WorldWideScience

Sample records for included rheological characterization

  1. Rheological Characterization of Green Sand Flow

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hovad, Emil

    2016-01-01

    The main aim of this paper is to characterize experimentally the flow behaviour of the green sand that is used for casting of sand moulds. After the sand casting process is performed, the sand moulds are used for metal castings. The rheological properties of the green sand is important to quantif...

  2. Rheological Characterization of Unusual DWPF Slurry Samples

    International Nuclear Information System (INIS)

    Koopman, D. C.

    2005-01-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  3. Renovation and Strengthening of Wooden Beams With CFRP Bands Including the Rheological Effects

    Directory of Open Access Journals (Sweden)

    Kula Krzysztof

    2016-09-01

    Full Text Available The paper presents a work analysis of wooden beams reinforced with glued composite bands from the top and resin inclusions, taking into account the rheology of materials. The paper presents numerical model of the multimaterial beam work including rheological phenomena described by linear equations of viscoelasticity. For the construction of this model one used MES SIMULIA ABAQUS environment in which were prepared its own procedures containing rheological models. The calculation results were compared with the literature data. One has done an analysis of the advisability of the use of CFRP reinforcements bands in terms of rheological phenomena.

  4. PHYSICOCHEMICAL AND RHEOLOGICAL CHARACTERIZATION OF AVOCADO OILS

    Directory of Open Access Journals (Sweden)

    Tamara de Souza Jorge

    2015-08-01

    Full Text Available Avocado oil is rich in bioactive compounds, which can improve human health by acting as an antioxidant. It may be extracted from different varieties of avocado, such as Margarida and Hass varieties, each of them with particular characteristics. Aiming to evaluate the differences between them, avocado fruits and pulps from these were analyzed according to their physicochemical characteristics. After extracted, the oils had their bioactive characteristics studied and rheological behavior determined through a rotational rheometer. They were then compared to commercial avocado oil. The fruits of Margarida variety had greater size, higher weight (664.51 g, and higher pulp yield (72.19% than Hass variety, which showed higher lipid content (65.29 g/100 g dry basis. The commercial oil showed less primary oxidative degradation, whereas Margarida variety had a lower level of secondary degradation products as well as a higher content of bioactive compounds, such as phytosterols (999.60 mg/kg and tocopherols (36.73 mg/kg. The rheological behaviors of both oils were appropriately described through Newton model, with R2 > 0.999 for all temperatures. By an Arrhenius type equation, it was verified that Hass's rheological parameters are more influenced by temperature than Margarida and commercial oil, presenting activation energy of 33.6 kJ/mol.

  5. Rheological characterization of modified foodstuffs with food grade thickening agents

    Science.gov (United States)

    Reyes-Ocampo, I.; Aguayo-Vallejo, JP; Ascanio, G.; Córdova-Aguilar, MS

    2017-01-01

    This work describes a rheological characterization in terms of shear and extensional properties of whole milk, modified with food grade thickening agents (xanthan and carboxymethyl cellulose) with the purpose of being utilized in dysphagia treatment. Shear viscosity of the thickened fluids (2% wt. of xanthan and CMC) were measured in a stress-controlled rheometer and for extensional viscosity, a custom-built orifice flowmeter was used, with elongation rates from 20 to 3000 s-1. Such elongation-rate values represent the entire swallowing process, including the pharyngeal and esophageal phases. The steady-state shear and extensional flow curves were compared with the flow curve of a pudding consistency BaSO4 suspension (α=05), typically used as a reference fluid for the specialized commercial dysphagia products. The modified fluids presented non-Newtonian behavior in both, shear and extensional flows, and the comparison with the reference fluid show that the thickened milk prepared here, can be safely used for consumption by patients with severe dysphagia.

  6. PHYSICOCHEMICAL AND RHEOLOGICAL CHARACTERIZATION OF COMMERCIAL DAIRY FERMENTED BEVERAGES

    Directory of Open Access Journals (Sweden)

    KAMILLA SOARES MENDONÇA

    2015-12-01

    Full Text Available The Technical Regulation on Identity and Quality of Whey-based Drinks establish few parameters to dairy beverages, which may impair standardized product providing to the consumer. The ingathering of the physicochemical characteristics provides information that allow the standardization of the product and provide safety to the consumer, whereas the rheological characterization in important for the processing. Samples of five commercial brands of strawberry flavored dairy beverages, with ten to fourteen days of manufacture, from three different batches were analyzed in triplicate in order to study the percentage of protein, fat, pH, titratable acidity, total dry extract, fixed mineral residue and lactose. It was performed a colorimetric determination and verification of the presence of starch .The rheological tests were carried out in a rotational rheometer and the data was adjusted by Herschel-Bulkley’s model. The statistical analysis was executed by an analysis of variance and the Tukey’s test with 5% significance. The analysis showed that the percentages of lipids of three brands were below the required by legislation. Furthermore, the presence of starch in the composition was detected for all analyzed beverages. Both for the physicochemical and rheological parameters the brands of dairy beverage examined differed between themselves in several parameters. These results indicated the need to establish well-defined identity and quality standards aiming at product quality control and consumer safety improvement.

  7. Tucupi creamy paste: development, sensory evaluation and rheological characterization

    Directory of Open Access Journals (Sweden)

    Telma dos Santos COSTA

    Full Text Available Abstract Tucupi, a fermented product obtained from cassava (Manihot esculenta Crantz is widely employed in the cuisine of the Northern region of Brazil, however, its industrial application is incipient. This study used tucupi to prepare a creamy paste, which underwent sensory and rheological evaluation. Paste formulations with 5 to 20% concentrated tucupi were obtained. An acceptance test was used to assess the product’s acceptability regarding the attributes of color, aroma, flavor, texture, and overall impression. A purchase intention test of the product was also applied. The product’s rheology was studied at 25, 40, and 60 °C and the activation energy (Ea was estimated. The internal preference mapping indicated that the paste formulation with 5% and 10% tucupi were the most accepted by the judge, but only the 10% tucupi paste was characterized. Proportions greater than 15% tucupi influenced negatively in the flavor and texture of the product. Purchase intention test showed that 99% of the judges demonstrated interest in purchasing the product. The product presented 72.7% moisture, 10.4% lipids, 0.5% proteins, 2.1% ashes, 14.3% carbohydrates, and 7.4 μg/g β-carotene. According to the rheological assays, the paste presented characteristics of a pseudoplastic fluid. The Herschel-Bulkley model proved efficient to predict the flow curves for the product in the temperature range tested, for which Ea was estimated at 7.49 kJ/mol.

  8. The rheology, degradation, processing, and characterization of renewable resource polymers

    Science.gov (United States)

    Conrad, Jason David

    Renewable resource polymers have become an increasingly popular alternative to conventional fossil fuel based polymers over the past couple decades. The push by the government as well as both industrial and consumer markets to go "green" has provided the drive for companies to research and develop new materials that are more environmentally friendly and which are derived from renewable materials. Two polymers that are currently being produced commercially are poly-lactic acid (PLA) and polyhydroxyalkanoate (PHA) copolymers, both of which can be derived from renewable feedstocks and have shown to exhibit similar properties to conventional materials such as polypropylene, polyethylene, polystyrene, and PET. PLA and PHA are being used in many applications including food packaging, disposable cups, grocery bags, and biomedical applications. In this work, we report on the rheological properties of blends of PLA and PHA copolymers. The specific materials used in the study include Natureworks RTM 7000D grade PLA and PHA copolymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Blends ranging from 10 to 50 percent PHA by weight are also examined. Shear and extensional experiments are performed to characterize the flow behavior of the materials in different flow fields. Transient experiments are performed to study the shear rheology over time in order to determine how the viscoelastic properties change under typical processing conditions and understand the thermal degradation behavior of the materials. For the blends, it is determined that increasing the PHA concentration in the blend results in a decrease in viscosity and increase in degradation. Models are fit to the viscosity of the blends using the pure material viscosities in order to be able to predict the behavior at a given blend composition. We also investigate the processability of these materials into films and examine the resultant properties of the cast films. The mechanical and thermal properties of the

  9. Rheological Characterization and Cluster Classification of Iranian Commercial Foods, Drinks and Desserts to Recommend for Esophageal Dysphagia Diets.

    Science.gov (United States)

    Zargaraan, Azizollaah; Omaraee, Yasaman; Rastmanesh, Reza; Taheri, Negin; Fadavi, Ghasem; Fadaei, Morteza; Mohammadifar, Mohammad Amin

    2013-12-01

    In the absence of dysphagia-oriented food products, rheological characterization of available food items is of importance for safe swallowing and adequate nutrient intake of dysphagic patients. In this way, introducing alternative items (with similar ease of swallow) is helpful to improve quality of life and nutritional intake of esophageal cancer dysphagia patients. The present study aimed at rheological characterization and cluster classification of potentially suitable foodstuffs marketed in Iran for their possible use in dysphagia diets. In this descriptive study, rheological data were obtained during January and February 2012 in Rheology Lab of National Nutrition and Food Technology Research Institute Tehran, Iran. Steady state and oscillatory shear parameters of 39 commercial samples were obtained using a Physica MCR 301 rheometer (Anton-Paar, GmbH, Graz, Austria). Matlab Fuzzy Logic Toolbox (R2012 a) was utilized for cluster classification of the samples. Using an extended list of rheological parameters and fuzzy logic methods, 39 commercial samples (drinks, main courses and desserts) were divided to 5 clusters and degree of membership to each cluster was stated by a number between 0 and 0.99. Considering apparent viscosity of foodstuffs as a single criterion for classification of dysphagia-oriented food products is shortcoming of current guidelines in dysphagia diets. Authors proposed to some revisions in classification of dysphagia-oriented food products and including more rheological parameters (especially, viscoelastic parameters) in the classification.

  10. Rheological characterization of plasticized corn proteins for fused deposition modeling

    Science.gov (United States)

    Chaunier, Laurent; Dalgalarrondo, Michèle; Della Valle, Guy; Lourdin, Denis; Marion, Didier; Leroy, Eric

    2017-10-01

    Additive Manufacturing (AM) of tailored natural biopolymer-based objects by Fused Deposition Modeling (FDM) opens new perspectives for applications such as biomedical temporary devices, or pharmaceutical tablets. This exploits the biocompatibility, resorbability and edibility properties of biopolymers. When adequately plasticized, zeins, storage proteins from endosperm of maize kernels, displayed thermomechanical properties possibly matching FDM processing requirements at a convenient temperature Tprinting=130°C. Indeed, with 20% glycerol added (Tg=42°C), plasticized zeins present a high modulus, E'>1GPa, at ambient conditions, which drops below 0.6 MPa at the processing temperature T=130°C, before flowing in the molten state. The rheological characterization shows that the processing window is limited by a progressive increase of viscosity linked to proteins aggregation and crosslinking by S-S bonding between cysteine amino acid residues, which can lead to gelation. However, for short residence time typical of FDM, the viscosity of plasticized zeins is comparable to the one of standard polymers, like ABS or PLA in their FDM processing conditions: indeed, in presence of glycerol, the molten zeins show a shear-thinning behavior with |η*|≈3kPa.s at 1s-1, decreasing to |η*|≈0.3kPa.s at 100s-1, at 130°C. Moreover, zeins presenting both hydrophilic and hydrophobic domains, amphiphilic plasticizers can be used supplementary to tune their rheological behavior. With 20% oleic acid added to the previous composition, the viscosity is divided down to a ratio about 1/2 at 100s-1 at 130°C, below the value of a standard polymer as PLA at its printing temperature. These results show the possible enhancement of the printability of zein-based materials in the molten state, by combining polar and amphiphilic plasticizers.

  11. Rheological characterization of a magnetorheological ferrofluid using iron nitride nanoparticles

    Science.gov (United States)

    Armijo, Leisha M.; Ahuré-Powell, Louise A.; Wereley, Norman M.

    2015-05-01

    Magnetorheology of a magnetorheological ferrofluid (MRFF) was investigated to study the role of a ferromagnetic nanoparticle (NP) additive in magnetorheological fluids (MRFs). Iron nitride (Fe16N2) NPs, nominally within the diameter range of ˜16-45 nm (spherical NPs) and ˜30-66 nm (cubic NPs), were coated with carboxy-polyethylene glycol (carboxy-PEG) and dispersed in silicone oil in order to produce a magnetic carrier fluid or ferrofluid for two solids loadings: 2 vol. % and 5 vol. %. Conventional spherical carbonyl iron (CI) particles, varying in diameter from 6 to 10 μm, were suspended in the ferrofluid at 25 vol. % solids loading. Rheological properties of the MRFF synthesized with the carboxy-PEG-based ferromagnetic carrier fluid were compared to the MRF synthesized with silicone oil to determine how ferrofluid can influence dynamic viscosity and yield stress. Rheological measurements of both MRF and MRFF samples were carried out using a Paar Physica 300 rheometer to estimate the field-off viscosity and to measure flow curves (i.e., shear stress vs. shear rate) as a function of magnetic field. A Bingham-plastic model was used to characterize the flow curves, and results show that there is an increase in the dynamic viscosity of the MRFF over the MRF. The ferromagnetic carrier fluid greatly increases yield stress as only 2 vol. % of added carboxy-PEG NPs improves the yield stress performance by almost 5%. A second MRFF sample synthesized with 5 vol. % of added carboxy-PEG NPs contained in the ferrofluid significantly enhanced the yield stress performance by 13% over the MRF at the same CI solids loading (25 vol. %).

  12. Rheological characterization of addition polyimide matrix resins and prepregs

    Science.gov (United States)

    Maximovich, M. G.; Galeos, R. M.

    1984-01-01

    Although graphite-reinforced polyimide matrix composites offer outstanding specific strength and stiffness, together with high thermal oxidative stability, processing problems connected with their rheological behavior remain to be addressed. The present rheological studies on neat polyimide resin systems encountered outgassing during cure. A staging technique has been developed which can successfully handle polyimide samples, and novel methods were applied to generate rheological curves for graphite-reinforced prepregs. The commercial graphite/polyimide systems studied were PRM 15, LARC 160, and V378A.

  13. Mathematical Approach in Rheological Characterizing of Asphalt Emulsion Residues

    Directory of Open Access Journals (Sweden)

    Seong Hwan Cho

    2015-01-01

    Full Text Available Three different emulsion residues, such as SS1HP, HFE90, and SS-1VH (trackless, and a base asphalt binder (PG 64-22 are compared to characterize rheological properties by using DSR test. In order to capture the emulsion properties, different frequencies (from 1 to 100 rad/sec at a 10% constant shear rate and temperatures (from −45°C to 75°C with 15°C increments were applied. Then, a master curve for shear modulus was plotted for each emulsion. The transition of the HFE90 emulsion from viscous to elastic behavior occurs at lower temperatures, compared to the other materials. This emulsion is known for performing in a wider temperature range as shown in the results. The trackless emulsion presents an elastic behavior at intermediate temperatures. This product is known as having very fast setting and high resistance to shear stresses. The trackless emulsion presents the highest viscous and elastic modulus, followed by the PG 64-22 binder, SS1HP, and HFE90 emulsion. Shear strength test results show a behavior between trackless emulsion and SS1HP similar to the frequency sweep test results performed by DSR.

  14. Rheological characterization of chicory root (Cichorium intybus L. inulin solution

    Directory of Open Access Journals (Sweden)

    J. T. C. L. Toneli

    2008-09-01

    Full Text Available Inulin is a polysaccharide frequently used as a sugar or fat replacer in the food industry, which offers the advantage of a functional effect similar to those of dietary fibers. By cooling or freezing an inulin concentrated solution, a more concentrated solution precipitates as a paste-like substance, while the liquid phase forms a diluted solution. In this work, the effect of storage temperature of inulin concentrated solution as well as temperature on the rheological behavior of liquid and precipitated phases obtained from a process of phase separation were evaluated. The precipitated phase of inulin was evaluated under two conditions: pure and formulated with encapsulating agents. It was observed that a reduction in storage temperature resulted in a higher inulin precipitation, which produced higher apparent viscosity values for the precipitated phase. All the samples analyzed had a shear-thinning rheological behavior.

  15. Study and rheological characterization of various bone ash porcelain formulations

    International Nuclear Information System (INIS)

    Carus, L.A.; Bento, L.; Braganca, S.R.

    2012-01-01

    The bone ash porcelain is a widely accepted product on the market because their qualities such as high strength and whiteness, to differ from common table porcelains. Its traditional formulation comes from an English recipe, consisting of 25% of kaolin, 25% of feldspar and 50% of bovine bone ash. In some studies, this proportion is adapted to regional conditions, optimizing the formulation according to the raw materials available. In this study, the rheological behavior of bone porcelain suspensions, in which the flux feldspar is partially substituted by an alternative flux (espudomenio, wollastonite and glass). The results show that the rheological behavior of porcelain is affected by the size, shape, surface area and particle size distribution of particles in suspension

  16. Rheological characterization of nuclear waste using falling-ball rheometry

    International Nuclear Information System (INIS)

    Abbott, J.R.; Unal, C.; Stephens, T.; Pasamehmetoglu, K.O.; Graham, A.L.; Edwards, J.N.

    1994-01-01

    Knowledge of the rheological properties of saturated solutions containing solid particles is very important in nuclear waste management technology. For example, the nuclear waste in the Hanford Site high-level radioactive waste tanks contains strong electrolyte solutions with a high concentration of solids. Previous attempt using rotational viscometers to determine the rheology has shown unusual thixotropic and shear thinning behaviors with a lack of reproducibility. Using falling-ball rheometry, the rheology of the undisturbed simulant may be determined with much better reproducibility. In this study, a well-mixed simulant which has similar chemical composition to the actual waste will be tested. Falling-ball size and density will be varied to get data in a wide range of shear rates. To determine the rheogram, several methods will be tried to match the observed data. Based on these tests, a rheogram can be determined from the model and its best-fit parameters. The simulant shows shear-thinning behavior and a yield stress. This would suggest a H-B model. But when fitting to one of the simulants which showed a very low yield stress, the predictions assuming no yield and assuming yield resulted in no improvement in the fit when assuming yield

  17. A rheological and microscopical characterization of biocompatible ferrofluids

    International Nuclear Information System (INIS)

    Nowak, J.; Wolf, D.; Odenbach, S.

    2014-01-01

    There is an increasing interest in suspensions of magnetic nanoparticles in the biomedical area. Those ferrofluids are e.g. used for magnetic resonance imaging and emerging research focuses on employing the fluids for magnetic drug targeting or magnetic particle heating as a potential treatment for cancer. For these applications the knowledge of the suspensions' thermophysical properties is of major interest to guarantee a safe and effective application. Therefore the flow behavior cannot be neglected as it might significantly influence the execution of the aforementioned applications. In this experimental study two biocompatible ferrofluids were investigated. Rheological measurements were carried out using rotational rheometry. To allow an interpretation of the fluids' behavior the microscopic make-up was investigated using dynamic light scattering and transmission electron microscopy. Measurements of diluted ferrofluids were carried out as a first step to simulate the rheological behavior reflecting the concentration of magnetic nanoparticles found in blood flow for most biomedical applications of such fluids. The detected strong effects show the potential to significantly influence application and handling of the biocompatible ferrofluids in the medical area and should therefore be taken into account for further research as well as for the application of such fluids. - Highlights: • The rheology of biocompatible multicore ferrofluids is influenced by magnetic fields. • The flow curves can be described by the Herschel–Bulkley model. • A connection between the magnetoviscous effect and the particle size is found. • The strong magnetoviscous effect exists even if the fluids are diluted. • The connection between the effect and the dilution is mathematically described

  18. Characterization of fasted human gastric fluid for relevant rheological parameters and gastric lipase activities

    DEFF Research Database (Denmark)

    Pedersen, Pernille Barbre; Vilmann, Peter; Bar-Shalom, Daniel

    2013-01-01

    be considered important during development of gastric simulated media. Further, the activity of the HGL is active even under fasted gastric conditions and might contribute to the digestion and emulsification of lipid-based drug delivery systems in the entire gastrointestinal tract. HGL should therefore......PURPOSE: To characterize human gastric fluid with regard to rheological properties and gastric lipase activity. In addition, traditional physicochemical properties were determined. METHODS: Fasted HGA were collected from 19 healthy volunteers during a gastroscopic examination. Rheological...... be considered in gastric evaluation of lipid-based drug delivery systems....

  19. Rheological characterization of nanocomposites Nylon 6/bentonite clay

    International Nuclear Information System (INIS)

    Silva, T.R.G.; Fernandes, P.C.; Oliveira, S.V.; Araujo, E.M.; Melo, T.J.A.

    2010-01-01

    Polymer nanocomposites are a class of materials that have been widely used in various applications. Among them, has been emphasizing the preparation of polymer films with barrier properties for applications in polymer membranes. In this work, nanocomposites of nylon 6/bentonite clay were obtained from a Homogenizer, in the ratios of 1, 3 and 5 wt% clay. The Brasgel PA bentonite clay was treated organically with Praepagen HY salt, to make it organophilic. By X-ray diffraction (XRD), it was showed that the efficiency of the incorporation of salt in the clay. The rheological curves showed that for the AST clay the torque did not change when compared with the pure nylon 6, while for the clay ACT, the torque increased gradually with the percentage of clay. (author)

  20. COMPARISON BETWEEN DIFFERENT MODELS FOR RHEOLOGICAL CHARACTERIZATION OF ACTIVATED SLUDGE

    Directory of Open Access Journals (Sweden)

    A. H. Khalili Garakani

    2011-09-01

    Full Text Available Activated sludge flow rheology is a very complicated phenomenon. Studies related to activated sludge tend to classify sludge as non-Newtonian fluid. Until now, several theories have been built to describe the complex behavior of activated sludge with varying degrees of success. In this article, seven different models for viscosity of non-Newtonian fluids (i.e., Power law, Bingham plastic, Herschel-Bulkley, Casson, Sisko, Carreau and Cross were considered to evaluate their predictive capability of apparent viscosity of activated sludge. Results showed that although evaluating the constants in the four-parameter models is difficult, they provide the best prediction of viscosity in the whole range of shear rates for activated sludge. For easier prediction of viscosity at different mixed liquor suspended solids (2.74-31g/L, temperature (15-25°C and shear rate (1-1000/s, simple correlations were proposed. Comparing the results with the experimental data revealed that the proposed correlations are in good agreement with real apparent viscosities.

  1. RHEOLOGICAL CHARACTERIZATION OF COFFEEFLAVORED YOGURT WITH DIFFERENT TYPES OF THICKENER

    Directory of Open Access Journals (Sweden)

    Thiago Rocha dos Santos MATHIAS

    2011-12-01

    Full Text Available Yogurt is a functional food that has great demand due to the consumer’s search for a healthier diet. In order to expand the consumer market of this product, many flavors are available, satisfying the most varied preferences. Besides the taste attribute, consistency and viscosity of yogurt are some of the main factors involved in product quality and acceptance. Therefore, this work is a study of the influence of concentration of thickener in coffee-flavored yogurt. The thickener agent used was gelatin. The rheological behavior (flow and viscosity curves of yogurts with and without addition of gelatin was compared with commercial yogurt, which contains another type of thickener (locust bean gum in its formulation. The flow and viscosity curves were obtained from rotational rheometer Thermo Haake Mars, with a range of shear rate from 0.02 to 100 s-1 (rising curve and 100 to 0.02 s-1 (descendent curve at a total time of 20 minutes. Hysteresis was determined as the area between the curves and adjusted to the models of Bingham, Casson, Herschel-Bulkley and Ostwald-de-Waele. Were also carried out tests of thixotropy, by measuring the viscosity as a function of time at a constant rate of 100 s-1 for 10 minutes. These curves were adjusted by the Weltman model. All samples showed pseudoplastic and thixotropic behavior. The Herschel-Bulkley model was the best fit to the three samples tested. The Weltman’s model well described the thixotropy tests, except for the sample of commercial yogurt. The use of gelatin as a thickener showed protective character, reducing the structural break of the gel.

  2. Aqueous suspensions of natural swelling clay minerals. 2. Rheological characterization.

    Science.gov (United States)

    Paineau, Erwan; Michot, Laurent J; Bihannic, Isabelle; Baravian, Christophe

    2011-06-21

    We report in this article a comprehensive investigation of the viscoelastic behavior of different natural colloidal clay minerals in aqueous solution. Rheological experiments were carried out under both dynamic and steady-state conditions, allowing us to derive the elasticity and yield stress. Both parameters can be renormalized for all sizes, ionic strength, and type of clay using in a first approach only the volume of the particles. However, applying such a treatment to various clays of similar shapes and sizes yields differences that can be linked to the repulsion strength and charge location in the swelling clays. The stronger the repulsive interactions, the better the orientation of clay particles in flows. In addition, a master linear relationship between the elasticity and yield stress whose value corresponds to a critical deformation of 0.1 was evidenced. Such a relationship may be general for any colloidal suspension of anisometric particles as revealed by the analysis of various experimental data obtained on either disk-shaped or lath- and rod-shaped particles. The particle size dependence of the sol-gel transition was also investigated in detail. To understand why suspensions of larger particles gel at a higher volume fraction, we propose a very simplified view based on the statistical hydrodynamic trapping of a particle by an another one in its neighborhood upon translation and during a short period of time. We show that the key parameter describing this hydrodynamic trapping varies as the cube of the average diameter and captures most features of the sol-gel transition. Finally, we pointed out that in the high shear limit the suspension viscosity is still closely related to electrostatic interactions and follows the same trends as the viscoelastic properties. © 2011 American Chemical Society

  3. Comparison between different models for rheological characterization of sludge from settling tank

    Directory of Open Access Journals (Sweden)

    Malczewska Beata

    2017-09-01

    Full Text Available The municipal sludge characterized non-Newtonian behaviour, therefore the viscosity of the sewage sludge is not a constant value. The laboratory investigation was made using coaxial cylinder with rotating torque and gravimetric concentration of the investigated sludge ranged from 4.40% to 2.09%. This paper presents the investigation on the effect of concentration of rheological sludge behaviour. The three different rheological models: Bingham (plastic model, Ostwald-de Waele (power-law, Hershel-Bulkley’s were calculated by fitting the experimental data of shear stress as a function of shear rate to these models. In this study, the 3-parameter Herschel- Bulkley’s model fits the experimental data best.

  4. Assessment of extrusion-sonication process on flame retardant polypropylene by rheological characterization

    Directory of Open Access Journals (Sweden)

    Guadalupe Sanchez-Olivares

    2016-05-01

    Full Text Available In this work, the rheological behavior of flame retardant polypropylene composites produced by two methods: 1 twin-screw extrusion and 2 ultrasound application combined with a static mixer die single-screw extrusion is analyzed in detail; results are related to the morphology of the composites. The flame retardant polymer composites are composed of a polypropylene matrix, an intumescent flame retardant system and functionalized clay. Scanning electron microscopy revealed that the combination of the static mixer die and on-line sonication reduced particle size and improved the dispersion and distribution of the intumescent additives in the polypropylene matrix at the micrometric level. From linear viscoelastic properties, the Han, Cole-Cole and van Gurp-Palmen diagrams characterized the improved particle dispersion of the flame retardant additives. Two well-defined rheological behaviors were observed in these diagrams. These behaviors are independent on clay presence and concentration. In fact, the ultrasound device generates a 3D highly interconnected structure similar to a co-continuous pattern observed in polymer blends as evidenced by rheological measurements. This improvement in the dispersion and distribution of the additives is attributed to the combined effect of the static mixer die and on-line sonication that allowed reducing the additive content while achieving the optimum classification UL94-V0.

  5. Synthesis and characterization of magneto-rheological (MR fluids for MR brake application

    Directory of Open Access Journals (Sweden)

    Bhau K. Kumbhar

    2015-09-01

    Full Text Available Magneto rheological (MR fluid technology has been proven for many industrial applications like shock absorbers, actuators, etc. MR fluid is a smart material whose rheological characteristics change rapidly and can be controlled easily in presence of an applied magnetic field. MR brake is a device to transmit torque by the shear stress of MR fluid. However, MR fluids exhibit yield stress of 50–90 kPa. In this research, an effort has been made to synthesize MR fluid sample/s which will typically meet the requirements of MR brake applications. In this study, various electrolytic and carbonyl iron powder based MR fluids have been synthesized by mixing grease as a stabilizer, oleic acid as an antifriction additive and gaur gum powder as a surface coating to reduce agglomeration of the MR fluid. MR fluid samples based on sunflower oil, which is bio-degradable, environmentally friendly and abundantly available have also been synthesized. These MR fluid samples are characterized for determination of magnetic, morphological and rheological properties. This study helps identify most suitable localized MR fluid meant for MR brake application.

  6. Chocolate rheology

    Directory of Open Access Journals (Sweden)

    Estela Vidal Gonçalves

    2010-12-01

    Full Text Available Rheology is the science that studies the deformation and flow of solids and fluids under the influence of mechanical forces. The rheological measures of a product in the stage of manufacture can be useful in quality control. The microstructure of a product can also be correlated with its rheological behavior allowing for the development of new materials. Rheometry permits attainment of rheological equations applied in process engineering, particularly unit operations that involve heat and mass transfer. Consumer demands make it possible to obtain a product that complies with these requirements. Chocolate industries work with products in a liquid phase in conching, tempering, and also during pumping operations. A good design of each type of equipment is essential for optimum processing. In the design of every process, it is necessary to know the physical characteristics of the product. The rheological behavior of chocolate can help to know the characteristics of application of the product and its consumers. Foods are generally in a metastable state. Their texture depends on the structural changes that occur during processing. Molten chocolate is a suspension with properties that are strongly affected by particle characteristics including not only the dispersed particles but also the fat crystals formed during chocolate cooling and solidification. Chocolate rheology is extensively studied, and it is known that chocolate texture and stability is strongly affected by the presence of specific crystals

  7. Caracterização reológica de sorvetes Rheological characterization of ice cream

    Directory of Open Access Journals (Sweden)

    Katherine Helena Oliveira

    2008-09-01

    Full Text Available O conhecimento do comportamento reológico é de grande importância no processamento, manuseio, controle de qualidade e desenvolvimento de produtos alimentícios. A literatura relata que a maioria dos alimentos apresenta comportamento não newtoniano, em que a sua viscosidade pode variar com o tempo e com as condições de escoamento. Neste trabalho foi realizada a caracterização reológica de cinco diferentes tipos de sorvetes. As amostras nos sabores creme, creme light, limão, iogurte e soja banana foram fornecidas pela empresa Amoratto Sorvetes Artesanais, localizada na cidade de Florianópolis/SC. Os dados reológicos foram obtidos através de um reômetro com geometria de cilindros concêntricos. Os ensaios foram realizados em três diferentes temperaturas (-2, 0 e 2 °C e os resultados experimentais foram ajustados pelos modelos de Bingham, Casson, Herschel-Bulkley e Lei da Potência. As diferentes amostras apresentaram comportamento não newtoniano nas três temperaturas. Os parâmetros reológicos (K e n foram obtidos através do ajuste dos modelos e o da Lei da Potência mostrou o melhor ajuste aos resultados, com coeficientes de correlação (r iguais a 0,99 para quatro das cinco amostras, nas três diferentes temperaturas.The knowledge of rheological behavior is an important part of processing, handling, quality control and development of food products. Literature shows that most foodstuffs present non-Newtonian behavior, where their viscosity may vary with time, as well as with flow conditions. The rheological characterization of five different kinds of ice cream was carried out in this work. The samples studied were vanilla flavor, light vanilla flavor, lemon, yoghurt and banana soy, supplied by Amoratto Sorvetes Artesanais, located in Florianópolis/SC, Brazil. The rheological data were obtained using a rotational viscosimeter with concentric cylinder geometry. The trials were carried out at three different temperatures (-2, 0

  8. Processing and rheological characterization of poly(butylene adipate co-terephalate)/montmorillonite nanocomposites

    International Nuclear Information System (INIS)

    Beatrice, Cesar A.G.; Marini, Juliano; Bretas, Rosario E.S.; Branciforti, Marcia C.; Favaro, Marcia M.

    2009-01-01

    The rheological steady state and the linear viscoelastic properties of poly(butylene adipate co-terephthalate) (PBAT) / nanoclay nanocomposites were investigated. For this study, nanocomposites of PBAT and a chemically modified montmorillonite (MMT) were prepared by melt blending in a Haake Rheomix 600p rheometer at 140 and 160 deg C. The concentration of nanoclay was 5wt%. The samples obtained were characterized by x-ray diffraction (WAXS) and rheological measurements in an ARES (Rheometric Scientific) and AR-G2 (TA) rheometers, both with parallel plates geometry. It was confirmed by WAXS that the platelets of the nanoclay were intercalated in all samples, as the discernible sharp reflection of the (001) clay's diffraction was found in the x-ray diffractions patterns. The storage moduli (G') and the loss moduli (G ) of the nanocomposites increased with nanoclay content, at low frequencies. The presence of nanoclay caused these nanocomposites melts to have solid-like behaviors, which can be explained in terms of the development of a percolated network structure. (author)

  9. Synthesis, rheological characterization, and constitutive modeling of polyhydroxy triglycerides derived from milkweed oil.

    Science.gov (United States)

    Harry-O'kuru, R E; Carriere, C J

    2002-05-22

    Asclepias syriaca L., the common milkweed, is a new industrial crop. The seed contains about 20-30 wt % of a highly unsaturated oil having unusual fatty acids. Exploring value-added products from the oil, milkweed triglycerides have been oxidized by in situ performic acid to the polyoxirane and polyhydroxy triglycerides (PHTG). The rheological properties of milkweed PHTG were characterized in various shear flows. Milkweed PHTG displayed nonlinear viscoelastic behavior at applied strains greater than 1%. Milkweed PHTG was found to obey time-strain separability. A nonlinear Wagner constitutive model was used successfully to qualitatively predict the behavior of milkweed PHTG in both start-up and cessation of steady-state shear flow.

  10. Solid state characterization and rheological properties of native and modified Bambara groundnut (Vigna subterranean starches

    Directory of Open Access Journals (Sweden)

    Michael Odeniyi

    2017-09-01

    Full Text Available This study was designed to determine the suitability of native, pregelatinized and carboxymethylated Vigna subterranean (Bambara nut starches for pharmaceutical applications, through their characterization by means of physicochemical, rheological, thermal, morphological and instrumental spectroscopic methods. The native starch was extracted from Bambara nut, after which it was used to prepare both pregelatinized and carboxymethylated forms. Microscopy revealed increased in granular size on modification. Both pregelatinized and carboxymethylated Bambara starches had better flow properties and swellability compared to the native starch. Native Bambara starch had greater tendency to retrogradation, was more sensitive to heat and heat change, these were alleviated by both pregelatinization and carboxymethylation. DSC confirmed that carboxymethylated Bambara starch was the most thermally stable starch. Presence of functional groups and crystallinity were established by FTIR and XRD, respectively. Native and modified Bambara starches can be used as locally and readily available alternative excipients in pharmaceutical formulations.

  11. Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings

    International Nuclear Information System (INIS)

    Koo, Jeong-Hoi; Khan, Fazeel; Jang, Dong-Doo; Jung, Hyung-Jo

    2010-01-01

    The primary goal of the research reported in this paper has been to characterize and model the compression properties of magneto-rheological elastomers (MREs). MRE samples were fabricated by curing a two-component elastomer resin with 30% content of 10 µm sized iron particles by volume. In order to vary the magnetic field during compressive testing, a test fixture was designed and fabricated in which two permanent magnets could be variably positioned on either side of the specimen. Changing the distance between the magnets of the fixture allowed the strength of the magnetic field passing uniformly through the sample to be varied. Using this test setup and a dynamic test frame, a series of compression tests of MRE samples were performed, by varying the magnetic field and the frequency of loading. The results show that the MR effect (per cent increase in the material 'stiffness') increases as the magnetic field increases and the loading frequency increases within the range of the magnetic field and input frequency considered in this study. Furthermore, a phenomenological model was developed to capture the dynamic behaviors of the MREs under compression loadings. (technical note)

  12. Thermodegradation of biodiesel: thermoanalytical and rheological characterization; Degradacao termica de biodiesel: caracterizacao termoanalitica e reologica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Everson L.; Carvalho, Laura H.; Araujo, Gilmar T.; Gadelha, Tatiana S. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    Brazil is a country of extensive agricultural land and great oil consumption and these factors favor biodiesel production in this country. In order for diesel/biodiesel mixtures to be effectively employed in diesel engines, a rigid quality control of these mixtures is needed. Biodiesel and mixtures must have their quality monitored with respect to oxidative resistance, thermal stability, fluidity and volatility, properties which can be modified by the adverse transport and stock conditions prior to consumption. Oxidation is the main degradation mechanism of products under transport and stock conditions, which can lead to significant economical losses. In this work sought the thermal degradation of neat biodiesel, synthesized in our laboratories was monitored. Thermal aging was conducted at 210 deg C for up to 1000 h. Virgin and thermally degraded samples were characterized by rheological measurements (in different shear conditions); FTIR; density and by color changes. We concluded that the soy biodiesel was successfully synthesized and that thermal exposure caused thermal-oxidative degradation of the biodiesel sample, significantly changing its properties as a function of thermal exposure times. (author)

  13. Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings

    International Nuclear Information System (INIS)

    Koo, J H; Khan, F; Jang, D D; Jung, H J

    2009-01-01

    The primary goal of this paper is to characterize and model the compression properties of Magneto-Rheological Elastomers (MREs). MRE samples were fabricated by curing a two component elastomer resin with 30% content of 10 μm sized iron particles by volume. In order to vary the magnetic field during compressive testing, a test fixture was designed and fabricated in which two permanent magnets could be variably positioned on either side of the specimen. By changing the distance between the magnets, the fixture allowed for varying the magnetic field that passes uniformly through the sample. Using this test setup and a dynamic test frame, a series of compression tests of MRE samples was performed by varying the magnetic field and frequency of loading. The results show the MR effect (percent increase in the materials 'stiffness') increases as the magnetic field increases and loading frequency increases within the range of the magnetic field and input frequency considered in this study. Furthermore, a phenomenological model was developed to capture the dynamic behaviours of the MREs under compression loadings.

  14. Guar gum/borax hydrogel: Rheological, low field NMR and release characterizations

    Directory of Open Access Journals (Sweden)

    M. Grassi

    2013-09-01

    Full Text Available Guar gum (GG and Guar gum/borax (GGb hydrogels are studied by means of rheology, Low Field Nuclear Magnetic Resonance (LF NMR and model drug release tests. These three approaches are used to estimate the mesh size (ζ of the polymeric network. A comparison with similar Scleroglucan systems is carried out. In the case of GGb, the rheological and Low Field NMR estimations of ζ lead to comparable results, while the drug release approach seems to underestimate ζ. Such discrepancy is attributed to the viscous effect of some polymeric chains that, although bound to the network to one end, can freely fluctuate among meshes. The viscous drag exerted by these chains slows down drug diffusion through the polymeric network. A proof for this hypothesis is given by the case of Scleroglucan gel, where the viscous contribution is not so significant and a good agreement between the rheological and release test approaches was found.

  15. Isolation and Rheological Characterization of Cellulose Nanofibrils (CNFs from Coir Fibers in Comparison to Wood and Cotton

    Directory of Open Access Journals (Sweden)

    Daran Yue

    2018-03-01

    Full Text Available In this report, the isolation and rheological characterization of cellulose nanofibrils from coir (CNFs-1 were studied and compared with the CNFs from wood (CNFs-2 and cotton (CNFs-3. Cellulose nanofibrils were isolated successfully from coir fibers by chemical treatments followed by ultrasonic fibrillation. During ultrasonic processing, the size and the crystal structure of the CNFs were influenced by the raw materials. In comparison to CNFs-2 and CNFs-3, CNFs-1 from coir fibers presented diverse advantages, such as sufficient fibrillation with a low diameter distribution, in the range of 2–4 nm and high crystallinity. In the dynamic rheology study of CNFs-1, elastic behavior was observed and maintained due to the formation of gel-like steady network structures, which could not be easily deconstructured by frequency shearing and temperature changing. All results indicated that coir fibers could be used as a valuable resource for the preparation of CNFs, which exhibited comparable properties with those isolated from wood, in regard to morphology and rheological properties. This work provides a basis for further advanced applications using the CNFs isolated from coir fibers.

  16. Rheology in Pharmaceutical Sciences

    DEFF Research Database (Denmark)

    Aho, Johanna; Hvidt, Søren; Baldursdottir, Stefania

    2016-01-01

    Rheology is the science of flow and deformation of matter. Particularly gels and non-Newtonian fluids, which exhibit complex flow behavior, are frequently encountered in pharmaceutical engineering and manufacturing, or when dealing with various in vivo fluids. Therefore understanding rheology......, together with the common measurement techniques and their practical applications. Examples of the use of rheological techniques in the pharmaceutical field, as well as other closely related fields such as food and polymer science, are also given....... is important, and the ability to use rheological characterization tools is of great importance for any pharmaceutical scientist involved in the field. Flow can be generated by shear or extensional deformations, or a combination of both. This chapter introduces the basics of both shear and extensional rheology...

  17. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties

    Science.gov (United States)

    Natural waxes (candelilla wax, carnauba wax, and beeswax) were utilized as canola oil structurants to produce oleogels and their physicochemical properties were evaluated from rheological, thermal, and oxidative points of view. The oleogels with candelilla wax exhibited the highest hardness, followe...

  18. Stability and dynamic rheological characterization of spread developed based on pistachio oil.

    Science.gov (United States)

    Mousazadeh, Morad; Mousavi, Seyed Mohammad; Emam-Djomeh, Zahra; HadiNezhad, Mehri; Rahmati, Naghmeh

    2013-05-01

    This study investigated the influence of formulation variables (pistachio oil (PO, 7.5 and 15%, w/w), Cocoa butter (CB, 7.5 and 15%, w/w), xanthan gum (XG, 0 and 0.3%, w/w), and distillated monoglyceride (DMG, 0.5 and 1%, w/w)) on the rheological properties and emulsion stability of spreads. Power law and Herschel-Bulkley models were used for modeling shear-thinning behavior of samples. The power law model was found to describe the flow behavior of spreads better than Herschel-Bulkley model. All the rheological properties were increased by adding XG to the spreads whereas increasing PO content caused to decrease them. The DMG had positive effect on apparent viscosity and elastic behavior but had negative effect on viscose behavior. Apparent viscosity was increased by adding CB while rheological modules were not significantly (p DMG improved stability of emulsion. The best spread formulation with optimum rheological properties was 15% PO, 7.5% CB, 0.3% XG and 1% DMG. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Rheological Principles for Food Analysis

    Science.gov (United States)

    Daubert, Christopher R.; Foegeding, E. Allen

    Food scientists are routinely confronted with the need to measure physical properties related to sensory texture and processing needs. These properties are determined by rheological methods, where rheology is a science devoted to the deformation and flow of all materials. Rheological properties should be considered a subset of the textural properties of foods, because the sensory detection of texture encompasses factors beyond rheological properties. Specifically, rheological methods accurately measure "force," "deformation," and "flow," and food scientists and engineers must determine how best to apply this information. For example, the flow of salad dressing from a bottle, the snapping of a candy bar, or the pumping of cream through a homogenizer are each related to the rheological properties of these materials. In this chapter, we describe fundamental concepts pertinent to the understanding of the subject and discuss typical examples of rheological tests for common foods. A glossary is included as Sect. 30.6 to clarify and summarize rheological definitions throughout the chapter.

  20. Chitosan solutions as injectable systems for dermal filler applications: Rheological characterization and biological evidence.

    Science.gov (United States)

    Halimi, C; Montembault, A; Guerry, A; Delair, T; Viguier, E; Fulchiron, R; David, L

    2015-01-01

    A new generation of dermal filler for wrinkle filler based on chitosan was compared to current hyaluronic acid-based dermal fillers by using a new rheological performance criterion based on viscosity during injection related to Newtonian viscosity. In addition an in vivo evaluation was performed for preclinical evidence of chitosan use as dermal filler. In this way, biocompatibility and dermis reconstruction was evaluated on a pig model.

  1. Morphological and Rheological Characterization of Gold Nanoparticles Synthesized Using Pluronic P103 as Soft Template

    OpenAIRE

    Nancy Tepale; Victor V. A. Fernández-Escamilla; Carlos Álvarez; Eric Flores-Aquino; Valeria J. González-Coronel; Daniel Cruz; Manuel Sánchez-Cantú

    2016-01-01

    The synthesis of gold nanoparticles (Au-NPs), using Pluronic® P103 as soft template to design tuned hybrid gold/P103 nanomaterials, is reported here. The effect of the concentration of P103 and the synthesis temperature on the growth, size, and morphology of Au-NPs were studied. The rheological properties of these hybrid nanomaterials at different measured temperatures were studied as well. By increasing the concentration of P103, the micelles progressively grew due to an increase in the numb...

  2. On the relation between sensory attributes and rheological characterization of cosmetic products

    Science.gov (United States)

    Filip, Petr; Moravkova, Tereza

    2017-05-01

    Sensory attributes occupy irreplaceable position in offering the cosmetic and food products in the market. However, their evaluation is expensive and time-consuming. One of the possibilities how to eliminate at least partially these shortcomings is represented by an application of instrumental analysis. The aim of this contribution is to present rheological modelling using four eye creams and twelve body lotions. The parameters of the proposed models are coupled with selected sensory attributes. It enables a priori prediction of these attributes in a relatively cheap and fast way.

  3. Rheological Characterization of Isabgol Husk, Gum Katira Hydrocolloids, and Their Blends

    Directory of Open Access Journals (Sweden)

    Vipin Kumar Sharma

    2014-01-01

    Full Text Available The rheological parameters of Isabgol husk, gum katira, and their blends were determined in different media such as distilled water, 0.1 N HCl, and phosphate buffer (pH 7.4. The blend properties of Isabgol husk and gum katira were measured for four different percentage compositions in order to understand their compatibility in dispersion form such as 00 : 100, 25 : 50, 50 : 50, 75 : 25, and 100 : 00 in the gel strength of 1 mass%. The miscibility of blends was determined by calculating Isabgol husk-gum katira interaction parameters by Krigbaum and Wall equation. Other rheological properties were analyzed by Bingham, Power, Casson, Casson chocolate, and IPC paste analysis. The study revealed that the power flow index “p” was less than “1” in all concentrations of Isabgol husk, gum katira, and their blends dispersions indicating the shear-thinning (pseudoplastic behavior. All blends followed pseudoplastic behavior at thermal conditions as 298.15, 313.15, and 333.15°K and in dispersion media such as distilled water, 0.1 N HCl, and phosphate buffer (pH 7.4. Moreover, the study indicated the applicability of these blends in the development of drug delivery systems and in industries, for example, ice-cream, paste, nutraceutical, and so forth.

  4. Morphological and Rheological Characterization of Gold Nanoparticles Synthesized Using Pluronic P103 as Soft Template

    Directory of Open Access Journals (Sweden)

    Nancy Tepale

    2016-01-01

    Full Text Available The synthesis of gold nanoparticles (Au-NPs, using Pluronic® P103 as soft template to design tuned hybrid gold/P103 nanomaterials, is reported here. The effect of the concentration of P103 and the synthesis temperature on the growth, size, and morphology of Au-NPs were studied. The rheological properties of these hybrid nanomaterials at different measured temperatures were studied as well. By increasing the concentration of P103, the micelles progressively grew due to an increase in the number of surface cavities. These cavities came together causing large nucleation centers and developing larger Au-NPs. The synthesis temperature was varied to induce significant dehydration of the P103 micelles. Below the cloud point temperature micelles underwent distinct changes related to spherical-to-polymer-like micelles transitions. Two nanostructures were formed: (1 small Au-NPs arranged on the surface of micelles, which acted as soft templates, and (2 large and independent Au-NPs. Above the cloud point temperature, Au-NPs were related to the shape and size of the P103 micellar aggregates. Rheological measurements showed that viscosity was sensitive to the concentration of P103. Also, it was demonstrated that synthesis temperature had a considerable influence on viscosity of the produced nanomaterials.

  5. Design and characterization of a magneto-rheological series elastic actuator for a lower extremity exoskeleton

    Science.gov (United States)

    Chen, Bing; Zhao, Xuan; Ma, Hao; Qin, Ling; Liao, Wei-Hsin

    2017-10-01

    In this paper, an innovative actuator named magneto-rheological series elastic actuator (MRSEA) is designed for the knee joints of a lower extremity exoskeleton CUHK-EXO. MRSEA is designed to reduce the mechanical impedance of the exoskeleton and filter out unwanted collisions. It can also provide large controllable braking torque with low power, and hence improve the system energy efficiency. A description of CUHK-EXO developed to help paraplegic patients regain the mobility to stand up, sit down and walk is firstly introduced, followed by the mechanical design of MRSEA and simulation of the torsion spring pack (TSP) and magneto-rheological (MR) brake of MRSEA. Prototype of MRSEA is fabricated. Preliminary tests are performed to investigate the characteristics of the TSP and MR brake, and walking experiments with a paraplegic patient are performed to evaluate the performance of MRSEA. Experimental results of MRSEA match the modeling and simulation. As compared with the electric motor, the energy efficiency of the innovative MRSEA is improved by 52.8% during a gait cycle.

  6. Entangled Polymer Melts in Extensional Flow - Characterization by Combined Rheology and Small-Angle Neutron Scattering

    DEFF Research Database (Denmark)

    Mortensen, Kell; Kirkensgaard, Jacob JK; Hassager, Ole

    Liquid bridges occur in a variety of situations in nature - yet our understanding of the dynamics and stability is very limited. Examples of liquid bridges are the process used byspiders to form draglines and the process used by cats lapping milk. We have an extendedprogram aiming to provide...... generic knowledge about the process in which macromolecular fluidfilaments are extended and stretched and show how the extensional properties are related to theproperties on individual molecules. We combine structural and rheological studies of a series ofmodel polymers with different composition...... and architectures. The project entails synthesizingmodel polymer systems of precisely known molecular architecture, subjecting these materials tocontrolled extensional flows and to measure the molecular deformation under controlled flowsituation by SANS. Neutron contrast is obtained using specific deuterium labeled...

  7. Rheological and structural characterization of colloidal gels used for nuclear decontamination

    International Nuclear Information System (INIS)

    Castellani, Romain

    2013-01-01

    During the exploitation of a nuclear plant, or all other installation which uses radioactive materials, maintenance tasks or decommissioning operations are mandatory in order to preserve people health and environment. Among existing processes, decontaminating gels have been development by CEA in order to overcome the drawbacks of the traditionally used methods. These colloidal gels were originally formulated in an empirical way; however, the knowledge of their structures is important as it rules all the rheological behaviors of the material. The way these gels flow is an important parameter to the process and our laboratory measurements can be transposed to the industrial world. Moreover, other composition refinements have been developed in order to extend their field of use and efficiency. (author) [fr

  8. Compositional analysis and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus

    DEFF Research Database (Denmark)

    Balaghi, Sima; Mohammadifar, Mohammad Amin; Zargaraan, Azizollaah

    2011-01-01

    The sugar composition and viscoelastic behaviour of Iranian gum tragacanth exuded by six species of Astragalus was investigated at a concentration of 1.3% and varying ionic strength using a controlled shear-rate rheometer. Compositional analysis of the six species of gum tragacanth by high...... of Astragalus, and this variation led to interesting differences in functional properties. Rheological measurements performed on dispersions of the six species of gum tragacanth demonstrated viscoelastic properties. The mechanical spectra derived from strain sweep and frequency sweep measurements indicated...... that the different gum tragacanth dispersions had distinctive viscoelastic behaviours. Investigation of the viscoelastic properties of the different gum dispersions in the presence of NaCl revealed that the addition of NaCl could lead to slight to drastic decreases in the G′, G″ or η∗ values of the various gums...

  9. Chitosan-magnesium aluminum silicate composite dispersions: characterization of rheology, flocculate size and zeta potential.

    Science.gov (United States)

    Khunawattanakul, Wanwisa; Puttipipatkhachorn, Satit; Rades, Thomas; Pongjanyakul, Thaned

    2008-03-03

    Composite dispersions of chitosan (CS), a positively charged polymer, and magnesium aluminum silicate (MAS), a negatively charged clay, were prepared and rheology, flocculate size and zeta potential of the CS-MAS dispersions were investigated. High and low molecular weights of CS (HCS and LCS, respectively) were used in this study. Moreover, the effects of heat treatment at 60 degrees C on the characteristics of the CS-MAS dispersions and the zeta potential of MAS upon addition of CS at different pHs were examined. Incorporation of MAS into CS dispersions caused an increase in viscosity and a shift of CS flow type from Newtonian to pseudoplastic flow with thixotropic properties. Heat treatment brought about a significant decrease in viscosity and hysteresis area of the composite dispersions. Microscopic studies showed that flocculation of MAS occurred after mixing with CS. The size and polydispersity index of the HCS-MAS flocculate were greater than those of the LCS-MAS flocculate. However, a narrower size distribution and the smaller size of the HCS-MAS flocculate were found after heating at 60 degrees C. Zeta potentials of the CS-MAS flocculates were positive and slightly increased with increasing MAS content. In the zeta potential studies, the negative charge of the MAS could be neutralized by the addition of CS. Increasing the pH and molecular weight of CS resulted in higher CS concentrations required to neutralize the charge of MAS. These findings suggest that the electrostatic interaction between CS and MAS caused a change in flow behavior and flocculation of the composite dispersions, depending on the molecular weight of CS. Heat treatment affected the rheological properties and the flocculate size of the composite dispersions. Moreover, pH of medium and molecular weight of CS influence the zeta potential of MAS.

  10. The Rheological Behavior of Multiphase Liquids Characterized by an Advanced Dilatometric Method

    Science.gov (United States)

    Helo, C. S.; Hess, K.; Potuzak, M.; Dingwell, D. B.

    2006-12-01

    , glass transition temperatures are: a) stable within the precision of the method; b) shift towards higher temperatures, indicating degassing of volatiles; or c) show complex behavior, indicating a combined effect of degassing and/or changes of the redox state of iron and/or crystallization over time. These techniques obviate the need for lengthy dwells to achieve thermal equilibrium in dilatometric rheology measurements, thereby expanding the stability range of geomaterials suitable for rheological investigation.

  11. Environmentally friendly preparation of pectins from agricultural byproducts and their structural/rheological characterization.

    Science.gov (United States)

    Min, Bockki; Lim, Jongbin; Ko, Sanghoon; Lee, Kwang-Geun; Lee, Sung Ho; Lee, Suyong

    2011-02-01

    Apple pomace which is the main waste of fruit juice industry was utilized to extract pectins in an environmentally friendly way, which was then compared with chemically-extracted pectins. The water-based extraction with combined physical and enzymatic treatments produced pectins with 693.2 mg g(-1) galacturonic acid and 4.6% yield, which were less than those of chemically-extracted pectins. Chemically-extracted pectins exhibited lower degree of esterification (58%) than the pectin samples obtained by physical/enzymatic treatments (69%), which were also confirmed by FT-IR analysis. When subjected to steady-shear rheological conditions, both pectin solutions were shown to have shear-thinning properties. However, decreased viscosity was observed in the pectins extracted by combined physical/enzymatic methods which could be mainly attributed to the presence of more methyl esters, thus limiting polymer chain interactions. Moreover, the pectins which were extracted by combined physical/enzymatic treatments, showed less elastic properties under high shear rate conditions, compared to the chemically-extracted pectins. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Minoxidil-loaded nanostructured lipid carriers (NLC): characterization and rheological behaviour of topical formulations.

    Science.gov (United States)

    Silva, A C; Santos, D; Ferreira, D C; Souto, E B

    2009-03-01

    Lipid nanoparticles are used as biocompatible carriers for several types of drugs intended for pharmaceutical, cosmetic, and biochemical purposes. The wide range of lipids and surfactants available for the production of such particles turns these carriers highly suitable for distinct applications (topical, dermal and transdermal, parenteral, pulmonary, and oral administration). This work describes the development of a special type of lipid particles, namely nanostructured lipid carriers (NLC), for minoxidil as an alternative to conventional topical alcoholic solutions. NLC were composed of stearic acid and oleic acid, being the matrix stabilized with poloxamer 188 in aqueous dispersion. To develop a suitable topical formulation, lipid dispersions were further mixed with freshly prepared Carbopol or perfluorocarbon based hydrogels. Minoxidil-loaded NLC were approximately 250 nm in size before the entrapment within the gel network and remained below 500 nm after mixing with both types of hydrogels. The occurrence of minoxidil crystallization in the aqueous phase of lipid dispersions was discarded under analysis by light microscopy and by scanning electron microscopy. Differential scanning calorimetry was used to assess the recrystallization index (i.e. measure of the percentage of lipid matrix that is crystallized) of the particles, which was shown to be 62% for minoxidil-free dispersions and 68% for minoxidil-loaded NLC dispersions. Rheological analysis of hydrogels containing NLC dispersions showed typical pseudoplastic behaviour which makes them suitable for topical purposes.

  13. Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags

    Directory of Open Access Journals (Sweden)

    M. Pasetto

    2016-01-01

    Full Text Available The environmental sustainability of road materials and technologies plays a key role in pavement engineering. In this sense, the use of Warm Mix Asphalt (WMA, that is, a modified asphalt concrete that can be produced and applied at lower temperature, is considered an effective solution leading to environmental and operational benefits. The environmental sustainability of WMA can be further enhanced with the inclusion of steel slag in partial substitution of natural aggregates. Nevertheless, such innovative material applied at lower temperatures containing warm additives and steel slag should be able to guarantee at least the same performance of traditional hot mix asphalts, thus assuring acceptable mechanical properties and durability. Therefore, the purpose of this study is to investigate the rheological behaviour of bituminous mastics obtained combining a warm-modified binder and a filler (material passing to 0.063 mm coming from electric arc furnace steel slag. To evaluate the influence of both warm additive and steel slag, a plain binder and limestone filler were also used for comparison purposes. Complex modulus and permanent deformation resistance of bitumens and mastics were assessed using a dynamic shear rheometer. Experimental results showed that steel slag warm mastics assure enhanced performance demonstrating promising applicability.

  14. Rheology of Biopolymer Solutions and Gels

    Directory of Open Access Journals (Sweden)

    David R. Picout

    2003-01-01

    Full Text Available Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biopolymers: polysaccharides and proteins. An overview of both their solution properties (dilute to semi-dilute and gel properties is described.

  15. Rheological properties of polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Camila F. de P.; Demarquette, Nicole R.

    2009-01-01

    In this work, composites of polypropylene with a master batch to obtain clay containing nano composites were obtained. The materials were characterized by X ray diffraction, small angle X-ray scattering and by rheological analysis. (author)

  16. Rheological behavior, chemical and physical characterization of soybean and cottonseed methyl esters submitted to thermal oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adriano Sant' ana; Silva, Flavio Luiz Honorato da; Lima, Ezenildo Emanuel de; Carvalho, Maria Wilma N.C. [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Centro de Ciencia e Tecnologia; Dantas, Hemeval Jales; Farias, Paulo de Almeida [Universidade Federal de Campina Grande (CTRN/UFCG), PB (Brazil). Centro de Tecnologia e Recursos Naturais

    2008-07-01

    In this study the effect of antioxidant terc-butylhydroxyanisol (BHA) on the oxidative stability of soybean and cottonseed methyl esters subjected to thermal degradation at 100 deg C was studied. Soybean and cottonseed methyl esters specific mass, dynamic viscosity and rheological behavior were evaluated. According to results, antioxidant degraded samples specific mass and dynamic viscosity did not showed alterations, remaining statistically equal. Soybean and cottonseed methyl esters showed a Newtonian rheological behavior and degraded samples without adding BHA showed rheological behavior alterations. (author)

  17. Characterization of textural, rheological, thermal, microstructural, and water mobility in wheat flour dough and bread affected by trehalose.

