxiliary feedback loop, Rev-erbα/Cry1 loop. We perform analytical studies of the system. Delay-dependent conditions for the asymptotic stability of the nontrivial positive steady state of the model are investigated. We also prove the existence of Hopf bifurcation, which leads to self-sustained oscillation of mammalian circadian clock. Our theoretical analyses show that the oscillatory regime is reduced upon the participation of the delayed positive auxiliary loop. However, further simulations reveal that the auxiliary loop can enable the circadian clock gain widely adjustable amplitudes and robust period. Thus, the positive auxiliary feedback loop may provide a trade-off mechanism, to use the small loss in the robustness of oscillation in exchange for adaptable flexibility in mammalian circadian clock. The results obtained from the model may gain new insights into the dynamics of biological oscillators with interlocked feedback loops.
Time Delay Analysis of Turbofan Engine Direct and Indirect Combustion Noise Sources
Miles, Jeffrey Hilton
2008-01-01
The core noise components of a dual spool turbofan engine were separated by the use of a coherence function. A source location technique based on adjusting the time delay between the combustor pressure sensor signal and the far-field microphone signal to maximize the coherence and remove as much variation of the phase angle with frequency as possible was used. The discovery was made that for the 130o microphone a 90.027 ms time shift worked best for the frequency band from 0 to 200 Hz while a 86.975 ms time shift worked best for the frequency band from 200 to 400 Hz. Hence, the 0 to 200 Hz band signal took more time than the 200 to 400 Hz band signal to travel the same distance. This suggests the 0 to 200 Hz coherent cross spectral density band is partly due to indirect combustion noise attributed to entropy fluctuations, which travel at the flow velocity, interacting with the turbine. The signal in the 200 to 400 Hz frequency band is attributed mostly to direct combustion noise. Results are presented herein for engine power settings of 48, 54, and 60 percent of the maximum power setting
Identifying The Effective Factors for Cost Overrun and Time Delay in Water Construction Projects
Directory of Open Access Journals (Sweden)
D. Mirzai Matin
2016-08-01
Full Text Available Water construction projects in Iran frequently face problems which cause cost overrun and time delay, the two most common issues in construction projects in general. The objective of this survey is to identify and quantify these problems and thus help in avoiding them. This survey represents a collection of the most significant problems found in the literature, classified into 11 groups according to their source. The questionnaire form used contains 84 questions which were answered by random engineers who work in water construction projects. The Relative Importance Weight (RIW method is used to weight the importance of each one of the 84 problems. The focus of this survey is on overall top ten issues which are: bureaucracy in bidding method, inflation, economical condition of the government, not enough information gathered and surveys done before design, monthly payment difficulties, material cost changes, law changes by the government, financial difficulties, mode of financing and payment for completed work and changes made by the owner. A section for each of these issues provides additional information about them. In the full text of this survey the same weighting method is used to classify the main groups, and the results show that issues related to the groups of government, owner and consultant has the most significant impact. The last part of this survey describes the point of view of the engineers who took part in this survey and the recommendations they made.
Time-Delay Integration Imaging with ICON's Far-Ultraviolet Imager
Wilkins, Colin W.; Mende, Stephen B.; Frey, Harald U.; England, Scott L.
2017-10-01
A Time-Delay Integration (TDI) image acquisition and processing system has been developed to capture ICON's Far Ultraviolet (FUV) Spectrographic Imager data. The TDI system is designed to provide variable-range motion-compensated imaging of Earth's nightside ionospheric limb and sub-limb scenes viewed from Low Earth Orbit in the 135.6 nm emission of oxygen with an integration time of 12 seconds. As a pre-requisite of the motion compensation the TDI system is also designed to provide corrections for optical distortions generated by the FUV Imager's optical assembly. On the dayside the TDI system is used to process 135.6 nm and 157.0 nm wavelength altitude profiles simultaneously. We present the TDI system's design methodology and implementation as an FPGA module with an emphasis on minimization of on-board data throughput and telemetry. We also present the methods and results of testing the TDI system in simulation and with Engineering Ground Support Equipment (EGSE) to validate its performance.
Synchronization of Coupled FitzHugh-Nagumo Neurons Using Self-Feedback Time Delay
Fan, Denggui; Song, Xinle; Liao, Fucheng
Many neurological diseases are characterized by abnormally synchronous oscillations of neuronal populations. However, how the neurons can synchronize with each other is still not fully understood, which may have potentially hampered the understanding and diagnosis for these dynamical diseases. In this paper, the self-feedback time delay (SFTD) and adaptive control theory are employed to control the onset of synchronization in the coupled FitzHugh-Nagumo (FHN) neurons. It is found that the larger SFTD can induce the complete synchronization of coupled neuronal system. Further investigation reveals that the reinforcing SFTD can significantly postpone the synchronization onsets. In addition, for the case that synchronization cannot be achieved by adjusting SFTD, the parameter estimation update laws and adaptive controller with respect to SFTD of coupled system are investigated to deduce the sufficient condition for complete synchronization. Simulations are also provided to illustrate the effectiveness of the proposed methods. In particular, we observed the fascinating dynamical synchronization transitions, such as chaotic synchronization and bursting synchronization transitions, as well as the transition from anti-synchronization to complete synchronization.
Gros, Claudius
2017-11-01
Modern societies face the challenge that the time scale of opinion formation is continuously accelerating in contrast to the time scale of political decision making. With the latter remaining of the order of the election cycle we examine here the case that the political state of a society is determined by the continuously evolving values of the electorate. Given this assumption we show that the time lags inherent in the election cycle will inevitable lead to political instabilities for advanced democracies characterized both by an accelerating pace of opinion dynamics and by high sensibilities (political correctness) to deviations from mainstream values. Our result is based on the observation that dynamical systems become generically unstable whenever time delays become comparable to the time it takes to adapt to the steady state. The time needed to recover from external shocks grows in addition dramatically close to the transition. Our estimates for the order of magnitude of the involved time scales indicate that socio-political instabilities may develop once the aggregate time scale for the evolution of the political values of the electorate falls below 7-15 months.
Directory of Open Access Journals (Sweden)
Yeun-Sub Byun
2015-11-01
Full Text Available The real-time recognition of absolute (or relative position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test.
Supernovae Ia in 2017: a long time delay from merger/accretion to explosion
Soker, Noam
2018-04-01
I use recent observational and theoretical studies of type Ia supernovae (SNe Ia) to further constrain the viable SN Ia scenarios and to argue that there must be a substantial time delay between the end of the merger of the white dwarf (WD) with a companion or the end of mass accretion on to the WD and its terminal explosion. This merger/accretion to explosion delay (MED) is required to allow the binary system to lead to a more or less spherical explosion and to prevent a pre-explosion ionizing radiation. Considering these recent results and the required MED, I conclude that the core degenerate scenario is somewhat more favorable over the other scenarios, followed by the double degenerate scenario. Although the single degenerate scenario is viable as well, it is less likely to account for common (normal) SN Ia. As all scenarios require substantial MED, the MED has turned from a disadvantage of the core degenerate scenario to a challenge that theory should overcome. I hope that the requirement for a MED will stimulate the discussion of the different SN Ia scenarios and the comparison of the scenarios to each other.
The Influence of Gene Expression Time Delays on Gierer–Meinhardt Pattern Formation Systems
Seirin Lee, S.
2010-03-23
There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer-Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer-Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens. © 2010 Society for Mathematical Biology.
Force-linearization closure for non-Markovian Langevin systems with time delay
Loos, Sarah A. M.; Klapp, Sabine H. L.
2017-07-01
This paper is concerned with the Fokker-Planck (FP) description of classical stochastic systems with discrete time delay. The non-Markovian character of the corresponding Langevin dynamics naturally leads to a coupled infinite hierarchy of FP equations for the various n -time joint distribution functions. Here, we present an approach to close the hierarchy at the one-time level based on a linearization of the deterministic forces in all members of the hierarchy starting from the second one. This leads to a closed equation for the one-time probability density in the steady state. Considering two generic nonlinear systems, a colloidal particle in a sinusoidal or bistable potential supplemented by a linear delay force, we demonstrate that our approach yields a very accurate representation of the density as compared to quasiexact numerical results from direct solution of the Langevin equation. Moreover, the results are significantly improved against those from a small-delay approximation and a perturbation-theoretical approach. We also discuss the possibility of accessing transport-related quantities, such as escape times, based on an additional Kramers approximation. Our approach applies to a wide class of models with nonlinear deterministic forces.
Dynamical analysis of rumor spreading model with impulse vaccination and time delay
Huo, Liang'an; Ma, Chenyang
2017-04-01
Rumor cause unnecessary conflicts and confusion by misleading the cognition of the public, its spreading has largely influence on human affairs. All kinds of rumors and people's suspicion are often caused by the lack of official information. Hence, the official should take a variety of channels to deny the rumors. The promotion of scientific knowledge is implemented to improve the quality of the whole nation, reduce the harm caused by rumor spreading. In this paper, regarding the process of the science education that official deny the rumor many times as periodic impulse, we propose a XWYZ rumor spreading model with impulse vaccination and time delay, and analyze the global dynamics behaviors of the model. By using the discrete dynamical system determined by the comparison theory and Floquet theorem, we show that there exists a rumor-free periodic solution. Further, we show that the rumor-free periodic solution is globally attractive under appropriate conditions. We also obtain a sufficient condition for the permanence of model. Finally, with the numerical simulation, our results indicate that large vaccination rate, short impulse period or long latent period is sufficient condition for the extinction of the rumors.
Jiang, Ping; Chiba, Ryosuke; Takakusaki, Kaoru; Ota, Jun
2016-01-01
The development of a physiologically plausible computational model of a neural controller that can realize a human-like biped stance is important for a large number of potential applications, such as assisting device development and designing robotic control systems. In this paper, we develop a computational model of a neural controller that can maintain a musculoskeletal model in a standing position, while incorporating a 120-ms neurological time delay. Unlike previous studies that have used an inverted pendulum model, a musculoskeletal model with seven joints and 70 muscular-tendon actuators is adopted to represent the human anatomy. Our proposed neural controller is composed of both feed-forward and feedback controls. The feed-forward control corresponds to the constant activation input necessary for the musculoskeletal model to maintain a standing posture. This compensates for gravity and regulates stiffness. The developed neural controller model can replicate two salient features of the human biped stance: (1) physiologically plausible muscle activations for quiet standing; and (2) selection of a low active stiffness for low energy consumption. PMID:27655271
Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks.
Liang, Jinling; Wang, Zidong; Liu, Yurong; Liu, Xiaohui
2008-11-01
This paper is concerned with the robust synchronization problem for an array of coupled stochastic discrete-time neural networks with time-varying delay. The individual neural network is subject to parameter uncertainty, stochastic disturbance, and time-varying delay, where the norm-bounded parameter uncertainties exist in both the state and weight matrices, the stochastic disturbance is in the form of a scalar Wiener process, and the time delay enters into the activation function. For the array of coupled neural networks, the constant coupling and delayed coupling are simultaneously considered. We aim to establish easy-to-verify conditions under which the addressed neural networks are synchronized. By using the Kronecker product as an effective tool, a linear matrix inequality (LMI) approach is developed to derive several sufficient criteria ensuring the coupled delayed neural networks to be globally, robustly, exponentially synchronized in the mean square. The LMI-based conditions obtained are dependent not only on the lower bound but also on the upper bound of the time-varying delay, and can be solved efficiently via the Matlab LMI Toolbox. Two numerical examples are given to demonstrate the usefulness of the proposed synchronization scheme.
Critical capacity, travel time delays and travel time distribution of rapid mass transit systems
Legara, Erika Fille; Monterola, Christopher; Lee, Kee Khoon; Hung, Gih Guang
2014-07-01
We set up a mechanistic agent-based model of a rapid mass transit system. Using empirical data from Singapore's unidentifiable smart fare card, we validate our model by reconstructing actual travel demand and duration of travel statistics. We subsequently use this model to investigate two phenomena that are known to significantly affect the dynamics within the RTS: (1) overloading in trains and (2) overcrowding in the RTS platform. We demonstrate that by varying the loading capacity of trains, a tipping point emerges at which an exponential increase in the duration of travel time delays is observed. We also probe the impact on the rail system dynamics of three types of passenger growth distribution across stations: (i) Dirac delta, (ii) uniform and (iii) geometric, which is reminiscent of the effect of land use on transport. Under the assumption of a fixed loading capacity, we demonstrate the dependence of a given origin-destination (OD) pair on the flow volume of commuters in station platforms.