    Science.gov (United States)

    Peng, Bo; Li, Youqian; Ding, Shiyong; Yang, Jun

    2017-10-15

    The study aims to elucidate the effects of trehalose on the mechanical, thermal, and rheological properties of wheat flour dough and water distribution in bread. Texture profile analysis, DSC, farinograph, extensograph, and frequency sweep were applied in dough. The results from SEM revealed that the gluten film became less notable with the presence of trehalose. The kinetics of staling process, low-field 1 H NMR, and water-binding capacity were employed to characterize physicochemical properties of bread. Trehalose decreased the staling rate constant k, indicating an inhibitory effect on firming process in bread. Trehalose had the ability to retain water by hindering the interaction among water molecules, gluten and starch, thus relatively increasing the immobility of the part of water represented by T 22 in low-field 1 H NMR tests. Trehalose restricted water mobilization during storage, resulting in a better water-holding capacity. Our findings reveal that trehalose could be an improver in dough and bread-making performance, as well as an antistaling agent in bread. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Design and characterization of a soft magneto-rheological miniature shock absorber for a controllable variable stiffness sole

    Directory of Open Access Journals (Sweden)

    Grivon Daniel

    2015-12-01

    Full Text Available The proposed paper discusses the design and characterization of a soft miniature Magneto-Rheological (MR shock absorber. In particular, the final application considered for the insertion of the designed devices is a controllable variable stiffness sole for patients with foot neuropathy. Such application imposes particularly challenging constraints in terms of miniaturization (cross-sectional area ≤ 1.5 cm2, height ≤ 25 mm and high sustainable loads (normal loads up to 60 N and shear stresses at the foot/device interface up to 80 kPa while ensuring moderate to low level of power consumption. Initial design considerations are done to introduce and justify the chosen novel configuration of soft shock absorber embedding a MR valve as the core control element. Successively, the dimensioning of two different MR valves typologies is discussed. In particular, for each configuration two design scenarios are evaluated and consequently two sets of valves satisfying different specifications are manufactured. The obtained prototypes result in miniature modules (external diam. ≤ 15 mm, overall height ≤ 30 mm with low power consumption (from a minimum of 63 mW to a max. of 110 mW and able to sustain a load up to 65 N. Finally, experimental sessions are performed to test the behaviour of the realized shock absorbers and results are presented.

  19. Characterizations and rheological study of the purified polysaccharide extracted from quince seeds

    DEFF Research Database (Denmark)

    Rezagholi, Fatemeh; Hashemi, Seyed Mohammad Bagher; Gholamhosseinpour, Aliakbar

    2018-01-01

    The functional characteristics of hydrocolloids are mainly dependent on their physicochemical properties. Thus, it is essential to characterize the new sources of hydrocolloids. Quince seed gum (QSG) is a high molecular weight polysaccharide (9.61×106 g/mol) composed of 85.04±2.87% carbohydrate (...

  20. Physicochemical, morphological, and rheological characterization of Xanthosoma robustum Lego-like starch.

    Science.gov (United States)

    Londoño-Restrepo, Sandra M; Rincón-Londoño, Natalia; Contreras-Padilla, Margarita; Acosta-Osorio, Andrés A; Bello-Pérez, Luis A; Lucas-Aguirre, Juan C; Quintero, Víctor D; Pineda-Gómez, Posidia; del Real-López, Alicia; Rodríguez-García, Mario E

    2014-04-01

    This work presents the physicochemical and pasting characterization of isolated mafafa starch and mafafa flour (Xanthosoma robustum). According to SEM images of mafafa starches in the tuber, these starches form Lego-like shaped structures with diameters between 8 and 35 μm conformed by several starch granules of wedge shape that range from 2 to 7 μm. The isolated mafafa starch is characterized by its low contents of protein, fat, and ash. The starch content in isolated starch was found to be 88.58% while the amylose content obtained was 35.43%. X-ray diffraction studies confirm that isolated starch is composed mainly by amylopectin. These results were confirmed by differential scanning calorimetry and thermo gravimetric analysis. This is the first report of the molecular parameters for mafafa starch: molar mass that ranged between 2×10(8) and 4×10(8) g/mol, size (Rg) value between 279 and 295 nm, and molecular density value between 9.2 and 9.7 g/(mol nm(3)). This study indicates that mafafa starch shows long chains of amylopectin this fact contributes to higher viscosity development and higher gel stability. The obtained gel phase is transparent in the UV-vis region. The viscosity, gel stability and optical properties suggest that there is potential for mafafa starch applications in the food industry. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Structural, thermal and rheological characterization of modified Dalbergia sissoo gum--A medicinal gum.

    Science.gov (United States)

    Munir, Hira; Shahid, Muhammad; Anjum, Fozia; Mudgil, Deepak

    2016-03-01

    Dalbergia sissoo gum was purified by ethanol precipitation. The purified gum was modified and hydrolyzed. Gum was modified by performing polyacrylamide grafting and carboxymethylation methods. The hydrolysis was carried out by using mannanase, barium hydroxide and trifluoroacetic acid. The modified and hydrolyzed gums were characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The decrease in viscosity was studied by performing the flow test. The modified and hydrolyzed gums were thermally stable as compared to crude gum. There was increase in crystallinity after modification and hydrolysis, determined through XRD. FTIR analysis exhibits no major transformation of functional group, only there was change in the intensity of transmittance. It is concluded that the modified and hydrolyzed gum can be used for pharmaceutical and food industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The characterizations of rheological, electrokinetical and structural properties of ODTABr/MMT and HDTABr/MMT organoclays

    International Nuclear Information System (INIS)

    Isci, S.; Uslu, Y.O.; Ece, O.I.

    2009-01-01

    In the present paper, we have investigated as a function of surfactant concentration the rheological (yield value, plastic viscosity) and electrokinetic (mobility, zeta potential) properties of montmorillonite (MMT) dispersions. The influence of surfactants (Octadeccyltrimethylammonium bromide, ODTABr and Hexadecyltrimethylammonium bromide, HDTABr) on dispersions of Na-activated bentonite was evaluated by rheological and electrokinetic measurements, and X-ray diffraction (XRD) studies. The interactions between clay minerals and surfactants in water-based Na-activated MMT dispersions (2 wt.%) were examined in detail using rheologic parameters, such as viscosity, yield point, apparent and plastic viscosity, hysteresis area, and electrokinetic parameters of mobility and zeta potentials, and XRD also analyses helped to determine swelling properties of d-spacings. MMT and organoclay dispersions showed Bingham Plastic flow behavior. The zeta potential measurements displayed that the surfactant molecules hold on the clay particle surfaces and the XRD analyses displayed that they get into the basal layers

  3. Thiolated citrus low-methoxyl pectin: Synthesis, characterization and rheological and oxidation-responsive gelling properties.

    Science.gov (United States)

    Chen, Jinfeng; Ye, Fayin; Zhou, Yun; Zhao, Guohua

    2018-02-01

    In the present study, citrus low-methoxyl pectin was modified by conjugating cysteine via amide bonds, and the resultant polymer (CYS-PEC) was characterized. CYS-PEC conjugates with thiol contents varying from 77.8μmol/g to 296μmol/g were synthesized, and the successful conjugation was evidenced by elemental, and FT-IR analyses. The sulfur in CYS-PEC is predominately in the thiol form, with a minor fraction forming disulfide bonds (∼15%), which occur when thiol/disulfide interchange interrupts the intended thiolation. Both native and modified pectin dispersions exhibited strong pseudoplastic properties, and the frequency sweeps revealed them to be dispersions containing microgel particles. Dynamic viscoelastic analysis was used to determine the oxidation-response gelling capacities of polymer dispersions containing H 2 O 2 , especially those that are highly thiolated and have cross-linked gel properties. For oxidation-induced CYS-PEC gels, their gelation time, hardness, viscosity and elastic moduli and swelling-disintegration ratio are dependent on the thiol group content, H 2 O 2 concentration and polymer concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Development of rheological characterization and twin-screw extrusion/spiral winding processing methods for functionally-graded tissue engineering scaffolds and characterization of cell/biomaterial interactions

    Science.gov (United States)

    Ozkan, Seher

    Tissue engineering involves the fabrication of biodegradable scaffolds, on which various types of cells are grown, to provide tissue constructs for tissue repair/regeneration. Native tissues have complex structures, with functions and properties changing spatially and temporally, and require special tailoring of tissue engineering scaffolds to allow mimicking of their complex elegance. The understanding of the rheological behavior of the biodegradable polymer and the thermo-mechanical history that the polymer experiences during processing is critical in fabricating scaffolds with appropriate microstructural distributions. This study has first focused on the rheological material functions of various gel-like fluids including biofluids and hydrogels, which can emulate the viscoelastic behavior of biofluids. Viscoplasticity and wall slip were recognized as key attributes of such systems. Furthermore, a new technology base involving twin-screw extrusion/spiral winding (TSESW) process was developed for the shaping of functionally-graded scaffolds. This novel scaffold fabrication technology was applied to the development of polycaprolactone (PCL) scaffolds, incorporated with tricalcium phosphate nanoparticles and various porogens in graded fashion. The protein encapsulation and controlled release capabilities of the TSESW process was also demonstrated by dispersing bovine serum albumin (BSA) protein into the PCL matrix. Effects of processing conditions and porosity distributions on compressive properties, surface topography, encapsulation efficiency, release profiles and the secondary structure of BSA were investigated. The PCL scaffolds were determined to be biocompatible, with the proliferation rates of human fetal osteoblast cells (hFOB) increasing with increasing porosity and decreasing concentration of TCP. BSA proteins were determined to be denatured to a greater extent with melt extrusion in the 80-100°C range (in comparison to wet extrusion using organic

  5. Rheological and micro-Raman time-series characterization of enzyme sol–gel solution toward morphological control of electrospun fibers

    International Nuclear Information System (INIS)

    Oriero, Dennis A; Weakley, Andrew T; Aston, D Eric

    2012-01-01

    Rheological and micro-Raman time-series characterizations were used to investigate the chemical evolutionary changes of silica sol–gel mixtures for electrospinning fibers to immobilize an enzyme (tyrosinase). Results of dynamic rheological measurements agreed with the expected structural transitions associated with reacting sol–gel systems. The electrospinning sols exhibited shear-thinning behavior typical of a power law model. Ultrafine (200–300 nm diameter) fibers were produced at early and late times within the reaction window of approximately one hour from initial mixing of sol solutions with and without enzyme; diameter distributions of these fibers showed much smaller deviations than expected. The enzyme markedly increased magnitudes of both elastic and viscous moduli but had no significant impact on final fiber diameters, suggesting that the shear-thinning behavior of both sol–gel mixtures is dominant in the fiber elongation process. The time course and scale for the electrospinning batch fabrication show strong correlations between the magnitudes in rheological property changes over time and the chemical functional group evolution obtained from micro-Raman time-series analysis of the reacting sol–gel systems.

  6. Rheological and micro-Raman time-series characterization of enzyme sol–gel solution toward morphological control of electrospun fibers

    Science.gov (United States)

    Oriero, Dennis A; Weakley, Andrew T; Aston, D Eric

    2012-01-01

    Rheological and micro-Raman time-series characterizations were used to investigate the chemical evolutionary changes of silica sol–gel mixtures for electrospinning fibers to immobilize an enzyme (tyrosinase). Results of dynamic rheological measurements agreed with the expected structural transitions associated with reacting sol–gel systems. The electrospinning sols exhibited shear-thinning behavior typical of a power law model. Ultrafine (200–300 nm diameter) fibers were produced at early and late times within the reaction window of approximately one hour from initial mixing of sol solutions with and without enzyme; diameter distributions of these fibers showed much smaller deviations than expected. The enzyme markedly increased magnitudes of both elastic and viscous moduli but had no significant impact on final fiber diameters, suggesting that the shear-thinning behavior of both sol–gel mixtures is dominant in the fiber elongation process. The time course and scale for the electrospinning batch fabrication show strong correlations between the magnitudes in rheological property changes over time and the chemical functional group evolution obtained from micro-Raman time-series analysis of the reacting sol–gel systems. PMID:27877486

  7. Pulmonary nodule characterization, including computer analysis and quantitative features.

    Science.gov (United States)

    Bartholmai, Brian J; Koo, Chi Wan; Johnson, Geoffrey B; White, Darin B; Raghunath, Sushravya M; Rajagopalan, Srinivasan; Moynagh, Michael R; Lindell, Rebecca M; Hartman, Thomas E

    2015-03-01

    Pulmonary nodules are commonly detected in computed tomography (CT) chest screening of a high-risk population. The specific visual or quantitative features on CT or other modalities can be used to characterize the likelihood that a nodule is benign or malignant. Visual features on CT such as size, attenuation, location, morphology, edge characteristics, and other distinctive "signs" can be highly suggestive of a specific diagnosis and, in general, be used to determine the probability that a specific nodule is benign or malignant. Change in size, attenuation, and morphology on serial follow-up CT, or features on other modalities such as nuclear medicine studies or MRI, can also contribute to the characterization of lung nodules. Imaging analytics can objectively and reproducibly quantify nodule features on CT, nuclear medicine, and magnetic resonance imaging. Some quantitative techniques show great promise in helping to differentiate benign from malignant lesions or to stratify the risk of aggressive versus indolent neoplasm. In this article, we (1) summarize the visual characteristics, descriptors, and signs that may be helpful in management of nodules identified on screening CT, (2) discuss current quantitative and multimodality techniques that aid in the differentiation of nodules, and (3) highlight the power, pitfalls, and limitations of these various techniques.

  8. Rheology and extrusion of low-grade paper and sludge

    Science.gov (United States)

    C. Tim Scott; Stefan Zauscher; Daniel J. Klingenberg

    1999-01-01

    This paper discusses efforts to characterize the rheological properties of pulps that include low-grade wastepapers and papermill sludges to determine their potential for extrusion and conversion into useful products. We investigated apparent changes in viscosity associated with the addition of typical inorganic paper fillers (calcium carbonate, kaolin clay, and...

  9. Rheological characterization and stability study of an emulsion made with a dairy by-product enriched with omega-3 fatty acids

    Directory of Open Access Journals (Sweden)

    Angela María Ormaza ZAPATA

    2015-03-01

    Full Text Available This study involved a rheological characterization of a W/O emulsion manufactured on a pilot scale using omega-3 fatty acids as part of the oil phase and butter milk as the emulsifier. Polyunsaturated omega-3 fatty acids are essential to prevent cardiovascular diseases, improve pulmonary function and also form part of the neurological structure. Buttermilk is a by-product of the dairy industry and has a high organic load which possesses surfactant properties and constitutes a good substitute for conventional emulsifiers in the food industry. The microstructural nature of the emulsion was characterized from the viscoelastic parameters and mechanical spectra. The linear viscoelastic range was determined, from which the maximum stress that the emulsion could withstand from the processing conditions without altering its microstructure was established. In addition, the storage stability of the emulsion was studied to instrumentally predict the rheological behaviour before sensory destabilization of the emulsion was observed. At the frequencies used, a significant decrease in dynamic viscoelastic parameters was periodically observed (G 'and G'', showing a structural change during storage. Furthermore, a coalescence phenomenon was observed after 18 months. The formulation with added omega-3 fatty acids and buttermilk provided a basis for obtaining a functional food as well as adding value to an industrial by-product.

  10. Rheology of Active Fluids

    Science.gov (United States)

    Saintillan, David

    2018-01-01

    An active fluid denotes a viscous suspension of particles, cells, or macromolecules able to convert chemical energy into mechanical work by generating stresses on the microscale. By virtue of this internal energy conversion, these systems display unusual macroscopic rheological signatures, including a curious transition to an apparent superfluid-like state where internal activity exactly compensates viscous dissipation. These behaviors are unlike those of classical complex fluids and result from the coupling of particle configurations with both externally applied flows and internally generated fluid disturbances. Focusing on the well-studied example of a suspension of microswimmers, this review summarizes recent experiments, models, and simulations in this area and highlights the critical role played by the rheological response of these active materials in a multitude of phenomena, from the enhanced transport of passive suspended objects to the emergence of spontaneous flows and collective motion.

  11. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    Supramolecular polymers are a broad class of materials that include all polymerscapable of associating via secondary interactions. These materials represent an emerging class of systems with superior versatility compared to classical polymers with applications in food stuff, coatings, cost...... efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening...

  12. Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: Rheological, molecular, microstructural and sensory characterization.

    Science.gov (United States)

    Dertli, Enes; Toker, Omer S; Durak, M Zeki; Yilmaz, Mustafa T; Tatlısu, Nevruz Berna; Sagdic, Osman; Cankurt, Hasan

    2016-01-20

    This study aimed to investigate the role of in situ exopolysaccharide (EPS) production by EPS(+)Streptococcus thermophilus strains on physicochemical, rheological, molecular, microstructural and sensory properties of ice cream in order to develop a fermented and consequently functional ice-cream in which no stabilizers would be required in ice-cream production. For this purpose, the effect of EPS producing strains (control, strain 1, strain 2 and mixture) and fermentation conditions (fermentation temperature; 32, 37 and 42 °C and time; 2, 3 and 4h) on pH, S. thermophilus count, EPS amount, consistency coefficient (K), and apparent viscosity (η50) were investigated and optimized using single and multiple response optimization tools of response surface methodology. Optimization analyses indicated that functional ice-cream should be fermented with strain 1 or strain mixture at 40-42 °C for 4h in order to produce the most viscous ice-cream with maximum EPS content. Optimization analysis results also revealed that strain specific conditions appeared to be more effective factor on in situ EPS production amount, K and η50 parameters than did fermentation temperature and time. The rheological analysis of the ice-cream produced by EPS(+) strains revealed its high viscous and pseudoplastic non-Newtonian fluid behavior, which demonstrates potential of S. thermophilus EPS as thickening and gelling agent in dairy industry. FTIR analysis proved that the EPS in ice-cream corresponded to a typical EPS, as revealed by the presence of carboxyl, hydroxyl and amide groups with additional α-glycosidic linkages. SEM studies demonstrated that it had a web-like compact microstructure with pores in ice-cream, revealing its application possibility in dairy products to improve their rheological properties. Copyright © 2015. Published by Elsevier Ltd.

  13. Ultra-Fine Friction Grinding of Sunflower Kernels – Thereof Tahini and Halva Production and Rheological Characterization

    Directory of Open Access Journals (Sweden)

    Emil RACOLŢA

    2016-11-01

    Full Text Available Tahini is a paste obtained by milling the roasted sunflower kernel. Usually, a time and energy consuming two-steps process is involved, a three-roll refiner and a beating machine. The aim of this work was to identify and test a milling process for roasted sunflower kernels with lower time and energy consumption. Different particle size sunflower tahini and halva samples were produced by Ultra-Fine Friction Grinding machine Masuko Sangyo “Supermasscolloider” MKCA6-2 and compared to standard technology. The rheological properties of tahini and textural parameters of halva were assessed. Rheological analysis revealed that all tahini samples produced by “Supermasscolloider” showed a different viscosity profile, as compared to control, the sample milled with the gap set at 100µm being the most viscous and the one at 200µm being the most fluid. When testing the halva samples texture, the sample obtained from the tahini milled at 200µm was clearly highlighted as having the lowest hardness values, while the other samples showed similar texture profiles. The feasibility of using an Ultra-Fine Friction Grinding machine for obtaining sunflower tahini and thereof halva with improved textural properties, was assessed successfully.

  14. Rheology v.3 theory and applications

    CERN Document Server

    Eirich, Frederick

    1960-01-01

    Rheology: Theory and Applications, Volume 3 is a collection of articles contributed by experts in the field of rheology - the science of deformation and flow. This volume is composed of specialized chapters on the application of normal coordinate analysis to the theory of high polymers; principles of rheometry; and the rheology of cross-linked plastics, poly electrolytes, latexes, inks, pastes, and clay. Also included are a series of technological articles on lubrication, spinning, molding, extrusion, and adhesion and a survey of the general features of industrial rheology. Materials scientist

  15. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  16. Characterization and Correlation of Particle-Level Interactions to the Macroscopic Rheology of Powders, Granular Slurries, and Colloidal Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P.; Daniel, Richard C.; Rector, David R.; Bredt, Paul R.; Buck, Edgar C.; Berg, John C.; Saez, Avelino E.

    2006-09-29

    Hanford TRU tank sludges are complex mixtures of undissolved minerals and salt solids in an aqueous phase of high ionic strength. They show complex rheological behavior resulting from interactions at the macroscopic level, such as interparticle friction between grains in the coarse fraction, as well as from interactions at the nano-scale level, such as the agglomeration of colloidal particles. An understanding of how phenomena such as interparticle friction and aggregate stability under shear will allow better control of Hanford TRU tank sludges being processed for disposal. The project described in this report had two objectives. The first was to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of sludge physical properties by correlating the macroscopic behavior with interactions occurring at the particle/colloidal scale. These objectives were accomplished by: 1) developing continuum models for coarse granular slurries and 2) studying the behavior of colloidal agglomerates under shear and under irradiation.

  17. Rheological and secondary structural characterization of rice flour-zein composites for noodles slit from gluten-free sheeted dough.

    Science.gov (United States)

    Jeong, Sungmin; Kim, Hee Won; Lee, Suyong

    2017-04-15

    Rice flour-zein composites in a hydrated viscoelastic state were utilized to compensate for the role of wheat gluten in gluten-free sheeted dough. The use of zein above its glass transition temperature was able to form a viscoelastic protein network of non-wheat dough with rice flour. The mixing stability and development time of the rice dough were positively increased with increasing levels of zein. The protein secondary structural analysis by FTIR spectroscopy demonstrated that the rice doughs with high levels of zein showed significant increases in β-sheet structures whose intensity was almost doubled by the use of 10% zein. The use of zein at more than 5% (w/w) successfully produced gluten-free dough sheets that could be slit into thin and long noodle strands. In addition, the composites were effective in improving the rheological characteristics of gluten-free noodle strands by increasing their maximum force to extension, compared to wheat-based noodles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Rheological Characterization as an Alternative Method to Indentation for Determining the Setting Time of Restorative and Endodontic Cements

    Directory of Open Access Journals (Sweden)

    William N. Ha

    2017-12-01

    Full Text Available This study explored an alternative approach using rheology to assess setting time. The following cements were tested: ProRoot® MTA (Dentsply, Tulsa, OK, USA, Biodentine® (Septodont, Saint Maur des Fosses, France, Fuji VII®, FujiVII® EP, and Fuji IX® (from GC Corporation, Tokyo, Japan, RealSeal SE™ Sealer (SybronEndo, Amersfoort, The Netherlands, AH 26® and AH Plus (both from Dentsply DeTrey, Konstanz, Germany. Freshly mixed cements were placed into a strain-controlled rheometer (1 rad·s−1 with an applied strain of 0.01%. From measurements of elastic modulus over time, the time taken to reach 90% of the plateau elastic modulus (designated as the setting time was determined for each cement. In increasing order, the setting times were as follows: Fuji VII EP 3.3 min, Fuji VII 3.6 min, Fuji IX 3.7 min, ProRoot MTA 5.1 min, Biodentine 15.9 min, RealSeal 22.2 min, AH Plus 5933 min, and AH 26 5067 min. However, ProRoot MTA did not yield reliable results. The time to reach the 90% plateau elastic modulus correlates well with the setting time of glass ionomer cements and Biodentine. Using this approach gives much longer setting times for endodontic sealers than previously recognized.

  19. Gelatinized and nongelatinized corn starch/ poly(epsilon-caprolactone) blends: characterization by rheological, mechanical and morphological properties

    OpenAIRE

    Rosa,Derval S.; Guedes,Cristina G. F.; Pedroso,Andréa G.

    2004-01-01

    Poly(epsilon-caprolactone)/corn starch blends containing 25, 50 and 75 wt.% starch were prepared by mechanical processing and characterized by the melt flow index (MFI), tensile test and scanning electron microscopy (SEM). For comparison, starch was used in gelatinized and nongelatinized forms and was also characterized by viscography. The addition of starch to poly(epsilon-caprolactone) reduced the MFI values, the tensile strength and the elongation at break, whereas the modulus increased. T...

  20. Rheological and structural characterization of HA/PVA-SbQ composites film-forming solutions and resulting films as affected by UV irradiation time.

    Science.gov (United States)

    Bai, Huiyu; Sun, Yunlong; Xu, Jing; Dong, Weifu; Liu, Xiaoya

    2015-01-22

    Hyaluronan (HA)/poly (vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ) composites film-forming solutions were prepared by a negatively charged HA and an oppositely charged PVA-SbQ. The rheological properties and structural characterization of HA/PVA-SbQ composites in aqueous solution were investigated. Zeta potential measurements and TEM were utilized to explore the formation of HA/PVA-SbQ complex micelles in aqueous solution. UV spectra and DLS experiments confirmed that the micelles are photo-crosslinkable. HA/PVA-SbQ composites films were prepared by a casting method. The microstructure and properties of the film were analyzed by SEM, optical transmittance, DSC, XRD and tensile testing. The crosslinked HA/PVA-SbQ composites films exhibited higher UV light shielding and visible light transparency and better mechanical and water vapor barrier properties as well as thermal stability than the uncrosslinked HA/PVA-SbQ composites films, indicating the formation of three-dimensional network structure. This work provided a good way for increasing the mechanical, thermal, water vapor barrier, and optical properties of HA materials for the packaging material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Rheology v.2 theory and applications

    CERN Document Server

    Eirich, Frederick

    1958-01-01

    Rheology: Theory and Applications, Volume II deals with the specific rheological subjects, such as deformational behavior in relation to the classic subjects and topics of rheology. This volume is divided into 13 chapters. Considerable chapters are devoted to the theory and aspects of viscoelastic and relaxation phenomena, as well as the applied theory concerning substances related to these phenomena, including elastomers, gelatins, and fibers. Other chapters cover the general principles of geological deformations derived from the study of less """"immobile"""" objects. The remaining chapt

  2. Gelatinized and nongelatinized corn starch/ poly(epsilon-caprolactone blends: characterization by rheological, mechanical and morphological properties

    Directory of Open Access Journals (Sweden)

    Derval S. Rosa

    2004-09-01

    Full Text Available Poly(epsilon-caprolactone/corn starch blends containing 25, 50 and 75 wt.% starch were prepared by mechanical processing and characterized by the melt flow index (MFI, tensile test and scanning electron microscopy (SEM. For comparison, starch was used in gelatinized and nongelatinized forms and was also characterized by viscography. The addition of starch to poly(epsilon-caprolactone reduced the MFI values, the tensile strength and the elongation at break, whereas the modulus increased. The reductions in the MFI and tensile properties were most evident when gelatinized starch was used. Viscography and SEM showed that starch was well gelatinized by the gelatinization process. Blends containing nongelatinized starch showed a good dispersion of starch but poor interfacial interactions.

  3. Rheological studies of creams. I. Rheological functions and structure of creams.

    Science.gov (United States)

    Erös, I; Thaleb, A

    1994-05-01

    Large number of washable (o/w type) creams were prepared for rheological investigation. The rheological functions known from the literature were determined in our studies. Rheological constants were determined by measurements and calculations. From these, we selected those ones which were applicable to characterize the energy status of the coherent structure and which gave the most information for practical work, elaboration of composition and evaluation of stability. These functions and parameters are the following: flow curves, viscosity vs shear time and viscosity vs temperature functions, Bingham-type yield value, plastic viscosity, structure breakdown rate constant, activation energy.

  4. Hanford Waste Physical and Rheological Properties: Data and Gaps - 12078

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Wells, B.E.; Huckaby, J.L.; Mahoney, L.A.; Daniel, R.C.; Burns, C.A.; Tingey, J.M.; Cooley, S.K. [Pacific Northwest National Laboratory PO Box 999, Richland WA 99352 (United States)

    2012-07-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant (WTP). These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed. (authors)

  5. Micellar copolymerization of poly(acrylamide-g-propylene oxide): rheological evaluation and solution characterization; Copolimerizacao micelar de poli(acrilamida-g-oxido de propileno): avaliacao reologica e caracterizacao de suas solucoes

    Energy Technology Data Exchange (ETDEWEB)

    Sadicoff, Bianca L.; Brandao, Edimir M.; Lucas, Elizabete F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: elucas@ima.ufrj.br; Amorim, Marcia C.V. [Universidade Estadual, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    2001-06-01

    Graft copolymers of polyacrylamide and poly(propylene oxide) were synthesized by a micellar copolymerization technique. The rheological properties of the copolymers solutions were evaluated and compared with literature data for solutions of the same copolymers, synthesized by solution polymerization. The effect of hydrophobe content, salt addition and surfactant addition on the rheological properties were also investigated. Increasing hydrophobe content resulted in higher solution viscosities in the semi-dilute regime. Upon addition of salts, the hydrophobic groups associated to minimize their exposure to water. In the semi-dilute region, higher contents of surfactant added resulted in lower reduced viscosities of the polymer solutions. The copolymers were qualitatively characterized by infra-red spectrometry. (author)

  6. Electron beam crosslinked gels-Preparation, characterization and their effect on the mechanical, dynamic mechanical and rheological properties of rubbers

    International Nuclear Information System (INIS)

    Mitra, Suman; Chattopadhyay, Santanu; Sabharwal, Sunil; Bhowmick, Anil K.

    2010-01-01

    Electron beam (EB) crosslinked natural rubber (NR) gels were prepared by curing NR latex with EB irradiation over a range of doses from 2.5 to 20 kGy using butyl acrylate as sensitizer. The NR gels were systematically characterized by solvent swelling, dynamic light scattering, mechanical and dynamic mechanical properties. These gels were introduced in virgin NR and styrene butadiene rubber (SBR) matrices at 2, 4, 8 and 16 phr concentration. Addition of the gels improved the mechanical and dynamic mechanical properties of NR and SBR considerably. For example, 16 phr of 20 kGy EB-irradiated gel-filled NR showed a tensile strength of 3.53 MPa compared to 1.85 MPa of virgin NR. Introduction of gels in NR shifted the glass transition temperature to a higher temperature. A similar effect was observed in the case of NR gel-filled SBR systems. Morphology of the gel-filled systems was studied with atomic force microscopy. The NR gels also improved the processability of the virgin rubbers greatly. Both the shear viscosity and the die swell values of EB-irradiated gel-filled NR and SBR were lower than their virgin counterparts as investigated by capillary rheometer.

  7. Electron beam crosslinked gels-Preparation, characterization and their effect on the mechanical, dynamic mechanical and rheological properties of rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Suman; Chattopadhyay, Santanu [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India); Sabharwal, Sunil [Radiation Technology Development Section, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Bhowmick, Anil K., E-mail: anilkb@rtc.iitkgp.ernet.i [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India)

    2010-03-15

    Electron beam (EB) crosslinked natural rubber (NR) gels were prepared by curing NR latex with EB irradiation over a range of doses from 2.5 to 20 kGy using butyl acrylate as sensitizer. The NR gels were systematically characterized by solvent swelling, dynamic light scattering, mechanical and dynamic mechanical properties. These gels were introduced in virgin NR and styrene butadiene rubber (SBR) matrices at 2, 4, 8 and 16 phr concentration. Addition of the gels improved the mechanical and dynamic mechanical properties of NR and SBR considerably. For example, 16 phr of 20 kGy EB-irradiated gel-filled NR showed a tensile strength of 3.53 MPa compared to 1.85 MPa of virgin NR. Introduction of gels in NR shifted the glass transition temperature to a higher temperature. A similar effect was observed in the case of NR gel-filled SBR systems. Morphology of the gel-filled systems was studied with atomic force microscopy. The NR gels also improved the processability of the virgin rubbers greatly. Both the shear viscosity and the die swell values of EB-irradiated gel-filled NR and SBR were lower than their virgin counterparts as investigated by capillary rheometer.

  8. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  9. Introducing Students to Rheological Classification of Foods, Cosmetics, and Pharmaceutical Excipients Using Common Viscous Materials

    Science.gov (United States)

    Faustino, Ce´lia; Bettencourt, Ana F.; Alfaia, Anto´nio; Pinheiro, Lídia

    2015-01-01

    Rheological measurements are very important tools for the characterization of the flow and deformation of a material, as well as for optimization of the rheological parameters. The application and acceptance of pharmaceutical formulations, cosmetics, and foodstuffs depends upon their rheological characteristics, such as texture, consistency, or…

  10. Characterization and Correlation of Particle-Level Interactions to the Macroscopic Rheology of Powders, Granular Slurries, and Colloidal Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    A.P. Poloski; R.C. Daniel; D.R. Rector; P.R. Bredt; E.C. Buck; Berg, J.C.; Saez, A.E.

    2006-09-29

    This project had two primary objectives. The first was to understand the physical properties and behavior of select Hanford tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale. The specific tank wastes considered herein are contained in thirteen Hanford tanks including three double-shell tanks (DSTs) (AW-103, AW-105, and SY-102) and ten single-shell tanks (SSTs) (B-201 through B-204, T-201 through T-204, T-110, and T-111). At the outset of the project, these tanks were designated as potentially containing transuranic (TRU) process wastes that would be treated and disposed of in a manner different from the majority of the tank wastes.

  11. Silk Electrogel Rheology

    Science.gov (United States)

    Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.

    2014-03-01

    We present experimental results on the rheology on electrogels derived from aqueous solutions of reconstituted Bombyx Mori silk fibroin protein. Through electrochemistry, the silk protein solution develops local pH changes resulting in the assembly of protein into a weak gel. We determine the physical properties of the electrogels by performing rheology and observe that they exhibit the characteristics of a crosslinked biopolymer network. Interestingly, we find that these silk gels exhibit linear elasticity over a range of up to two orders of magnitude larger than most crosslinked biopolymer networks. Moreover, the nonlinear rheology exhibits a strain-stiffening behavior that is fundamentally different than the strain-stiffening observed in crosslinked biopolymers. Through rheological techniques we aim to understand this distinctive material that cannot be explained by current polymeric models. This work is supported by a grant from the AFOSR FA9550-07-1-0130.

  12. Rheology of organoclay suspension

    CSIR Research Space (South Africa)

    Hato, MJ

    2011-05-01

    Full Text Available The authors have studied the rheological properties of clay suspensions in silicone oil, where clay surfaces were modified with three different types of surfactants. Dynamic oscillation measurements showed a plateau-like behavior for all...

  13. Rheology of waxy oils

    Energy Technology Data Exchange (ETDEWEB)

    Alicke, Alexandra A.; Marchesini, Flavio H.; Mendes, Paulo R. de Souza [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)], e-mails: fhmo@puc-rio.br, pmendes@puc-rio.br; Ziglio, Claudio [Petrobras Research Center, Rio de Janeiro, RJ (Brazil)], e-mail: ziglio@petrobras.com.br

    2010-07-01

    It is well known that below the crystallization temperature the rheology of waxy oils changes from Newtonian to an extremely complex non-Newtonian behavior, which is shear-rate and temperature-history dependent. Along the last decades a lot of effort has been put into obtaining reliable rheological measurements from different oils so as to understand the yielding of waxy oils as well as the effects of shear and temperature histories on rheological properties, such as viscosity, yield stress, storage and loss moduli. In this paper we examine in detail the related literature, discussing the main reasons for some disagreements concerning the history effects on the flow properties of waxy oils. In addition, we performed temperature ramps and stress-amplitude-sweep tests and compared the results obtained with the main trends observed, highlighting the effects of cooling and shear on the microstructure and consequently on the rheological properties of these oils. (author)

  14. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo

    2014-01-01

    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  15. Rheology of oil sands slurries

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.; Zhou, J. [Alberta Research Council, Edmonton, AB (Canada). Mineral Oil Sands Unit; Wallace, D. [Dean Wallace Consulting Inc., Beaumont, AB (Canada)

    2006-07-01

    This study focused on integrating rheology and colloid science to improve recovery of bitumen in surface mined oil sands. Factors that influence recovery, such as conditions of particle interaction, solids concentration and shear rate, were reviewed. In an effort to understand the rheological behaviour of clay-in-water suspensions, an elaborate procedure was developed to separate an inter-bedded clay layer from a site at Albian Sands Energy Inc. The variables were water chemistry, solids concentration, and shear rate. The research study was conducted at the Alberta Research Council with the support of the CONRAD Extraction Group. A controlled stress rheometer was used to provide the quantitative evaluations of the clay slurry properties. The research results indicate that the viscoelastic properties of the slurry are highly influenced by the shear history of the slurry, solids content, calcium concentration, and sample aging. Shear thinning behaviour was observed in all slurry samples, but the slurry viscosity increased with test time for a given shear rate. In order to classify the slurries, a method was developed to distinguish the gel strength. The slurries were then classified into 3 distinct patterns, including no gel, weak gel and strong gel. The evolution of the experimental protocols were described along with the current stability maps that correlate the domains of the gel strength according to the solids concentration, calcium ion content, and shear rate. It was concluded that the rheological properties of oil sands slurries influence bitumen recovery in commercial surface-mined oil sands operations. tabs., figs.

  16. Objective and quantitative definitions of modified food textures based on sensory and rheological methodology.

    Science.gov (United States)

    Wendin, Karin; Ekman, Susanne; Bülow, Margareta; Ekberg, Olle; Johansson, Daniel; Rothenberg, Elisabet; Stading, Mats

    2010-06-28

    Patients who suffer from chewing and swallowing disorders, i.e. dysphagia, may have difficulties ingesting normal food and liquids. In these patients a texture modified diet may enable that the patient maintain adequate nutrition. However, there is no generally accepted definition of 'texture' that includes measurements describing different food textures. Objectively define and quantify categories of texture-modified food by conducting rheological measurements and sensory analyses. A further objective was to facilitate the communication and recommendations of appropriate food textures for patients with dysphagia. About 15 food samples varying in texture qualities were characterized by descriptive sensory and rheological measurements. Soups were perceived as homogenous; thickened soups were perceived as being easier to swallow, more melting and creamy compared with soups without thickener. Viscosity differed between the two types of soups. Texture descriptors for pâtés were characterized by high chewing resistance, firmness, and having larger particles compared with timbales and jellied products. Jellied products were perceived as wobbly, creamy, and easier to swallow. Concerning the rheological measurements, all solid products were more elastic than viscous (G'>G''), belonging to different G' intervals: jellied products (low G') and timbales together with pâtés (higher G'). By combining sensory and rheological measurements, a system of objective, quantitative, and well-defined food textures was developed that characterizes the different texture categories.

  17. Review Of Rheology Models For Hanford Waste Blending

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Stone, M.

    2013-09-26

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to

  18. Review Of Rheology Models For Hanford Waste Blending

    International Nuclear Information System (INIS)

    Koopman, D. C.; Stone, M.

    2013-01-01

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations

  19. Rheological study of chitosan in solution

    International Nuclear Information System (INIS)

    Silva, Italo Guimaraes Medeiros da; Alves, Keila dos Santos; Balaban, Rosangela de Carvalho

    2009-01-01

    Chitosan is an abundant biopolymer with remarkable physicochemical and biological properties, usually employed in a wide range of applications. It acts as a cationic polyelectrolyte in aqueous acid solutions, leading to unique characteristics. In this work, chitosan was characterized by 1 H NMR and its rheological behavior were studied as function of chitosan sample, shear rate, polymer concentration, ionic strength, time and temperature. In order to calculate rheological parameters and to understand the macromolecular dynamic in solution, the Otswald-de Waele model was fitted. (author)

  20. Characterization of sucrose-negative Pasteurella multocida variants, including isolates from large-cat bite wounds

    DEFF Research Database (Denmark)

    Christensen, Henrik Grimmig; Bisgaard, Magne; Angen, Øystein

    2005-01-01

    To validate the identification of Pasteurella multocida-like bacteria negative for acid formation from sucrose, including isolates from bite wounds caused by large cats, 17 strains were phenotypically and genotypically characterized. Phylogenetic analysis of partially sequenced rpoB and infB genes...... showed the monophyly of the strains characterized and the reference strains of P. multocida. The sucrose-negative strains formed two groups, one related to reference strains of P. multocida and the other related to a separate species-like group (taxon 45 of Bisgaard). DNA-DNA hybridization further...... and the reference strains of P. multocida. Two strains isolated from leopard bite wounds were related to the type strain of P. dagmatis; however, they represented a new taxon (taxon 46 of Bisgaard), in accordance with their distinct phenotypic and genotypic identifications. The present study documents that sucrose-negative...

  1. Physical, rheological, functional and film properties of a novel emulsifier: Frost grape polysaccharide (FGP) from Vitis riparia Michx

    Science.gov (United States)

    A novel emulsifier, Frost grape polysaccharide (FGP), isolated from natural exudate of the species Vitis riparia Michx, was physically and rheologically characterized. The determination of the physical, structural, thermodynamic, emulsification, film, and rheological properties of FGP provide essent...

  2. Method of rheological characterization of polymer materials by identification of the prony viscoelastic model according to data of static and dynamic accelerated tests

    Science.gov (United States)

    Shil'ko, S. V.; Gavrilenko, S. L.; Panin, S. V.; Alexenko, V. O.

    2017-12-01

    A method for determining rheological parameters of the Prony model describing the process of viscoelastic deformation of a material was developed based on the results of dynamic mechanical analysis. For the approbation of the method, static (uniaxial tension) and dynamic (three-point bending) mechanical tests of polymer composites were carried out. Based on the analytical dependence of the storage modulus on the parameters of the Prony model, the parameters of the shear function are determined. The results of the static and dynamic analysis are in good agreement. The proposed technique allows us to accelerate the determination of rheological parameters of polymer materials and recommend it to the calculation of the stress-strain state of structural elements and friction joints during their long operation at elevated temperature.

  3. Pseudodynamic Source Characterization for Strike-Slip Faulting Including Stress Heterogeneity and Super-Shear Ruptures

    KAUST Repository

    Mena, B.

    2012-08-08

    Reliable ground‐motion prediction for future earthquakes depends on the ability to simulate realistic earthquake source models. Though dynamic rupture calculations have recently become more popular, they are still computationally demanding. An alternative is to invoke the framework of pseudodynamic (PD) source characterizations that use simple relationships between kinematic and dynamic source parameters to build physically self‐consistent kinematic models. Based on the PD approach of Guatteri et al. (2004), we propose new relationships for PD models for moderate‐to‐large strike‐slip earthquakes that include local supershear rupture speed due to stress heterogeneities. We conduct dynamic rupture simulations using stochastic initial stress distributions to generate a suite of source models in the magnitude Mw 6–8. This set of models shows that local supershear rupture speed prevails for all earthquake sizes, and that the local rise‐time distribution is not controlled by the overall fault geometry, but rather by local stress changes on the faults. Based on these findings, we derive a new set of relations for the proposed PD source characterization that accounts for earthquake size, buried and surface ruptures, and includes local rise‐time variations and supershear rupture speed. By applying the proposed PD source characterization to several well‐recorded past earthquakes, we verify that significant improvements in fitting synthetic ground motion to observed ones is achieved when comparing our new approach with the model of Guatteri et al. (2004). The proposed PD methodology can be implemented into ground‐motion simulation tools for more physically reliable prediction of shaking in future earthquakes.

  4. Melt rheology and its applications in the plastics industry

    CERN Document Server

    Dealy, John M

    2013-01-01

    This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that wil...

  5. Characterization of the Rheological and Swelling Properties of Synthetic Alkali Silicate Gels in Order to Predict Their Behavior in ASR Damaged Concrete

    Science.gov (United States)

    Vayghan, Asghar Gholizadeh

    Alkali-silica reaction (ASR) is a major concrete durability concern that is responsible for the deterioration of concrete infrastructure in the world. The resultant of the reaction between the cement alkali hydroxides and the metastable silicates in the aggregates is a hygroscopic and expansive alkali-silicate gel (referred to as ASR gel in this document). The swelling behavior of ASR gels determines the extent of damage to concrete structures and, as such, mitigation of ASR relies on understanding these gels and finding ways to prevent them either from formation, or from swelling after formation. This dissertation focuses on the synthesis and characterization of ASR gels with wide ranges of compositions similar to what has been reported for the filed ASR gels in the literature. The experimental work consisted of three phases as follow. Phase I: Investigation of rheology, chemistry and physics of ASR gels produced through sol-method. Inspired from the existing literature, two sol-gel methods have been developed for the synthesis of ASR gels. The rheological (primarily gelation time, yield stress, and equilibrium stress), chemical (pore solution pH, pore solution composition, osmotic pressure, solid phase composition, stoichiometry of gelation reactions) and physical (evaporable water, solid content, etc.) properties of synthetic ASR gels have been extensively investigated in this phase. Ca/Si, Na/Si and K/Si, and water content were considered as the main chemical composition variables. In order to investigate the suppressing effects of lithium on the swelling properties of ASR gels, the gels were added with lithium in a part of the experimental program. The results strongly suggested that Ca/Si has a positive effect on the yield stress of the gels and their rate of gelation. Na/Si was found to have a decreasing effect on the yield stress and gelation rate (especially at low Ca/Si levels). K/Si and Li/Si had second-order (i.e., polynomial) effects on the yield

  6. Synthesis and characterization of polyphosphazene electrolytes including cyclic ether side groups

    Science.gov (United States)

    Fiedler, Carsten; Luerssen, Bjoern; Lucht, Brett; Janek, Juergen

    2018-04-01

    This paper presents the synthesis and detailed characterization of two polyphosphazene based polymers, including different cyclic ether side groups. The final polymers were obtained by a well-known method employing a living cationic polymerization and subsequent nucleophilic substitution. The synthesized polymers Poly [(1,3-dioxane-5-oxy) (1,3-dioxolane-4-methoxy)phosphazene] (DOPP) and Poly[bis(2-Tetrahydro-3-furanoxy)phosphazene] (THFPP) were mixed with varied amounts of lithium bis(trifluoromethane)sulfonamide (LiTFSI) and the interactions between the salt and the polymer chains were studied by Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) measurements. Electrochemical characterization was performed by electrochemical impedance spectroscopy (EIS) and direct current polarization in the temperature range of 20-60 °C. These measurements were utilized to calculate the lithium transference number (t+), the lithium conductivity (σ) and its activation energy in order to elucidate the lithium transport behavior. Relatively high lithium transference numbers of 0.6 (DOPP) and 0.7 (THFPP) at 60 °C are found and reveal maximum lithium conductivities of 2.8·10-6 Sṡcm-1 and 9.0·10-7 Sṡcm-1 for DOPP and THFPP at 60 °C, respectively.

  7. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  8. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtr...... rheological measurements. Moreover, the rheological models are not very trustworthy and remain very “black box”. More insight in the physical background needs 30 to be gained. A model-based approach with dedicated experimental data collection is the key to address this.......Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling......, leading to varying results and conclusions. In this paper, a vast amount of papers are critically reviewed with respect to this and important flaws are highlighted with respect to rheometer choice, rheometer settings and measurement protocol. The obtained rheograms from experimental efforts have...

  9. Characterization of Early Age Curing and Shrinkage of Metakaolin-Based Inorganic Binders with Different Rheological Behavior by Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Palumbo, Giovanna; Iadicicco, Agostino; Messina, Francesco; Ferone, Claudio; Campopiano, Stefania; Cioffi, Raffaele; Colangelo, Francesco

    2017-12-22

    This paper reports results related to early age temperature and shrinkage measurements by means fiber Bragg gratings (FBGs), which were embedded in geopolymer matrices. The sensors were properly packaged in order to discriminate between different shrinkage behavior and temperature development. Geopolymer systems based on metakaolin were investigated, which dealt with different commercial aluminosilicate precursors and siliceous filler contents. The proposed measuring system will allow us to control, in a very accurate way, the early age phases of the binding systems made by metakaolin geopolymer. A series of experiments were conducted on different compositions; moreover, rheological issues related to the proposed experimental method were also assessed.

  10. Rheological study of interactions between MHEC and superplasticizers in aqueous solutions for applications in cement industry

    OpenAIRE

    Nicodemi, Fabio

    2011-01-01

    Innovative cement-based materials are characterized today by rather complex formulations. In particular, when cement pastes are considered, their formulation generally includes two different types of polymers: a rheology modifier (RM) (typically a cellulose derivative), which is used to control the viscosity of the system, and a superplasticizer (SP), which is used as an anti-flocculant for the solid phase suspension. Owing to the polar nature of both polymer and solvent (water), chemico-phys...

  11. Rheology of planetary ices

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. [Lawrence Livermore National Lab., CA (United States); Kirby, S.H.; Stern, L.A. [Geological Survey, Menlo Park, CA (United States)

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  12. Rheology of attractive emulsions.

    Science.gov (United States)

    Datta, Sujit S; Gerrard, Dustin D; Rhodes, Travers S; Mason, Thomas G; Weitz, David A

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φ(RCP), can form soft gel-like elastic solids. However, above φ(RCP), attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φ(RCP), also undergo droplet configurational rearrangements.

  13. Ferroelectric crystals for photonic applications including nanoscale fabrication and characterization techniques

    CERN Document Server

    Ferraro, Pietro; De Natale, Paolo

    2015-01-01

    This book details the latest achievements in ferroelectric domain engineering and characterization at micro- and nano-scale dimensions and periods. It combines basic research of magnetic materials with device and production orientation.

  14. Role of interfacial rheological properties in oil field chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos-Szabo, J.; Lakatos, I.; Kosztin, B.

    1996-12-31

    Interfacial rheological properties of different Hungarian crude oil/water systems were determined in wide temperature and shear rate range and in presence of inorganic electrolytes, tensides, alkaline materials and polymers. The detailed laboratory study definitely proved that the interfacial rheological properties are extremely sensitive parameters towards the chemical composition of inmiscible formation liquids. Comparison and interpretation of the interfacial rheological properties may contribute significantly to extension of the weaponry of the reservoir characterization, better understanding of the displacement mechanism, development of the more profitable EOR/IOR methods, intensification of the surface technologies, optimization of the pipeline transportation and improvement of the refinery operations. It was evidenced that the interfacial rheology is an efficient and powerful detection technique, which may enhance the knowledge on formation, structure, properties and behaviour of interfacial layers. 17 refs., 18 figs., 2 tabs.

  15. Rheological properties of defense waste slurries

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design

  16. Ferroelectric crystals for photonic applications including nanoscale fabrication and characterization techniques

    CERN Document Server

    Grilli, Simonetta

    2008-01-01

    This book deals with the latest achievements in the field of ferroelectric domain engineering and characterization at micron- and nano-scale dimensions and periods. The book collects the results obtained in the last years by world scientific leaders in the field, thus providing a valid and unique overview of the state of the art and also a view to future applications of those engineered materials in the field of photonics.

  17. Rheological study of chitosan and its blends: An overview

    Directory of Open Access Journals (Sweden)

    Esam A. El-hefian

    2010-06-01

    Full Text Available Chitosan, a modified natural carbohydrate polymer derived from carapaces of crabs and shrimps, has received a great deal of attention for its applications in diverse fields owing to its biodegradability, biocompatibility, non-toxicity and anti-bacterial property. The wide-ranging applications involve a broad spectrum of characterisation techniques and rheology represents one technique of growing importance in this field. This paper is an attempt to review the latest development in the rheology of chitosan, either on its own or associated with other materials, including the parameters that strongly influence its rheological behaviour such as concentration, pH and temperature.

  18. Rheological Investigation on the Effect of Shear and Time Dependent Behavior of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Japper-Jaafar A.

    2014-07-01

    Full Text Available Rheological measurements are essential in transporting crude oil, especially for waxy crude oil. Several rheological measurements have been conducted to determine various rheological properties of waxy crude oil including the viscosity, yield strength, wax appearance temperature (WAT, wax disappearance temperature (WDT, storage modulus and loss modulus, amongst others, by using controlled stress rheometers. However, a procedure to determine the correct parameters for rheological measurements is still unavailable in the literature. The paper aims to investigate the effect of shear and time dependent behaviours of waxy crude oil during rheological measurements. It is expected that the preliminary work could lead toward a proper rheological measurement guideline for reliable rheological measurement of waxy crude oil.

  19. 5th European Rheology Conference

    CERN Document Server

    1998-01-01

    Global sustainable development of the world economy requires better understanding and utilization of natural recourses. In this endeavor rheology has an indispensable role. The Rheology Conferences are therefore always an important event for science and technology. The Fifth European Rheology Conference, held from September 6 to 11 in the Portoro-z, Slovenia, will be the first AlI-European rheology meeting after the formal constitution of the European Society ofRheology. As such it will be a special historical event. At this meeting the European Society of Rheology will introduce the Weissenberg Medal, to be bestowed every four years to an individual for hislhers contribution to the field of Rheology. The recipient ofthe first award will be professor G. Marrucci ofthe Universita degli Studi di Napoli, Italy. Two mini Symposia will be part of the Conference. The first, on Industrial Rheology, will commemorate the late professor G. Astarita. The second will honor the eightieth birthday of professor N.W. Tschoeg...

  20. Rheological measurements in reduced gravity

    Science.gov (United States)

    Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.

    1999-01-01

    Rheology of fluidized beds and settling suspensions were studied experimentally in a series of reduced gravity parabolic flights aboard NASA's KC-135 aircraft. Silica sands of two different size distributions were fluidized by air. The slurries were made using silica sand and Glycerol solution. The experimental set up incorporated instrumentation to measure the air flow rate, the pressure drop and the apparent viscosity of the fluidized sand and sand suspensions at a wide range of the shear rates. The fluidization chamber and container had transparent walls to allow visualization of the structure changes involved in fluidization and in Couette flow in reduced gravity. Experiments were performed over a broad range of gravitational accelerations including microgravity and double gravity conditions. The results of the flight and ground experiments reveal significant differences in overall void fraction and hence in the apparent viscosity of fluidized sand and sand suspensions under microgravity as compared to one-g conditions.

  1. Recommendations for rheological testing and modelling of DWPF melter feed slurries

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1994-08-01

    The melter feed in the DWPF process is a non-Newtonian slurry. In the melter feed system and the sampling system, this slurry is pumped at a wide range of flow rates through pipes of various diameters. Both laminar and turbulent flows are encountered. Good rheology models of the melter feed slurries are necessary for useful hydraulic models of the melter feed and sampling systems. A concentric cylinder viscometer is presently used to characterize the stress/strain rate behavior of the melter feed slurries, and provide the data for developing rheology models of the fluids. The slurries exhibit yield stresses, and they are therefore modelled as Bingham plastics. The ranges of strain rates covered by the viscometer tests fall far short of the entire laminar flow range, and therefore hydraulic modelling applications of the present rheology models frequently require considerable extrapolation beyond the range of the data base. Since the rheology models are empirical, this cannot be done with confidence in the validity of the results. Axial pressure drop versus flow rate measurements in a straight pipe can easily fill in the rest of the laminar flow range with stress/strain rate data. The two types of viscometer tests would be complementary, with the concentric cylinder viscometer providing accurate data at low strain rates, near the yield point if one exists, and pipe flow tests providing data at high strain rates up to and including the transition to turbulence. With data that covers the laminar flow range, useful rheological models can be developed. In the Bingham plastic model, linear behavior of the shear stress as a function of the strain rate is assumed once the yield stress is exceeded. Both shear thinning and shear thickening behavior have been observed in viscometer tests. Bingham plastic models cannot handle this non-linear behavior, but a slightly more complicated yield/power law model can

  2. A versatile characterization of poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide hydrogels for composition, mechanical strength, and rheology

    Directory of Open Access Journals (Sweden)

    J. Kovacs

    2013-01-01

    Full Text Available Poly(N-isopropylacrylamide-co-N,N'-methylene-bisacrylamide (P(NIPAAm-co-MBA hydrogels were prepared in water using redox initiator. The copolymer composition at high conversion (> 95% was determined indirectly by HPLC (high performance liquid chromatography analysis of the leaching water and directly by solid state 13C CP MAS NMR (cross polarization magic angle spinning nuclear magnetic resonance spectroscopy of the dried gels, and was found to be close to that of the feed. The effect of cross-linker (MBA content in the copolymer was investigated in the concentration range of 1.1–9.1 mol% (R:90–10; R = mol NIPAAm/mol MBA on the rheological behaviour and mechanical strength of the hydrogels. Both storage and loss modulus decreased with decreasing cross-linker content as revealed by dynamic rheometry. Gels R70 and R90 with very low cross-linker content (1.2–1.5 mol% MBA have a very loose network structure, which is significantly different from those with higher cross-linker content manifesting in higher difference in storage modulus. The temperature dependence of the damping factor served the most accurate determination of the volume phase transition temperature, which was not affected by the cross-link density in the investigated range of MBA concentration. Gel R10 with highest cross-linker content (9.1 mol% MBA behaves anomalously due to heterogeneity and the hindered conformation of the side chains of PNIPAAm.

  3. Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes

    DEFF Research Database (Denmark)

    Häggström, Olle; Lieshout, Marie-Colette van; Møller, Jesper

    1999-01-01

    The area-interaction process and the continuum random-cluster model are characterized in terms of certain functional forms of their respective conditional intensities. In certain cases, these two point process models can be derived from a bivariate point process model which in many respects...... is simpler to analyse and simulate. Using this correspondence we devise a two-component Gibbs sampler, which can be used for fast and exact simulation by extending the recent ideas of Propp and Wilson. We further introduce a Swendsen-Wang type algorithm. The relevance of the results within spatial statistics...

  4. Rheological behavior of mammalian cells.

    Science.gov (United States)

    Stamenović, D

    2008-11-01

    Rheological properties of living cells determine how cells interact with their mechanical microenvironment and influence their physiological functions. Numerous experimental studies have show that mechanical contractile stress borne by the cytoskeleton and weak power-law viscoelasticity are governing principles of cell rheology, and that the controlling physics is at the level of integrative cytoskeletal lattice properties. Based on these observations, two concepts have emerged as leading models of cytoskeletal mechanics. One is the tensegrity model, which explains the role of the contractile stress in cytoskeletal mechanics, and the other is the soft glass rheology model, which explains the weak power-law viscoelasticity of cells. While these two models are conceptually disparate, the phenomena that they describe are often closely associated in living cells for reasons that are largely unknown. In this review, we discuss current understanding of cell rheology by emphasizing the underlying biophysical mechanism and critically evaluating the existing rheological models.

  5. Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii.

    Science.gov (United States)

    Kim, Seon-Hee; Bae, Young-An; Seoh, Ju-Young; Yang, Hyun-Jong

    2017-06-01

    Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium . Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii -infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.

  6. Magneto-Rheological Damper - An Experimental Study

    OpenAIRE

    Lozoya-Santos , Jorge De-Jesus; Morales-Menéndez , Rubén; Ramirez-Mendoza , Ricardo; Tudon-Martınez , Juan ,; Sename , Olivier; Dugard , Luc

    2012-01-01

    International audience; A Magneto-Rheological (MR) damper is evaluated under exhaustive experimental scenarios, generating a complete database. The obtained database includes classical tests and new proposals emphasizing the frequency contents. It also includes the impact of the electric current fluctuations. The variety of the performed experiments allows to study the MR damper force dynamics. A brief description of the damper behavior and a categorization of experiments based on driving con...

  7. Pseudodynamic Source Characterization for Strike-Slip Faulting Including Stress Heterogeneity and Super-Shear Ruptures

    KAUST Repository

    Mena, B.; Dalguer, L. A.; Mai, Paul Martin

    2012-01-01

    . (2004), we propose new relationships for PD models for moderate‐to‐large strike‐slip earthquakes that include local supershear rupture speed due to stress heterogeneities. We conduct dynamic rupture simulations using stochastic initial stress

  8. Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials

    Directory of Open Access Journals (Sweden)

    Ivana M. Geremias-Andrade

    2016-08-01

    Full Text Available Emulsion-filled gels are classified as soft solid materials and are complex colloids formed by matrices of polymeric gels into which emulsion droplets are incorporated. Several structural aspects of these gels have been studied in the past few years, including their applications in food, which is the focus of this review. Knowledge of the rheological behavior of emulsion-filled gels is extremely important because it can measure interferences promoted by droplets or particle inclusion on the textural properties of the gelled systems. Dynamic oscillatory tests, more specifically, small amplitude oscillatory shear, creep-recovery tests, and large deformation experiments, are discussed in this review as techniques present in the literature to characterize rheological behavior of emulsion-filled gels. Moreover, the correlation of mechanical properties with sensory aspects of emulsion-filled gels appearing in recent studies is discussed, demonstrating the applicability of these parameters in understanding mastication processes.