Li, Shukai; Yang, Lixing; Gao, Ziyou; Li, Keping
2014-11-01
In this paper, the stabilization strategies of a general nonlinear car-following model with reaction-time delay of the drivers are investigated. The reaction-time delay of the driver is time varying and bounded. By using the Lyapunov stability theory, the sufficient condition for the existence of the state feedback control strategy for the stability of the car-following model is given in the form of linear matrix inequality, under which the traffic jam can be well suppressed with respect to the varying reaction-time delay. Moreover, by considering the external disturbance for the running cars, the robust state feedback control strategy is designed, which ensures robust stability and a smaller prescribed H∞ disturbance attenuation level for the traffic flow. Numerical examples are given to illustrate the effectiveness of the proposed methods. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Yuan Ren
2016-01-01
Full Text Available This paper analyzes the effects of time delay on the stability of the rotation modes for the magnetically suspended flywheel (MSFW with strong gyroscopic effects. A multi-input multioutput system is converted into a single-input single-output control system with complex coefficient by variable reconstruction, and the stability equivalence of the systems before and after variable reconstruction is proven. For the rotation modes, the stability limits and corresponding vibration frequencies are found as a function of nondimensional magnetic stiffness and damping and nondimensional parameters of rotor speed and time delay. Additionally, the relationship between cross feedback control system stability and time delay is investigated. And an effective phase compensation method based on cross-channel is further presented. Simulation and experimental results are presented to demonstrate the correctness of the stability analysis method and the superiority of the phase compensation strategy.
A Control Method to Balance the Efficiency and Reliability of a Time-Delayed Pump-Valve System
Directory of Open Access Journals (Sweden)
Zhounian Lai
2016-01-01
Full Text Available The efficiency and reliability of pumps are highly related to their operation conditions. The concept of the optimization pump operation conditions is to adjust the operation point of the pump to obtain higher reliability at the cost of lower system efficiency using a joint regulation of valve and frequency convertor. This paper realizes the control of the fluid conveying system based on the optimization results. The system is a nonlinear Multi-Input Multioutput (MIMO system with time delays. In this paper, the time delays are separated from the system. The delay-free system is linearized using input-output linearization and controlled using a sliding mode method. A modified Smith predictor is used to compensate time delays of the system. The control strategy is validated to be effective on the test bench. The comparison of energy consumption and operation point deviation between conventional speed regulation and the new method is presented.
DEFF Research Database (Denmark)
Mi, Yang; Hao, Xuezhi; Liu, Yongjuan
2017-01-01
The interconnected time-delay power system has become an important issue for the open communication network. Meanwhile, due to the output power fluctuation of integrated wind energy, load frequency control (LFC) for power system with variable sources and loads has become more complicated. The novel...... the hitting condition. At last, the SM controller is proved by using the real-time digital simulator device under different case of time delay, wind penetration, load disturbance and operating point. The test results show that the proposed SM LFC can reduce frequency deviation and tie-line power fluctuation...... decentralised sliding mode (SM) LFC strategy is proposed for multi-area time-delay power system with significant wind power penetration. The appropriate switching surface gain is selected to assure the stability of power system with mismatched uncertainties. The SM controller is constructed to satisfy...
Gong, Yubing; Xie, Huijuan
2017-09-01
Using spike-timing-dependent plasticity (STDP), we study the effect of channel noise on temporal coherence and synchronization of adaptive scale-free Hodgkin-Huxley neuronal networks with time delay. It is found that the spiking regularity and spatial synchronization of the neurons intermittently increase and decrease as channel noise intensity is varied, exhibiting transitions of temporal coherence and synchronization. Moreover, this phenomenon depends on time delay, STDP, and network average degree. As time delay increases, the phenomenon is weakened, however, there are optimal STDP and network average degree by which the phenomenon becomes strongest. These results show that channel noise can intermittently enhance the temporal coherence and synchronization of the delayed adaptive neuronal networks. These findings provide a new insight into channel noise for the information processing and transmission in neural systems.
Dynamic Analysis for a Kaldor–Kalecki Model of Business Cycle with Time Delay and Diffusion Effect
Directory of Open Access Journals (Sweden)
Wenjie Hu
2018-01-01
Full Text Available The dynamics behaviors of Kaldor–Kalecki business cycle model with diffusion effect and time delay under the Neumann boundary conditions are investigated. First the conditions of time-independent and time-dependent stability are investigated. Then, we find that the time delay can give rise to the Hopf bifurcation when the time delay passes a critical value. Moreover, the normal form of Hopf bifurcations is obtained by using the center manifold theorem and normal form theory of the partial differential equation, which can determine the bifurcation direction and the stability of the periodic solutions. Finally, numerical results not only validate the obtained theorems, but also show that the diffusion coefficients play a key role in the spatial pattern. With the diffusion coefficients increasing, different patterns appear.
Strong-field Breit–Wheeler pair production in two consecutive laser pulses with variable time delay
Energy Technology Data Exchange (ETDEWEB)
Jansen, Martin J.A.; Müller, Carsten, E-mail: c.mueller@tp1.uni-duesseldorf.de
2017-03-10
Photoproduction of electron–positron pairs by the strong-field Breit–Wheeler process in an intense laser field is studied. The laser field is assumed to consist of two consecutive short pulses, with a variable time delay in between. By numerical calculations within the framework of scalar quantum electrodynamics, we demonstrate that the time delay exerts a strong impact on the pair-creation probability. For the case when both pulses are identical, the effect is traced back to the relative quantum phase of the interfering S-matrix amplitudes and explained within a simplified analytical model. Conversely, when the two laser pulses differ from each other, the pair-creation probability depends not only on the time delay but, in general, also on the temporal order of the pulses.
International Nuclear Information System (INIS)
Lin Juisheng; Liao Tehlu; Yan Junjuh; Yau Herterng
2005-01-01
In this paper, an adaptive robust observer-based scheme for the synchronization of unidirectional coupled chaotic systems with unknown channel time-delay and system uncertainties is proposed. The effects of time-delay arise from the physical characteristics of coupled channel, while the system uncertainties arise due to unknown but bounded external disturbances and parametric perturbations. By appropriately selecting the observer controller and adaptation mechanism, the master-slave chaotic synchronization can be guaranteed by Lyapunov approach. Finally, the Chua's circuit is used as an illustrative example, where simulation results are given to demonstrate the effectiveness of the proposed scheme
Tone-assisted time delay interferometry on GRACE Follow-On
Francis, Samuel P.; Shaddock, Daniel A.; Sutton, Andrew J.; de Vine, Glenn; Ware, Brent; Spero, Robert E.; Klipstein, William M.; McKenzie, Kirk
2015-07-01
We have demonstrated the viability of using the Laser Ranging Interferometer on the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) space mission to test key aspects of the interspacecraft interferometry proposed for detecting gravitational waves. The Laser Ranging Interferometer on GRACE-FO will be the first demonstration of interspacecraft interferometry. GRACE-FO shares many similarities with proposed space-based gravitational wave detectors based on the Laser Interferometer Space Antenna (LISA) concept. Given these similarities, GRACE-FO provides a unique opportunity to test novel interspacecraft interferometry techniques that a LISA-like mission will use. The LISA Experience from GRACE-FO Optical Payload (LEGOP) is a project developing tests of arm locking and time delay interferometry (TDI), two frequency stabilization techniques, that could be performed on GRACE-FO. In the proposed LEGOP TDI demonstration one GRACE-FO spacecraft will have a free-running laser while the laser on the other spacecraft will be locked to a cavity. It is proposed that two one-way interspacecraft phase measurements will be combined with an appropriate delay in order to produce a round-trip, dual one-way ranging (DOWR) measurement independent of the frequency noise of the free-running laser. This paper describes simulated and experimental tests of a tone-assisted TDI ranging (TDIR) technique that uses a least-squares fitting algorithm and fractional-delay interpolation to find and implement the delays needed to form the DOWR TDI combination. The simulation verifies tone-assisted TDIR works under GRACE-FO conditions. Using simulated GRACE-FO signals the tone-assisted TDIR algorithm estimates the time-varying interspacecraft range with a rms error of ±0.2 m , suppressing the free-running laser frequency noise by 8 orders of magnitude. The experimental results demonstrate the practicability of the technique, measuring the delay at the 6 ns level in the presence of a
Longitudinal Outcomes of Start Time Delay on Sleep, Behavior, and Achievement in High School.
Thacher, Pamela V; Onyper, Serge V
2016-02-01
To establish whether sleep, health, mood, behavior, and academics improved after a 45-minute delay in high school start time, and whether changes persisted longitudinally. We collected data from school records and student self-report across a number of domains at baseline (May 2012) and at two follow-up time points (November 2012 and May 2013), at a public high school in upstate New York. Students enrolled during academic years (AY) 2011-2012 and 2012-2013 completed the Pittsburgh Sleep Quality Index; the DASS-21; the "Owl-Lark" Scale; the Daytime Sleepiness Index; and a brief self-report of health. Reports from school records regarding attendance, tardiness, disciplinary violations, and academic performance were collected for AY 2010-2011 through 2013-2014. Students delayed but did not extend their sleep period; we found lasting improvements in tardiness and disciplinary violations after the start-time delay, but no changes to other variables. At the first follow-up, students reported 20 minutes longer sleep, driven by later rise times and stable bed times. At the second follow-up, students maintained later rise times but delayed bedtimes, returning total sleep to baseline levels. A delay in rise time, paralleling the delay in the start time that occurred, resulted in less tardiness and decreased disciplinary incidents, but larger improvements to sleep patterns may be necessary to affect health, attendance, sleepiness, and academic performance. Later start times improved tardiness and disciplinary issues at this school district. A delay in start time may be a necessary but not sufficient means to increase sleep time and may depend on preexisting individual differences. A commentary on this article appears in this issue on page 267. © 2016 Associated Professional Sleep Societies, LLC.
Dogoe, Maud S.; Banda, Devender R.; Lock, Robin H.; Feinstein, Rita
2011-01-01
This study examined the effectiveness of the constant timed delay procedure for teaching two young adults with autism to read, define, and state the contextual meaning of keywords on product warning labels of common household products. Training sessions were conducted in the dyad format using flash cards. Results indicated that both participants…
Greene, Zach S.; Suyu, Sherry H.; Treu, Tommaso; Hilbert, Stefan; Auger, Matthew W.; Collett, Thomas E.; Marshall, Philip J.; Fassnacht, Christopher D.; Blandford, Roger D.; Bradac, Marusa; Koopmans, Leon V. E.
2013-01-01
In order to use strong gravitational lens time delays to measure precise and accurate cosmological parameters the effects of mass along the line of sight must be taken into account. We present a method to achieve this by constraining the probability distribution function of the effective
Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen
2013-05-01
The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.
Energy Technology Data Exchange (ETDEWEB)
More, Anupreeta; Oguri, Masamune; More, Surhud [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Chiba 277-8583 (Japan); Suyu, Sherry H. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Lee, Chien-Hsiu, E-mail: anupreeta.more@ipmu.jp [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720 (United States)
2017-02-01
We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.
International Nuclear Information System (INIS)
Frank, T.D.; Friedrich, R.; Beek, P.J.
2005-01-01
A data driven characterization of time-delayed stochastic systems is proposed in terms of linear delay differential equations and two drift parameters. It is shown how these parameters determine the states of such systems with respect to generalized phase diagrams. This approach allows for a comparison of systems with different parameters as exemplified for two motor control tasks: tracking and force production
Yilmaz, Ilker; Konukman, Ferman; Birkan, Binyamin; Ozen, Arzu; Yanardag, Mehmet; Camursoy, Ilhan
2010-01-01
Effects of a constant time delay procedure on the Halliwick's method of swimming rotation skills (i.e., vertical and lateral rotation) for children with autism were investigated. A single subject multiple baseline model across behaviors with probe conditions was used. Participants were three boys, 8-9 years old. Data were collected over a 10-week…
Manipulation of visual biofeedback during gait with a time delayed adaptive Virtual Mirror Box
2014-01-01
Background A mirror placed in the mid-sagittal plane of the body has been used to reduce phantom limb pain and improve movement function in medical conditions characterised by asymmetrical movement control. The mirrored illusion of unimpaired limb movement during gait might enhance the effect, but a physical mirror is only capable of showing parallel movement of limbs in real time typically while sitting. We aimed to overcome the limitations of physical mirrors by developing and evaluating a Virtual Mirror Box which delays the mirrored image of limbs during gait to ensure temporal congruency with the impaired physical limb. Methods An application was developed in the CAREN system’s D-Flow software which mirrors selected limbs recorded by real-time motion capture to the contralateral side. To achieve phase shifted movement of limbs during gait, the mirrored virtual limbs are also delayed by a continuously calculated amount derived from past gait events. In order to accommodate non-normal proportions and offsets of pathological gait, the movements are morphed so that the physical and virtual contact events match on the mirrored side. Our method was tested with a trans-femoral amputee walking on a treadmill using his artificial limb. Joint angles of the elbow and knee were compared between the intact and mirrored side using cross correlation, root mean squared difference and correlation coefficients. Results The time delayed adaptive virtual mirror box produced a symmetrical looking gait of the avatar coupled with a reduction of the difference between the intact and virtual knee and elbow angles (10.86° and 5.34° reduced to 4.99° and 2.54° respectively). Dynamic morphing of the delay caused a non-significant change of toe-off events when compared to delaying by 50% of the previous gait cycle, as opposed to the initial contact events which showed a practically negligible but statistically significant increase (p Virtual Mirror Box has extended its use to
Atkinson, D. H.; Babuscia, A.; Lazio, J.; Asmar, S.