  9. Technological, rheological and sensory characterizations of a yogurt containing an exopolysaccharide extract from Lactobacillus fermentum Lf2, a new food additive.

    Science.gov (United States)

    Ale, Elisa C; Perezlindo, Marcos J; Pavón, Yanina; Peralta, Guillermo H; Costa, Silvia; Sabbag, Nora; Bergamini, Carina; Reinheimer, Jorge A; Binetti, Ana G

    2016-12-01

    Lactobacillus fermentum Lf2, an autochthonous strain isolated as a non starter culture in Cremoso cheese, produces high EPS levels (~1g/L) in optimized conditions (SDM broth, pH6.0, 30°C, 72h). Technological (texture profile and rheological analysis) and sensory properties of non-fat yogurts with 300 and 600mg EPS/L were studied at 3 and 25days after manufacture. Yogurts with different EPS concentrations showed higher hardness values than the control group at both periods of time, being the only significant difference that remained stable during time. The consistency index was also higher for the treated samples at both times evaluated, being significantly different for samples with 300mg/L of EPS extract, while the flow behavior index was lower for EPS-added yogurts. The thixotropic index was lower (Psensory analysis, those yogurts with 600mg/L of EPS extract presented the highest values of consistency at 3days of storage. No considerable differences for defects (milk powder, acid, bitter and cooked milk flavors) were perceived between treated and control samples at both times evaluated. Syneresis was also studied and samples with 600mg/L of EPS extract presented the lowest syneresis values at 25days of storage, which considerably decreased with the time of storage. In conclusion, the EPS from L. fermentum Lf2, used as an additive, provided yogurt with creamy consistency and increased hardness, without the presence of unwanted defects and improving the water holding capacity of the product. All the analysis done showed the potential of this extract to be used as a technofunctional natural ingredient, and it should be considered its positive impact on health, according to previous studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Results of a Saxitoxin Proficiency Test Including Characterization of Reference Material and Stability Studies

    Directory of Open Access Journals (Sweden)

    Kirsi Harju

    2015-11-01

    Full Text Available A saxitoxin (STX proficiency test (PT was organized as part of the Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk (EQuATox project. The aim of this PT was to provide an evaluation of existing methods and the European laboratories’ capabilities for the analysis of STX and some of its analogues in real samples. Homogenized mussel material and algal cell materials containing paralytic shellfish poisoning (PSP toxins were produced as reference sample matrices. The reference material was characterized using various analytical methods. Acidified algal extract samples at two concentration levels were prepared from a bulk culture of PSP toxins producing dinoflagellate Alexandrium ostenfeldii. The homogeneity and stability of the prepared PT samples were studied and found to be fit-for-purpose. Thereafter, eight STX PT samples were sent to ten participating laboratories from eight countries. The PT offered the participating laboratories the possibility to assess their performance regarding the qualitative and quantitative detection of PSP toxins. Various techniques such as official Association of Official Analytical Chemists (AOAC methods, immunoassays, and liquid chromatography-mass spectrometry were used for sample analyses.

  11. Rheology essentials of cosmetic and food emulsions

    CERN Document Server

    Brummer, Rüdiger

    2006-01-01

    Cosmetic emulsions exist today in many forms for a wide variety of applications, including face and hand creams for normal, dry or oily skin, body milks and lotions, as well as sun-block products. Keeping track of them and their properties is not always easy despite informative product names or partial names (e.g. hand or face cream) that clearly indicate their use and properties. This practical manual provides a detailed overview that describes the key properties and explains how to measure them using modern techniques. Written by an expert in flows and flow properties, it focuses on the application of rheological (flow) measurements to cosmetic and food emulsions and the correlation of these results with findings from other tests. Beginning with a brief history of rheology and some fundamental principles, the manual describes in detail the use of modern viscometers and rheometers, including concise explanations of the different available instruments. But the focus remains on practical everyday lab procedure...

  12. Rheological properties of crumb rubber modified bitumen containing antioxidant

    International Nuclear Information System (INIS)

    Mohamed, A. A; Omar, Husaini; Hamzah, M.O; Ismail, H.

    2009-01-01

    Rheology has become a useful tool in the characterization of the bitumen performance on the pavement. Visco-elastic properties of crumb rubber modified bitumen with antioxidants (CR30) were determined by the means of rheological measurement. This measurement led to a better knowledge of bitumen behavior that occurs when subjected to different thermal and mechanical conditions, as seen during road construction and services in the field. Dynamic Shear Rheometer (DSR) was used to characterize the rheology of the binders before and after oven aging. The binders were aged for 3 and 9 days. Results of a compatibility test showed that the addition of CR30 modified bitumen is compatible with the base bitumen. The results of unaged samples indicated that the addition of 1% CR30 and 5% CR30 modified binders caused an increase in G value as a result of the rheological changes. Results showed that aging has significant influence on bitumen rheology, by increasing complex modulus and decreasing phase angle. (author)

  13. Study of cement pastes rheological behavior using dynamic shear rheometer

    Directory of Open Access Journals (Sweden)

    J. E. S. L. Teixeira

    Full Text Available Concrete, in its fresh state, has flow characteristics that are crucial to its proper launch and densification. These characteristics are usually measured through empirical testing as the slump test, but this test does not quantify completely the material behavior. Since this material is characterized as a Bingham fluid, it is essential the study of its rheological behavior to verify its properties even in fresh state. The use of classical rheology has been employed by the scientific community to obtain rheological parameters determinants to characterize this material, such as yield stress, plastic viscosity and evolution of shear stress to shear rate. Thus, this present study aims to determine the rheological behavior of different cement pastes produced with cement CP III 40 RS, varying between them the hydration periods (20 and 60 min, the water-cement ratio (0.40, 0.45 and 0.50 and the use or not of additive. Samples were assayed by flow test to determine the rheological parameters showing the effect of the variables mentioned above in these parameters.

  14. Surface wave site characterization at 27 locations near Boston, Massachusetts, including 2 strong-motion stations

    Science.gov (United States)

    Thompson, Eric M.; Carkin, Bradley A.; Baise, Laurie G.; Kayen, Robert E.

    2014-01-01

    The geotechnical properties of the soils in and around Boston, Massachusetts, have been extensively studied. This is partly due to the importance of the Boston Blue Clay and the extent of landfill in the Boston area. Although New England is not a region that is typically associated with seismic hazards, there have been several historical earthquakes that have caused significant ground shaking (for example, see Street and Lacroix, 1979; Ebel, 1996; Ebel, 2006). The possibility of strong ground shaking, along with heightened vulnerability from unreinforced masonry buildings, motivates further investigation of seismic hazards throughout New England. Important studies that are pertinent to seismic hazards in New England include source-parameter studies (Somerville and others, 1987; Boore and others, 2010), wave-propagation studies (Frankel, 1991; Viegas and others, 2010), empirical ground-motion prediction equations (GMPE) for computing ground-motion intensity (Tavakoli and Pezeshk, 2005; Atkinson and Boore, 2006), site-response studies (Hayles and others, 2001; Ebel and Kim, 2006), and liquefaction studies (Brankman and Baise, 2008). The shear-wave velocity (VS) profiles collected for this report are pertinent to the GMPE, site response, and liquefaction aspects of seismic hazards in the greater Boston area. Besides the application of these data for the Boston region, the data may be applicable throughout New England, through correlations with geologic units (similar to Ebel and Kim, 2006) or correlations with topographic slope (Wald and Allen, 2007), because few VS measurements are available in stable tectonic regions.Ebel and Hart (2001) used felt earthquake reports to infer amplification patterns throughout the greater Boston region and noted spatial correspondence with the dominant period and amplification factors obtained from ambient noise (horizontal-to-vertical ratios) by Kummer (1998). Britton (2003) compiled geotechnical borings in the area and produced a

  15. Rheological measurements on cement grouts

    International Nuclear Information System (INIS)

    Dalton, M.J.

    1986-06-01

    This report describes the techniques which have been developed at Winfrith for assessing the rheological properties of cement grouts. A discussion of the theory of rheology and its application to cement is given and the methodology for calibrating a special paddle measuring system for a commercial viscometer is described. The use of the system for determining flow curves, equilibrium viscosity, viscosity as a function of shearing time and structure changes is also discussed. (author)

  16. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition

    International Nuclear Information System (INIS)

    Benchabane, A.

    2006-11-01

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  17. Rheological characterization of LDPE{sub Al} (low density polyethylene and aluminum) e HDPE (high density polyethylene); Caracterizacao das propriedades reologicas da mistura LDPE{sub Al} (polietileno de baixa densidade e aluminio) e HDPE (polietileno de alta densidade)

    Energy Technology Data Exchange (ETDEWEB)

    Santa Marinha, Ana Beatriz Abreu; Pacheco, Elen Beatriz Acordi Vasques; Monteiro, Elisabeth Ermel da Costa [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas

    2008-07-01

    The long life packaging contains paper, polyethylene and aluminum for packaging of food. A few part of total amount produced is recycled and another is discharged in landfills in Brazil. The low density polyethylene and aluminum (LDPE{sub Al}) was obtained from recycling this packaging. The rheological properties of the blends were intermediate to ones of the pure polymers. In a general way, the rheological properties were not modified by the aluminum presence. (author)

  18. FlowCyl: one-parameter characterisation of matrix rheology

    DEFF Research Database (Denmark)

    Cepuritis, Rolands; Ramenskiy, Evgeny; Mørtsell, Ernst

    The FlowCyl is a simple flow viscometer – a modification of the Marsh Cone test apparatus developed to characterize cement pastes and grouts. The FlowCyl gives a one parameter characterisation of rheology called the flow resistance ratio or λQ for use in the Particle-Matrix concrete proportioning...... Model (PMM) as a description of the viscous phase of the concrete, while another parameter related to packing density is used to describe the particle phase. There have been numerous studies which have shown how the matrix λ Qvalues affect the rheological parameters of concretes with a given particle...

  19. Surface rheology and interface stability.

    Energy Technology Data Exchange (ETDEWEB)

    Yaklin, Melissa A.; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Walker, Lynn; Koehler, Timothy P.; Reichert, Matthew D. (Carnegie Mellon University, Pittsburgh, PA); Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-11-01

    We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk

  20. Comparison of rheological evaluation techniques and turbulent flow prediction of a simulated nuclear waste melter slurry

    International Nuclear Information System (INIS)

    Carleson, T.E.; Hart, R.E.; Drown, D.C.; Peterson, M.E.

    1987-03-01

    An experimental study was performed on a simulated nuclear waste slurry containing the type of waste sludge and glass-forming chemicals that will be converted to a stable glass in a high-temperature furnace. The rheological properties of the slurry must be determined in order to design the transport and mixing systems. The rheological parameters for the slurry were determined by a variety of viscometers including a rotational viscometer, a capillary tube viscometer, and a pipe flow apparatus. Experiments revealed the absence of wall slip and sufficient non-Newtonian behavior to require adjustments of the results. The slurry was characterized as a yield pseudoplastic fluid. Different rheological constants were obtained for all three viscometers. Predictions of the shear stress as a function of shear rate showed good agreement between the constants determined by the rotational viscometer and the pipe loop apparatus. Laminar and turbulent flows in the pipe loop correlated closely with a recent theoretical model. 16 refs., 16 figs., 5 tabs

  1. Relation between sensory analysis and rheology of body lotions.

    Science.gov (United States)

    Moravkova, T; Filip, P

    2016-12-01

    Evaluation of sensory attributes of cosmetic products is traditionally based on sensory panels. However, in some cases, a suitable candidate method that can reduce time and costs is the use of instrumental analysis that can detect relatively very small changes of entry ingredients. Such approach has been already applied for emollients, salt content, stabilizers, etc. The aim of this contribution is to apply the relations between sensory analysis and rheology to a series of body lotions differing in the contents of emulsifiers and viscosity regulators. Sensory and rheological analyses are related. Rheological analysis can represent a good alternative to basic orientation in chosen customer's feelings. A rotational rheometer is the only instrumental device required for the measurements. An empirical rheological model was proposed by means of which the selected sensory attributes were evaluated using the numerical values of adjustable model parameters. This approach exhibited a very good agreement with the results obtained by the sensory panel. It was shown that a description of chosen sensory attributes can be responsibly carried out by rheological measurements, that is through the attained numerical values of the parameters appearing in a proposed empirical model characterizing shear viscosity of body lotions. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Rheology for chemists an introduction

    CERN Document Server

    Goodwin, J W

    2008-01-01

    Rheology is primarily concerned with materials: scientific, engineering and everyday products whose mechanical behaviour cannot be described using classical theories. From biological to geological systems, the key to understanding the viscous and elastic behaviour firmly rests in the relationship between the interactions between atoms and molecules and how this controls the structure, and ultimately the physical and mechanical properties. Rheology for Chemists An Introduction takes the reader through the range of rheological ideas without the use of the complex mathematics. The book gives particular emphasis on the temporal behaviour and microstructural aspects of materials, and is detailed in scope of reference. An excellent introduction to the newer scientific areas of soft matter and complex fluid research, the second edition also refers to system dimension and the maturing of the instrumentation market. This book is a valuable resource for practitioners working in the field, and offers a comprehensive int...

  3. Rheology for chemists an introduction

    CERN Document Server

    Goodwin, J W

    2000-01-01

    Rheology is an integral part of life, from decorative paint and movement of volcanic lava to the flow of blood in our veins. This book describes, without the use of complex mathematics, how atoms and molecules interact to control the handling properties of materials ranging from simple ionic crystals through polymers to colloidal dispersions.Beginning with an introduction to essential terminology, Rheology for Chemists goes on to discuss limiting behaviour, temporal behaviour and non-linear behaviour. Throughout, examples of everyday experiments are provided to illustrate the theory, which increases in complexity with each discrete chapter. Ideas are developed in a systematic fashion so that the mechanisms responsible for the elastic, viscous or viscoelastic behaviour of systems are understood. The text thus progresses in a manner that makes it an ideal introduction to rheology for any scientist who needs to use the ideas to modify systems.Comprehensive and unique in approach, this book will provide the neces...

  4. Molecular Rheology of Complex Fluids

    DEFF Research Database (Denmark)

    Huang, Qian; Rasmussen, Henrik Koblitz

    following a stress maximum were reported for two LDPE melts. However the rheological significance of the stress maximum as well as the existence of steady flow conditions following the maximum is still a matter of some debate. This thesis focuses on the experimental study of extensional rheology of linear...... and branched polymer melts. We report the stress–strain measurements in extensional flows using a unique Filament Stretching Rheometer (FSR) in controlled strain rate mode and controlled stress mode. Extensional flow is difficult to measure reliably in Laboratory circumstances. In this thesis we first present...

  5. The effect of sweeteners and milk type on the rheological properties ...

    African Journals Online (AJOL)

    Administrator

    The aim of the study was, to determine effects of sweeteners and milk type on the rheological and sensorial properties of reduced ... Key words: Rheology, artifical sweeteners, low-calorie, power-law model, salep drink. INTRODUCTION ... to several adverse health effects including cardiovascular diseases, diabetes and ...

  6. A feasibility study of in-line rheological characterisation of a ...

    African Journals Online (AJOL)

    The rheological characteristics of sludge affect transportation, treatment and the disposal processes involved in sludge system design and management operations such as dewatering, including flocculation and filtration. The concentration of solid matter in the sludge has an effect on rheological parameters such as yield ...

  7. Rheology of ABS and binary of organo clay nanocomposites

    International Nuclear Information System (INIS)

    Galvan, Danieli; Mazzucco, Mateus; Carneiro, Fabio; Bartoli, Julio R.; Morales, Ana Rita; D'Avila, Marcos A.

    2011-01-01

    nanocomposites of poly(acrylonitrile-butadiene-styrene) and organically modified montmorillonite clays by melt intercalation on a co-rotating twin-screw extruder were prepared and characterized. It was studied the effects of screw torque and a binary mixture of organically modified montmorillonites on the intercalation/exfoliation of organoclays in the polymer matrix, characterized by X-ray diffraction morphological analyses and by capillary and parallel plates rheological analyses. (author)

  8. Rheological measurements on artifical muds

    NARCIS (Netherlands)

    De Wit, P.J.

    1992-01-01

    The rheological behaviour of three artificial muds was determined using a rotational viscometer. First some characteristics of the viscometer used were rneasured. For want of an appropriate calibration tluid, the viscosity of demineralized water was determined. The result agreed very well with what

  9. Impact of rheological layering on rift asymmetry

    Science.gov (United States)

    Jaquet, Yoann; Schmalholz, Stefan M.; Duretz, Thibault

    2015-04-01

    Although numerous models of rift formation have been proposed, what triggers asymmetry of rifted margins remains unclear. Parametrized material softening is often employed to induce asymmetric fault patterns in numerical models. Here, we use thermo-mechanical finite element models that allow softening via thermal weakening. We investigate the importance of lithosphere rheology and mechanical layering on rift morphology. The numerical code is based on the MILAMIN solver and uses the Triangle mesh generator. Our model configuration consists of a visco-elasto-platic layered lithosphere comprising either (1) only one brittle-ductile transition (in the mantle) or (2) three brittle-ductile transitions (one in the upper crust, one in the lower crust and one in the mantle). We perform then two sets of simulations characterized by low and high extensional strain rates (5*10-15 s-1, 2*10-14 s-1). The results show that the extension of a lithosphere comprising only one brittle-ductile transition produces a symmetric 'neck' type rift. The upper and lower crusts are thinned until the lithospheric mantle is exhumed to the seafloor. A lithosphere containing three brittle-ductile transitions favors strain localization. Shear zones at different horizontal locations and generated in the brittle levels of the lithosphere get connected by the weak ductile layers. The results suggest that rheological layering of the lithosphere can be a reason for the generation of asymmetric rifting and subsequent rift morphology.

  10. Rheological characterization of cementitious grouts used to dispose of intermediate-level radioactive waste by hydrofracturing at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Moore, J.G.

    1981-01-01

    The hydrofracturing process is a waste disposal process in use at the Oak Ridge National Laboratory for the permanent disposal of locally generated waste solutions. This process is now being modified for use in the disposal of sludge that results from the sodium hydroxide neutralization of acid waste solutions. In this process, the sludges will be slurried in a bentonite clay suspension and mixed with a solids blend of cement and other additives. The amount of dry solids required for each liter of waste slurry will be determined from a rheogram that relates the viscosity of the slurry with the grams per liter recommended for grouts with desirable flow properties. A description of the process and the development of rheograms are included. Data are presented on the use of chemical additives to control the flow properties of grouts

  11. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    Science.gov (United States)

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration.

  12. Evaluation of different polyolefins as rheology modifier additives in lubricating grease formulations

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Alfonso, J.E.; Valencia, C.; Sanchez, M.C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Franco, J.M., E-mail: franco@uhu.es [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Gallegos, C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain)

    2011-08-15

    Highlights: {yields} Evaluation of different polyolefins as modifiers of the rheological properties and mechanical stability of lithium lubricating greases. {yields} The type of polymer, molecular weight, cristallinity degree and vinyl acetate content influences the rheological and thermal response of lubricating greases. {yields} The crystallinity degree, mainly dependent on the nature of the polymer, is the most highly influencing parameter on the rheology of lubricating greases. {yields} The rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. - Abstract: The purpose of the present work is to evaluate the effect that different polyolefins, used as additives in small proportions, exert on the rheological properties of standard lithium lubricating greases. Grease formulations containing several polyolefins, differing in nature and molecular weight, were manufactured and rheologically characterized. The influence of the type of polymer, molecular weight, crystallinity degree and vinyl acetate content has been analyzed. Small-amplitude oscillatory shear (SAOS) and viscous flow measurements, as well as calorimetric (DSC) and thermogravimetric (TGA) analysis, were carried out. In general, the addition of polymers such as HDPE, LDPE, LLDPE and PP to lithium lubricating greases significantly increases the values of the rheological parameters analyzed, consistency and mechanical stability. However, the use of polyolefins as rheology modifiers does not significantly affect the friction coefficient determined in a tribological contact. The crystallinity degree, mainly dependent on the nature of the polymer, has been found the most highly influencing parameter on the rheology of the lubricating greases studied. However, the rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. Thus, a negative effect in both apparent viscosity and linear viscoelastic functions of greases was obtained when

  13. Caracterização térmica e reológica de borracha de pneu desvulcanizada por microondas Thermal and rheological characterization of ground tire rubber devulcanized by microwaves

    Directory of Open Access Journals (Sweden)

    Carlos H. Scuracchio

    2006-03-01

    Full Text Available Borracha de pneu pós-consumo previamente particulada foi submetida a um tratamento em microondas, de forma a promover a quebra de suas ligações cruzadas, ou seja, sua desvulcanização. A influência das variáveis do processo, tais como tempo de exposição às microondas e número de etapas de tratamento, foi investigada. Após o tratamento, estes materiais foram caracterizados em termos de suas propriedades térmicas por calorimetria exploratória diferencial e reológicas por reometria capilar. Também foi feita extração de solúveis em soxhlet, para avaliar a quantidade de borracha que foi efetivamente desvulcanizada durante o tratamento por microondas. O processo de desvulcanização mostrou-se um método viável para produzir um material passível de ser moldado, de forma semelhante a uma borracha virgem. No entanto, em nenhuma condição de desvulcanização utilizada foi possível obter um material 100% solúvel, ou seja, totalmente desvulcanizado. A análise térmica sugere que ocorre um processo semelhante ao envelhecimento do material durante o tratamento com as microondas.Ground tire rubber was submitted to a microwaves treatment in order to promote its devulcanization, that is, the breaking of the crosslinks between the chains. The influence of the processing parameters, such as time of exposure to the microwaves and number of treatment steps, was investigated. After the treatment, the material was characterized in terms of its thermal, by DSC, dynamic-mechanical, by DMA and rheological, by capillary rheometry, properties. In addition, the extraction of soluble fractions was made in soxhlet, to evaluate the amount of rubber that effectively was devulcanized during the microwaves treatment. The devulcanization treatment showed to be a viable method to produce a material which can be molded, in a similar way to virgin rubber. However, the complete devulcanization of the material was not possible in any devulcanization condition

  14. Effect of smectite clays storage in their rheological properties

    International Nuclear Information System (INIS)

    Silva, I.A. da; Sousa, F.K.A. de; Neves, G. de A.; Ferreira, H.C.; Ferreira, H.S.; Ferreira, H.S.

    2017-01-01

    This work investigates the storage influence of natural and industrial smectite clays in their rheological properties, since the salt metathesis reaction that occurs following treatment of polycationic clays with Na_2 CO_3 is reversible. The phenomena involved in this reaction are not yet fully known and previous studies show improvement in some properties. The rheological properties were determined in sodium-clays in 1995 and polycationic clays added with sodium carbonate (Na_2 CO_3 ) in 2015. Physical, chemical and mineralogical characterizations of the samples were performed using the following techniques: particle size analysis by laser diffraction, chemical composition by X-ray fluorescence, X-ray diffraction and thermal analysis (DTA and TGA). The rheology of dispersions was determined by the apparent viscosity, plastic viscosity and filtrate volume, which were later considered the oil industry standards only as a benchmark. The results showed that the storage conditions, humidity and particle size of the samples resulted in improvements in their rheological properties over the years, indicating the non-reversibility of the reaction of cation exchange, which is important in their validity after manufacturing. (author)

  15. Debris flow rheology: Experimental analysis of fine-grained slurries

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.

    1992-01-01

    The rheology of slurries consisting of ≤2-mm sediment from a natural debris flow deposit was measured using a wide-gap concentric-cylinder viscometer. The influence of sediment concentration and size and distribution of grains on the bulk rheological behavior of the slurries was evaluated at concentrations ranging from 0.44 to 0.66. The slurries exhibit diverse rheological behavior. At shear rates above 5 s−1 the behavior approaches that of a Bingham material; below 5 s−1, sand exerts more influence and slurry behavior deviates from the Bingham idealization. Sand grain interactions dominate the mechanical behavior when sand concentration exceeds 0.2; transient fluctuations in measured torque, time-dependent decay of torque, and hysteresis effects are observed. Grain rubbing, interlocking, and collision cause changes in packing density, particle distribution, grain orientation, and formation and destruction of grain clusters, which may explain the observed behavior. Yield strength and plastic viscosity exhibit order-of-magnitude variation when sediment concentration changes as little as 2–4%. Owing to these complexities, it is unlikely that debris flows can be characterized by a single rheological model.

  16. Rheological characterisation of municipal sludge: a review.

    Science.gov (United States)

    Eshtiaghi, Nicky; Markis, Flora; Yap, Shao Dong; Baudez, Jean-Christophe; Slatter, Paul

    2013-10-01

    Sustainable sludge management is becoming a major issue for wastewater treatment plants due to increasing urban populations and tightening environmental regulations for conventional sludge disposal methods. To address this problem, a good understanding of sludge behaviour is vital to improve and optimize the current state of wastewater treatment operations. This paper provides a review of the recent experimental works in order for researchers to be able to develop a reliable characterization technique for measuring the important properties of sludge such as viscosity, yield stress, thixotropy, and viscoelasticity and to better understand the impact of solids concentrations, temperature, and water content on these properties. In this context, choosing the appropriate rheological model and rheometer is also important. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Structure and rheology of nanoparticle–polymer suspensions

    KAUST Repository

    Srivastava, Samanvaya

    2012-01-01

    Structure and rheology of oligomer-tethered nanoparticles suspended in low molecular weight polymeric host are investigated at various particle sizes and loadings. Strong curvature effects introduced by the small size of the nanoparticle cores are found to be important for understanding both the phase stability and rheology of the materials. Small angle X-ray scattering (SAXS) and transmission electron microscopy measurements indicate that PEG-SiO 2/PEG suspensions are more stable against phase separation and aggregation than expected from theory for interacting brushes. SAXS and rheology measurements also reveal that at high particle loadings, the stabilizing oligomer brush is significantly compressed and produces jamming in the suspensions. The jamming transition is accompanied by what appears to be a unique evolution in the transient suspension rheology, along with large increments in the zero-shear, Newtonian viscosity. The linear and nonlinear flow responses of the jammed suspensions are discussed in the framework of the Soft Glassy Rheology (SGR) model, which is shown to predict many features that are consistent with experimental observations, including a two-step relaxation following flow cessation and a facile method for determining the shear-thinning coefficient from linear viscoelastic measurements. Finally, we show that the small sizes of the particles have a significant effect on inter-particle interactions and rheology, leading to stronger deviations from expectations based on planar brushes and hard-sphere suspension theories. In particular, we find that in the high volume fraction limit, tethered nanoparticles interact in their host polymer through short-range forces, which are more analogous to those between soft particles than between spherical polymer brushes. © 2012 The Royal Society of Chemistry.

  18. experimental study of cement grout: rheological behavior and sedimentation

    OpenAIRE

    Rosquoët , Frédéric; Alexis , Alain ,; Khelidj , Abdelhafid; Phelipot-Mardelé , Annabelle

    2002-01-01

    International audience; Three basic elements (cement, water and admixture) usually make up injectable cement grouts used for prestressed cable coating, repair and consolidation of masonry, soil grouting, etc... The present study was divided into two parts. First, in order to characterize rheologically fresh cement paste with W/C ratios (water/cement ratio) varying between 0.35 and 1, an experimental study was carried out and has revealed that the cement past behaves like a shear-thinning mate...

  19. Comparative study of sea ice dynamics simulations with a Maxwell elasto-brittle rheology and the elastic-viscous-plastic rheology in NEMO-LIM3

    Science.gov (United States)

    Raulier, Jonathan; Dansereau, Véronique; Fichefet, Thierry; Legat, Vincent; Weiss, Jérôme

    2017-04-01

    Sea ice is a highly dynamical environment characterized by a dense mesh of fractures or leads, constantly opening and closing over short time scales. This characteristic geomorphology is linked to the existence of linear kinematic features, which consist of quasi-linear patterns emerging from the observed strain rate field of sea ice. Standard rheologies used in most state-of-the-art sea ice models, like the well-known elastic-viscous-plastic rheology, are thought to misrepresent those linear kinematic features and the observed statistical distribution of deformation rates. Dedicated rheologies built to catch the processes known to be at the origin of the formation of leads are developed but still need evaluations on the global scale. One of them, based on a Maxwell elasto-brittle formulation, is being integrated in the NEMO-LIM3 global ocean-sea ice model (www.nemo-ocean.eu; www.elic.ucl.ac.be/lim). In the present study, we compare the results of the sea ice model LIM3 obtained with two different rheologies: the elastic-viscous-plastic rheology commonly used in LIM3 and a Maxwell elasto-brittle rheology. This comparison is focused on the statistical characteristics of the simulated deformation rate and on the ability of the model to reproduce the existence of leads within the ice pack. The impact of the lead representation on fluxes between ice, atmosphere and ocean is also assessed.

  20. Rheology, Morphology and Temperature Dependency of Nanotube Networks in Polycarbonate/Multiwalled Carbon Nanotube Composites

    International Nuclear Information System (INIS)

    Abbasi, Samaneh; Carreau, Pierre J.; Derdouri, Abdessalem

    2008-01-01

    We present several issues related to the state of dispersion and rheological behavior of polycarbonate/multiwalled carbon nanotube (MWCNT) composites. The composites were prepared by diluting a commercial masterbatch containing 15 wt% nanotubes using optimized melt-mixing conditions. The state of dispersion was then analyzed by scanning and transmission electron microscopy (SEM, TEM). Rheological characterization was also used to assess the final morphology. Further, it was found that the rheological percolation threshold decreased significantly with increasing temperature and finally reached a constant value. This is described in terms of the Brownian motion, which increases with temperature. However, by increasing the nanotube content, the temperature effects on the complex viscosity at low frequency decreased significantly. Finally, the percolation thresholds were found to be approximately equal to 0.3 and 2 wt% for rheological and electrical conductivity measurements, respectively

  1. Rheology of unstable mineral emulsions

    Directory of Open Access Journals (Sweden)

    Sokolović Dunja S.

    2013-01-01

    Full Text Available In this paper, the rheology of mineral oils and their unstable water emulsion were investigated. The oil samples were domestic crude oil UA, its fractions UA1, UA4 and blend semi-product UP1, while the concentration of oil in water emulsions was in the range from 1 up to 30%. The results were analyzed based on shear stress. The oil samples UA, UA1 and UP1 are Newtonian fluids, while UA4 is pseudoplastic fluid. The samples UA and UA4 show higher value of shear stress (83.75 Pa, 297 Pa, then other two samples UA1 and UP1 (18.41 Pa, 17.52 Pa. Rheology of investigated oils due to its complex chemical composition should be analyzed as a simultaneous effect of all their components. Therefore, structural composition of the oils was determined, namely content of paraffins, naphthenes, aromatics and asphaltenes. All samples contain paraffins, naphthenes and aromatics but only oils UA and UA4 contain asphaltenes as well. All investigated emulsions except 30% EUA4 are Newtonian fluids. The EUA4 30% emulsion shows pseudoplastic behaviour, and it is the only 30% emulsion among investigated ones that achieves lower shear stress then its oil. The characteristics of oil samples that could have an influence on their properties and their emulsion rheology, were determined. These characteristics are: neutralization number, interfacial tension, dielectric constant, and emulsivity. Oil samples UA and UA4 have significantly higher values of neutralization number, dielectric constants, and emulsivity. The sample UA has the lowest value of interface tension and the greatest emulsivity, indicating that this oil, among all investigated, has the highest preference for building emulsion. This could be the reason why 20% and 30% emulsions of the oil UA achieve the highest shear stress among all investigated emulsions.

  2. Preliminary data on rheological limits for grouts in the Transportable Grout Facility

    International Nuclear Information System (INIS)

    Gilliam, T.M.; McDaniel, E.W.; Dole, L.R.; West, G.A.

    1987-04-01

    This report describes a method for establishing rheological limits for grouts that can be pumped in the Hanford Transportable Grout Facility (TGF). This method is based on two models that require determining two key parameters - gel strength and density. This work also presents rheological data on grouts prepared with simulated customer phosphate wastes (CPW) and double shell slurry (DSS) from the Hanford complex. These data can be used to make preliminary estimates of operating rheological limits of the TFG grouts. The suggested design limits will include safety factors that will increase these limits significantly. 4 refs

  3. Introduction to snow rheology

    International Nuclear Information System (INIS)

    Montmollin, Vincent de

    1978-01-01

    The tests described in the thesis are rotating shearing tests, with rotational constant speed ranging between 0.00075 rpm and 0.75 rpm. The results obtained are similar to those observed with compression tests at constant speed, except that shearing tests are carried out with densities nearly constant. So, we show three different domains when the rotation speed increases: 1) viscous (without failure) 2) brittle of first type (cycles of brittle failures) and 3) brittle of second type (only one brittle failure and solid friction). These results show clearly that the fundamental mechanism that rules the mechanisms of snow, is fast metamorphosis of bonds, binding ice grains: this metamorphosis is important when solicitation speeds are low (permanent rate of shearing in viscous domain, regeneration of the failure surfaces in the brittle domain of the first type) and this metamorphosis does not exist when speed increases (only one failure and solid friction in the brittle domain of second type). It is also included an important bibliographic analysis of the snow mechanics, and an experimental and theoretical study about shock wave propagation in natural snow covers. (author) [fr

  4. Rheological and Thermal Behavior of Polypropylene-Kaolin Composites

    International Nuclear Information System (INIS)

    Teng, S.T.; Nor Azura Abdul Rahim; Lan, D.N.U

    2014-01-01

    Kaolins effect on rheological behaviour of polypropylene-kaolin composites was investigated. The research found that not only the kaolin content influence the rheological behaviour but also the compounding using internal mixer and twin screw extruder. In details, viscosity and shear stress increased with addition of kaolin content. These characteristics also exhibited higher in polypropylene-kaolin composite suspensions compounded using twin screw extruder than using internal mixer. Chain scission was assumed to occur and affect the melt properties. Further justification characterized by Differential Scanning Calorimeter (DSC) showed that the effect of kaolin and loading content were more evident on the onset melting temperature and crystallinity. Besides, due to the different cooling operation in both processes, the effect of compounding on melting characteristic was conspicuous. (author)

  5. Rheological properties of sodium smectite clay

    International Nuclear Information System (INIS)

    Boergesson, L.; Hoekmark, H.; Karnland, O.

    1988-12-01

    The rheological properties of Na-smectite Mx-80 have been investigated by various laboratory tests. The investigations include determination of the hydraulic conductivity, the undrained stress-strain-strength properties, the creep properties, the compression and swelling properties in drained and undrained conditions and the undrained thermomechanical properties. Measurements have been made at different densities, clay/sand mixtures and pore water compositions. The influence of temperature, rate of strain and testing technique has also been considered. The investigation has led to a supply of basic data for the material models which will be used at performance calculations. The results have also increased the general understanding of the function of smectitic clay as buffer material. The microstructural behaviour has been considered at the validation of the different test results and the validity of the effective stress theory has been discussed. Comparisons with the properties of Ca-smectite have also been made. (orig.)

  6. RHEOLOGIC BEHAVIOR OF PASTRY CREAMS

    Directory of Open Access Journals (Sweden)

    Camelia Vizireanu

    2012-03-01

    Full Text Available The increased social and economic importance of ready–made food production, together with the complexity of production technology, processing, handling and acceptance of these fragile and perishable products requires extensive knowledge of their physical properties. Viscoelastic properties play an important role in the handling and quality attributes of creams.Our study was to investigate the rheological properties of different confectionary creams, by scanning the field of shear rates at constant temperature and frequency, angular frequency scanning at small deformations and quantification of rheological changes during application of deformation voltages. The creams tested were made in the laboratory using specific concentrates as fine powders, marketed by the company “Dr. Oetker” compared with similar creams based on traditional recipes and techniques. Following the researches conducted we could conclude that both traditional creams and the instant ones are semi fluid food products with pseudoplastic and thixotropic shear flow behavior, with structural viscosity. Instant and traditional creams behaved as physical gels with links susceptible to destruction, when subjected to deformation forces.

  7. Rheological and phase behaviour of amphiphilic lipids

    Directory of Open Access Journals (Sweden)

    Alfaro, M. C.

    2000-04-01

    Full Text Available This chapter reviews the different association structures which are likely to be formed by amphiphilic lipids in the liquid-crystalline state and their corresponding shear flow properties. The structure and rheological behaviour of thermotropic liquid crystals, emphasizing the properties of smectic mesophases, and those of lyotropic liquid crystals such as: nematic, lamellar, diluted lamellar, lamellar dispersions, hexagonal and cubic mesophases are described. The importance of a comprehensive rheological characterisation, including rheo-optical techniques, is pointed out for their practical applications, development of formulations and as a useful technique to assist in the determination of phase diagrams. A historical approach has been used to discuss the evolving field of the rheology and structure identification of liquid crystals formed by amphiphilic lipids and surfactants. Non-Newtonian viscous shear flow, thixotropic and antithixotropic phenomena, linear viscoelastic properties -described by dynamic and creep compliance experiments- and non-linear viscoelastic properties - described by the difference of normal stresses and stress relaxation tests are interpreted on the basis of a microstructure-rheology relationship. The polycrystalline nature of liquid crystals turns out to be rather sensitive to shear due to the change of both size and orientation of the liquid-crystalline monodomains under flow.En este capítulo se realiza una revisión de las distintas estructuras coloidales de asociación que pueden formar los lípidos anfifílicos en estado líquido-cristalino y de sus correspondientes propiedades de flujo en cizalla. Se describe la estructura y comportamiento reológico de cristales líquidos termotrópicos, con énfasis en los de tipo esméctico, fases gel, y cristales líquidos liotrópicos: nemáticos, laminares, laminares diluidos, dispersiones de laminares, hexagonales y cúbicos. Se hace hincapié en la importancia de una

  8. Rheological behavior of silver nanowire conductive inks during screen printing

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shohreh; Barkey, Dale P., E-mail: dpb@unh.edu; Gupta, Nivedita [University of New Hampshire, Department of Chemical Engineering (United States)

    2016-08-15

    The rheological behavior of silver nanowire (AgNW) suspensions adapted for screen printing inks was investigated. Aqueous silver nanowire inks consisting of AgNW (length of 30 μm, and diameter of 40 and 90 nm), dispersant and binder were formulated. The effect of AgNW content on the rheological behavior of the ink and the build-up of ink structure after screen printing were examined as they depend on applied shear and temperature. Rheological measurements under conditions that mimic the screen printing process were done to assess viscoelastic properties induced by flow alignment of the wires and the subsequent recovery of the low shear structure. The Stretched Exponential model (SEmo) was used to model the recovery process after screen printing to obtain the characteristic time of the recovery or build-up process. The characteristic time was determined at several temperatures to obtain the activation energy of recovery. The domination of Brownian motion or non-Brownian motion behavior can be characterized by a Peclet number, which is the ratio of shear rate to the rotational diffusion coefficient. The Peclet number and the dimensionless concentration of wires were used to assess the recovery mechanism. The steady viscosity at low and high shear rates was also treated by an activation energy analysis.

  9. Rheological behavior of silver nanowire conductive inks during screen printing

    Science.gov (United States)

    Hemmati, Shohreh; Barkey, Dale P.; Gupta, Nivedita

    2016-08-01

    The rheological behavior of silver nanowire (AgNW) suspensions adapted for screen printing inks was investigated. Aqueous silver nanowire inks consisting of AgNW (length of 30 μm, and diameter of 40 and 90 nm), dispersant and binder were formulated. The effect of AgNW content on the rheological behavior of the ink and the build-up of ink structure after screen printing were examined as they depend on applied shear and temperature. Rheological measurements under conditions that mimic the screen printing process were done to assess viscoelastic properties induced by flow alignment of the wires and the subsequent recovery of the low shear structure. The Stretched Exponential model (SEmo) was used to model the recovery process after screen printing to obtain the characteristic time of the recovery or build-up process. The characteristic time was determined at several temperatures to obtain the activation energy of recovery. The domination of Brownian motion or non-Brownian motion behavior can be characterized by a Peclet number, which is the ratio of shear rate to the rotational diffusion coefficient. The Peclet number and the dimensionless concentration of wires were used to assess the recovery mechanism. The steady viscosity at low and high shear rates was also treated by an activation energy analysis.

  10. Rheological behavior of silver nanowire conductive inks during screen printing

    International Nuclear Information System (INIS)

    Hemmati, Shohreh; Barkey, Dale P.; Gupta, Nivedita

    2016-01-01

    The rheological behavior of silver nanowire (AgNW) suspensions adapted for screen printing inks was investigated. Aqueous silver nanowire inks consisting of AgNW (length of 30 μm, and diameter of 40 and 90 nm), dispersant and binder were formulated. The effect of AgNW content on the rheological behavior of the ink and the build-up of ink structure after screen printing were examined as they depend on applied shear and temperature. Rheological measurements under conditions that mimic the screen printing process were done to assess viscoelastic properties induced by flow alignment of the wires and the subsequent recovery of the low shear structure. The Stretched Exponential model (SEmo) was used to model the recovery process after screen printing to obtain the characteristic time of the recovery or build-up process. The characteristic time was determined at several temperatures to obtain the activation energy of recovery. The domination of Brownian motion or non-Brownian motion behavior can be characterized by a Peclet number, which is the ratio of shear rate to the rotational diffusion coefficient. The Peclet number and the dimensionless concentration of wires were used to assess the recovery mechanism. The steady viscosity at low and high shear rates was also treated by an activation energy analysis.

  11. Influence of polymer fibers on rheological properties of cement mortars

    Directory of Open Access Journals (Sweden)

    Malaszkiewicz Dorota

    2017-10-01

    Full Text Available The reinforcing effect of fibers in cement composites often results in the improvement of the brittle nature of cementitious materials. But the decrease in the workability of fresh concrete is often the disadvantage of fibers addition. Conventional single-point workability tests cannot characterize workability of concrete in terms of fundamental rheological parameters. To this end, this paper describes an investigation of the influence of synthetic fiber additions (fiber length in the range 12–50 mm and volume fraction in the range 0–4% on the rheological properties of fiber reinforced fresh mortar (FRFM and development of these properties over time. The rheometer Viskomat XL was used in this study. Within the limitations of the instrument and testing procedure it is shown that FRFMs conform to the Bingham model. Natural postglacial sand 0/4 mm was used as a fine aggregate and cement CEMI 42.5 R was used as a binder. Three commercial synthetic fibers were selected for these examinations. Rheological properties were expressed in terms of Bingham model parameters g (yield value and h (plastic viscosity. Based on the test results it was found out that the fiber type and volume fraction affected both the yield stress and plastic viscosity.

  12. Influence of polymer fibers on rheological properties of cement mortars

    Science.gov (United States)

    Malaszkiewicz, Dorota

    2017-10-01

    The reinforcing effect of fibers in cement composites often results in the improvement of the brittle nature of cementitious materials. But the decrease in the workability of fresh concrete is often the disadvantage of fibers addition. Conventional single-point workability tests cannot characterize workability of concrete in terms of fundamental rheological parameters. To this end, this paper describes an investigation of the influence of synthetic fiber additions (fiber length in the range 12-50 mm and volume fraction in the range 0-4%) on the rheological properties of fiber reinforced fresh mortar (FRFM) and development of these properties over time. The rheometer Viskomat XL was used in this study. Within the limitations of the instrument and testing procedure it is shown that FRFMs conform to the Bingham model. Natural postglacial sand 0/4 mm was used as a fine aggregate and cement CEMI 42.5 R was used as a binder. Three commercial synthetic fibers were selected for these examinations. Rheological properties were expressed in terms of Bingham model parameters g (yield value ) and h (plastic viscosity). Based on the test results it was found out that the fiber type and volume fraction affected both the yield stress and plastic viscosity.

  13. Analogy between dynamics of thermo-rheological and piezo-rheological pendulums

    International Nuclear Information System (INIS)

    Hedrih, K

    2008-01-01

    The constitutive stress-strain relations of the standard thermo-rheological and piezo-rheological hereditary element in differential form as well as in two different integro-differential forms are defined. The considered problem of a thermo-rheological hereditary discrete system nonlinear dynamics in the form of thermo-rheological double pendulum system with coupled pendulums gets the significance of two constrained bodies in plane motion problem, as a problem important for studying a sensor dynamics or actuator dynamics in active structure dynamics. System of the averaged equations in the first approximation for amplitudes and phases are derived and qualitatively analyzed. Analogy between nonlinear dynamics of the double pendulum systems with thermo-rheological and piezo-rheological properties between pendulums is pointed out

  14. Transient rheology of stimuli responsive hydrogels: Integrating microrheology and microfluidics

    Science.gov (United States)

    Sato, Jun

    Stimuli-responsive hydrogels have diverse potential applications in the field of drug delivery, tissue engineering, agriculture, cosmetics, gene therapy, and as sensors and actuators due to their unique responsiveness to external signals, such as pH, temperature, and ionic strength. Understanding the responsiveness of hydrogel structure and rheology to these stimuli is essential for designing materials with desirable performance. However, no instrumentation and well-defined methodology are available to characterize the structural and rheological responses to rapid solvent changes. In this thesis, a new microrheology set-up is described, which allows us to quantitatively measure the transient rheological properties and microstructure of a variety of solvent-responsive complex fluids. The device was constructed by integrating particle tracking microrheology and microfluidics and offers unique experimental capabilities for performing solvent-reponse measurements on soft fragile materials without applying external shear forces. Transient analysis methods to quantitatively obtain rheological properties were also constructed, and guidelines for the trade-off between statistical validity and temporal resolution were developed to accurately capture physical transitions. Employing the new device and methodology, we successfully quantified the transient rheological and microstructural responses during gel formation and break-up, and viscosity changes of solvent-responsive complex fluids. The analysis method was expanded for heterogeneous samples, incorporating methods to quantify the microrheology of samples with broad distributions of individual particle dynamics. Transient microrheology measurements of fragile, heterogeneous, self-assembled block copolypeptide hydrogels revealed that solvent exchange via convective mixing and dialysis can lead to significantly different gel properties and that commonly applied sample preparation protocols for the characterization of soft

  15. On the rheological characteristics of sewage sludge

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz

    2010-01-01

    Full Text Available The work is focused on characterization of rheological behavior of sewage sludges sampled at different stages of waste water treatment. The main attention was focused on dynamic viscosity dependence on temperature, and shear rate. The sludge samples were examined under temperature ranging from 1 °C to 25 °C and under shear rate ranging from 0.34 s−1 to 68 s−1. Rotary digital viscometer (concentric cylinders geometry was used to perform the reological measurements. The solids content of the sludge samples ranged from 0.43 % to 21.45 % (A and C samples, respectively and ash free dry mass from 56.21 % to 67.80 % (A and B samples, respectively. The tested materials were found to be of non–Newtoninan nature and temperature dependent. Measured data were successfully cha­ra­cte­ri­zed by several mathematical models (Arrhenius, Bingham Plastic, Casson Law, Exponential, Gaussian, and IPC Paste in MATLAB® software with satisfying correlations between experimental and computed results. The best match (R2 = 0.999 was received with use of Gaussian model, in both cases, shear rate and temperature dependence. The results are quite useful e.g. for the purpose of technological equipment design.

  16. Biodegradable compounds: Rheological, mechanical and thermal properties

    Science.gov (United States)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  17. In situ rheology and gas volume in Hanford double-shell waste tanks

    International Nuclear Information System (INIS)

    Stewart, C.W.; Alzheimer, J.M.; Brewster, M.E.; Chen, G.; Reid, H.C.; Shepard, C.L.; Terrones, G.; Mendoza, R.E.

    1996-09-01

    This report is a detailed characterization of gas retention and release in 6 Hanford DS waste tanks. The results came from the ball rheometer and void fraction instrument in (flammable gas watch list) tanks SY-101, SY-103, AW-101, AN-103, AN-104, and AN-105 are presented. Instrument operation and derivation of data reduction methods are presented. Gas retention and release information is summarized for each tank and includes tank fill history and instrumentation, waste configuration, gas release, void fraction distribution, gas volumes, rheology, and photographs of the waste column from extruded core samples. Potential peak burn pressure is computed as a function of gas release fraction to portray the 'hazard signature' of each tank. It is shown that two tanks remain well below the maximum allowable pressure, even if the entire gas content were released and ignited, and that none of the others present a hazard with their present gas release behavior

  18. Dumbbell shaped polystyrene : synthesis and solution rheology

    NARCIS (Netherlands)

    Rajan, M.

    2006-01-01

    Polymeric additives profoundly influence fluid rheological properties; hence finding applications in fuels, lubricants, coatings, sprays, enhanced oil recovery, turbulent drag reduction etc. Several of these applications are based on the coil-stretch transition and subsequent stretching of polymer

  19. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  20. Rheology enhancement for remediated PX6 melter feed

    International Nuclear Information System (INIS)

    Marek, J.C.; Eibling, R.E.

    1996-01-01

    This document is referenced in WSRC-TR-94-0556. This memorandum summarizes results of experimental work performed on the original IDMS PX6 melter feed, the remediated IDMS PX6 melter feed, and melter feeds produced in a laboratory simulation to duplicate the IDMS remediation as well as the experimental results on the caustic treatment to enhance the rheology. Characterization of the products of excess caustic addition and what steps to take if excess caustic is inadvertently added to the IDMS PX6 melter feed are also discussed

  1. Experimental study of cement grout : Rheological behavior and sedimentation

    OpenAIRE

    ROSQUOET, F; ALEXIS, A; KHELIDJ, A; PHELIPOT, A

    2003-01-01

    Three basic elements (cement, water and admixture) usually make up injectable cement grouts used for prestressed cable coating, repair and consolidation of masonry, soil grouting, etc. The present study was divided into two parts. First, in order to characterize rheologically fresh cement paste with water/cement ratios (W/C) varying between 0,35 and 1, an expeirmental study was carried out and has revealed that the cement past behaves like a shear-thinning material, whatever is the W/C ratio....

  2. State of the art of medical devices featuring smart electro-rheological and magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    Jong-Seok Oh

    2017-10-01

    Full Text Available Recently, smart fluids have drawn significant attention and growing a great interest in a broad range of engineering applications such as automotive and medical areas. In this article, two smart fluids called electro-rheological (ER fluid and magneto-rheological (MR fluid are reviewed in terms of medical applications. Especially, this article describes the attributes and inherent properties of individual medical and rehabilitation devices. The devices surveyed in this article include multi-degree-of-freedom haptic masters for robot surgery, thin membrane touch panels for braille readers, sponge-like tactile sensors to feel human tissues such as liver, rehabilitation systems such as prosthetic leg, and haptic interfaces for dental implant surgery. The operating principle, inherent characteristics and practical feasibility of each medical device or system are fully discussed in details.

  3. Rheological behavior of oil well cements slurries containing polyurethane and silica flour; Estudo reologico de pastas de cimento com adicao de poliuretana e silica flour

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, M.R.P.; Silva, P.D.; Martinelli, A.E.; Melo, D.M.A.; Silva, B.N. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Araujo, R.G.S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2008-07-01

    A number of heat-resistant polymeric admixtures have been tested in the search of new cementing materials for adverse field conditions, including advanced recovery by steam injection. High-temperature applications also involve the use of silica as anti-retrogression agent in the composition of cement slurries. However, the addition of polymers to the cement usually affects the rheological behavior of the slurry, especially increasing its plastic viscosity. The rheological properties play an important role in determining the success of a cementing or squeeze project. The major rheological parameters of a cement slurry include its yield strength, plastic viscosity and gel strength. The rheological parameters of a cement slurry are determined following API SPEC 10A and NBR 9830:1993, using a coaxial viscosimeter. The data recorded from the viscosimeter is used to fit a rheological model, e.g., Bingham, power-law, de Herschel-Bulkley, Newton, Casson or Vocadlo. Portland-based cement slurries are mainly fitted either by Bingham, power-law or Herschel-Bulkley models. The present study aimed at determining the rheological behavior of cementing slurries as a function of the contents of polyurethane (5 - to 25% BWOC) and 40% BWOC silica flour. The slurries also contained 0.015 gpc antifoaming. The specific weight of the slurries was preset at 15.6 lb/gal. The rheological tests were carried out at 30.5 deg C (87 deg F) using a Chandler 3500 viscosimeter. After the homogenization of the slurries during 20 min in the atmospheric consistometer, the slurries were poured into a thermal recipient and sheared in the viscosimeter at different speeds ranging from 3 to 300 rpm, both in the ascending and descending way. Readings were taken after 10 s intervals and averaged. Filter loss tests were also carried out to study the effect of polyurethane and silica in the slurry using a Fann HPHT Filter Press. The results obtained in the rheological tests revealed that increasing the

  4. Rheological properties of erythrocytes in patients infected with Clostridium difficile.

    Science.gov (United States)

    Czepiel, Jacek; Jurczyszyn, Artur; Biesiada, Grażyna; Sobczyk-Krupiarz, Iwona; Jałowiecka, Izabela; Świstek, Magdalena; Perucki, William; Teległów, Aneta; Marchewka, Jakub; Dąbrowski, Zbigniew; Mach, Tomasz; Garlicki, Aleksander

    2014-12-04

    Clostridium difficile infection (CDI) is a bacterial infection of the digestive tract. Acute infections are accompanied by increased risk for venous thromboembolism (VTE). To date, there have been no studies of the rheological properties of blood during the course of digestive tract infections. The aim of our study was to examine the effects of CDI on red blood cell (RBC) rheology, specifically RBC deformability, RBC aggregation, and plasma viscosity. In addition, the activity of glucose 6 phosphate dehydrogenase (G6PD) and acetylcholinesterase (AChE) in RBC was studied. Our study group included 20 patients with CDI, 20 healthy persons comprised the control group. We examined the effects of CDI on the rheology of RBCs, their deformability and aggregation, using a Laser-assisted Optical Rotational Cell Analyzer (LORCA). Plasma viscosity was determined using a capillary tube plasma viscosymeter. Moreover, we estimated the activity of AChE and G6PD in RBC using spectrophotometric method. A statistically significant increase was found in the aggregation index, viscosity and activity of G6PD whereas the amount of time to reach half of maximum aggregation (t½) and the amplitude of aggregation (AMP) both showed statistically significantly decreases among patients with CDI compared to the control group. We also observed that the Elongation Index (EI) was decreased when shear stress values were low, between 0.3 Pa and 0.58 Pa, whereas EI was increased for shear stress in the range of 1.13-59.97 Pa. These observations were statistically significant. We report for the first time that acute infection of the gastrointestinal tract with Clostridium difficile is associated with abnormalities in rheological properties of blood, increased serum viscosity as well as increased aggregation of RBCs, which correlated with severity of inflammation. These abnormalities may be an additional mechanism causing increased incidence of VTE in CDI.

  5. Rheological properties of erythrocytes in patients infected with Clostridium difficile

    Directory of Open Access Journals (Sweden)

    Jacek Czepiel

    2014-12-01

    Full Text Available Clostridium difficile infection (CDI is a bacterial infection of the digestive tract. Acute infections are accompanied by increased risk for venous thromboembolism (VTE. To date, there have been no studies of the rheological properties of blood during the course of digestive tract infections. The aim of our study was to examine the effects of CDI on red blood cell (RBC rheology, specifically RBC deformability, RBC aggregation, and plasma viscosity. In addition, the activity of glucose 6 phosphate dehydrogenase (G6PD and acetylcholinesterase (AChE in RBC was studied. Our study group included 20 patients with CDI, 20 healthy persons comprised the control group. We examined the effects of CDI on the rheology of RBCs, their deformability and aggregation, using a Laser–assisted Optical Rotational Cell Analyzer (LORCA. Plasma viscosity was determined using a capillary tube plasma viscosymeter. Moreover, we estimated the activity of AChE and G6PD in RBC using spectrophotometric method. A statistically significant increase was found in the aggregation index, viscosity and activity of G6PD whereas the amount of time to reach half of maximum aggregation (t½ and the amplitude of aggregation (AMP both showed statistically significantly decreases among patients with CDI compared to the control group. We also observed that the Elongation Index (EI was decreased when shear stress values were low, between 0.3 Pa and 0.58 Pa, whereas EI was increased for shear stress in the range of 1.13 - 59.97 Pa. These observations were statistically significant. We report for the first time that acute infection of the gastrointestinal tract with Clostridium difficile is associated with abnormalities in rheological properties of blood, increased serum viscosity as well as increased aggregation of RBCs, which correlated with severity of inflammation. These abnormalities may be an additional mechanism causing increased incidence of VTE in CDI.

  6. Rheology of tetraphenylborate precipitate slurry

    International Nuclear Information System (INIS)

    Goren, I.D.; Martin, H.D.; McLain, M.A.

    1985-01-01

    The rheological properties of tetraphenylborate precipitate slurry were determined. This nonradioactive slurry simulates the radioactive tetraphenylborate precipitate generated at the Savannah River Plant by the In-Tank Precipitation Process. The data obtained in this study was applied in the design of slurry pumps, transfer pumps, transfer lines, and vessel agitation for the Defense Waste Processing Facility and other High Level Waste treatment projects. The precipitate slurry behaves as a Bingham plastic. The yield stress is directly proportional to the concentration of insoluble solids over the range of concentrations studied. The consistency is also a linear function of insoluble solids over the same concentration range. Neither the yield stress nor the consistency was observed to be affected by the presence of the soluble solids. Temperature effects on flow properties of the slurry were also examined: the yield stress is inversely proportional to temperature, but the consistency of the slurry is independent of temperature. No significant time-dependent effects were found. 4 refs., 4 figs., 3 tabs

  7. Morphology Characterization of PP/Clay Nanocomposites Across the Length Scales of the Structural Architecture

    NARCIS (Netherlands)

    Szazdi, Laszlo; Abranyi, Agnes; Pukansky Jr, Bela; Vancso, Gyula J.; Pukanszky, B.; Pukanszky, Bela

    2006-01-01

    The structure and rheological properties of a large number of layered silicate poly(propylene) nanocomposites were studied with widely varying compositions. Morphology characterization at different length scales was achieved by SEM, TEM, and XRD. Rheological measurements supplied additional

  8. Relations between rheological properties, saliva-induced structure breakdown and sensory texture attributes of custards

    NARCIS (Netherlands)

    Janssen, A.M.; Terpstra, M.E.J.; Wijk, R.A.de; Prinz, J.F.

    2007-01-01

    The relevance of initial rheological properties and mechanical and enzymatic structure breakdown in determining selected sensory texture attributes of custards was studied. The so-called structure breakdown cell was used to characterize saliva-induced breakdown, i.e., by monitoring digestion of

  9. Red blood cell rheology in patients with chronic venous disease (CVD)

    NARCIS (Netherlands)

    Chwała, Maciej; Spannbauer, Anna; Teległów, Aneta; Cencora, Andrzej; Marchewka, Anna; Hardeman, Max R.; Dabrowski, Zbigniew

    2009-01-01

    Rheological studies concerning aggregation and elongation of erythrocytes were carried out in 21 patients (mean age 56 years) with chronic venous disease (CVD) and 10 (mean age 45 years) healthy control subjects, with the use of a LORCA device. Higher values of parameters characterizing both

  10. Effect of Hydrothermal Treatment on the Physicochemical, Rheological, and Oil-Resistant Properties of Rice Flour

    Science.gov (United States)

    Rice flour was thermo-mechanically modified by steam jet-cooking and the physico-chemical and rheological properties of the resulting product were characterized. Then, its performance in frying batters was evaluated as an oil barrier. Compared to native rice flour, the steam jet-cooked rice flour ...