2017-12-01
Many Radio Science investigations, including the determinations of planetary masses, measurements of planetary atmospheres, studies of the solar wind, and solar system tests of relativistic gravity, rely heavily on precision Doppler tracking. Recent and currently proposed missions such as VERITAS, Bepi Colombo, Juno have shown that the largest error source in the precision Doppler tracking data is noise in the Doppler system. This noise is attributed to un-modeled motions of the ground antenna's phase center and is commonly referred to as "antenna mechanical noise." Attempting to reduce this mechanical noise has proven difficult since the deep space communications antennas utilize large steel structures that are already optimized for mechanical stability. Armstrong et al. (2008) have demonstrated the Time Delay Mechanical-noise Cancellation (TDMC) concept using Goldstone DSN antennas (70 m & 34 m) and the Cassinispacecraft to show that the mechanical noise of the 70 m antenna could be suppressed when two-way Doppler tracking from the 70 m antenna and the receive-only Doppler data from the smaller, stiffer 34 m antenna were combined with suitable delays. The proof-of-concept confirmed that the mechanical noise in the final Doppler observable was reduced to that of the stiffer, more stable antenna. Caltech's Owens Valley Radio Observatory (OVRO) near Bishop, CA now has six 10.4 m diameter antennas, a consequence of the closure of Combined Array for Research in Millimeter Astronomy (CARMA). In principle, a 10 m antenna can lead to an order-of-magnitude improvement for the mechanical noise correction, as the smaller dish offers better mechanical stability compared to a DSN 34-m antenna. These antennas also have existing Ka-band receiving systems, and preliminary discussions with the OVRO staff suggest that much of the existing signal path could be used for Radio Science observations.
Effects of brief time delays on matching-to-sample abilities in capuchin monkeys (Sapajus spp.).
Truppa, Valentina; De Simone, Diego Antonio; Piano Mortari, Eva; De Lillo, Carlo
2014-09-01
Traditionally, studies of delayed matching-to-sample (DMTS) tasks in nonhuman species have focused on the assessment of the limits of the retrieval of information stored in short- and long-term memory systems. However, it is still unclear if visual recognition in these tasks is affected by very brief delay intervals, which are typically used to study rapidly decaying types of visual memory. This study aimed at evaluating if tufted capuchin monkeys' ability to recognise visual stimuli in a DMTS task is affected by (i) the disappearance of the sample stimulus and (ii) the introduction of delay intervals (0.5, 1.0, 2.0 and 3.0s) between the disappearance of the sample and the presentation of the comparison stimuli. The results demonstrated that the simple disappearance of the sample and the introduction of a delay of 0.5s did not affect capuchins' performance either in terms of accuracy or response time. A delay interval of 1.0s produced a significant increase in response time but still did not affect recognition accuracy. By contrast, delays of 2.0 and 3.0s determined a significant increase in response time and a reduction in recognition accuracy. These findings indicate the existence in capuchin monkeys of processes enabling a very accurate retention of stimulus features within time frames comparable to those reported for humans' sensory memory (0.5-1.0s). The extent to which such processes can be considered analogous to the sensory memory processes observed in human visual cognition is discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
A model-based approach to attention and sensory integration in postural control of older adults.
Mahboobin, Arash; Loughlin, Patrick J; Redfern, Mark S
2007-12-18
We conducted a dual-task experiment that involved information processing (IP) tasks concurrent with postural perturbations to explore the interaction between attention and sensory integration in postural control in young and older adults. A postural control model incorporating sensory integration and the influence of attention was fit to the data, from which parameters were then obtained to quantify the interference of attention on postural control. The model hypothesizes that the cognitive processing and integration of sensory inputs for balance requires time, and that attention influences this processing time, as well as sensory selection by facilitating specific sensory channels. Performing a concurrent IP task had an overall effect on the time delay. Differences in the time delay of the postural control model were found for the older adults. The results suggest enhanced vulnerability of balance processes in older adults to interference from concurrent cognitive IP tasks.
International Nuclear Information System (INIS)
Du Luchun; Mei Dongcheng
2011-01-01
The non-adiabatic regime of stochastic resonance (SR) in a bistable system with time delay, an additive white noise and a periodic signal was investigated. The signal power amplification η was employed to characterize the SR of the system. The simulation results indicate that (i) in the case of intermediate frequency Ω of the periodic signal, the typical behavior of SR is lowered monotonically by increasing the delay time τ; in the case of large Ω, τ weakens the SR behavior and then enhances it, with a non-monotonic behavior as a function of time delay; (ii) time delay induces SR when A is above the threshold, whereas no such resonance exists in the absence of time delay; (iii) time delay induces a transition from bimodal to unimodal configuration of η; (iv) varying the particular form of time delay results in different phenomena.
Pan, Zeyu; Subbaraman, Harish; Zhang, Cheng; Li, Qiaochu; Xu, Xiaochuan; Chen, Xiangning; Zhang, Xingyu; Zou, Yi; Panday, Ashwin; Guo, L. Jay; Chen, Ray T.
2016-02-01
Phased-array antenna (PAA) technology plays a significant role in modern day radar and communication networks. Truetime- delay (TTD) enabled beam steering networks provide several advantages over their electronic counterparts, including squint-free beam steering, low RF loss, immunity to electromagnetic interference (EMI), and large bandwidth control of PAAs. Chip-scale and integrated TTD modules promise a miniaturized, light-weight system; however, the modules are still rigid and they require complex packaging solutions. Moreover, the total achievable time delay is still restricted by the wafer size. In this work, we propose a light-weight and large-area, true-time-delay beamforming network that can be fabricated on light-weight and flexible/rigid surfaces utilizing low-cost "printing" techniques. In order to prove the feasibility of the approach, a 2-bit thermo-optic polymer TTD network is developed using a combination of imprinting and ink-jet printing. RF beam steering of a 1×4 X-band PAA up to 60° is demonstrated. The development of such active components on large area, light-weight, and low-cost substrates promises significant improvement in size, weight, and power (SWaP) requirements over the state-of-the-art.
Rader, Amber; Anderson, Betty Lise
2003-03-01
We present the design and proof-of-concept demonstration of an optical device capable of producing true-time delay(s) (TTD)(s) for phased array antennas. This TTD device uses a free-space approach consisting of a single microelectromechanical systems (MEMS) mirror array in a multiple reflection spherical mirror configuration based on the White cell. Divergence is avoided by periodic refocusing by the mirrors. By using the MEMS mirror to switch between paths of different lengths, time delays are generated. Six different delays in 1-ns increments were demonstrated by using the Texas Instruments Digital Micromirror Device® as the switching element. Losses of 1.6 to 5.2 dB per bounce and crosstalk of -27 dB were also measured, both resulting primarily from diffraction from holes in each pixel and the inter-pixel gaps of the MEMS.
Ghousiya Begum, K; Seshagiri Rao, A; Radhakrishnan, T K
2017-05-01
Internal model control (IMC) with optimal H 2 minimization framework is proposed in this paper for design of proportional-integral-derivative (PID) controllers. The controller design is addressed for integrating and double integrating time delay processes with right half plane (RHP) zeros. Blaschke product is used to derive the optimal controller. There is a single adjustable closed loop tuning parameter for controller design. Systematic guidelines are provided for selection of this tuning parameter based on maximum sensitivity. Simulation studies have been carried out on various integrating time delay processes to show the advantages of the proposed method. The proposed controller provides enhanced closed loop performances when compared to recently reported methods in the literature. Quantitative comparative analysis has been carried out using the performance indices, Integral Absolute Error (IAE) and Total Variation (TV). Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Daniar Sabah
2016-12-01
Full Text Available In this paper, a multivariable model based predictive control (MPC is proposed for the solution of load frequency control (LFC in a multi-area interconnected power system. The proposed controller is designed to consider time delay, generation rate constraint and multivariable nature of the LFC system, simultaneously. A new formulation of the MPC is presented to compensate time delay. The generation rate constraint is considered by employing a constrained MPC and economic allocation of the generation is further guaranteed by an innovative modification in the predictive control objective function. The effectiveness of proposed scheme is verified through time-based simulations on the standard 39-bus test system and the responses are then compared with the proportional-integral controller. The evaluation of the results reveals that the proposed control scheme offers satisfactory performance with fast responses.
Directory of Open Access Journals (Sweden)
Yanbo Li
2014-01-01
Full Text Available This paper is devoted to the investigation of the design of robust guaranteed cost observer for a class of linear singular Markovian jump time-delay systems with generally incomplete transition probability. In this singular model, each transition rate can be completely unknown or only its estimate value is known. Based on stability theory of stochastic differential equations and linear matrix inequality (LMI technique, we design an observer to ensure that, for all uncertainties, the resulting augmented system is regular, impulse free, and robust stochastically stable with the proposed guaranteed cost performance. Finally, a convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters for linear singular Markovian jump time-delay systems with generally incomplete transition probability.
International Nuclear Information System (INIS)
Zhang Min-Min; Mei Dong-Cheng; Wang Can-Jun
2011-01-01
The effects of the time delay on the upper bound of the time derivative of information entropy are investigated in a time-delayed dynamical system driven by correlated noise. Using the Markov approximation of the stochastic delay differential equations and the Schwartz inequality principle, we obtain an analytical expression for the upper bound U B (t) of the time derivative of the information entropy. The results show that there is a critical value of τ (delay time), and U B (t) presents opposite behaviours on difference sides of the critical value. For the case of the weak additive noise, τ can induce a reentrance transition. Delay time τ also causes a reversal behaviour in U B (t)-λ plot, where λ denotes the degree of the correlation between the two noises. (general)
Li, Jimeng; Li, Ming; Zhang, Jinfeng
2017-08-01
Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.
International Nuclear Information System (INIS)
Peng Haipeng; Wei Nan; Li Lixiang; Xie Weisheng; Yang Yixian
2010-01-01
In this Letter, time-delay has been introduced in to split the networks, upon which a model of complex dynamical networks with multi-links has been constructed. Moreover, based on Lyapunov stability theory and some hypotheses, we achieve synchronization between two complex networks with different structures by designing effective controllers. The validity of the results was proved through numerical simulations of this Letter.
Rajagopal, Karthikeyan; Pham, Viet-Thanh; Tahir, Fadhil Rahma; Akgul, Akif; Abdolmohammadi, Hamid Reza; Jafari, Sajad
2018-04-01
The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.
Performance and Aging of Mn/MnO2 as an Environmentally Friendly Energetic Time Delay Composition
2014-04-16
showed that this composition is not sensitive to ignition by friction or electrostatic stimuli. The combustion products (as determined by X - ray ...products can contain toxic chemicals such as BaCrO4. 4 X - ray diffraction analysis of the combustion products for the Mn/MnO2 system is shown in Figure 6...Versatile boron carbide -based energetic time delay compositions. ACS Sustainable Chem. Eng. 2013, 1, 1333−1338. Figure 8. (A) DSC and (B) TGA scans of
Li, Zhe; Xu, Rui
2012-04-01
In this paper, a class of stochastic reaction-diffusion neural networks with time delays in the leakage terms is investigated. By using the Lyapunov functional method and linear matrix inequality (LMI) approach, sufficient conditions are derived to ensure the global asymptotic stability of an equilibrium point of the networks in the mean square. The results can be easily solved by MATLAB LMI toolbox. Finally, a numerical example is given to demonstrate the effectiveness and conservativeness of our theoretical results.
Shaswary, Elyas; Xu, Yuan; Tavakkoli, Jahan
2016-07-01
Time-delay estimation has countless applications in ultrasound medical imaging. Previously, we proposed a new time-delay estimation algorithm, which was based on the summation of the sign function to compute the time-delay estimate (Shaswary et al., 2015). We reported that the proposed algorithm performs similar to normalized cross-correlation (NCC) and sum squared differences (SSD) algorithms, even though it was significantly more computationally efficient. In this paper, we study the performance of the proposed algorithm using statistical analysis and image quality analysis in ultrasound elastography imaging. Field II simulation software was used for generation of ultrasound radio frequency (RF) echo signals for statistical analysis, and a clinical ultrasound scanner (Sonix® RP scanner, Ultrasonix Medical Corp., Richmond, BC, Canada) was used to scan a commercial ultrasound elastography tissue-mimicking phantom for image quality analysis. The statistical analysis results confirmed that, in overall, the proposed algorithm has similar performance compared to NCC and SSD algorithms. The image quality analysis results indicated that the proposed algorithm produces strain images with marginally higher signal-to-noise and contrast-to-noise ratios compared to NCC and SSD algorithms. Copyright © 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Li Hongjie; Yue Dong
2010-01-01
The paper investigates the synchronization stability problem for a class of complex dynamical networks with Markovian jumping parameters and mixed time delays. The complex networks consist of m modes and the networks switch from one mode to another according to a Markovian chain with known transition probability. The mixed time delays are composed of discrete and distributed delays, the discrete time delay is assumed to be random and its probability distribution is known a priori. In terms of the probability distribution of the delays, the new type of system model with probability-distribution-dependent parameter matrices is proposed. Based on the stochastic analysis techniques and the properties of the Kronecker product, delay-dependent synchronization stability criteria in the mean square are derived in the form of linear matrix inequalities which can be readily solved by using the LMI toolbox in MATLAB, the solvability of derived conditions depends on not only the size of the delay, but also the probability of the delay-taking values in some intervals. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
Yuancheng Sun
2016-01-01
Full Text Available For the non-Gaussian singular time-delayed stochastic distribution control (SDC system with unknown external disturbance where the output probability density function (PDF is approximated by the rational square-root B-spline basis function, a robust fault diagnosis and fault tolerant control algorithm is presented. A full-order observer is constructed to estimate the exogenous disturbance and an adaptive observer is used to estimate the fault size. A fault tolerant tracking controller is designed using the feedback of distribution tracking error, fault, and disturbance estimation to let the postfault output PDF still track desired distribution. Finally, a simulation example is included to illustrate the effectiveness of the proposed algorithms and encouraging results have been obtained.
Pan, Indranil; Das, Saptarshi; Gupta, Amitava
2011-01-01
An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Mervan Pašić
2014-01-01
Full Text Available We study oscillatory behaviour of a large class of second-order functional differential equations with three freedom real nonnegative parameters. According to a new oscillation criterion, we show that if at least one of these three parameters is large enough, then the main equation must be oscillatory. As an application, we study a class of Duffing type quasilinear equations with nonlinear time delayed feedback and their oscillations excited by the control gain parameter or amplitude of forcing term. Finally, some open questions and comments are given for the purpose of further study on this topic.
DEFF Research Database (Denmark)
Xue, Weiqi; Mørk, Jesper
2011-01-01
We experimentally demonstrate the realization of a tunable true-time delay for microwave signals by exploiting cross gain modulation among counter-propagating optical beams in a semiconductor optical amplifier. Broadband operation from ∼5 to ∼35 GHz is observed. The physical effect originates from...... the combination of carrier dynamics and propagation effects, and the experimental results are well accounted for by a numerical model. We find that, in contrast to the case of the co-propagating beams, the bandwidth is not limited by the lifetime of excited carriers. The trade-off between the magnitude...
Directory of Open Access Journals (Sweden)
Fei Chen
2013-01-01
Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.
Held, M; Grün, M; Holl, R; Walter, F; Schäfers, H-J; Graeter, T; Wilkens, H; Jany, B
2014-08-01
Chronic-thromboembolic pulmonary hypertension (CTEPH) is a serious complication of acute pulmonary embolism (PE). In untreated patients prognosis is poor. It depends on WHO-functional class. A delay from onset of symptoms and diagnosis can lead to a further worsening of prognosis. A pulmonary endarterectomy is the treatment of choice. We aimed to evaluate the time delay from onset of symptoms to diagnosis and the WHO-functional class at primary diagnosis in patients with CTEPH. Retrospective analysis of data from 70 monocentrically registered patients (48 women, 22 men, mean age 66,2 years ± 13,8 years) with confirmed CTEPH from the pulmonary hypertension expert center Missionsärztliche Klinik. Diagnostic work-up was performed according to the current guidelines. Mean delay from onset of symptoms to diagnosis of CTEPH was 18 ± 26 months. Time delay was only slightly shorter in patients with a history of PE (n = 56; 81 %) than in patients without a history of PE (n = 13; 19 %): 16,9 ± 23,8 vs. 23,5 ± 36,9 months. Time delay was higher in patients who received vasoactive medication before the first contact with a PH expert center and in patients who were classified as technically not suitable for a thrombendarterectomy. 38 patients with a history of acute PE did not have a period without symptoms. In 18 patients symptoms had transiently gone after PE. More than 70 % presented in WHO functional class III or IV. Time delay between onset of symptoms and diagnosis of CTEPH and referral to a PH expert center is long and the majority of patients presented in WHO-functional class III or IV. Prognosis is poor in untreated patients and getting worse with a higher WHO-functional class. For this reason, and because CTEPH can be cured by a pulmonary endarterectomy, each patient with suspected PH should be referred to a PH expert center to exclude CTEPH. © Georg Thieme Verlag KG Stuttgart · New York.
International Nuclear Information System (INIS)
Chen, J.-D.
2007-01-01
In this paper, the robust control problem of output dynamic observer-based control for a class of uncertain neutral systems with discrete and distributed time delays is considered. Linear matrix inequality (LMI) optimization approach is used to design the new output dynamic observer-based controls. Three classes of observer-based controls are proposed and the maximal perturbed bound is given. Based on the results of this paper, the constraint of matrix equality is not necessary for designing the observer-based controls. Finally, a numerical example is given to illustrate the usefulness of the proposed method
Sensory aspects of movement disorders
Patel, Neepa; Jankovic, Joseph; Hallett, Mark
2016-01-01
Movement disorders, which include disorders such as Parkinson’s disease, dystonia, Tourette’s syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed. PMID:24331796
International Nuclear Information System (INIS)
Zhao, Zhiguo; Gu, Huaguang
2015-01-01
Highlights: • Time delay-induced multiple synchronous behaviors was simulated in neuronal networks. • Multiple behaviors appear at time delays shorter than a bursting period of neurons. • The more spikes per burst of bursting, the more synchronous regions of time delay. • From regular to random via small-world networks, synchronous degree becomes weak. • An interpretation of the multiple behaviors and the influence of network are provided. - Abstract: Time delay induced-multiple synchronous behaviors are simulated in neuronal network composed of many inhibitory neurons and appear at different time delays shorter than a period of endogenous bursting of individual neurons. It is different from previous investigations wherein only one of multiple synchronous behaviors appears at time delay shorter than a period of endogenous firing and others appear at time delay longer than the period duration. The bursting patterns of the synchronous behaviors are identified based on the dynamics of an individual neuron stimulated by a signal similar to the inhibitory coupling current, which is applied at the decaying branch of a spike and suitable phase within the quiescent state of the endogenous bursting. If a burst of endogenous bursting contains more spikes, the synchronous behaviors appear at more regions of time delay. As the coupling strength increases, the multiple synchronous behaviors appear in a sequence because the different threshold of coupling current or strength is needed to achieve synchronous behaviors. From regular, to small-world, and to random networks, synchronous degree of the multiple synchronous behaviors becomes weak, and synchronous bursting patterns with lower spikes per burst disappear, which is properly interpreted by the difference of coupling current between neurons induced by different degree and the high threshold of coupling current to achieve synchronization for the absent synchronous bursting patterns. The results of the influence of
Tvrdonova, Martina; Dedik, Ladislav; Mircioiu, Constantin; Miklovicova, Daniela; Durisova, Maria
2009-01-01
The study was conducted to formulate a physiologically motivated time-delay (PM TD) mathematical model for human beings, which incorporates disintegration of a drug formulation, dissolution, discontinuous gastric emptying and enterohepatic circulation (EHC) of a drug. Piroxicam, administered to 24 European, healthy individuals in 20 mg capsules Feldene Pfizer, was used as a model drug. Plasma was analysed for piroxicam by a validated high-performance liquid chromatography method. The PM TD mathematical model was developed using measured plasma piroxicam concentration-time profiles of the individuals and tools of a computationally efficient mathematical analysis and modeling, based on the theory of linear dynamic systems. The constructed model was capable of (i) quantifying different fractions of the piroxicam dose sequentially disposable for absorption and (ii) estimating time delays between time when the piroxicam dose reaches stomach and time when individual of fractions of the piroxicam dose is disposable for absorption. The model verification was performed through a formal proof, based on comparisons of observed and model-predicted plasma piroxicam concentration-time profiles. The model verification showed an adequate model performance and agreement between the compared profiles. Accordingly, it confirmed that the developed model was an appropriate representative of the piroxicam fate in the individuals enrolled. The presented model provides valuable information on factors that control dynamic mechanisms of EHC, that is, information unobtainable with the models proposed for the EHC analysis previously.
Zhou, Caigen; Zeng, Xiaoqin; Luo, Chaomin; Zhang, Huaguang
In this paper, local bipolar auto-associative memories are presented based on discrete recurrent neural networks with a class of gain type activation function. The weight parameters of neural networks are acquired by a set of inequalities without the learning procedure. The global exponential stability criteria are established to ensure the accuracy of the restored patterns by considering time delays and external inputs. The proposed methodology is capable of effectively overcoming spurious memory patterns and achieving memory capacity. The effectiveness, robustness, and fault-tolerant capability are validated by simulated experiments.In this paper, local bipolar auto-associative memories are presented based on discrete recurrent neural networks with a class of gain type activation function. The weight parameters of neural networks are acquired by a set of inequalities without the learning procedure. The global exponential stability criteria are established to ensure the accuracy of the restored patterns by considering time delays and external inputs. The proposed methodology is capable of effectively overcoming spurious memory patterns and achieving memory capacity. The effectiveness, robustness, and fault-tolerant capability are validated by simulated experiments.
Si, Wenjie; Dong, Xunde; Yang, Feifei
2018-03-01
This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liao, Baochao; Liu, Qun; Zhang, Kui; Baset, Abdul; Memon, Aamir Mahmood; Memon, Khadim Hussain; Han, Yanan
2016-09-01
A continuous time delay-diff erence model (CTDDM) has been established that considers continuous time delays of biological processes. The southern Atlantic albacore ( Thunnus alalunga) stock is the one of the commercially important tuna population in the marine world. The age structured production model (ASPM) and the surplus production model (SPM) have already been used to assess the albacore stock. However, the ASPM requires detailed biological information and the SPM lacks the biological realism. In this study, we focus on applying a CTDDM to the southern Atlantic albacore ( T. alalunga) species, which provides an alternative method to assess this fishery. It is the first time that CTDDM has been provided for assessing the Atlantic albacore ( T. alalunga) fishery. CTDDM obtained the 80% confidence interval of MSY (maximum sustainable yield) of (21 510 t, 23 118t). The catch in 2011 (24 100 t) is higher than the MSY values and the relative fishing mortality ratio ( F 2011/ F MSY) is higher than 1.0. The results of CTDDM were analyzed to verify the proposed methodology and provide reference information for the sustainable management of the southern Atlantic albacore stock. The CTDDM treats the recruitment, the growth, and the mortality rates as all varying continuously over time and fills gaps between ASPM and SPM in this stock assessment.
Robust Moving Horizon H∞ Control of Discrete Time-Delayed Systems with Interval Time-Varying Delays
Directory of Open Access Journals (Sweden)
F. Yıldız Tascikaraoglu
2014-01-01
Full Text Available In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.
Mahaki, Mohammadreza; De Sá E Souza, Gustavo Souto; Mimar, Raghad; Vieira, Marcus Fraga
2017-10-01
This study aimed to compare the ground reaction forces (GRF) and lower limb muscles correlation and activation time delay between Forward (FW) and Backward (BW) walking. Twenty-four male students participated in this research. Electromyogram activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus and anterior tibialis muscles along with GRFs were measured. Each participant performed two FW and two BW trials bare foot. Statistical parametric mapping (SPM) analysis was performed over anterior-posterior and vertical GRFs time series. The paired t-test was used in SPM analysis. Cross-correlation analysis compared similarity in shape and time delay of EMG pattern. SPM analysis of GRFs showed that these two walking modes have asymmetrical kinetic behavior during most parts of stance phase. Based on cross-correlation analysis, the shape of EMG activation profiles differed, where a phase shift in the muscle activation pattern of approximately 60% occurred. This shift may indicate different control mechanisms, at the spinal level, underpin FW and BW walking modalities. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
H.M. Omar
2005-01-01
Full Text Available We designed a feedback controller to automate crane operations by controlling the load position and its swing. First, a PD tracking controller is designed to follow a prescribed trajectory. Then, another controller is added to the control loop to damp the load swing. The anti-swing controller is designed based on two techniques: a time-delayed feedback of the load swing angle and an anti-swing fuzzy logic controller (FLC. The rules of the FLC are generated by mapping the performance of the time-delayed feedback controller. The same mapping method used for generating the rules can be applied to mimic the performance of an expert operator. The control algorithms were designed for gantry cranes and then extended to tower cranes by considering the coupling between the translational and rotational motions. Experimental results show that the controller is effective in reducing load oscillations and transferring the load in a reasonable time. To experimentally validate the theory, we had to compensate for friction. To this end, we estimated the friction and then applied a control action to cancel it. The friction force was estimated by assuming a mathematical model and then estimating the model coefficients using an off-line identification technique, the method of least squares (LS.