  11. Copolimerização micelar de poli(acrilamida-g-óxido de propileno: avaliação reológica e caracterização de suas soluções Micellar copolymerization of poly(acrylamide-g-propylene oxide: rheologic evaluation and solution characterization

    Directory of Open Access Journals (Sweden)

    Bianca L. Sadicoff

    2001-06-01

    Full Text Available Copolímeros graftizados de poliacrilamida e poli(óxido de propileno (PPO foram sintetizados via técnica de polimerização micelar. Foram investigadas as mudanças de viscosidade das suas soluções frente à variação do teor de monômero hidrófobo incorporado ao copolímero, adição de sal e de tensoativo. O maior teor de grupos hidrófobos resultou em aumento da viscosidade aparente das soluções poliméricas. A adição de sal provocou maior interação entre os grupos hidrófobos verificada pela desestabilização do sistema polimérico. A adição de tensoativos gerou decréscimo das viscosidades reduzidas das soluções poliméricas. Os copolímeros obtidos foram caracterizados, qualitativamente, por espectrometria de absorção na região do infravermelho (FTIR.Graft copolymers of polyacrylamide and poly(propylene oxide (PPO were synthesized by a micellar copolymerization technique. The rheological properties of the copolymers solutions were evaluated and compared with literature data for solutions of the same copolymers, synthesized by solution polymerization. The effect of hydrophobe content, salt addition and surfactant addition on the rheological properties were also investigated. Increasing hydrophobe content resulted in higher solution viscosities in the semi-dilute regime. Upon addition of salts, the hydrophobic groups associated to minimize their exposure to water. In the semi-dilute region, higher contents of surfactant added resulted in lower reduced viscosities of the polymer solutions. The copolymers were qualitatively characterized by infra-red spectrometry (IR.

  12. Melt compounding of different grades of polystyrene with organoclay. Part 2: Rheological properties

    DEFF Research Database (Denmark)

    Tanoue, Shuichi; Utracki, Leszek A.; Garcia-Rejon, Andrés

    2004-01-01

    . The rheological properties of PNC were determined under dynamic and steady state shear as well as under extensional flow conditions. At the higher clay content, dynamic strain sweep demonstrated that the storage and loss moduli decrease continuously with an increase of strain. To characterize this nonlinear...... viscoelastic behavior, the Fourier-transform rheology, was applied. The low strain frequency sweep showed that the storage and loss moduli increase with organoclay content. The extracted zero-shear viscosity data were used to calculate the intrinsic viscosity and then the aspect ratio of dispersions. In spite...

  13. PREFACE: 1st International Conference on Rheology and Modeling of Materials

    Science.gov (United States)

    Gömze, László A.

    2015-04-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive knowledge, materials, equipment and technology processes. The idea to organize in Hungary the 1st International Conference on Rheology and Modeling of Materials we have received from prospective scientists, physicists, chemists, mathematicians and engineers from Asia, Europe, North and South America including India, Korea, Russia, Turkey, Estonia, France, Italy, United Kingdom, Chile, Mexico and USA. The goals of ic-rmm1 the 1st International Conference on Rheology and Modeling of Materials are the following: • Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications. • Change information between the theoretical and applied sciences as well as technical and technological implantations. • Promote the communication between the scientists of different disciplines, nations, countries and continents. The international conference ic-rmm1 provides a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among the major fields of interest are the influences of material structures, mechanical stresses temperature and deformation speeds on rheological and physical properties, phase transformation of

  14. Characterization of the rheological behavior of heavy crude oils for the optimization of their transport; Caracterisation du comportement rheologique des bruts lourds en vue de l'optimisation de leur transport

    Energy Technology Data Exchange (ETDEWEB)

    Coustet Pierre, C.

    2003-10-01

    Despite their huge reserves, production of heavy crude oils remains weak, partially because of the high viscosity. This work aims to understand the origin of this viscosity in a view of diminishing In this context, we performed structural (SAXS) and rheological studies (under shearing and oscillatory regime) in order to link macroscopic and microscopic properties of heavy oils. investigated the effect of asphaltenes and resins which are the two most polar and the high molecular mass components of heavy oils. Most of the literature work performed measures organic solvents which are considered as model solvents in a first assumption. These media haw structure too simple compared to oils. That is why we decided to complete this work by experiments in the crude. We shed some light on asphaltenes described as colloidal particles with fractal dimension of 2. Their overlapping, due to numerous polar and hydrogen bonds, responsible for the high viscosity. The contribution of asphaltenes on viscosity is lowered by resins who are able to dissociate aggregates and to reduce the interactions, so to diminish the overlapping The kinetics of formation of bonds involved in asphaltenes overlapping are strongly slower at low temperatures, which implies a shear thinning behavior under sufficiently high shearing. This allow us to describe the crude as a transient network of fractal aggregates. (author)

  15. Study of the rheological behavior of chocolate and margarine [abstract

    Directory of Open Access Journals (Sweden)

    Debaste, F.

    2010-01-01

    Full Text Available In the food industry, the production process is often established in an empirical way, according to rules of good practice. These methods present gaps, in particular at the level of the production regularity. To model and optimize the processes, it is highly useful to determine the physico-chemical properties of the product. In this work, chocolate and margarine are studied, both aiming direct industrial application but also aiming a general enhancement of rheological mechanism understanding. Indeed, the chocolate is a suspension of solid particles in cocoa butter and the margarine is a water-in-oil emulsion. Rheological behavior of those fluids is therefore relying on different key phenomena. In this work the flow behavior of both products is characterized and a mathematical model describing the rheological behavior of chocolate is developed. For chocolate, the goal is to model the tempering process. To establish the rheological behavior of chocolate, viscosity measurements were realized in a SEARLE VT550 viscometer using a bob and cup geometry. To build the mathematical law, general tests following the International Office of Cocoa, Chocolate and Sugar Confectionery (IOCCC recommended method (Servais et al., 2004 were performed. The obtained rheogram shows that the chocolate has a slightly thixotropic behavior. More focus is set on a smaller range of shear rate important for the industrial application (Debaste et al., 2008. Measures for various temperatures and various quantities of cocoa butter were realized. The results show a classical shear-thinning behavior. Further, a statistical analysis of the results was made to determine the parameters of a power-law describing this behavior. It appears that temperature and cocoa butter fraction have no influence on the exponent but well on the consistency parameter. For margarine, the goal is to model the flow in resting tubes, the last step in the industrial production (Herman et al., 2008. To

  16. Influence of blending sequence on the rheological behavior of HDPE/LLDPE/MMT nano composites

    International Nuclear Information System (INIS)

    Passador, F.R.; Pessan, L.A.; Ruvolo Filho, A.

    2010-01-01

    The blending sequence affects the rheological behavior and the morphology formation of the nanocomposites. In this work, the blending sequences were explored to see its influence in the rheological behavior of HDPE/LLDPE/MMT nanocomposites. The nanocomposites were obtained by melt-intercalation using HDPE-g-MA as a compatibilizer in a torque rheometer (Haake Rheomix 600p at 180 deg C and rotor speed of 80rpm) and five blending sequences were studied. The materials structures were characterized by wide angle X-ray diffraction (WAXD) and by rheological properties. The nanoclay's addition increased the shear viscosity at low shear rates, changing the behavior of HDPE/LLDPE matrix to a Bingham model behavior with an apparent yield stress. Intense interactions were obtained for the blending sequence where HDPE and HDPE-g-MA were first reinforced with organoclay and then the HDPE/HDPE-g-MA/organoclay nanocomposite was later blended with LLDPE. (author)

  17. Multivariate models for prediction of rheological characteristics of filamentous fermentation broth from the size distribution

    DEFF Research Database (Denmark)

    Petersen, Nanna; Stocks, S.; Gernaey, Krist

    2008-01-01

    fermentations conducted in 550 L pilot scale tanks were characterized with respect to particle size distribution, biomass concentration, and rheological properties. The rheological properties were described using the Herschel-Bulkley model. Estimation of all three parameters in the Herschel-Bulkley model (yield...... in filamentous fermentations. It was therefore chosen to fix this parameter to the average value thereby decreasing the standard deviation of the estimates of the remaining theological parameters significantly. Using a PLSR model, a reasonable prediction of apparent viscosity (mu(app)), yield stress (tau......(y)), and consistency index (K), could be made from the size distributions, biomass concentration, and process information. This provides a predictive method with a high predictive power for the rheology of fermentation broth, and with the advantages over previous models that tau(y) and K can be predicted as well as mu...

  18. Modifying the rheological properties of melter feed for the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Blair, H.T.; McMakin, A.H.

    1986-03-01

    Selected high-level nuclear wastes from the Hanford Site may be vitrified in the future Hanford Waste Vitrification Plant (HWVP) by Rockwell Hanford Company, the contractor responsible for reprocessing and waste management at the Hanford Site. The Pacific Northwest Laboratory (PNL), is responsible for providing technical support for the HWVP. In this capacity, PNL performed rheological evaluations of simulated HWVP feed in order to determine which processing factors could be modified to best optimize the vitrification process. To accomplish this goal, a simulated HWVP feed was first created and characterized. Researchers then evaluated how the chemical and physical form of the glass-forming additives affected the rheological properties and melting behavior of melter feed prepared with the simulated HWVP feed. The effects of adding formic acid to the waste were also evaluated. Finally, the maximum melter feed concentration with acceptable rheological properties was determined

  19. Analysis of LDPE-ZnO-clay nanocomposites using novel cumulative rheological parameters

    Science.gov (United States)

    Kracalik, Milan

    2017-05-01

    Polymer nanocomposites exhibit complex rheological behaviour due to physical and also possibly chemical interactions between individual phases. Up to now, rheology of dispersive polymer systems has been usually described by evaluation of viscosity curve (shear thinning phenomenon), storage modulus curve (formation of secondary plateau) or plotting information about dumping behaviour (e.g. Van Gurp-Palmen-plot, comparison of loss factor tan δ). On the contrary to evaluation of damping behaviour, values of cot δ were calculated and called as "storage factor", analogically to loss factor. Then values of storage factor were integrated over specific frequency range and called as "cumulative storage factor". In this contribution, LDPE-ZnO-clay nanocomposites with different dispersion grades (physical networks) have been prepared and characterized by both conventional as well as novel analysis approach. Next to cumulative storage factor, further cumulative rheological parameters like cumulative complex viscosity, cumulative complex modulus or cumulative storage modulus have been introduced.

  20. MATHEMATICAL MODEL OF THE RHEOLOGICAL BEHAVIOR OF VISCOPLASTIC FLUID, WHICH DEMONSTRATES THE EFFECT OF “SOLIDIFICATION”

    Directory of Open Access Journals (Sweden)

    V. N. Kolodezhnov

    2014-01-01

    Full Text Available Summary. The irregular behavior of some kinds of suspensions on the basis of polymeric compositions and fine-dispersed fractions is characterized. As a simple, one-dimensional, shearing, viscometric flow such materials demonstrate the following mechanical behavior. There is no deformation if the shear stress does not exceed a certain critical value. If this critical value is exceeded, the flow is begins. This behavior is well-known and corresponds to the rheological models of viscoplastic fluid. However, further increase in the shear rate results in “solidification”. The rheological model of such viscoplastic fluids, mechanical behavior demonstrating the “solidification” effect is offered . This model contains four empirical parameters. The impact of the exponent on the dependence of the shearing stress and effective viscosity on the shear rate in the rheological model is graphically presented. The rheological model extrapolation on the three-dimensional flow is proposed.

  1. Molecular rheology of branched polymers: Decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling

    KAUST Repository

    Van Ruymbeke, Evelyne; Lee, Heecheong; Chang, Taihyun; Nikopoulou, Anastasia; Hadjichristidis, Nikolaos; Snijkers, Frank; Vlassopoulos, Dimitris

    2014-01-01

    the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use

  2. Rheological properties of disintegrated sewage sludge

    Science.gov (United States)

    Wolski, Paweł

    2017-11-01

    The rheology of the sludge provides information about the capacity and the flow, which in the case of project tasks for the hydraulic conveying installation is an important control parameter. Accurate knowledge of the rheological properties of sludge requires the designation of rheological models. Models single and multiparameter (Ostwald, Bingham, Herschel-Bulkley'a, and others) allow an approximation of flow curves, and the determination of the boundaries of the flow of modified sludge allows you to control the process compaction or are dewatered sludge undergoing flow. The aim of the study was to determine the rheological parameters and rheological models of sludge conditioned by physical methods before and after the process of anaerobic digestion. So far, studies have shown that the application of conditioning in the preparation of sewage sludge increases shear stress, viscosity as well as the limits of flow in relation to the untreated sludge. Offset yield point by the application of a conditioning agent is associated with decreased flowability tested sludge, which has also been observed by analyzing the structure of the prepared samples. Lowering the yield point, and thus the shear stress was recorded as a result of the fermentation test of disintegrated sludge.

  3. Initial rheological description of high performance concretes

    Directory of Open Access Journals (Sweden)

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  4. Contribution to the rheological testing of pharmaceutical semisolids.

    Science.gov (United States)

    Siska, B; Snejdrova, E; Machac, I; Dolecek, P; Martiska, J

    2018-01-22

    Rheological behaviour of pharmaceutical semisolid preparations significantly affects manufacturing process, administration, stability, homogeneity of incorporated drug, accuracy of dosing, adhesion in the place of application, drug release, and resulting therapeutic effect of the product. We performed test of consistency by penetrometry, rotational, oscillation and creep tests, and squeeze and tack tests of model samples to introduce methods suitable for characterization and comparison of semisolids in practice. Penetrometry is a simple method allowing sorting the semisolids to low and high stress-resistant materials but deficient for rheological characterization of semisolids. Value of yield stress, generally considered to be appropriate feature of semisolids, is significantly influenced by the method of testing and the way of evaluation. The hysteresis loops of model semisolids revealed incomplete thixotropy, therefore, three-step thixotropy test was employed. Semisolids showed nonlinear response in the creep phase of tests and partial recovery of structure by storing energy in the recovery phase. Squeeze and tack tests seem to be convenient ways for comparison of semisolids. Our study can contribute to a better understanding of different flow behaviour of semisolids given by different physicochemical properties of excipients and can bring useful approaches to evaluation and comparison of semisolids in practice.

  5. Rheology and Microbiology of Sludge from a Thermophilic Aerobic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Alessandro Abbà

    2017-01-01

    Full Text Available A thermophilic aerobic membrane reactor (TAMR treating high-strength COD liquid wastes was submitted to an integrated investigation, with the aim of characterizing the biomass and its rheological behaviour. These processes are still scarcely adopted, also because the knowledge of their biology as well as of the physical-chemical properties of the sludge needs to be improved. In this paper, samples of mixed liquor were taken from a TAMR and submitted to fluorescent in situ hybridization for the identification and quantification of main bacterial groups. Measurements were also targeted at flocs features, filamentous bacteria, and microfauna, in order to characterize the sludge. The studied rheological properties were selected as they influence significantly the performances of membrane bioreactors (MBR and, in particular, of the TAMR systems that operate under thermophilic conditions (i.e., around 50°C with high MLSS concentrations (up to 200 gTS L−1. The proper description of the rheological behaviour of sludge represents a useful and fundamental aspect that allows characterizing the hydrodynamics of sludge suspension devoted to the optimization of the related processes. Therefore, in this study, the effects on the sludge rheology produced by the biomass concentration, pH, temperature, and aeration were analysed.

  6. Characterization of Polyimide Matrix Resins and Prepregs

    Science.gov (United States)

    Maximovich, M. G.; Galeos, R. M.

    1985-01-01

    Graphite/polyimide composite materials are attractive candidates for a wide range of aerospace applications. They have many of the virtues of graphite/epoxies, i.e., high specific strengths and stiffness, and also outstanding thermal/oxidative stability. Yet they are not widely used in the aerospace industry due to problems of procesability. By their nature, modern addition polyimide (PI) resins and prepregs are more complex than epoxies; the key to processing lies in characterizing and understanding the materials. Chemical and rheological characterizations are carried out on several addition polyimide resins and graphite reinforced prepregs, including those based on PMR-15, LARC 160 (AP 22), LARC 160 (Curithane 103) and V378A. The use of a high range torque transducer with a Rheometrics mechanical spectrometer allows rheological data to be generated on prepreg materials as well as neat resins. The use of prepreg samples instead of neat resins eliminates the need for preimidization of the samples and the data correlates well with processing behavior found in the shop. Rheological characterization of the resins and prepregs finds significant differences not readily detected by conventional chemical characterization techniques.

  7. Using natural laboratories and modeling to decipher lithospheric rheology

    Science.gov (United States)

    Sobolev, Stephan

    2013-04-01

    Rheology is obviously important for geodynamic modeling but at the same time rheological parameters appear to be least constrained. Laboratory experiments give rather large ranges of rheological parameters and their scaling to nature is not entirely clear. Therefore finding rheological proxies in nature is very important. One way to do that is finding appropriate values of rheological parameter by fitting models to the lithospheric structure in the highly deformed regions where lithospheric structure and geologic evolution is well constrained. Here I will present two examples of such studies at plate boundaries. One case is the Dead Sea Transform (DST) that comprises a boundary between African and Arabian plates. During the last 15- 20 Myr more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Lithospheric structure and geological evolution of DST and DSB is rather well constrained by a number of interdisciplinary projects including DESERT and DESIRE projects leaded by the GFZ Potsdam. Detailed observations reveal apparently contradictory picture. From one hand widespread igneous activity, especially in the last 5 Myr, thin (60-80 km) lithosphere constrained from seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow of less than 50-60mW/m2 and deep seismicity in the lower crust ( deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what I call the "DST heat-flow paradox", a 3D numerical thermo-mechanical model was developed operating with non-linear elasto-visco-plastic rheology of the lithosphere. Results of the numerical experiments show that the entire set of

  8. Cookbook for rheological models - asphalt binders : final report.

    Science.gov (United States)

    2016-05-01

    Rheology is defined as the science of the deformation and flow of matter (Hackley and Ferraris, : 2001). The measurement of rheological properties of matter has become very important in various : fields, especially the construction industry, where pr...

  9. Effect of the fructose and glucose concentration on the rheological ...

    African Journals Online (AJOL)

    Jose Luis Montañez Soto

    2013-03-20

    Mar 20, 2013 ... Key words: High fructose syrups, viscosity, rheological behavior, Newtonian fluids. ... shear rate; ºBrix, soluble solids %; K, consistency index; n, flow behavior index. ... the correlations between rheological measurements and.

  10. Differential Rheology Among ABO Blood Group System In Nigerians

    African Journals Online (AJOL)

    Research Article. Differential Rheology ... alterations in membrane and cytoskeletal properties that could affect the rheology of blood. This study was ... depending on the concentration of plasma proteins especially ... Laboratory Analysis:.

  11. Rheological properties of alumina injection feedstocks

    Directory of Open Access Journals (Sweden)

    Vivian Alexandra Krauss

    2005-06-01

    Full Text Available The rheological behavior of alumina molding feedstocks containing polyethylene glycol (PEG, polyvinylbutyral (PVB and stearic acid (SA and having different powder loads were analyzed using a capillary rheometer. Some of the feedstocks showed a pseudoplastic behavior of n < 0, which can lead to the appearance of weld lines on molded parts. Their viscosity also displayed a strong dependence on the shear rate. The slip phenomenon, which can cause an unsteady front flow, was also observed. The results indicate that the feedstock containing a lower powder load displayed the best rheological behavior. The 55 vol. % powder loaded feedstock presented the best rheological behavior, thus appearing to be more suitable than the formulation containing a vol. 59% powder load, which attained viscosities exceeding 10³ Pa.s at low shear rates, indicating its unsuitability for injection molding.

  12. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova

    2015-07-01

    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  13. Becker and Lomnitz rheological models: A comparison

    Science.gov (United States)

    Mainardi, Francesco; Spada, Giorgio

    2012-07-01

    The viscoelastic material functions for the Becker and the Lomnitz rheological models, sometimes employed to describe the transient flow of rocks, are studied and compared. Their creep functions, which are known in a closed form, share a similar time dependence and asymptotic behavior. This is also found for the relaxation functions, obtained by solving numerically a Volterra equation of the second kind. We show that the two rheologies constitute a clear example of broadly similar creep and relaxation patterns associated with neatly distinct retardation spectra, for which analytical expressions are available.

  14. Rheology of the 2006 eruption at Tungurahua volcano, Ecuador

    Science.gov (United States)

    Hanson, J. B.; Lavallée, Y.; Hess, K.-U.; von Aulock, F. W.; Dingwell, D. B.

    2009-04-01

    During August 16th to 18th 2006, the eruptive crisis at Tungurahua volcano (Ecuador) culminated in VEI 2 eruption with tens of pyroclastic flows and the extrusion of a lava flow. The nearly simultaneous occurrence of a lava flow and a pyroclastic flow from a single vent deserves attention. Generally, the rheology is a chief determinant of eruption style. Specifically, magmas are ductile (effusive) at low strain rates whereas they are brittle (explosive) at high strain rates. Although this distinction has been extensively described for single-phase magmas, there remain many questions as to the rheological implications of crystals and bubbles present in magmas. Here we present preliminary characterizations of the complex rheology of the magma involved in the 2006 eruption at Tungurahua volcano. The magma present in this eruption was andesitic with an interstitial melt composition averaging ~58 wt.% SiO2. The bombs present in the pyroclastic deposit show an open porosity ranging from 15 to 35 vol.% and a crystallinity generally greater than ~30 vol.% and occasionally up to 60 vol.% in samples affected by microlite growth. Petrographic analyses revealed magma batches with different crystallization histories. In high-porosity samples containing microlites, a recrystallization rim around clinopyroxene and resorption of the plagioclase were observed. In contrast, the dense samples show pristine, euhedral crystals and a near absence of microlites. The heterogeneous petrographic structures suggest the possibilities of mingling in the conduit or of magma batches with different decompression rates. Dilatometric analyses suggest glass transition temperatures (Tg) of ~974 °C for the dense material (porosity~15 vol.%) and as high as ~1060 °C for the high-porosity bombs (porosity~35 vol.%). Successive series of heating and cooling of the glass reveal an increase of Tg by as much as 60 °C indicative of significant water left in the melt. Preliminary analyses of images obtained

  15. The effect of oxygen fugacity on the rheological evolution of crystallizing basaltic melts

    Science.gov (United States)

    Kolzenburg, S.; Di Genova, D.; Giordano, D.; Hess, K. U.; Dingwell, D. B.

    2018-04-01

    Storage and transport of silicate melts in the Earth's crust and their emplacement on the planet's surface occur almost exclusively at sub-liquidus temperatures. At these conditions, the melts undergo crystallization under a wide range of cooling-rates, deformation-rates, and oxygen fugacities (fO2). Oxygen fugacity is known to influence the thermodynamics and kinetics of crystallization in magmas and lavas. Yet, its influence on sub-liquidus rheology remains largely uncharted. We present the first rheological characterization of crystallizing lavas along natural cooling paths and deformation-rates and at varying fO2. Specifically, we report on apparent viscosity measurements for two crystallizing magmatic suspensions 1) at log ⁡ fO2 of -9.15 (quartz-fayalite-magnetite buffer, QFM, -2.1) and 2) in air. These fugacities span a range of reduced to oxidized conditions pertinent to magma migration and lava emplacement. We find that: 1) crystallization at constant cooling-rates results in a quasi-exponential increase in the apparent viscosity of the magmatic suspensions until they achieve their rheological cut off temperature (Tcutoff), where the melt effectively solidifies 2) the rheological departure and Tcutoff increase with increasing fO2 and 3) increasing fO2 results in decreased crystallization-rates. Based on the experimental results and by comparison with previous rheological isothermal studies we propose a generalisation of the effect of fO2 on the dynamic rheological evolution of natural magmatic and volcanic suspensions. We further discuss the implications for magmatic transport in plumbing and storage systems (e.g. conduits, dikes and magma chambers) and during lava flow emplacement.

  16. Features of the rheological properties of dough with sunflower and cedar flour

    Directory of Open Access Journals (Sweden)

    V. A. Gaysina

    2016-01-01

    Full Text Available Promising directions of development of assortment of flour confectionery products are currently creating new combinations, more extraordinary and interesting, the reduction in calories, increase the nutritional value, development of formulations of functional products. As enriching additives in the manufacture of pastry products can be used flour sunflower flour and cedar. Sunflower meal – one of the possible sources of increase of food value. The only raw material component of this product are sunflower seeds that have passed the purification from impurities and shell of the particles, with the subsequent removal of oil from them and grinding. In this torment, to the maximum extent maintained all the valuable biological active substances and vitamins. Sunflower flour is a complex product: it is good recommendation system of proteins, fats, carbohydrates, including fiber, vitamins, phospholipids and mineral substances. Cedar flour is characterized by high protein content (up to 48 % is well balanced in amino acids resultant composition contains b vitamins, food fibers, micro - and macroelements, necessary for life of the human body. Cedar flour has a good functional and technological properties In this paper we study the effect of cedar flour and sunflower meal on the rheological characteristics of dough. Effect of formulation components on the rheological properties of the test is evaluated in terms of water absorption of the flour, the duration of doughing, degree of its dilution and stability when mixing. It was found that the addition of 17% sunflower meal increases the viscosity of the dough and has a strengthening effect on the structure of the dough. Adding cedar flour in the amount of 20% caused the decrease in viscosity and getting more flexible dough.

  17. RHEOLOGY OF CHICKPEA PROTEIN CONCENTRATE DISPERSIONS

    Directory of Open Access Journals (Sweden)

    Aurelia Ionescu

    2011-12-01

    Full Text Available Chickpea proteins are used as ingredients in comminuted sausage products and many oriental textured foods. Rheological behaviour of chickpea protein concentrate was studied using a controlled stress rheometer. The protein dispersion prepared with phosphate buffer at pH 7.0 presented non-Newtonian shear thinning behaviour and rheological data well fitted to the Sisko, Carreau and Cross models. The viscoelastic properties of the chickpea protein suspensions were estimated by measuring the storage and loss moduli in oscillatory frequency conditions (0.1-10 Hz at 20°C. Moreover, thermally induced gelation of the chickpea proteins (16, 24 and 36% was studied at pH 7.0 and 4.5 in the temperature range 50 to 100oC and salt concentration ranging from 0 to 1 M. Gelling behaviour was quantified by means of dynamic rheological measurements. Gels formation was preceded by the decrease of storage modulus and loss moduli, coupled with the increase of the phase angle (delta. The beginning of thermal gelation was influenced by protein concentration, pH and salt level. In all studied cases, storage modulus increased rapidly in the temperature range 70-90°C. All rheological parameters measured at 90°C were significantly higher at pH 4.5 compared to pH 7.0.

  18. Morphology and rheology in filamentous cultivations.

    Science.gov (United States)

    Wucherpfennig, T; Kiep, K A; Driouch, H; Wittmann, C; Krull, R

    2010-01-01

    Because of their metabolic diversity, high production capacity, secretion efficiency, and capability of carrying out posttranslational modifications, filamentous fungi are widely exploited as efficient cell factories in the production of metabolites, bioactive substances, and native or heterologous proteins, respectively. There is, however, a complex relationship between the morphology of these microorganisms, transport phenomena, the viscosity of the cultivation broth, and related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass, every growth form having a distinct influence on broth rheology. Hence, the advantages and disadvantages for mycelial or pellet cultivation have to be balanced out carefully. Because of the still inadequate understanding of the morphogenesis of filamentous microorganisms, fungal morphology is often a bottleneck of productivity in industrial production. To obtain an optimized production process, it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the relevant approaches in biochemical engineering. In this chapter, morphology and growth of filamentous fungi are described, with special attention given to specific problems as they arise from fungal growth forms; growth and mass transfer in fungal biopellets are discussed as an example. To emphasize the importance of the flow behavior of filamentous cultivation broths, an introduction to rheology is also given, reviewing important rheological models and recent studies concerning rheological parameters. Furthermore, current knowledge on morphology and productivity in relation to the environom is outlined in the last section of this review. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Rheological properties of potassium barium borate glasses

    NARCIS (Netherlands)

    Szwejda, K.A.; Vogel, D.L.; Stevels, J.M.

    1973-01-01

    Several series of potassium barium borate glasses have been investigated as to their rheological properties. It has been found, that all these glasses show deviations from ‘Newtonian’ behaviour below temperatures corresponding to viscosities of 1010 poises. The activation energies of viscous flow

  20. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown

  1. Understanding the rheology of yield stress materials

    NARCIS (Netherlands)

    Paredes Rojas, J.F.

    2013-01-01

    This thesis presents the PhD research on the flow behavior of yield stress materials, using rheological measurements and confocal laser scanning microscopy. Experiments are performed in dispersed systems, such as emulsions, gels and foams; for these, when the amount of the dispersed phase is high

  2. Rheology of Indian Honey: Effect of Temperature and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Sudhanshu Saxena

    2014-01-01

    Full Text Available Honey brands commonly available in Indian market were characterized for their rheological and thermal properties. Viscosity of all the honey samples belonging to different commercial brands was found to decrease with increase in temperature (5–40°C and their sensitivity towards temperature varied significantly as explained by calculating activation energy based on Arrhenius model and ranged from 54.0 to 89.0 kJ/mol. However, shear rate was not found to alter the viscosity of honey indicating their Newtonian character and the shear stress varied linearly with shear rate for all honey samples. Honey is known to contain pathogenic microbial spores and in our earlier study gamma radiation was found to be effective in achieving microbial decontamination of honey. The effect of gamma radiation (5–15 kGy on rheological properties of honey was assessed, and it was found to remain unchanged upon radiation treatment. The glass transition temperatures (Tg of these honey analyzed by differential scanning calorimetry varied from −44.1 to −54.1°C and remained unchanged upon gamma radiation treatment. The results provide information about some key physical properties of commercial Indian honey. Radiation treatment which is useful for ensuring microbial safety of honey does not alter these properties.

  3. Rheological and structural studies of carboxymethyl derivatives of chitosan

    Science.gov (United States)

    Winstead, Cherese; Katagumpola, Pushpika

    2014-05-01

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivatives were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G" dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method.

  4. Rheological and structural studies of carboxymethyl derivatives of chitosan

    International Nuclear Information System (INIS)

    Winstead, Cherese; Katagumpola, Pushpika

    2014-01-01

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivatives were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G' dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), 1 H Nuclear Magnetic Resonance ( 1 H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method

  5. Emplacement Dynamics and Timescale of a Holocene Flow from the Cima Volcanic Field (CA): Insights from Rheology and Morphology

    Science.gov (United States)

    Soldati, A.; Beem, J. R.; Gomez, F.; Huntley, J. W.; Robertson, T.; Whittington, A. G.

    2017-12-01

    We present a rheological and morphological study of a Holocene lava flow emitted by a monogenetic cinder cone in the Cima Volcanic Field, eastern California. By combining field observations and experimental results, we reconstructed the few weeks-long emplacement timeline of the Cima flow. Sample textural analyses revealed that the near-vent portion of the flow is significantly more crystalline (fxtal=0.95±0.04) than the main flow body (fxtal=0.66±0.11), which reveals a multi-stage emplacement history. Airborne photogrammetry data were used to generate a digital elevation model, which allowed us to estimate the flow volume. The rheology of Cima lavas was determined experimentally by concentric cylinder viscometry between 1550 °C and 1160 °C, including the first subliquidus rheology measurements for a continental intraplate trachybasaltic lava. The experimentally determined effective viscosity increases from 54 Pa·s to 1,361 Pa·s during cooling from the liquidus ( 1230 ˚C) to 1160 ˚C, where crystal fraction is 0.11. Flow curves fitted to measurements at different strain rates indicate a Herschel-Bulkley rheological behavior, combining shear-thinning with a yield strength negligible at the higher measured temperatures but increasing up to 357±41 Pa at 1160˚C. The lava viscosity over this range is still lower than most basaltic melts, due to the high alkali content of Cima lavas ( 6 wt% Na2O+K2O). We determined that the morphological pahoehoe to `a'ā transition of this trachybasalt occurs at a temperature of 1160±10 ˚C, similar to that observed for Hawaiian tholeiitic lavas, but at higher apparent viscosity values. Monogenetic volcanism in the Western United States is typically characterized by low effusion rates and eruption on sub-horizontal desert plains. Under these low strain-rate conditions, the pahoehoe to `a'ā transition is likely to occur abruptly upon minimal cooling, i.e. very close to the vent, but lava tubes may transport fluid lava to flow

  6. State of the art of control schemes for smart systems featuring magneto-rheological materials

    International Nuclear Information System (INIS)

    Choi, Seung-Bok; Do, Phu Xuan; Li, Weihua; Yu, Miao; Fu, Jie; Du, Haiping

    2016-01-01

    This review presents various control strategies for application systems utilizing smart magneto-rheological fluid (MRF) and magneto-rheological elastomers (MRE). It is well known that both MRF and MRE are actively studied and applied to many practical systems such as vehicle dampers. The mandatory requirements for successful applications of MRF and MRE include several factors: advanced material properties, optimal mechanisms, suitable modeling, and appropriate control schemes. Among these requirements, the use of an appropriate control scheme is a crucial factor since it is the final action stage of the application systems to achieve the desired output responses. There are numerous different control strategies which have been applied to many different application systems of MRF and MRE, summarized in this review. In the literature review, advantages and disadvantages of each control scheme are discussed so that potential researchers can develop more effective strategies to achieve higher control performance of many application systems utilizing magneto-rheological materials. (topical review)

  7. Studies on the rheology and oxygen mass transfer in the clavulanic acid production by Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    E. R. Gouveia

    2000-12-01

    Full Text Available In the present work rheological characteristics and volumetric oxygen transfer coefficient (kLa were investigated during batch cultivations of Streptomyces clavuligerus NRRL 3585 for production of clavulanic acid. The experimental rheological data could be adequately described in terms of the power law model and logistic equation. Significant changes in the rheological parameters consistency index (K and flow behavior index (n were observed with the fermentation evolution. Interesting correlations between the consistency index (K/biomass concentration (C X and the flow behavior index (n/biomass concentration were proposed. Volumetric oxygen mass transfer coefficient (kLa was determined by the gas balance method. Classical correlation relating the volumetric oxygen mass transfer coefficient to the operating conditions, physical and to transport properties, including apparent viscosity (muap, could be applied to the experimental results.

  8. Shear and elongational rheology of photo-oxidative degraded HDPE and LLDPE

    Science.gov (United States)

    Wagner, Manfred Hermann; Zheng, Wang; Wang, Peng; Talamante, Sebastián Ramos; Narimissa, Esmaeil

    2017-05-01

    The effect of photo-oxidative degradation of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) was investigated by linear and non-linear rheological measurements. The linear-viscoelastic rheological measurements were performed at different temperatures, while the elongational viscosity was measured at 170°C and at different strain rates. The rheological data are indicative of structural changes caused by photo-oxidative degradation including formation of long-chain branches (LCB), cross-linking, and chain scission, and they revealed a cyclic and continuing competition between chain scission and LCB/gel formation. These findings are supported by additional FTIR measurements and direct measurements of the gel content of the degraded samples.

  9. Rheological Properties of Extreme Pressure Greases Measured Using a Process Control Rheometer

    DEFF Research Database (Denmark)

    Glasscock, Julie; Smith, Robin S.

    2012-01-01

    A new process control rheometer (PCR) designed for use in industrial process flows has been used to measure the rheological properties of three extreme-pressure greases. The rheometer is a robust yet sensitive instrument designed to operate in an industrial processing environment in either in......-line or on-line configurations. The PCR was able to measure the rheological properties including the elastic modulus, viscous modulus, and complex viscosity of the greases which in an industrial flow application could be used as variables in a feedback system to control the process and the quality...

  10. Effect of Nano-clay on Rheological and Extrusion Foaming Process of a Block-Copolymerized Polypropylene

    Directory of Open Access Journals (Sweden)

    Wang Mingyi

    2016-01-01

    Full Text Available The effects of nano-clay and the corresponding coupling agent maleic anhydride grafted polypropylene (PP-g-MAH on thermal properties, rheological properties and extrusion foaming process of a block-copolymerized polypropylene (B-PP were studied. Supercritical CO2 (SC CO2 was used as the foaming agent with a concentration of 5wt%. Each step of foamed B-PP/ PP-g-MAH/ nano-clay composites processing is addressed, including mixing of the composites, manufacture of the composites, foaming process of the composites and characterization of the cell structure. The results showed that incorporation of nano-clay and PP-g-MAH caused reduced melt strength and complex viscosity of B-PP. However, the heterogeneous nucleation induced by nano-clay and PP-g-MAH improved the maximum foaming expansion ratio and cell-population density of B-PP foam.

  11. Rheology and FTIR studies of model waxy crude oils with relevance to gelled pipeline restart

    Energy Technology Data Exchange (ETDEWEB)

    Magda, J.J.; Guimeraes, K.; Deo, M.D. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Venkatesan, R.; Montesi, A. [Chevron Energy Technology Co., Houston, TX (United States)

    2008-07-01

    Gels composed of wax crystals may sometimes form when crude oils are transported in pipelines when ambient temperatures are low. The gels may stop the pipe flow, making it difficult or even impossible to restart the flow without breaking the pipe. Rheology and FTIR techniques were used to study the problem and to characterize transparent model waxy crude oils in pipeline flow experiments. These model oils were formulated without any highly volatile components to enhance the reproducibility of the rheology tests. Results were presented for the time- and temperature-dependent rheology of the model waxy crude oils as obtained in linear oscillatory shear and in creep-recovery experiments. The model oils were shown to exhibit many of the rheological features reported for real crude oils, such as 3 distinct apparent yield stresses, notably static yield stress, dynamic yield stress, and elastic-limit yield stress. It was concluded that of the 3, the static yield stress value, particularly its time dependence, can best be used to predict the restart behaviour observed for the same gel in model pipelines.

  12. Effects of chemical and enzymatic modification on dough rheology and biscuit characteristics

    DEFF Research Database (Denmark)

    Pedersen, L.; Kaack, K.; Bergsøe, M.N.

    2005-01-01

    . Rheological studies included creep recovery and shear oscillation. SMS and protease increased maximum strain, recovery strain, and phase tan Δ, and lowered storage modulus, G′, and the relative recovery, % recovery. The effects varied among cultivars and between SMS and protease. Biscuit eccentricity (width...

  13. A new look at extensional rheology of low-density polyethylene

    DEFF Research Database (Denmark)

    Huang, Qian; Mangnus, Marc; Alvarez, Nicolas J.

    2016-01-01

    The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU-FSR) and a co...

  14. Design and modeling of semi-active squeeze film dampers using magneto-rheological fluids

    International Nuclear Information System (INIS)

    Kim, Keun-Joo; Lee, Chong-Won; Koo, Jeong-Hoi

    2008-01-01

    Conventional squeeze film dampers (SFDs) have shown their effectiveness in suppressing unbalanced vibrations in rotor systems, particularly supported by rolling element bearings. Recently, there is an increasing demand for 'controllable' SFDs to meet the need of modern rotating machinery, characterized by high operating speed and high load capacity. Thus, this paper presents a controllable semi-active SFD using magneto-rheological (MR) fluids, focusing on its design and modeling. It offers a comprehensive design method and an innovative experimental identification and modeling technique for MR-SFDs. The primary goal of the MR-SFD design is set to maximize its dynamic control bandwidth, and the design method includes the material selection, magnetic circuit analysis and sealing element design. After constructing a prototype MR-SFD based on the final design, this work investigated how some of the critical design parameters affect the performance of the MR-SFD (i.e. its dynamic control bandwidth change). Furthermore, it characterized the damper's dynamic behavior experimentally using a novel excitation method that adopts active magnetic bearing (AMB) units. Unlike conventional methods, the AMB system was able to precisely control the amplitude and frequency of the input excitation, enabling us to obtain the nonlinear dynamic stiffness properties of the MR-SFD with varying input current. In modeling the dynamic behavior of the MR-SFD, this study employed the describing function method. The describing function analysis effectively captured the nonlinear dynamic behavior of the MR-SFD

  15. Treating inertia in passive microbead rheology.

    Science.gov (United States)

    Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés; Pilyugina, Ekaterina

    2012-02-01

    The dynamic modulus G(*) of a viscoelastic medium is often measured by following the trajectory of a small bead subject to Brownian motion in a method called "passive microbead rheology." This equivalence between the positional autocorrelation function of the tracer bead and G(*) is assumed via the generalized Stokes-Einstein relation (GSER). However, inertia of both bead and medium are neglected in the GSER so that the analysis based on the GSER is not valid at high frequency where inertia is important. In this paper we show how to treat both contributions to inertia properly in one-bead passive microrheological analysis. A Maxwell fluid is studied as the simplest example of a viscoelastic fluid to resolve some apparent paradoxes of eliminating inertia. In the original GSER, the mean-square displacement (MSD) of the tracer bead does not satisfy the correct initial condition. If bead inertia is considered, the proper initial condition is realized, thereby indicating an importance of including inertia, but the MSD oscillates at a time regime smaller than the relaxation time of the fluid. This behavior is rather different from the original result of the GSER and what is observed. What is more, the discrepancy from the GSER result becomes worse with decreasing bead mass, and there is an anomalous gap between the MSD derived by naïvely taking the zero-mass limit in the equation of motion and the MSD for finite bead mass as indicated by McKinley et al. [J. Rheol. 53, 1487 (2009)]. In this paper we show what is necessary to take the zero-mass limit of the bead safely and correctly without causing either the inertial oscillation or the anomalous gap, while obtaining the proper initial condition. The presence of a very small purely viscous element can be used to eliminate bead inertia safely once included in the GSER. We also show that if the medium contains relaxation times outside the window where the single-mode Maxwell behavior is observed, the oscillation can be

  16. Effect of crumb rubber on asphaltic binder chemistry and rheology

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Cicero de S.; Tome, Luisa G.A.; Sant' ana, Hosiberto B.; Soares, Jorge B.; Soares, Sandra A. [University Federal of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    The use of the crumb rubber (CR) from scraps tires to modify asphalt binders (AB) at high temperature can improve significantly the performance grade, but the storage stability can be influenced after the mix of AB and CR or polymer. The major concern of asphalt binder with polymer and CR blends is their lack of stability during prolonged storage at high temperatures. The tendency to phase separation under quiescent conditions appears as an important limitation for the practical use of these blends. After the RTFOT and PAV process, the binder conventional and modified was analyzed in a Fourier Transform Infrared spectrometer (FTIR) for chemical characterization. After aging in RTFOT, the AB presented a larger degradation compared to the CR of RABC and RABC commercial. So, the crumb rubber contributed to the binder stability, acting as an antioxidant in the aging process. The dynamic mechanical properties of CR modify asphalts binder before and after graft has been characterized by use of dynamic shear rheometer (DSR) or advances rheology expanded system (ARES) of Rheometric Scientific. The difference in the viscoelastic parameters between the top and the bottom sections of the tube was measured. It has been found that the added content of CR has great effect on the rheological properties of the AB and its high temperature performance. It also has been confirmed that the RABC sample showed larger storage stability compared to the sample RABC commercial observed with viscoelastic parameters. As a consequence, the use CR and aromatic oil can be considered a suitable alternative for modification of binder in pavement. (author)

  17. Primitive chain network simulations of probe rheology.

    Science.gov (United States)

    Masubuchi, Yuichi; Amamoto, Yoshifumi; Pandey, Ankita; Liu, Cheng-Yang

    2017-09-27

    Probe rheology experiments, in which the dynamics of a small amount of probe chains dissolved in immobile matrix chains is discussed, have been performed for the development of molecular theories for entangled polymer dynamics. Although probe chain dynamics in probe rheology is considered hypothetically as single chain dynamics in fixed tube-shaped confinement, it has not been fully elucidated. For instance, the end-to-end relaxation of probe chains is slower than that for monodisperse melts, unlike the conventional molecular theories. In this study, the viscoelastic and dielectric relaxations of probe chains were calculated by primitive chain network simulations. The simulations semi-quantitatively reproduced the dielectric relaxation, which reflects the effect of constraint release on the end-to-end relaxation. Fair agreement was also obtained for the viscoelastic relaxation time. However, the viscoelastic relaxation intensity was underestimated, possibly due to some flaws in the model for the inter-chain cross-correlations between probe and matrix chains.

  18. Characterization of Vibrio cholerae O1 El Tor Biotype Variant Clinical Isolates from Bangladesh and Haiti, Including a Molecular Genetic Analysis of Virulence Genes ▿

    Science.gov (United States)

    Son, Mike S.; Megli, Christina J.; Kovacikova, Gabriela; Qadri, Firdausi; Taylor, Ronald K.

    2011-01-01

    Vibrio cholerae serogroup O1, the causative agent of the diarrheal disease cholera, is divided into two biotypes: classical and El Tor. Both biotypes produce the major virulence factors toxin-coregulated pilus (TCP) and cholera toxin (CT). Although possessing genotypic and phenotypic differences, El Tor biotype strains displaying classical biotype traits have been reported and subsequently were dubbed El Tor variants. Of particular interest are reports of El Tor variants that produce various levels of CT, including levels typical of classical biotype strains. Here, we report the characterization of 10 clinical isolates from the International Centre for Diarrhoeal Disease Research, Bangladesh, and a representative strain from the 2010 Haiti cholera outbreak. We observed that all 11 strains produced increased CT (2- to 10-fold) compared to that of wild-type El Tor strains under in vitro inducing conditions, but they possessed various TcpA and ToxT expression profiles. Particularly, El Tor variant MQ1795, which produced the highest level of CT and very high levels of TcpA and ToxT, demonstrated hypervirulence compared to the virulence of El Tor wild-type strains in the infant mouse cholera model. Additional genotypic and phenotypic tests were conducted to characterize the variants, including an assessment of biotype-distinguishing characteristics. Notably, the sequencing of ctxB in some El Tor variants revealed two copies of classical ctxB, one per chromosome, contrary to previous reports that located ctxAB only on the large chromosome of El Tor biotype strains. PMID:21880975

  19. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition; Etude du comportement rheologique de melanges argiles - polymeres. Effets de l'ajout de polymeres

    Energy Technology Data Exchange (ETDEWEB)

    Benchabane, A

    2006-11-15

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  20. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition; Etude du comportement rheologique de melanges argiles - polymeres. Effets de l'ajout de polymeres

    Energy Technology Data Exchange (ETDEWEB)

    Benchabane, A

    2006-11-15

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  1. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines

    International Nuclear Information System (INIS)

    Coughlin, Mark F; Fredberg, Jeffrey J

    2013-01-01

    Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion. (paper)

  2. Influence of clay and surfactant content in non-aqueous fluid rheology

    International Nuclear Information System (INIS)

    Guedes, I.C.; Gomes, N.L.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as viscosity agent in the production of non-aqueous fluids cannot be used without organic treatment for their surfaces to become hydrophobic. These clays are called organophilic clays, and are generally obtained by adding, in an aqueous way, ionic or a nonionic surfactant. Recent studies of the variables involved in the dispersion of bentonite clays and in the process of organophilization, showed their lack of influence. This work aims to study the influence of clay content and surfactants on the rheology of nonaqueous fluids. To this end, the clays were treats and characterized, evidencing the incorporation of the surfactant, and then formulated non-aqueous fluids, following PETROBRAS standards, being possible to verify the influence of clay content and surfactant both from the point of view as the characterizing and rheological behavior. (author)

  3. Rheological evaluation of pretreated cladding removal waste

    International Nuclear Information System (INIS)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid

  4. Rheological properties of PHPA polymer support fluids

    OpenAIRE

    Lam, Carlos; Martin, P J; Jefferis, S A

    2015-01-01

    Synthetic polymer fluids are becoming a popular replacement for bentonite slurries to support excavations for deep foundation elements. However, the rheological properties of the polymer fluids used in excavation support have not been studied in detail, and there is currently confusion about the choice of mathematical models for this type of fluid. To advance the current state of knowledge, a laboratory study has been performed to investigate the steady-shear viscosity and transient viscoelas...

  5. Impact of lithospheric rheology on surface topography

    Science.gov (United States)

    Liao, K.; Becker, T. W.

    2017-12-01

    The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.

  6. Caracterização reológica das diferentes fases de extrato de inulina de raízes de chicória, obtidas por abaixamento de temperatura Rheological characterization for different phases of inulin extract from chicory roots, obtained through temperature reduction

    Directory of Open Access Journals (Sweden)

    Juliana T. C. Leite

    2004-04-01

    Full Text Available A inulina é um ingrediente funcional, geralmente empregado na indústria alimentícia como substituto do açúcar ou da gordura. Esse ingrediente pode ser encontrado em diversos produtos vegetais, incluindo as raízes de chicória. Por ser um produto com solubilidade variável com a temperatura, a inulina sofre uma separação de fases ao ser resfriada, originando uma fase precipitada, mais viscosa, e uma fase sobrenadante, de menor viscosidade. O estudo das propriedades reológicas das diferentes fases do extrato de inulina é importante para o projeto de equipamentos, como misturadores e bombas. Neste trabalho, foi estudado o comportamento reológico, para três condições distintas de temperatura (25; 40 e 50 ºC, das fases sobrenadante e precipitada do extrato líquido de inulina, extraído de raízes de chicória por difusão em água quente e resfriado a duas temperaturas distintas (8 e -10 ºC, sofrendo separação de fases. A fase precipitada foi analisada em duas condições: pura e com a adição de agentes microencapsulantes. Todos apresentaram um comportamento linear, semelhante ao dos "Plásticos de Bingham", porém, nem todos se ajustaram a esse modelo.Inulin is a functional food ingredient, generally employed as sugar or fat substitute in food systems. This ingredient can be found in several vegetal products, including chicory roots. As the solubility of inulin is susceptible to temperature changes, the product suffers a fractionalization resulting in two phases when cooled, originating a precipitated phase, more viscose, and a liquid phase, of lesser viscosity. The study of rheological properties of different phases of inulin extract is important for equipment designing, such as mixer and bombs. In this work, rheological behavior at three different temperatures (25; 40 and 50 ºC was determined for liquid and precipitated phases of inulin liquid extract, extracted from chicory roots by hot water diffusion and cooled at two

  7. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics.

    Science.gov (United States)

    Poulose, Anesh Manjaly; Elnour, Ahmed Yagoub; Anis, Arfat; Shaikh, Hamid; Al-Zahrani, S M; George, Justin; Al-Wabel, Mohammad I; Usman, Adel R; Ok, Yong Sik; Tsang, Daniel C W; Sarmah, Ajit K

    2018-04-01

    The application of biochar (BC) as a filler in polymers can be viewed as a sustainable approach that incorporates pyrolysed waste based value-added material and simultaneously mitigate bio-waste in a smart way. The overarching aim of this work was to investigate the electrical, mechanical, thermal and rheological properties of biocomposite developed by utilizing date palm waste-derived BC for the reinforcing of polypropylene (PP) matrix. Date palm waste derived BC prepared at (700 and 900°C) were blended at different proportions with polypropylene and the resultant composites (BC/PP) were characterized using an array of techniques (scanning electron microscope, energy-dispersive X-ray spectroscopy and Fourier transform infra-red spectroscopy). Additionally the thermal, mechanical, electrical and rheological properties of the BC/PP composites were evaluated at different loading of BC content (from 0 to15% w/w). The mechanical properties of BC/PP composites showed an improvement in the tensile modulus while that of electrical characterization revealed an enhanced electrical conductivity with increased BC loading. Although the BC incorporation into the PP matrix has significantly reduced the total crystallinity of the resulted composites, however; a positive effect on the crystallization temperature (T c ) was observed. The rheological characterization of BC/PP composites revealed that the addition of BC had minimal effect on the storage modulus (G') compared to the neat (PP). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    Science.gov (United States)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  9. Multivariate models for prediction of rheological characteristics of filamentous fermentation broth from the size distribution.

    Science.gov (United States)

    Petersen, Nanna; Stocks, Stuart; Gernaey, Krist V

    2008-05-01

    The main purpose of this article is to demonstrate that principal component analysis (PCA) and partial least squares regression (PLSR) can be used to extract information from particle size distribution data and predict rheological properties. Samples from commercially relevant Aspergillus oryzae fermentations conducted in 550 L pilot scale tanks were characterized with respect to particle size distribution, biomass concentration, and rheological properties. The rheological properties were described using the Herschel-Bulkley model. Estimation of all three parameters in the Herschel-Bulkley model (yield stress (tau(y)), consistency index (K), and flow behavior index (n)) resulted in a large standard deviation of the parameter estimates. The flow behavior index was not found to be correlated with any of the other measured variables and previous studies have suggested a constant value of the flow behavior index in filamentous fermentations. It was therefore chosen to fix this parameter to the average value thereby decreasing the standard deviation of the estimates of the remaining rheological parameters significantly. Using a PLSR model, a reasonable prediction of apparent viscosity (micro(app)), yield stress (tau(y)), and consistency index (K), could be made from the size distributions, biomass concentration, and process information. This provides a predictive method with a high predictive power for the rheology of fermentation broth, and with the advantages over previous models that tau(y) and K can be predicted as well as micro(app). Validation on an independent test set yielded a root mean square error of 1.21 Pa for tau(y), 0.209 Pa s(n) for K, and 0.0288 Pa s for micro(app), corresponding to R(2) = 0.95, R(2) = 0.94, and R(2) = 0.95 respectively. Copyright 2007 Wiley Periodicals, Inc.

  10. Rheology of spreadable goat cheese made with autochthonous lactic cultures differing in their ability to produce exopolysaccharides

    Directory of Open Access Journals (Sweden)

    Frau Silvia Florencia

    2013-06-01

    Full Text Available The aim of this study was to compare the rheology of spreadable cheeses elaborated with autochthonous lactic starter cultures without the addition of exopolysaccharide-producing strain in the same starter with exopolysaccharide-producing strain. From a rheological standpoint, both samples were characterized as weak viscoelastic gels and pseudoplastic products. It was concluded that cheese made with exopolysaccharide-producing strain showed smaller G', G", and η* values over the range of frequencies studied and smaller critic stress values than the cheese without exopolysaccharide-producing strain. The results obtained indicate that cheeses without exopolysaccharide-producing strain need to be added with any texture enhancer product.

  11. PLA/Bio-PE blends: effect of the Bio-PE content on the crystallinity rheological properties

    International Nuclear Information System (INIS)

    Araujo, Aylanna P.M. de; Agrawal, Pankaj; Cavalcanti, Shirley N.; Alves, Amanda M.; Melo, Tomas J.A. de; Brito, Gustavo F.

    2014-01-01

    The aim of this work is to evaluate the effect of the Bio-PE content on the crystallinity and rheological properties of PLA/Bio-PE blend. The blends containing 05 and 15% of Bio-PE were prepared by extrusion followed by injection molding and characterized by X-Ray Diffraction (XRD) and rheological properties at low and high shear rates. XRD results indicated that the PLA present low crystallinity and this behavior was not changed with the addition of Bio-PE, regardless of Bio-PE content. Rheological properties results indicated that at low shear rates the viscosity of the PLA/Bio-PE increased with the increase in the Bio-PE content while at high shear rates the viscosities where almost similar, which may be ascribed to the orientation of Bio-PE particles in the flow direction or by the viscous dissipation. (author)

  12. Interfacial transport processes and rheology

    CERN Document Server

    Brenner, Howard

    1991-01-01

    This textbook is designed to provide the theory, methods of measurement, and principal applications of the expanding field of interfacial hydrodynamics. It is intended to serve the research needs of both academic and industrial scientists, including chemical or mechanical engineers, material and surface scientists, physical chemists, chemical and biophysicists, rheologists, physiochemical hydrodynamicists, and applied mathematicians (especially those with interests in viscous fluid mechanics and continuum mechanics).As a textbook it provides materials for a one- or two-semester graduate-level

  13. Investigation of the rheological properties of human semen

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, P.F. (Purdue Univ., West Lafayette, IN); Picologlou, B.F.

    1977-01-01

    The results of an investigation of the previously undetermined rheological properties of human semen using a modified, multiple-point capillary viscometer are presented. The design of a viscometer, specifically constructed to give accurate, instantaneous pressure gradient and material flow rate records of biological viscoelastic fluids whose rheological properties are possibly changing with time is given. Using this device, measurements are made on human semen immediately following ejaculation. An analytical scheme for the data reduction, suitable for non-linear viscoelastic fluids of the Maxwell-type, is offered. An expression is developed for a non-linear Maxwell-type viscoelastic fluid flow in a circular tube, relating the material's elastic properties to the distance of recoil and the pressure gradient. In the case of a power-law elastic behavior this relation couples the wall shear stress with the recoil distance through an apparent shear modulus. Previously established procedures for the viscous response analysis are utilized and an approximate non-dimensional parameter is introduced allowing one to ascertain the relative contributions of the elastic and viscous components to the rate of flow. Results show the elastic and viscous properties of human semen to be functions of time following ejaculation and frequency of ejaculation. The elastic component is found to have a linear response over the shear stress range investigated, whereas the viscous component is found to exhibit a power-law behavior. The final equilibrium state is characterized by Newtonian behavior, with mean absolute viscosity of 3.37 centipoise. Finally, similarity among all cases examined is found for each material property through consideration of a non-dimensional time, t*, determined from semen liquefaction time and time post ejaculation.

  14. Construction and Characterization of a Chitosan-Immobilized-Enzyme and β-Cyclodextrin-Included-Ferrocene-Based Electrochemical Biosensor for H2O2 Detection

    Directory of Open Access Journals (Sweden)

    Wenbo Dong

    2017-07-01

    Full Text Available An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT and β-cyclodextrin-included-ferrocene (β-CD-FE complex for the determination of H2O2. Ferrocene (FE was included in β-cyclodextrin (β-CD to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H2O2. It was found that the CTS-CAT could produce a strong reduction peak current in response to H2O2 and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H2O2 concentration in the range of 1.0 × 10−7–6.0 × 10−3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin.

  15. Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow

    Science.gov (United States)

    Cagney, Neil; Balabani, Stavroula

    2017-11-01

    Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.

  16. Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2015-03-01

    Full Text Available In view of the limitations of the existing Newton fluid effects on the vortex flow mechanism study, numerical analysis of non Newton fluid effects was presented. Using Reynolds stress turbulence model (RSM and mixed multiphase flow model (Mixture of FLUENT (fluid calculation software and combined with the constitutive equation of apparent viscosity of non-Newtonian fluid, the typical non-Newtonian fluid (drilling fluid, polymer flooding sewage and crude oil as medium and Newton flow field (water as medium were compared by quantitative analysis. Based on the research results of water, the effects of non-Newtonian rheology on the key parameters including the combined vortex motion index n and tangential velocity were analyzed. The study shows that: non-Newtonian rheology has a great effect on tangential velocity and n value, and tangential velocity decreases with non-Newtonian increasing. The three kinds of n values (constant segment are: 0.564(water, 0.769(polymer flooding sewage, 0.708(drilling fluid and their variation amplitudes are larger than Newtonian fluid. The same time, non-Newtonian rheology will lead to the phenomenon of turbulent drag reduction in the vortex flow field. Compared with the existing formula calculation results shown, the calculation result of non-Newtonian rheology is most consistent with the simulation result, and the original theory has large deviations. The study provides reference for theory research of non-Newtonian cyclone separation flow field.

  17. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  18. In situ rheology of the oceanic lithosphere along the Hawaiian ridge

    Science.gov (United States)

    Pleus, A.; Ito, G.; Wessel, P.; Frazer, L. N.