International Nuclear Information System (INIS)
Liao, Pingping; Cai, Maolin; Shi, Yan; Fan, Zichuan
2013-01-01
The conventional ultrasonic method for compressed air leak detection utilizes a directivity-based ultrasonic leak detector (DULD) to locate the leak. The location accuracy of this method is low due to the limit of the nominal frequency and the size of the ultrasonic sensor. In order to overcome this deficiency, a method based on time delay estimation (TDE) is proposed. The method utilizes three ultrasonic sensors arranged in an equilateral triangle to simultaneously receive the ultrasound generated by the leak. The leak can be located according to time delays between every two sensor signals. The theoretical accuracy of the method is analyzed, and it is found that the location error increases linearly with delay estimation error and the distance from the leak to the sensor plane, and the location error decreases with the distance between sensors. The average square difference function delay estimator with parabolic fitting is used and two practical techniques are devised to remove the anomalous delay estimates. Experimental results indicate that the location accuracy using the TDE-based ultrasonic leak detector is 6.5–8.3 times as high as that using the DULD. By adopting the proposed method, the leak can be located more accurately and easily, and then the detection efficiency is improved. (paper)
International Nuclear Information System (INIS)
Jia Zhenglin; Mei Dongcheng
2011-01-01
We numerically investigate the influences of the time delay τ simultaneously existing in both the deterministic and fluctuating forces, the time delay τ r existing only in the fluctuating force and the cross-correlation strength λ on the enhancement of the mean first-passage time (MFPT) as a function of the additive D and the multiplicative α noise intensities in a metastable system. The results indicate that both the multiplicative and additive noises can induce the noise-enhanced stability (NES) effect. An increase of λ can enhance or weaken the NES effect induced by the additive noise, depending on the value of τ. However, it weakens the NES effect induced by the multiplicative noise with a suppression of the effect of λ caused by increasing τ. The τ-induced critical behavior on both NES effects can be observed, i.e. an increase of τ can enhance or restrain the NES effects induced by the two kinds of noises. With an increase of λ and τ, MFPT versus D shows a transition from one peak to two peaks and finally one peak, implying the multiple NES effect caused by λ and τ. An increase of τ r can enhance the NES effect induced by the additive noise and weaken the NES effect induced by the multiplicative noise.
Implementation of a New Quasi-Optimal Controller Tuning Algorithm for Time-Delay Systems
Pekař, Libor; Prokop, Roman
2011-01-01
The aim of this chapter is to describe, demonstrate and implement a new quasi-optimal pole placement algorithm for SISO LTI-TDS based on the quasi-continuous pole shifting to the prescribed positions. The desired positions are obtained by overshoot analysis of the step response for a dominant pair of complex conjugate poles. A controller structure is initially obtained by algebraic controller design in RMS. Note that the maximum number of prescribed poles (including their multiplicities) equa...
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
International Nuclear Information System (INIS)
Balasubramaniam, P.; Kalpana, M.; Rakkiyappan, R.
2012-01-01
Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov—Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method. (interdisciplinary physics and related areas of science and technology)
Wagle, Elke; Allred, Elizabeth N; Needleman, Howard L
2014-01-01
The purpose of this study was to compare the time interval between a child sustaining a dental injury and the rendering of treatment in a hospital setting and a private pediatric dental practice. Data were collected from the patient records of children treated for dental trauma at a children's hospital emergency department, a children's hospital dental clinic, and a private pediatric dental practice. Data included demographics and the time, date, type of injury, and its treatment. Injuries were more severe, treatment was more complex, and the time interval between injury and treatment was longer for those children treated in the hospital setting versus private practice, regardless of distance traveled. Children treated at their dental home experienced fewer treatment delays. Insurance status, medical complexity, and associated injuries were not related to treatment delays. Children who seek emergency care for traumatic dental injuries in a hospital setting experience greater delays in treatment compared to those seeking care in a private practice setting. These findings might not be generalizable to other hospital settings or private practices due to the inherently unique characteristics of the sites used in this study.
A simple model of carcinogenic mutations with time delay and diffusion.
Piotrowska, Monika Joanna; Foryś, Urszula; Bodnar, Marek; Poleszczuk, Jan
2013-06-01
In the paper we consider a system of delay differential equations (DDEs) of Lotka-Volterra type with diffusion reflecting mutations from normal to malignant cells. The model essentially follows the idea of Ahangar and Lin (2003) where mutations in three different environmental conditions, namely favorable, competitive and unfavorable, were considered. We focus on the unfavorable conditions that can result from a given treatment, e.g. chemotherapy. Included delay stands for the interactions between benign and other cells. We compare the dynamics of ODEs system, the system with delay and the system with delay and diffusion. We mainly focus on the dynamics when a positive steady state exists. The system which is globally stable in the case without the delay and diffusion is destabilized by increasing delay, and therefore the underlying kinetic dynamics becomes oscillatory due to a Hopf bifurcation for appropriate values of the delay. This suggests the occurrence of spatially non-homogeneous periodic solutions for the system with the delay and diffusion.
Wang, Fen; Chen, Yuanlong; Liu, Meichun
2018-02-01
Stochastic memristor-based bidirectional associative memory (BAM) neural networks with time delays play an increasingly important role in the design and implementation of neural network systems. Under the framework of Filippov solutions, the issues of the pth moment exponential stability of stochastic memristor-based BAM neural networks are investigated. By using the stochastic stability theory, Itô's differential formula and Young inequality, the criteria are derived. Meanwhile, with Lyapunov approach and Cauchy-Schwarz inequality, we derive some sufficient conditions for the mean square exponential stability of the above systems. The obtained results improve and extend previous works on memristor-based or usual neural networks dynamical systems. Four numerical examples are provided to illustrate the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Davis, G.R.; London Univ.; Elliott, J.C.; London Univ.
1997-01-01
Most X-ray microtomography scanners work on the same principle as third-generation medical CT scanners, that is, the same point in each projection is measured by the same detector element. This leads to ring artefacts in the reconstructed image if the X-ray sensitivities of the individual detector elements, after any analytical correction, are not all identical. We have developed an X-ray microtomography scanner which uses the time-delay integration method of imaging with a CCD detector to average the characteristics of all the detector elements in each linear projection together. This has the added advantage of allowing specimens which are larger than the detector and X-ray field to be scanned. The device also uses a novel mechanical stage to ''average out'' inhomogeneities in the X-ray field. The results show that ring artefacts in microtomographic images are eliminated using this technique. (orig.)
H2consensus control of time-delayed multi-agent systems: A frequency-domain method.
Ye, Fei; Zhang, Weidong; Ou, Linlin
2017-01-01
An analytical H2 controller design approach of homogeneous multi-agent systems with time delays is presented to improve consensus performance. Firstly, a closed-loop multi-input multi-output framework in frequency domain is introduced, and a consensus tracking condition is given. Secondly, the decomposition method is utilized to simplify the analysis of internal stability and H2 performance index of the whole system to a set of independent optimization problems. Finally, the H2 optimal controller can be computed from all the stabilizing controllers. The contributions of the new approach are that the design procedure is conducted analytically for arbitrary delayed multi-agent systems, and a simple quantitative tuning way is developed to trade off the nominal performance and robustness. The simulation examples show the effectiveness of the proposed control strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Shi, Peng; Zhang, Yingqi; Chadli, Mohammed; Agarwal, Ramesh K
2016-04-01
In this brief, the problems of the mixed H-infinity and passivity performance analysis and design are investigated for discrete time-delay neural networks with Markovian jump parameters represented by Takagi-Sugeno fuzzy model. The main purpose of this brief is to design a filter to guarantee that the augmented Markovian jump fuzzy neural networks are stable in mean-square sense and satisfy a prescribed passivity performance index by employing the Lyapunov method and the stochastic analysis technique. Applying the matrix decomposition techniques, sufficient conditions are provided for the solvability of the problems, which can be formulated in terms of linear matrix inequalities. A numerical example is also presented to illustrate the effectiveness of the proposed techniques.
Directory of Open Access Journals (Sweden)
Jiwei Wen
2014-01-01
Full Text Available The H∞ dynamic output feedback control problem for a class of discrete-time switched time-delay systems under asynchronous switching is investigated in this paper. Sensor nonlinearity and missing measurements are considered when collecting output knowledge of the system. Firstly, when there exists asynchronous switching between the switching modes and the candidate controllers, new results on the regional stability and l2 gain analysis for the underlying system are given by allowing the Lyapunov-like function (LLF to increase with a random probability. Then, a mean square stabilizing output feedback controller and a switching law subject to average dwell time (ADT are obtained with a given disturbance attenuation level. Moreover, the mean square domain of attraction could be estimated by a convex combination of a set of ellipsoids, the number of which depends on the number of switching modes. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.
Hu, Wuhua; Xiao, Gaoxi; Li, Xiumin
2011-04-01
In this paper, an analytical method is proposed for proportional-integral/proportional-derivative/proportional-integral-derivative (PI/PD/PID) controller tuning with specified gain and phase margins (GPMs) for integral plus time delay (IPTD) processes. Explicit formulas are also obtained for estimating the GPMs resulting from given PI/PD/PID controllers. The proposed method indicates a general form of the PID parameters and unifies a large number of existing rules as PI/PD/PID controller tuning with various GPM specifications. The GPMs realized by existing PID tuning rules are computed and documented as a reference for control engineers to tune the PID controllers. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Yurong Liu
2013-01-01
Full Text Available This paper is concerned with the leader-following consensus problem in mean-square for a class of discrete-time multiagent systems. The multiagent systems under consideration are the directed and contain arbitrary discrete time-delays. The communication links are assumed to be time-varying and stochastic. It is also assumed that some agents in the network are well informed and act as leaders, and the others are followers. By introducing novel Lyapunov functionals and employing some new analytical techniques, sufficient conditions are derived to guarantee the leader-following consensus in mean-square for the concerned multiagent systems, so that all the agents are steered to an anticipated state target. A numerical example is presented to illustrate the main results.
Zhang, J. Y.; Jiang, Y.
2017-10-01
To ensure satisfactory dynamic performance of controllers in time-delayed power systems, a WAMS-based control strategy is investigated in the presence of output feedback delay. An integrated approach based on Pade approximation and particle swarm optimization (PSO) is employed for parameter configuration of PSS. The coordination configuration scheme of power system controllers is achieved by a series of stability constraints at the aim of maximizing the minimum damping ratio of inter-area mode of power system. The validity of this derived PSS is verified on a prototype power system. The findings demonstrate that the proposed approach for control design could damp the inter-area oscillation and enhance the small-signal stability.
International Nuclear Information System (INIS)
Saito, Ryo; Naruko, Atsushi; Hiramatsu, Takashi; Sasaki, Misao
2014-01-01
In this paper, we introduce a new approach to a treatment of the gravitational effects (redshift, time delay and lensing) on the observed cosmic microwave background (CMB) anisotropies based on the Boltzmann equation. From the Liouville's theorem in curved spacetime, the intensity of photons is conserved along a photon geodesic when non-gravitational scatterings are absent. Motivated by this fact, we derive a second-order line-of-sight formula by integrating the Boltzmann equation along a perturbed geodesic (curve) instead of a background geodesic (line). In this approach, the separation of the gravitational and intrinsic effects are manifest. This approach can be considered as a generalization of the remapping approach of CMB lensing, where all the gravitational effects can be treated on the same footing
Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind
2017-07-26
Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Novel Sensory Mapping Design for Bipedal Walking on a Sloped Surface
Directory of Open Access Journals (Sweden)
Chiao-Min Wu
2012-10-01
Full Text Available This paper presents an environment recognition method for bipedal robots using a time-delay neural network. For a robot to walk in a varying terrain, it is desirable that the robot can adapt to any environment encountered in real-time. This paper aims to develop a sensory mapping unit to recognize environment types from the input sensory data based on an artificial neural network approach. With the proposed sensory mapping design, a bipedal walking robot can obtain real-time environment information and select an appropriate walking pattern accordingly. Due to the time-dependent property of sensory data, the sensory mapping is realized by using a time-delay neural network. The sensory data of earlier time sequences combined with current sensory data are sent to the neural network. The proposed method has been implemented on the humanoid robot NAO for verification. Several interesting experiments were carried out to verify the effectiveness of the sensory mapping design. The mapping design is validated for the uphill, downhill and flat surface cases, where three types of environment can be recognized by the NAO robot online.
Directory of Open Access Journals (Sweden)
Kyungsoo Kim
2016-06-01
Full Text Available Electroencephalograms (EEGs measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE schemes based on a joint maximum likelihood (ML criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°.
Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile
2015-02-01
Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.