    2017-12-01

    Much of our quantitative understanding of lithospheric rheology is based on rock deformation experiments carried out in the laboratory. The accuracy of the relationships between stress and lithosphere deformation, however, are subject to large extrapolations, given that laboratory strain rates (10-7 s-1) are much greater than geologic rates (10-15 to 10-12 s-1). In situ deformation experiments provide independent constraints and are therefore needed to improve our understanding of natural rheology. Zhong and Watts [2013] presented such a study around the main Hawaiian Islands and concluded that the lithosphere flexure requires a much weaker rheology than predicted by laboratory experiments. We build upon this study by investigating flexure around the older volcanoes of the Hawaiian ridge. The ridge is composed of a diversity of volcano sizes that loaded seafloor of nearly constant age (85+/-8 Ma); this fortunate situation allows for an analysis of flexural responses to large variations in applied loads at nearly constant age-dependent lithosphere thermal structure. Our dataset includes new marine gravity and multi-beam bathymetry data collected onboard the Schmidt Ocean Institute's R/V Falkor. These data, along with forward models of lithospheric flexure, are used to obtain a joint posterior probability density function for model parameters that control the lithosphere's flexural response to a given load. These parameters include the frictional coefficient constraining brittle failure in the shallow lithosphere, the activation energy for the low-temperature plasticity regime, and the geothermal gradient of the Hawaiian lithosphere. The resulting in situ rheological parameters may be used to verify or update those derived in the lab. Attaining accurate lithospheric rheological properties is important to our knowledge, not only of the evolution of the Hawaiian lithosphere, but also of other solid-earth geophysical problems, such as oceanic earthquakes, subduction

  19. HWVP NCAW melter feed rheology FY 1993 testing and analyses: Letter report

    International Nuclear Information System (INIS)

    Smith, P.A.

    1996-03-01

    The Hanford Waste Vitrification Plant (HWVP) program has been established to immobilize selected Hanford nuclear wastes before shipment to a geologic repository. The HWVP program is directed by the U.S. Department of Energy (DOE). The Pacific Northwest Laboratory (PNL) provides waste processing and vitrification technology to assist the design effort. The focus of this letter report is melter feed rheology, Process/Product Development, which is part of the Task in the PNL HWVP Technology Development (PHTD) Project. Specifically, the melter feed must be transported to the liquid fed ceramic melter (LFCM) to ensure HWVP operability and the manufacture of an immobilized waste form. The objective of the PHTD Project slurry flow technology development is to understand and correlate dilute and concentrated waste, formatted waste, waste with recycle addition, and melter feed transport properties. The objectives of the work described in this document were to examine frit effects and several processing conditions on melter feed rheology. The investigated conditions included boiling time, pH, noble metal containing melter feed, solids loading, and aging time. The results of these experiments contribute to the understanding of melter feed rheology. This document is organized in eight sections. This section provides the introductory remarks, followed by Section 2.0 that contains conclusions and recommendations. Section 3.0 reviews the scientific principles, and Section 4.0 details the experimental methods. The results and discussion and the review of related rheology data are in Sections 5.0 and 6.0, respectively. Section 7.0, an analysis of NCAW melter feed rheology data, provides an overall review of melter feed with FY 91 frit. References are included in Section 8.0. This letter report satisfies contractor milestone PHTD C93-03.02E, as described in the FY 1993 Pacific Northwest Hanford Laboratory Waste Plant Technology Development (PHTD) Project Work Plan

  20. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model

    International Nuclear Information System (INIS)

    Hiatt, Jessica R.; Davis, Stephen D.; Rivard, Mark J.

    2015-01-01

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10 10 histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an 125 I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose function

  1. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model

    Energy Technology Data Exchange (ETDEWEB)

    Hiatt, Jessica R. [Department of Radiation Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903 (United States); Davis, Stephen D. [Department of Medical Physics, McGill University Health Centre, Montreal, Quebec H3G 1A4 (Canada); Rivard, Mark J., E-mail: mark.j.rivard@gmail.com [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2015-06-15

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an {sup 125}I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose

  2. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model.

    Science.gov (United States)

    Hiatt, Jessica R; Davis, Stephen D; Rivard, Mark J

    2015-06-01

    The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10(10) histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an (125)I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose function ratio between the current

  3. Styrene-spaced copolymers including anthraquinone and β-O-4 lignin model units: synthesis, characterization and reactivity under alkaline pulping conditions.

    Science.gov (United States)

    Megiatto, Jackson D; Cazeils, Emmanuel; Ham-Pichavant, Frédérique; Grelier, Stéphane; Gardrat, Christian; Castellan, Alain

    2012-05-14

    A series of random copoly(styrene)s has been synthesized via radical polymerization of functionalized anthraquinone (AQ) and β-O-4 lignin model monomers. The copolymers were designed to have a different number of styrene spacer groups between the AQ and β-O-4 lignin side chains aiming at investigating the distance effects on AQ/β-O-4 electron transfer mechanisms. A detailed molecular characterization, including techniques such as size exclusion chromatography, MALDI-TOF mass spectrometry, and (1)H, (13)C, (31)P NMR and UV-vis spectroscopies, afforded quantitative information about the composition of the copolymers as well as the average distribution of the AQ and β-O-4 groups in the macromolecular structures. TGA and DSC thermal analysis have indicated that the copolymers were thermally stable under regular pulping conditions, revealing the inertness of the styrene polymer backbone in the investigation of electron transfer mechanisms. Alkaline pulping experiments showed that close contact between the redox active side chains in the copolymers was fundamental for an efficient degradation of the β-O-4 lignin model units, highlighting the importance of electron transfer reactions in the lignin degradation mechanisms catalyzed by AQ. In the absence of glucose, AQ units oxidized phenolic β-O-4 lignin model parts, mainly by electron transfer leading to vanillin as major product. By contrast, in presence of glucose, anthrahydroquinone units (formed by reduction of AQ) reduced the quinone-methide units (issued by dehydration of phenolic β-O-4 lignin model part) mainly by electron transfer leading to guaiacol as major product. Both processes were distance dependent.

  4. Mechanical, Rheological and Thermal Properties of Polystyrene/1-Octadecanol Modified Carbon Nanotubes Nanocomposites

    KAUST Repository

    Amr, Issam Thaher

    2014-09-04

    The results of the studies on the functionalization of multi-walled carbon nanotubes (MWCNT) with 1-octadecanol and its usage as reinforcing filler in the bulk polymerization of styrene are reported in this article. Both unmodified and modified CNTs were utilized in different loadings, however, without any initiator. The resulting composites were characterized by using mechanical testing, differential scanning calorimetry, thermogravimetric analysis and melt rheology. The tensile tests show the addition of 0.5wt% of CNT-C18 results in 19.5% increment of Young\\'s modulus. The DSC study shows a decrease in T-g values of prepared PS/CNT nanocomposite. The rheological study was conducted at 190 degrees C and shows that addition of pure CNT increased the viscoelastic behavior of the PS matrices, while the CNT-C18 act as plasticizer. Thermogravimetric analysis shows that the incorporation of CNT into PS enhanced the thermal properties significantly.

  5. Sidewall-friction-driven ordering transition in granular channel flows: Implications for granular rheology.

    Science.gov (United States)

    Mandal, Sandip; Khakhar, D V

    2017-11-01

    We report a transition from a disordered state to an ordered state in the flow of nearly monodisperse granular matter flowing in an inclined channel with planar slide walls and a bumpy base, using discrete element method simulations. For low particle-sidewall friction coefficients, the flowing particles are disordered, however, for high sidewall friction, an ordered state is obtained, characterized by a layering of the particles and hexagonal packing of the particles in each layer. The extent of ordering, quantified by the local bond-orientational order parameter, varies in the cross section of the channel, with the highest ordering near the sidewalls. The flow transition significantly affects the local rheology-the effective friction coefficient is lower, and the packing fraction is higher, in the ordered state compared to the disordered state. A simple model, incorporating the extent of local ordering, is shown to describe the rheology of the system.

  6. Rheological behaviour of the commercial fluid mass modified by starch to be used in pressure casting

    International Nuclear Information System (INIS)

    Weng, L.Y.; Araujo, M.S. de; Cerri, J.A.

    2011-01-01

    In this paper was studied the adjust of two commercial ceramic masses (A and B) with silicate of sodium, starch and NaOH for pressure casting. The distribution and size of particles and the chemical composition of the masses had been characterized. In a first stage, the silicate of sodium concentrations in A (1%) and B (0.6%) had been determined by deflocculating curves of suspensions with 65% of solids. In one second stage was analyzed the rheological behavior after remaining in rest for 10 and 120 minutes. The starch as the sodium hydroxy can serve as reducing of viscosity, however above of a relation starch/sodium hydroxy is possible to observe the gelling effect. The maximum value of starch / NaOH, in order not to modify in significant way the rheological behavior for the Mass A and the B were 0.75% / 0.75% and 0.50% / 0.50%. (author)

  7. Rheology of multiphase polymer systems using novel "melt rigidity" evaluation approach

    Science.gov (United States)

    Kracalik, Milan

    2015-04-01

    Multiphase polymer systems like blends, composites and nanocomposites exhibit complex rheological behaviour due to physical and also possibly chemical interactions between individual phases. Up to now, rheology of heterogeneous polymer systems has been usually described by evaluation of viscosity curve (shear thinning phenomenon), storage modulus curve (formation of secondary plateau) or plotting information about damping behaviour (e.g. Van Gurp-Palmen-plot). On the contrary to evaluation of damping behaviour, "melt rigidity" approach has been introduced for description of physical network of rigid particles in polymer matrix as relation of ∫G'/∫G" over specific frequency range. This approach has been experimentally proved for polymer nanocomposites in order to compare shear flow characteristics with elongational flow field. In this contribution, LDPE-clay nanocomposites with different dispersion grades (physical networks) have been prepared and characterized by both conventional as well as novel "melt rigidity" approach.

  8. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    Workability; viscosity; cement paste; high range water reducing admixture. Abstract. The rheological behaviour of Self-Compacting Micro-Concrete (SCMC) mixtures has been investigated within the scope of this paper. Rheological measurements have been performed using a novel rheometer equipped with a ball ...

  9. Rheology of Cementitious Materials: Alkali-Activated Materials or Geopolymers

    Directory of Open Access Journals (Sweden)

    Puertas F.

    2018-01-01

    Understanding and controlling the rheology of the AAMs systems will ultimately determine whether they can be implemented in the market, and will open up greater competitive possibilities in a crisis-affected sector. A systematic study of the factors that affect the rheological properties of AAMs (pastes, mortars and concretes is therefore necessary in order to ultimately develop more resistant and durable materials.

  10. Influence of enzymes and ascorbic acid on dough rheology and ...

    African Journals Online (AJOL)

    Influence of enzymes and ascorbic acid on dough rheology and wheat bread quality. ... Journal Home > Vol 15, No 3 (2016) >. Log in or ... Seven bread formulations containing different concentrations of these ... The rheological properties of each dough formulation were determined by moisture, gluten and farinograph tests.

  11. The effects of cryopreservation on red blood cell rheologic properties

    NARCIS (Netherlands)

    Henkelman, Sandra; Lagerberg, Johan W. M.; Graaff, Reindert; Rakhorst, Gerhard; van Oeveren, Willem

    2010-01-01

    BACKGROUND: In transfusion medicine, frozen red blood cells (RBCs) are an alternative for liquid-stored RBCs. Little is known about the rheologic properties (i.e., aggregability and deformability) of thawed RBCs. In this study the rheologic properties of high-glycerol frozen RBCs and postthaw stored

  12. Textural Properties of Agarose Gels described by FT-Rheology

    NARCIS (Netherlands)

    Klein, C.O.; Venema, P.; Sagis, L.M.C.; Linden, van der E.

    2008-01-01

    Large Amplitude Oscillatory Shear was used to determine the non-linear rheological properties of agarose gels. The analysis was performed with the characteristic functions method based on FT-Rheology, that gives access to a physical interpretation of the non-linear regime. This analysis was then

  13. Bread dough rheology: Computing with a damage function model

    Science.gov (United States)

    Tanner, Roger I.; Qi, Fuzhong; Dai, Shaocong

    2015-01-01

    We describe an improved damage function model for bread dough rheology. The model has relatively few parameters, all of which can easily be found from simple experiments. Small deformations in the linear region are described by a gel-like power-law memory function. A set of large non-reversing deformations - stress relaxation after a step of shear, steady shearing and elongation beginning from rest, and biaxial stretching, is used to test the model. With the introduction of a revised strain measure which includes a Mooney-Rivlin term, all of these motions can be well described by the damage function described in previous papers. For reversing step strains, larger amplitude oscillatory shearing and recoil reasonable predictions have been found. The numerical methods used are discussed and we give some examples.

  14. Role of pluronics on rheological, drying and crack initiation of 'suckable' gels of decontamination

    International Nuclear Information System (INIS)

    Bousquet, C.

    2007-12-01

    The aim of this work was to understand the role of an addition of pluronics on the rheological behaviour, the drying and the fracturing of 'suckable' gels used for nuclear decontamination. The system studied was an aqueous suspension of silica (100 g/L of Aerosil 380) in a strong acidic medium (HNO 3 /H 3 PO 4 1.5 mol/L/1.5 mol/L) in presence of pluronics. Pluronics are amphiphilic tri-blocks copolymers composed of ethylene poly-oxide blocks and of propylene poly-oxide. The first part of this study deals with the characterization of the rheological properties of the gels. From viscosity retaking measurements, flow rheo-grams analysis and the viscoelastic properties of the gels, have been determined an improvement of the rheological properties of the gels significant from the addition of 5 g/L of copolymer. In a second part, the determination of adsorption isotherms coupled to small angles neutrons diffusion measurements has revealed that copolymers are adsorbed flat on silica in bridging the aggregates between them and that the improvement of the rheological behaviour of the gels is due to the increase of the bonds density of the gelled lattice. Moreover, beyond 10 g/L, the adsorption saturation of copolymers at the surface of the silica prevents the bridging of the aggregates which induces the gel destabilization. The last part of this work deals with the characterization of characteristic values of drying and of crack initiation of gels. Then is revealed a relation between the drying kinetics and the formation of cracks in the gel layer. Moreover, the study of the evolution of stresses in the gel layer during time allows to reveal that the addition of pluronics to the formulation of gels allows to improve the gel resistance to the crack initiation and to the delamination. (O.M.)

  15. Electrical resistivity and rheological properties of sensing bentonite drilling muds modified with lightweight polymer

    Directory of Open Access Journals (Sweden)

    Ahmed S. Mohammed

    2018-03-01

    Full Text Available In this study, the electrical resistivity and rheological properties of a water-based bentonite clay drilling mud modified with the lightweight polymer (guar gum under various temperature were investigated. Based on the experimental and analytical study, the electrical resistivity was identified as the sensing property of the bentonite drilling mud so that the changes in the properties can be monitored in real-time during the construction. The bentonite contents in the drilling muds were varied up to 8% by the weight of water and temperature was varied from 25 °C to 85 °C. The guar gum content (GG% was varied between 0% and 1% by the weight of the drilling mud to modify the rheological properties and enhance the sensing electrical resistivity of the drilling mud. The guar gum and bentonite clay were characterized using thermal gravimetric analysis (TGA. The total weight loss at 800 °C for the bentonite decreased from 12.96% to 0.7%, about 95% reduction, when the bentonite was mixed with 1% of guar gum. The results also showed that 1% guar gum decreased the electrical resistivity of the drilling mud from 50% to 90% based on the bentonite content and the temperature of the drilling mud. The guar gum modification increased the yield point (YP and plastic viscosity (PV by 58% to 230% and 44% to 77% respectively based on the bentonite content and temperature of the drilling mud. The rheological properties of the drilling muds have been correlated to the electrical resistivity of the drilling mud using nonlinear power and hyperbolic relationships. The model predictions agreed well with the experimental results. Hence the performance of the bentonite drilling muds with and without guar gum can be characterized based on the electrical resistivity which can be monitored real-time in the field. Keywords: Bentonite, Polymer (Guar gum, Electrical resistivity, Rheological properties, Temperature, Modeling

  16. Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions

    Science.gov (United States)

    Thijssen, J. H. J.; Vermant, J.

    2018-01-01

    Interface-dominated materials are commonly encountered in both science and technology, and typical examples include foams and emulsions. Conventionally stabilised by surfactants, emulsions can also be stabilised by micron-sized particles. These so-called Pickering-Ramsden (PR) emulsions have received substantial interest, as they are model arrested systems, rather ubiquitous in industry and promising templates for advanced materials. The mechanical properties of the particle-laden liquid-liquid interface, probed via interfacial rheology, have been shown to play an important role in the formation and stability of PR emulsions. However, the morphological processes which control the formation of emulsions and foams in mixing devices, such as deformation, break-up, and coalescence, are complex and diverse, making it difficult to identify the precise role of the interfacial rheological properties. Interestingly, the role of interfacial rheology in the stability of bicontinuous PR emulsions (bijels) has been virtually unexplored, even though the phase separation process which leads to the formation of these systems is relatively simple and the interfacial deformation processes can be better conceptualised. Hence, the aims of this topical review are twofold. First, we review the existing literature on the interfacial rheology of particle-laden liquid interfaces in rheometrical flows, focussing mainly on model latex suspensions consisting of polystyrene particles carrying sulfate groups, which have been most extensively studied to date. The goal of this part of the review is to identify the generic features of the rheology of such systems. Secondly, we will discuss the relevance of these results to the formation and stability of PR emulsions and bijels.

  17. In situ rheology of yeast biofilms.

    Science.gov (United States)

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation.

  18. Vortex jamming in superconductors and granular rheology

    International Nuclear Information System (INIS)

    Yoshino, Hajime; Nogawa, Tomoaki; Kim, Bongsoo

    2009-01-01

    We demonstrate that a highly frustrated anisotropic Josephson junction array (JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i.e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress versus shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as exotic fragile vortex matter: it behaves as a superconductor (vortex glass) in one direction, whereas it is a normal conductor (vortex liquid) in the other direction even at zero temperature. Furthermore, we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields-the rheology of soft materials and superconductivity.

  19. Analysis of rheological properties of bone cements.

    Science.gov (United States)

    Nicholas, M K D; Waters, M G J; Holford, K M; Adusei, G

    2007-07-01

    The rheological properties of three commercially available bone cements, CMW 1, Palacos R and Cemex ISOPLASTIC, were investigated. Testing was undertaken at both 25 and 37 degrees C using an oscillating parallel plate rheometer. Results showed that the three high viscosity cements exhibited distinct differences in curing rate, with CMW 1 curing in 8.7 min, Palacos R and Cemex ISOPLASTIC in 13 min at 25 degrees C. Furthermore it was found that these curing rates were strongly temperature dependent, with curing rates being halved at 37 degrees C. By monitoring the change of viscosity with time over the entire curing process, the results showed that these cements had differing viscosity profiles and hence exhibit very different handling characteristics. However, all the cements reached the same maximum viscosity of 75 x 10(3) Pa s. Also, the change in elastic/viscous moduli and tan delta with time, show the cements changing from a viscous material to an elastic solid with a clear peak in the viscous modulus during the latter stages of curing. These results give valuable information about the changes in rheological properties for each commercial bone cement, especially during the final curing process.

  20. Dynamics and Rheology of Soft Colloidal Glasses

    KAUST Repository

    Wen, Yu Ho

    2015-01-20

    © 2015 American Chemical Society. The linear viscoelastic (LVE) spectrum of a soft colloidal glass is accessed with the aid of a time-concentration superposition (TCS) principle, which unveils the glassy particle dynamics from in-cage rattling motion to out-of-cage relaxations over a broad frequency range 10-13 rad/s < ω < 101 rad/s. Progressive dilution of a suspension of hairy nanoparticles leading to increased intercenter distances is demonstrated to enable continuous mapping of the structural relaxation for colloidal glasses. In contrast to existing empirical approaches proposed to extend the rheological map of soft glassy materials, i.e., time-strain superposition (TSS) and strain-rate frequency superposition (SRFS), TCS yields a LVE master curve that satis fies the Kramers-Kronig relations which interrelate the dynamic moduli for materials at equilibrium. The soft glassy rheology (SGR) model and literature data further support the general validity of the TCS concept for soft glassy materials.

  1. Rheological changes in irradiated chicken eggs

    Science.gov (United States)

    Ferreira, Lúcia F. S.; Del Mastro, Nélida L.

    1998-06-01

    Pathogenic bacteria may cause foodborne illnesses. Humans may introduce pathogens into foods during production, processing, distribution and or preparation. Some of these microorganisms are able to survive conventional preservation treatments. Heat pasteurization, which is a well established and satisfactory means of decontamination/disinfection of liquid foods, cannot efficiently achieve a similar objective for solid foods. Extensive work carried out worldwide has shown that irradiation is efficient in eradicating foodborne pathogens like Salmonella spp. that can contaminate poultry products. In this work Co-60 gamma irradiation was applied to samples of industrial powder white, yolk and whole egg at doses between 0 and 25 kGy. Samples were rehydrated and the viscosity measured in a Brookfield viscosimeter, model DV III at 5, 15 and 25°C. The rheological behaviour among the various kinds of samples were markedly different. Irradiation with doses up to 5 kGy, known to reduced bacterial contamination to non-detectable levels, showed almost no variation of viscosity of irradiated egg white samples. On the other hand, whole or yolk egg samples showed some changes in rheological properties depending on the dose level, showing the predominance of whether polimerization or degradation as a result of the irradiation. Additionally, irradiation of yolk egg powder reduced yolk color as a function of the irradiation exposure implemented. The importance of these results are discussed in terms of possible industrial applications.

  2. Rheological Behavior of Bentonite-Polyester Dispersions

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Omari, Salah Addin

    2013-07-01

    The rheological behavior of a bentonite clay dispersed in unsaturated polyester was investigated. The effects of the solid content and particle size on the steady and transient rheological properties of the dispersions were studied. In addition, two types of bentonite with different Na+/Ca+2 ratio were used in this study. The Herschel-Bulkley and the Weltman models were used to describe the apparent viscosity of the bentonite-polyester composite in relation to the shear rate and shearing time. The bentonite-polyester dispersions were found to exhibit both Newtonian and non-Newtonian behavior. The transition from a Newtonian to a Bingham plastic and then to a shear-thinning material with a yield stress was found to depend on the solid concentration, the particle size, and the type of bentonite. At a low solid content, the apparent viscosity of the bentonite dispersion increased linearly with solid concentration. But a dramatic increase in the apparent viscosity beyond a solid content of 20 wt.% was observed. On the other hand, a thixotropic behavior was detected in bentonite-polyester dispersions with a high solid content and a low particle size. However, this behavior was more pronounced in dispersions with a high Na+/Ca+2 ratio.

  3. Rheological changes in irradiated chicken eggs

    International Nuclear Information System (INIS)

    Ferreira, Lucia F. S.; Del Mastro, Nelida L.

    1998-01-01

    Pathogenic bacteria may cause foodborne illnesses. Humans may introduce pathogens into foods during production, processing, distribution and or preparation. Some of these microorganisms are able to survive conventional preservation treatments. Heat pasteurization, which is a well established and satisfactory means of decontamination/disinfection of liquid foods, cannot efficiently achieve a similar objective for solid foods. Extensive work carried out worldwide has shown that irradiation is efficient in eradicating foodborne pathogens like Salmonella spp. that can contaminate poultry products. In this work Co-60 gamma irradiation was applied to samples of industrial powder white, yolk and whole egg at doses between 0 and 25 kGy. Samples were rehydrated and the viscosity measured in a Brookfield viscosimeter, model DV III at 5, 15 and 25 degree sign C. The rheological behaviour among the various kinds of samples were markedly different. Irradiation with doses up to 5 kGy, known to reduced bacterial contamination to non-detectable levels, showed almost no variation of viscosity of irradiated egg white samples. On the other hand, whole or yolk egg samples showed some changes in rheological properties depending on the dose level, showing the predominance of whether polimerization or degradation as a result of the irradiation. Additionally, irradiation of yolk egg powder reduced yolk color as a function of the irradiation exposure implemented. The importance of these results are discussed in terms of possible industrial applications

  4. 2nd International Conference on Rheology and Modeling of Materials (IC-RMM2)

    International Nuclear Information System (INIS)

    2017-01-01

    , nanomaterials, medical- and biomaterials, cosmetics, coatings, light metals, alloys, glasses, films, composites, hetero-modulus, hetero-viscous, hetero-plastic complex materials, petrochemicals and hybrid materials. Multidisciplinary applications of rheology and rheological modeling in material science and technology encountered in sectors like alloys, ceramics, glasses, thin films, polymers, clays, construction materials, energy, aerospace, automotive and marine industry. Rheology in food, chemistry, medicine, biosciences and environmental sciences are of particular interests. In accordance to the program of the conference ic-rmm2 and symposiums is-pim1 and isrfs1 we have received more than 250 inquires and registrations from different organizations. Finally more than 240 abstracts were accepted for presentation. From them 12 were PLENARY lectures and 112 ORAL presentation. Researchers from 41 countries of Asia, Europe, Africa, North and South America arrived to Miskolc-Lillafüred (Hungary) and participated in the events of the conference. Including co-authors, the research work of more than 700 scientists were presented in the SESSIONS and SYMPOSIUMS of ic-rmm2 conference. Prof. Dr. László A. Gömze chair, ic-rmm2 (paper)

  5. 2nd International Conference on Rheology and Modeling of Materials (IC-RMM2)

    Science.gov (United States)

    2017-01-01

    , nanomaterials, medical- and biomaterials, cosmetics, coatings, light metals, alloys, glasses, films, composites, hetero-modulus, hetero-viscous, hetero-plastic complex materials, petrochemicals and hybrid materials. Multidisciplinary applications of rheology and rheological modeling in material science and technology encountered in sectors like alloys, ceramics, glasses, thin films, polymers, clays, construction materials, energy, aerospace, automotive and marine industry. Rheology in food, chemistry, medicine, biosciences and environmental sciences are of particular interests. In accordance to the program of the conference ic-rmm2 and symposiums is-pim1 and isrfs1 we have received more than 250 inquires and registrations from different organizations. Finally more than 240 abstracts were accepted for presentation. From them 12 were PLENARY lectures and 112 ORAL presentation. Researchers from 41 countries of Asia, Europe, Africa, North and South America arrived to Miskolc-Lillafüred (Hungary) and participated in the events of the conference. Including co-authors, the research work of more than 700 scientists were presented in the SESSIONS and SYMPOSIUMS of ic-rmm2 conference. Prof. Dr. László A. Gömze chair, ic-rmm2

  6. Silk Fibroin Degradation Related to Rheological and Mechanical Properties.

    Science.gov (United States)

    Partlow, Benjamin P; Tabatabai, A Pasha; Leisk, Gary G; Cebe, Peggy; Blair, Daniel L; Kaplan, David L

    2016-05-01

    Regenerated silk fibroin has been proposed as a material substrate for biomedical, optical, and electronic applications. Preparation of the silk fibroin solution requires extraction (degumming) to remove contaminants, but results in the degradation of the fibroin protein. Here, a mechanism of fibroin degradation is proposed and the molecular weight and polydispersity is characterized as a function of extraction time. Rheological analysis reveals significant changes in the viscosity of samples while mechanical characterization of cast and drawn films shows increased moduli, extensibility, and strength upon drawing. Fifteen minutes extraction time results in degraded fibroin that generates the strongest films. Structural analysis by wide angle X-ray scattering (WAXS) and Fourier transform infrared spectroscopy (FTIR) indicates molecular alignment in the drawn films and shows that the drawing process converts amorphous films into the crystalline, β-sheet, secondary structure. Most interesting, by using selected extraction times, films with near-native crystallinity, alignment, and molecular weight can be achieved; yet maximal mechanical properties for the films from regenerated silk fibroin solutions are found with solutions subjected to some degree of degradation. These results suggest that the regenerated solutions and the film casting and drawing processes introduce more complexity than native spinning processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Rheology of corn stover slurries during fermentation to ethanol

    Science.gov (United States)

    Ghosh, Sanchari; Epps, Brenden; Lynd, Lee

    2017-11-01

    In typical processes that convert cellulosic biomass into ethanol fuel, solubilization of the biomass is carried out by saccharolytic enzymes; however, these enzymes require an expensive pretreatment step to make the biomass accessible for solubilization (and subsequent fermentation). We have proposed a potentially-less-expensive approach using the bacterium Clostridium thermocellum, which can initiate fermentation without pretreatment. Moreover, we have proposed a ``cotreatment'' process, in which fermentation and mechanical milling occur alternately so as to achieve the highest ethanol yield for the least milling energy input. In order to inform the energetic requirements of cotreatment, we experimentally characterized the rheological properties of corn stover slurries at various stages of fermentation. Results show that a corn stover slurry is a yield stress fluid, with shear thinning behavior well described by a power law model. Viscosity decreases dramatically upon fermentation, controlling for variables such as solids concentration and particle size distribution. To the authors' knowledge, this is the first study to characterize the changes in the physical properties of biomass during fermentation by a thermophilic bacterium.

  8. {sup 13}C-METHYL FORMATE: OBSERVATIONS OF A SAMPLE OF HIGH-MASS STAR-FORMING REGIONS INCLUDING ORION-KL AND SPECTROSCOPIC CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Favre, Cécile; Bergin, Edwin A.; Crockett, Nathan R.; Neill, Justin L. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Carvajal, Miguel [Dpto. Física Aplicada, Unidad Asociada CSIC, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva (Spain); Field, David [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Jørgensen, Jes K.; Bisschop, Suzanne E. [Centre for Star and Planet Formation, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Brouillet, Nathalie; Despois, Didier; Baudry, Alain [Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac (France); Kleiner, Isabelle [Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS, UMR 7583, Université de Paris-Est et Paris Diderot, 61, Av. du Général de Gaulle, F-94010 Créteil Cedex (France); Margulès, Laurent; Huet, Thérèse R.; Demaison, Jean, E-mail: cfavre@umich.edu, E-mail: miguel.carvajal@dfa.uhu.es [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille I, F-59655 Villeneuve d' Ascq Cedex (France)

    2015-01-01

    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic center for methyl formate, HCOOCH{sub 3}, and its isotopologues H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the {sup 13}C-methyl formate isotopologue HCOO{sup 13}CH{sub 3} toward the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2, and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection of the {sup 13}C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the {sup 12}C/{sup 13}C isotope ratio in methyl formate toward the Orion-KL Compact Ridge and Hot Core-SW components (68.4 ± 10.1 and 71.4 ± 7.8, respectively) are, for both the {sup 13}C-methyl formate isotopologues, commensurate with the average {sup 12}C/{sup 13}C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the {sup 12}C/{sup 13}C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3} species. New spectroscopic data for both isotopomers H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}, presented in this study, have made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.

  9. Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge.

    Science.gov (United States)

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-01-01

    The effect of ultrasonication and Fenton oxidation as physico-chemical pre-treatment processes on the change of rheology of wastewater sludge was investigated in this study. Pre-treated and raw sludges displayed non-Newtonian rheological behaviour with shear thinning as well as thixotropic properties for total solids ranging from 10 g/L to 40 g/L. The rheological models, namely, Bingham plastic, Casson law, NCA/CMA Casson, IPC Paste, and power law were also studied to characterize flow of raw and pre-treated sludges. Among all rheological models, the power law was more prominent in describing the rheology of the sludges. Pre-treatment processes resulted in a decrease in pseudoplasticity of sludge due to the decrease in consistency index K varying from 42.4 to 1188, 25.6 to 620.4 and 52.5 to 317.9; and increase in flow behaviour index n changing from 0.5 to 0.35, 0.62 to 0.55 and 0.63 to 0.58, for RS, UlS and FS, respectively at solids concentration 10-40 g/L. The correlation between improvement of biodegradability and dewaterability, decrease in viscosity, and change in particle size as a function of sludge pre-treatment process was also investigated. Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. Biodegradability was also enhanced by the pre-treatment processes and the maximum value was obtained (64%, 77% and 73% for raw, ultrasonicated and Fenton oxidized sludges, respectively) at total solids concentration of 25 g/L. Hence, pre-treatment of wastewater sludge modified the rheological properties so that: (1) the flowability of sludge was improved for transport through the treatment train (via pipes and pumps); (2) the dewaterability of wastewater sludge was enhanced for eventual disposal and; (3) the assimilation of nutrients by microorganisms for further value-addition was increased.

  10. Rheological properties of cupuassu and cocoa fats

    Directory of Open Access Journals (Sweden)

    Gioielli, L. A.

    2004-06-01

    Full Text Available Cocoa butter is an important ingredient in chocolate formulation as it dictates the main properties (texture, sensation in the mouth, and gloss. In the food industry, the texture of fat-containing products strongly depends on the macroscopic properties of the fat network formed within the finished product. Cupuassu ( Theobroma grandiflorum , Sterculiaceae is an Amazonian native fruit and the seeds can be used to derive a cocoa butter like product. In general, these fats are similar to those of cocoa, although they are different in some physical properties. The objective of this study was to analyze several properties of the cupuassu fat and cocoa butter (crystal formation at 25 ° C, rheological properties, and fatty acid composition and mixtures between the two fats (rheological properties, in order to understand the behavior of these fats for their use in chocolate products. Fat flow was described using common rheological models ( Newton , Power Law, Casson and Bingham plastic.La manteca de cacao es un ingrediente muy importante en la formulación de chocolates y es responsable de la mayor parte de sus propiedades (textura, palatibilidad y brillo. En la industria de alimentos, la textura de productos que contienen grasa depende enormemente de las propiedades macroscópicas de la red cristalina de la grasa en el producto final. El cupuaçu es una fruta nativa de la región amazónica y sus semillas pueden ser usadas para obtener una grasa semejante a la manteca de cacao. En general, esta grasa es similar a la manteca de cacao, pero difiere en algunas de sus propiedades fisicas . El objetivo de este estudio fue analizar algunas propiedades de la grasa de cupuaçu y de la manteca de cacao (formación de cristales a 25 °C, propiedades reológicas y composición en ácidos grasos y de algunas mezclas entre las dos grasas (propiedades reológicas, a fin de conocer el comportamiento de estas grasas para ser usadas en productos de la industria

  11. Rheological Modeling and Characterization of Ficus platyphylla Gum Exudates

    Directory of Open Access Journals (Sweden)

    Nnabuk O. Eddy

    2013-01-01

    Full Text Available Ficus platyphylla gum exudates (FP gum have been analyzed for their physicochemical parameters and found to be ionic, mildly acidic, odourless, and yellowish brown in colour. The gum is soluble in water, sparingly soluble in ethanol, and insoluble in acetone and chloroform. The nitrogen (0.39% and protein (2.44% contents of the gum are relatively low. The concentrations of the cations were found to increase according to the following trend, Mn>Fe>Zn>Pb>Cu>Mg>Cd>Ca. Analysis of the FTIR spectrum of the gum revealed vibrations similar to those found in polysaccharides while the scanning electron micrograph indicated that the gum has irregular molecular shapes, arranged randomly. The intrinsic viscosity of FP gum estimated by extrapolating to zero concentrations in Huggins, Kraemer, Schulz-Blaschke, and Martin plots has an average value of 7 dL/g. From the plots of viscosity versus shear rate/speed of rotation and also that of shear stress versus shear rate, FP gum can be classified as a non-Newtonian gum with characteristics-plastic properties. Development of the Master_s curve for FP gum also indicated that the gum prefers to remain in a dilute domain (C

  12. Morphological, rheological and mechanical characterization of polypropylene nanocomposite blends.

    Science.gov (United States)

    Rosales, C; Contreras, V; Matos, M; Perera, R; Villarreal, N; García-López, D; Pastor, J M

    2008-04-01

    In the present work, the effectiveness of styrene/ethylene-butylene/styrene rubbers grafted with maleic anhydride (MA) and a metallocene polyethylene (mPE) as toughening materials in binary and ternary blends with polypropylene and its nanocomposite as continuous phases was evaluated in terms of transmission electron microscopy (TEM), scanning electron microscopy (SEM), oscillatory shear flow and dynamic mechanical thermal analysis (DMA). The flexural modulus and heat distortion temperature values were determined as well. A metallocene polyethylene and a polyamide-6 were used as dispersed phases in these binary and ternary blends produced via melt blending in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in shear viscosity, melt elasticity, flexural or storage moduli and heat distortion temperature values were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene phase exhibited better toughness, lower shear viscosity, flexural modulus, and heat distortion temperature values than that prepared with polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends.

  13. Rheological characterization of geopolymer binder modified by organic resins

    Science.gov (United States)

    Cekalová, M.; Kovárík, T.; Rieger, D.

    2017-01-01

    The purpose of this study is going to investigate properties of alkali-activated powder (calcined kaoilinitic clay and granulated blast furnace slag) prepared as a geopolymer paste and modified by various amount of organic resin. Hybrid organic-inorganic binders were prepared as a mix of organic resin and geopolymer inorganic paste under vacuum conditions. The process of solidification was investigated by measurements of storage (G’) and loss modulus ( G’) in torsion. The measurement was conducted in oscillatory mode by constant strain of 0.01 %. This strain is set in linear visco-elastic region for minimization influence of paste structure. The effect of organic resin is presented and determined by changes of viscosity (‘n*), modules in torsion and tangent of loss angle (tan 8). Results indicate that addition of organic resin significantly affects the initial viscosity and hardening kinetics.

  14. Rheological properties of the soft-disk model of two-dimensional foams

    DEFF Research Database (Denmark)

    Langlois, Vincent; Hutzler, Stefan; Weaire, Denis

    2008-01-01

    The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel-Bulkley re......The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel......-Bulkley relation, normal stress effects (dilatancy), and localization in the presence of wall drag. We show that even a model that incorporates only linear viscous effects at the local level gives rise to nonlinear (power-law) dependence of the limit stress on strain rate. With wall drag, shear localization...

  15. Evolution of rheological properties of nuclear bituminized waste products, towards an ageing/viscosity law

    International Nuclear Information System (INIS)

    Mouazen, M.

    2011-01-01

    This work is a contribution to the understanding of rheological properties of bitumen and their evolution under gamma irradiation. The prediction of swelling ratio is necessary to evaluate the state of the containers, particularly during the reversibility phase of the storage. The objective of this work is thus to establish the rheological data its evolution under irradiation in order to predict the container swelling with time. After the rheological and thermal characterization of pure bitumen, a series of extrusion trials has been carried out. The state of dispersion essentially depends on the ratio N/Q (screw speed to feed rate). Extreme values of N/Q show the highest yield stress, indicating an improved dispersion state. The industrial bitumen compound exhibits the highest viscosity compared to model compounds, which limits bubble migration. Finally, the effect of gamma irradiation on pure bitumen and compounds behaviour has been studied. External and structural modifications have been evidenced. A theoretical model based on Krieger-Dougherty equation has been developed and shows a good agreement with experimental data. (author)

  16. Measurement of the Rheological Properties of High Performance Concrete: State of the Art Report

    Science.gov (United States)

    Ferraris, Chiara F.

    1999-01-01

    The rheological or flow properties of concrete in general and of high performance concrete (HPC) in particular, are important because many factors such as ease of placement, consolidation, durability, and strength depend on the flow properties. Concrete that is not properly consolidated may have defects, such as honeycombs, air voids, and aggregate segregation. Such an important performance attribute has triggered the design of numerous test methods. Generally, the flow behavior of concrete approximates that of a Bingham fluid. Therefore, at least two parameters, yield stress and viscosity, are necessary to characterize the flow. Nevertheless, most methods measure only one parameter. Predictions of the flow properties of concrete from its composition or from the properties of its components are not easy. No general model exists, although some attempts have been made. This paper gives an overview of the flow properties of a fluid or a suspension, followed by a critical review of the most commonly used concrete rheology tests. Particular attention is given to tests that could be used for HPC. Tentative definitions of terms such as workability, consistency, and rheological parameters are provided. An overview of the most promising tests and models for cement paste is given.

  17. Correlation between structure and rheological properties of suspension of nanosized powders

    Energy Technology Data Exchange (ETDEWEB)

    Tabellion, J.; Clasen, R. [Saarland Univ., Saarbruecken (Germany). Dept. of Powder Technology; Reinshagen, J.; Oberacker, R.; Hoffmann, M.J. [Karlsruhe Univ. (Germany). Inst. for Ceramics in Mechanical Engineering

    2002-07-01

    Since the properties of a ceramic green body and compact produced thereof are strongly influenced by the properties of the suspension used, controlling structure and properties of a suspension is a very important issue in ceramic manufacturing. Macroscopically, the rheological properties of a suspension are the key parameters that influence the behaviour during the shaping process. The rheological behaviour of aqueous suspensions of nanosized fumed silica (DEGUSSA, Aerosil OX50) with different amounts of OX50 (10 to 50 wt.%) was measured over a pH-range from 1 to 13 by means of rotational viscosimetry. A distinct maximum of the viscosity was observed for a pH of about 7 to 8, independent of the solid content of the suspensions. Since the rheological behaviour of the suspensions could not be explained by the {zeta}-Potential measured for OX50, the suspensions were investigated by means of so-called cryo-SEM characterization. A droplet of the suspension is quench-frozen in subcooled nitrogen (-210 C), prepared and the water is sublimed at -90 C. Thus it was possible to visualize the agglomerate structure of the primary OX50-particles within the suspensions. (orig.)

  18. Evaluation of rheological and thermic properties of neat and modified asphalt with a waste of LDPE

    Directory of Open Access Journals (Sweden)

    William Andrés Castro López

    2016-01-01

    Full Text Available Context: The asphalt technology and modified asphalt mixtures has been widely used and studied, worldwide. Adding polymers to asphalt modifies mechanical, chemical and rheological properties, trying to improve behavior of the mixtures subjected to different environmental and load conditions. The paper report results from rheological and thermal characterization on conventional 60-70 asphalt cement and 60-70 asphalt cement modified by introducing a waste of low density polyethylene (LDPE. Method: Modification of the asphalt was performed by wet way in a proportion of LDPE/CA=5% with respect to the mass. Rheological (using DSR, Thermogravimetry (TGA and Differential Scanning Calorimetry (DSC techniques were performed. Results and Conclusions: The modified asphalt develops a remarkable increase in stiffness and improvement of the performance grade at high temperatures of service. Additionally, the modified asphalt is more resistant to oxidation and aging processes due to heat. However, the asphalt modified showed a decrease in crack resistance at low and intermediate temperatures of service.

  19. Nonlinear Rheology in a Model Biological Tissue

    Science.gov (United States)

    Matoz-Fernandez, D. A.; Agoritsas, Elisabeth; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten

    2017-04-01

    The rheological response of dense active matter is a topic of fundamental importance for many processes in nature such as the mechanics of biological tissues. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with an increasing shear rate. To rationalize this nonlinear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are, respectively, generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.

  20. Rheological and microstructural properties of Irradiated starch

    International Nuclear Information System (INIS)

    Atrous Turki, Hager

    2011-01-01

    Gamma irradiation ia s fast and efficient method to improve the functional properties of straches. Wheat and potato starches were submitted, in the present study, at 3,5,10 and 20 kGy radiation dose. The changes induced by irradiation on the rheological properties of these starches showed a decrease in the viscosity with increasing radiation dose. Chemicals bond's hydrolysis has been induced by free radicals that have been identified by EPR. Wheat starch presents five EPR signals after irradiation, whiles potato starch has a weak EPR signal. On the other hand, irradiation caused decrease in amylose content. This decrease is more pronounced in potato starch. Dry irradiated starch's MEB revealed no change in the shape, size and distribution of the granules. While, the observation of wheat starch allowed the complete disappearance of the granular structure and the dissolution of its macromolecules after irradiation which justifies the significant decrease in wheat starch's viscosity irradiated at 20 kGy.

  1. Drilling mud and cement slurry rheology manual

    Energy Technology Data Exchange (ETDEWEB)

    This book is not primarily concerned with theory. Its basic approach is practical. It has attempted to present a logical treatment which will be easy to apply in practice. As a result, certain computing methods were omitted, and precision sometimes has to be sacrificed to simplicity. However, no apology is made for the use of such approximations; in fact, any attempt at rigor would be doomed to failure, in view of the many inherent factors which do not lend themselves to quantitative treatment. Chapter 1: deals with fundamental concepts. Chapter 2: refers to the general principles involved in determining rheological parameters of drilling fluids and cement slurries. Chapter 3: relates to practical methods for using the results obtained in the first two Chapters, in units employed on the worksite. It is primarily intended for technicians called upon to make ''hydraulic'' computations during drilling. Chapter 4: contains several examples.

  2. Nanoparticles in Polymers: Assembly, Rheology and Properties

    Science.gov (United States)

    Rao, Yuanqiao

    Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.

  3. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent.

    Science.gov (United States)

    Patel, Ashok R; Babaahmadi, Mehrnoosh; Lesaffer, Ans; Dewettinck, Koen

    2015-05-20

    The aim of this study was to use a detailed rheological characterization to gain new insights into the gelation behavior of natural waxes. To make a comprehensive case, six natural waxes (differing in the relative proportion of chemical components: hydrocarbons, fatty alcohols, fatty acids, and wax esters) were selected as organogelators to gel high-oleic sunflower oil. Flow and dynamic rheological properties of organogels prepared at critical gelling concentrations (Cg) of waxes were studied and compared using drag (stress ramp and steady flow) and oscillatory shear (stress and frequency sweeps) tests. Although, none of the organogels satisfied the rheological definition of a "strong gel" (G″/G' (ω) ≤ 0.1), on comparing the samples, the strongest gel (highest critical stress and dynamic, apparent, and static yield stresses) was obtained not with wax containing the highest proportion of wax esters alone (sunflower wax, SFW) but with wax containing wax esters along with a higher proportion of fatty alcohols (carnauba wax, CRW) although at a comparatively higher Cg (4%wt for latter compared to 0.5%wt for former). As expected, gel formation by waxes containing a high proportion of lower melting fatty acids (berry, BW, and fruit wax, FW) required a comparatively higher Cg (6 and 7%wt, respectively), and in addition, these gels showed the lowest values for plateau elastic modulus (G'LVR) and a prominent crossover point at higher frequency. The gelation temperatures (TG'=G″) for all the studied gels were lower than room temperature, except for SFW and CRW. The yielding-type behavior of gels was evident, with most gels showing strong shear sensitivity and a weak thixotropic recovery. The rheological behavior was combined with the results of thermal analysis and microstructure studies (optical, polarized, and cryo-scanning electron microscopy) to explain the gelation properties of these waxes.

  4. Rheology of Colombian coal-water slurry fuels: Effect of particle-size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Pulido, J E; Rojas, C P; Acero, G [Universidad Industrial de Santander, Bucaramanga (Colombia)

    1996-12-31

    Coal-water slurry fuels (CWSF`s) have been prepared and characterized in a research project in Colombia, sponsored by Colciencias and Ecocarbon, in order to evaluate the effects of the different composition variables on the behavior during preparation and pipe line transportation. The authors have previously presented details describing the characteristics of the slurry fuels prepared with five types of Colombian thermal coals and the influence of their chemical composition on the optimum particle-size distribution (PSD) required to prepare highly loaded and workable CWSF`s. The formulation and design of flow systems of suspensions with high solids content, such as the CWSF`s, require a detailed rheological knowledge of the suspension in terms of the governing parameters related to PSD, coal content, surface chemistry of the particles and dispersants used to stabilize the slurries. Important studies on these aspects have been reviewed and carried out experimentally by other authors specially devoted to the correlations between apparent viscosity, solids content and average coal particle-size. One of the targets to obtain an optimum control on the viscosity and flow properties of the CWSF`s must be based in correlating the Theological constants for the prevailing model of viscosity law to the characteristic parameters of the particle-size distribution and to the coal content in the slurry. In spite of the effect of PSD on the rheology of highly-loaded coal slurries have been long recognized as significant, the specific influence of the various PSD`s on the parameters of the Theological model continues to receive attention to further understanding in order to improve the slurry formulations for a specified purpose on preparation and hydraulic handling. This paper reports the results of an experimental technique of examining the various PSD`s on coal slurry fuel rheology, taking special attention for the effect on the parameters of the rheological model.

  5. Attenuation of seismic waves and the universal rheological model of the Earth's mantle

    Science.gov (United States)

    Birger, B. I.

    2007-08-01

    Analysis of results of laboratory studies on creep of mantle rocks, data on seismic wave attenuation in the mantle, and rheological micromechanisms shows that the universal, i.e., relevant to all time scales, rheological model of the mantle can be represented as four rheological elements connected in series. These elements account for elasticity, diffusion rheology, high temperature dislocation rheology, and low temperature dislocation rheology. The diffusion rheology element is described in terms of a Newtonian viscous fluid. The high temperature dislocation rheology element is described by the rheological model previously proposed by the author. This model is a combination of a power-law non-Newtonian fluid model for stationary flows and the linear hereditary Andrade model for flows associated with small strains. The low temperature dislocation rheology element is described by the linear hereditary Lomnitz model.

  6. A rheologically layered three-dimensional model of the San Andreas fault in central and southern California

    Science.gov (United States)

    Williams, Charles A.; Richardson, Randall M.

    1991-01-01

    The effects of rheological parameters and the fault slip distribution on the horizontal and vertical deformation in the vicinity of the fault are investigated using 3D kinematic finite element models of the San Andreas fault in central and southern California. It is shown that fault models with different rheological stratification schemes and slip distributions predict characteristic deformation patterns. Models that do not include aseismic slip below the fault locking depth predict deformation patterns that are strongly dependent on time since the last earthquake, while models that incorporate the aseismic slip below the locking depth depend on time to a significantly lesser degree.

  7. Effects of Sasobit® content on the rheological characteristics of unaged and aged asphalt binders at high and intermediate temperatures

    Directory of Open Access Journals (Sweden)

    Ali Jamshidi

    2012-08-01

    Full Text Available This paper describes the rheological properties of PG64, PG70, and PG76 asphalt binders blended with different Sasobit® contents. The rheological properties of the Sasobit®-modified binders were characterized after being subjected to different aging conditions using the dynamic shear rheometer (DSR and rotational viscometer (RV according to SuperpaveTM test protocols. The results indicated that the characterization of aging in terms of the Aging Index (AI depends on the rheological property of the asphalt binder selected for use in evaluating aging, the amount of Sasobit®, the binder type, and the temperature range. Linear relationships between failure temperatures of unaged and short-term-aged asphalt were observed for three binder types. Design charts were developed to select the appropriate Sasobit® content as a function of temperature, taking into consideration the stiffening effects of Sasobit®, using the SuperpaveTM fatigue factor and asphalt mix construction temperatures.

  8. A model for cytoplasmic rheology consistent with magnetic twisting cytometry.

    Science.gov (United States)

    Butler, J P; Kelly, S M

    1998-01-01

    Magnetic twisting cytometry is gaining wide applicability as a tool for the investigation of the rheological properties of cells and the mechanical properties of receptor-cytoskeletal interactions. Current technology involves the application and release of magnetically induced torques on small magnetic particles bound to or inside cells, with measurements of the resulting angular rotation of the particles. The properties of purely elastic or purely viscous materials can be determined by the angular strain and strain rate, respectively. However, the cytoskeleton and its linkage to cell surface receptors display elastic, viscous, and even plastic deformation, and the simultaneous characterization of these properties using only elastic or viscous models is internally inconsistent. Data interpretation is complicated by the fact that in current technology, the applied torques are not constant in time, but decrease as the particles rotate. This paper describes an internally consistent model consisting of a parallel viscoelastic element in series with a parallel viscoelastic element, and one approach to quantitative parameter evaluation. The unified model reproduces all essential features seen in data obtained from a wide variety of cell populations, and contains the pure elastic, viscoelastic, and viscous cases as subsets.

  9. Free Surface Flows and Extensional Rheology of Polymer Solutions

    Science.gov (United States)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

  10. Rheological, structural and chemical evolution of bitumen under gamma irradiation

    International Nuclear Information System (INIS)

    Mouazen, M.; Poulesquen, A.; Bart, F.; Masson, J.; Charlot, M.; Vergnes, B.

    2013-01-01

    Bitumen derived from crude oil by fractional distillation has been used in the nuclear industry as a radioactive waste encapsulation matrix. When subjected to α, β and γ self-irradiation, this organic matrix undergoes radiolysis, generating hydrogen bubbles and modifying the physical and chemical properties of the material. In this paper, the effects of irradiation on bitumen materials, especially in terms of its physical, chemical, structural and rheological properties, were characterized at radiation doses ranging from 1 to 7 MGy. An increase in the shear viscosity and melt yield stress was observed with increasing doses. Similarly, the elastic and viscous moduli (G' and G'') increase with the dose, with a more pronounced increase for G' that reflects enhanced elasticity arising from radiation-induced cross-linking. In addition, a low-frequency plateau is observed for G', reflecting pseudo-solid behavior and leading to an increase of the complex viscosity. This behavior is due to increased interactions between asphaltene particles, and to aromatization of the bitumen by γ-radiations. Cross-linking of bitumen enhances its strength, as confirmed by various techniques (modulated DSC, DTA/TGA, SEC, FTIR and XRD). (authors)

  11. Characterization of the Embryogenic Tissue of the Norway Spruce Including a Transition Layer between the Tissue and the Culture Medium by Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kořínek R.

    2017-02-01

    Full Text Available The paper describes the visualization of the cells (ESEs and mucilage (ECMSN in an embryogenic tissue via magnetic resonance imaging (MRI relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.

  12. INFLUENCE OF STORING AND TEMPERATURE ON RHEOLOGIC AND THERMOPHYSICAL PROPERTIES OF WHISKY SAMPLES

    Directory of Open Access Journals (Sweden)

    Peter Hlavac

    2013-09-01

    Full Text Available Temperature and storing time can be included between the most significant parameters that influence physical properties of food. This article deals with selected rheologic and thermophysical properties of alcohol drink whisky. Our research was oriented on measuring of rheologic and thermophysical characteristics of whisky. There were measured two types of whisky Grant s and Jim Beam from two different producers, both samples had 40 percent of alcohol content. During the experiments were analyzed rheologic parameters as dynamic viscosity, kinematic viscosity and fluidity and thermophysical parameters as thermal conductivity, thermal diffusivity and volume specific heat. Selected parameters were measured in temperature range 5 to 27 C. Measurements were done on whisky samples in different days during the storage. Measuring of dynamic viscosity was performed by digital rotational viscometer Anton Paar. Principle of measuring is based on dependency of sample resistance against the probe rotation. Density of whisky samples was determined by pycnometric method. Average density at given temperature along with dynamic viscosity value was used at calculation of kinematic viscosity and fluidity was also determined. Measuring of thermophysical parameters was performed by instrument Isomet 2104 Measurement by Isomet is based on analysis of the temperature response of the measured sample to heat flow impulses. Relations of rheologic and thermophysical parameters to the temperature were made and influence of storing time was discussed. From obtained results is clear that dynamic and kinematic viscosity is decreasing exponentially with temperature and fluidity has increasing exponential progress. We found out that both whisky samples had at the beginning and after one week of storage very similar values of rheologic parameters. Very small difference in rheologic parameters of whisky samples was found after two weeks of storing. Values of dynamic and kinematic

  13. Structure, Ion Transport, and Rheology of Nanoparticle Salts

    KAUST Repository

    Wen, Yu Ho; Lu, Yingying; Dobosz, Kerianne M.; Archer, Lynden A.

    2014-01-01

    particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through

  14. Effects of polyethyleneimine adsorption on rheology of bentonite ...

    Indian Academy of Sciences (India)

    Unknown

    XRD, zeta potential and adsorption studies were done together with rheological .... trokinetics experiments on Balikesir bentonite samples. For this reason, the ... rence between apparent and true adsorption rates, and hence swelling of clays ...

  15. Effect of the fructose and glucose concentration on the rheological ...

    African Journals Online (AJOL)

    Jose Luis Montañez Soto

    2013-03-20

    Mar 20, 2013 ... C.P. 38010. Celaya, Guanajuato, México. ... In quality control, knowledge of the rheological behavior of a fluid is ... intermediary products during manufacturing and of course, of ... fructose and 45%, glucose (Arancia, Mexico).

  16. Effect of the fructose and glucose concentration on the rheological ...

    African Journals Online (AJOL)

    Jose Luis Montañez Soto

    2013-03-20

    Mar 20, 2013 ... Key words: High fructose syrups, viscosity, rheological behavior, Newtonian fluids. ... demanded by the pharmaceuticals, food and beverage industries due to its ... determine the preferred quality by the consumer through.

  17. Rheology and structure of aqueous bentonite–polyvinyl alcohol ...

    Indian Academy of Sciences (India)

    Keywords. Bentonite–polyvinyl alcohol dispersions; rheology; zeta potential; particle size analysis; SEM; FTIR studies. 1. .... sity and interception of the linear portion of the curve ..... applications for decolourizing or moisture absorption purpose.

  18. Structure and rheology of nanoparticle–polymer suspensions

    KAUST Repository

    Srivastava, Samanvaya; Shin, Jung Hwan; Archer, Lynden A.

    2012-01-01

    separation and aggregation than expected from theory for interacting brushes. SAXS and rheology measurements also reveal that at high particle loadings, the stabilizing oligomer brush is significantly compressed and produces jamming in the suspensions

  19. Relation between sensory analysis and rheology of body lotions

    Czech Academy of Sciences Publication Activity Database

    Morávková, Tereza; Filip, Petr

    2016-01-01

    Roč. 38, č. 6 (2016), s. 558-566 ISSN 0142-5463 Institutional support: RVO:67985874 Keywords : body lotion * empirical model * emulsions * rheology * sensory attribute Subject RIV: BK - Fluid Dynamics Impact factor: 1.581, year: 2016

  20. RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS

    Directory of Open Access Journals (Sweden)

    S. Chaoui

    2015-07-01

    Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (f/fg-1n, where fg captures the strength of particle interaction and n the microstructure. The scaling variable (fp/fpc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (f/fg-1 these gels are rheologically identical.

  1. RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS

    Directory of Open Access Journals (Sweden)

    S. CHAOUI

    2012-12-01

    Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (/g-1n, where g captures the strength of particle interaction and n the microstructure.The scaling variable (p/pc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (/g-1 these gels are rheologically identical.

  2. Effect of β-cyclodextrin on Rheological Properties of some Viscosity Modifiers.

    Science.gov (United States)

    Rao, G Chandra Sekhara; Ramadevi, K; Sirisha, K

    2014-01-01

    Cyclodextrins are a group of novel excipients, extensively used in the present pharmaceutical industry. Sometimes they show significant interactions with other conventional additives used in the formulation of dosage forms. The effect of β-cyclodextrin on the rheological properties of aqueous solutions of some selected viscosity modifiers was studied in the present work. β-cyclodextrin showed two different types of effects on the rheology of the selected polymers. In case of natural polymers like xanthan gum and guar gum, enhanced apparent viscosity was found and in case of semi-synthetic polymers like sodium carboxymethyl cellulose and methyl cellulose, reduction in apparent viscosity was found. β-cyclodextrin was included at 0.5, 1 and 2% w/v concentrations into the polymeric solutions. These findings are useful in the adjustment of concentrations of viscosity modifiers during the formulation of physically stable disperse systems.