Directory of Open Access Journals (Sweden)
Stefanie Jachner
2007-06-01
Full Text Available Results of ecological models differ, to some extent, more from measured data than from empirical knowledge. Existing techniques for validation based on quantitative assessments sometimes cause an underestimation of the performance of models due to time shifts, accelerations and delays or systematic differences between measurement and simulation. However, for the application of such models it is often more important to reproduce essential patterns instead of seemingly exact numerical values. This paper presents techniques to identify patterns and numerical methods to measure the consistency of patterns between observations and model results. An orthogonal set of deviance measures for absolute, relative and ordinal scale was compiled to provide informations about the type of difference. Furthermore, two different approaches accounting for time shifts were presented. The first one transforms the time to take time delays and speed differences into account. The second one describes known qualitative criteria dividing time series into interval units in accordance to their main features. The methods differ in their basic concepts and in the form of the resulting criteria. Both approaches and the deviance measures discussed are implemented in an R package. All methods are demonstrated by means of water quality measurements and simulation data. The proposed quality criteria allow to recognize systematic differences and time shifts between time series and to conclude about the quantitative and qualitative similarity of patterns.
Li, Chengxian; Liu, Haihong; Zhang, Tonghua; Yan, Fang
2017-12-01
In this paper, a gene regulatory network mediated by small noncoding RNA involving two time delays and diffusion under the Neumann boundary conditions is studied. Choosing the sum of delays as the bifurcation parameter, the stability of the positive equilibrium and the existence of spatially homogeneous and spatially inhomogeneous periodic solutions are investigated by analyzing the corresponding characteristic equation. It is shown that the sum of delays can induce Hopf bifurcation and the diffusion incorporated into the system can effect the amplitude of periodic solutions. Furthermore, the spatially homogeneous periodic solution always exists and the spatially inhomogeneous periodic solution will arise when the diffusion coefficients of protein and mRNA are suitably small. Particularly, the small RNA diffusion coefficient is more robust and its effect on model is much less than protein and mRNA. Finally, the explicit formulae for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by employing the normal form theory and center manifold theorem for partial functional differential equations. Finally, numerical simulations are carried out to illustrate our theoretical analysis.
Neff, H.; Laborde, H. M.; Lima, A. M. N.
2016-11-01
An oscillatory molecular adsorption pattern of the protein neutravidin from aqueous solution onto gold, in presence of a pre-deposited self assembled mono-molecular biotin film, is reported. Real time surface Plasmon resonance sensing was utilized for evaluation of the adsorption kinetics. Two different fractions were identified: in the initial phase, protein molecules attach irreversibly onto the Biotin ligands beneath towards the jamming limit, forming a neutravidin-biotin fraction. Afterwards, the growth rate exhibits distinct, albeit damped adsorption-desorption oscillations over an extended time span, assigned to a quasi reversibly bound fraction. These findings agree with, and firstly confirm a previously published model, proposing macro-molecular adsorption with time delay. The non-linear dynamic model is applicable to and also resembles non-damped oscillatory binding features of the hetero-catalytic oxidation of carbon monoxide molecules on platinum in the gas phase. An associated surface residence time can be linked to the dynamics and time scale required for self-organization.
Arthurs, C. P.; Baker, Ian M.; Crimes, Graham J.; Bains, S.; Murray, D. C.
1996-06-01
This paper discusses the technology used by GMIRL for high performance long linear arrays based on CdHgTe/CMOS hybrid multiplexers. Modern silicon processes allow the realization of a high degree of functionality within focal plane detectors. GMIRL have used this enhanced functionality to facilitate the deselection of defective elements within a diode array and provide time delay and integration. Two design approaches have been evaluated leading to the design and manufacture of high performance arrays for imaging applications. The resulting detector allows the enhancement of the signal to noise ratio at low IR flux levels and has a low overall power consumption, while requiring the minimum of real time correction for nonuniformities. The design can be readily adapted to suit arrays of varying length. The infrared sensor technology is based on CdHgTe (CMT) material grown by a tellurium rich, liquid phase epitaxy (LPE) process. Lateral collection photodiode arrays are fabricated within this material as a silicon CMT hybrid structure.
Directory of Open Access Journals (Sweden)
Mansor Nuratiqa Natrah
2018-01-01
Full Text Available Bilateral master-slave industrial robotic arm manipulator system is an advanced technology used to help human to interact with environments that are unreachable to human, due to its remoteness or perilous. The system has been used in different areas such as tele-surgery, autonomous tele-operation for sea and space operation and handling explosive or high radiation operation fields. It is beneficial both for science and society. Remarkably, the system is not common and generally used in Malaysia. Likewise, the number of research conducted that focused about this technology in our country manufacturing industry are not yet discovered and existent. The implementation of this bilateral manipulator system in an industrial robot could be useful for industrial imminent and development over our country and people, specifically for production yield size and human operative. Hence, the study of bilateral robotic arm manipulator system in an industrial robot and analyzation of its performance and time delay in 3 differ controllers will be discussed to attest the efficiency and its effectiveness on the said design system. The experiment conducted was on KUKA youBot arm in V-Rep simulation with three different controllers (P, PD, PID.
Li, Peng; Gong, Ping; Li, Haoni; Perkins, Edward J; Wang, Nan; Zhang, Chaoyang
2014-12-01
The Dialogue for Reverse Engineering Assessments and Methods (DREAM) project was initiated in 2006 as a community-wide effort for the development of network inference challenges for rigorous assessment of reverse engineering methods for biological networks. We participated in the in silico network inference challenge of DREAM3 in 2008. Here we report the details of our approach and its performance on the synthetic challenge datasets. In our methodology, we first developed a model called relative change ratio (RCR), which took advantage of the heterozygous knockdown data and null-mutant knockout data provided by the challenge, in order to identify the potential regulators for the genes. With this information, a time-delayed dynamic Bayesian network (TDBN) approach was then used to infer gene regulatory networks from time series trajectory datasets. Our approach considerably reduced the searching space of TDBN; hence, it gained a much higher efficiency and accuracy. The networks predicted using our approach were evaluated comparatively along with 29 other submissions by two metrics (area under the ROC curve and area under the precision-recall curve). The overall performance of our approach ranked the second among all participating teams.
Van, Mien; Ge, Shuzhi Sam; Ren, Hongliang
2016-04-28
In this paper, a novel finite time fault tolerant control (FTC) is proposed for uncertain robot manipulators with actuator faults. First, a finite time passive FTC (PFTC) based on a robust nonsingular fast terminal sliding mode control (NFTSMC) is investigated. Be analyzed for addressing the disadvantages of the PFTC, an AFTC are then investigated by combining NFTSMC with a simple fault diagnosis scheme. In this scheme, an online fault estimation algorithm based on time delay estimation (TDE) is proposed to approximate actuator faults. The estimated fault information is used to detect, isolate, and accommodate the effect of the faults in the system. Then, a robust AFTC law is established by combining the obtained fault information and a robust NFTSMC. Finally, a high-order sliding mode (HOSM) control based on super-twisting algorithm is employed to eliminate the chattering. In comparison to the PFTC and other state-of-the-art approaches, the proposed AFTC scheme possess several advantages such as high precision, strong robustness, no singularity, less chattering, and fast finite-time convergence due to the combined NFTSMC and HOSM control, and requires no prior knowledge of the fault due to TDE-based fault estimation. Finally, simulation results are obtained to verify the effectiveness of the proposed strategy.
Fukuyama, Yoshimitsu; Yasuda, Nobuhiro; Kim, Jungeun; Murayama, Haruno; Ohshima, Takashi; Tanaka, Yoshihito; Kimura, Shigeru; Kamioka, Hayato; Moritomo, Yutaka; Toriumi, Koshiro; Tanaka, Hitoshi; Kato, Kenichi; Ishikawa, Tetsuya; Takata, Masaki
2008-04-01
An ultra-high-precision clock system for long time delay has been developed for picosecond time-resolved x-ray diffraction measurements using synchrotron radiation (SR) pulses and synchronized femtosecond laser pulses. The time delay control between pump laser pulse and the probe SR pulse was achieved by combining an in-phase quadrature modulator and a synchronous counter. This method allowed us to change the delay time by a nearly infinite amount while maintaining the precision of +/-8.40 ps. Time-resolved diffraction measurements using the delay control system were demonstrated for precise measurement of an acoustic velocity in a single crystal of gallium arsenide.
The Efficiency of Sensory Integration Interventions in Preterm Infants.
Pekçetin, Serkan; Akı, Esra; Üstünyurt, Zeynep; Kayıhan, Hülya
2016-10-01
This study aimed to explore the effects of individualized sensory integration interventions on the sensory processing functions of preterm infants. Thirty-four preterm infants (intervention group) at a corrected age of seven months and 34 term infants (control group) were included. The preterm infants underwent an eight-week sensory integration intervention. Before and after the intervention, the preterm infants' sensory processing functions were evaluated using the Test of Sensory Functions in Infants and compared with those of term infants. Preterm infants had significantly poorer sensory processing function preintervention when compared with term infants. There was a significant improvement in preterm infants' sensory processing functions after the sensory integration intervention. In conclusion, preterm infants should be evaluated for sensory processing disorders and individualized sensory integration interventions should be implemented. © The Author(s) 2016.
Zhang, Jiabei; And Others
1995-01-01
A constant time delay (CTD) procedure was used to teach four adolescents with severe/profound intellectual disabilities to perform bowling, throwing, and putting. Results indicated that the adolescents could be effectively taught gross motor lifetime sport skills with the CTD procedure and that verbal description plus physical assistance could be…
Cognitive mechanisms associated with auditory sensory gating
Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.
2016-01-01
Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891
Sensory Transduction in Caenorhabditis elegans
Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.
The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.
Epilepsy and the Sensory Systems
Wolf, Peter
2016-01-01
The relations of epilepsy and the sensory systems are bidirectional. Epilepsy may act on sensory systems by producing sensory seizure symptoms, by altering sensory performance, and by epilepsy treatment causing sensory side effects. Sensory system activity may have an important role in both generation and inhibition of seizures.
Sensory (re)weighting in spatial orientation
Alberts, B.B.G.T.
2016-01-01
Determining the orientation of our body as well as objects in space, more commonly referred to as spatial orientation, involves the processing of various sensory signals, including visual, vestibular, and proprioceptive signals. The brain needs to integrate these sensory signals, which are noisy and
Sensory processing problems in children with ADHD, a systematic review.
Ghanizadeh, Ahmad
2011-06-01
One of the most common psychiatric disorders in children is attention deficit hyperactivity disorder (ADHD). Its course and outcome are heterogeneous. Sensory processing problems impact the nature of response to daily events. ADHD and sensory problems may occur together and interact. No published review article about sensory processing problems in children with ADHD were found. A systematic search, conducted on Pub-Med (up to January 2010), and Google Scholar, yielded 255 abstracts on sensory processing problems in children including 11 studies about sensory problems in children with ADHD. Sensory processing problems in children with ADHD is not a well studied area. Sensory processing problems in children with ADHD are more common than in typically developing children. Findings do not support that ADHD subtypes are distinct disorders with regard to sensory processing problems. However, co-morbidity with oppositional defiant disorder and anxiety are predictors of more severe sensory processing problems in children with ADHD.
Making Sense of Sensory Systems
Hendrix, Marie
2010-01-01
The role of caregivers requires that they continuously assess the needs and performance of children and provide the support necessary for them to achieve their potential. A thorough understanding of child development, including the role and impact of sensory development, is critical for caregivers to properly evaluate and assist these children.…
Stern, Liron; Levy, Uriel
2012-12-17
In this paper we analyze the transmission and time delay properties of light propagating through a microring resonator (MRR) consisting of a solid core waveguide surrounded by an atomic vapor cladding. Using the atomic effective susceptibility of Rubidium we derive the complex transmission spectrum of the integrated system. We show, that when the system is under-coupled, the transmission can exceed the standalone MRR's background transmission and is accompanied by enhanced positive time delay. It is shown that in this case the contrast of the atomic lines is greatly enhanced. This allows achieving high optical densities at short propagation length. Furthermore, owing to its features such as small footprint, high tunability, and high delay-transmission product, this system may become an attractive choice for chip scale manipulations of light.
Directory of Open Access Journals (Sweden)
Cheng Gong
2014-01-01
Full Text Available This paper investigates the H∞ filtering problem of discrete singular Markov jump systems (SMJSs with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition on H∞-disturbance attenuation is presented, in which both stability and prescribed H∞ performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependent H∞ filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI. Finally, an example is given to illustrate the effectiveness of the result.
MOURI, K.; AKIYAMA, K.; ANDO, Y.
2000-04-01
Previously, it was reported that the most preferred initial time delay gap [Δt1]pand subsequent reverberation time are described by the minimum value of the effective duration (τe)minof the running autocorrelation function (ACF) of music signals (2 T=2·0 s) (Y. ANDO et al. 1989 Journal of Acoustical Society of America86, 644-649). This paper shows whether this result is supported or not by use of the electro-physiological method. Experiments were performed for sound fields changing the initial time delay gapΔt1 of a single reflection with vocal music as a source signal, which has large changes in runningτe . The results at the time interval when (τe)minof the music is observed reveal that the scale value of subjective preference is closely related to the value of τeof the alpha wave obtained from the left heimsphere.