  3. Complex rheological properties of a water-soluble extract from the fronds of the black tree fern, Cyathea medullaris.

    Science.gov (United States)

    Goh, Kelvin K T; Matia-Merino, Lara; Hall, Christopher E; Moughan, Paul J; Singh, Harjinder

    2007-11-01

    A water-soluble extract was obtained from the fronds of a New Zealand native black tree fern (Cyathea medullaris or Mamaku in Māori). The extract exhibited complex rheological behavior. Newtonian, shear-thinning, shear-thickening, thixotropic, antithixotropic, and viscoelastic behaviors were observed depending on polymer concentration, shear rate, and shear history. The extract also displayed rod-climbing and self-siphoning properties typical of viscoelastic fluids. Such complex rheological properties have been reported in synthetic or chemically modified polymers but are less frequent in unmodified biopolymers. Although Mamaku extract obtained from the pith of the fern has been traditionally used by the Māori in New Zealand for treating wounds and diarrhea among other ailments, this material has never been characterized before. This study reports on the chemical composition of the extract and on its viscoelastic properties through rotational and oscillatory rheological measurements. Explanations of the mechanism behind the rheological properties were based on transient network models for associating polymers.

  4. Modeling the kinetics nonenzymatic browning reactions and rheological behavior in the termal process of fruit juices and pulps

    Directory of Open Access Journals (Sweden)

    Damian Manayay

    2010-06-01

    Full Text Available In the manufacture of fruit juices and pulps, is of paramount importance to refer to non-enzymatic browning and rheological behavior. The non-enzymatic browning is a phenomenon of darkening of a purely chemical (Braverman, 1980, is characterized by the presence of brown polymers called melanoidins, generated by the Maillard reaction or condensation of melanoidins, the caramelization and degradation of acid ascorbic, while the rheological behavior is define as the proportion deformation of the material when exposed to shear stress (σ caused by a rheometer (Muller, 1978; Ibarz, 2005. Modeling studies of colour formation and definition of rheological behavior, considered in this review, aimed at the conclusion of the existence of a zero kinetic and first order respectively, and the most influential factors with the reactions are mainly Maillard, temperature, amino acids presence, water activity and pH, while the rheological behavior is affected by temperature, solid concentration and particles size that make up the suspension in the specific case of the pulps.

  5. Influence of binder system and temperature on rheological properties of water atomized 316L powder injection moulding feedstocks

    Directory of Open Access Journals (Sweden)

    Uğur GÖKMEN

    2016-02-01

    Full Text Available In order to obtain a proper powder injection molding the rheological behavior of feedstocks should be known. To determine the binder effect on the rheological behavior of 316L stainless steel powders feedstock two different feedstock were prepared. In the current experiments water atomized 316L stainless steel powders (-20 µm were used. Two types of binders, one of which is mainly paraffin wax can be dissolved in heptane and the other Polietilenglikol (PEG based and can be dissolved in water, were used. Polypropylene was used as binder and steric acid was used as lubricant for both binder systems as skeleton binder. Dry binder system were mixed for 30 min in a three dimensional Turbola. Capillary rheometer was used to characterize the rheological properties of feed stocks at 150-200 °C and a pressures of 0.165-2.069 MPa. Powder loading capacity of PEG and PW based feed stocks were found to be %55 and %61 respectively. The lowest viscosity of PEG and PW based feed stocks were found to be 304.707 Pa.s and 48.857 Pa.s respectively.Keywords: PIM, Binder, Rheological properties

  6. Effect of smectite clays storage in their rheological properties; Efeito do armazenamento de argilas esmectiticas nas suas propriedades reologicas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, I.A. da; Sousa, F.K.A. de; Neves, G. de A.; Ferreira, H.C., E-mail: isabelle_albuquerquecg@hotmail.com, E-mail: kegalves@gmail.com, E-mail: gelmires.neves@ufcg.edu.br, E-mail: heber.ferreira@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Ferreira, H.S., E-mail: hsivini@terra.com.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Educacao; Ferreira, H.S., E-mail: heber@ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa (Brazil). Departamento de Engenharia de Materiais

    2017-01-15

    This work investigates the storage influence of natural and industrial smectite clays in their rheological properties, since the salt metathesis reaction that occurs following treatment of polycationic clays with Na{sub 2} CO{sub 3} is reversible. The phenomena involved in this reaction are not yet fully known and previous studies show improvement in some properties. The rheological properties were determined in sodium-clays in 1995 and polycationic clays added with sodium carbonate (Na{sub 2} CO{sub 3} ) in 2015. Physical, chemical and mineralogical characterizations of the samples were performed using the following techniques: particle size analysis by laser diffraction, chemical composition by X-ray fluorescence, X-ray diffraction and thermal analysis (DTA and TGA). The rheology of dispersions was determined by the apparent viscosity, plastic viscosity and filtrate volume, which were later considered the oil industry standards only as a benchmark. The results showed that the storage conditions, humidity and particle size of the samples resulted in improvements in their rheological properties over the years, indicating the non-reversibility of the reaction of cation exchange, which is important in their validity after manufacturing. (author)

  7. Effects of Temperature on Time Dependent Rheological Characteristics of Koumiss

    Directory of Open Access Journals (Sweden)

    Serdal Sabancı

    2016-04-01

    Full Text Available The rheological properties of koumiss were investigated at different temperatures (4, 10, and 20°C. Experimental shear stress–shear rate data were fitted to different rheological models. The consistency of koumiss was predicted by using the power-law model since it described the consistency of koumiss best with highest regression coefficient and lowest errors (root mean square error and chi-square. Koumiss exhibited shear thinning behavior (n

  8. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    International Nuclear Information System (INIS)

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-01-01

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating 'smart' electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported

  9. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    Science.gov (United States)

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-07-01

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating "smart" electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported.

  10. Effect of ?-cyclodextrin on Rheological Properties of some Viscosity Modifiers

    OpenAIRE

    Rao, G. Chandra Sekhara; Ramadevi, K.; Sirisha, K.

    2014-01-01

    Cyclodextrins are a group of novel excipients, extensively used in the present pharmaceutical industry. Sometimes they show significant interactions with other conventional additives used in the formulation of dosage forms. The effect of β-cyclodextrin on the rheological properties of aqueous solutions of some selected viscosity modifiers was studied in the present work. β-cyclodextrin showed two different types of effects on the rheology of the selected polymers. In case of natural polymers ...

  11. Rheological Study of Ageing Soft Glasses of Laponite

    Indian Academy of Sciences (India)

    Table of contents. Rheological Study of Ageing Soft Glasses of Laponite · Colloidal glasses · Laponite Na+0.7[(Si8Mg5.5Li0.3)O20(OH)4]–0.7 · Effect of salt (NaCl) · Arrested state · Relaxation dynamics · Rheology of aging system · Slide 8 · Experimental Protocol · Ageing and Creep experiments · Slide 11 · Slide 12.

  12. On Lateral Viscosity Contrast in the Mantle and the Rheology of Low-Frequency Geodynamics

    Science.gov (United States)

    Ivins, Erik R.; Sammis, Charles G.

    1995-01-01

    Mantle-wide heterogeneity is largely controlled by deeply penetrating thermal convective currents. These thermal currents are likely to produce significant lateral variation in rheology, and this can profoundly influence overall material behaviour. How thermally related lateral viscosity variations impact models of glacio-isostatic and tidal deformation is largely unknown. An important step towards model improvement is to quantify, or bound, the actual viscosity variations that characterize the mantle. Simple scaling of viscosity to shear-wave velocity fluctuations yields map-views of long- wavelength viscosity variation. These give a general quantitative description and aid in estimating the depth dependence of rheological heterogeneity throughout the mantle. The upper mantle is probably characterized by two to four orders of magnitude variation (peak-to-peak). Discrepant time-scales for rebounding Holocene shorelines of Hudson Bay and southern Iceland are consistent with this characterization. Results are given in terms of a local average viscosity ratio, (Delta)eta(bar)(sub i), of volumetric concentration, phi(sub i). For the upper mantle deeper than 340 km the following reasonable limits are estimated for (delta)eta(bar) approx. equal 10(exp -2): 0.01 less than or equal to phi less than or equal to 0.15. A spectrum of ratios (Delta)eta(bar)(sub i) less than 0.1 at concentration level eta(sub i) approx. equal 10(exp -6) - 10(exp -1) in the lower mantle implies a spectrum of shorter time-scale deformational response modes for second-degree spherical harmonic deformations of the Earth. Although highly uncertain, this spectrum of spatial variation allows a purely Maxwellian viscoelastic rheology simultaneously to explain all solid tidal dispersion phenomena and long-term rebound-related mantle viscosity. Composite theory of multiphase viscoelastic media is used to demonstrate this effect.

  13. Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles

    Science.gov (United States)

    Bég, O. Anwar; Espinoza, D. E. Sanchez; Kadir, Ali; Shamshuddin, MD.; Sohail, Ayesha

    2018-04-01

    An experimental study of the rheology and lubricity properties of a drilling fluid is reported, motivated by applications in highly deviated and extended reach wells. Recent developments in nanofluids have identified that the judicious injection of nano-particles into working drilling fluids may resolve a number of issues including borehole instability, lost circulation, torque and drag, pipe sticking problems, bit balling and reduction in drilling speed. The aim of this article is, therefore, to evaluate the rheological characteristics and lubricity of different nano-particles in water-based mud, with the potential to reduce costs via a decrease in drag and torque during the construction of highly deviated and ERD wells. Extensive results are presented for percentage in torque variation and coefficient of friction before and after aging. Rheology is evaluated via apparent viscosity, plastic viscosity and gel strength variation before and after aging for water-based muds (WBM). Results are included for silica and titanium nano-particles at different concentrations. These properties were measured before and after aging the mud samples at 80 °C during 16 h at static conditions. The best performance was shown with titanium nano-particles at a concentration of 0.60% (w/w) before aging.

  14. Rheological Behaviour of Water-in-Light Crude Oil Emulsion

    Science.gov (United States)

    Husin, H.; Taju Ariffin, T. S.; Yahya, E.

    2018-05-01

    Basically, emulsions consist of two immiscible liquids which have different density. In petroleum industry, emulsions are undesirable due to their various costly problems in term of transportation difficulties and production loss. A study of the rheological behaviour of light crude oil and its mixture from Terengganu were carried out using Antoon Paar MCR 301 rheometer operated at pressure of 2.5 bar at temperature C. Water in oil emulsions were prepared by mixing light crude oil with different water volume fractions (20%, 30% and 40%). The objectives of present paper are to study the rheological behaviour of emulsion as a fuction of shear rate and model analysis that fitted with the experimental data. The rheological models of Ostwald-De-Waele and Herschel-Bulkley were fitted to the experimental results. All models represented well the rheological data, with high values for the correlation coefficients. The result indicated that variation of water content influenced shear rate-shear stress rheogram of the prepared emulsions. In the case of 100% light crude oil, the study demonstrated non-Newtonian shear thickening behavior. However, for emulsion with different volume water ratios, the rheological behaviour could be well described by Herschel-Bulkley models due to the present of yield stress parameter (R2 = 0.99807). As a conclusion, rheological studies showed that volume water ratio have a great impact on the shear stress and viscosity of water in oil emulsion and it is important to understand these factors to avoid various costly problems.

  15. Rheological and gelation properties of rice starch modified with 4-alpha-glucanotransferase.

    Science.gov (United States)

    Lee, Kwang Yeon; Kim, Yong-Ro; Park, Kwan Hwa; Lee, Hyeon Gyu

    2008-04-01

    Rheological measurements were performed to characterize rice starch modified with 4-alpha-glucanotransferase (4alphaGTase) isolated from Thermus scotoductus, in terms of effects of the enzyme and starch concentration on flow behavior, gel strength, and melting and gelling kinetics of the modified rice starch. Consistency index decreased and flow behavior index increased with the level of enzyme treatment, and at high level of enzyme treatment, it demonstrated Bingham plastic behavior. As the level of enzyme decreased and the starch concentration increased, gelation time decreased and the final gel strength increased significantly. Regardless of treatment variables, all the modified starch gels melted at similar temperature.

  16. Characterization of Genotoxic Response to 15 Multiwalled Carbon Nanotubes with Variable Physicochemical Properties Including Surface Functionalizations in the FE1-Muta(TM) Mouse Lung Epithelial Cell Line

    DEFF Research Database (Denmark)

    Jackson, Petra; Kling, Kirsten; Jensen, Keld Alstrup

    2015-01-01

    Carbon nanotubes vary greatly in physicochemical properties. We compared cytotoxic and genotoxic response to 15 multiwalled carbon nanotubes (MWCNT) with varying physicochemical properties to identify drivers of toxic responses. The studied MWCNT included OECD Working Party on Manufactured...... Nanomaterials (WPMN) (NM-401, NM-402, and NM-403), materials (NRCWE-026 and MWCNT-XNRI-7), and three sets of surface-modified MWCNT grouped by physical characteristics (thin, thick, and short I-III, respectively). Each Groups I-III included pristine, hydroxylated and carboxylated MWCNT. Group III also included...... an amino-functionalized MWCNT. The level of surface functionalization of the MWCNT was low. The level and type of elemental impurities of the MWCNT varied by...

  17. Characterization of natural anaerobic dechlorination of TCE and 1,1,1-TCA in clay till including isotope fractionation and molecular biological tools

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bælum, J.; Hunkeler, D.

    2010-01-01

    One of the major challenges when using enhanced reductive dechlorination (ERD) as a remediation technology at clay till sites is to obtain good contact between added agents such as donor, bacteria and the contamination. It is unclear whether degradation only takes place in fractures and/or sand l...... including the location of degradation in the fracture matrix geology. An extensive field collection of cores and discrete soil sampling has been conducted and samples have been analysed using state of the art microbial and chemical tools including isotope fractionation....

  18. Characterization of the disposition of fostamatinib in Japanese subjects including pharmacokinetic assessment in dry blood spots: results from two phase I clinical studies.

    Science.gov (United States)

    Martin, Paul; Cheung, S Y Amy; Yen, Mark; Han, David; Gillen, Michael

    2016-01-01

    The aims of the present study were to characterize the pharmacokinetics of fostamatinib in two phase I studies in healthy Japanese subjects after single- and multiple-dose administration, and to evaluate the utility of dried blood spot (DBS) sampling. In study A, 40 Japanese and 16 white subjects were randomized in a double-blind parallel group study consisting of seven cohorts, which received either placebo or a fostamatinib dose between 50 and 200 mg after single and multiple dosing. Pharmacokinetics of R406 (active metabolite of fostamatinib) in plasma and urine was assessed, and safety was intensively monitored. Study B was an open-label study that assessed fostamatinib 100 and 200 mg in 24 Japanese subjects. In addition to plasma and urine sampling (as for study A), pharmacokinetics was also assessed in blood. Mean maximum plasma concentration (C max) and area under total plasma concentration–time curve (AUC) increased with increasing dose in Japanese subjects. Steady state was achieved in 5–7 days for all doses. C max and AUC were both higher in Japanese subjects administered a 150-mg single dose than in white subjects. This difference was maintained for steady state exposure by day 10. Overall, R406 blood concentrations were consistent and ∼2.5-fold higher than in plasma. Minimal (blood cells, and DBS sampling was a useful method for assessing R406 pharmacokinetics.

  19. Isolation and Characterization of Avian Influenza Viruses, Including Highly Pathogenic H5N1, from Poultry in Live Bird Markets in Hanoi, Vietnam, in 2001

    Science.gov (United States)

    Nguyen, Doan C.; Uyeki, Timothy M.; Jadhao, Samadhan; Maines, Taronna; Shaw, Michael; Matsuoka, Yumiko; Smith, Catherine; Rowe, Thomas; Lu, Xiuhua; Hall, Henrietta; Xu, Xiyan; Balish, Amanda; Klimov, Alexander; Tumpey, Terrence M.; Swayne, David E.; Huynh, Lien P. T.; Nghiem, Ha K.; Nguyen, Hanh H. T.; Hoang, Long T.; Cox, Nancy J.; Katz, Jacqueline M.

    2005-01-01

    Since 1997, outbreaks of highly pathogenic (HP) H5N1 and circulation of H9N2 viruses among domestic poultry in Asia have posed a threat to public health. To better understand the extent of transmission of avian influenza viruses (AIV) to humans in Asia, we conducted a cross-sectional virologic study in live bird markets (LBM) in Hanoi, Vietnam, in October 2001. Specimens from 189 birds and 18 environmental samples were collected at 10 LBM. Four influenza A viruses of the H4N6 (n = 1), H5N2 (n = 1), and H9N3 (n = 2) subtypes were isolated from healthy ducks for an isolation frequency of over 30% from this species. Two H5N1 viruses were isolated from healthy geese. The hemagglutinin (HA) genes of these H5N1 viruses possessed multiple basic amino acid motifs at the cleavage site, were HP for experimentally infected chickens, and were thus characterized as HP AIV. These HA genes shared high amino acid identities with genes of other H5N1 viruses isolated in Asia during this period, but they were genetically distinct from those of H5N1 viruses isolated from poultry and humans in Vietnam during the early 2004 outbreaks. These viruses were not highly virulent for experimentally infected ducks, mice, or ferrets. These results establish that HP H5N1 viruses with properties similar to viruses isolated in Hong Kong and mainland China circulated in Vietnam as early as 2001, suggest a common source for H5N1 viruses circulating in these Asian countries, and provide a framework to better understand the recent widespread emergence of HP H5N1 viruses in Asia. PMID:15767421

  20. Physical and rheological properties of Titanium Dioxide modified asphalt

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Chong, Ai Ling; Haini, Rosli; Khatijah Abu Bakar, Siti

    2018-03-01

    Titanium Dioxide (TiO2) has been known as a useful photocatalytic material that is attributed to the several characteristics includes high photocatalytic activity compared with other metal oxide photocatalysts, compatible with traditional construction materials without changing any original performance. This study investigates the physical and rheological properties of modified asphalt with TiO2. Five samples of asphalt with different concentration of TiO2 were studied, namely asphalt 2%, 4%, 6% 8% and 10% TiO2. The tests includes are penetration, softening point, ductility, rotational viscosity and dynamic shear rheometer (DSR) test. From the results of this study, it is noted that addition of TiO2 has significant effect on the physical properties of asphalt. The viscosity tests revealed that asphalt 10% TiO2 has good workability among with reducing approximately 15°C compared to base asphalt. Based on the results from DSR measurements, asphalt 10% TiO2 has reduced temperature susceptibility and increase stiffness and elastic behaviour in comparison to base asphalt. As a result, TiO2 can be considered to be an additive to modify the properties of asphalt.

  1. Rheological Properties of Natural Subduction Zone Interface: Insights from "Digital" Griggs Experiments

    Science.gov (United States)

    Ioannidi, P. I.; Le Pourhiet, L.; Moreno, M.; Agard, P.; Oncken, O.; Angiboust, S.

    2017-12-01

    The physical nature of plate locking and its relation to surface deformation patterns at different time scales (e.g. GPS displacements during the seismic cycle) can be better understood by determining the rheological parameters of the subduction interface. However, since direct rheological measurements are not possible, finite element modelling helps to determine the effective rheological parameters of the subduction interface. We used the open source finite element code pTatin to create 2D models, starting with a homogeneous medium representing shearing at the subduction interface. We tested several boundary conditions that mimic simple shear and opted for the one that best describes the Grigg's type simple shear experiments. After examining different parameters, such as shearing velocity, temperature and viscosity, we added complexity to the geometry by including a second phase. This arises from field observations, where shear zone outcrops are often composites of multiple phases: stronger crustal blocks embedded within a sedimentary and/or serpentinized matrix have been reported for several exhumed subduction zones. We implemented a simplified model to simulate simple shearing of a two-phase medium in order to quantify the effect of heterogeneous rheology on stress and strain localization. Preliminary results show different strength in the models depending on the block-to-matrix ratio. We applied our method to outcrop scale block-in-matrix geometries and by sampling at different depths along exhumed former subduction interfaces, we expect to be able to provide effective friction and viscosity of a natural interface. In a next step, these effective parameters will be used as input into seismic cycle deformation models in an attempt to assess the possible signature of field geometries on the slip behaviour of the plate interface.

  2. The Rheological Properties of Lipid Monolayers Modulate the Incorporation of l-Ascorbic Acid Alkyl Esters.

    Science.gov (United States)

    Díaz, Yenisleidy de Las Mercedes Zulueta; Mottola, Milagro; Vico, Raquel V; Wilke, Natalia; Fanani, María Laura

    2016-01-19

    In this work, we tested the hypothesis that the incorporation of amphiphilic drugs into lipid membranes may be regulated by their rheological properties. For this purpose, two members of the l-ascorbic acid alkyl esters family (ASCn) were selected, ASC16 and ASC14, which have different rheological properties when organized at the air/water interface. They are lipophilic forms of vitamin C used in topical pharmacological preparations. The effect of the phase state of the host lipid membranes on ASCn incorporation was explored using Langmuir monolayers. Films of pure lipids with known phase states have been selected, showing liquid-expanded, liquid-condensed, and solid phases as well as pure cholesterol films in liquid-ordered state. We also tested ternary and quaternary mixed films that mimic the properties of cholesterol containing membranes and of the stratum corneum. The compressibility and shear properties of those monolayers were assessed in order to define its phase character. We found that the length of the acyl chain of the ASCn compounds induces differential changes in the rheological properties of the host membrane and subtly regulates the kinetics and extent of the penetration process. The capacity for ASCn uptake was found to depend on the phase state of the host film. The increase in surface pressure resultant after amphiphile incorporation appears to be a function of the capacity of the host membrane to incorporate such amphiphile as well as the rheological response of the film. Hence, monolayers that show a solid phase state responded with a larger surface pressure increase to the incorporation of a comparable amount of amphiphile than liquid-expanded ones. The cholesterol-containing films, including the mixture that mimics stratum corneum, allowed a very scarce ASCn uptake independently of the membrane diffusional properties. This suggests an important contribution of Cho on the maintenance of the barrier function of stratum corneum.

  3. Optimization of the Formulation of Prebiotic Milk Chocolate Based on Rheological Properties

    Directory of Open Access Journals (Sweden)

    Hannaneh Farzanmehr

    2009-01-01

    Full Text Available Rheological properties are very important parameters in the production of products with high-quality and desirable texture. So far, many attempts to produce low-calorie milk chocolate have not succeeded. Therefore, the present study aims to evaluate the effects of sugar substitutes on rheological characteristics of prebiotic milk chocolate using Simplex-lattice mixture design. For doing this, a prebiotic compound (inulin with two bulking agents (polydextrose and maltodextrin at different levels (0–100 % along with sucralose were used. Fifteen formulations covering the entire range of a triangular simplex were examined in order to find the optimum levels. All chocolates showed thixotropic and shear thinning behaviour and among the evaluated mathematical models, Casson model showed the best fitting for predicting rheological properties. According to our findings, chocolate formulations containing high levels of sugar substitutes (where a single component predominated had higher moisture content, Casson viscosity and yield stress than others, including the control. In contrast, the lowest moisture content, Casson viscosity and yield stress were observed at medium levels. Therefore, the optimum values for substitution of sucrose and production of a low-calorie prebiotic milk chocolate are 8–28 % and 67–86 % for inulin, 0–19 % and 31–69 % for polydextrose and 0–47 % for maltodextrin, respectively.

  4. THE ROLE OF DIFFERENT RHEOLOGICAL MODELS IN ACCURACY OF PRESSURE LOSS PREDICTION

    Directory of Open Access Journals (Sweden)

    Katarina Simon

    2004-12-01

    Full Text Available Hydraulics play an important function in many oil field operations including drilling, completion, fracturing, acidizing, workover and production. The standard API methods for drilling fluid hydraulics assume either power law or Bingham plastic rheological model. These models and corresponding hydraulic calculations do provide a simple way for fair estimates of hydraulics for conventional vertical wells using simple drilling fluids, such as bentonite fluids. However, nowdays with many wells drilled deep, slim or horizontal using complex muds with unusual behaviour (such as tested MMH mud, it is necessary to use appropriate rheological model for mathematical modelling of fluid behaviour. Oil and gas reservoirs in Croatia have been under production for quite a while and the probability to discover new deposits of hydrocarbons is rather small. Therefore attempts have been made to maintain the gas and oil exploitation at the present level. One of possible ways to meet this target is re-entry wells drilling. The diameter of such wells in reservoir is smaller than 0,1524 m (6 in. Accurate modelling of annular pressure losses becomes therefore an important issue, particularly in cases where a small safety margin exists between optimal drilling parameters and wellbore stability, what is the case in re-entry wells. The objective of the paper is to show the influence of well geometry and accuracy of fluid rheological properties modelling to the distribution of pressure losses in a slimhole well.

  5. Rheology of Victorian brown coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Woskoboenko, F.; Siemon, S.R.; Creasy, D.E.

    1987-09-01

    Aqueous suspensions of finely ground raw brown coal from Victoria, Australia, have been tested in a Couette viscometer to evaluate their rheological properties. Shear rates covered the range 1-800s/sup -1/ and median particles were 6-41 ..mu..m. Concentrations up to 0.6 volume fraction were examined. The results were well represented by the two parameter Bingham model. It was found that the degree of non-Newtonian behaviour, as measured by yield stress, increased as the concentration was increased or the particle size decreased. The yield stress can be directly related to the volumetric solids concentration, particle size distribution and external specific area via a single, physically meaningful parameter - the mean distance separating the particles. The power law relationship between yield stress and inter-particle distance can be used to gauge the degree of flocculation of the system. As with non-interacting particle systems, the plastic viscosity of these suspensions increases in a logarithmic fashion as the concentration increases but is independent of the absolute particle size. 35 refs., 5 figs., 2 tabs.

  6. Rheology of irradiated honey from Parana region

    Energy Technology Data Exchange (ETDEWEB)

    Sabato, S.F. E-mail: sfsabato@ipen.br

    2004-10-01

    Viscosity characteristics can be governed by the molecular chain length of sugars present in the honey. Honey is essentially a mixture of sugar and water. When a physical treatment, as gamma radiation, is applied to food, some changes on its viscosity may occur. Viscosity is one of the important properties of honey and depends on water and sugar quantities. The objective of this work was to verify the rheological behavior of irradiated honey from Parana region in comparison to the unirradiated one. Each rheogram was measured at different shear rates that was increased to a certain value then immediately decreased to the starting point ('up and down curves'). These measurements were made for control and irradiated samples (5 and 10 kGy) in different temperatures (30 deg. C, 35 deg. C and 40 deg. C). The curves constructed with shear stress against shear rate presented linearity. Honey, irradiated and control, showed a Newtonian behavior and gamma radiation did not affect it.

  7. Field-sensitivity To Rheological Parameters

    Science.gov (United States)

    Freund, Jonathan; Ewoldt, Randy

    2017-11-01

    We ask this question: where in a flow is a quantity of interest Q quantitatively sensitive to the model parameters θ-> describing the rheology of the fluid? This field sensitivity is computed via the numerical solution of the adjoint flow equations, as developed to expose the target sensitivity δQ / δθ-> (x) via the constraint of satisfying the flow equations. Our primary example is a sphere settling in Carbopol, for which we have experimental data. For this Carreau-model configuration, we simultaneously calculate how much a local change in the fluid intrinsic time-scale λ, limit-viscosities ηo and η∞, and exponent n would affect the drag D. Such field sensitivities can show where different fluid physics in the model (time scales, elastic versus viscous components, etc.) are important for the target observable and generally guide model refinement based on predictive goals. In this case, the computational cost of solving the local sensitivity problem is negligible relative to the flow. The Carreau-fluid/sphere example is illustrative; the utility of field sensitivity is in the design and analysis of less intuitive flows, for which we provide some additional examples.

  8. Rheology of cement mixtures with dolomite filler

    Directory of Open Access Journals (Sweden)

    Martínez de la Cuesta, P. J.

    2000-06-01

    Full Text Available This experimental program has studied the behavior of fresh paste made up from cements mixed with dolomite filler. Through prior experiments the starting point is obtained for the designs 22 and 23 factorials. With these designs the governing equations are established that influence the specific surface of the filler, the filler percentage and the ratio water/(cement + filler, used as objective functions: test probe penetration, flow on table and shear stress in viscometer. Also the type of rheological conduct is determined and the influence over initial and final setting is observed.

    Este programa experimental estudia el comportamiento de las pastas frescas fabricadas a partir de cementos mezclados con filler dolomítico. En los experimentos previos se obtiene el punto central para los diseños 22 y 23 factoriales. Con estos diseños se establecen las ecuaciones que rigen la influencia de la superficie específica del filler, el porcentaje de filler y la relación agua/(cemento + filler, utilizando como funciones objetivos la penetración de sonda, la mesa de sacudidas y la tensión de corte en el viscosímetro. También se determina el tipo de conducta reológica y la influencia sobre el principio y fin de fraguado.

  9. The extrudate swell of HDPE: Rheological effects

    Science.gov (United States)

    Konaganti, Vinod Kumar; Ansari, Mahmoud; Mitsoulis, Evan; Hatzikiriakos, Savvas G.

    2017-05-01

    The extrudate swell of an industrial grade high molecular weight high-density polyethylene (HDPE) in capillary dies is studied experimentally and numerically using the integral K-BKZ constitutive model. The non-linear viscoelastic flow properties of the polymer resin are studied for a broad range of large step shear strains and high shear rates using the cone partitioned plate (CPP) geometry of the stress/strain controlled rotational rheometer. This allowed the determination of the rheological parameters accurately, in particular the damping function, which is proven to be the most important in simulating transient flows such as extrudate swell. A series of simulations performed using the integral K-BKZ Wagner model with different values of the Wagner exponent n, ranging from n=0.15 to 0.5, demonstrates that the extrudate swell predictions are extremely sensitive to the Wagner damping function exponent. Using the correct n-value resulted in extrudate swell predictions that are in excellent agreement with experimental measurements.

  10. Effects of ioxaglate to blood rheology

    International Nuclear Information System (INIS)

    Schmid-Schoenbein, H.; Teitel, P.; Tietz, G.; Oezlen, A.

    1984-01-01

    Almen and Aspelin have shown that the use of non-ionic radio contrast media allows to increase the iodine concentration (which is desirable because of its effect on radio opacity) without a very large increase in osmolarity (which is undesirable because it impaires the fluidity of erythrocytes). This latter effect can also be diminished by reducing the osmolarity of a dimeric contrast medium as it has been achieved by incorporating more iodine atoms into the molecule in the case of Ioxaglate (Hexabrix). In various microrheological test systems, the fluidity of packed red cell suspension, the corrected filtration rate though 5 μm pores and the relative apparent viscosity of blood - contrast media mixtures (1 to 50% concentration) were determined in experiments comparing this compound with Urografin 76 of the same iodine content. In all systems, the former showed lesser rheological effects. In whole blood viscometry, this can be detected only after appropriate corrections for the effects of the two contrast media on hematocrit and plasma viscosity. Owing to a more pronounced water shift from the cells to the plasma, Urografin tends to reduce the viscosity of the plasma-contrast media mixture. The concomitant reduction in MCV and hematocrit level tends to screen the macrorheological effect of the dehydrated cells becomes immediately obvious when the viscometric data are corrected for hematocrit value and plasma viscosity effects. (orig.)

  11. Mudflow rheology in a vertically rotating flume

    Science.gov (United States)

    Holmes, Robert R.; Westphal, Jerome A.; Jobson, Harvey E.; ,

    1990-01-01

    Joint research by the U.S. Geological Survey and the University of Missouri-Rolla currently (1990) is being conducted on a 3.05 meters in diameter vertically rotating flume used to simulate mudflows under steady-state conditions. Observed mudflow simulations indicate flow patterns in the flume are similar to those occurring in natural mudflows. Variables such as mean and surface velocity, depth, and average boundary shear stress can be measured in this flume more easily than in the field or in a traditional tilting flume. Sensitive variables such as sediment concentration, grain-size distribution, and Atterberg limits also can be precisely and easily controlled. A known Newtonian fluid, SAE 30 motor oil, was tested in the flume and the computed value for viscosity was within 12.5 percent of the stated viscosity. This provided support that the data from the flume can be used to determine the rheological properties of fluids such as mud. Measurements on mud slurries indicate that flows with sediment concentrations ranging from 81 to 87 percent sediment by weight can be approximated as Bingham plastic for strain rates greater than 1 per second. In this approximation, the yield stress and Bingham viscosity were extremely sensitive to sediment concentration. Generally, the magnitude of the yield stress was large relative to the change in shear stress with increasing mudflow velocity.

  12. Influence of hydroxyl content of binders on rheological properties of cerium-gadolinium oxide (CGO) screen printing inks

    DEFF Research Database (Denmark)

    Marani, Debora; Gadea, Christophe; Hjelm, Johan

    2015-01-01

    vinyl resins) were selected and characterized in solution via viscosimetry method. A high degree of hyper-entanglement was observed for ethyl cellulose polymers, whereas a mitigated effect characterized the two vinyl resins. Cerium-gadolinium oxides (CGO)-based inks, prepared using the selected binders......The influence of hydroxyl content of binders on rheological properties of screen printing inks is investigated. The actual amount of hydroxyl groups is correlated to the level of hyper-entanglement that characterizes the binders in solution. Three of the most used binders (ethyl cellulose, and two...

  13. Reconciling laboratory and observational models of mantle rheology in geodynamic modelling

    Science.gov (United States)

    King, Scott D.

    2016-10-01

    Experimental and geophysical observations constraining mantle rheology are reviewed with an emphasis on their impact on mantle geodynamic modelling. For olivine, the most studied and best-constrained mantle mineral, the tradeoffs associated with the uncertainties in the activation energy, activation volume, grain-size and water content allow the construction of upper mantle rheology models ranging from nearly uniform with depth to linearly increasing from the base of the lithosphere to the top of the transition zone. Radial rheology models derived from geophysical observations allow for either a weak upper mantle or a weak transition zone. Experimental constraints show that wadsleyite and ringwoodite are stronger than olivine at the top of the transition zone; however the uncertainty in the concentration of water in the transition zone precludes ruling out a weak transition zone. Both observational and experimental constraints allow for strong or weak slabs and the most promising constraints on slab rheology may come from comparing inferred slab geometry from seismic tomography with systematic studies of slab morphology from dynamic models. Experimental constraints on perovskite and ferropericlase strength are consistent with general feature of rheology models derived from geophysical observations and suggest that the increase in viscosity through the top of the upper mantle could be due to the increase in the strength of ferropericlase from 20-65 GPa. The decrease in viscosity in the bottom half of the lower mantle could be the result of approaching the melting temperature of perovskite. Both lines of research are consistent with a high-viscosity lithosphere, a low viscosity either in the upper mantle or transition zone, and high viscosity in the lower mantle, increasing through the upper half of the lower mantle and decreasing in the bottom half of the lower mantle, with a low viscosity above the core. Significant regions of the mantle, including high

  14. Identification and characterization of novel ERC-55 interacting proteins: evidence for the existence of several ERC-55 splicing variants; including the cytosolic ERC-55-C.

    Science.gov (United States)

    Ludvigsen, Maja; Jacobsen, Christian; Maunsbach, Arvid B; Honoré, Bent

    2009-12-01

    ERC-55, encoded from RCN2, is localized in the ER and belongs to the CREC protein family. ERC-55 is involved in various diseases and abnormal cell behavior, however, the function is not well defined and it has controversially been reported to interact with a cytosolic protein, the vitamin D receptor. We have used a number of proteomic techniques to further our functional understanding of ERC-55. By affinity purification, we observed interaction with a large variety of proteins, including those secreted and localized outside of the secretory pathway, in the cytosol and also in various organelles. We confirm the existence of several ERC-55 splicing variants including ERC-55-C localized in the cytosol in association with the cytoskeleton. Localization was verified by immunoelectron microscopy and sub-cellular fractionation. Interaction of lactoferrin, S100P, calcyclin (S100A6), peroxiredoxin-6, kininogen and lysozyme with ERC-55 was further studied in vitro by SPR experiments. Interaction of S100P requires [Ca(2+)] of approximately 10(-7) M or greater, while calcyclin interaction requires [Ca(2+)] of >10(-5) M. Interaction with peroxiredoxin-6 is independent of Ca(2+). Co-localization of lactoferrin, S100P and calcyclin with ERC-55 in the perinuclear area was analyzed by fluorescence confocal microscopy. The functional variety of the interacting proteins indicates a broad spectrum of ERC-55 activities such as immunity, redox homeostasis, cell cycle regulation and coagulation.

  15. Cyclic Macromolecules: Dynamics and Nonlinear Rheology, Final Report DOE Award # DE-FG02-05ER46218, Texas Tech University

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, Gregory B.; Grubbs, Robert H.; Kornfield, Julia A.

    2012-04-25

    The work described in the present report had the original goal to produce large, entangled, ring polymers that were uncontaminated by linear chains and to characterize by rheological methods the dynamics of these rings. While the work fell short of this specific goal, the outcomes of the research performed under support from this grant provided novel macromolecular synthesis methods, new separation methods for ring and linear chains, and novel rheological data on bottle brush polymers, wedge polymers and dendron-based ring molecules. The grant funded a total of 8 archival manuscripts and one patent, all of which are attached to the present report.

  16. Kinetic and thermodynamic analysis of the polymerization of polyurethanes by a rheological method

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, Beatriz; Fuente, José Luis de la, E-mail: fuentegj@inta.es

    2016-02-10

    Graphical abstract: - Highlights: • Kinetic and thermodynamic analysis for the formation of a functional polyurethane (PU) has been carried out. • Rheological parameters were used to obtain the profile of the resin's curing degree. • Kamal-Sourour autocatalytic kinetic model describes well this polyaddition reaction. • A deeper understanding of the mechanism of PU systems has been achieved. • This metallo-PU finds its application in the chemistry of advanced energetic materials. - Abstract: As part of an investigation into the mechanism and chemorheology of linear segmented polyurethane (PU) systems, this paper presents the kinetic and thermodynamic characterization of the reaction between an advanced functional metallo-polyol derivative of hydroxyl-terminated polybutadiene (HTPB), (ferrocenylbutyl)dimethylsilane grafted HTPB, and isophorone diisocyanate (IPDI). The evolution of viscoelastic properties, such as the storage modulus (G′), was recorded in bulk under isothermal conditions at four different temperatures between 50 and 80 °C, and a resin curing degree profile was obtained for this elastic modulus. The use of the Kamal-Sourour autocatalytic kinetic model was proposed, describing the overall curing process perfectly. All the kinetic and thermodynamic parameters, including reaction orders, kinetic constants and activation energy, were determined for the polyaddition reaction under study. A relevant autocatalysis effect, promoted by the urethane group, has been found. The isoconversion method was also used to analyze the variation of the global activation energy with conversion. The global activation energy increases slightly as the curing reaction proceeds with a maximum value reached at approximately 30% conversion. In addition, the Eyring parameters were calculated from the obtained kinetic data.

  17. Kinetic and thermodynamic analysis of the polymerization of polyurethanes by a rheological method

    International Nuclear Information System (INIS)

    Lucio, Beatriz; Fuente, José Luis de la

    2016-01-01

    Graphical abstract: - Highlights: • Kinetic and thermodynamic analysis for the formation of a functional polyurethane (PU) has been carried out. • Rheological parameters were used to obtain the profile of the resin's curing degree. • Kamal-Sourour autocatalytic kinetic model describes well this polyaddition reaction. • A deeper understanding of the mechanism of PU systems has been achieved. • This metallo-PU finds its application in the chemistry of advanced energetic materials. - Abstract: As part of an investigation into the mechanism and chemorheology of linear segmented polyurethane (PU) systems, this paper presents the kinetic and thermodynamic characterization of the reaction between an advanced functional metallo-polyol derivative of hydroxyl-terminated polybutadiene (HTPB), (ferrocenylbutyl)dimethylsilane grafted HTPB, and isophorone diisocyanate (IPDI). The evolution of viscoelastic properties, such as the storage modulus (G′), was recorded in bulk under isothermal conditions at four different temperatures between 50 and 80 °C, and a resin curing degree profile was obtained for this elastic modulus. The use of the Kamal-Sourour autocatalytic kinetic model was proposed, describing the overall curing process perfectly. All the kinetic and thermodynamic parameters, including reaction orders, kinetic constants and activation energy, were determined for the polyaddition reaction under study. A relevant autocatalysis effect, promoted by the urethane group, has been found. The isoconversion method was also used to analyze the variation of the global activation energy with conversion. The global activation energy increases slightly as the curing reaction proceeds with a maximum value reached at approximately 30% conversion. In addition, the Eyring parameters were calculated from the obtained kinetic data.

  18. Genomic characterization of two novel SAR11 isolates from the Red Sea, including the first strain of the SAR11 Ib clade.

    Science.gov (United States)

    Jimenez-Infante, Francy; Ngugi, David Kamanda; Vinu, Manikandan; Blom, Jochen; Alam, Intikhab; Bajic, Vladimir B; Stingl, Ulrich

    2017-07-01

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea: one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Karyotype characterization of Mugil incilis Hancock, 1830 (Mugiliformes: Mugilidae, including a description of an unusual co-localization of major and minor ribosomal genes in the family

    Directory of Open Access Journals (Sweden)

    Anne Kathrin Hett

    Full Text Available This study reports the description of the karyotype of Mugil incilis from Venezuela. The chromosome complement is composed of 48 acrocentric chromosomes, which uniformly decrease in size. Therefore, the homologues can not be clearly identified, with the exception of one of the largest chromosome pairs, classified as number 1, whose homologues may show a subcentromeric secondary constriction, and of chromosome pair number 24, which is considerably smaller than the others. C-banding showed heterochromatic blocks at the centromeric/pericentromeric regions of all chromosomes, which were more conspicuous on chromosomes 1, given the C-positive signals include the secondary constrictions. AgNO3 and fluorescent in situ hybridization (FISH with 45S rDNA demonstrated that the nucleolus organizer regions are indeed located on the secondary constrictions of chromosome pair number 1. FISH with 5S rDNA revealed that the minor ribosomal genes are located on this same chromosome pair, near the NORs, though signals are closer to the centromeres and of smaller size, compared to those of the major ribosomal gene clusters. This is the first description of co-localization of major and minor ribosomal genes in the family. Data are discussed from a cytotaxonomic and phylogenetic perspective.

  20. Genomic Characterization of Two Novel SAR11 Isolates From the Red Sea, Including the First Strain of the SAR11 Ib clade

    KAUST Repository

    Jimenez Infante, Francy M.

    2017-06-22

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea, one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain-specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter.

  1. Genomic Characterization of Two Novel SAR11 Isolates From the Red Sea, Including the First Strain of the SAR11 Ib clade

    KAUST Repository

    Jimenez Infante, Francy M.; Ngugi, David; Vinu, Manikandan; Blom, Jochen; Alam, Intikhab; Bajic, Vladimir B.; Stingl, Ulrich

    2017-01-01

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea, one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain-specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter.

  2. Universal timescales in the rheology of spheroid cell aggregates

    Science.gov (United States)

    Yu, Miao; Mahtabfar, Aria; Beleen, Paul; Foty, Ramsey; Zahn, Jeffrey; Shreiber, David; Liu, Liping; Lin, Hao

    2017-11-01

    The rheological properties of tissue play important roles in key biological processes including embryogenesis, cancer metastasis, and wound healing. Spheroid cell aggregate is a particularly interesting model system for the study of these phenomena. In the long time, they behave like drops with a surface tension. In the short, viscoelasticity also needs to be considered. In this work, we discover two coupled and universal timescales for spheroid aggregates. A total of 12 aggregate types (total aggregate number n =290) derived from L and GBM (glioblastoma multiforme) cells are studied with microtensiometer to obtain their surface tension. They are also allowed to relax upon release of the compression forces. The two timescales are observed during the relaxation process; their values do not depend on compression time nor the degree of deformation, and are consistent among all 12 types. Following prior work (Yu et al., Phys. Rev. Lett., 115:128303; Liu et al., J. Mech. Phys. Solids, 98:309-329) we use a rigorous mathematical theory to interpret the results, which reveals intriguing properties of the aggregates on both tissue and cellular levels. The mechanics of multicellular organization reflects both complexity and regularity due to strong active regulation.

  3. Complex rheological behaviors of loach (Misgurnus anguillicaudatus) skin mucus

    International Nuclear Information System (INIS)

    Wang, Xiang; Su, Heng; Lv, Weiyang; Du, Miao; Song, Yihu; Zheng, Qiang

    2015-01-01

    The functions and structures of biological mucus are closely linked to rheology. In this article, the skin mucus of loach (Misgurnus anguillicaudatus) was proved to be a weak hydrogel susceptible to shear rate, time, and history, exhibiting: (i) Two-region breakdown of its gel structure during oscillatory strain sweep; (ii) rate-dependent thickening followed by three-region thinning with increased shear rate, and straight thinning with decreased shear rate; and (iii) time-dependent rheopexy at low shear rates, and thixotropy at high shear rates. An interesting correlation between the shear rate- and time-dependent rheological behaviors was also revealed, i.e., the rheopexy-thixotropy transition coincided with the first-second shear thinning region transition. Apart from rheology, a structure of colloidal network was observed in loach skin mucus using transmission electron microscopy. The complex rheology was speculated to result from inter- and intracolloid structural alterations. The unique rheology associated with the colloidal network structure, which has never been previously reported in vertebrate mucus, may play a key role in the functions (e.g., flow, reannealing, lubrication, and barrier) of the mucus

  4. Complex rheological behaviors of loach (Misgurnus anguillicaudatus) skin mucus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang, E-mail: 11229036@zju.edu.cn; Su, Heng, E-mail: shtdyso@163.com; Lv, Weiyang, E-mail: 3090103369@zju.edu.cn; Du, Miao, E-mail: dumiao@zju.edu.cn; Song, Yihu, E-mail: s-yh0411@zju.edu.cn; Zheng, Qiang, E-mail: zhengqiang@zju.edu.cn [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-01-15

    The functions and structures of biological mucus are closely linked to rheology. In this article, the skin mucus of loach (Misgurnus anguillicaudatus) was proved to be a weak hydrogel susceptible to shear rate, time, and history, exhibiting: (i) Two-region breakdown of its gel structure during oscillatory strain sweep; (ii) rate-dependent thickening followed by three-region thinning with increased shear rate, and straight thinning with decreased shear rate; and (iii) time-dependent rheopexy at low shear rates, and thixotropy at high shear rates. An interesting correlation between the shear rate- and time-dependent rheological behaviors was also revealed, i.e., the rheopexy-thixotropy transition coincided with the first-second shear thinning region transition. Apart from rheology, a structure of colloidal network was observed in loach skin mucus using transmission electron microscopy. The complex rheology was speculated to result from inter- and intracolloid structural alterations. The unique rheology associated with the colloidal network structure, which has never been previously reported in vertebrate mucus, may play a key role in the functions (e.g., flow, reannealing, lubrication, and barrier) of the mucus.

  5. Factors That Influence the Extensional Rheological Property of Saliva.

    Directory of Open Access Journals (Sweden)

    Amrita Vijay

    Full Text Available The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva.

  6. An experimental palladium-103 seed (OptiSeedexp) in a biocompatible polymer without a gold marker: Characterization of dosimetric parameters including the interseed effect

    International Nuclear Information System (INIS)

    Abboud, F.; Scalliet, P.; Vynckier, S.

    2008-01-01

    Permanent implantation of 125 I (iodine) or 103 Pd (palladium) sources is a popular treatment option in the management of early stage prostate cancer. New sources are being developed, some of which are being marketed for different clinical applications. A new technique of adjuvant stereotactic permanent seed breast implant, similar to that used in the treatment of prostate cancer, has been proposed by [N. Jansen et al., Int. J. Radiat. Oncol. Biol. Phys. 67, 1052-1058 (2007)] with encouraging results. The presence of artifacts from the metallic seeds, however, can disturb follow-up imaging. The development of plastic seeds has reduced these artifacts. This paper presents a feasibility study of the advantages of palladium-103 seeds, encapsulated with a biocompatible polymer, for future clinical applications, and on the effect of the gold marker on the dosimetric characteristics of such seeds. Experimental palladium seeds, OptiSeed exp , were manufactured by International Brachytherapy (IBt), Seneffe, Belgium, from a biocompatible polymer, including the marker. Apart from the absence of a gold marker, the studied seed has an identical design to the OptiSeed 103 [Phys. Med. Biol. 50, 1493-1504 (2005)]; [Appl. Radiat. Isot. 63, 311-321 (2005)]. Polymer encapsulation was preferred by IBt in order to reduce the quantity of radioactive material needed for a given dose rate and to reduce the anisotropy of the radiation field around the seed. In addition, this design is intended to decrease the interseed effects that can occur as a result of the marker and the encapsulation. Dosimetric measurements were performed using LiF thermoluminescent dosimeters (1 mm 3 ) in solid water phantoms (WT1). Measured data were compared to Monte Carlo simulated data in solid water using the MCNP code, version 4C. Updated cross sections [Med. Phys. 30, 701-711 (2003)] were used. As the measured and calculated data were in agreement, Monte Carlo calculations were then performed in liquid water

  7. Karyotype characterization of Mugil incilis Hancock, 1830 (Mugiliformes: Mugilidae, including a description of an unusual co-localization of major and minor ribosomal genes in the family

    Directory of Open Access Journals (Sweden)

    Anne Kathrin Hett

    2011-03-01

    Full Text Available This study reports the description of the karyotype of Mugil incilis from Venezuela. The chromosome complement is composed of 48 acrocentric chromosomes, which uniformly decrease in size. Therefore, the homologues can not be clearly identified, with the exception of one of the largest chromosome pairs, classified as number 1, whose homologues may show a subcentromeric secondary constriction, and of chromosome pair number 24, which is considerably smaller than the others. C-banding showed heterochromatic blocks at the centromeric/pericentromeric regions of all chromosomes, which were more conspicuous on chromosomes 1, given the C-positive signals include the secondary constrictions. AgNO3 and fluorescent in situ hybridization (FISH with 45S rDNA demonstrated that the nucleolus organizer regions are indeed located on the secondary constrictions of chromosome pair number 1. FISH with 5S rDNA revealed that the minor ribosomal genes are located on this same chromosome pair, near the NORs, though signals are closer to the centromeres and of smaller size, compared to those of the major ribosomal gene clusters. This is the first description of co-localization of major and minor ribosomal genes in the family. Data are discussed from a cytotaxonomic and phylogenetic perspective.Se presenta la primera descripción del cariotipo de Mugil incilis de Venezuela. El complemento cromosómico está compuesto por 48 cromosomas acrocéntricos uniformemente decrecientes en tamaño. Por lo tanto, los homólogos no pueden ser claramente identificados, con excepción de uno de los pares de mayor tamaño, clasificado como número 1, cuyos homólogos poseen una constricción secundaria subcentromérica, y el par de cromosomas número 24, considerablemente más pequeño que los otros. El bandeo-C reveló bloques heterocromáticos en las regiones centroméricas/pericentroméricas de todos los cromosomas, más conspicuas en el cromosoma 1 en el que las señales C

  8. Evaluation of antioxidant, rheological, physical and sensorial properties of wheat flour dough and cake containing turmeric powder.

    Science.gov (United States)

    Park, S H; Lim, H S; Hwang, S Y

    2012-10-01

    The effects of addition of turmeric powder (0%, 2%, 4%, 6% and 8%) were examined in order to obtain an antioxidant-enriched cake with good physico-chemical and sensorial properties. The rheological properties of doughs were evaluated using dynamic rheological measurements. Physical properties, curcumin content, radical scavenging activity (RSA-DPPH assay) and sensory analysis (hedonic test) of the supplemented cake were determined. Addition of turmeric powder up to 8% caused significant changes on dough characteristics and on cake rheological properties. The highest curcumin (203 mg/kg) and RSA-DPPH activity (45%) were achieved in the cake having the highest percentage of turmeric powder (8%); however, this sample showed the worst results regarding the rheological properties. Moreover, by sensory evaluation this cake sample was not acceptable. A 6% substitution of wheat flour with turmeric powder showed acceptable sensory scores which were comparable to those of 0-4% turmeric cakes. This indicated that up to 6% level of turmeric powder might be included in cake formulation.

  9. Investigation of Rheological Properties of Blended Cement Pastes Using Rotational Viscometer and Dynamic Shear Rheometer

    Directory of Open Access Journals (Sweden)

    Yoo Jae Kim

    2018-01-01

    Full Text Available To successfully process concrete, it is necessary to predict and control its flow behavior. However, the workability of concrete is not completely measured or specified by current standard tests. Furthermore, it is only with a clear picture of cement hydration and setting that full prediction and control of concrete performance can be generalized. In order to investigate the rheological properties of blended cement pastes, a rotational viscometer (RV was used to determine the flow characteristics of ordinary and blended pastes to provide assurance that it can be pumped and handled. Additionally, a dynamic shear rheometer (DSR was used to characterize both the viscous and elastic components of pastes. Ordinary Portland cement paste and blended pastes (slag, fly ash, and silica fume were investigated in this study. The stress and strain of the blended specimens were measured by the DSR, which characterizes both viscous and elastic behaviors by measuring the complex shear modulus (the ratio of total shear stress to total shear strain and phase angle (an indicator of the relative amounts of recoverable and nonrecoverable deformation of materials. Cement pastes generally exhibit different rheological behaviors with respect to age, mineral admixture type, and cement replacement level.

  10. Aqueous Colloid + Polymer Depletion System for Confocal Microscopy and Rheology

    Science.gov (United States)

    Park, Nayoung; Umanzor, Esmeralda J.; Conrad, Jacinta C.

    2018-05-01

    We developed a model depletion system with colloidal particles that were refractive index- and density-matched to 80 (w/w)% glycerol in water, and characterized the effect of interparticle interactions on the structure and dynamics of non-equilibrium phases. 2,2,2-trifluoroethyl methacrylate-co-tert-butyl methacrylate copolymer particles were synthesized following Kodger et al. (Sci. Rep. 5, 14635 (2015)). Particles were dispersed in glycerol/water solutions to generate colloidal suspensions with good control over electrostatic interactions and a moderately high background viscosity of 55 mPa-s. To probe the effects of charge screening and depletion attractions on the suspension phase behavior, we added NaCl and polyacrylamide (M_w = 186 kDa) at various concentrations to particle suspensions formulated at volume fractions of phi = 0.05 and 0.3 and imaged the suspensions using confocal microscopy. The particles were nearly hard spheres at a NaCl concentration of 20 mM, but aggregated when the concentration of NaCl was further increased. Changes in the particle structure and dynamics with increasing concentration of the depletant polyacrylamide followed the trends expected from earlier experiments on depletion-driven gelation. Additionally, we measured the viscosity and corrected first normal stress difference of suspensions formulated at phi = 0.4 with and without added polymer. The solvent viscosity was suitable for rheology measurements without the onset of instabilities such as secondary flows or edge fracture. These results validate this system as an alternative to one common model system, suspensions of poly(methyl methacrylate) particles and polystyrene depletants in organic solvents, for investigating phase behavior and flow properties in attractive colloidal suspensions.

  11. Rheological evaluation of polymers for EOR. Proper procedures for a laboratory approach

    Energy Technology Data Exchange (ETDEWEB)

    Kouchaki, S.; Hincapie-Reina, R.; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Some discrepancies exist in the literature concerning polymer EOR (Enhanced Oil Recovery) evaluation. Laboratory investigations are essentials for every particular flooding project, with proper preliminary lab evaluation techniques in order to study the polymer behavior and rheological properties at different reservoir conditions. Different research has been shown variation in procedures during polymer preparation and filtration; affecting the result in the field. Experience from field observation indicates that even high molecular weight (MW) polymers have filtration ratio (F.R) less than 1,5; in that way polymer solutions that are still in range cannot show a good approximation to the field behavior. To deal with the discrepancies, specific procedures based in rheological polymer characterization were adapted. Two different polymers were used for rheology study using a rotational rheometer analyzing some solutions at different conditions. Additionally rheological measurements was used to characterize the apparent viscosity of polymer as a shear rate function, salinity, temperature and polymer concentration, defining additional useful values for simulation evaluations and additionally Newtonian, non-Newtonian, shear viscosity and MW impact were also investigated. Quality control of the solutions was not limited to the conventional indicator 'filtrations ratio', but it was showed how important it is to consider two qualities check indicators, filterability ratio and filterability plot, simultaneously. Results indicated how stable the N-vinyl Pyrrolidone (NVP) Superpusher SAV301 could be in comparison to the Hydrolyzed Polyacrylamide polymer (HPAM) Flopaam 3630S. Despite the high viscosity results from HPAM Flopaam 3630S due to its high MW, the polymer is overly sensitive to factors like temperature, salinity and concentration. Quite the contrary was for polymer solutions with Superpusher SAV301; constant viscosity over a wide shear rate range which is the

  12. Vascular-Rheological Properties of Blood in Hemorrhagic Vasculitis Occurring in Childhood and Adulthood

    Directory of Open Access Journals (Sweden)

    V.V. Gerasymenko

    2016-11-01

    Full Text Available Background. As a result of the immune-inflammatory necrotic changes in the walls of arterioles and capillaries in patients with hemorrhagic vasculitis (HV Henoch — Schönlein endothelial dysfunction of vessels occurs, contributing to violations of blood rheological properties and microcirculation. These processes depend on the age of patients, and in cases of onset of the disease in childhood and adulthood are unknown. Objective: to study vascular and rheological properties of blood serum in HV and to compare the indices with different age of the debut of the pathological process in the groups of patients. Material and methods. The study included 174 patients with HV (83 % men and 17 % women. In 92 patients, the disease made its debut in childhood (on average in 12 years old, and in 82 — in the adult (on average in 25 years old. I, II and III degree of activity of pathological process are set at a ratio of 1 : 2 : 2. Indicators of vascular endothelial function were investigated by immune-enzyme analysis and the adsorption-rheological pro­perties of blood were assessed by computer tensiometry. Results. HV is accompanied by severe disorders of the blood vascular and rheological properties which are involved in the pathogenesis of lesions of skin (endothelin-1, surface tension, joints (only surface activity, kidney (prostacyclin, cyclic guanosine monophosphate and heart (endothelin-1, viscoelastic modulus. At that the integrated indicators of vascular endothelial function, viscoelastic, surface-active and relaxation characteristics of serum depend on the age of the patients in the beginning of the disease, the degree of activity of the pathological process, the clinical form of the disease course, necrotic-ulcerative and polymorphic variants of cutaneous vasculitis, and HV, transforming from juvenile, occurs with lower blood levels of endothelin-1, but with a higher concentration of thromboxane A2, cyclic guanosine monophosphate and

  13. Rheology modification in mixed shape colloidal dispersions. Part I: pure components

    NARCIS (Netherlands)

    ten Brinke, A.J.W.; Bailey, L.; Lekkerkerker, H.N.W.; Matiland, G.C.

    2007-01-01

    The flow behaviour and rheology of colloidal dispersions are of considerable interest in many applications, for example colloidal clay particles find applications in oilfield and constructiondrilling fluids. The rheological properties of such fluids can be enhanced significantly by adding colloidal

  14. The rheology of cryovolcanic slurries: Motivation and phenomenology of methanol-water slurries with implications for Titan

    Science.gov (United States)

    Zhong, Fang; Mitchell, Karl L.; Hays, Charles C.; Choukroun, Mathieu; Barmatz, Martin; Kargel, Jeffrey S.

    2009-08-01

    The Cassini spacecraft has revealed landforms on the surface of Titan suggested to be viscous cryovolcanic flows and possibly eruptive domes. In order to relate those surface features to the processes and chemistries that produced them, it is necessary to construct flow models, which rely on characterization of the rheological properties of the eruptants. This paper describes our initial exploratory attempts to understand the rheological characteristics of cryogenic slurries, using a 40% methanol-water mixture, as a precursor to more detailed experiments. We have devised a new automated cryogenic rotational viscometer system to more fully characterize cryovolcanic slurry rheologies. A series of measurements were performed, varying first temperature, and then strain rate, which revealed development of yield stress-like behaviors, shear-rate dependence, and thixotropic behavior, even at relatively low crystal fractions, not previously reported. At fixed shear rate our data are fit well by the Andrade equation, with the activation energy modified by a solid volume fraction. At fixed temperature, depending on shearing history, a Cross model could describe our data over a wide shear rate range. A Bingham plastic model appears to be a good constitutive model for the data measured at high shear rates when the shear was global. The yield stress like behavior implies that levee formation on cryolava flows is more likely than would be inferred from the previous studies, and may provide a partial explanation for features interpreted as steep-sided volcanic constructs on Titan.