International Nuclear Information System (INIS)
Qiu-Ye, Sun; Hua-Guang, Zhang; Yan, Zhao
2010-01-01
This paper investigates the chaotification problem of a stable continuous-time T–S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T–S fuzzy system with time-delay and a discrete-time T–S fuzzy system is established. Based on the discrete-time T–S fuzzy system, it proves that the chaos in the discrete-time T–S fuzzy system satisfies the Li–Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example. (general)
Energy Technology Data Exchange (ETDEWEB)
Tanaka, K.; Moriya, H.; Asanuma, H.; Niitsuma, H. [Tohoku University, Sendai (Japan). Faculty of Engineering
1996-10-01
By revealing the relation between dilation of a subsurface fracture due to pressurization and travel time delay, it may be possible to measure the information as to the subsurface fracture system as a geothermal reservoir. In this study, field experiment was conducted to clarify the relation between the travel time delay of elastic waves and the dilation of fracture, pressure, and incident angles. The travel time delay of P-wave and S-wave tended to increase with the pressurization. When incident angle was about 90{degree} against the fracture, the increase was ranging between 0 and 0.2 ms. The magnitude of this delay could not be explained only by the opening of main fracture. It was considered that there were micro-crack zones around the main fracture. The difference of P-S delay depended on the pressurization and change of the pressure. The delay depended on the incident angle against the fracture. The delay of S-wave showed the polarized wave direction dependency. However, the obtained results might greatly depend on the analytical method and parameters. 4 refs., 10 figs.
Tavassoli, Teresa; Miller, Lucy Jane; Schoen, Sarah A; Jo Brout, Jennifer; Sullivan, Jillian; Baron-Cohen, Simon
2017-05-18
Although the DSM-5 added sensory symptoms as a criterion for ASC, there is a group of children who display sensory symptoms but do not have ASC; children with sensory processing disorder (SPD). To be able to differentiate these two disorders, our aim was to evaluate whether children with ASC show more sensory symptomatology and/or different cognitive styles in empathy and systemizing compared to children with SPD and typically developing (TD) children. The study included 210 participants: 68 children with ASC, 79 with SPD and 63 TD children. The Sensory Processing Scale Inventory was used to measure sensory symptoms, the Autism Spectrum Quotient (AQ) to measure autistic traits, and the Empathy Quotient (EQ) and Systemizing Quotient (SQ) to measure cognitive styles. Across groups, a greater sensory symptomatology was associated with lower empathy. Further, both the ASC and SPD groups showed more sensory symptoms than TD children. Children with ASC and SPD only differed on sensory under-reactivity. The ASD group did, however, show lower empathy and higher systemizing scores than the SPD group. Together, this suggest that sensory symptoms alone may not be adequate to differentiate children with ASC and SPD but that cognitive style measures could be used for differential diagnosis. Copyright © 2017. Published by Elsevier Ltd.
Sensory properties and preferences.
Risvik, E
1994-01-01
Common mistakes are frequent in sensory evaluation of meats and meat products. Conceptual confusion is often observed in triangular tests when add-on questions are included in the testing procedures, and when descriptive and hedonic scales are mixed in profiling exercises. Similar consumer responses are often recorded from trained, and thus biased, panels. Preference for meats seems to be most strongly affected by changes in colour/appearance and texture, and to a lesser extent by changes in flavour (that is when off-flavours are not present). It is difficult to generalise as to whether appearance/colour attributes or texture attributes are the most important. A simplified model for texture understanding is suggested, where water/fat perception and structure perception (described by juiciness and tenderness) are orthogonal phenomena and where most other textural attributes can be explained by this structure. Copyright © 1993. Published by Elsevier Ltd.
Stone, J.; Vermeulen, M.
2017-01-01
Functional (psychogenic) sensory symptoms are those in which the patient genuinely experiences alteration or absence of normal sensation in the absence of neurologic disease. The hallmark of functional sensory symptoms is the presence of internal inconsistency revealing a pattern of symptoms
Sensory correlations in autism.
Kern, Janet K; Trivedi, Madhukar H; Grannemann, Bruce D; Garver, Carolyn R; Johnson, Danny G; Andrews, Alonzo A; Savla, Jayshree S; Mehta, Jyutika A; Schroeder, Jennifer L
2007-03-01
This study examined the relationship between auditory, visual, touch, and oral sensory dysfunction in autism and their relationship to multisensory dysfunction and severity of autism. The Sensory Profile was completed on 104 persons with a diagnosis of autism, 3 to 56 years of age. Analysis showed a significant correlation between the different processing modalities using total scores. Analysis also showed a significant correlation between processing modalities for both high and low thresholds, with the exception that auditory high threshold processing did not correlate with oral low threshold or touch low threshold processing. Examination of the different age groups suggests that sensory disturbance correlates with severity of autism in children, but not in adolescents and adults. Evidence from this study suggests that: all the main modalities and multisensory processing appear to be affected; sensory processing dysfunction in autism is global in nature; and sensory processing problems need to be considered part of the disorder.
Probabilistic sensory recoding.
Jazayeri, Mehrdad
2008-08-01
A hallmark of higher brain functions is the ability to contemplate the world rather than to respond reflexively to it. To do so, the nervous system makes use of a modular architecture in which sensory representations are dissociated from areas that control actions. This flexibility however necessitates a recoding scheme that would put sensory information to use in the control of behavior. Sensory recoding faces two important challenges. First, recoding must take into account the inherent variability of sensory responses. Second, it must be flexible enough to satisfy the requirements of different perceptual goals. Recent progress in theory, psychophysics, and neurophysiology indicate that cortical circuitry might meet these challenges by evaluating sensory signals probabilistically.
NEUROPHYSIOLOGICAL EVALUATION OF SENSORY SYSTEMS'
Exposure to many neurotoxic compounds has been shown to produce a sensory system dysfunction. Neurophysiological assessment of sensory function in humans and animal models often uses techniques known as sensory evoked potentials. Because both humans and animals show analogous res...
Fletcher, Tina S.; Blake, Amanda B.; Shelffo, Kathleen E.
2018-01-01
Children routinely visit art museums as part of their educational experience and family time, many of them having special needs. The number of children diagnosed with autism and sensory processing disorders is increasing. These conditions may include heightened sensory "avoiding" or "seeking" behaviors that can interfere with a…
Violon, D
2012-12-01
To develop a multicompartment model of only essential human body components that predicts the contrast medium concentration vs time curve in a chosen compartment after an intravenous injection. Also to show that the model can be used to time adequately contrast-enhanced CT series. A system of linked time delay instead of ordinary differential equations described the model and was solved with a Matlab program (Matlab v. 6.5; The Mathworks, Inc., Natick, MA). All the injection and physiological parameters were modified to cope with normal or pathological situations. In vivo time-concentration curves from the literature were recalculated to validate the model. The recalculated contrast medium time-concentration curves and parameters are given. The results of the statistical analysis of the study findings are expressed as the median prediction error and the median absolute prediction error values for both the time delay and ordinary differential equation systems; these are situated well below the generally accepted maximum 20% limit. The presented program correctly predicts the time-concentration curve of an intravenous contrast medium injection and, consequently, allows an individually tailored approach of CT examinations with optimised use of the injected contrast medium volume, as long as time delay instead of ordinary differential equations are used. The presented program offers good preliminary knowledge of the time-contrast medium concentration curve after any intravenous injection, allowing adequate timing of a CT examination, required by the short scan time of present-day scanners. The injected volume of contrast medium can be tailored to the individual patient with no more contrast medium than is strictly needed.
Directory of Open Access Journals (Sweden)
Carlos Capela
Full Text Available Buruli Ulcer (BU is a neglected infectious disease caused by Mycobacterium ulcerans that is responsible for severe necrotizing cutaneous lesions that may be associated with bone involvement. Clinical presentations of BU lesions are classically classified as papules, nodules, plaques and edematous infiltration, ulcer or osteomyelitis. Within these different clinical forms, lesions can be further classified as severe forms based on focality (multiple lesions, lesions' size (>15 cm diameter or WHO Category (WHO Category 3 lesions. There are studies reporting an association between delay in seeking medical care and the development of ulcerative forms of BU or osteomyelitis, but the effect of time-delay on the emergence of lesions classified as severe has not been addressed. To address both issues, and in a cohort of laboratory-confirmed BU cases, 476 patients from a medical center in Allada, Benin, were studied. In this laboratory-confirmed cohort, we validated previous observations, demonstrating that time-delay is statistically related to the clinical form of BU. Indeed, for non-ulcerated forms (nodule, edema, and plaque the median time-delay was 32.5 days (IQR 30.0-67.5, while for ulcerated forms it was 60 days (IQR 20.0-120.0 (p = 0.009, and for bone lesions, 365 days (IQR 228.0-548.0. On the other hand, we show here that time-delay is not associated with the more severe phenotypes of BU, such as multi-focal lesions (median 90 days; IQR 56-217.5; p = 0.09, larger lesions (diameter >15 cm (median 60 days; IQR 30-120; p = 0.92 or category 3 WHO classification (median 60 days; IQR 30-150; p = 0.20, when compared with unifocal (median 60 days; IQR 30-90, small lesions (diameter ≤15 cm (median 60 days; IQR 30-90, or WHO category 1+2 lesions (median 60 days; IQR 30-90, respectively. Our results demonstrate that after an initial period of progression towards ulceration or bone involvement, BU lesions become stable regarding size and focal
Capela, Carlos; Sopoh, Ghislain E.; Houezo, Jean G.; Fiodessihoué, René; Dossou, Ange D.; Costa, Patrício; Fraga, Alexandra G.; Menino, João F.; Silva-Gomes, Rita; Ouendo, Edgard M.
2015-01-01
Buruli Ulcer (BU) is a neglected infectious disease caused by Mycobacterium ulcerans that is responsible for severe necrotizing cutaneous lesions that may be associated with bone involvement. Clinical presentations of BU lesions are classically classified as papules, nodules, plaques and edematous infiltration, ulcer or osteomyelitis. Within these different clinical forms, lesions can be further classified as severe forms based on focality (multiple lesions), lesions’ size (>15cm diameter) or WHO Category (WHO Category 3 lesions). There are studies reporting an association between delay in seeking medical care and the development of ulcerative forms of BU or osteomyelitis, but the effect of time-delay on the emergence of lesions classified as severe has not been addressed. To address both issues, and in a cohort of laboratory-confirmed BU cases, 476 patients from a medical center in Allada, Benin, were studied. In this laboratory-confirmed cohort, we validated previous observations, demonstrating that time-delay is statistically related to the clinical form of BU. Indeed, for non-ulcerated forms (nodule, edema, and plaque) the median time-delay was 32.5 days (IQR 30.0–67.5), while for ulcerated forms it was 60 days (IQR 20.0–120.0) (p = 0.009), and for bone lesions, 365 days (IQR 228.0–548.0). On the other hand, we show here that time-delay is not associated with the more severe phenotypes of BU, such as multi-focal lesions (median 90 days; IQR 56–217.5; p = 0.09), larger lesions (diameter >15cm) (median 60 days; IQR 30–120; p = 0.92) or category 3 WHO classification (median 60 days; IQR 30–150; p = 0.20), when compared with unifocal (median 60 days; IQR 30–90), small lesions (diameter ≤15cm) (median 60 days; IQR 30–90), or WHO category 1+2 lesions (median 60 days; IQR 30–90), respectively. Our results demonstrate that after an initial period of progression towards ulceration or bone involvement, BU lesions become stable regarding size and
Pelvic floor dysfunction and sensory impairment: Current evidence.
Mahoney, Charlotte; Smith, Anthony; Marshall, Andy; Reid, Fiona
2017-03-01
To explore the role of sensory nerve impairment in women with pelvic organ prolapse, painful bladder syndrome, urinary and fecal incontinence, and sexual dysfunction. Medline and Embase were searched for articles in which sensory testing, either quantitative sensory testing or current perception thresholds, had been used to evaluate women with pelvic organ prolapse, stress and urge urinary incontinence, fecal incontinence and female sexual dysfunction. All search terms were expanded within each database prior to searching. Research to date has included small numbers of participants, used poorly matched controls, lacked a systemic sensory examination and applied non-standardized sensory testing techniques. However, the evidence suggests women with pelvic organ prolapse demonstrate sensory dysfunction. The role of sensory impairment in stress urinary incontinence is inconclusive. In women with urge urinary incontinence there is some evidence to suggest it may be urethrally mediated. Women with painful bladder syndrome may have more sensitive nerve endings which are unable to ignore repeated stimuli. Sensory impairment is common in women with sexual dysfunction, typically involving larger nerve fibres. There were no studies evaluating sensory function in women with fecal incontinence. Current evidence suggests women with pelvic floor dysfunction demonstrate sensory impairment though the causes remain unclear. Further studies are needed to investigate the different conditions of pelvic floor dysfunction using standardized sensory testing techniques, as well as evaluate the timing and mechanism by which any sensory impairment develops. Neurourol. Urodynam. 36:550-556, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Accessibility and sensory experiences
DEFF Research Database (Denmark)
Ryhl, Camilla
2010-01-01
and accessibility. Sensory accessibility accommodates aspects of a sensory disability and describes architectural design requirements needed to ensure access to architectural experiences. In the context of architecture accessibility has become a design concept of its own. It is generally described as ensuring...... physical access to the built environment by accommodating physical disabilities. While the existing concept of accessibility ensures the physical access of everyone to a given space, sensory accessibility ensures the choice of everyone to stay and be able to participate and experience....
Seefeldt, James (Inventor); Feng, Xiaoxin (Inventor); Roper, Weston (Inventor)
2013-01-01
A process, voltage, and temperature (PVT) compensation circuit and a method of continuously generating a delay measure are provided. The compensation circuit includes two delay lines, each delay line providing a delay output. The two delay lines may each include a number of delay elements, which in turn may include one or more current-starved inverters. The number of delay lines may differ between the two delay lines. The delay outputs are provided to a combining circuit that determines an offset pulse based on the two delay outputs and then averages the voltage of the offset pulse to determine a delay measure. The delay measure may be one or more currents or voltages indicating an amount of PVT compensation to apply to input or output signals of an application circuit, such as a memory-bus driver, dynamic random access memory (DRAM), a synchronous DRAM, a processor or other clocked circuit.
Ji, Huihui; Zhang, He; Li, Chenlong; Senping, Tian; Lu, Junwei; Wei, Yunliang
2018-02-24
The H ∞ control problem for a class of time-delay systems with randomly occurring nonlinearities (RONs) is addressed in this paper. Sensor saturations, missing measurements and channel fadings are governed by random variables obeying the Bernoulli distributions. The measurement output is subject to both data missing and randomly occurring sensor saturations (ROSSs) described by sector-nonlinearities as well as the channel fadings caused typically in wireless communication. The aim of the addressed problem is to design a full-order dynamic output-feedback controller such that the closed-loop system is exponentially mean-square stable and satisfies the prescribed H ∞ performance constraint. Sufficient conditions are presented by resorting to intensive stochastic analysis and matrix inequality techniques, which not only guarantee the existence of the desired controller for all possible time-delays, RONs, missing measurements and ROSSs but also lead to the explicit expressions of such controllers. Finally, a numerical example is given to demonstrate the applicability of the proposed control scheme. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Advanced Time-Delayed Coincidence Studies of $^{31,32}$Mg from the $\\beta$-decays of $^{31,32}$Na
Marechal, F; Plociennik, W A
2002-01-01
It is proposed to study the lifetime of the 2$_{1}^{+}$ 885.4 keV state in $^{32}$Mg by means of Advanced Time-Delayed $\\beta \\gamma \\gamma$(t) method with the precision in the half-life value of about $\\pm$ 1.5 ps. This would be an independent verification of the B(E2; 0$_{1}^{+} \\rightarrow$ 2$_{1}^{+}$) values obtained so far in a few studies using Coulomb excitations at intermediate beam energies. The advantage of time-delayed coincidence measurements is that they are free of corrections used in the Coulex studies, which strongly affect the deduced B(E2) results. In addition, we propose to study the lifetimes or lifetime limits of other states in nuclei populated in the decays of $^{31}$Na and $^{32}$Na, specifically focusing on the intruder negative parity band in $^{31}$Mg. As a side benefit to this investigation we expect high-quality $\\gamma \\gamma$ coincidences to reveal new excited states in both $^{31}$Mg and $^{32}$Mg. Our results from a brief test-measurement yield a lifetime of T$_{1/2}$ = 10.5(...
National Research Council Canada - National Science Library
Meilgaard, Morten; Civille, Gail Vance; Carr, B. Thomas
1991-01-01
..., #2 as a textbook for courses at the academic level, it aims to provide just enough theoretical background to enable the student to understand which sensory methods are best suited to particular...
Liu, Shih-Chii; Delbruck, Tobi
2010-06-01
Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.
Adaptive Fuzzy Output-Feedback Method Applied to Fin Control for Time-Delay Ship Roll Stabilization
Directory of Open Access Journals (Sweden)
Rui Bai
2014-01-01
Full Text Available The ship roll stabilization by fin control system is considered in this paper. Assuming that angular velocity in roll cannot be measured, an adaptive fuzzy output-feedback control is investigated. The fuzzy logic system is used to approximate the uncertain term of the controlled system, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the fuzzy state observer and combining the adaptive backstepping technique with adaptive fuzzy control design, an observer-based adaptive fuzzy output-feedback control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB, and the control strategy is effective to decrease the roll motion. Simulation results are included to illustrate the effectiveness of the proposed approach.
Complete functional characterization of sensory neurons by system identification.
Wu, Michael C-K; David, Stephen V; Gallant, Jack L
2006-01-01
System identification is a growing approach to sensory neurophysiology that facilitates the development of quantitative functional models of sensory processing. This approach provides a clear set of guidelines for combining experimental data with other knowledge about sensory function to obtain a description that optimally predicts the way that neurons process sensory information. This prediction paradigm provides an objective method for evaluating and comparing computational models. In this chapter we review many of the system identification algorithms that have been used in sensory neurophysiology, and we show how they can be viewed as variants of a single statistical inference problem. We then review many of the practical issues that arise when applying these methods to neurophysiological experiments: stimulus selection, behavioral control, model visualization, and validation. Finally we discuss several problems to which system identification has been applied recently, including one important long-term goal of sensory neuroscience: developing models of sensory systems that accurately predict neuronal responses under completely natural conditions.
Persistent sensory dysfunction in pain-free herniotomy
DEFF Research Database (Denmark)
Aasvang, E K; Kehlet, H; Aasvang, E K
2010-01-01
mechanisms. Therefore, we aimed to establish normative data on sensory function in pain-free patients >1 year after a groin herniotomy. METHODS: Sensory thresholds were assessed in 40 pain-free patients by a standardized quantitative sensory testing (QST). Secondary endpoints included comparison of sensory......BACKGROUND: Persistent post-herniotomy pain may be a neuropathic pain state based on the finding of a persistent sensory dysfunction. However, detailed information on the normal distribution of sensory function in pain-free post-herniotomy patients hinders identification of exact pathogenic...... function between the operated and the naïve side, and correlation between sensory function modalities. RESULTS: QST showed that on the operated side, thermal data were normally distributed, but mechanical pressure and pinch thresholds were normalized only after log-transformation, and cold pain...
International Nuclear Information System (INIS)
Sumner, H.M.
1967-07-01
A program entitled FRP Mk 1, for computing the frequency response of a linear system, with transport delays, has been developed previously. The present report considers the minimisation of time and storage requirements. In particular, if the system is described by a set of first order differential and algebraic equations, some variables, specified by the programmer may be eliminated by the computer. The method is incorporated in the KDF 9/EGDON code FRP Mk 2, and includes special non-numeric, compiler subroutines for input of the equations and other data in a simple form orientated towards the analyst. The input scheme used for the equations is compatible with that used for the pole-zero, or transfer function program, ZIP so that the same card-deck may be used for data entry in both codes. The code FRP Mk 2 was designed to be used for the analysis of nuclear reactor power systems, but is equally applicable to most forms of process plant, especially chemical plant. (author)
Sensory properties of menthol and smoking topography
Directory of Open Access Journals (Sweden)
Hoffman Allison C
2011-05-01
Full Text Available Abstract Although there is a great deal known about menthol as a flavoring agent in foods and confections, less is known about the particular sensory properties of menthol cigarette smoke. Similarly, although smoking topography (the unique way an individual smokes a cigarette has been well studied using non-menthol cigarettes, there is relatively less known about how menthol affects smoking behavior. The objective of this review is to assess the sensory properties of menthol tobacco smoke, and smoking topography associated with menthol cigarettes. The cooling, analgesic, taste, and respiratory effects of menthol are well established, and studies have indicated that menthol’s sensory attributes can have an influence on the positive, or rewarding, properties associated smoking, including ratings of satisfaction, taste, perceived smoothness, and perceived irritation. Despite these sensory properties, the data regarding menthol’s effect on smoking topography are inconsistent. Many of the topography studies have limitations due to various methodological issues.
Sensory processing disorders among substance dependents
Directory of Open Access Journals (Sweden)
Batya Engel-Yeger
2014-08-01
Full Text Available Purpose: (1 To compare sensory processing patterns as expressed in daily life between substance dependents and typical controls; (2 profile the prevalence of sensory processing disorders (SPD among substance dependents; and (3 examine gender effect on SPD within and between groups. Methods: Two hundred ninety people aged 19-64 participated in this study. The study group included 145 individuals who lived in the community or took part in an outpatient program because of addiction to drugs/alcohol and had been clean for over three months. The control group included 145 individuals who were not exposed to drugs or alcohol on a regular basis and did not suffer from addictive behavior. All participants filled a demographic questionnaire. Those who met the inclusion criteria completed the Adolescent/Adult Sensory Profile (AASP so that their sensory processing patterns could be assessed. Results: When comparing both groups, the study group showed greater sensory sensitivity and significantly higher prevalence of SPD. Significant group/gender interaction was found in regard to sensation seeking. Discussion: SPD among substance dependents may be expressed in daily life by either hypersensitivity or hyposensitivity. The behavioral outcomes reflected by the AASP support neurophysiological manifestations about SPD of substance dependents. The evaluation process of substance dependents should refer to their sensory processing abilities. In case SPD is diagnosed, Occupational Therapy and specific sensory–based interventions should be considered in order to fit the specific needs of individuals and enhance their performance, meaningful participation, and quality of life.
Kimizuka, M; Munakata, T; Rosinberg, M L
2010-10-01
We consider a network of N noisy bistable elements with global time-delayed couplings. In a two-state description, where elements are represented by Ising spins, the collective dynamics is described by an infinite hierarchy of coupled master equations which was solved at the mean-field level in the thermodynamic limit. When the number of elements is finite, as is the case in actual laser networks, an analytical description was deemed so far intractable and numerical studies seemed to be necessary. In this paper we consider the case of two interacting elements and show that a partial analytical description of the stationary state is possible if the stochastic process is time symmetric. This requires some relationship between the transition rates to be satisfied.
Mulholland, J. D.
1977-01-01
The location of the origin of the Watts datum for the marginal zone of the moon is determined using results of 2770 photoelectric occultation observations obtained over an 18-yr period in combination with 1787 laser time-delay measurements carried out over a five-year period. The lunar ephemeris employed is an experimental one developed from a much shorter span of laser observations. The final solution is obtained by adopting LURE2 parameters and correcting 19 lunar orbital, solar orbital, and coordinate-system parameters. The offsets for the center of the Watts datum are found to be approximately +6.8 km for x1, -2.5 km for x2, and +0.06 km for x3 with respect to the lunar principal axes of inertia.
Eom, Tae Joong; Kim, Sun-Jong; Kim, Tae-Young; Park, Chang-Soo; Lee, Byeong
2004-12-27
We present an optical pulse multiplication and a temporal coding method for OCDMA systems. The true time delay among the pulses was obtained by utilizing the difference in the propagation speeds of the core and the co-propagating cladding modes coupled by long-period fiber gratings. By cascadin gratings we could get an equally spaced 40 GHz pulse train from a 10 GHz train. Various coding and decoding of a pulse train were possible by controlling the separations among the gratings. The dispersion compensating fiber having an inner cladding structure enabled to have the gratings that were not sensitive to the polymer jacket of the fiber and allowed shortening the device length.
Bodison, Stefanie C; Parham, L Diane
This systematic review examined the effectiveness of specific sensory techniques and sensory environmental modifications to improve participation of children with sensory integration (SI) difficulties. Abstracts of 11,436 articles published between January 2007 and May 2015 were examined. Studies were included if designs reflected high levels of evidence, participants demonstrated SI difficulties, and outcome measures addressed function or participation. Eight studies met inclusion criteria. Seven studies evaluated effects of specific sensory techniques for children with autism spectrum disorder (ASD) or attention deficit hyperactivity disorder: Qigong massage, weighted vests, slow swinging, and incorporation of multisensory activities into preschool routines. One study of sensory environmental modifications examined adaptations to a dental clinic for children with ASD. Strong evidence supported Qigong massage, moderate evidence supported sensory modifications to the dental care environment, and limited evidence supported weighted vests. The evidence is insufficient to draw conclusions regarding slow linear swinging and incorporation of multisensory activities into preschool settings. Copyright © 2018 by the American Occupational Therapy Association, Inc.