  15. Native Silk Feedstock as a Model Biopolymer: A Rheological Perspective.

    Science.gov (United States)

    Laity, Peter R; Holland, Chris

    2016-08-08

    Variability in silk's rheology is often regarded as an impediment to understanding or successfully copying the natural spinning process. We have previously reported such variability in unspun native silk extracted straight from the gland of the domesticated silkworm Bombyx mori and discounted classical explanations such as differences in molecular weight and concentration. We now report that variability in oscillatory measurements can be reduced onto a simple master-curve through normalizing with respect to the crossover. This remarkable result suggests that differences between silk feedstocks are rheologically simple and not as complex as originally thought. By comparison, solutions of poly(ethylene-oxide) and hydroxypropyl-methyl-cellulose showed similar normalization behavior; however, the resulting curves were broader than for silk, suggesting greater polydispersity in the (semi)synthetic materials. Thus, we conclude Nature may in fact produce polymer feedstocks that are more consistent than typical man-made counterparts as a model for future rheological investigations.

  16. Comparison of Rheological Properties of Hopped Wort and Malt Wort

    Directory of Open Access Journals (Sweden)

    Petr Trávníček

    2015-01-01

    Full Text Available The aim of this work is determination rheological properties of hopped wort and malt wort and their comparison. In the paper following rheological properties has been described: the dependence of viscosity on a temperature of a sample and hysteresis loop test. The time dependence test was performed for a confirmation thixotropic behaviour. Based on measured values Arrhenius mathematical model has been applied. The activation energy was determined by using of this model. Tests have been carried out in the temperature range from 5 °C to 40 °C. Rheological tests proved that malt wort behaves as Newtonian fluid in all temperatures and hopped wort behaves as non-Newtonian fluid at low temperatures. Thixotropic behaviour is caused by the content of the rests of hops heads or malt scraps.

  17. Rheological and microbiological study of flour treated by irradiation

    International Nuclear Information System (INIS)

    Laabidi, Othmen

    2007-01-01

    the aim this work is to study the effectiveness of radio treatment and its effect on the conservation of flour and their various parameters (physico-chemical and rheological). The flour has been treated with different doses (0, 0.75, 1.5 and 3 kGy), physico-chemical, rheological, microbiological and sensory analyses were made.The results show that the irradiation as a treatment for decontamination gave a highly effective. Indeed, a dose of 1.5 kGy allows a total destruction of yeasts and molds. Thus, from the point of view physico-chemical, increasing the dose of radiation causes a change in physical and chemical properties and rheological of flour. for the characteristics of bread, increasing the dose of radiation affects the quality of bread. (Author). 38 refs

  18. Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes

    Science.gov (United States)

    Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.

    2018-03-01

    The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.

  19. Mixing process influence on thermal and rheological properties of NBR/SiO2 from rice husk ash

    Directory of Open Access Journals (Sweden)

    Ana Maria Furtado de Sousa

    Full Text Available Abstract Silica was extracted from rice husk ash (RHA by a sequence of reactions to produce nanosilica. Two laboratory routes, co-coagulation and spray drying, were used to incorporate the nanosilica into the rubber matrix. Samples were characterized regarding filler incorporation efficiency, thermal stability, rheological behavior and morphology. Thermogravimetric analysis showed that spray-drying was the most efficient filler incorporation process and also the presence of silica increased the thermal resistance of the rubber compound when compared to the unfilled rubber. The rheological behavior showed that NBR filled with silica presented higher elastic torque (S’, storage modulus (G’ and complex viscosity (η* than unfilled rubber. The Payne effect was also observed for the composites produced by spray-drying. In addition, the thermal behavior and Payne effect results were supported by the comparison of morphology observed by FEG-SEM analysis.

  20. Structural Features of Alkaline Extracted Polysaccharide from the Seeds of Plantago asiatica L. and Its Rheological Properties

    Directory of Open Access Journals (Sweden)

    Jun-Yi Yin

    2016-09-01

    Full Text Available Polysaccharide from the seeds of Plantago asiatica L. has many bioactivities, but few papers report on the structural and rheological characteristics of the alkaline extract. The alkaline extracted polysaccharide was prepared from seeds of P. asiatica L. and named herein as alkaline extracted polysaccharide from seeds of P. asiatica L. (PLAP. Its structural and rheological properties were characterized by monosaccharide composition, methylation, GC-MS and rheometry. PLAP, as an acidic arabinoxylan, was mainly composed of 1,2,4-linked Xylp and 1,3,4-linked Xylp residues. PLAP solution showed pseudoplastic behavior, and weak gelling properties at high concentration. Sodium and especially calcium ions played a significant role in increasing the apparent viscosity and gel strength.

  1. Physical, Rheological, Functional, and Film Properties of a Novel Emulsifier: Frost Grape Polysaccharide from Vitis riparia Michx.

    Science.gov (United States)

    Hay, William T; Vaughn, Steven F; Byars, Jeffrey A; Selling, Gordon W; Holthaus, Derek M; Price, Neil P J

    2017-10-04

    A novel emulsifier, Frost grape polysaccharide (FGP), isolated from natural exudate of the species Vitis riparia Michx, was physically and rheologically characterized. The determination of the physical, structural, thermodynamic, emulsification, film, and rheological properties of FGP provide essential details for the commercial adoption of this novel plant polysaccharide. FGP is capable of producing exceptionally stable emulsions when compared with the industrially ubiquitous gum arabic (GA). The FGP isolate contained a negligible amount of nitrogen (0.03%), indicating that it does not contain an associated glycoprotein, unlike GA. Solutions of FGP have a high degree of thermostability, displaying no loss in viscosity with temperature cycling and no thermal degradation when held at 90 °C. FGP is an excellent film former, producing high tensile strength films which remain intact at temperatures up to 200 °C. This work identified a number of potential food and pharmaceutical applications where FGP is significantly superior to GA.

  2. Study of the geopolymer restructuration by impulse rheology

    International Nuclear Information System (INIS)

    Rouyer, J.; Frizon, F.; Poulesquen, A.

    2015-01-01

    The aim of the study is to describe the evolution of the microstructure during the setting process of the geo-polymer using an original rheological method named Optimal Fourier Rheology (OFR). The alkali activation of meta-kaolin enables physicochemical transformation from a fresh paste to a hard meso-porous matrix. Classically, oscillatory rheology technique provides viscoelastic moduli spectrum and enables to determine rheological comportment of the material under investigation. However the duration to perform a complete spectrum (more than 2.5 h) makes useless this technique in the case of changing material. The OFR technique decreases the measurement duration under 10 minutes and enables to perform several snapshots of the evolving rheological behaviour. Contrary to monochromatic iterations, here the applied stress takes the form of a chirp function which contains the full usable bandwidth. Interpretations of spectrums provide efficient access to structural evolution along the setting. Results show that the number of oligomers increases into the solution due to the dissolution of the meta-kaolin leading to a constant increase of the viscoelastic parameters until the gradual appearance of the percolating networks. The gelling time was rigorously assessed by using the Winter and Chambon criterion. A fractal percolating network is formed inside the material after a reaction time depending on the formulation parameters; corresponding fractal dimensions were established. After the gel point, the viscoelastic moduli grow rapidly until geo-polymers reach a classic viscoelastic state. Structural unit size were determined using moduli curves crossover and equalled to 2.1 nm in the case of Na geo-polymer; this value fits extremely well with value previously obtained by SAXS. Finally, the elasticity becomes constant in a large frequency range and the viscous parameter strongly decreases which means that the solid porous network is under formation. In conclusion, this

  3. Rheological and sensory performance of a protein-based sweetener (MNEI), sucrose, and aspartame in yogurt.

    Science.gov (United States)

    Miele, Nicoletta A; Cabisidan, Erliza K; Blaiotta, Giuseppe; Leone, Serena; Masi, Paolo; Di Monaco, Rossella; Cavella, Silvana

    2017-12-01

    Sweeteners and flavors are generally added to yogurt to make them more palatable. However, the addition of these ingredients may affect the fermentation process of yogurt as well as its physical and sensory characteristics. Consumers prioritize yogurt products that are "natural." A modified single-chain form of the natural sweet protein monellin extracted from the fruit of Dioscoreophyllum cumminsii, called MNEI, could be a useful alternative to artificial sweeteners. The aim of the present work was to evaluate new rapid sensory methods in combination with rheology to assess the viability of using MNEI to develop sweetened yogurts without the calories of sugar. We studied the gelation and cooling kinetics of 4 yogurt samples (unsweetened or sweetened with MNEI, aspartame, or sucrose) by using a rheometer. Furthermore, the 4 yogurts, with and without addition of a flavoring agent, were characterized from a sensory perspective using a combination of 2 rapid sensory methods, ultra flash profile and flash profile. Rheological results showed that, when added at typical usage levels, aspartame, sucrose, and MNEI did not generally affect the yogurt fermentation process or its rheological properties. Sensory results demonstrated that texture attributes of yogurts with aspartame and sucrose were strongly linked to sweetness and flavor perception, but this was not true for MNEI-sweetened yogurts. In contrast to results obtained from samples sweetened with sucrose and aspartame, MNEI protein did not sweeten the yogurt when added before fermentation. This study highlights the enhancing effect of flavor on sweetness perception, supporting previous reports that noted synergistic effects between sucrose or aspartame and flavors. Hence, future studies should be conducted to determine how sweet proteins behave in yogurt when added after fermentation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition

    Science.gov (United States)

    Asghar, Z.; Ali, N.; Anwar Bég, O.; Javed, T.

    2018-06-01

    Gliding bacteria are virtually everywhere. These organisms are phylogenetically diverse with their hundreds of types, different shapes and several modes of motility. One possible mode of gliding motility in the rod shaped bacteria is that they propel themselves by producing undulating waves in their body. Few bacteria glides near the solid surface over the slime without any aid of flagella so the classical Navier-Stokes equations are incapable of explaining the slime rheology at the microscopic level. Micropolar fluid dynamics however provides a solid framework for mimicking bacterial physical phenomena at both micro and nano-scales, and therefore we use the micropolar fluid to characterize the rheology of a thin layer of slime and its dominant microrotation effects. It is also assumed that there is a certain degree of slip between slime and bacterial undulating surface and also between slime and solid substrate. The flow equations are formulated under long wavelength and low Reynolds number assumptions. Exact expressions for stream function and pressure gradient are obtained. The speed of the gliding bacteria is numerically calculated by using a modified Newton-Raphson method. Slip effects and effects of non-Newtonian slime parameters on bacterial speed and power are also quantified. In addition, when the glider is fixed, the effects of slip and rheological properties of micropolar slime parameters on the velocity, micro-rotation (angular velocity) of spherical slime particles, pressure rise per wavelength, pumping and trapping phenomena are also shown graphically and discussed in detail. The study is relevant to emerging biofuel cell technologies and also bacterial biophysics.

  5. Influence of mineral fillers on the rheological response of polymer-modified bitumens and mastics

    Directory of Open Access Journals (Sweden)

    F. Cardone

    2015-12-01

    Full Text Available The rheological properties of the bituminous components (bitumen and bituminous mastic within asphalt mixtures contribute significantly to the major distresses of flexible pavements (i.e. rutting, fatigue and low temperature cracking. Asphalt mixtures are usually composed of mastic-coated aggregates rather than pure bitumen-coated aggregates. The purpose of this study is to investigate the effects of mineral fillers on the rheological behaviour of several polymer-modified bitumens (PMBs through laboratory mixing. A neat bitumen and two types of polymers (elastomeric and plastomeric were used to produce PMBs, and two fillers with different minerals (limestone and basalt were selected to obtain mastics. The dynamic shear rheometer (DSR and bending beam rheometer (BBR were used to characterize the rheological properties of PMBs and mastics. In particular, multiple stress creep recovery (MSCR tests were performed to evaluate the rutting potential at high temperatures, whereas BBR tests were carried out to investigate the low temperature behaviour of these materials. BBR results for unmodified mastics show that the increase of stiffness is similar regardless of the filler type, whereas results for polymer-modified mastics indicate that the degree of stiffening depends on the combination of filler/polymer types. MSCR results show that adding filler leads to a reduced susceptibility of permanent deformation and an enhanced elastic response, depending on the combination of filler/polymer types. Overall results suggest that a physical–chemical interaction between the filler and bitumen occurs, and that the interaction level is highly dependent on the type of polymer modification.

  6. Microstructural Dynamics and Rheology of Suspensions of Rigid Fibers

    Science.gov (United States)

    Butler, Jason E.; Snook, Braden

    2018-01-01

    The dynamics and rheology of suspensions of rigid, non-Brownian fibers in Newtonian fluids are reviewed. Experiments, theories, and computer simulations are considered, with an emphasis on suspensions at semidilute and concentrated conditions. In these suspensions, interactions between the particles strongly influence the microstructure and rheological properties of the suspension. The interactions can arise from hydrodynamic disturbances, giving multibody interactions at long ranges and pairwise lubrication forces over short distances. For concentrated suspensions, additional interactions due to excluded volume (contacts) and adhesive forces are addressed. The relative importance of the various interactions as a function of fiber concentration is assessed.

  7. Rheology of Savannah River site tank 42 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1997-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site, Tank 42 sludge represents on of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility. The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center using a modified Haake Rotovisco viscometer

  8. Test Method for Rheological Behavior of Mortar for Building Work

    Directory of Open Access Journals (Sweden)

    Korobko Bogdan

    2017-09-01

    Full Text Available This paper offers a test method for rheological behavior of mortars with different mobility and different composition, which are used for execution of construction work. This method is based on investigation of the interaction between the valve ball and the mortar under study and allows quick defining of experimental variables for any composition of building mortars. Certain rheological behavior will permit to calculate the design parameters of machines for specific conditions of work performance – mixing (pre-operation, pressure generation, pumping to the work site, workpiece surfacing.

  9. Rheology of Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels

    Science.gov (United States)

    Lombardi, Jack; Xu, Di; Bhatnagar, Divya; Gersappe, Dilip; Sokolov, Jonathan; Rafailovich, Miriam

    2015-03-01

    The stiffness of PNIPA Gels has been reported could be significant improved by gelation with clay fillers. Here we conducted systematic rheology study of synthesized PNIPA-Clay Composites at different clay concentration, in a range from fluid to strong gel, where G'' dominant changed to G' dominant. Molecular dynamics simulation was employed to analyze the structure of composites and corresponding mechanical changes with increased clays. Where we found viscoelastic behavior become significant only 1.5 times above percolation threshold. The yield stress extrapolated from our rheology results shows good fitting to modified Mooney's theory of suspension viscosity.

  10. The Rheology of Acoustically Fluidized Sand

    Science.gov (United States)

    Conrad, J. W.; Melosh, J.

    2013-12-01

    The collapse of large craters and the formation of central peaks and peak rings is well modeled by numerical computer codes that incorporate the acoustic fluidization mechanism to temporarily allow the fluid-like flow of rock debris immediately after crater excavation. Furthermore, long runout landslides require a similar mechanism to explain their almost frictionless movement, which is probably also a consequence of their granular composition coupled with internal vibrations. Many different investigators have now confirmed the ability of vibrations to fluidize granular materials. Yet it still remains to fully describe the rheology of vibrated sand as a function of stress, frequency and amplitude of the vibrations in the sand itself. We constructed a rotational viscometer to quantitatively investigate the relation between the stress and strain rate in a horizontal bed of strongly vibrated sand. In addition to the macroscopic stain rate, the amplitude and frequency of the vibrations produced by a pair of pneumatic vibrators were also measured with the aid of miniaturized piezoelectric accelerometers (B&K 4393) whose output was recorded on a digital storage oscilloscope. The initial gathering of the experimental data was difficult due to granular memory, but by having the sand compacted vibrationally for 8 minutes before each run the scatter of data was reduced and we were able to obtain consistent results. Nevertheless, our major source of uncertainty was variations in strain rate from run to run. We find that vibrated sand flows like a highly non-Newtonian fluid, in which the shear strain rate is proportional to stress to a power much greater than one, where the precise power depends on the amplitude and frequency of the applied vibrations. Rapid flow occurs at stresses less than half of the static yield stress (that is, the yield stress when no vibration is applied) when strong vibrations are present. For a Newtonian fluid, such as water, the relation between

  11. Structure-rheology relationship in a sheared lamellar fluid.

    Science.gov (United States)

    Jaju, S J; Kumaran, V

    2016-03-01

    The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (ργL(2)/μ), the Schmidt number (μ/ρD), the Ericksen number (μγ/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts μ(r), and the ratio of the system size and layer spacing (L/λ). Here, ρ and μ are the fluid density and average viscosity, γ is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, μ(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/λ=32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with "grain boundaries," which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers

  12. Effect of 3-D heterogeneous-earth on rheology inference of postseismic model following the 2012 Indian Ocean earthquake

    Science.gov (United States)

    Pratama, C.; Ito, T.; Sasajima, R.; Tabei, T.; Kimata, F.; Gunawan, E.; Ohta, Y.; Yamashina, T.; Ismail, N.; Muksin, U.; Maulida, P.; Meilano, I.; Nurdin, I.; Sugiyanto, D.; Efendi, J.

    2017-12-01

    Postseismic deformation following the 2012 Indian Ocean earthquake has been modeled by several studies (Han et al. 2015, Hu et al. 2016, Masuti et al. 2016). Although each study used different method and dataset, the previous studies constructed a significant difference of earth structure. Han et al. (2015) ignored subducting slab beneath Sumatra while Masuti et al. (2016) neglect sphericity of the earth. Hu et al. (2016) incorporated elastic slab and spherical earth but used uniform rigidity in each layer of the model. As a result, Han et al. (2015) model estimated one order higher Maxwell viscosity than the Hu et al. (2016) and half order lower Kelvin viscosity than the Masuti et al. (2016) model predicted. In the present study, we conduct a quantitative analysis of each heterogeneous geometry and parameter effect on rheology inference. We develop heterogeneous three-dimensional spherical-earth finite element models. We investigate the effect of subducting slab, spherical earth, and three-dimensional earth rigidity on estimated lithosphere-asthenosphere rheology beneath the Indian Ocean. A wide range of viscosity structure from time constant rheology to time dependent rheology was chosen as previous studies have been modeled. In order to evaluate actual displacement, we compared the model to the Global Navigation Satellite System (GNSS) observation. We incorporate the GNSS data from previous studies and introduce new GNSS site as a part of the Indonesian Continuously Operating Reference Stations (InaCORS) located in Sumatra that has not been used in the last analysis. As a preliminary result, we obtained the effect of the spherical earth and elastic slab when we assumed burgers rheology. The model that incorporates the sphericity of the earth needs a one third order lower viscosity than the model that neglects earth curvature. The model that includes elastic slab needs half order lower viscosity than the model that excluding the elastic slab.

  13. Mechanical and rheological properties of the bionanocomposites of biope/organoclay vermiculite

    International Nuclear Information System (INIS)

    Hanken, R.B.L.; Agrawal, P.; Oliveira, A.D.B.; Melo, T. J. A.

    2014-01-01

    Bionanocomposites of green polyethylene with organic vermiculite were prepared by melt intercalation method. Rheological and mechanical properties of these bionanocomposites were studied. The clay was treated with a quaternary ammonium salt, characterized by infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results showed the incorporation of salt in clay. The bionanocomposites were then prepared by extrusion followed by injection, in amounts of 0.5 to 5 phr of clay in the final compound. Subsequently, the samples were characterized by: capillary rheometer and mechanical tests (tensile and impact). Capillary rheometer results showed that the presence of organic vermiculite in the green polyethylene decreased viscosity of the systems. The mechanical properties of bionanocomposites showed an increased elastic modulus and reduced impact resistance. (author)

  14. Mechanical and rheological properties of nanocomposites of polyamide 6 with national organoclay

    International Nuclear Information System (INIS)

    Paz, Rene Anisio da; Leite, Amanda Melissa Damiao; Araujo, Edcleide Maria; Melo, Tomas Jeferson Alves de; Pessan, Luiz Antonio; Passador, Fabio Roberto

    2013-01-01

    Nanocomposites of polyamide 6 with organoclay were prepared by melt intercalation and their rheological and mechanical properties were studied. The clay was treated with the quaternary ammonium salt (Cetremide) and characterized by Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD). The results showed the incorporation of salt in the clay and its organophilization. A master was prepared with PA6/clay (1:1) by weight and this was added to the pure polyamide 6 to reach the nominal proportion of 3% of clay, using a co-rotational twin screw extruder. The samples were molded by injection and characterized by: capillary rheometry, XRD, TEM and mechanical testing (tensile and impact). The results of capillary rheometry showed that the presence of organoclay in the PA6 increased the viscosity of the systems. With XRD and TEM, it was verified that all systems presented predominantly exfoliated structure. The tensile properties of the nanocomposites were better than those of pure polyamide 6. (author)

  15. Rheological, Chemical and Physical Characteristics of Golden Berry (Physalis peruviana L.) after Convective and Microwave Drying.

    Science.gov (United States)

    Nawirska-Olszańska, Agnieszka; Stępień, Bogdan; Biesiada, Anita; Kolniak-Ostek, Joanna; Oziembłowski, Maciej

    2017-07-29

    Studies on methods for fixing foods (with a slight loss of bioactive compounds) and obtaining attractive products are important with respect to current technology. The drying process allows for a product with highly bioactive properties. Drying of Physalis fruit was carried out in a conventional manner, and in a microwave under reduced pressure at 120 W and 480 W. After drying, the fruits were subjected to strength and rheological tests. Water activity, content of carotenoids and polyphenols and antioxidant activity as well as colour were also examined. The study showed that Physalis is a difficult material for drying. The best results were obtained using microwave drying at a power of 480 W. Physalis fruit microwave-dried by this method is characterized by higher resistance to compression than the fruit dried by convection. Dried fruit obtained in this way was characterized by higher contents of bioactive compounds, better antioxidant properties, and at the same time the lowest water activity.

  16. Rheological, Chemical and Physical Characteristics of Golden Berry (Physalis peruviana L. after Convective and Microwave Drying

    Directory of Open Access Journals (Sweden)

    Agnieszka Nawirska-Olszańska

    2017-07-01

    Full Text Available Studies on methods for fixing foods (with a slight loss of bioactive compounds and obtaining attractive products are important with respect to current technology. The drying process allows for a product with highly bioactive properties. Drying of Physalis fruit was carried out in a conventional manner, and in a microwave under reduced pressure at 120 W and 480 W. After drying, the fruits were subjected to strength and rheological tests. Water activity, content of carotenoids and polyphenols and antioxidant activity as well as colour were also examined. The study showed that Physalis is a difficult material for drying. The best results were obtained using microwave drying at a power of 480 W. Physalis fruit microwave-dried by this method is characterized by higher resistance to compression than the fruit dried by convection. Dried fruit obtained in this way was characterized by higher contents of bioactive compounds, better antioxidant properties, and at the same time the lowest water activity.

  17. Effects of lateral variations of crustal rheology on the occurrence of post-orogenic normal faults: The Alto Tiberina Fault (Northern Apennines, Central Italy)

    Science.gov (United States)

    Pauselli, Cristina; Ranalli, Giorgio

    2017-11-01

    The Northern Apennines (NA) are characterized by formerly compressive structures partly overprinted by subsequent extensional structures. The area of extensional tectonics migrated eastward since the Miocene. The youngest and easternmost major expression of extension is the Alto Tiberina Fault (ATF). We estimate 2D rheological profiles across the NA, and conclude that lateral rheological crustal variations have played an important role in the formation of the ATF and similar previously active faults to the west. Lithospheric delamination and mantle degassing resulted in an easterly-migrating extension-compression boundary, coinciding at present with the ATF, where (i) the thickness of the upper crust brittle layer reaches a maximum; (ii) the critical stress difference required to initiate faulting at the base of the brittle layer is at a minimum; and (iii) the total strengths of both the brittle layer and the whole lithosphere are at a minimum. Although the location of the fault is correlated with lithospheric rheological properties, the rheology by itself does not account for the low dip ( 20°) of the ATF. Two hypotheses are considered: (a) the low dip of the ATF is related to a rotation of the stress tensor at the time of initiation of the fault, caused by a basal shear stress ( 100 MPa) possibly related to corner flow associated with delamination; or (b) the low dip is associated to low values of the friction coefficient (≤ 0.5) coupled with high pore pressures related to mantle degassing. Our results establishing the correlation between crustal rheology and the location of the ATF are relatively robust, as we have examined various possible compositions and rheological parameters. They also provide possible general indications on the mechanisms of localized extension in post-orogenic extensional setting. The hypotheses to account for the low dip of the ATF, on the other hand, are intended simply to suggest possible solutions worthy of further study.

  18. Lithospheric rheology constrained from twenty-five years of postseismic deformation following the 1989 Mw 6.9 Loma Prieta earthquake

    Science.gov (United States)

    Huang, Mong-Han; Burgmann, Roland; Pollitz, Fred

    2016-01-01

    The October 17, 1989 Mw 6.9 Loma Prieta earthquake provides the first opportunity of probing the crustal and upper mantle rheology in the San Francisco Bay Area since the 1906 Mw 7.9 San Francisco earthquake. Here we use geodetic observations including GPS and InSAR to characterize the Loma Prieta earthquake postseismic displacements from 1989 to 2013. Pre-earthquake deformation rates are constrained by nearly 20 yr of USGS trilateration measurements and removed from the postseismic measurements prior to the analysis. We observe GPS horizontal displacements at mean rates of 1–4 mm/yr toward Loma Prieta Mountain until 2000, and ∼2 mm/yr surface subsidence of the northern Santa Cruz Mountains between 1992 and 2002 shown by InSAR, which is not associated with the seasonal and longer-term hydrological deformation in the adjoining Santa Clara Valley. Previous work indicates afterslip dominated in the early (1989–1994) postseismic period, so we focus on modeling the postseismic viscoelastic relaxation constrained by the geodetic observations after 1994. The best fitting model shows an elastic 19-km-thick upper crust above an 11-km-thick viscoelastic lower crust with viscosity of ∼6 × 1018 Pas, underlain by a viscous upper mantle with viscosity between 3 × 1018 and 2 × 1019 Pas. The millimeter-scale postseismic deformation does not resolve the viscosity in the different layers very well, and the lower-crustal relaxation may be localized in a narrow shear zone. However, the inferred lithospheric rheology is consistent with previous estimates based on post-1906 San Francisco earthquake measurements along the San Andreas fault system. The viscoelastic relaxation may also contribute to the enduring increase of aseismic slip and repeating earthquake activity on the San Andreas fault near San Juan Bautista, which continued for at least a decade after the Loma Prieta event.

  19. The rheological and fracture properties of Gouda cheese

    NARCIS (Netherlands)

    Luyten, H.

    1988-01-01

    The rheological and fracture behaviour of Gouda cheese was studied. Methods for determining these properties of visco-elastic materials are described. Application of the theory of fracture mechanics, after modification and expansion, to visco-elastic materials with a

  20. Historical evolution of oil painting media: A rheological study

    Science.gov (United States)

    de Viguerie, Laurence; Ducouret, Guylaine; Lequeux, François; Moutard-Martin, Thierry; Walter, Philippe

    2009-09-01

    Rheology is the science of flow, which is a phenomenon found in every painting operation, such as decorative paintings or protective coatings. In this article, the principles of rheology as applied to paintings and coatings are recalled in a first part and the rheological criteria required in the paint industry presented. Indeed, different flow behaviours leads to different finishes. The same procedure and techniques as in industry can be employed to explain some evolutions in oil painting aspects over the centuries. The first recipes for oil painting indicate the use of treated oil, resins and spirits. This article deals with the evolution of the composition of these systems as media for oil painting, according to rheological clues. During the Renaissance period, the media used were Newtonian or slightly shear thinning and allowed one a perfect levelling. Then techniques changed, paints became more opaque with less addition of oil/resin media, and brushstrokes appeared visible. Some preparations containing lead, oil and mastic resin, whose flow behaviour is closed to those required in industry, may have appeared during the 17th century and are still used and sold today. To cite this article: L. de Viguerie et al., C. R. Physique 10 (2009).

  1. Recent advances in extensional rheology: controlled flows and fracture

    DEFF Research Database (Denmark)

    Hassager, Ole; Huang, Qian

    Extensional deformation and flow occur in a number of polymer processing operations such as fiber spinning and film blowing. To understand and analyze material behavior in such operations, accurate and quantitative measurements of the rheological properties in well-defined extensional deformation...

  2. Influence of enzymes and ascorbic acid on dough rheology and ...

    African Journals Online (AJOL)

    The combined action of ascorbic acid and two commercial enzymatic complexes containing amylase and xylanase/amylase was analyzed to determine their effects on dough rheology and bread quality. Seven bread formulations containing different concentrations of these improvers were used in the analysis.

  3. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    phase composition to link fresh concrete workability and mixing intensity. In this paper, rheological measurements have been performed using a novel rheometer equipped with a ball measuring system. SCMC mixtures with various HRWRA contents and conventional cement paste mixtures with varying water/cement ratios ...

  4. Effect of the fructose and glucose concentration on the rheological ...

    African Journals Online (AJOL)

    The objective of this work was to study the effect of fructose and glucose content on the rheological behavior of syrups. Initially, high fructose syrup from the fructans present in leaves, bases and head of Agave tequilana Weber blue was obtained. Then, its contents of moisture, ash, fructose, glucose and direct and total ...

  5. Rheology and scaling behavior of swelling clay dispersions | Chaoui ...

    African Journals Online (AJOL)

    The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions ...

  6. Effect of drying methods on the rheological characteristics and ...

    African Journals Online (AJOL)

    The effect of drying methods (sun and oven-drying) on the rheological properties and colour of amala, a thick paste from yam flour, was investigated using two varieties of yam (Dioscorea rotundata and. Dioscorea alata). The yam flour produced was later reconstituted to produce amala of different pasting characteristics, ...

  7. Effects of polyethyleneimine adsorption on rheology of bentonite ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The influence of the cationic polymer, polyethyleneimine polymer (PEI) on the flow behaviour of bentonite suspensions (2%, w/w), was studied. XRD, zeta potential and adsorption studies were done together with rheological measurements. The addition of PEI at concentration ranges of 10-5–4.5 g/l and ...

  8. Rheological and Sensory Characteristics of Yoghurt-Modified Mayonnaise

    Czech Academy of Sciences Publication Activity Database

    Štern, Petr; Pokorný, J.; Šedivá, A.; Panovská, Z.

    2008-01-01

    Roč. 26, č. 3 (2008), s. 190-198 ISSN 1212-1800 R&D Projects: GA AV ČR IAA2060404 Institutional research plan: CEZ:AV0Z20600510 Keywords : mayonnaise * rheology * sensory analysis * texture * yoghurt Subject RIV: BK - Fluid Dynamics Impact factor: 0.472, year: 2008

  9. Rheology of High-Melt-Strength Polypropylene for Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Kamleitner, Florian; Jagenteufel, Ralf

    Acrylonitrile butadiene styrene (ABS) is a widely used material for additive manufacturing (AM) fused deposition modeling (FDM). The rheological properties of high-melt-strength polypropylene (HMS-PP) were compared to commercially available ABS 250 filament to study the possibility of using...

  10. Rheological study of chitosan acetate solutions containing chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Mikešová, Jana; Hašek, Jindřich; Tishchenko, Galina; Morganti, P.

    2014-01-01

    Roč. 112, 4 November (2014), s. 753-757 ISSN 0144-8617 EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : rheology * chitosan solutions * chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.074, year: 2014

  11. Dark chocolate’s compositional effects revealed by oscillatory rheology

    NARCIS (Netherlands)

    van der Vaart, K.; Depypere, F.; De Graef, V.; Schall, P.; Fall, A.; Bonn, D.; Dewettinck, K.

    2013-01-01

    In this study, two types of oscillatory shear rheology are applied on dark chocolate with varying volume fraction, particle size distribution, and soy lecithin concentration. The first, a conventional strain sweep, allows for the separation of the elastic and viscous properties during the yielding.

  12. Shear rheological properties of fresh human faeces with different ...

    African Journals Online (AJOL)

    2014-03-11

    Mar 11, 2014 ... Short communication. Shear rheological properties of fresh human faeces with different moisture content. SM Woolley1, RS Cottingham1, J Pocock1 and CA Buckley1*. 1Pollution Research Group, School of Engineering, University of KwaZulu-Natal, King George V Avenue, Berea 4041, South Africa.

  13. Effects of iron supply on the rheological properties and sensory ...

    African Journals Online (AJOL)

    The most basic is the world wheat crops. In Iran Bread is a staple food staple Food and because, as a bearer of good food to enrich bread with iron has been considered. The effect of flour fortification star with iron, folic acid, the chemical properties (dry gluten, wet gluten, gluten-free number, protein and Ddzlny) Rheological ...

  14. Effect of Bulk and Interfacial Rheological Properties on Bubble Dissolution

    NARCIS (Netherlands)

    Kloek, W.; Vliet, van T.; Meinders, M.

    2001-01-01

    This paper describes theoretical calculations of the combined effect of bulk and interracial rheological properties on dissolution behavior of a bubble in an infinite medium at saturated conditions. Either bulk or interracial elasticity can stop the bubble dissolution process, and stability criteria

  15. Rheology of sediment transported by a laminar flow

    Science.gov (United States)

    Houssais, M.; Ortiz, C. P.; Durian, D. J.; Jerolmack, D. J.

    2016-12-01

    Understanding the dynamics of fluid-driven sediment transport remains challenging, as it occurs at the interface between a granular material and a fluid flow. Boyer, Guazzelli, and Pouliquen [Phys. Rev. Lett. 107, 188301 (2011)], 10.1103/PhysRevLett.107.188301 proposed a local rheology unifying dense dry-granular and viscous-suspension flows, but it has been validated only for neutrally buoyant particles in a confined and homogeneous system. Here we generalize the Boyer, Guazzelli, and Pouliquen model to account for the weight of a particle by addition of a pressure P0 and test the ability of this model to describe sediment transport in an idealized laboratory river. We subject a bed of settling plastic particles to a laminar-shear flow from above, and use refractive-index-matching to track particles' motion and determine local rheology—from the fluid-granular interface to deep in the granular bed. Data from all experiments collapse onto a single curve of friction μ as a function of the viscous number Iv over the range 3 ×10-5 ≤Iv≤2 , validating the local rheology model. For Ivcreeping regime where we observe a continuous decay of the friction coefficient μ ≤μs as Iv decreases. The rheology of this creep regime cannot be described by the local model, and more work is needed to determine whether a nonlocal rheology model can be modified to account for our findings.

  16. Effects of Triphasic Exercise on Blood Rheology and Pathophysiology

    African Journals Online (AJOL)

    The aim of this work is to study the relevance of physiology and pathophysiology in blood rheology as effects of triphasic exercise. Regular exercise which has been established as life prolonging has led to decrease in both peripheral vascular and coronary morbidity that has been associated with certain improvements in ...

  17. Pasting and rheological properties of quinoa-oat composites

    Science.gov (United States)

    Quinoa (Chenopodium, quinoa) flour, known for its essential amino acids, was composited with oat products containing ß-glucan known for lowering blood cholesterol and preventing heart disease. Quinoa-oat composites were developed and evaluated for their pasting and rheological properties by a Rapid ...

  18. Rheological properties of soybean protein isolate gels containing emulsion droplets

    NARCIS (Netherlands)

    Kim, K.H.; Renkema, J.M.S.; Vliet, van T.

    2001-01-01

    Rheological properties of soybean protein gels containing various volume fractions oil droplets have been studied at small and large deformations. Dynamic viscoelastic properties of soybean protein isolate gels were determined as a function of the volume fraction of oil droplets stabilised by the

  19. Rheological Modeling of Macro Viscous Flows of Granular Suspension of Regular and Irregular Particles

    Directory of Open Access Journals (Sweden)

    Anna Maria Pellegrino

    2017-12-01

    Full Text Available This paper refers to complex granular-fluid mixtures involved into geophysical flows, such as debris and hyper-concentrated flows. For such phenomena, the interstitial fluids play a role when they are in the viscous regime. Referring to experiments on granular-fluid mixture carried out with pressure imposed annular shear cell, we study the rheological behaviour of dense mixture involving both spheres and irregular-shaped particles. For the case of viscous suspensions with irregular grains, a significant scatter of data from the trend observed for mixtures with spherical particles was evident. In effect, the shape of the particles likely plays a fundamental role in the flow dynamics, and the constitutive laws proposed by the frictional theory for the spheres are no longer valid. Starting from the frictional approach successfully applied to suspension of spheres, we demonstrate that also in case of irregular particles the mixture rheology may be fully characterized by the two relationships involving friction coefficient µ and volume concentration Ф as a function of the dimensionless viscous number Iv. To this goal, we provided a new consistent general model, referring to the volume fraction law and friction law, which accounts for the particle shape. In this way, the fitting parameters reduce just to the static friction angle µ1, and the two parameters, k and fs related to the grain shape. The resulting general model may apply to steady fully developed flows of saturated granular fluid mixture in the viscous regime, no matter of granular characteristics.

  20. Rheological behavior of indian traditional fermented wheat batters used for preparation of Kurdi & Seera

    Directory of Open Access Journals (Sweden)

    Vedprakash D. SURVE

    2014-08-01

    Full Text Available Traditional Indian cereal based fermented food products like Kurdi (Maharashtra and Seera (Himachal Pradesh are prepared from batter of fermented wheat grains. These wheat batters were prepared by soaking wheat grains (Triticum Astivum L., variety: PBN51 in water at different temperatures (30, 37.5 and 45°C for four days (natural fermentation, crushed, centrifuged and characterized for rheological properties. The present study was aimed to test the effect of soaking temperature (during natural fermentation of wheat grains on the rheological behavior of wheat batter. It was determined that viscosity and yield stress of the wheat batter decreased with increase in soaking temperature of natural fermentation. Yield stress decreased by 65% and 82% for wheat grains soaked at 37.5°C and 45°C, respectively as compared to those soaked at 30°C. This was attributed to the degradation of the carbohydrates by the natural flora of microorganisms. Increasing the soaking temperature during natural fermentation decreased the fluid consistency index and increased the flow behavior index of the batter, demonstrating a lower viscosity and increased fluidity. All the samples revealed shear thinning behavior. Gelatinization temperature of the wheat batter decreased with increase in soaking temperature as demonstrated by viscoelastic analysis (loss modulus, storage modulus, Tan δ of the samples.

  1. Morphology, rheology and electrical resistivity of PLLA/HDPE/CNT nanocomposites: Effect of maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Li-na; Chen, Jie; Dai, Jian; Chen, Hai-ming; Yang, Jing-hui [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Yong, E-mail: yongwang1976@163.com [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Chao-liang [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China)

    2015-02-15

    As a part of serial work about tuning the selective location of carbon nanotubes (CNTs) in immiscible polymer blends, this work reports the effects of component polarity and viscosity ratio between components on the selective location of CNTs and the resultant electrical resistivity of the nanocomposites. To achieve the research aim, maleic anhydride (MA) was grafted onto poly(L-lactide) (PLLA) main chain through a reactive compounding processing. After that, different contents of CNTs were incorporated into blends of high density polyethylene (HDPE) and PLLA (or PLLA-g-MA). The morphologies of the ternary nanocomposites and the selective location of CNTs in the nanocomposites were characterized using scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructure of nanocomposites and the dispersion of CNTs were further proved by rheological measurement. Finally, the electrical resistivity of nanocomposites containing different CNT contents was measured. The results showed that through increasing the polarity of PLLA and decreasing the melt viscosity, CNTs were kinetically trapped at the blend interface region. Consequently, largely decreased percolation threshold was achieved for the PLLA-g-MA/HDPE/CNT nanocomposites. The morphological changes as well as the rheological properties were also comparatively analyzed. - Highlights: • PLLA/HDPE/CNT and PLLA-g-MA/HDPE/CNT composites were prepared. • Different selective location states of CNTs were achieved in different composites. • Selectively located CNTs at the interface resulted in lower percolation threshold.

  2. Effect of cellulose nanocrystals (CNCs) on crystallinity, mechanical and rheological properties of polypropylene/CNCs nanocomposites

    Science.gov (United States)

    Bagheriasl, D.; Carreau, P. J.; Dubois, C.; Riedl, B.

    2015-05-01

    Rheological and mechanical properties of polypropylene (PP)/CNCs nanocomposites were compared with those of nanocomposites containing poly(ethylene-co-vinyl alcohol) as a compatibilizer. The nanocomposites were prepared by a Brabender internal mixer at CNC contents of 5 wt%. The compression molded nanocomposite dog-bones and disks were characterized regarding their tensile and dynamic rheological behavior, respectively. The complex viscosity of the nanocomposites samples containing the compatibilizer were increased, slightly, compared to the non-compatibilized nanocomposite samples. Moreover, an overshoot in the transient start-up viscosity of the compatibilized nanocomposite was observed. The Young modulus of the nanocomposite samples containing the compatibilizer were increased up to ca. 37% compared to the neat PP. The elongation at break was decreased in all PP/CNC nanocomposite samples, but less for the nanocomposite samples containing the compatibilizer. The crystalline content of the PP in the nanocomposites and also the crystallization temperature were increased after compatibilization. These results could be ascribed to the efficiency of the poly(ethylene-co-vinyl alcohol) as a compatibilizer that favors a better dispersion and wetting of the hydrophilic CNCs within the hydrophobic PP.

  3. Effect of collisional elasticity on the Bagnold rheology of sheared frictionless two-dimensional disks

    Science.gov (United States)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-01-01

    We carry out constant volume simulations of steady-state, shear-driven flow in a simple model of athermal, bidisperse, soft-core, frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian rheology. Focusing on the small strain rate limit, we map out the rheological behavior as a function of particle packing fraction ϕ and a parameter Q that measures the elasticity of binary particle collisions. We find a Q*(ϕ ) that marks the clear crossover from a region characteristic of strongly inelastic collisions, Q Q* , and give evidence that Q*(ϕ ) diverges as ϕ →ϕJ , the shear-driven jamming transition. We thus conclude that the jamming transition at any value of Q behaves the same as the strongly inelastic case, provided one is sufficiently close to ϕJ. We further characterize the differing nature of collisions in the strongly inelastic vs weakly inelastic regions, and recast our results into the constitutive equation form commonly used in discussions of hard granular matter.

  4. Potential contribution of microbial communities in technical ceramics for the improvement of rheological properties

    Science.gov (United States)

    Moreira, Bernardino; Miller, Ana Z.; Santos, Ricardo; Monteiro, Sílvia; Dias, Diamantino; Neves, Orquídia; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2014-05-01

    Several bacterial and fungal species naturally occurring in ceramic raw materials used in construction, such as Aspergillus, Penicillium and Aureobasidium, are known to produce exopolysaccharides (EPS). These polymers excreted by the cells are of widespread occurrence and may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation, during ceramic manufacturing. In this study, the microbial communities present in clay raw materials were identified by both cultural methods and DNA-based molecular techniques in order to appraise their potential contribution to enhance the performance of technical ceramics through the use of EPS. Mineralogical identification by X- Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy of the clay raw materials, as well as characterization of rheological properties of ceramic slips were also performed. Microbial EPS production and its introduction into ceramic slips will be then carried out in order to evaluate their effects on the rheological properties of the ceramic slips, powders and conformed bodies. Some positive aspects related to the use of EPS are: reduction of the environmental impact caused by synthetic organic additives, reduction of production costs, as well as the costs related with operator protection systems, gaseous effluent treatments, complex landfill, among others.

  5. The influence of fluid-rock interaction on the rheology of salt rock

    International Nuclear Information System (INIS)

    Spiers, C.J.; Urai, J.L; Lister, G.S.; Boland, J.N.; Zwart, H.J.

    1986-01-01

    This report documents work done on the rheological and dilatant properties of dry and wet salt during the period 1 November 1981 to 31 December 1983. The report opens with a review of previous evidence and theoretical models for water weakening effects in the long-term creep of salt. The programme was largely designed to look for such effects experimentally. Sections 3 and 4 describe the experimental apparatus and techniques used. Section 5 reports detailed characterization work on the experimental starting material (Speisesalz, Asse, Federal Republic of Germany). Section 6 deals with experiments on the rheological/dilatant properties of dry salt at about 20 0 C. The results show that even under worst case conditions, creep-induced dilatancy is almost completely suppressed at hydrostatic pressures > 15 MPa. Experiments on the influence of brine are reported in Sections 7 and 8. These show that small amounts of brine (e.g. 0.05 wt% - inherent or added) can cause a significant decrease in the creep strength of salt at low strain rates. This is related to a change in deformation mechanisms from dislocation glide/creep (at normal laboratory rates) to creep involving fluid-assisted recrystallization and diffusional creep (at low rates). The results imply that generally accepted creep laws for salt cannot necessarily be extrapolated to predict long-term behaviour under natural conditions

  6. Caracterização das propriedades reológicas e dinâmicas de composições de borracha natural com resíduo de EVA Characterization of rheological and dynamic properties of natural rubber compositions with waste EVA

    Directory of Open Access Journals (Sweden)

    Marcia G. Oliveira

    2004-12-01

    Full Text Available O resíduo de EVA oriundo das indústrias calçadistas é um material reticulado, que apresenta grande potencial de uso como carga em composições elastoméricas. Neste trabalho, foram avaliadas as propriedades reológicas e dinâmicas das composições de borracha natural (NR com resíduo de EVA (EVAR, determinadas com o auxílio do analisador de processamento de borracha (RPA. As composições não-vulcanizadas tiveram a sua viscosidade aumentada pela adição de teores crescentes de EVAR. Após a vulcanização essas composições apresentaram menor elasticidade que a NR pura, como evidenciado nas maiores taxas de relaxamento do módulo e nos maiores valores de tan delta. Este comportamento foi confirmado pelos resultados de tensão e alongamento na ruptura.The EVA waste (EVAR is a crosslinked material, which can be used as filler in rubber compositions. In this work, rheological and dynamic properties of natural rubber (NR compositions with EVAR were investigated before and after vulcanization with the help of a rubber processing analyzer (RPA. The filler content varied from 0 to 60 phr. The results showed that rheological properties of nonvulcanized compositions were clearly modified by the addition of EVAR, which contributed to an increase in viscosity. The modulus relaxation and the dynamic properties such as tan delta of vulcanized compositions were also affected, by the reduction of the elasticity of the compositions. The mechanical properties corroborated the behavior revealed by RPA analysis and indicated that EVAR acted as a non-reinforcing filler.

  7. A fully dynamic magneto-rheological fluid damper model

    International Nuclear Information System (INIS)

    Jiang, Z; Christenson, R E

    2012-01-01

    Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper. (paper)

  8. Field-Induced Rheology in Uniaxial and Biaxial Fields

    International Nuclear Information System (INIS)

    MARTIN, JAMES E.

    1999-01-01

    Steady and oscillatory shear 3-D simulations of electro- and magnetorheology in uniaxial and biaxial fields are presented, and compared to the predictions of the chain model. These large scale simulations are three dimensional, and include the effect of Brownian motion. In the absence of thermal fluctuations, the expected shear thinning viscosity is observed in steady shear, and a striped phase is seen to rapidly form in a uniaxial field, with a shear slip zone in each sheet. However, as the influence of Brownian motion increases, the fluid stress decreases, especially at lower Mason numbers, and the striped phase eventually disappears, even when the fluid stress is still high. In a biaxial field, an opposite trend is seen, where Brownian motion decreases the stress most significantly at higher Mason numbers. to account for the uniaxial steady shear data they propose a microscopic chain model of the role played by thermal fluctuations on the rheology of ER and MR fluids that delineates the regimes where an applied field can impact the fluid viscosity, and gives an analytical prediction for the thermal effect. In oscillatory shear, a striped phase again appears in uniaxial field, at strain amplitudes greater than(approx) 0.15, and the presence of a shear slip zone creates strong stress nonlinearities at low strain amplitudes. In a biaxial field, a shear slip zone is not created, and so the stress nonlinearities develop only at expected strain amplitudes. The nonlinear dynamics of these systems is shown to be in good agreement with the Kinetic Chain Model

  9. Elongational rheology and cohesive fracture of photo-oxidated LDPE

    Energy Technology Data Exchange (ETDEWEB)

    Rolón-Garrido, Víctor H., E-mail: victor.h.rolongarrido@tu-berlin.de; Wagner, Manfred H. [Chair of Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Fasanenstrasse 90, D-10623 Berlin (Germany)

    2014-01-15

    It was found recently that low-density polyethylene (LDPE) samples with different degrees of photo-oxidation represent an interesting system to study the transition from ductile to cohesive fracture and the aspects of the cohesive rupture in elongational flow. Sheets of LDPE were subjected to photo-oxidation in the presence of air using a xenon lamp to irradiate the samples for times between 1 day and 6 weeks. Characterisation methods included Fourier transform infrared spectroscopy, solvent extraction method, and rheology in shear and uniaxial extensional flows. Linear viscoelasticity was increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by the carbonyl index, acid and aldehydes groups, and gel fraction. The molecular stress function model was used to quantify the experimental data, and the nonlinear model parameter β was found to be correlated with the gel content. The uniaxial data showed that the transition from ductile to cohesive fracture was shifted to lower elongational rates, the higher the gel content was. From 2 weeks photo-oxidation onwards, cohesive rupture occurred at every strain rate investigated. The true strain and true stress at cohesive fracture as well as the energy density applied to the sample up to fracture were analyzed. At low gel content, rupture was mainly determined by the melt fraction while at high gel content, rupture occurred predominantly in the gel structure. The strain at break was found to be independent of strain rate, contrary to the stress at break and the energy density. Thus, the true strain and not the stress at break or the energy density was found to be the relevant physical quantity to describe cohesive fracture behavior of photo-oxidated LDPE. The equilibrium modulus of the gel structures was correlated with the true strain at rupture. The stiffer the gel structure, the lower was the deformation tolerated before the sample breaks.

  10. Nonlocal rheological properties of granular flows near a jamming limit.

    Science.gov (United States)

    Aranson, Igor S; Tsimring, Lev S; Malloggi, Florent; Clément, Eric

    2008-09-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  11. Sub-Moho Reflectors, Mantle Faults and Lithospheric Rheology

    Science.gov (United States)

    Brown, L. D.

    2013-12-01

    One of the most unexpected and dramatic observations from the early years of deep reflection profiling of the continents using multichannel CMP techniques was the existing of prominent reflections from the upper mantle. The first of these, the Flannan thrust/fault/feature, was traced by marine profiling of the continental margin offshore Britain by the BIRPS program, which soon found them to be but one of several clear sub-crustal discontinuities in that area. Subsequently, similar mantle reflectors have been observed in many areas around the world, most commonly beneath Precambrian cratonic areas. Many, but not all, of these mantle reflections appear to arise from near the overlying Moho or within the lower crust before dipping well into the mantle. Others occur as subhorizontal events at various depths with the mantle, with one suite seeming to cluster at a depth of about 75 km. The dipping events have been variously interpreted as mantle roots of crustal normal faults or the deep extension of crustal thrust faults. The most common interpretation, however, is that these dipping events are the relicts of ancient subduction zones, the stumps of now detached Benioff zones long since reclaimed by the deeper mantle. In addition to the BIRPS reflectors, the best known examples include those beneath Fennoscandia in northern Europe, the Abitibi-Grenville of eastern Canada, and the Slave Province of northwestern Canada (e.g. on the SNORCLE profile). The most recently reported example is from beneath the Sichuan Basin of central China. The preservation of these coherent, and relatively delicate appearing, features beneath older continental crust and presumably within equally old (of not older) mantle lithosphere, has profound implications for the history and rheology of the lithosphere in these areas. If they represent, as widely believe, some form of faulting with the lithosphere, they provide corollary constraints on the nature of faulting in both the lower crust and

  12. Molecular rheology of branched polymers: decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling.

    Science.gov (United States)

    van Ruymbeke, E; Lee, H; Chang, T; Nikopoulou, A; Hadjichristidis, N; Snijkers, F; Vlassopoulos, D

    2014-07-21

    An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched

  13. Molecular rheology of branched polymers: Decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling

    KAUST Repository

    Van Ruymbeke, Evelyne

    2014-01-01

    An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched

  14. Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 Eruption of Pacaya (Guatemala)

    Science.gov (United States)

    Soldati, A.; Sehlke, A.; Chigna, G.; Whittington, A.

    2016-06-01

    We estimated the rheology of an active basaltic lava flow in the field, and compared it with experimental measurements carried out in the laboratory. In the field we mapped, sampled, and recorded videos of the 2014 flow on the southern flank of Pacaya, Guatemala. Velocimetry data extracted from videos allowed us to determine that lava traveled at ˜2.8 m/s on the steep ˜45° slope 50 m from the vent, while 550 m further downflow it was moving at only ˜0.3 m/s on a ˜4° slope. Estimates of effective viscosity based on Jeffreys' equation increased from ˜7600 Pa s near the vent to ˜28,000 Pa s downflow. In the laboratory, we measured the viscosity of a representative lava composition using a concentric cylinder viscometer, at five different temperatures between 1234 and 1199 °C, with crystallinity increasing from 0.1 to 40 vol%. The rheological data were best fit by power law equations, with the flow index decreasing as crystal fraction increased, and no detectable yield strength. Although field-based estimates are based on lava characterized by a lower temperature, higher crystal and bubble fraction, and with a more complex petrographic texture, field estimates and laboratory measurements are mutually consistent and both indicate shear-thinning behavior. The complementary field and laboratory data sets allowed us to isolate the effects of different factors in determining the rheological evolution of the 2014 Pacaya flows. We assess the contributions of cooling, crystallization, and changing ground slope to the 3.7-fold increase in effective viscosity observed in the field over 550 m, and conclude that decreasing slope is the single most important factor over that distance. It follows that the complex relations between slope, flow velocity, and non-Newtonian lava rheology need to be incorporated into models of lava flow emplacement.

  15. Rheological and interfacial properties at the equilibrium of almond gum tree exudate (Prunus dulcis) in comparison with gum arabic.

    Science.gov (United States)

    Mahfoudhi, Nesrine; Sessa, Mariarenata; Ferrari, Giovanna; Hamdi, Salem; Donsi, Francesco

    2016-06-01

    Almond gum contains an arabinogalactan-type polysaccharide, which plays an important role in defining its interfacial and rheological properties. In this study, rheological and interfacial properties of almond gum and gum arabic aqueous dispersions were comparatively investigated. The interfacial tension of almond gum and gum arabic aqueous dispersions was measured using the pendant drop method in hexadecane. The asymptotic interfacial tension values for almond gum were significantly lower than the corresponding values measured for gum arabic, especially at high concentration. Rheological properties were characterized by steady and oscillatory tests using a coaxial geometry. Almond gum flow curves exhibited a shear thinning non-Newtonian behavior with a tendency to a Newtonian plateau at low shear rate, while gum arabic flow curves exhibited such behavior only at high shear rate. The influence of temperature (5-50  ℃) on the flow curves was studied at 4% (m/m) gum concentration and the Newtonian viscosities at infinite and at zero shear rate, for gum arabic and almond gum, respectively, were accurately fitted by an Arrhenius-type equation. The dynamic properties of the two gum dispersions were also studied. Both gum dispersions exhibited viscoelastic properties, with the viscous component being predominant in a wider range of concentrations for almond gum, while for gum arabic the elastic component being higher than the elastic one especially at higher concentrations.The rheological and interfacial tension properties of almond gum suggest that it may represent a possible substitute of gum arabic in different food applications. © The Author(s) 2015.

  16. Three-Dimensional Rheological Structure of North China Craton Determined by Integration of Multiple observations: Controlling Role for Lithospheric Rifting

    Science.gov (United States)

    Xiong, X.; Shan, B.; Li, Y.

    2017-12-01

    The North China Craton (NCC) has undergone significant lithospheric rejuvenation in late Mesozoic and Cenozoic, one feature of which is the widespread extension and rifting. The extension is distinct between the two parts of NCC: widespread rifting in the eastern NCC and localized narrow rifting in the west. The mechanism being responsible for this difference is uncertain and highly debated. Since lithospheric deformation can be regarded as the response of lithosphere to various dynamic actions, the rheological properties of lithosphere must have a fundamental influence on its tectonics and deformation behavior. In this study, we investigated the 3D thermal and rheological structure of NCC by developing a model integrating several geophysical observables (such as surface heatflow, regional elevation, gravity and geoid anomalies, and seismic tomography models). The results exhibit obvious lateral variation in rheological structure between the eastern and western NCC. The overall lithospheric strength is higher in the western NCC than in the east. Despite of such difference in rheology, both parts of NCC are characterized by mantle dominated strength regime, which facilitates the development of narrow rifting. Using ancient heatflow derived from mantle xenoliths studies, and taking the subduction-related dehydration reactions during Mesozoic into account, we constructed the thermal and rheological structure of NCC in Ordovician, early Cretaceous and early Cenozoic. Combining the evidence from numerical simulations, we proposed an evolution path of the rifting in NCC. The lithosphere of NCC in Ordovician was characterized by a normal craton features: low geotherm, high strength and mantle dominated regime. During Jurassic and Cretaceous, the mantle lithosphere in the eastern NCC was hydrated by fluid released by the suduction of the Pacific plate, resulting in weakening of the lithosphere and a transition from mantle dominated to crust dominated regime, which

  17. Estimating Rheological Parameters of Anhydrite from Folded Evaporite sequences: Implications for Internal Dynamics of Salt Structure

    Science.gov (United States)

    Adamuszek, Marta; Dabrowski, Marcin; Schmalholz, Stefan M.; Urai, Janos L.; Raith, Alexander

    2015-04-01

    Salt structures have been identified as a potential target for hydrocarbon, CO2, or radioactive waste storage. The most suitable locations for magazines are considered in the thick and relatively homogeneous rock salt layers. However, salt structures often consist of the evaporite sequence including rock salt intercalated with other rock types e.g.: anhydrite, gypsum, potassium and magnesium salt, calcite, dolomite, or shale. The presence of such heterogeneities causes a serious disturbance in the structure management. Detailed analysis of the internal architecture and internal dynamics of the salt structure are crucial for evaluating them as suitable repositories and also their long-term stability. The goal of this study is to analyse the influence of the presence of anhydrite layers on the internal dynamics of salt structures. Anhydrite is a common rock in evaporite sequences. Its physical and mechanical properties strongly differ from the properties of rock salt. The density of anhydrite is much higher than the density of salt, thus anhydrite is likely to sink in salt causing the disturbance of the surrounding structures. This suggestion was the starting point to the discussion about the long-term stability of the magazines in salt structures [1]. However, the other important parameter that has to be taken into account is the viscosity of anhydrite. The high viscosity ratio between salt and anhydrite can restrain the layer from sinking. The rheological behaviour of anhydrite has been studied in laboratory experiments [2], but the results only provide information about the short-term behaviour. The long-term behaviour can be best predicted using indirect methods e.g. based on the analysis of natural structures that developed over geological time scale. One of the most promising are fold structures, the shape of which is very sensitive to the rheological parameters of the deforming materials. Folds can develop in mechanically stratified materials during layer

  18. Influence of Functionalization Degree on the Rheological Properties of Isocyanate-Functionalized Chitin- and Chitosan-Based Chemical Oleogels for Lubricant Applications

    Directory of Open Access Journals (Sweden)

    Rocío Gallego

    2014-07-01

    Full Text Available This work deals with the influence of functionalization degree on the thermogravimetric and rheological behaviour of NCO-functionalized chitosan- and chitin-based oleogels. Chitosan and chitin were functionalized using different proportions of 1,6-hexamethylene diisocyanate (HMDI and subsequently dispersed in castor oil to promote the chemical reaction between the –NCO group of the modified biopolymer and the –OH group located in the ricinoleic fatty acid chain of castor oil, thus resulting in different oleogels with specific thermogravimetric and rheological characteristics. Biopolymers and oleogels were characterized through Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA. Small-amplitude oscillatory shear (SAOS measurements were performed on the oleogels. Oleogels presented suitable thermal resistance, despite the fact that the inclusion of HMDI moieties in the polymer structure led to a reduction in the onset temperature of thermal degradation. The insertion of low amounts of HMDI in both chitin and chitosan produces a drastic reduction in the values of oleogel viscoelastic functions but, above a critical threshold, they increase with the functionalization degree so that isocyanate functionalization results in a chemical tool to modulate oleogel rheological response. Several NCO-functionalized chitosan- and chitin-based oleogel formulations present suitable thermal resistance and rheological characteristics to be proposed as bio-based alternatives to traditional lubricating greases.

  19. Sidewall-friction-driven ordering transition in granular channel flows: Implications for granular rheology

    Science.gov (United States)

    Mandal, Sandip; Khakhar, D. V.

    2017-11-01

    We report a transition from a disordered state to an ordered state in the flow of nearly monodisperse granular matter flowing in an inclined channel with planar slide walls and a bumpy base, using discrete element method simulations. For low particle-sidewall friction coefficients, the flowing particles are disordered, however, for high sidewall friction, an ordered state is obtained, characterized by a layering of the particles and hexagonal packing of the particles in each layer. The extent of ordering, quantified by the local bond-orientational order parameter, varies in the cross section of the channel, with the highest ordering near the sidewalls. The flow transition significantly affects the local rheology—the effective friction coefficient is lower, and the packing fraction is higher, in the ordered state compared to the disordered state. A simple model, incorporating the extent of local ordering, is shown to describe the rheology of the system.

  20. d-α-tocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity

    Directory of Open Access Journals (Sweden)

    M.C. Teixeira

    2017-02-01

    Full Text Available The aim of this study was the assessment of the physicochemical stability of d-α-tocopherol formulated in medium chain triglyceride nanoemulsions, stabilized with Tween®80 and Lipoid®S75 as surfactant and co-surfactant, respectively. d-α-tocopherol was selected as active ingredient because of its well-recognized interesting anti-oxidant properties (such as radical scavenger for food and pharmaceutical industries. A series of nanoemulsions of mean droplet size below 90 nm (polydispersity index < 0.15 have been produced by high-pressure homogenization, and their surface electrical charge (zeta potential, pH, surface tension, osmolarity, and rheological behavior, were characterized as a function of the d-α-tocopherol loading. In vitro studies in Caco-2 cell lines confirmed the safety profile of the developed nanoemulsions with percentage of cell viability above 90% for all formulations.

  1. Influence of clay, surfactant and presence of dispersant in the non-aqueous fluids rheology

    International Nuclear Information System (INIS)

    Gomes, N.L.; Guedes, I.C.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as a thickening agent in production of non-aqueous fluids and can not be used without a prior treatment to their organic surfaces become hydrophobic. These treated clays are called organoclays, and are usually obtained by adding, in aqueous solution, a quaternary ammonium salt. This work makes a detailed study of the variables involved in the dispersion of the bentonite clays in organophilization process, as well, the type of clay, type of surfactant and the presence of dispersant. It was observed this study that the process variables involved in the dispersion of the clays and organophilization, observed through characterization, have low influence on the peaks related to interplanar basal distance caused by the incorporation of the surfactant and bentonite clays been influential the type of clay and surfactant and the presence of sodium as dispersant agent, on the rheological properties. (author)

  2. Granular rheology: measuring boundary forces with laser-cut leaf springs

    Science.gov (United States)

    Tang, Zhu; Brzinski, Theodore A.; Daniels, Karen E.

    2017-06-01

    In granular physics experiments, it is a persistent challenge to obtain the boundary stress measurements necessary to provide full a rheological characterization of the dynamics. Here, we describe a new technique by which the outer boundary of a 2D Couette cell both confines the granular material and provides spatially- and temporally- resolved stress measurements. This key advance is enabled by desktop laser-cutting technology, which allows us to design and cut linearly-deformable walls with a specified spring constant. By tracking the position of each segment of the wall, we measure both the normal and tangential stress throughout the experiment. This permits us to calculate the amount of shear stress provided by basal friction, and thereby determine accurate values of μ(I).

  3. Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites

    KAUST Repository

    Amr, Issam Thaher

    2011-09-01

    In this work, multiwall carbon nanotubes (CNT) were functionalized by acid treatment and characterized using Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). Polystyrene/CNT composites of both the untreated and acid treated carbon nanotubes were prepared by thermal bulk polymerization without any initiator at different loadings of CNT. The tensile tests showed that the addition of 0.5 wt.% of acid treated CNT results in 22% increase in Young\\'s modulus. The DSC measurements showed a decrease in glass transition temperature (Tg) of PS in the composites. The rheological studies at 190 °C showed that the addition of untreated CNT increases the viscoelastic behavior of the PS matrix, while the acid treated CNT acts as plasticizer. Thermogravimetric analysis indicated that the incorporation of CNT into PS enhanced the thermal properties of the matrix polymer. © 2011 Elsevier Ltd. All rights reserved.

  4. Rheological behavior of oil and biodiesel from Moringa oleifera

    International Nuclear Information System (INIS)

    Díaz Domínguez, Yosvany; Tabio García, Danger; Rondón Macías, Maylin; Fernández Santana, Elina; Rodríguez Muñoz, Susana; Piloto‐Rodríguez, Ramón

    2017-01-01

    The seeds of Moringa oleifera contain between 30 and 45% of oil, which has motivated the development of investigations with a view to their possible use. The present work aims to determine the rheological behavior of Moringa oleifera oil and biodiesel. The synthesis of biodiesel from crude Moringa oleifera oil was made using methanol with presence of sodium hydroxide. The average yield of this stage was 93%. The results of the rheological study shown that the viscosity at 40°C of Moringa oleifera oil is independent of the shear rate, which corresponds to the behavior of a Newtonian fluid. However, for biodiesel it was demonstrated that there is a dependence of the viscosity with the shear rate (non-Newtonian fluid). This result is corroborated by the fluidity curve, assuring that Moringa oleifera biodiesel behaves as a dilating fluid. (author)

  5. Understanding the rheology of two and three-phase magmas

    Science.gov (United States)

    Coats, R.; Cai, B.; Kendrick, J. E.; Wallace, P. A.; Hornby, A. J.; Miwa, T.; von Aulock, F. W.; Ashworth, J. D.; Godinho, J.; Atwood, R. C.; Lee, P. D.; Lavallée, Y.

    2017-12-01

    The rheology of magma plays a fundamental role in determining the style of a volcanic eruption, be it explosive or effusive. Understanding how magmas respond to changes in stress/ strain conditions may help to enhance eruption forecast models. The presence of crystals and bubbles in magmas alter the viscosity of suspensions and favor a non-Newtonian response. Thus, with the aim of grasping the rheological behavior of volcanic materials, uniaxial compressive tests were performed on natural and synthetic samples. A suite of variably porous (10-32 vol.%), highly crystalline ( 50 vol.%) dacite from the 1991-95 eruption of Mt Unzen, Japan, was selected as the natural material, while synthetic samples were sintered with desired porosities (Diamond Light Source. Unexpectedly, these observations suggest that fractures nucleate in crystals due to crystal interactions, before propagating through the interstitial melt. This ongoing study promises to uncover the way crystal-bearing magmas flow or fail, necessary to constrain magmatic processes and volcanic hazards.

  6. Investigation of rheological properties of winter wheat varieties during storage

    Directory of Open Access Journals (Sweden)

    Móré M.

    2015-01-01

    Full Text Available The paper shows the results of some experimental researches on the rheological characteristics of the dough obtained from the flour of three winter wheat varieties. We used valorigraph test to determine the rheological properties of wheat flour dough, because it determines the quality of the end-products. Winter wheat varieties (Lupus, Mv Toldi and GK Csillag were produced and their samples were collected on Látókép Research Farm of the University of Debrecen in the crop year of 2011/2012. We have carried out a short-term storage experiment (from July to August, 2012. We analysed the changes in water absorption capacity, dough stability time and valorigraph quality number for 3 times (24.07.2012, 31.07.2012, 21.08.2012 during short-term storage. Our results showed that the baking quality of Lupus, Mv Toldi and GK Csillag improved during the storage period.

  7. Rheology of Potato flour Mixes and Wheat to Make Bread

    Directory of Open Access Journals (Sweden)

    Ely Fernando Sacón-Vera

    2016-07-01

    Full Text Available Evaluate the rheological properties of flour mixes Ipomoea batata and Triticum vulgare for the preparation of bread dough, was the goal of this research for it a completely randomized design, as treatments sweet potato flour was used varieties are used: Toquecita, Guayaco Purple, Purple Ecuador, Brazil and Ina Purple in a 30/70 ratio (sweet potato flour / wheat flour respectively. The rheological variables: water absorption, development time, weakening of the dough stability, water absorption index (C1, mixing rate (C2, gluten strength index (C3, gel viscosity (C4, resistance index amylase (C5 and starch retro gradation index (C6 were evaluated with Mixolab equipment. The results showed that the variety Purple Brazil showed better characteristics of flours recommended premixes for the baking process in response to these indices

  8. Alveoconsistograph evaluation of rheological properties of rye doughs

    Energy Technology Data Exchange (ETDEWEB)

    Callejo, M. J.; Bujeda, C.; Rodriguez, G.; Chaya, C.

    2009-07-01

    The aim of this work is to study the effect of rye flour on the rheological properties of doughs. Rye meals of two different extraction rate (65% and 85%) were blended in different proportions with wheat flours. The viscoelastic behaviour of the sample blends was determined by a Chopin alveograph. The effect of rye flour on dough rheology during mixing was determined by a Chopin consistograph. It was found that Chopin Consistograph methodology was not suitable for determining water absorption capacity in blends with rye. It has been confirmed that adjustment of dough hydration in baked products incorporating rye flour must be taken into account, depending not only on the wheat-to-rye ratio but also on the rye meals extraction rate. (Author) 35 refs.

  9. Mathematical models to predict rheological parameters of lateritic hydromixtures

    Directory of Open Access Journals (Sweden)

    Gabriel Hernández-Ramírez

    2017-10-01

    Full Text Available The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to the Herschel-Bulkley model for real plastics. In addition, they show that for current operating conditions, even for new situations, UPD mathematical models have a greater ability to predict rheological parameters than least squares mathematical models.

  10. High shear microfluidics and its application in rheological measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kai; Lee, L.James; Koelling, Kurt W. [The Ohio State University, Department of Chemical Engineering, Columbus, OH (United States)

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150 x 150 {mu}m). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney's analysis. Shear rates as high as 10{sup 6} s {sup -1} were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1 x 10 {sup 3} Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly. (orig.)

  11. High shear microfluidics and its application in rheological measurement

    Science.gov (United States)

    Kang, Kai; Lee, L. James; Koelling, Kurt W.

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150×150 μm). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney’s analysis. Shear rates as high as 106 s-1 were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1×103 Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly.

  12. Estimate of Hanford Waste Rheology and Settling Behavior

    International Nuclear Information System (INIS)

    Poloski, Adam P.; Wells, Beric E.; Tingey, Joel M.; Mahoney, Lenna A.; Hall, Mark N.; Thomson, Scott L.; Smith, Gary Lynn; Johnson, Michael E.; Meacham, Joseph E.; Knight, Mark A.; Thien, Michael G.; Davis, Jim J.; Onishi, Yasuo

    2007-01-01

    The U.S. Department of Energy (DOE) Office of River Protection's Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. Piping, pumps, and mixing vessels have been selected to transport, store, and mix the high-level waste slurries in the WTP. This report addresses the analyses performed by the Rheology Working Group (RWG) and Risk Assessment Working Group composed of Pacific Northwest National Laboratory PNNL, Bechtel National Inc. (BNI), CH2M HILL, DOE Office of River Protection (ORP) and Yasuo Onishi Consulting, LLC staff on data obtained from documented Hanford waste analyses to determine a best-estimate of the rheology of the Hanford tank wastes and their settling behavior. The actual testing activities were performed and reported separately in referenced documentation. Because of this, many of the required topics below do not apply and are so noted

  13. Rheology and TIC/TOC results of ORNL tank samples

    International Nuclear Information System (INIS)

    Pareizs, J. M.; Hansen, E. K.

    2013-01-01

    The Savannah River National Laboratory (SRNL)) was requested by Oak Ridge National Laboratory (ORNL) to perform total inorganic carbon (TIC), total organic carbon (TOC), and rheological measurements for several Oak Ridge tank samples. As received slurry samples were diluted and submitted to SRNL-Analytical for TIC and TOC analyses. Settled solids yield stress (also known as settled shear strength) of the as received settled sludge samples were determined using the vane method and these measurements were obtained 24 hours after the samples were allowed to settled undisturbed. Rheological or flow properties (Bingham Plastic viscosity and Bingham Plastic yield stress) were determined from flow curves of the homogenized or well mixed samples. Other targeted total suspended solids (TSS) concentrations samples were also analyzed for flow properties and these samples were obtained by diluting the as-received sample with de-ionized (DI) water

  14. Vibration Control of Sandwich Beams Using Electro-Rheological Fluids

    Science.gov (United States)

    Srikantha Phani, A.; Venkatraman, K.

    2003-09-01

    Electro-rheological (ER) fluids are a class of smart materials exhibiting significant reversible changes in their rheological and hence mechanical properties under the influence of an applied electric field. Efforts are in progress to embed ER fluids in various structural elements to mitigate vibration problems. The present work is an experimental investigation of the behaviour of a sandwich beam with ER fluid acting as the core material. A starch-silicone-oil-based ER fluid is used in the present study. Significant improvements in the damping properties are achieved in experiments and the damping contributions by viscous and non-viscous forces are estimated by force-state mapping (FSM) technique. With the increase in electric field across the ER fluid from 0 to 2 kV, an increase of 25-50% in equivalent viscous damping is observed. It is observed that as concentration of starch is increased, the ER effect grows stronger but eventually is overcome by applied stresses.

  15. Rheological studies of aqueous stabilised nano-zirconia particle suspensions

    Directory of Open Access Journals (Sweden)

    Asad Ullah Khan

    2012-02-01

    Full Text Available In the present investigation aqueous suspensions of nano- and colloidal range particles are stabilised by changing the ambient pH. Rheology is used to establish the stability of the suspensions and it is found that the rheology of the suspensions is strongly dependent on the pH values. The viscosity is highest close to the iso-electric point of the powders. At the iso-electric point the net surface charge on the powder particles is zero and is the cause of the high viscosity. Away from the iso-electric point, the particles are charged, giving rise to a double layer phenomenon and causing the reduction in viscosity. It is also found that increasing the solid contents of the suspensions reduces the pH region of low viscosity.

  16. The Rheology of the Earth in the Intermediate Time Range

    Directory of Open Access Journals (Sweden)

    A. E. SCHEIDEGGER

    1970-06-01

    Full Text Available The evidence bearing upon the rheology of the " tectonically
    significant layers" of the Earth (" tectonosphere " in the intermediate
    time range (4 hours to 15000 years is analyzed. This evidence is
    based upon observations of rock-behavior in the laboratory, of seismic
    aftershock sequences, of Earth tides and of the decay of the Chandler wobble.
    It is shown that of the rheological models (Maxwell-material, Kelvin-material,
    and logarithmically creeping material advocated in the literature, only that
    based on logarithmic creep does not contradict any of the observational
    evidence available to date. In addition, a strength limit may be present.

  17. Microstructure and Rheology near an Attractive Colloidal Glass Transition

    International Nuclear Information System (INIS)

    Narayanan, T.; Sztucki, M.; Belina, G.; Pignon, F.

    2006-01-01

    Microstructure and rheological properties of a thermally reversible short-ranged attractive colloidal system are studied in the vicinity of the attractive glass transition line. At high volume fractions, the static structure factor changes very little but the low frequency shear moduli varies over several orders of magnitude across the transition. From the frequency dependence of shear moduli, fluid-attractive glass and repulsive glass-attractive glass transitions are identified

  18. Bidisperse and polydisperse suspension rheology at large solid fraction

    Energy Technology Data Exchange (ETDEWEB)

    Pednekar, Sidhant [Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, New York 10031; Chun, Jaehun [Pacific Northwest National Laboratory, Richland, Washington 99352; Morris, Jeffrey F. [Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, New York 10031

    2018-03-01

    At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction. In this work, concentrated or "dense" suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of 0.2. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study of bidisperse suspensions at size ratios of large to small particle radii (2 to 4) shows that a minimum in the viscosity occurs for zeta slightly above 0.5, where zeta=phi_{large}/phi is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar phi_{m}, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on phi/phi_{m} providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling in influence of the maximum packing fraction in noncolloidal suspensions. Microstructural investigations and the stress distribution according to particle size are also presented.

  19. Examination of rheological properties of aqueous solutions of sodium caseinate

    OpenAIRE

    Jolanta Gawałek; Piotr Wesołowski

    2012-01-01

    Application of sodium caseinate as a functional additive in manufacturing processes requires production of its concentrated aqueous solutions which, in industrial conditions, presents a number of difficulties. In order to develop an effective and optimal industrial process of mixing – manufacturing a concentrated solution of sodium caseinate, it is essential to know rheological properties in a definite range of concentrations changing in the course of the dissolving process. The materia...

  20. Mathematical models to predict rheological parameters of lateritic hydromixtures

    OpenAIRE

    Gabriel Hernández-Ramírez; Arístides A. Legrá-Lobaina; Beatriz Ramírez-Serrano; Liudmila Pérez-García

    2017-01-01

    The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to...

  1. Rheological evaluation of simulated neutralized current acid waste

    International Nuclear Information System (INIS)

    Fow, C.L.; McCarthy, D.; Thornton, G.T.

    1986-06-01

    A byproduct of the Purex process is an aqueous waste stream that contains fission products. This waste stream, called current acid waste, is chemically neutralized and stored in double shell tanks on the Hanford Site. This neutralized current acid waste (NCAW) will be transported by pipe to B-Plant, a processing plant on the Hanford Site. Rheological and transport properties of NCAW slurry were evaluated. First, researchers conducted lab rheological evaluations of simulated NCAW. The results of these evaluations were then correlated with classical rheological models and scaled up to predict the performance that is likely to occur in the full-scale system. The NCAW in the tank will either be retrieved as is, i.e., no change in the concentration presently in the tank, or will be slightly concentrated before retrieval. Sluicing may be required to retrieve the solids. Three concentrations of simulated NCAW were evaluated that would simulate the different retrieval options: NCAW in the concentration that is presently in the tank; a slightly concentrated NCAW, called NCAW5.5; and equal parts of NCAW settled solids and water (simulating the sluicing stage), called NCAW1:1. The physical and rheological properties of three samples of each concentration at 25 and 100 0 C were evaluated in the laboratory. The properties displayed by NCAW and NCAW5.5 at 25 and 100 0 C allowed it to be classified as a pseudoplastic non-Newtonian fluid. NCAW1:1 at 25 and 100 0 C displayed properties of a yield-pseudoplastic non-Newtonian fluid. The classical non-Newtonian models for pseudoplastic and yield-pseudoplastic fluids were used with the laboratory data to predict the full-scale pump-pipe network parameters

  2. Rheological evaluation of simulated neutralized current acid waste - transuranics

    International Nuclear Information System (INIS)

    Fow, C.L.; McCarthy, D.; Thornton, G.T.; Scott, P.A.; Bray, L.A.

    1986-09-01

    At the Hanford Plutonium and Uranium Extraction Plant (PUREX), in Richland, Washington, plutonium and uranium products are recovered from irradiated fuel by a solvent extraction process. A byproduct of this process is an aqueous waste stream that contains fission products. This waste stream, called current acid waste (CAW), is chemically neutralized and stored in double shell tanks (DSTs) on the Hanford Site. This neutralized current acid waste (NCAW) will be transported by pipe to B-Plant, a processing plant located nearby. In B-Plant, the transuranic (TRU) elements in NCAW are separated from the non-TRU elements. The majority of the TRU elements in NCAW are in the solids. Therefore, the primary processing operation is to separate the NCAW solids (NCAW-TRU) from the NCAW liquid. These two waste streams will be pumped to suitable holding tanks before being further processed for permanent disposal. To ensure that the retrieval and transportation of NCAW and NCAW-TRU are successful, researchers at Pacific Northwest Laboratory (PNL) evaluated the rheological and transport properties of the slurries. This evaluation had two phases. First, researchers conducted laboratory rheological evaluations of simulated NCAW and NCAW-TRU. The results of these evaluations were then correlated with classical rheological models and scaled up to predict the performance that is likely to occur in the full-scale system. This scale-up procedure has already been successfully used to predict the critical transport properties of a slurry (Neutralized Cladding Removal Waste) with rheological properties similar to those displayed by NCAW and NCAW-TRU

  3. Spectral rheology in a sphere. [for geological models

    Science.gov (United States)

    Caputo, M.

    1984-01-01

    An earth model is considered whose rheology is described by a stress train relation similar to that which seems to fit the laboratory data resulting from constant strain rate and creep experiments on polycrystalline halite and granite. The response of the model to a surface load is studied. It is found that the displacement and the creep are weakly dependent on the wavenumber and that the strain energy is concentrated in the low wavenumber and coherent over large regions.

  4. Aging and nonlinear rheology of thermoreversible colloidal gels

    Science.gov (United States)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    Colloidal dispersions are found in a wide variety of consumer products such as paint, food and pharmaceuticals. We investigate gel formation and aging in a thermoreverible gel consisting of octadecyl-coated silica nanoparticles suspended in n-tetradecane. In this system, the octadecyl brush can undergo a phase change allowing the attractions between particles to be tuned by temperature (1,2). By probing the system with steady shear and large amplitude oscillatory shear, we have studied the effect of thermal history and shear history on gel formation and gel mechanical properties during aging. Gels were formed by approaching a common temperature from above and below to determine a reference state from which creep tests were conducted. Creep ringing was observed as expected for the viscoelastic gel. The rheological aging is interpreted in terms of the gel microstructure formed with differing thermal and shear histories to determine how processing affects structure. Recently proposed scaling laws for the rheology and structure under flow are explored within the context of gel aging (3). Through rheological and microstructural measurements, we will further the understanding of gel formation and aging in this model system which may be applied to processing conditions in an industrial setting.

  5. Rheology and microstructure of kefiran and whey protein mixed gels.

    Science.gov (United States)

    Kazazi, Hosayn; Khodaiyan, Faramarz; Rezaei, Karamatollah; Pishvaei, Malihe; Mohammadifar, Mohammad Amin; Moieni, Sohrab

    2017-04-01

    The effect of kefiran on cold-set gelation of whey protein isolate (WPI) at 25 °C was studied using rheological measurements and environmental scanning electron microscopy (ESEM). The gelation of samples was induced by the addition of glucono-δ-lactone to the dispersions. WPI concentration was maintained at 8% (w/v) and the concentration of kefiran varied from 0 to 0.08% (w/v). According to rheological measurements, the addition of kefiran into WPI dispersions resulted in a significant increase in the gel strength, the yield stress, and the shear stress values at the flowing point. The gelling point and gelation pH of samples decreased significantly with an increase in kefiran concentration. ESEM micrographs showed that the presence of kefiran played an important role in the microstructure formation of gels. The microstructure of kefiran-WPI mixed gels was more compact and dense, compared to the WPI gel. Depletion interactions between kefiran and whey protein aggregates can be regarded as the chief factor which was responsible for these effects. The present work demonstrated that rheological and microstructural properties of acid-induced whey protein gels were improved by the addition of kefiran.

  6. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  7. Rheological behavior of drilling fluids under low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lomba, Rosana F.T.; Sa, Carlos H.M. de; Brandao, Edimir M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: rlomba, chsa, edimir@cenpes.petrobras.com.br

    2000-07-01

    The so-called solid-free fluids represent a good alternative to drill through productive zones. These drill-in fluids are known to be non-damaging to the formation and their formulation comprise polymers, salts and acid soluble solids. Xanthan gum is widely used as viscosifier and modified starch as fluid loss control additive. The salts most commonly used are sodium chloride and potassium chloride, although the use of organic salt brines has been increasing lately. Sized calcium carbonate is used as bridging material, when the situation requires. The low temperatures encountered during deep water drilling demand the knowledge of fluid rheology at this temperature range. The rheological behavior of drill-in fluids at temperatures as low as 5 deg C was experimentally evaluated. Special attention was given to the low shear rate behavior of the fluids. A methodology was developed to come up with correlations to calculate shear stress variations with temperature. The developed correlations do not depend on a previous choice of a rheological model. The results will be incorporated in a numerical simulator to account for temperature effects on well bore cleaning later on. (author)

  8. Rheological Properties of Quasi-2D Fluids in Microgravity

    Science.gov (United States)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  9. Clay-cement suspensions - rheological and functional properties

    Science.gov (United States)

    Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.

    2017-01-01

    The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.

  10. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1993-01-01

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries

  11. Rheological properties of kaolin and chemically simulated waste

    International Nuclear Information System (INIS)

    Selby, C.L.

    1981-12-01

    The Savannah River Laboratory is conducting tests to determine the best operating conditions of pumps used to transfer insoluble radioactive sludges from old to new waste tanks. Because it is not feasible to conduct these tests with real or chemically simulated sludges, kaolin clay is being used as a stand-in for the solid waste. The rheology tests described herein were conducted to determine whether the properties of kaolin were sufficiently similar to those of real sludge to permit meaningful pump tests. The rheology study showed that kaolin can be substituted for real waste to accurately determine pump performance. Once adequately sheared, kaolin properties were found to remain constant. Test results determined that kaolin should not be allowed to settle more than two weeks between pump tests. Water or supernate from the waste tanks can be used to dilute sludge on an equal volume basis because they identically affect the rheological properties of sludge. It was further found that the fluid properties of kaolin and waste are insensitive to temperature

  12. Rheological Behavior of Dense Assemblies of Granular Materials

    International Nuclear Information System (INIS)

    Sundaresan, Sankaran; Tardos, Gabriel I.; Subramaniam, Shankar

    2011-01-01

    Assemblies of granular materials behave differently when they are owing rapidly, from when they are slowly deforming. The behavior of rapidly owing granular materials, where the particle-particle interactions occur largely through binary collisions, is commonly related to the properties of the constituent particles through the kinetic theory of granular materials. The same cannot be said for slowly moving or static assemblies of granular materials, where enduring contacts between particles are prevalent. For instance, a continuum description of the yield characteristics of dense assemblies of particles in the quasistatic ow regime cannot be written explicitly on the basis of particle properties, even for cohesionless particles. Continuum models for this regime have been proposed and applied, but these models typically assume that the assembly is at incipient yield and they are expressed in terms of the yield function, which we do not yet know how to express in terms of particle-level properties. The description of the continuum rheology in the intermediate regime is even less understood. Yet, many practically important flows in nature and in a wide range of technological applications occur in the dense flow regime and at the transition between dilute and dense regimes; the lack of validated continuum rheological models for particle assemblies in these regimes limits predictive modeling of such flows. This research project is aimed at developing such rheological models.

  13. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  14. Strain-weakening rheology of marine sponges and its evolutionary implication

    Science.gov (United States)

    Kraus, Emily; Janmey, Paul; Sweeney, Alison; van Oosten, Anne

    Animal cells respond to mechanical stimuli as sensitively as they do to chemical stimuli. Further, cell proliferation is dependent on the viscoelasticity of the polymeric extracellular matrix (ECM) in which they are embedded. Biophysicists are therefore motivated to understand the biomechanics of the ECM itself. To date, this work has focused on the more familiar Bilateria, animals, including humans, with bilateral symmetry. The ECM of this group of animals is now understood to exhibit non-linear rheology that is typically strain- and compression-stiffening, and shear moduli that are frequency-dependent. These complex properties have been attributed to the semi-flexible nature of the underlying polymers. In contrast, we show that marine sponges are markedly strain-weakening under physiologically relevant conditions. Since sponges are a much earlier evolutionary branch than Bilateria, we interrogate the evolutionary potential and biochemical underpinnings of this novel complex rheology in filamentous networks, and cells ability to respond. Further, their life history strategy is uniquely dependent on flow and correlated shear stress, making them a model organism to study self-assembly algorithms organized around flow.

  15. Micro-rheology and interparticle interactions in aerosols probed with optical tweezers

    Science.gov (United States)

    Reid, Jonathan P.; Power, Rory M.; Cai, Chen; Simpson, Stephen H.

    2014-09-01

    Using optical tweezers for micro-rheological investigations of a surrounding fluid has been routinely demonstrated. In this work, we will demonstrate that rheological measurements of the bulk and surface properties of aerosol particles can be made directly using optical tweezers, providing important insights into the phase behavior of materials in confined environments and the rate of molecular diffusion in viscous phases. The use of holographic optical tweezers to manipulate aerosol particles has become standard practice in recent years, providing an invaluable tool to investigate particle dynamics, including evaporation/ condensation kinetics, chemical aging and phase transformation. When combined with non-linear Raman spectroscopy, the size and refractive index of a particle can be determined with unprecedented accuracy viscosity and surface tension of particles can be measured directly in the under-damped regime at low viscosity. In the over-damped regime, we will show that viscosity measurements can extend close to the glass transition, allowing measurements over an impressive dynamic range of 12 orders of magnitude in relaxation timescale and viscosity. Indeed, prior to the coalescence event, we will show how the Brownian trajectories of trapped particles can yield important and unique insights into the interactions of aerosol particles.

  16. A geometrical optimization of a magneto-rheological rotary brake in a prosthetic knee

    International Nuclear Information System (INIS)

    Gudmundsson, K H; Jonsdottir, F; Thorsteinsson, F

    2010-01-01

    Magneto-rheological (MR) fluids have been successfully introduced to prosthetic devices. One such device is a biomechanical prosthetic knee that uses MR fluids to actively control its rotary stiffness. The brake is rotational, utilizing the MR fluid in shear mode. In this study, the geometrical design of the MR brake is addressed. This includes the design of the magnetic circuit and the geometry of the fluid chamber. Mathematical models are presented that describe the rotary torque of the brake. A novel perfluorinated polyether (PFPE)-based MR fluid is introduced, whose properties are tailored for the prosthetic knee. On-state and off-state rheological measurements of the MR fluid are presented. The finite element method is used to evaluate the magnetic flux density in the MR fluid. The design is formulated as an optimization problem, aiming to maximize the braking torque. A parametric study is carried out for several design parameters. Subsequently, a multi-objective optimization problem is defined that considers three design objectives: the field-induced braking torque, the off-state rotary stiffness and the weight of the brake. Trade-offs between the three design objectives are investigated which provides a basis for informed design decisions on furthering the success of the MR prosthetic knee

  17. Large strain deformation behavior of polymeric gels in shear- and cavitation rheology

    Science.gov (United States)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.

  18. Effects of dance therapy on the selected hematological and rheological indicators in older women.

    Science.gov (United States)

    Filar-Mierzwa, Katarzyna; Marchewka, Anna; Bac, Aneta; Kulis, Aleksandra; Dąbrowski, Zbigniew; Teległów, Aneta

    2017-01-01

    The aim of this study was to analyze the effects of dance therapy on selected hematological and rheological indicators in older women. The study included 30 women (aged 71.8±7.4), and the control group comprised of 10 women of corresponding age. Women from the experimental group were subjected to a five-month dance therapy program (three 45-minute sessions per week); women from the control group were not involved in any regular physical activity. Blood samples from all the women were examined for hematological, rheological, and biochemical parameters prior to the study and five months thereafter. The dance therapy program was reflected by a significant improvement of erythrocyte count and hematocrit. Furthermore, the dance therapy resulted in a significant increase in the plasma viscosity, while no significant changes in glucose and fibrinogen levels were noted. Dance therapy modulates selected hematological parameters of older women; it leads to increase in erythrocyte count and hematocrit level. Dance therapy is reflected by higher plasma viscosity. Concentrations of fibrinogen and glucose are not affected by the dance therapy in older women, suggesting maintenance of homeostasis. Those findings advocate implementation of dance therapy programs in older women.

  19. Effects of the incorporation of cantaloupe pulp in yogurt: Physicochemical, phytochemical and rheological properties.

    Science.gov (United States)

    Kermiche, F; Boulekbache-Makhlouf, L; Félix, M; Harkat-Madouri, L; Remini, H; Madani, K; Romero, A

    2018-01-01

    The therapeutic effects of cantaloupe are of great interest for the development of functional foods such as yogurt. In this study a new dairy product has been formulated by enriching natural yogurt with fruit cantaloupe (yogurt with cantaloupe puree, yogurt with dry cantaloupe and yogurt with dry cantaloupe and cantaloupe puree). Thus, composition (moisture, ash, lipids, proteins), including amino acid contents, lactic flora as well as rheological (viscoelasticity, viscosity) property of cantaloupe yogurt and natural yogurt is assessed. In addition, pH value, water holding capacity and antioxidant activity (reducing power) are measured over refrigerated storage time. There are significant differences between natural yogurt and cantaloupe yogurt in almost all parameters. The results show that the pH decreases during the storage period and the antioxidant activity as well as the water holding capacity are more remarkable in the yogurt with dry cantaloupe at the 14th and the 28th day of storage, respectively. The addition of cantaloupe in natural yogurt ameliorates the load of lactic flora and modifies the rheological property of the new products. The results of the current study show that the addition of cantaloupe to yogurt significantly improved its quality.

  20. Synthesis and characterization of HDA/NaMMT organoclay

    Indian Academy of Sciences (India)

    Unknown

    Abstract. In this study, the rheologic and colloidal characterizations of sodium montmorillonite (NaMMT) were examined. Hexadecylamine (CH3(CH2)15NH2, HDA) was added to the bentonite water dispersion. (2%, w/w) in different concentrations in the range 5⋅6 × 10–4–9⋅4 × 10–3 m mol/l. The rheological and ...

  1. Rheological structure of a lithosphere-asthenosphere boundary zone, decoded from EBSD analysis of mantle xenoliths from Ichinomegata, NE Japan

    Science.gov (United States)

    Sato, Y.; Ozawa, K.

    2017-12-01

    Mantle xenoliths are fragments of mantle materials entrapped in alkali basalts or kimberlites and transported to the surface (Nixon, 1987). They provide information on rheological, thermal, chemical, petrological structures of the upper mantle (e.g. Green et al., 2010; McKenzie and Bickle, 1988; O'Reilly and Griffin, 1996). They potentially represent materials from a boundary zone of lithosphere and asthenosphere (LABZ), where the heat transportation mechanism changes from convection to conduction (Sleep, 2005, 2006). However, difficulties in geobarometry for spinel peridotite (e.g. O'Reilly et al., 1997) have hampered our understanding of shallow LABZ. Ichinomegata located in the back-arc side of NE Japan is a latest Pleistocene andesitic-dacitic volcano yielding spinel peridotite xenoliths (Katsui et al., 1979). Through our works (Sato and Ozawa, 2016, 2017a, 2017b), we have overcome difficulties in geobarometry of spinel peridotites and gained accurate thermal structure (0.74-1.60 GPa, 832-1084 °C) from eight of the nine examined xenoliths. The rheological and chemical features suggest drastic changes: undeformed (granular), depleted, subsolidus mantle representing lithospheric mantle (ca. 28-35 km) and deformed (porphyroclastic), fertile, hydrous supersolidus mantle representing rheological LABZ (ca. 35-54 km). We investigate depth dependent variation of crystallographic preferred orientation (CPO) of constituent minerals of the xenoliths by electron back-scattered diffraction analysis (using JSM-7000F with a CCD detector and the CHANNEL5 software at the University of Tokyo). A shallower (ca. 32 km) sample with tabulargranular texture and coarse olivine size (0.92 mm) has A-type olivine CPO with [100] maximum as reported by Satsukawa and Michibayashi (2014) (hereafter SM14), whereas a deep (ca. 51 km) sample with porphyroclastic texture and finer olivine size (0.46 mm) has CPO with weaker fabric intensity characterized by a [100] girdle similar to AG-type and

  2. The many ways sputum flows - Dealing with high within-subject variability in cystic fibrosis sputum rheology.

    Science.gov (United States)

    Radtke, Thomas; Böni, Lukas; Bohnacker, Peter; Fischer, Peter; Benden, Christian; Dressel, Holger

    2018-08-01

    We evaluated test-retest reliability of sputum viscoelastic properties in clinically stable patients with cystic fibrosis (CF). Data from a prospective, randomized crossover study was used to determine within-subject variability of sputum viscoelasticity (G', storage modulus and G", loss modulus at 1 and 10 rad s -1 ) and solids content over three consecutive visits. Precision of sputum properties was quantified by within-subject standard deviation (SD ws ), coefficient of variation (CV) and intraclass correlation coefficients (ICC). Fifteen clinically stable adults with CF (FEV 1 range 24-94% predicted) were included. No differences between study visits (mean ± SD 8 ± 2 days) were observed for any sputum rheology measure. CV's for G', G" and solids content ranged between 40.3-45.3% and ICC's between 0.21-0.42 indicating poor to fair test-retest reliability. Short-term within-subject variability of sputum properties is high in clinically stable adults with CF. Investigators applying shear rheology experiments in future prospective studies should consider using multiple measurements aiming to increase precision of sputum rheological outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites.

    Science.gov (United States)

    Khoshkava, Vahid; Kamal, Musa R

    2014-06-11

    Polypropylene (PP) nanocomposites containing spray-dried cellulose nanocrystals (CNC), freeze-dried CNC, and spray-freeze-dried CNC (CNCSFD) were prepared via melt mixing in an internal batch mixer. Polarized light, scanning electron, and atomic force microscopy showed significantly better dispersion of CNCSFD in PP/CNC nanocomposites compared with the spray-dried and freeze-dried CNCs. Rheological measurements, including linear and nonlinear viscoelastic tests, were performed on PP/CNC samples. The microscopy results were supported by small-amplitude oscillatory shear tests, which showed substantial rises in the magnitudes of key rheological parameters of PP samples containing CNCSFD. Steady-shear results revealed a strong shear thinning behavior of PP samples containing CNCSFD. Moreover, PP melts containing CNCSFD exhibited a yield stress. The magnitude of the yield stress and the degree of shear thinning behavior increased with CNCSFD concentration. It was found that CNCSFD agglomerates with a weblike structure were more effective in modifying the rheological properties. This effect was attributed to better dispersion of the agglomerates with the weblike structure. Dynamic mechanical analysis showed considerable improvement in the modulus of samples containing CNCSFD agglomerates. The percolation mechanical model with modified volume percolation threshold and filler network strength values and the Halpin-Kardos model were used to fit the experimental results.

  4. Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour

    Directory of Open Access Journals (Sweden)

    Manuel Torres-Carrasco

    2015-03-01

    The findings show that AAS paste behaviour of rheology when the activator was a commercial waterglass solution or NaOH/Na2CO3 with waste glass was similar, fit the Herschel-Bulkley model. The formation of primary C-S-H gel in both cases were confirmed. However, the rheological behaviour in standard cements fit the Bingham model. The use of the waste glass may be feasible from a rheological point of view in pastes can be used.

  5. A statistical investigation of the rheological properties of magnesium phosphate cement

    OpenAIRE

    Yue, Y.; Bai, Y.; Hu, W.; You, C.; Qian, J.; McCague, C.; Jin, F.; Al-Tabbaa, A.; Mo, L.; Deng, M.

    2016-01-01

    Magnesium phosphate cement (MPC) is a promising material applied for rapid patch repairing in civil engineering and waste immobilisation in nuclear industry. However, the rheological properties of this new binder material which highly affects its engineering application, is to be explored. The current work aims at investigating the rheological properties of MPC along 98 with determining the optimum conditions to obtain MPC materials with desirable rheological performances. ...

  6. Surface rheology of saponin adsorption layers.

    Science.gov (United States)

    Stanimirova, R; Marinova, K; Tcholakova, S; Denkov, N D; Stoyanov, S; Pelan, E

    2011-10-18

    Extracts of the Quillaja saponaria tree contain natural surfactant molecules called saponins that very efficiently stabilize foams and emulsions. Therefore, such extracts are widely used in several technologies. In addition, saponins have demonstrated nontrivial bioactivity and are currently used as essential ingredients in vaccines, food supplements, and other health products. Previous preliminary studies showed that saponins have some peculiar surface properties, such as a very high surface modulus, that may have an important impact on the mechanisms of foam and emulsion stabilization. Here we present a detailed characterization of the main surface properties of highly purified aqueous extracts of Quillaja saponins. Surface tension isotherms showed that the purified Quillaja saponins behave as nonionic surfactants with a relatively high cmc (0.025 wt %). The saponin adsorption isotherm is described well by the Volmer equation, with an area per molecule of close to 1 nm(2). By comparing this area to the molecular dimensions, we deduce that the hydrophobic triterpenoid rings of the saponin molecules lie parallel to the air-water interface, with the hydrophilic glucoside tails protruding into the aqueous phase. Upon small deformation, the saponin adsorption layers exhibit a very high surface dilatational elasticity (280 ± 30 mN/m), a much lower shear elasticity (26 ± 15 mN/m), and a negligible true dilatational surface viscosity. The measured dilatational elasticity is in very good agreement with the theoretical predictions of the Volmer adsorption model (260 mN/m). The measured characteristic adsorption time of the saponin molecules is 4 to 5 orders of magnitude longer than that predicted theoretically for diffusion-controlled adsorption, which means that the saponin adsorption is barrier-controlled around and above the cmc. The perturbed saponin layers relax toward equilibrium in a complex manner, with several relaxation times, the longest of them being around 3

  7. How to Prepare SMC and BMC-like Compounds to Perform Relevant Rheological Experiments?

    Science.gov (United States)

    Guiraud, Olivier; Dumont, Pierre J. J.; Orgéas, Laurent

    2013-04-01

    The study of the rheology of injected or compression moulded compounds like SMC or BMC is made particularly difficult by the high content and the intricate arrangement of their fibrous reinforcement. For these two types of compounds, inappropriate rheological testing protocols and rheometers are often used, which leads to a very large scatter of the experimental data. This study describes specific sampling and specimen's preparation methods, as well as dedicated rheometry devices to test their rheology. Following the proposed protocols, it is possible to obtain rheological measurements showing low scatter of the recorded stress values: about ±10% for SMC and about ±15% for BMC-like compounds.

  8. Determining Rheological Parameters of Generalized Yield-Power-Law Fluid Model

    Directory of Open Access Journals (Sweden)

    Stryczek Stanislaw

    2004-09-01

    Full Text Available The principles of determining rheological parameters of drilling muds described by a generalized yield-power-law are presented in the paper. Functions between tangent stresses and shear rate are given. The conditions of laboratory measurements of rheological parameters of generalized yield-power-law fluids are described and necessary mathematical relations for rheological model parameters given. With the block diagrams, the methodics of numerical solution of these relations has been presented. Rheological parameters of an exemplary drilling mud have been calculated with the use of this numerical program.

  9. Caracterização reológica da goma xantana: influência de íons metálicos univalente e trivalente e temperatura em experimentos dinâmicos Rheological characterization of xanthan gum: influence from univalent and trivalent metallic ions and from the temperature in dynamic experiments

    Directory of Open Access Journals (Sweden)

    Samuel Luporini

    2011-01-01

    Full Text Available As propriedades dinâmicas das soluções aquosas de goma xantana com e sem adição de NaCl ou Al2(SO43.18H2O foram medidas em um reômetro de deformação controlada aplicando ciclos de aquecimento e resfriamento. O tempo de relaxação decresceu com o aumento da temperatura; no entanto, este tempo aumentou com a adição de sal nas soluções de 0,5% em peso de goma xantana, mas diminuiu com a adição de 1%. Durante o aquecimento das soluções de goma xantana pura ocorreu uma mudança de conformação a 51 °C, e durante o resfriamento foi observada a formação de duas estruturas: entre 86 e 47 °C e abaixo de 47 °C. Com a adição de sal não houve mudança conformacional durante o aquecimento, enquanto no resfriamento duas estruturas foram novamente observadas, mas para faixas de temperatura diferentes.The dynamic rheological properties of water xanthan gum solutions with and without the addition of NaCl or Al2(SO43.18H2O were measured in a strain controlled rheometer applying heating and cooling cycles. The terminal relaxation time decreased with increasing temperature. This time increased with the addition of 0.5 wt. (% of salt, but decreased when 1 wt. (% was added. During heating a conformational change occurred at 51 °C and upon cooling two structures were observed between 86 and 47 °C and below 47 °C. When salt was added there was no conformational change during heating, but the two structures again appeared during cooling, though at different temperature ranges.

  10. Food palatability, rheology, and meal patterning.

    Science.gov (United States)

    Mattes, Richard D

    2008-01-01

    Overweight and obesity are largely of dietary origin and reflect food choice. Food palatability, eating patterns, and food form are important determinants of choice and energy balance. A review of the literature provides a characterization of the roles of these determinants of feeding. Food palatability is the strongest predictor of intake where availability is not limiting. Whether the rewarding properties of palatable items lead to nonhomeostatic feeding and weight gain warrants further study. Positive energy balance is attributed to greater energy intake within eating events but also to a greater extent, increased eating frequency. Although the size and frequency of eating events may compensate for each other, interventions aimed at limiting the latter may be especially productive. One of the most marked dietary trends is an increase of energy derived from beverages. The weak dietary compensation that energy-yielding beverages elicit leads to positive energy balance. This, too, is a promising target for moderating energy intake. A better understanding of dietary factors promoting positive energy balance should reveal strategies for weight management.

  11. Rheological properties of biscuit dough from different cultivars, and relationship to baking characteristics

    DEFF Research Database (Denmark)

    Pedersen, L.; Kaack, K.; Bergsøe, M.N.

    2004-01-01

    differences in structural properties with genetic control. Multivariate regression of flour physiochemical, dough theological, and biscuit baking characteristics showed that a decrease in biscuit length was correlated under several theological parameters, including phase angle delta, Farinograph and creep......Rheological properties of semi-sweet biscuit doughs from eight wheat cultivars were studied, and related to the dimensional changes of biscuits after cutting and baking. The tested cultivars were selected in order to represent a wide diversity in biscuit baking performance, and were grown with low...... recovery parameters. Sedimentation value was the only physiochernical flour characteristic with considerable influence on the model. Validation of the partial least squares-model including all samples from the 3 years gave only a weak correlation (r = 0.58), whereas when each single year was evaluated...

  12. Nonlinear oscillatory rheology and structure of wormlike micellar solutions and colloidal suspensions

    Science.gov (United States)

    Gurnon, Amanda Kate

    The complex, nonlinear flow behavior of soft materials transcends industrial applications, smart material design and non-equilibrium thermodynamics. A long-standing, fundamental challenge in soft-matter science is establishing a quantitative connection between the deformation field, local microstructure and macroscopic dynamic flow properties i.e., the rheology. Soft materials are widely used in consumer products and industrial processes including energy recovery, surfactants for personal healthcare (e.g. soap and shampoo), coatings, plastics, drug delivery, medical devices and therapeutics. Oftentimes, these materials are processed by, used during, or exposed to non-equilibrium conditions for which the transient response of the complex fluid is critical. As such, designing new dynamic experiments is imperative to testing these materials and further developing micromechanical models to predict their transient response. Two of the most common classes of these soft materials stand as the focus of the present research; they are: solutions of polymer-like micelles (PLM or also known as wormlike micelles, WLM) and concentrated colloidal suspensions. In addition to their varied applications these two different classes of soft materials are also governed by different physics. In contrast, to the shear thinning behavior of the WLMs at high shear rates, the near hard-sphere colloidal suspensions are known to display increases, sometimes quite substantial, in viscosity (known as shear thickening). The stress response of these complex fluids derive from the shear-induced microstructure, thus measurements of the microstructure under flow are critical for understanding the mechanisms underlying the complex, nonlinear rheology of these complex fluids. A popular micromechanical model is reframed from its original derivation for predicting steady shear rheology of polymers and WLMs to be applicable to weakly nonlinear oscillatory shear flow. The validity, utility and limits of

  13. Influence of blending sequence on the rheological behavior of HDPE/LLDPE/MMT nano composites; Influencia da sequencia de mistura no comportamento reologico de nanocompositos HDPE/LLDPE/MMT

    Energy Technology Data Exchange (ETDEWEB)

    Passador, F.R.; Pessan, L.A., E-mail: fabiopassador@gmail.co [Universidade Federal de Sao Carlos (DEMA/UFSCAR), SP (Brazil). Dept. de Engenharia de Materiais; Ruvolo Filho, A. [Universidade Federal de Sao Carlos (PPGCEM/UFSCAR), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2010-07-01

    The blending sequence affects the rheological behavior and the morphology formation of the nanocomposites. In this work, the blending sequences were explored to see its influence in the rheological behavior of HDPE/LLDPE/MMT nanocomposites. The nanocomposites were obtained by melt-intercalation using HDPE-g-MA as a compatibilizer in a torque rheometer (Haake Rheomix 600p at 180 deg C and rotor speed of 80rpm) and five blending sequences were studied. The materials structures were characterized by wide angle X-ray diffraction (WAXD) and by rheological properties. The nanoclay's addition increased the shear viscosity at low shear rates, changing the behavior of HDPE/LLDPE matrix to a Bingham model behavior with an apparent yield stress. Intense interactions were obtained for the blending sequence where HDPE and HDPE-g-MA were first reinforced with organoclay and then the HDPE/HDPE-g-MA/organoclay nanocomposite was later blended with LLDPE. (author)

  14. Rheological and mechanical properties of polyamide 6 modified by electron-beam initiated mediation process

    International Nuclear Information System (INIS)

    Shin, Boo Young; Kim, Jae Hong

    2015-01-01

    Polyamide (PA6) has been modified by electron-beam initiated mediator process to improve drawbacks of PA6. Glycidyl methacrylate (GMA) was chosen as a reactive mediator for modification process of PA6. The mixture of the PA6 and GMA was prepared by using a twin-screw extruder, and then the mixture was exposed to electron-beam irradiation at various doses at room temperature. The modified PA6 were characterized by observing rheological and mechanical properties and compared virgin PA6. Thermal properties, water absorption, and gel fraction were also investigated. Tight gel was not found even when PA6 was irradiated at 200 kGy. Complex viscosity and storage modulus of PA6 were remarkably increased by electron-beam irradiation with medium of GMA. Maximum increase in complex viscosity was 75 times higher than virgin PA6 at 0.1 rad/s when it was irradiated at 200 kGy with the GMA. Mechanical properties were also improved without scarifying of processability. The reaction mechanisms for the mediation process with the reactive mediator of GMA were estimated to elucidate the cause of significantly enhanced rheological and mechanical properties without loss of thermoplasticity. - Highlights: • PA6 was modified by the electron-beam initiated mediation process. • Maximum increase in complex viscosity of modified PA6 was 75 times higher than virgin PA6 at 0.1 rad/s. • Mechanical properties were improved without scarifying of processability. • The GMA as a mediator played a key role in the electron-beam initiated mediation process

  15. Investigation into the Microstructure, Texture and Rheological Properties of Chocolate Ganache.

    Science.gov (United States)

    McGill, Jade; Hartel, Rich W

    2018-03-01

    Ganache is a mixture of chocolate and dairy. Although a popular confection, little is known about how it functions as a system. Objectives were to (1) determine if dairy fats and cocoa butter mix in ganache, (2) characterize ganache microstructure, and how structure affects texture and rheology, and (3) identify how changes in chocolate composition alter ganache. Textural analysis, differential scanning calorimetry, stress sweep tests, and microscopy were used to examine ganache formulations that varied in dairy source (cream or butter) or in solid fat content (SFC), composition or type of chocolate. Melting temperatures for all ganache formulations were lower than for chocolate, indicating that cream milk fat globules rupture during processing, and mix with cocoa butter. Altering the SFC of chocolate affected ganache hardness, spreadability, melting enthalpy, and resistance to deformation. Chocolate systems made with constant fat content and greater amounts of defatted cocoa powder relative to sugar or nonfat milk powder yielded ganache that was harder, less spreadable, and more resistant to deformation. Ganache made with commercially produced dark, milk, and white chocolates behaved similarly to model chocolate systems. Ganache attributes are affected by chocolate crystalline fat content in addition to particle phase volume-greater levels of cocoa powder, which is mostly insoluble, strengthens ganache structure, producing a firmer product, whereas greater levels of milk powder and sugar, which dissolve in the aqueous cream component, produce a softer ganache. Understanding how ganache functions as a system and how differences in chocolate composition affect its textural and rheological properties may allow for greater control over the desired characteristics of the final product. For example, this research shows how changing cocoa content of the chocolate affects ganache, which is useful when developing formulations involving chocolates with different cocoa

  16. Evolution of chemical-physical parameters and rheological characteristics of Sarda and Maltese goat dry hams

    Directory of Open Access Journals (Sweden)

    Rina Mazzette

    2012-10-01

    Full Text Available In Sardinia, goat farming is a very important resource. Sarda and Maltese breed are reared mainly for milk production and for suckling kids meat, while meat from adult goats is undervalued. The use of adult goat meat to obtain ripened ham will contribute to safeguard the Sardinian goat supply chain. The aim of the present study was to characterize Sarda and Maltese goat dry ham in order to evaluate the quality of autochthonous goat breed meat. Chemical-physical characteristics were determined dur-ing the production stages, while the rheological and colour parameters and the composition of the goat ham were determined at the end of ripening. The pH evolution during processing were similar to other cured meat products, e.g. sheep hams, even though the values were high, especially in the products from Sarda breed. The aw value regularly decreased during processing. Colour parameters (L*, a*, b* in the hams from Maltese goat breed were significantly (P<0.05 higher than in those from Sarda. The Sarda goat ham showed a significantly lower percentage of moisture (42% vs 52%, an higher protein content (44.35% vs 34.19%, while no differences were pointed out in the total fat content. Among the ham rheological properties, hardness parameters showed higher levels (13850.22±7589.92 vs 11073.99±6481.31, respectively in Sarda and Maltese hams in comparison to similar products from pork and sheep, while adhesiveness value was lower. The results show that the quality parameters of goat ripened hams are affected mainly by the charac-teristics of the goat meat, in relation on the breed and the breeding system, and, less, by the traditional technology.

  17. A constitutive rheological model for agglomerating blood derived from nonequilibrium thermodynamics

    Science.gov (United States)

    Tsimouri, Ioanna Ch.; Stephanou, Pavlos S.; Mavrantzas, Vlasis G.

    2018-03-01

    Red blood cells tend to aggregate in the presence of plasma proteins, forming structures known as rouleaux. Here, we derive a constitutive rheological model for human blood which accounts for the formation and dissociation of rouleaux using the generalized bracket formulation of nonequilibrium thermodynamics. Similar to the model derived by Owens and co-workers ["A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow," J. Fluid Mech. 617, 327-354 (2008)] through polymer network theory, each rouleau in our model is represented as a dumbbell; the corresponding structural variable is the conformation tensor of the dumbbell. The kinetics of rouleau formation and dissociation is treated as in the work of Germann et al. ["Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions," J. Non-Newton. Fluid Mech. 196, 51-57 (2013)] by assuming a set of reversible reactions, each characterized by a forward and a reverse rate constant. The final set of evolution equations for the microstructure of each rouleau and the expression for the stress tensor turn out to be very similar to those of Owens and co-workers. However, by explicitly considering a mechanism for the formation and breakage of rouleaux, our model further provides expressions for the aggregation and disaggregation rates appearing in the final transport equations, which in the kinetic theory-based network model of Owens were absent and had to be specified separately. Despite this, the two models are found to provide similar descriptions of experimental data on the size distribution of rouleaux.

  18. Investigation of drug-excipient compatibility using rheological and thermal tools

    Science.gov (United States)

    Trivedi, Maitri R.

    HYPOTHESIS: We plan to investigate a different approach to evaluate drug-excipient physical compatibility using rheological and thermal tools as opposed to commonly used chemical techniques in pharmaceutical industry. This approach offers practical solutions to routinely associated problems arising with API's and commonly used hydrates forms of excipients. ABSTRACT: Drug-Excipient compatibility studies are an important aspect of pre-formulation and formulation development in pharmaceutical research and development. Various approaches have been used in pharmaceutical industry including use of thermal analysis and quantitative assessment of drug-excipient mixtures after keeping the samples under stress environment depending upon the type of formulation. In an attempt to provide better understanding of such compatibility aspect of excipients with different properties of API, various rheological and thermal studies were conducted on binary mixtures of excipients which exist in different hydrates. Dibasic Calcium Phosphate (DCP, anhydrous and dihydrate forms) and Lactose (Lac, anhydrous and monohydrate) were selected with cohesive API's (Acetaminophen and Aspirin). Binary mixtures of DCP and Lac were prepared by addition of 0% w/w to 50% w/w of the API into each powder blend. Rheological and thermal aspects were considered using different approaches such as powder rheometer, rotational shear cell and traditional rheometery approaches like angle of repose (AOR), hausner's ratio (HR) and cares index (CI). Thermal analysis was conducted using modulated differential scanning calorimetry (MDSC) and thermal effusivity. The data suggested that the powder rheometer showed distinctive understanding in the flowability behavior of binary mixtures with addition of increasing proportion of API's than traditional approaches. Thermal approaches revealed the potential interaction of water of crystallization DCP-D with the API (APAP) while such interactions were absent in DCP-A, while

  19. Rheological and physical characteristics of crustal-scaled materials for centrifuge analogue modelling

    Science.gov (United States)

    Waffle, Lindsay; Godin, Laurent; Harris, Lyal B.; Kontopoulou, M.

    2016-05-01

    We characterize a set of analogue materials used for centrifuge analogue modelling simulating deformation at different levels in the crust simultaneously. Specifically, we improve the rheological characterization in the linear viscoelastic region of materials for the lower and middle crust, and cohesive synthetic sands without petroleum-binding agents for the upper crust. Viscoelastic materials used in centrifuge analogue modelling demonstrate complex dynamic behaviour, so viscosity alone is insufficient to determine if a material will be an effective analogue. Two series of experiments were conducted using an oscillating bi-conical plate rheometer to measure the storage and loss moduli and complex viscosities of several modelling clays and silicone putties. Tested materials exhibited viscoelastic and shear-thinning behaviour. The silicone putties and some modelling clays demonstrated viscous-dominant behaviour and reached Newtonian plateaus at strain rates clays demonstrated elastic-dominant power-law relationships. Based on these results, the elastic-dominant modelling clay is recommended as an analogue for basement cratons. Inherently cohesive synthetic sands produce fine-detailed fault and fracture patterns, and developed thrust, strike-slip, and extensional faults in simple centrifuge test models. These synthetic sands are recommended as analogues for the brittle upper crust. These new results increase the accuracy of scaling analogue models to prototype. Additionally, with the characterization of three new materials, we propose a complete lithospheric profile of analogue materials for centrifuge modelling, allowing future studies to replicate a broader range of crustal deformation behaviours.

  20. Characterization of Tank 51 Sludge Slurry Samples (HTF-51-17-67, -68, -69, -74, -75, and -76) in Support of Sludge Batch 10 Processing

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-09

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The six Tank 51 sludge samples were sampled and delivered to SRNL in August of 2017. These six Tank 51 sludge samples, after undergoing physical characterizations which included rheology, weight percent total solid, dissolved solids and density measurements, were combined into one composite Tank 51 sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids.