WorldWideScience

Sample records for included pentadecane polydimethylsiloxane

  1. The liquid–liquid coexistence curves of {benzonitrile + n-pentadecane} and {benzonitrile + n-heptadecane} in the critical region

    International Nuclear Information System (INIS)

    Chen, Zhiyun; Bai, Yongliang; Yin, Tianxiang; An, Xueqin; Shen, Weiguo

    2012-01-01

    Highlights: ► Coexistence curves of (benzonitrile + n-pentadecane) and (benzonitrile + n-heptadecane) were measured. ► The values of the critical exponent β are consistent with that predicted by the 3D-Ising model. ► The coexistence curves are well described by the critical crossover model. ► The asymmetry of the diameters of the coexistence curves were discussed by the complete scaling theory. - Abstract: Liquid + liquid coexistence curves for the binary solutions of {benzonitrile + n-pentadecane} and {benzonitrile + n-heptadecane} have been measured in the critical region. The critical exponent β and the critical amplitudes have been deduced and the former is consistent with the theoretic prediction. It was found that the coexistence curves may be well described by the crossover model proposed by Gutkowski et al. The asymmetries of the diameters of the coexistence curves were also discussed in the frame of the complete scaling theory.

  2. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    Science.gov (United States)

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  3. (2S,7S-10-Ethyl-1,8,10,12-tetraazatetracyclo[8.3.1.18,12.02,7]pentadecan-10-ium iodide

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2012-10-01

    Full Text Available The title chiral quaternary ammonium salt, C13H25N4+·I−, was synthesized through the Menschutkin reaction between the cage aminal (2S,7S-1,8,10,12-tetraazatetracyclo[8.3.1.18,12.02,7]pentadecane and ethyl iodide. The quaternization occurred regioselectively on the nitrogen with major sp3 character. The crystal structure consists of anions and cations separated by normal distances. Ions are not linked through C—H...I hydrogen bonds.

  4. Fs-laser processing of polydimethylsiloxane

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Petar A., E-mail: paatanas@ie.bas.bg; Nedyalkov, Nikolay N. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Valova, Eugenia I.; Georgieva, Zhenya S.; Armyanov, Stefan A.; Kolev, Konstantin N. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Amoruso, Salvatore; Wang, Xuan; Bruzzese, Ricardo [CNR-SPIN, Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Sawczak, Miroslaw; Śliwiński, Gerard [Photophysics Department, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland)

    2014-07-14

    We present an experimental analysis on surface structuring of polydimethylsiloxane films with UV (263 nm) femtosecond laser pulses, in air. Laser processed areas are analyzed by optical microscopy, SEM, and μ-Raman spectroscopy. The laser-treated sample shows the formation of a randomly nanostructured surface morphology. μ-Raman spectra, carried out at both 514 and 785 nm excitation wavelengths, prior and after laser treatment allow evidencing the changes in the sample structure. The influence of the laser fluence on the surface morphology is studied. Finally, successful electro-less metallization of the laser-processed sample is achieved, even after several months from the laser-treatment contrary to previous observation with nanosecond pulses. Our findings address the effectiveness of fs-laser treatment and chemical metallization of polydimethylsiloxane films with perspective technological interest in micro-fabrication devices for MEMS and nano-electromechanical systems.

  5. Nanoporous Crosslinked Polyisoprene from Polyisoprene-Polydimethylsiloxane Block Copolymer

    DEFF Research Database (Denmark)

    Hansen, Michael Steffen; Vigild, Martin Etchells; Berg, Rolf Henrik

    2004-01-01

    The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride or tetrabut......The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride...

  6. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Graham, Alan [Univ. of Colorado, Denver, CO (United States); Nemer, Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phinney, Leslie M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garcia, Robert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stirrup, Emily Kate [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

  7. Prospective study of polydimethylsiloxane vs dextranomer/hyaluronic acid injection for treatment of vesicoureteral reflux.

    Science.gov (United States)

    Moore, Katherine; Bolduc, Stéphane

    2014-12-01

    Endoscopic injection of a bulking agent is becoming a first-line treatment for low grade vesicoureteral reflux. We prospectively compared the efficacy of 2 such products commercially available in Canada. A total of 275 patients with documented grade I to V vesicoureteral reflux were prospectively enrolled in a comparative study between April 2005 and February 2011 to be randomly treated endoscopically with either polydimethylsiloxane (Macroplastique®) or dextranomer/hyaluronic acid copolymer (Deflux®). Of the ureters 202 were treated with polydimethylsiloxane and 197 with dextranomer/hyaluronic acid copolymer. Patients were followed with voiding cystourethrography at 3 months and renal ultrasonography at 3 months and at 1 year. Median followup was 4.3 years. The primary outcome was surgical success (resolution vs nonresolution), and secondary outcomes included occurrence of adverse events. Vesicoureteral reflux was fully corrected in 182 of 202 ureters (90%) treated with polydimethylsiloxane, compared to 159 of 197 (81%) treated with dextranomer/hyaluronic acid copolymer (p reflux. Endoscopic injection of polydimethylsiloxane resulted in a better success rate than dextranomer/hyaluronic acid copolymer. The rate of resolution obtained with the latter is lower than those previously published due to the inclusion of high grade reflux. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Adhesion between Polydimethylsiloxane Layers by Crosslinking

    DEFF Research Database (Denmark)

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    2013-01-01

    Adhesion between two surfaces may be strongly improved by chemical crosslinking of the interfaces. Polydimethylsiloxane (PDMS) is a widely used polymer that has received considerable attention due to its unique properties, such as relatively low price, biocompatibility, flexibility, high thermal...... investigated by rheology and microscopy. The objective of this work was to create adhesion of two layers without destroying the original viscoelastic properties of the PDMS films....

  9. Poly(bisphenol A carbonate) - poly(dimethylsiloxane) multiblock copolymers

    NARCIS (Netherlands)

    Aert, van H.A.M.; Nelissen, L.N.I.H.; Lemstra, P.J.; Brunelle, D.J.

    2001-01-01

    A versatile technique for the synthesis of multiblock copolymers of polydimethylsiloxane (PDMS) and poly(bisphenol A carbonate) (PC) is described. Specific reaction of the phenol end groups of a,¿-bis(bisphenol A)-terminated PDMS with the activated end groups of

  10. Adhesion Between Poly(dimethylsiloxane) Layers

    DEFF Research Database (Denmark)

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    Different adhesion methods of poly(dimethylsiloxane) (PDMS) layers were studied with respect to adhesional force and the resulting rheology of the two-layered PDMS films were investigated. The role of adhesion between PDMS layers on the performances of two-layer structures was studied with peel...... strength test and by SEM pictures. The rheology of the double-layered compared to the monolayer films changed in some cases which indicates that the adhesion process needs to be carefully introduced in order not to alter the final properties....

  11. Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions

    Science.gov (United States)

    Sui, H. L.; Liu, X. Y.; Zhong, F. C.; Li, X. Y.; Wang, L.; Ju, X.

    2013-07-01

    Polydimethylsiloxane rubber foams were irradiated by gamma ray under different radiation conditions designed by orthogonal design method. Compression set measurement, infrared attenuated total reflectance spectroscopy (ATR) and X-ray induced photoelectron spectroscopy (XPS) were used. Three aging factors' influence effects on the mechanical property and chemical structure were studied. It was found that among the three factors and the chosen levels, both properties were affected most by radiation dose, while radiation dose rate had no obvious influence on both properties. The stiffening of the rubber foams was caused by cross-linking reactions in the Si-CH3. At the same radiation dose, the rigidity of the foams irradiated in air was lower than that in nitrogen. When polydimethylsiloxane was irradiated at a high dose in sealed nitrogen atmosphere, carbon element distribution would be changed. Hydrocarbons produced by gamma ray in the sealed tube would make the carbon content in the skin-deep higher than that in the middle, which indicated that polydimethylsiloxane rubber foams storing in a sealed atmosphere filled with enough hydrocarbons should be helpful to extend the service life.

  12. Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sui, H.L. [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Institute of Chemical Materials, CAEP, Mianyang 621900 (China); Liu, X.Y.; Zhong, F.C. [Institute of Chemical Materials, CAEP, Mianyang 621900 (China); Li, X.Y. [Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900 (China); Wang, L. [Institute of Chemical Materials, CAEP, Mianyang 621900 (China); Ju, X., E-mail: jux@ustb.edu.cn [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-07-15

    Polydimethylsiloxane rubber foams were irradiated by gamma ray under different radiation conditions designed by orthogonal design method. Compression set measurement, infrared attenuated total reflectance spectroscopy (ATR) and X-ray induced photoelectron spectroscopy (XPS) were used. Three aging factors’ influence effects on the mechanical property and chemical structure were studied. It was found that among the three factors and the chosen levels, both properties were affected most by radiation dose, while radiation dose rate had no obvious influence on both properties. The stiffening of the rubber foams was caused by cross-linking reactions in the Si–CH{sub 3}. At the same radiation dose, the rigidity of the foams irradiated in air was lower than that in nitrogen. When polydimethylsiloxane was irradiated at a high dose in sealed nitrogen atmosphere, carbon element distribution would be changed. Hydrocarbons produced by gamma ray in the sealed tube would make the carbon content in the skin-deep higher than that in the middle, which indicated that polydimethylsiloxane rubber foams storing in a sealed atmosphere filled with enough hydrocarbons should be helpful to extend the service life.

  13. Molecular Dynamics Simulations of Poly(dimethylsiloxane) Properties

    Czech Academy of Sciences Publication Activity Database

    Fojtíková, J.; Kalvoda, L.; Sedlák, Petr

    2015-01-01

    Roč. 128, č. 4 (2015), s. 637-639 ISSN 0587-4246 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : molecular dynamics * poly(dimethylsiloxane) * dissipative particle dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.525, year: 2015 http://przyrbwn.icm.edu.pl/APP/PDF/128/a128z4p40.pdf

  14. Hot embossing of microstructures on addition curing polydimethylsiloxane films

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Yu, Liyun; Hassouneh, Suzan Sager

    2013-01-01

    The aim of this research work is to establish a hot embossing process for addition curing vinyl-terminated polydimethylsiloxane (PDMS), which are thermosetting elastomers, based on the existing and widely applied technology for thermoplasts. To our knowledge, no known technologies or processes...

  15. Hysteresis Compensation of Piezoresistive Carbon Nanotube/Polydimethylsiloxane Composite-Based Force Sensors

    Directory of Open Access Journals (Sweden)

    Ji-Sik Kim

    2017-01-01

    Full Text Available This paper provides a preliminary study on the hysteresis compensation of a piezoresistive silicon-based polymer composite, poly(dimethylsiloxane dispersed with carbon nanotubes (CNTs, to demonstrate its feasibility as a conductive composite (i.e., a force-sensitive resistor for force sensors. In this study, the potential use of the nanotube/polydimethylsiloxane (CNT/PDMS as a force sensor is evaluated for the first time. The experimental results show that the electrical resistance of the CNT/PDMS composite changes in response to sinusoidal loading and static compressive load. The compensated output based on the Duhem hysteresis model shows a linear relationship. This simple hysteresis model can compensate for the nonlinear frequency-dependent hysteresis phenomenon when a dynamic sinusoidal force input is applied.

  16. Effect of repeated contact on adhesion measurements involving polydimethylsiloxane structural material

    International Nuclear Information System (INIS)

    Kroner, E; Arzt, E; Maboudian, R

    2009-01-01

    During the last few years several research groups have focused on the fabrication of artificial gecko inspired adhesives. For mimicking these structures, different polymers are used as structure material, such as polydimethylsiloxanes (PDMS), polyurethanes (PU), and polypropylene (PP). While these polymers can be structured easily and used for artificial adhesion systems, the effects of repeated adhesion testing have never been investigated closely. In this paper we report on the effect of repeated adhesion measurements on the commercially available poly(dimethylsiloxane) polymer kit Sylgard 184 (Dow Corning). We show that the adhesion force decreases as a function of contact cycles. The rate of change and the final value of adhesion are found to depend on the details of the PDMS synthesis and structuring.

  17. Nano-porous Material with Spherical or Gyroid Cavities Created by Quantitative Etching of Polydimethylsiloxane in Polystyrene-Polydimethylsiloxane Block Copolymers

    DEFF Research Database (Denmark)

    Ndoni, Sokol; Vigild, Martin Etchells; Berg, Rolf H.

    2003-01-01

    A new method for quantitative etching of the poly(dimethylsiloxane) block in polystyrene-poly(dimethylsiloxane) (PS-PDMS) block copolymers is reported. Reacting the block copolymer with anhydrous hydrogen fluoride renders a nanoporous material (NPM) with the remaining glassy PS maintaining...... the original bulk morphology. 1H NMR, mass difference, size exclusion chromatography, and X-ray photoelectron spectroscopy were used to characterize the materials before and after etching. NPMs containing spherical and gyroid cavities were prepared, as ascertained by small-angle X-ray scattering...

  18. Low cost fabrication and assembly process for re-usable 3D polydimethylsiloxane (PDMS) microfluidic networks

    CSIR Research Space (South Africa)

    Land, K

    2011-09-01

    Full Text Available and assembly process for re-usable 3D polydimethylsiloxane (PDMS) microfluidic networks Kevin J. Land, Mesuli B. Mbanjwa, Klariska Govindasamy, and Jan G. Korvink Citation: Biomicrofluidics 5, 036502 (2011); doi: 10.1063/1.3641859 View online: http... polydimethylsiloxane (PDMS) microfluidic networks Kevin J. Land,1,2,a) Mesuli B. Mbanjwa,1,3 Klariska Govindasamy,1 and Jan G. Korvink2,4 1Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa 2University of Freiburg, Department...

  19. Polydimethylsiloxane (PDMS-Based Flexible Resistive Strain Sensors for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2018-02-01

    Full Text Available There is growing attention and rapid development on flexible electronic devices with electronic materials and sensing technology innovations. In particular, strain sensors with high elasticity and stretchability are needed for several potential applications including human entertainment technology, human–machine interface, personal healthcare, and sports performance monitoring, etc. This article presents recent advancements in the development of polydimethylsiloxane (PDMS-based flexible resistive strain sensors for wearable applications. First of all, the article shows that PDMS-based stretchable resistive strain sensors are successfully fabricated by different methods, such as the filtration method, printing technology, micromolding method, coating techniques, and liquid phase mixing. Next, strain sensing performances including stretchability, gauge factor, linearity, and durability are comprehensively demonstrated and compared. Finally, potential applications of PDMS-based flexible resistive strain sensors are also discussed. This review indicates that the era of wearable intelligent electronic systems has arrived.

  20. Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography

    NARCIS (Netherlands)

    Scharnweber, Tim; Truckenmüller, R.K.; Schneider, Andrea M.; Welle, Alexander; Reinhardt, Martina; Giselbrecht, Stefan

    2011-01-01

    Microstructuring of polydimethylsiloxane (PDMS) is a key step for many lab-on-a-chip (LOC) applications. In general, the structure is generated by casting the liquid prepolymer against a master. The production of the master in turn calls for special equipment and know how. Furthermore, a given

  1. Preparation and Properties of EPDM/Silicone Alloy Using Maleated EPDM-polydimethylsiloxane Compatibilizer

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Doo Whan; Kim, Bum Jin [Hyperstructured Organic Materials Research Center, Department of Polymer Science and Engineering, Dankook University, Seoul (Korea); Shim, Dae Sup [Korea Electrotechnology Research Institute, Euiwang (Korea)

    2001-05-01

    EPDM used as an electrical insulating material was blended with silicone rubber and compatibilizer to improve weatherability, ozone resistance, and dielectric strength. The compatibilizer was prepared by imidizing maleated EPDM with {alpha},{omega}-aminopropyl polydimethylsiloxane. EPDM/ silicone alloy was prepared by blending EPDM and silicone rubber with weight ratio of 9/1, 7/3, 5/5, 3/7 and 1/9, maleated EPDM-polydimethylsiloxane copolymer, and dicumyl peroxide (DCP). The maximum tensile strength of 0.177 kgf/mm{sup 2}, elongation at break of 257%, and dielectric breakdown voltage 362.25 kV/cm were obtained from the alloy prepared with 9 to 1 weight ration of EPDM/silicone. The compatibility of the alloy was confirmed from the thermal characteristics measured using DMA and DSC. The morphology of the alloys was observed with SEM. 7 refs., 8 figs., 1 tab.

  2. Magnetophoretic manipulation in microsystem using carbonyl iron-polydimethylsiloxane microstructures

    OpenAIRE

    Faivre, Magalie; Gelszinnis, Renaud; Degouttes, Jérôme; Terrier, Nicolas; Rivière, Charlotte; Ferrigno, Rosaria; Deman, Anne-Laure

    2014-01-01

    This paper reports the use of a recent composite material, noted hereafter i-PDMS, made of carbonyl iron microparticles mixed in a PolyDiMethylSiloxane (PDMS) matrix, for magnetophoretic functions such as capture and separation of magnetic species. We demonstrated that this composite which combine the advantages of both components, can locally generate high gradients of magnetic field when placed between two permanent magnets. After evaluating the magnetic susceptibility of the material as a ...

  3. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang; Chen, Guang; Hickner, Michael A.; Logan, Bruce E.

    2012-01-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst

  4. Characterisation of radiation crosslinked polydimethylsiloxane

    International Nuclear Information System (INIS)

    Preston, C.M.L.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1998-01-01

    Polysiloxanes, or silicones, are used widely in industry, as lubricants and process additives, as well as in many household products. The most common of the silicones is polydimethylsiloxane (PDMS). The fact that silicones crosslink during exposure to high energy radiation is well established. However, despite the number of studies performed on these systems, the exact mechanism of crosslinking has yet to be determined. Nuclear Magnetic Resonance spectroscopy (NMR) provides a useful method for the analysis of crosslinked polymer systems. Linear uncrosslinked PDMS is easily characterised in the solution state by NMR, as PDMS is readily soluble in common organic solvents. However, the onset of gelation caused by crosslinking results in an insoluble polymer network. The use of cross-polarisation (CP) and magic-angle spinning (MAS) in conjunction with high power decoupling has been shown to greatly enhance sensitivity of the NMR technique in solids. The true mechanism of crosslinking between polymer chains will be discussed

  5. Method of producing an electronic unit having a polydimethylsiloxane substrate and circuit lines

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, James Courtney [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Tovar, Armando R [San Antonio, TX

    2012-06-19

    A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).

  6. Acupuncture Injection Combined with Electrokinetic Injection for Polydimethylsiloxane Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Ji Won Ha

    2017-01-01

    Full Text Available We recently reported acupuncture sample injection that leads to reproducible injection of nL-scale sample segments into a polydimethylsiloxane (PDMS microchannel for microchip capillary electrophoresis. The advantages of the acupuncture injection in microchip capillary electrophoresis include capability of minimizing sample loss and voltage control hardware and capability of introducing sample plugs into any desired position of a microchannel. However, the challenge in the previous study was to achieve reproducible, pL-scale sample injections into PDMS microchannels. In the present study, we introduce an acupuncture injection technique combined with electrokinetic injection (AICEI technique to inject pL-scale sample segments for microchip capillary electrophoresis. We carried out the capillary zone electrophoresis (CZE separation of FITC and fluorescein, and the mixture of 10 μM FITC and 10 μM fluorescein was separated completely by using the AICEI method.

  7. Downstream microwave ammonia plasma treatment of polydimethylsiloxane

    International Nuclear Information System (INIS)

    Pruden, K.G.; Beaudoin, S.P.

    2005-01-01

    To control the interactions between surfaces and biological systems, it is common to attach polymers, proteins, and other species to the surfaces of interest. In this case, surface modification of polydimethylsiloxane (PDMS) was performed by exposing PDMS films to the effluent from a microwave ammonia plasma, with a goal of creating primary amine groups on the PDMS. These amine sites were to be used as binding sites for polymer attachment. Chemical changes to the surface of the PDMS were investigated as a function of treatment time, microwave power, and PDMS temperature during plasma treatment. Functional groups resulting from this treatment were characterized using attenuated total reflectance infrared spectroscopy. Plasma treatment resulted in the incorporation of oxygen- and nitrogen-containing groups, including primary amine groups. In general, increasing the treatment time, plasma power and substrate temperature increased the level of oxidation of the films, and led to the formation of imines and nitriles. PDMS samples treated at 100 W and 23 deg. C for 120 s were chosen for proof-of-concept dextran coating. Samples treated at this condition contained primary amine groups and few oxygen-containing groups. To test the viability of the primary amines for attachment of biopolymers, functionalized dextran was successfully attached to primary amine sites on the PDMS films

  8. Non-silicon substrate bonding mediated by poly(dimethylsiloxane) interfacial coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hainan [Department of BioNano Technology, Gachon University, Gyeonggi-do 461-701 (Korea, Republic of); Lee, Nae Yoon, E-mail: nylee@gachon.ac.kr [Department of BioNano Technology, Gachon University, Gyeonggi-do 461-701 (Korea, Republic of); Gachon Medical Research Institute, Gil Medical Center, Inchon 405-760 (Korea, Republic of)

    2015-02-01

    Graphical abstract: Low-molecular-weight PDMS coating on the surfaces of non-silicon substrates such as thermoplastics ensures permanent sealing with a silicone elastomer, PDMS, simply by surface oxidization followed by ambient condition bonding, mediated by a robust siloxane bond formation at the interface. - Highlights: • Non-silicon thermoplastic was bonded with poly(dimethylsiloxane) silicone elastomer. • Low-molecular-weight PDMS interfacial layer was chemically coated on thermoplastic. • Bonding was realized by corona treatment and physical contact under ambient condition. • Bonding is universally applicable regardless of thermoplastic type and property. • Homogeneous PDMS-like microchannel was obtained inside the thermoplastic-PDMS microdevice. - Abstract: In this paper, we introduce a simple and robust strategy for bonding poly(dimethylsiloxane) (PDMS) with various thermoplastic substrates to fabricate a thermoplastic-based closed microfluidic device and examine the feasibility of using the proposed method for realizing plastic–plastic bonding. The proposed bonding strategy was realized by first coating amine functionality on an oxidized thermoplastic surface. Next, the amine-functionalized surface was reacted with a monolayer of low-molecular-weight PDMS, terminated with epoxy functionality, by forming a robust amine-epoxy bond. Both the PDMS-coated thermoplastic and PDMS were then oxidized and permanently assembled at 25 °C under a pressure of 0.1 MPa for 15 min, resulting in PDMS-like surfaces on all four inner walls of the microchannel. Surface characterizations were conducted, including water contact angle measurement, X-ray photoelectron spectroscopy (XPS), and fluorescence measurement, to confirm the successful coating of the thin PDMS layer on the plastic surface, and the bond strength was analyzed by conducting a peel test, burst test, and leakage test. Using the proposed method, we could successfully bond various thermoplastics such

  9. Exfoliation of clays in poly(dimethylsiloxane) rubber using an unexpected couple: a silicone surfactant and water.

    Science.gov (United States)

    Labruyère, Céline; Monteverde, Fabien; Alexandre, Michaël; Dubois, Philippe

    2009-04-01

    Poly(dimethylsiloxane) (PDMS)/montmorillonite (MMT) composites have been prepared using a newly synthesized omega-ammonium functionalized poly(dimethylsiloxane) compatibilizer coupled with a dispersion technique in water. The organoclay containing the new siloxane surfactant was characterized by TGA and XRD. For the first time, a nanoscopic dispersion of MMT nanoplatelets in the PDMS composite cured by hydrosilylation and a good compatibility between clay layers and matrix were obtained. The beneficial effect of both the surfactant and the water onto clay nanoplatelet dispersion was evaluated by different microscopy techniques and by measuring different properties such as the viscosity of the uncured PDMS/MMT nanodispersions, and the swelling rate and Young's modulus of the cured PDMS/MMT nanocomposites.

  10. Stabilization of two-phase octanol/water flows inside poly(dimethylsiloxane) microchannels using polymer coatings

    NARCIS (Netherlands)

    van der Linden, H. J.; Jellema, L. C.; Holwerda, M.; Verpoorte, E.

    In this paper we present our first results on the realization of stable water/octanol, two-phase flows inside poly(dimethylsiloxane) (PDMS) microchannels. Native PDMS microchannels were coated with high molecular weight polymers to change the surface properties of the microchannels and thus

  11. Achieving enhanced hydrophobicity of graphene membranes by covalent modification with polydimethylsiloxane

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Wei-Wei; Li, Hang [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Shi, Ling-Ying, E-mail: shilingying@scu.edu.cn [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Diao, Yong-Fu; Zhang, Yu-Lin; Ran, Rong [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Ni, Wei, E-mail: niwei@iccas.ac.cn [Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200 (China)

    2017-05-15

    Highlights: • The graphene oxide (GO) was covalently modified by amino terminated polydimethylsiloxane (PDMS) through amidation reaction. • Through the vacuum filtration method, the GO, RGO and PDMS-modified graphene membranes were successfully prepared respectively. • The morphology of membranes had smooth surface and well-stacked structure indicated by SEM and EDS mapping results. • The contact angle of GO-g-PDMS membrane was high to be 129.5° indicating a great enhancement of hydrophobicity. - Abstract: In this study, the graphene oxide was covalently modified by amino terminated polydimethylsiloxane (PDMS) through amidation reaction. And the membranes of the graphene oxide (GO), reduced graphene oxide (RGO) and PDMS-covalently modified graphene were prepared respectively by a vacuum filtration method, and the wettability of these membranes were investigated. Infrared spectroscopy, Raman, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetry analysis combined with dispersion ability indicated that PDMS chains were successfully grafted on the surface of graphene oxide sheets. The morphology of the prepared membranes had smooth surface and well-stacked structure in the cross-section indicated by the scanning electron microscope and EDS-mapping. The contact angle measurements indicated that the PDMS-modified graphene membrane with water contact angle 129.5° showed increased hydrophobicity compared with GO and RGO membranes.

  12. [Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1989-01-01

    There are four areas where major progress has occurred this year. We have applied the Fourier-transform method of describing and analyzing Moessbauer effect (ME) line shapes to make measurements of the temperature dependence of the recoilless fraction in tungsten. We have carried out quasi-elastic measurements of the gamma scattering from viscous liquids, learning about diffusive motion in polydimethylsiloxane, pentadecane, and glycerol. We have made major progress in fundamental physics, having shown for the first time how to determine precise quantum interference parameters, obtaining experimental results on the 46.5 keV line of 183 W and the 129 keV line of 191 Ir. Finally, we have continued our development of MICE detectors, with a theoretical analysis of the MICE lineshape and its relation to the lineshape of conventional transmission ME spectroscopy. 12 refs

  13. Influence of the nature of soil organic matter on the sorption behaviour of pentadecane as determined by PLS analysis of mid-infrared DRIFT and solid-state {sup 13}C NMR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Clark Ehlers, G.A. [Institute of Environmental Biotechnology, Department IFA-Tulln, University of Natural Resources and Applied Life Sciences, Vienna, Konrad Lorenz Str. 20, Tulln A-3430 (Austria); Forrester, Sean T. [CSIRO Land and Water, Waite Rd, Urrbrae SA 5064 (Australia); Scherr, Kerstin E. [Institute of Environmental Biotechnology, Department IFA-Tulln, University of Natural Resources and Applied Life Sciences, Vienna, Konrad Lorenz Str. 20, Tulln A-3430 (Austria); Loibner, Andreas P., E-mail: andreas.loibner@boku.ac.a [Institute of Environmental Biotechnology, Department IFA-Tulln, The University of Natural Resources and Applied Life Sciences, Vienna, Konrad Lorenz Str. 20, Tulln A-3430 (Austria); Janik, Les J. [CSIRO Land and Water, Waite Rd, Urrbrae SA 5064 (Australia)

    2010-01-15

    The nature of soil organic matter (SOM) functional groups associated with sorption processes was determined by correlating partitioning coefficients with solid-state {sup 13}C nuclear magnetic resonance (NMR) and diffuse reflectance mid-infrared (DRIFT) spectral features using partial least squares (PLS) regression analysis. Partitioning sorption coefficients for n-pentadecane (n-C{sub 15}) were determined for three alternative models: the Langmuir model, the dual distributed reactive domain model (DRDM) and the Freundlich model, where the latter was found to be the most appropriate. NMR-derived constitutional descriptors did not correlate with Freundlich model parameters. By contrast, PLS analysis revealed the most likely nature of the functional groups in SOM associated with n-C{sub 15} sorption coefficients (K{sub F}) to be aromatic, possibly porous soil char, rather than aliphatic organic components for the presently investigated soils. High PLS cross-validation correlation suggested that the model was robust for the purpose of characterising the functional group chemistry important for n-C{sub 15} sorption. - NMR/IR spectroscopy and chemometrics reveal the aromatic fraction of soil organic matter being responsible for alkane sorption.

  14. Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer

    OpenAIRE

    Jinzhang Liu; Nunzio Motta; Soonil Lee

    2012-01-01

    Summary ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the ...

  15. Polydimethylsiloxane microspheres with poly(methyl methacrylate) coating: Modelling, preparation, and characterization

    OpenAIRE

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren; Skov, Anne Ladegaard

    2015-01-01

    Polydimethylsiloxane (PDMS) microspheres are prepared by mixing homogeneous dispersions of vinyl-functional PDMS and a curing agent using mechanical stirring in a series of aqueous solutions, and curing at 80 8C for 2 h. In order to verify the experimental diameter and size distributions of the PDMS microspheres, the Hinze-Kolmogorov theory is applied to predict the mean diameter, and a population balance model as well as the maximum entropy formalism are used to describe the size distributio...

  16. A novel method to fabricate superhydrophobic surfaces based on well-defined mulberry-like particles and self-assembly of polydimethylsiloxane

    Science.gov (United States)

    Yang, Jinxin; Pi, Pihui; Wen, Xiufang; Zheng, Dafeng; Xu, Mengyi; Cheng, Jiang; Yang, Zhuoru

    2009-01-01

    A superhydrophobic surface was obtained by combining application of CaCO 3/SiO 2 mulberry-like composite particles, which originated from violent stirring and surface modification, and self-assembly of polydimethylsiloxane. Water contact angle and sliding angle of the superhydrophobic surface were measured to be about 164 ± 2.5° and 5°, respectively. The excellent hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness (fabricated by composite particles) and the low surface energy (provided by polydimethylsiloxane). This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  17. Poly(Dimethylsiloxane) (PDMS) Affects Gene Expression in PC12 Cells Differentiating into Neuronal-Like Cells

    DEFF Research Database (Denmark)

    Lopacinska, Joanna M.; Emnéus, Jenny; Dufva, Martin

    2013-01-01

    Introduction: Microfluidics systems usually consist of materials like PMMA - poly(methyl methacrylate) and PDMS - poly(dimethylsiloxane) and not polystyrene (PS), which is usually used for cell culture. Cellular and molecular responses in cells grown on PS are well characterized due to decades...

  18. Infrared dielectric function of polydimethylsiloxane and selective emission behavior

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Arvind; Czapla, Braden; Narayanaswamy, Arvind, E-mail: arvind.narayanaswamy@columbia.edu [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Mayo, Jeff [Skycatch, San Francisco, California 94107 (United States)

    2016-08-08

    The complex refractive index of polydimethylsiloxane (PDMS) is determined in the wavelength range between 2.5 μm and 16.7 μm. The parameters of a Drude-Lorentz oscillator model (with 15 oscillators) are extracted from Fourier transform infrared spectroscopy reflectance measurements made on both bulk PDMS and thin films of PDMS deposited on the gold coated silicon substrates. It is shown that thin films of PDMS atop gold exhibit selective emission in the 8 μm to 13 μm atmospheric transmittance window, which demonstrates that PDMS, especially due to its ease of deposition, may be a viable material for passive radiative cooling applications.

  19. Acoustical characterisation of carbon nanotube-loaded polydimethylsiloxane used for optical ultrasound generation

    OpenAIRE

    Alles, E. J.; Heo, J.; Noimark, S.; Colchester, R.; Parkin, I.; Baac, H. W.; Desjardins, A.

    2017-01-01

    An optical ultrasound generator was used to perform broadband (2-35 MHz) acoustical characterisation measurements of a nanocomposite comprising carbon nanotubes (CNT) and polydimethylsiloxane (PDMS), a composite that is commonly used as optical ultrasound generator. Samples consisting of either pure PDMS or CNT-loaded PDMS were characterised to determine the influence of CNTs on the speed of sound and power-law acoustic attenuation parameters. A small weight fraction (

  20. Investigation of the properties of fully reacted unstoichiometric polydimethylsiloxane networks and their extracted network fractions

    DEFF Research Database (Denmark)

    Frankær, Sarah Maria Grundahl; Jensen, Mette Krog; Bejenariu, Anca Gabriela

    2012-01-01

    We investigated the linear dynamic response of a series of fully reacted unstoichiometric polydimethylsiloxane (PDMS) networks and of the two corresponding network fractions namely the sol and the washed network. The sol and the washed network were separated by a simple extraction process. This way...

  1. Analysis of the bending radius of the cylindrical waveguide of polydimethylsiloxane for the purpose of lighting

    Science.gov (United States)

    Novak, M.; Jargus, J.; Fajkus, M.; Bednarek, L.; Vasinek, V.

    2017-10-01

    Polydimethylsiloxane (PDMS) can be used for its optical properties and its composition offers the possibility of use in the dangerous environments. Therefore authors of this article focused on more detailed working with this material. The authors describe the use of PDMS polymer for the light transmission over short distances (up to tens of centimeters). PDMS offers good prerequisites (mechanical properties) for the creating cylindrical lighting waveguide e.g. for the purpose of the automotive industry. The objective is to determine the maximum bending radius of the cylindrical waveguide of polydimethylsiloxane for different wavelengths of the visible spectrum and thus extend the knowledge for subsequent use in lighting. The created cylindrical waveguide consist of a core and a cladding. Cladding was formed by a PDMS having a lower refractive index in order to respect the condition of total reflection.

  2. Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips

    KAUST Repository

    Wang, Limu

    2009-09-17

    A novel microfluidicpressuresensor which can be fully integrated into polydimethylsiloxane(PDMS) is reported. The sensor produces electrical signals directly. We integrated PDMS-based conductive composites into a 30 μm thick membrane and bonded it to the microchannel side wall. The response time of the sensor is approximately 100 ms and can work within a pressure range as wide as 0–100 kPa. The resolution of this micropressure sensor is generally 0.1 kPa but can be increased to 0.01 kPa at high pressures as a result of the quadratic relationship between resistance and pressure. The PDMS-based nature of the sensor ensures its perfect bonding with PDMS chips, and the standard photolithographic process of the sensor allows one-time fabrication of three dimensional structures or even microsensor arrays. The theoretical calculations are in good agreement with experimental observations.

  3. Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips

    KAUST Repository

    Wang, Limu; Zhang, Mengying; Yang, Min; Zhu, Weiming; Wu, Jinbo; Gong, Xiuqing; Wen, Weijia

    2009-01-01

    A novel microfluidicpressuresensor which can be fully integrated into polydimethylsiloxane(PDMS) is reported. The sensor produces electrical signals directly. We integrated PDMS-based conductive composites into a 30 μm thick membrane and bonded it to the microchannel side wall. The response time of the sensor is approximately 100 ms and can work within a pressure range as wide as 0–100 kPa. The resolution of this micropressure sensor is generally 0.1 kPa but can be increased to 0.01 kPa at high pressures as a result of the quadratic relationship between resistance and pressure. The PDMS-based nature of the sensor ensures its perfect bonding with PDMS chips, and the standard photolithographic process of the sensor allows one-time fabrication of three dimensional structures or even microsensor arrays. The theoretical calculations are in good agreement with experimental observations.

  4. Study into the equilibrium mechanism between water and poly(dimethylsiloxane) for very apolar solutes : adsorption or sorption?

    NARCIS (Netherlands)

    Baltussen, H.A.; Sandra, P.J.F.; David, F.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1999-01-01

    Recently several publications appeared correlating octanol-water partitioning coefficients (KO/W) with solid-phase microextraction (SPME) extraction coefficients on poly(dimethylsiloxane) (PDMS) fibers. This correlation seems very good for medium-polar to polar compounds but cannot explain the

  5. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program

  6. Synthesis of Polydimethylsiloxane-Modified Polyurethane and the Structure and Properties of Its Antifouling Coatings

    Directory of Open Access Journals (Sweden)

    Zhan-Ping Zhang

    2018-04-01

    Full Text Available Polydimethylsiloxane (PDMS could be used to improve the antifouling properties of the fouling release coatings based on polyurethane (PU. A series of polydimethylsiloxane-modified polyurethane coatings were synthesized with various PDMS contents, using the solvent-free method. The effects of PDMS content and seawater immersion on the chain structure and surface morphology were investigated by confocal laser scanning microscopy (CLSM, atomic force microscopy (AFM, Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA and X-ray diffraction (XRD. Based on the measurements of contact angles of deionized water and diiodomethane, surface free energies of the coatings were estimated according to the Owens two-liquid method. The PDMS-modified polyurethane exhibited lower surface free energy and a lower glass transition temperature than polyurethane. The presence of PDMS increased the degree of microphase separation, and enhanced the water resistance of the coatings. The optimum amount of PDMS reduced the elastic modulus and increased the ductility of the coating. The presence of PDMS benefited the removal of weakly attached organisms. Panel tests in the Yellow Sea demonstrated the antifouling activity of the PDMS-modified polyurethane.

  7. Effects of surface modification with hydroxyl terminated polydimethylsiloxane on the corrosion protection of polyurethane coating

    International Nuclear Information System (INIS)

    Jeon, Jae Hong; Shon, Min Young

    2014-01-01

    Polyurethane coating was designed to give a hydrophobic property on its surface by modifying it with hydroxyl terminated polydimethylsiloxane and then effects of surface hydrophobic tendency, water transport behavior and hence corrosion protectiveness of the modified polyurethane coating were examined using FT-IR/ATR spectroscopy, contact angle measurement and electrochemical impedance test. As results, the surface of polyurethane coating was changed from hydrophilic to hydrophobic property due primarily to a phase separation tendency between polyurethane and modifier by the modification. The phase separation tendency is more appreciable when modified by polydimethylsiloxane with higher content. Water transport behavior of the modified polyurethane coating decreased more in that with higher hydrophobic surface property. The decrease in the impedance modulus ⅠZⅠ at low frequency region in immersion test for polyurethane coatings was associated with the water transport behavior and surface hydrophobic properties of modified polyurethane coatings. The corrosion protectiveness of the modified polyurethane coated carbon steel generally increased with an increase in the modifier content, confirming that corrosion protectiveness of the modified polyurethane coating is well agreed with its water transport behavior

  8. The effect of polyether functional polydimethylsiloxane on surface and thermal properties of waterborne polyurethane

    Science.gov (United States)

    Zheng, Guikai; Lu, Ming; Rui, Xiaoping

    2017-03-01

    Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.

  9. Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer.

    Science.gov (United States)

    Liu, Jinzhang; Motta, Nunzio; Lee, Soonil

    2012-01-01

    ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse.

  10. Influence of tip indentation on the adhesive behavior of viscoelastic polydimethylsiloxane networks studied by atomic force microscopy

    NARCIS (Netherlands)

    Pickering, J.P.; Vancso, Gyula J.

    2001-01-01

    A commercial atomic force microscope (AFM) outfitted with a custom control and data acquisition system was used to investigate the adhesive nature of a viscoelastic polydimethylsiloxane (PDMS) network. Due to the complex dependence of the adhesion of this sample on factors such as indentation,

  11. Monolithic growth of partly cured polydimethylsiloxane thin film layers

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2014-01-01

    at different curing times. The monolithic films are investigated by rheology, scanning electron microscope, mechanical testing, dielectric relaxation spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The morphology, mechanical and dielectric properties, as well...... to enable interlayer crosslinking reactions either by application of an adhesion promoter or by ensuring that there are reactive, complementary sites available on the two surfaces. Polydimethylsiloxane (PDMS) is a widely used polymer for DEAPs. In this work, two-layered PDMS films are adhered together...... as thermal stabilities of the bilayer elastomer films are observed to change with the curing time of the monolayers before lamination. The objective of this work is to create adhesion of two layers without destroying the original viscoelastic properties of the PDMS films, and hence enable, for example...

  12. Structural and Antimicrobial Evaluation of Silver Doped Hydroxyapatite-Polydimethylsiloxane Thin Layers

    Directory of Open Access Journals (Sweden)

    S. L. Iconaru

    2017-01-01

    Full Text Available An Ag:HAp (xAg = 0.5 powder was deposited by thermal evaporation technique as coating on a silicon substrate previously covered with a polydimethylsiloxane (PDMS layer. The Ag:HAp-PDMS layers were characterized by Scanning Electron Microscopy (SEM, Energy Dispersive X-ray Spectroscopy (EDS, and Fourier Transform Infrared Spectroscopy (FT-IR. By infrared spectroscopy analysis, the phase composition of the Ag:HAp-PDMS layers was investigated. The antimicrobial activity of Ag:HAp-PDMS layers was tested against Escherichia coli, Staphylococcus aureus, and Candida albicans microbial strains. The microbial activity decreases significantly for the surveyed time intervals on Ag:HAp-PDMS layers.

  13. Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer

    Directory of Open Access Journals (Sweden)

    Jinzhang Liu

    2012-05-01

    Full Text Available ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS, a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse.

  14. Simple surface modification of poly(dimethylsiloxane) for DNA hybridization

    Science.gov (United States)

    Zhou, Jinwen; Voelcker, Nicolas H.; Ellis, Amanda V.

    2010-01-01

    Here, we present a simple chemical modification of poly(dimethylsiloxane) (PDMS) by curing a mixture of 2 wt% undecylenic acid (UDA) in PDMS prepolymer on a gold-coated glass slide. This gold slide had been previously pretreated with a self-assembled hydrophilic monolayer of 3-mercaptopropionic acid (MPA). During curing of the UDA∕PDMS prepolymer, the hydrophilic UDA carboxyl moieties diffuses toward the hydrophilic MPA carboxyl moieties on the gold surface. This diffusion of the UDA within the PDMS prepolymer to the surface is a direct result of surface energy minimization. Once completely cured, the PDMS is peeled off the gold substrate, thereby exposing the interfacial carboxyl groups. These groups are then available for subsequent attachment of 5′-amino terminated DNA oligonucleotides via amide linkages. Our results show that the covalently tethered oligonucleotides can successfully capture fluorescein-labeled complementary oligonucleotides via hybridization, which are visualized using fluorescence microscopy. PMID:21264061

  15. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS

    Directory of Open Access Journals (Sweden)

    Kyeongseob Kim

    2016-04-01

    Full Text Available A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS. To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm to 6.4 cm.

  16. Piezoelectric polydimethylsiloxane films for MEMS transducers

    International Nuclear Information System (INIS)

    Wang, Jhih-Jhe; Hsu, Tsung-Hsing; Yeh, Che-Nan; Tsai, Jui-Wei; Su, Yu-Chuan

    2012-01-01

    We have successfully demonstrated the fabrication of piezoelectric polydimethylsiloxane (PDMS) films utilizing multilayer casting, stacking, surface coating and micro plasma discharge processes. To realize the desired electromechanical sensitivity, cellular PDMS structures with micrometer-sized voids are implanted with bipolar charges on the opposite inner surfaces. The implanted charge pairs function as dipoles, which respond promptly to diverse electromechanical stimulation. In the prototype demonstration, cellular PDMS films with various void geometries are fabricated and internally coated with a thin layer of polytetrafluoroethylene, which can help secure the implanted charges. An electric field up to 35 MV m −1 is applied across the fabricated PDMS films to ionize the air in the voids and to accelerate the resulting bipolar charges to bombard the opposite inner surfaces. The resulting charge-implanted, cellular PDMS films show a low effective elastic modulus (E) of about 500 kPa, and a piezoelectric coefficient (d 33 ) higher than 300 pC N −1 , which is more than ten times higher than those of common piezoelectric polymers (e.g. polyvinylidene fluoride). Furthermore, the piezoelectricity of the PDMS films can be tailored by adjusting the dimensions of the cellular structures. As such, the demonstrated piezoelectric PDMS films could potentially serve as flexible and sensitive electromechanical materials, and fulfill the needs of a variety of sensor and energy harvesting applications. (paper)

  17. Non-silicon substrate bonding mediated by poly(dimethylsiloxane) interfacial coating

    Science.gov (United States)

    Zhang, Hainan; Lee, Nae Yoon

    2015-02-01

    In this paper, we introduce a simple and robust strategy for bonding poly(dimethylsiloxane) (PDMS) with various thermoplastic substrates to fabricate a thermoplastic-based closed microfluidic device and examine the feasibility of using the proposed method for realizing plastic-plastic bonding. The proposed bonding strategy was realized by first coating amine functionality on an oxidized thermoplastic surface. Next, the amine-functionalized surface was reacted with a monolayer of low-molecular-weight PDMS, terminated with epoxy functionality, by forming a robust amine-epoxy bond. Both the PDMS-coated thermoplastic and PDMS were then oxidized and permanently assembled at 25 °C under a pressure of 0.1 MPa for 15 min, resulting in PDMS-like surfaces on all four inner walls of the microchannel. Surface characterizations were conducted, including water contact angle measurement, X-ray photoelectron spectroscopy (XPS), and fluorescence measurement, to confirm the successful coating of the thin PDMS layer on the plastic surface, and the bond strength was analyzed by conducting a peel test, burst test, and leakage test. Using the proposed method, we could successfully bond various thermoplastics such as poly(methylmethacrylate) (PMMA), polycarbonate (PC), polystyrene (PS), and poly(ethylene terephthalate) (PET) with PDMS without the collapse or deformation of the microchannel, and the proposed method was successfully extended to the bonding of two thermoplastics, PMMA, and PC.

  18. Preparation of Glucose Sensor Using Polydimethylsiloxane / Polypyrrole Complex

    Science.gov (United States)

    Yasuzawa, Mikito; Inoue, Shigeru; Imai, Shinji

    New glucose oxidase (GOD) immobilized glucose sensors were prepared by the electropolymerization of 1-(6-D-gluconamidohexyl) pyrrole (GHP) on the platinum wire electrode precoated with the mixture solution of pyrrole derivative GHP, polydimethylsiloxane (PDS) and Nafion. The addition of Nafion into the precoating mixture solution was essential to obtain suitable sensor sensitivity. However, the sensitivity was about the half of that of the electrode without PDS precoating. Although, the introduction of Nafion was effective to improve the long-term stability of the enzyme-immobilized electrode, the electrode prepared using Nafion, PDS and GHP performed excellent long-term stability even at the measurement and storage temperatures of 40°C. Relatively constant response current was obtained over 30 days under the condition of 40°C and over 9 months measured at 25°C. Moreover, the GOD-immobilized GHP polymer film prepared on the electrode precoated with GHP, PDS and Nafion solution, was found to have excellent hemocompatibility from the result of platelet rich plasma contacting test.

  19. Neutron transmission study of the rotacional freedom of methyl groups in polydimethylsiloxane

    International Nuclear Information System (INIS)

    Amaral, L.Q.; Vinhas, L.A.; Herdade, S.B.

    1973-01-01

    The total neutron cross section of polydimethylsiloxane has been measured as a function of neutron wavelenght in the range of 4A to 10A, at room temperature, using a slow-neutron chopper and time-of-flight spectrometer. Scattering cross sections per hydrogen atom were obtained and the slope (12.2 +- 0.2) barns/A has been derived. Comparison with calculated neutron cross sections using the Krieger-Nelkin formalism for different dynamical situations as well as comparison with calibration curves relating the slope to the barrier hindering internal rotation indicates the existence of pratically free rotation of CH 3 groups about their C 3 axis

  20. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    Science.gov (United States)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  1. Filler migration and extensive lesions after lip augmentation: Adverse effects of polydimethylsiloxane filler.

    Science.gov (United States)

    Abtahi-Naeini, Bahareh; Faghihi, Gita; Shahmoradi, Zabihollah; Saffaei, Ali

    2018-01-07

    Polydimethylsiloxane (PDMS), also called liquid silicone, belongs to a group of polymeric compounds that are commonly referred to as silicones. These filling agents have been used as injectable filler for soft tissue augmentation. There are limited experiences about management of the severe complications related to filler migration associated with PDMS injection. We present a 35-year-old female with severe erythema, edema over her cheeks and neck, and multiple irregularities following cosmetic lip augmentation with PDMS. Further studies are required for management of this complicated case of PDMS injection. © 2018 Wiley Periodicals, Inc.

  2. Calculating the permeability coefficients of mixed matrix membranes of polydimethylsiloxane and silicalite crystals to various ethanol-water solutions using molecular simulations.

    Science.gov (United States)

    The permeability coefficients of mixed matrix membranes of polydimethylsiloxane (PDMS) and silicalite crystal are taken as the sum of the permeability coefficients of membrane components each weighted by their associated mass fraction. The permeability coefficient of a membrane c...

  3. AFM-based nanolithography : manipulating poly(dimethylsiloxane) : loading force, scan speed and image resolution dependence on stick-slip outcomes in the slow and fast scan directions

    International Nuclear Information System (INIS)

    Watson, J.A.; Brown, C.L.; Myhra, S.; Watson, G.S.

    2005-01-01

    The various properties of a polymer will affect its functionality in a wide range of applications including biosensors, tissue engineering and biomaterials technology. Some of those require precise manipulation of laterally differentiated regions, currently taking place on the μm-scale. It is now apparent that this need must now be driven into the nm-regime. Using the AFM, the principal objective is to explore and investigate lithographic outcomes during tip-induced manipulation with the aid of work on poly(dimethylsiloxane), (PDMS). The frictional effects (including any in-plane relaxation), and their dependence on the loading force, scan speed and image resolution are examined. (author). 3 refs., 5 figs

  4. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    Science.gov (United States)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  5. Polydimethylsiloxane Injection Laryngoplasty for Unilateral Vocal Fold Paralysis: Long-Term Results.

    Science.gov (United States)

    Mattioli, Francesco; Bettini, Margherita; Botti, Cecilia; Busi, Giulia; Tassi, Sauro; Malagoli, Andrea; Molteni, Gabriele; Trebbi, Marco; Luppi, Maria Pia; Bergamini, Giuseppe; Presutti, Livio

    2017-07-01

    To analyze the long-term objective, perceptive, and subjective outcomes after endoscopic polydimethylsiloxane (PDMS) injection laryngoplasty in unilateral vocal fold paralysis. A retrospective study carried out between January 2008 and January 2012. Head and Neck Department, University Hospital of Modena, Modena, Italy. This was a retrospective analysis of 26 patients with unilateral vocal fold paralysis who underwent endoscopic injection of PDMS under general anesthesia. A voice evaluation protocol was performed for all patients, which included videolaryngostroboscopy, maximum phonation time, fundamental frequency, analysis of the harmonic structure of the vowel /a/ and the word /aiuole/, Grade of Dysphonia, Instability, Roughness, Breathiness, Asthenia, and Strain scale, and Voice Handicap Index. The protocol was performed before surgery, in the immediate postoperative period, and at least 3 years after surgery. The mean follow-up period was 73 months (range 39-119 months). The statistical analysis showed a significant improvement (P injection laryngoplasty with PDMS guarantees long-lasting effects over time. No complications were reported in our series. Injection laryngoplasty with PDMS can be considered to be a minimally invasive and safe technique for the treatment of unilateral vocal fold paralysis. Moreover, it allows very good and stable results to be obtained over time, avoiding repeated treatments and improving the quality of life of the patients. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites

    Science.gov (United States)

    Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen

    2018-06-01

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human–machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.

  7. Shape-Controlled Fabrication of the Polymer-Based Micromotor Based on the Polydimethylsiloxane Template.

    Science.gov (United States)

    Su, Miaoda; Liu, Mei; Liu, Limei; Sun, Yunyu; Li, Mingtong; Wang, Dalei; Zhang, Hui; Dong, Bin

    2015-11-03

    We report the utilization of the polydimethylsiloxane template to construct polymer-based autonomous micromotors with various structures. Solid or hollow micromotors, which consist of polycaprolactone and platinum nanoparticles, can be obtained with controllable sizes and shapes. The resulting micromotor can not only be self-propelled in solution based on the bubble propulsion mechanism in the presence of the hydrogen peroxide fuel, but also exhibit structure-dependent motion behavior. In addition, the micromotors can exhibit various functions, ranging from fluorescence, magnetic control to cargo transportation. Since the current method can be extended to a variety of organic and inorganic materials, we thus believe it may have great potential in the fabrication of different functional micromotors for diverse applications.

  8. Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write

    KAUST Repository

    Lee, Ming-Tsang

    2011-08-12

    In this study we demonstrate a novel approach for the rapid fabricating micro scale metal (silver) patterning directly on a polydimethylsiloxane (PDMS) substrate. Silver nanoparticles were sintered on PDMS to form conductive metal films using laser direct write (LDW) technology. To achieve good metal film quality, a capillarity-assisted laser direct writing (CALDW) of nanoparticle suspensions on a low surface energy material (PDMS) was utilized. Experimental results showed controllable electrical conductivities and good film properties of the sintered silver patterns. This study reveals an advanced method of metal patterning on PDMS, and proposes a new research application of LDW in a nanoparticle colloidal environment. © 2011 IOP Publishing Ltd.

  9. On the morphology and potential application of polydimethylsiloxane-silica-titania composites

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available Polydimethylsiloxane-α,ω-diol was used as matrix for the preparation of polysiloxane-SiO2-TiO2 composites through in situ incorporation of silica and titania using a solvent-free sol-gel procedure. For this purpose, oxide precursors tetraethyl-orthosilicate and tetrabutyl-orthotitanate, and a proper condensation catalyst, viz. dibuthyltin dilaurate, were added in pre-established amounts to the polymer. The hydrolysis and condensation reactions take place under mild conditions, with the formation of silicon and titanium oxide networks and polymer crosslinking. The effect of SiO2 and TiO2 mass ratio on the morphology of the composites was investigated by scanning electron microscopy (SEM and X-rays diffraction (XRD, and interpreted in correlation with differential scanning calorimetry (DSC and energy-dispersive X-ray spectroscopy (EDX data. The film samples were tested as active elements in actuation devices.

  10. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites.

    Science.gov (United States)

    Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen

    2018-06-08

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human-machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.

  11. Magneto-plasmonic study of aligned Ni, Co and Ni/Co multilayer in polydimethylsiloxane as magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, Seyedeh Mehri, E-mail: M_hamidi@sbu.ac.ir [Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Mosaeii, Babak; Afsharnia, Mina [Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Aftabi, Ali [Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Najafi, Mojgan [Department of Materials Engineering, Hamedan University of Technology, Hamedan (Iran, Islamic Republic of)

    2016-11-01

    We report the magneto-optical properties of aligned cobalt, Nickel and nickel/ Cobalt multilayer nanowires embedded in polydimethylsiloxane matrix. The NWs prepared by electrodeposition method in anodic alumina template and then dispersed in ethanol and placed in a heater to evaporate the ethanol and finally dispersed in polydimethylsiloxane matrix to reach to the composite. The used external magnetic field arranges the nanowires and our aligned nanowires were investigated by magneto-optical surface plasmon resonance techniques in two easy and hard axis configurations. Our results show the sufficient sensitivity in magneto-optical surface plasmon resonance of Nickel and cobalt arrays nanowires and because the different modulation mechanism in Ni and Co nanodisks, in Ni/Co multilayer we see the magnetization modulation of the excitation angle in accordance with magnetic field modulation of the SPP wave vector in each nanodisk. Finally, we show that the Ni/Co multilayer aligned nanowires can be used as efficient magnetic field sensor. - Highlights: • The magneto-optical properties of aligned multilayer nanowires has been investigated. • We see the sufficient sensitivity in magneto-optical surface plasmon resonance of Ni and Co nanowires. • The magnetic modulation mechanism in Ni/Co multilayer has been changed by angular modulation. • The magnetization modulation of the excitation angle accompanying the SPP wave vector modulation takes place in each nanodisk of multilayer.

  12. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    International Nuclear Information System (INIS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-01-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μ m and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns. (paper)

  13. Fabrication of Refractive Index Tunable Polydimethylsiloxane Photonic Crystal for Biosensor Application

    Science.gov (United States)

    Raman, Karthik; Murthy, T. R. Srinivasa; Hegde, G. M.

    Photonic crystal based nanostructures are expected to play a significant role in next generation nanophotonic devices. Recent developments in two-dimensional (2D) photonic crystal based devices have created widespread interest as such planar photonic structures are compatible with conventional microelectronic and photonic devices. Various optical components such as waveguides, resonators, modulators and demultiplexers have been designed and fabricated based on 2D photonic crystal geometry. This paper presents the fabrication of refractive index tunable Polydimethylsiloxane (PDMS) polymer based photonic crystals. The advantages of using PDMS are mainly its chemical stability, bio-compatibility and the stack reduces sidewall roughness scattering. The PDMS structure with square lattice was fabricated by using silicon substrate patterned with SU8-2002 resist. The 600 nm period grating of PDMS is then fabricated using Nano-imprinting. In addition, the refractive index of PDMS is modified using certain additive materials. The resulting photonic crystals are suitable for application in photonic integrated circuits and biological applications such as filters, cavities or microlaser waveguides.

  14. A crossed dodecagonal deployable polarizer on textile and polydimethylsiloxane (PDMS) substrates

    Science.gov (United States)

    Mirza, Hidayath; Soh, Ping Jack; Jamlos, Mohd Faizal; Hossain, Toufiq Md; Ramli, Muhammad Nazrin; Al-Hadi, Azremi Abdullah; Sheikh, R. Ahmad; Hassan, Emad S.; Yan, Sen

    2018-02-01

    This paper presents the design of a flexible using two set of flexible material classes: polymer and textiles. ShieldIt Super conductive fabric and felt are used as the textile material, and its performance is compared with another version designed on a polydimethylsiloxane (PDMS) polymeric substrate. They are both built using a 4 × 4 dodecagonal unit element array backed by a rectangular patch, each sized at 54 × 64 × 3.34 mm3 (0.40 λ × 0.34 λ × 0.02λ) and 62 × 52 × 3.34 mm3 (0.35λ × 0.41λ × 0.02 λ). Both of them are validated to be operational centered at 2.2 GHz with a measured conversion efficiency of more than 90% from 1.578 to 2.578 GHz (48.12%) for the textile prototype. The results of the bending investigations suggest that the deployment mechanism must ensure a flat polarizer condition to enable its optimal performance.

  15. Study of carbon nanotubes based Polydimethylsiloxane composite films

    International Nuclear Information System (INIS)

    Shahzad, M I; Giorcelli, M; Shahzad, N; Guastella, S; Castellino, M; Jagdale, P; Tagliaferro, A

    2013-01-01

    Thanks to their remarkable characteristics, carbon nanotubes (CNTs) have fields of applications which are growing every day. Among them, the use of CNTs as filler for polymers is one of the most promising. In this work we report on Polydimethylsiloxane (PDMS) composites with different weight percentages (0.0% to 3.0%) of multiwall carbon nanotubes (MWCNTs) having diameter 10–30 nm and length 20–30 μm. To achieve optimum dispersion of CNTs in PDMS matrix, high speed mechanical stirring and ultrasonication were performed. By using the doctor blade technique, 70 μm thick uniform films were produced on glass. They were subsequently thermally cured and detached from the glass to get flexible and self standing films. The surface morphological study done by FESEM, shows that CNTs are well dispersed in the PDMS. Raman spectroscopy and FTIR were used to investigate the possible structural changes in the polymer composite. To examine the optical behavior UV-VIS spectroscopy was employed in both specular and diffused modes. A linear increase in absorption coefficient is found with the increasing percentage of CNTs while the transmittance decreases exponentially. The results confirm the dependence of optical limiting effect on the quantity of MWCNTs. Based on optical study, MWCNTs/PDMS composite films can be a promising material to extend performances of optical limiters against laser pulses, which is often required in lasing systems.

  16. Fs-laser processing of medical grade polydimethylsiloxane (PDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, P.A., E-mail: paatanas@ie.bas.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Blvd., Sofia 1784 (Bulgaria); Stankova, N.E.; Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Blvd., Sofia 1784 (Bulgaria); Fukata, N. [International Centre for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1Namiki, Tsukuba 305-0044 (Japan); Hirsch, D.; Rauschenbach, B. [Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, D-04318 Leipzig (Germany); Amoruso, S.; Wang, X. [Dipartimento di Fisica Università degli Studi di Napoli Federico II and CNR-SPIN, Complesso Universitario di Monte S.Angelo, Via Cintia, I-80126 Napoli (Italy); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Fs-laser (263, 527 and 1055 nm) processing of PDMS-elastomer is studied. • High quality trenches are produced on the PDMS surface. • The trenches are analyzed by Laser Microscope and by μ-Raman spectrometry. • Selective Ni metallization of the trenches is accomplished via electro-less plating. • The metalized trenches are studied by SEM. - Abstract: Medical grade polydimethylsiloxane (PDMS) elastomer is a biomaterial widely used in medicine and high-tech devices, e.g. MEMS and NEMS. In this work, we report an experimental investigation on femtosecond laser processing of PDMS-elastomer with near infrared (NIR), visible (VIS) and ultraviolet (UV) pulses. High definition trenches are produced by varying processing parameters as laser wavelength, pulse duration, fluence, scanning speed and overlap of the subsequent pulses. The sample surface morphology and chemical composition are investigated by Laser Microscopy, SEM and Raman spectroscopy, addressing the effects of the various processing parameters through comparison with the native materials characteristics. For all the laser pulse wavelengths used, the produced tracks are successfully metalized with Ni via electro-less plating method. We observe a negligible influence of the time interval elapsed between laser treatment and metallization process. Our experimental findings suggest promising perspectives of femtosecond laser pulses in micro- and nano-fabrication of hi-tech PDMS devices.

  17. Novel amphiphilic poly(dimethylsiloxane) based polyurethane networks tethered with carboxybetaine and their combined antibacterial and anti-adhesive property

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jingxian; Fu, Yuchen; Zhang, Qinghua, E-mail: qhzhang@zju.edu.cn; Zhan, Xiaoli; Chen, Fengqiu

    2017-08-01

    Highlights: • An amphiphilic poly(dimethylsiloxane) (PDMS) based polyurethane (PU) network tethered with carboxybetaine is prepared. • The surface distribution of PDMS and zwitterionic segments produces an obvious amphiphilic heterogeneous surface. • This designed PDMS-based amphiphilic PU network exhibits combined antibacterial and anti-adhesive properties. - Abstract: The traditional nonfouling materials are powerless against bacterial cells attachment, while the hydrophobic bactericidal surfaces always suffer from nonspecific protein adsorption and dead bacterial cells accumulation. Here, amphiphilic polyurethane (PU) networks modified with poly(dimethylsiloxane) (PDMS) and cationic carboxybetaine diol through simple crosslinking reaction were developed, which had an antibacterial efficiency of 97.7%. Thereafter, the hydrolysis of carboxybetaine ester into zwitterionic groups brought about anti-adhesive properties against bacteria and proteins. The surface chemical composition and wettability performance of the PU network surfaces were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The surface distribution of PDMS and zwitterionic segments produced an obvious amphiphilic heterogeneous surface, which was demonstrated by atomic force microscopy (AFM). Enzyme-linked immunosorbent assays (ELISA) were used to test the nonspecific protein adsorption behaviors. With the advantages of the transition from excellent bactericidal performance to anti-adhesion and the combination of fouling resistance and fouling release property, the designed PDMS-based amphiphilic PU network shows great application potential in biomedical devices and marine facilities.

  18. Aging effects around the glass and melting transitions in poly(dimethylsiloxane) visualized by resistance measurements [erratum in Applied Physics Letters 85 (16) 3638-3638

    NARCIS (Netherlands)

    Brom, H.B.; Romijn, I.G.; Magis, J.G.; van der Vleuten, M.; Michels, M.A.J.

    2004-01-01

    The aging effects around the glass and melting transitions in poly(dimethylsiloxane) were investigated. Small amounts of carbon-black (CB) particles were dispersed in a fractal network in nonconducting rubbers for monitoring the structural changes on small length scales due to aging. Long time

  19. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    OpenAIRE

    Neus Jornet-Martínez; Pascual Serra-Mora; Yolanda Moliner-Martínez; Rosa Herráez-Hernández; Pilar Campíns-Falcó

    2015-01-01

    In the present work, the performance of carbon nanotubes (c-CNTs) functionalized polydimethylsiloxane (PDMS) based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME) coupled to Capillary LC (CapLC) has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs) and carboxylic-multi walled carbon nanotubes (c-MWNTs) have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS ex...

  20. Molecular weight evaluation of poly-dimethylsiloxane on solid surfaces using silver deposition/TOF-SIMS

    Science.gov (United States)

    Inoue, Masae; Murase, Atsushi

    2004-06-01

    Molecular ions include information about end groups, functional groups and molecular weight. A method for directly detecting this in the high-mass region of the spectrum (>1000 amu) from poly-dimethylsiloxane (PDMS) on a solid surface was investigated. It was found that a TOF-SIMS analysis of silver-deposited surfaces (silver deposition/TOF-SIMS) is useful for this purpose. Two methods for silver deposition, the diode sputtering method and the vacuum evaporation coating method, were tried. The former required the sample to be cooled so as to prevent the damage of the sample surface due to thermal oxidation; the latter caused no damage to sample surfaces at room temperature. Using silver deposition/TOF-SIMS analysis, silver-cationized quasi-molecular ions were clearly detected from PDMS on solid surfaces and their images were observed without the interference of deposited silver. By applying to the analysis of paint defects, etc., it was confirmed that this technique is useful to analyze practical industrial materials. Silver-cationized ions were detected not only from PDMS, but also from other organic materials, such as some kinds of lubricant additives and fluorine oils on solid surfaces. Therefore, silver deposition/TOF-SIMS was proved to be useful for the analysis of thin substances on solid surfaces.

  1. Poly(dimethylsiloxane) coatings for controlled drug release--polymer modifications.

    Science.gov (United States)

    Schulze Nahrup, J; Gao, Z M; Mark, J E; Sakr, A

    2004-02-11

    Modifications of endhydroxylated poly(dimethylsiloxane) (PDMS) formulations were studied for their ability to be applied onto tablet cores in a spray-coating process and to control drug release in zero-order fashion. Modifications of the crosslinker from the most commonly used tetraethylorthosilicate (TEOS) to the trifunctional 3-(2,3-epoxypropoxy)propyltrimethoxysilane (SIG) and a 1:1 mixture of the two were undertaken. Addition of methylpolysiloxane-copolymers were studied. Lactose, microcrystalline cellulose (MCC) and polyethylene glycol 8000 (PEG) were the channeling agents applied. The effects on dispersion properties were characterized by particle size distribution and viscosity. Mechanical properties of resulting free films were studied to determine applicability in a pan-coating process. Release of hydrochlorothiazide (marker drug) was studied from tablets coated in a lab-size conventional coating pan. All dispersions were found suitable for a spray-coating process. Preparation of free films showed that copolymer addition was not possible due to great decline in mechanical properties. Tablets coated with formulations containing PEG were most suitable to control drug release, at only 5% coating weight. Constant release rates could be achieved for formulations with up to 25% PEG; higher amounts resulted in a non-linear release pattern. Upon adding 50% PEG, a drug release of 63% over 24 h could be achieved.

  2. Fouling Release Coatings Based on Polydimethylsiloxane with the Incorporation of Phenylmethylsilicone Oil

    Directory of Open Access Journals (Sweden)

    Miao Ba

    2018-04-01

    Full Text Available In this study, phenylmethylsilicone oil (PSO with different viscosity was used for research in fouling release coatings based on polydimethylsiloxane (PDMS. The surface properties and mechanical properties of the coatings were investigated, while the leaching behavior of PSO from the coatings was studied. Subsequently, the antifouling performance of the coatings was investigated by the benthic diatom adhesion test. The results showed that the coatings with high-viscosity PSO exhibited high levels of hydrophobicity and PSO leaching, while the high PSO content significantly decreased the elastic modulus of the coatings and prolonged the release time of PSO. The antifouling results indicated that the incorporation of PSO into coatings enhanced the antifouling performance of the coating by improving the coating hydrophobicity and decreasing the coating elastic modulus, while the leaching of PSO from the coatings improved the fouling removal rate of the coating. This suggests a double enhancement effect on the antifouling performance of fouling release coatings based on PDMS with PSO incorporated.

  3. The influence of polydimethylsiloxane curing ratio on capillary pressure in microfluidic devices

    International Nuclear Information System (INIS)

    Viola, Ilenia; Zacheo, Antonella; Arima, Valentina; Aricò, Antonino S.; Cortese, Barbara; Manca, Michele; Zocco, Anna; Taurino, Antonietta; Rinaldi, Ross

    2012-01-01

    Investigations on surface properties of poly(dimethylsiloxane) (PDMS) are justified by its large application ranges especially as coating polymer in fluidic devices. At a micrometer scale, the liquid dynamics is strongly modified by interactions with a solid surface. A crucial parameter for this process is microchannel wettability that can be tuned by acting on surface chemistry and topography. In literature, a number of multi-step, time and cost consuming chemical and physical procedures are reported. Here we selectively modify both wetting and mechanical properties by a single step treatment. Changes of PDMS surface were investigated by X-ray photoelectron spectroscopy and atomic force microscopy and the effects of interface properties on the liquid displacement inside a microfluidic system were evaluated. The negative capillary pressure obtained tailoring the PDMS wettability is believed to be promising to accurately control sample leakage inside integrated lab-on-chip by acting on the liquid confinement and thus to reduce the sample volume, liquid drying as well as cross-contamination during the operation.

  4. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    Science.gov (United States)

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  5. Influence of crosslinking process on the mechanical behavior of Poly(Dimethylsiloxane) (PDMS)

    International Nuclear Information System (INIS)

    Fernandes, Barbara Monteiro Pessoa; Weber, Ricardo Ponde; Elzubair, Amal; Suarez, Joao Carlos Miguez

    2010-01-01

    In the present work was studied the influence of the crosslinking process on the mechanical behavior of a composite with a poly(dimethylsiloxane) (PDMS) matrix filled with inorganic particles, used as dental impression material. The material was crosslinked chemically and by exposition to 400kGy gamma radiation dose. The material properties, before and after crosslinking, were analyzed through physical chemical and mechanical tests and microscopic exam. The results showed that the gamma irradiation, as compared to chemical cure process, produced higher degree of crosslinking, better wettability, adjusted hardness and low fragility. However, the microscopic exam showed that the gamma irradiated PDMS presents, as compared with the chemical cure, a greater number of defaults which resulted from the large concentration of released gases. The results allowed us to conclude that gamma irradiation is an adequate process to crosslink the studied PDMS composite, since we can reduce the quantity of gases formed in this process. (author)

  6. Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm.

    Science.gov (United States)

    Casillo, Angela; Papa, Rosanna; Ricciardelli, Annarita; Sannino, Filomena; Ziaco, Marcello; Tilotta, Marco; Selan, Laura; Marino, Gennaro; Corsaro, Maria M; Tutino, Maria L; Artini, Marco; Parrilli, Ermenegilda

    2017-01-01

    Staphylococcus epidermidis is a harmless human skin colonizer responsible for ~20% of orthopedic device-related infections due to its capability to form biofilm. Nowadays there is an interest in the development of anti-biofilm molecules. Marine bacteria represent a still underexploited source of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. Previous results have demonstrated that the culture supernatant of Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 impairs the formation of S. epidermidis biofilm. Further, evidence supports the hydrophobic nature of the active molecule, which has been suggested to act as a signal molecule. In this paper we describe an efficient activity-guided purification protocol which allowed us to purify this anti-biofilm molecule and structurally characterize it by NMR and mass spectrometry analyses. Our results demonstrate that the anti-biofilm molecule is pentadecanal, a long-chain fatty aldehyde, whose anti- S. epidermidis biofilm activity has been assessed using both static and dynamic biofilm assays. The specificity of its action on S. epidermidis biofilm has been demonstrated by testing chemical analogs of pentadecanal differing either in the length of the aliphatic chain or in their functional group properties. Further, indications of the mode of action of pentadecanal have been collected by studying the bioluminescence of a Vibrio harveyi reporter strain for the detection of autoinducer AI-2 like activities. The data collected suggest that pentadecanal acts as an AI-2 signal. Moreover, the aldehyde metabolic role and synthesis in the Antarctic source strain has been investigated. To the best of our knowledge, this is the first report on the identification of an anti-biofilm molecule form from cold-adapted bacteria and on the action of a long-chain fatty aldehyde acting as an anti-biofilm molecule against S. epidermidis .

  7. Polydimethylsiloxane-air partition ratios for semi-volatile organic compounds by GC-based measurement and COSMO-RS estimation: Rapid measurements and accurate modelling.

    Science.gov (United States)

    Okeme, Joseph O; Parnis, J Mark; Poole, Justen; Diamond, Miriam L; Jantunen, Liisa M

    2016-08-01

    Polydimethylsiloxane (PDMS) shows promise for use as a passive air sampler (PAS) for semi-volatile organic compounds (SVOCs). To use PDMS as a PAS, knowledge of its chemical-specific partitioning behaviour and time to equilibrium is needed. Here we report on the effectiveness of two approaches for estimating the partitioning properties of polydimethylsiloxane (PDMS), values of PDMS-to-air partition ratios or coefficients (KPDMS-Air), and time to equilibrium of a range of SVOCs. Measured values of KPDMS-Air, Exp' at 25 °C obtained using the gas chromatography retention method (GC-RT) were compared with estimates from a poly-parameter free energy relationship (pp-FLER) and a COSMO-RS oligomer-based model. Target SVOCs included novel flame retardants (NFRs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), organophosphate flame retardants (OPFRs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Significant positive relationships were found between log KPDMS-Air, Exp' and estimates made using the pp-FLER model (log KPDMS-Air, pp-LFER) and the COSMOtherm program (log KPDMS-Air, COSMOtherm). The discrepancy and bias between measured and predicted values were much higher for COSMO-RS than the pp-LFER model, indicating the anticipated better performance of the pp-LFER model than COSMO-RS. Calculations made using measured KPDMS-Air, Exp' values show that a PDMS PAS of 0.1 cm thickness will reach 25% of its equilibrium capacity in ∼1 day for alpha-hexachlorocyclohexane (α-HCH) to ∼ 500 years for tris (4-tert-butylphenyl) phosphate (TTBPP), which brackets the volatility range of all compounds tested. The results presented show the utility of GC-RT method for rapid and precise measurements of KPDMS-Air. Copyright © 2016. Published by Elsevier Ltd.

  8. Surface Tension Flows inside Surfactant-Added Poly(dimethylsiloxane Microstructures with Velocity-Dependent Contact Angles

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-03-01

    Full Text Available Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 mold. During the filling, the motion of the gas-liquid interface is determined by the competition among inertia, adhesion, and surface tension. A single ramp model with velocity-dependent contact angles is implemented for the accurate calculation of surface tension forces in a three-dimensional volume-of-fluid based model. The effects of the parameters of this functional form are investigated. The influences of non-dimensional parameters, such as the Reynolds number and the Weber number, both determined by the inlet velocity, on the flow characteristics are also examined. An oxygen-plasma-treated PDMS substrate is utilized, and the microstructure is modified to be hydrophilic. Flow experiments are conducted into both hydrophilic and hydrophobic PDMS microstructures. Under a hydrophobic wall condition, numerical simulations with imposed boundary conditions of static and dynamic contact angles can successfully predict the moving of the meniscus compared with experimental measurements. However, for a hydrophilic wall, accurate agreement between numerical and experimental results is obvious as the dynamic contact angles were implemented.

  9. Molecular weight changes induced in an anionic polydimethylsiloxane by gamma irradiation in vacuum

    International Nuclear Information System (INIS)

    Satti, Angel J.; Andreucetti, Noemi A.; Ciolino, Andres E.; Vitale, Cristian; Sarmoria, Claudia; Valles, Enrique M.

    2010-01-01

    An anionic almost monodisperse linear polydimethylsiloxane (PDMS) was subjected to gamma irradiation under vacuum at room temperature. The molecular weight changes induced by the radiation process have been investigated using size exclusion chromatography (SEC) with refraction index (RI) and multi angle laser light scattering (MALLS) detectors, to obtain the number and weight average molecular weights of the irradiated samples. The analysis of the data indicates that crosslinking reactions predominated over scission reactions. The results obtained by an SEC-RI have confirmed the presence of small, but measurable amounts of scission. A previously developed mathematical model of the irradiation process that accounts for simultaneous scission and crosslinking and allows for both H- and Y-crosslinks, fitted well the measured molecular weight data. This prediction is in accordance with the experimental data obtained by 29 Si-Nuclear Magnetic Resonance spectroscopy (NMR) and previously reported data for commercial linear PDMS ().

  10. Nanoscopic properties of silica filled polydimethylsiloxane by means of positron annihilation lifetime spectroscopy

    DEFF Research Database (Denmark)

    Wiinberg, P.; Eldrup, Morten Mostgaard; Maurer, F.H.J.

    2004-01-01

    and the positron annihilation characteristics. The glass transition behavior of the PDMS/SiO2 composites was determined with differential scanning calorimetry. A clear influence on the o-Ps lifetime (73) in the polymer upon addition of nano-sized fumed SiO2 was observed at all temperatures. The observed o......Positron annihilation lifetime spectroscopy (PALS) was performed on a series of polydimethylsiloxane (PDMS)/fumed silicon dioxide (SiO2) composites at temperatures between -185 and 100degreesC to study the effect of filler content and filler particle size on the free volume properties...... to the behavior of ordinary molecular liquids was observed in this temperature region. The o-Ps yield was strongly reduced in the crystallization region and by addition Of SiO2. The reduction due to filler addition did, however, in the case of nano-sized SiO2 not follow a linear relationship with filler weight...

  11. Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells.

    Science.gov (United States)

    Xia, Juan; Zhou, Junyu; Zhang, Ronggui; Jiang, Dechen; Jiang, Depeng

    2018-06-04

    In this communication, a gold-coated polydimethylsiloxane (PDMS) chip with cell-sized microwells was prepared through a stamping and spraying process that was applied directly for high-throughput electrochemiluminescence (ECL) analysis of intracellular glucose at single cells. As compared with the previous multiple-step fabrication of photoresist-based microwells on the electrode, the preparation process is simple and offers fresh electrode surface for higher luminescence intensity. More luminescence intensity was recorded from cell-retained microwells than that at the planar region among the microwells that was correlated with the content of intracellular glucose. The successful monitoring of intracellular glucose at single cells using this PDMS chip will provide an alternative strategy for high-throughput single-cell analysis. Graphical abstract ᅟ.

  12. Preparation and Characterization of Polyurethane-Polydimethylsiloxane/Polyamide12-b-Polytetramethylene Glycol Blend Membranes for Gas Separation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Semsarzadeh*

    2013-07-01

    Full Text Available Blend membranes of synthesized polyurethane based on toluene diisocyanate (TDI, polydimethylsiloxane (PDMS and polytetramethylene glycol (PTMG with polyamide12-b-PTMG were prepared by solution casting technique. The synthesized polyurethane-polydimethylsiloxane and PU-PDMS/polyamide12-b-PTMG blend membranes were characterized by Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC and scanning electron microscopy (SEM. In the FTIR spectrum of the synthesized PU-PDMS, the disappearance of NCO stretching vibration at 2270 cm−1 was used to confirm the completion of the reaction. According to our DSC results, the use of higher polyamide12-b-PTMG content in PU-PDMS/polyamide12-b-PTMG blends led to greater compatibility between the two phases. The SEM images showed that the blends with polyamide12-b-PTMG (20 wt% were significantly more homogeneous in the micrometric scale compared to other samples. Gas transport properties have been determined for N2, CO2 and He gases and the obtained permeability values were correlated with the properties of the blends. The comparison of the results with that of the pure PU-PDMS membrane showed that the blend membranes had a higher permeability toward CO2 and lower toward N2 gas. The blend membrane with 20 wt% polyamide12-b-PTMG showed higher CO2 permeability (≈105 Barrer compared to PU-PDMS membrane. By introduction of polyamide12-b-PTMG into PU-PDMS matrix a perceptible rise in helium ideal selectivity of the blend membranes was observed. In blend membranes with 5-20 wt% polyamide12-b-PTMG contents, an enhancement of CO2/N2 (244%, He/N2 (20% and CO2/He (103% selectivity factor was observed. The experimental permeability values of the blend membranes were compared with the calculated permeability based on a modified additive logarithmic model.

  13. Increased Surface Roughness in Polydimethylsiloxane Films by Physical and Chemical Methods

    Directory of Open Access Journals (Sweden)

    Jorge Nicolás Cabrera

    2017-08-01

    Full Text Available Two methods, the first physical and the other chemical, were investigated to modify the surface roughness of polydimethylsiloxane (PDMS films. The physical method consisted of dispersing multi-walled carbon nanotubes (MWCNTs and magnetic cobalt ferrites (CoFe2O4 prior to thermal cross-linking, and curing the composite system in the presence of a uniform magnetic field H. The chemical method was based on exposing the films to bromine vapours and then UV-irradiating. The characterizing techniques included scanning electron microscopy (SEM, energy-dispersive spectroscopy (EDS, Fourier transform infrared (FTIR spectroscopy, optical microscopy, atomic force microscopy (AFM and magnetic force microscopy (MFM. The surface roughness was quantitatively analyzed by AFM. In the physical method, the random dispersion of MWCNTs (1% w/w and magnetic nanoparticles (2% w/w generated a roughness increase of about 200% (with respect to PDMS films without any treatment, but that change was 400% for films cured in the presence of H perpendicular to the surface. SEM, AFM and MFM showed that the magnetic particles always remained attached to the carbon nanotubes, and the effect on the roughness was interpreted as being due to a rupture of dispersion randomness and a possible induction of structuring in the direction of H. In the chemical method, the increase in roughness was even greater (1000%. Wells were generated with surface areas that were close to 100 μm2 and depths of up to 500 nm. The observations of AFM images and FTIR spectra were in agreement with the hypothesis of etching by Br radicals generated by UV on the polymer chains. Both methods induced important changes in the surface roughness (the chemical method generated the greatest changes due to the formation of surface wells, which are of great importance in superficial technological processes.

  14. Polydimethylsiloxane (PDMS) modulates CD38 expression, absorbs retinoic acid and may perturb retinoid signalling.

    Science.gov (United States)

    Futrega, Kathryn; Yu, Jianshi; Jones, Jace W; Kane, Maureen A; Lott, William B; Atkinson, Kerry; Doran, Michael R

    2016-04-21

    Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34(+) cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34(+) haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34(+) cells.

  15. Plasma based Ar+ beam assisted poly(dimethylsiloxane) surface modification

    International Nuclear Information System (INIS)

    Vladkova, T.G.; Keranov, I.L.; Dineff, P.D.; Youroukov, S.Y.; Avramova, I.A.; Krasteva, N.; Altankov, G.P.

    2005-01-01

    Plasma based Ar + beam performed in RF (13.56 MHz) low-pressure (200 mTorr) glow discharge (at 100 W, 1200 W and 2500 W) with a serial capacitance was employed for surface modification of poly(dimethylsiloxane) (PDMS) aimed at improvement of its interactions with living cells. The presence of a serial capacitance ensures arise of an ion-flow inside the plasma volume directed toward the treated sample and the vary of the discharge power ensures varied density of the ion-flow. XPS analysis was performed to study the changes in the surface chemical composition of the modified samples and the corresponding changes in the surface energy were monitored by contact angle measurements. We found that plasma based Ar + beam transforms the initially hydrophobic PDMS surface into a hydrophilic one mainly due to a raising of the polar component of the surface tension, this effect being most probably due to an enrichment of the modified surface layer with permanent dipoles of a [SiO x ]-based network and elimination of the original methyl groups. The initial adhesion of human fibroblast cells was studied on the described above plasma based Ar + beam modified and acrylic acid (AA) grafted or not fibronectin (FN) pre-coated or bare surfaces. The cell response seems to be related with the peculiar structure and wettability of the modified PDMS surface layer after plasma based Ar + beam treatment followed or not by AA grafting

  16. Enhanced physicochemical properties of polydimethylsiloxane based microfluidic devices and thin films by incorporating synthetic micro-diamond.

    Science.gov (United States)

    Waheed, Sidra; Cabot, Joan M; Macdonald, Niall P; Kalsoom, Umme; Farajikhah, Syamak; Innis, Peter C; Nesterenko, Pavel N; Lewis, Trevor W; Breadmore, Michael C; Paull, Brett

    2017-11-08

    Synthetic micro-diamond-polydimethylsiloxane (PDMS) composite microfluidic chips and thin films were produced using indirect 3D printing and spin coating fabrication techniques. Microfluidic chips containing up to 60 wt% micro-diamond were successfully cast and bonded. Physicochemical properties, including the dispersion pattern, hydrophobicity, chemical structure, elasticity and thermal characteristics of both chip and films were investigated. Scanning electron microscopy indicated that the micro-diamond particles were embedded and interconnected within the bulk material of the cast microfluidic chip, whereas in the case of thin films their increased presence at the polymer surface resulted in a reduced hydrophobicity of the composite. The elastic modulus increased from 1.28 for a PDMS control, to 4.42 MPa for the 60 wt% composite, along with a three-fold increase in thermal conductivity, from 0.15 to 0.45 W m -1 K -1 . Within the fluidic chips, micro-diamond incorporation enhanced heat dissipation by efficient transfer of heat from within the channels to the surrounding substrate. At a flow rate of 1000 μL/min, the gradient achieved for the 60 wt% composite chip equalled a 9.8 °C drop across a 3 cm long channel, more than twice that observed with the PDMS control chip.

  17. Incorporation of polydimethylsiloxane with reduced graphene oxide and zinc oxide for tensile and electrical properties

    Science.gov (United States)

    Danial, N. S.; Ramli, Muhammad. M.; Halin, D. S. C.; Hong, H. C.; Isa, S. Salwa M.; Abdullah, M. M. A. B.; Anhar, N. A. M.; Talip, L. F. A.; Mazlan, N. S.

    2017-09-01

    Polydimethylsiloxane (PDMS) is an organosilicon polymer that is commonly used to incorporate with other fillers. PDMS in high viscous liquid form is mechanically stirred with reduced graphene oxide (rGO) and mixed with zinc oxide (ZnO) with specific ratio, thus rendering into two types of samples. The mechanical and electrical properties of both samples are characterized. The result shows that PDMS sample with 50 mg rGO has the highest tensile strength with the value of 9.1 MPa. For electrical properties, sample with the lowest resistance is PDMS with 50 mg rGO and ZnO with the value of l.67×l05 Ω. This experiment shows the significant role of conductive fillers like rGO and ZnO incorporated in polymeric material such as PDMS to improve its electrical properties.

  18. ZnO nanorod array polydimethylsiloxane composite solid phase micro-extraction fiber coating: fabrication and extraction capability.

    Science.gov (United States)

    Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan

    2012-01-21

    ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.

  19. Magnetic nanoparticles modified with polydimethylsiloxane and multi-walled carbon nanotubes for solid-phase extraction of fluoroquinolones

    International Nuclear Information System (INIS)

    Xu, S.; Jiang, C.; Lin, Y.; Jia, L.

    2012-01-01

    We have surface-functionalized magnetic particles (MPs) with polydimethylsiloxane and multi-walled carbon nanotubes in a two-step reaction. The MPs were applied to solid-phase extraction of the fluoroquinolones ofloxacin, norfloxacin, ciprofloxacin, enrofloxacin prior to their determination by capillary liquid chromatography. The effects of sample pH, adsorption time, type of eluent, desorption time and desorption temperature were investigated. Under the optimum conditions, the extraction efficiencies are in the range from 81.5 % to 94.1 %, with relative standard deviations (RSDs) of -1 . The method was applied to the analysis of spiked mineral water and honey. The recoveries for the fluoroquinolones in the real samples range from 84.0 % to 112 %, with RSDs ranging from 2.9 % to 7.8 %. (author)

  20. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.

    Science.gov (United States)

    Halldorsson, Skarphedinn; Lucumi, Edinson; Gómez-Sjöberg, Rafael; Fleming, Ronan M T

    2015-01-15

    Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Surface modification of poly(dimethylsiloxane) for controlling biological cells' adhesion using a scanning radical microjet

    International Nuclear Information System (INIS)

    Tan, Helen M.L.; Fukuda, H.; Akagi, T.; Ichiki, T.

    2007-01-01

    A scanning radical microjet (SRMJ) equipment using oxygen microplasma has been developed and successfully applied for controlling biological cells' attachment on biocompatible polymer material, poly(dimethylsiloxane) (PDMS). The radical microjet has advantages in localized and high-rate surface treatment. Moreover, maskless hydrophilic patterning using SRMJ has been demonstrated to be applicable to patterned cell cultivation which is useful in emerging biotechnological field such as tissue engineering and cell-based biosensors. Since control of PDMS surface properties is an indispensable prerequisite for cells' attachment, effects of oxygen flow rates and treatment time on localized hydrophilic patterning of PDMS surfaces were first investigated for controlling HeLa cells' (human epitheloid carcinoma cell line) attachment. Relationships between surface conditions of treated PDMS films and attached cell density are also discussed based on surface properties analyzed using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS)

  2. Conformation of cyclic and linear polydimethylsiloxane in the melt a small-angle neutron-scattering study

    CERN Document Server

    Gagliardi, S; Dagger, A; Semlyen, A J

    2002-01-01

    In this study we report small-angle neutron-scattering measurements of cyclic and linear polydimethylsiloxane (PDMS) in the melt. It has been suggested that due to the presence of topological constraints, rings in the melt may be more compact than Gaussian chains. We show that the cyclic chains are partially collapsed and do not follow Gaussian statistics: the weight-average radius of gyration R sub g sub , sub w is found to be proportional to M sub w sup 0 sup . sup 5 sup 3 and M sub w sup 0 sup . sup 4 sup 0 in the case of linear and cyclic PDMS, respectively. The results are in agreement with recent computer simulations, which predict R sub g to be proportional to N sup 2 sup / sup 5 , where N is the degree of polymerisation. (orig.)

  3. Texture Analysis of Hydrophobic Polycarbonate and Polydimethylsiloxane Surfaces via Persistent Homology

    Directory of Open Access Journals (Sweden)

    Ali Nabi Duman

    2017-09-01

    Full Text Available Due to recent climate change-triggered, regular dust storms in the Middle East, dust mitigation has become the critical issue for solar energy harvesting devices. One of the methods to minimize and prevent dust adhesion and create self-cleaning abilities is to generate hydrophobic characteristics on surfaces. The purpose of this study is to explore the topological features of hydrophobic surfaces. We use non-standard techniques from topological data analysis to extract morphological features from the AFM images. Our method recovers most of the previous qualitative observations in a robust and quantitative way. Persistence diagrams, which is a summary of topological structures, witness quantitatively that the crystallized polycarbonate (PC surface possesses spherulites, voids, and fibrils, and the texture height and spherulite concentration increases with the increased immersion period. The approach also shows that the polydimethylsiloxane (PDMS exactly copied the structures at the PC surface but 80 to 90 percent of the nanofibrils were not copied at PDMS surface. We next extract a feature vector from each persistence diagram to show which experiments hold features with similar variance using principal component analysis (PCA. The K-means clustering algorithm is applied to the matrix of feature vectors to support the PCA result, grouping experiments with similar features.

  4. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  5. A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications

    International Nuclear Information System (INIS)

    Liu, Xinchuan; Zhu, Yihao; Nomani, Md W; Koley, Goutam; Wen, Xuejun; Hsia, Tain-Yen

    2013-01-01

    We report on the fabrication and characterization of a highly sensitive pressure sensor using a Au film patterned on a polydimethylsiloxane (PDMS) membrane. The strain-induced change in the film resistance was utilized to perform the quantitative measurement of absolute pressure. The highest sensitivity obtained for a 200 µm thick PDMS film sensor was 0.23/KPa with a range of 50 mm Hg, which is the best result reported so far, over that range, for any pressure sensor on a flexible membrane. The noise-limited pressure resolution was found to be 0.9 Pa (0.007 mm Hg), and a response time of ∼200 ms, are the best reported results for these sensors. The ultrahigh sensitivity is attributed to the strain-induced formation of microcracks, the effect of which on the resistance change was found to be highly reversible within a certain pressure range. A physical model correlating the sensitivity with the sensor parameters and crack geometry has been proposed. (paper)

  6. Fabrication of poly (lactic-co-glycolic acid) microcontainers using solvent evaporation with polydimethylsiloxane stencil

    Science.gov (United States)

    Kim, Chul Min; Byul Lee, Han; Kim, Jong Uk; Kim, Gyu Man

    2017-12-01

    We present a fabrication method using polydimethylsiloxane (PDMS) stencils and solvent evaporation to prepare microcontainers with a desired shape made from a biodegradable polymer. Poly(lactic-co-glycolic acid) (PLGA) was used for preparing microcontainers, but most polymers are applicable in the proposed method in which solvent evaporation is used to construct microstructures in confined spaces in the stencil. Microcontainers with various shapes were fabricated by controlling the stencil geometry. Furthermore, a porous structure could be prepared in a micromembrane using water porogen. The porous structure was observed using a field emission scanning electron microscope and mass transfer across the porous membrane was examined using a fluorescent dye. The flexibility of the PDMS stencil allowed the fabrication of microcontainers on a curved surface. Finally, it was demonstrated that microcontainers can be used to contain a localized cell culture. The viability and morphology of cultured cells were observed using confocal microscopy over a period of 3 weeks.

  7. Fabrication and Application of Iron(III-Oxide Nanoparticle/Polydimethylsiloxane Composite Cone in Microfluidic Channels

    Directory of Open Access Journals (Sweden)

    Cheng-Chun Huang

    2012-01-01

    Full Text Available This paper presented the fabrication and applications of an iron(III-oxide nanoparticle/polydimethylsiloxane (PDMS cone as a component integrated in lab on a chip. The two main functions of this component were to capture magnetic microbeads in the microfluid and to mix two laminar fluids by generating disturbance. The iron(III-oxide nanoparticle/PDMS cone was fabricated by automatic dispensing and magnetic shaping. Three consecutive cones of 300 μm in height were asymmetrically placed along a microchannel of 2 mm in width and 1.1 mm in height. Flow passing the cones was effectively redistributed for Renolds number lower than . Streptavidin-coated magnetic microbeads which were bound with biotin were successfully captured by the composite cones as inspected under fluorescence microscope. The process parameters for fabricating the composite cones were investigated. The fabricated cone in the microchannel could be applied in lab on a chip for bioassay in the future.

  8. A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane).

    Science.gov (United States)

    Burke, Jeffrey M; Smela, Elisabeth

    2012-03-01

    A new method of surface modification is described for enabling the in situ formation of homogenous porous polymer monoliths (PPMs) within poly(dimethylsiloxane) (PDMS) microfluidic channels that uses 365 nm UV illumination for polymerization. Porous polymer monolith formation in PDMS can be challenging because PDMS readily absorbs the monomers and solvents, changing the final monolith morphology, and because PDMS absorbs oxygen, which inhibits free-radical polymerization. The new approach is based on sequentially absorbing a non-hydrogen-abstracting photoinitiator and the monomers methyl methacrylate and ethylene diacrylate within the walls of the microchannel, and then polymerizing the surface treatment polymer within the PDMS, entangled with it but not covalently bound. Four different monolith compositions were tested, all of which yielded monoliths that were securely anchored and could withstand pressures exceeding the bonding strength of PDMS (40 psi) without dislodging. One was a recipe that was optimized to give a larger average pore size, required for low back pressure. This monolith was used to concentrate and subsequently mechanical lyse B lymphocytes.

  9. The fabrication and performance of a poly(dimethylsiloxane) (PDMS)-based microreformer for application to electronics

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Won [Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Hyuck Jang, Jae; Hyoung Gil, Jae; Kim, Sung-Han [Micro-Fuel Cell Team, Electro-Material and Device Laboratory, Central R and D Institute, Samsung Electro-Mechanics, Maetan 3-Dong, Yeoungtong-Gu, Suwon 442-838 (Korea)

    2008-04-15

    A miniaturized poly(dimethylsiloxane) (PDMS)-based methanol steam reformer having a serpentine microchannel for application in a proton exchange membrane fuel cell (PEMFC) has been developed. The fabricated PDMS microreformer consists of four layers, and a commercial thin-flexible heater for reforming reaction is embedded in the PDMS layers. The volume of a PDMS microreformer is about 10cm{sup 3}. The commercial Cu/ZnO/Al{sub 2}O{sub 3} reforming catalyst was used and the Cu/ZnO/Al{sub 2}O{sub 3} reforming catalyst particles of mean diameter 50-70{mu} m was packed into the microchannels by fluidized method. In this study, the miniaturized PDMS microreformer was operated successfully in the operating temperatures of 180-240 C and 30-40% molar methanol conversion was achieved in the temperature range for the feed rate of 10 and 50{mu} l-{sup -1}. (author)

  10. Polydimethylsiloxane films doped with NdFeB powder: magnetic characterization and potential applications in biomedical engineering and microrobotics.

    Science.gov (United States)

    Iacovacci, V; Lucarini, G; Innocenti, C; Comisso, N; Dario, P; Ricotti, L; Menciassi, A

    2015-12-01

    This work reports the fabrication, magnetic characterization and controlled navigation of film-shaped microrobots consisting of a polydimethylsiloxane-NdFeB powder composite material. The fabrication process relies on spin-coating deposition, powder orientation and permanent magnetization. Films with different powder concentrations (10 %, 30 %, 50 % and 70 % w/w) were fabricated and characterized in terms of magnetic properties and magnetic navigation performances (by exploiting an electromagnet-based platform). Standardized data are provided, thus enabling the exploitation of these composite materials in a wide range of applications, from MEMS/microrobot development to biomedical systems. Finally, the possibility to microfabricate free-standing polymeric structures and the biocompatibility of the proposed composite materials is demonstrated.

  11. Poly-dimethylsiloxane (PDMS) based micro-reactors for steam reforming of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Won; Kundu, Arunabha; Jang, Jae Hyuk

    2010-11-15

    A miniaturized methanol steam reformer with a serpentine type of micro-channels was developed based on poly-dimethylsiloxane (PDMS) material. This way of fabricating micro-hydrogen generator is very simple and inexpensive. The volume of a PDMS micro-reformer is less than 10 cm{sup 3}. The catalyst used was a commercial Cu/ZnO/Al{sub 2}O{sub 3} reforming catalyst from Johnson Matthey. The Cu/ZnO/Al{sub 2}O{sub 3} reforming catalyst particles of mean diameter 50-70 {mu}m was packed into the micro-channels by injecting water based suspension of catalyst particles at the inlet point. The miniaturized PDMS micro-reformer was operated successfully in the operating temperatures of 180-240 C and 15%-75% molar methanol conversion was achieved in this temperature range for WHSV of 2.1-4.2 h{sup -1}. It was not possible to operate the micro-reformer made by pure PDMS at temperature beyond 240 C. Hybrid type of micro-reformer was fabricated by mixing PDMS and silica powder which allowed the operating temperature around 300 C. The complete conversion (99.5%) of methanol was achieved at 280 C in this case. The maximum reformate gas flow rate was 30 ml/min which can produce 1 W power at 0.6 V assuming hydrogen utilization of 60%. (author)

  12. Polydimethylsiloxane: a new contrast material for localization of occult breast lesions

    International Nuclear Information System (INIS)

    Vitral, Geraldo Sérgio Farinazzo; Raposo, Nádia Rezende Barbosa

    2011-01-01

    The radioguided localization of occult breast lesions (ROLL) technique often utilizes iodinated radiographic contrast to assure that the local injection of 99m Tc-MAA corresponds to the location of the lesion under investigation. However, for this application, this contrast has several shortcomings. The objective of this study was to evaluate the safety, effectiveness and technical feasibility of the use of polydimethylsiloxane (PDMS) as radiological contrast and tissue marker in ROLL. The safety assessment was performed by the acute toxicity study in Wistar rats (n = 50). The radiological analysis of breast tissue (n = 32) from patients undergoing reductive mammoplasty was used to verify the effectiveness of PDMS as contrast media. The technical feasibility was evaluated through the scintigraphic and histologic analysis. We found no toxic effects of PDMS for this use during the observational period. It has been demonstrated in human breast tissue that the average diameter of the tissue marked by PDMS was lower than when marked by the contrast medium (p <0.001). PDMS did not interfere with the scintigraphic uptake (p = 0.528) and there was no injury in histological processing of samples. This study demonstrated not only the superiority of PDMS as radiological contrast in relation to the iodinated contrast, but also the technical feasibility for the same applicability in the ROLL

  13. Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives

    International Nuclear Information System (INIS)

    Kim, Kwang Man; Ly, Nguyen Vu; Won, Jung Ha; Lee, Young-Gi; Cho, Won Il; Ko, Jang Myoun; Kaner, Richard B.

    2014-01-01

    Three kinds of polydimethylsiloxane (PDMS)-based grafted and ungrafted copolymers such as poly[dimethylsiloxane-co-(siloxane-g-acrylate)] (PDMS-A), poly(dimethylsiloxane-co-phenylsiloxane) (PDMS-P), and poly[dimethylsiloxane-co-(siloxane-g-ethylene oxide)] (PDMS-EO) are used as additives to standard liquid electrolyte solutions to enhance the lithium-ion battery performance at low temperatures. Liquid electrolyte solutions with PDMS-based additives are electrochemically stable under 5.0 V and have adequate ionic conductivities of 10 −4 S cm −1 at -20 °C. Particularly, liquid electrolytes with PDMS-P and PDMS-EO exhibit higher ionic conductivities of around 5 × 10 −4 S cm −1 at -20 °C, indicating a specific resisting property against the freezing of the liquid electrolyte components. As a result, the addition of PDMS-based additives to liquid electrolytes improves the capacity retention ratio and rate-capability of lithium-ion batteries at low temperatures

  14. Pheromonal Communication in the European House Dust Mite, Dermatophagoides pteronyssinus

    Directory of Open Access Journals (Sweden)

    Johannes L.M. Steidle

    2014-08-01

    Full Text Available Despite the sanitary importance of the European house dust mite Dermatophagoides pteronyssinus (Trouessart, 1897, the pheromonal communication in this species has not been sufficiently studied. Headspace analysis using solid phase micro extraction (SPME revealed that nerol, neryl formate, pentadecane, (6Z,9Z-6,9-heptadecadiene, and (Z-8-heptadecene are released by both sexes whereas neryl propionate was released by males only. Tritonymphs did not produce any detectable volatiles. In olfactometer experiments, pentadecane and neryl propionate were attractive to both sexes as well as to tritonymphs. (Z-8-heptadecene was only attractive to male mites. Therefore it is discussed that pentadecane and neryl propionate are aggregation pheromones and (Z-8-heptadecene is a sexual pheromone of the European house dust mite D. pteronyssinus. To study the potential use of pheromones in dust mite control, long-range olfactometer experiments were conducted showing that mites can be attracted to neryl propionate over distances of at least 50 cm. This indicates that mite pheromones might be useable to monitor the presence or absence of mites in the context of control strategies.

  15. Low-cost formation of bulk and localized polymer-derived carbon nanodomains from polydimethylsiloxane.

    Science.gov (United States)

    Alcántara, Juan Carlos Castro; Cerda Zorrilla, Mariana; Cabriales, Lucia; Rossano, Luis Manuel León; Hautefeuille, Mathieu

    2015-01-01

    We present two simple alternative methods to form polymer-derived carbon nanodomains in a controlled fashion and at low cost, using custom-made chemical vapour deposition and selective laser ablation with a commercial CD-DVD platform. Both processes presented shiny and dark residual materials after the polymer combustion and according to micro-Raman spectroscopy of the domains, graphitic nanocrystals and carbon nanotubes have successfully been produced by the combustion of polydimethylsiloxane layers. The fabrication processes and characterization of the byproduct materials are reported. We demonstrate that CVD led to bulk production of graphitic nanocrystals and single-walled carbon nanotubes while direct laser ablation may be employed for the formation of localized fluorescent nanodots. In the latter case, graphitic nanodomains and multi-wall carbon nanotubes are left inside microchannels and preliminary results seem to indicate that laser ablation could offer a tuning control of the nature and optical properties of the nanodomains that are left inside micropatterns with on-demand geometries. These low-cost methods look particularly promising for the formation of carbon nanoresidues with controlled properties and in applications where high integration is desired.

  16. Gold nanoparticle-polydimethylsiloxane films reflect light internally by optical diffraction and Mie scattering

    International Nuclear Information System (INIS)

    Dunklin, Jeremy R; Keith Roper, D; Forcherio, Gregory T

    2015-01-01

    Optical properties of polymer films embedded with plasmonic nanoparticles (NPs) are important in many implementations. In this work, optical extinction by polydimethylsiloxane (PDMS) films containing gold (Au) NPs was enhanced at resonance compared to AuNPs in suspensions, Beer–Lambert law, or Mie theory by internal reflection due to optical diffraction in 16 nm AuNP–PDMS films and Mie scattering in 76 nm AuNP–PDMS films. Resonant extinction per AuNP for 16 nm AuNPs with negligible resonant Mie scattering was enhanced up to 1.5-fold at interparticle separation (i.e., Wigner–Seitz radii) comparable to incident wavelength. It was attributable to diffraction through apertures formed by overlapping electric fields of adjacent, resonantly excited AuNPs at Wigner–Seitz radii equal to or less than incident wavelengths. Resonant extinction per AuNP for strongly Mie scattering 76 nm AuNPs was enhanced up to 1.3-fold at Wigner–Seitz radii four or more times greater than incident wavelength. Enhanced light trapping from diffraction and/or scattering is relevant to optoelectronic, biomedical, and catalytic activity of substrates embedded with NPs. (paper)

  17. Fabrication and hydrophobic characteristics of micro / nanostructures on polydimethylsiloxane surface prepared by picosecond laser

    Science.gov (United States)

    Bin, Wang; Dong, Shiyun; Yan, Shixing; Gang, Xiao; Xie, Zhiwei

    2018-03-01

    Picosecond laser has ultrashort pulse width and ultrastrong peak power, which makes it widely used in the field of micro-nanoscale fabrication. polydimethylsiloxane (PDMS) is a typical silicone elastomer with good hydrophobicity. In order to further improve the hydrophobicity of PDMS, the picosecond laser was used to fabricate a grid-like microstructure on the surface of PDMS, and the relationship between hydrophobicity of PDMS with surface microstructure and laser processing parameters, such as processing times and cell spacing was studied. The results show that: compared with the unprocessed PDMS, the presence of surface microstructure significantly improved the hydrophobicity of PDMS. When the number of processing is constant, the hydrophobicity of PDMS decreases with the increase of cell spacing. However, when the cell spacing is fixed, the hydrophobicity of PDMS first increases and then decreases with the increase of processing times. In particular, when the times of laser processing is 6 and the cell spacing is 50μm, the contact angle of PDMS increased from 113° to 154°, which reached the level of superhydrophobic.

  18. Surface modification of poly(dimethylsiloxane) for controlling biological cells' adhesion using a scanning radical microjet

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Helen M.L. [Department of Materials Engineering, School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-8656 (Japan); Fukuda, H. [Department of Electrical and Electronics Engineering, Toyo University, 2100 Kujirai, Kawagoe, 350-8585 (Japan); Akagi, T. [Department of Bioengineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 (Japan); Center for NanoBio Integration, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 (Japan); Ichiki, T. [Department of Bioengineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 (Japan) and Center for NanoBio Integration, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 (Japan)]. E-mail: ichiki@sogo.t.u-tokyo.ac.jp

    2007-04-23

    A scanning radical microjet (SRMJ) equipment using oxygen microplasma has been developed and successfully applied for controlling biological cells' attachment on biocompatible polymer material, poly(dimethylsiloxane) (PDMS). The radical microjet has advantages in localized and high-rate surface treatment. Moreover, maskless hydrophilic patterning using SRMJ has been demonstrated to be applicable to patterned cell cultivation which is useful in emerging biotechnological field such as tissue engineering and cell-based biosensors. Since control of PDMS surface properties is an indispensable prerequisite for cells' attachment, effects of oxygen flow rates and treatment time on localized hydrophilic patterning of PDMS surfaces were first investigated for controlling HeLa cells' (human epitheloid carcinoma cell line) attachment. Relationships between surface conditions of treated PDMS films and attached cell density are also discussed based on surface properties analyzed using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS)

  19. Simple and fast polydimethylsiloxane (PDMS) patterning using a cutting plotter and vinyl adhesives to achieve etching results.

    Science.gov (United States)

    Hyun Kim; Sun-Young Yoo; Ji Sung Kim; Zihuan Wang; Woon Hee Lee; Kyo-In Koo; Jong-Mo Seo; Dong-Il Cho

    2017-07-01

    Inhibition of polydimethylsiloxane (PDMS) polymerization could be observed when spin-coated over vinyl substrates. The degree of polymerization, partially curing or fully curing, depended on the PDMS thickness coated over the vinyl substrate. This characteristic was exploited to achieve simple and fast PDMS patterning method using a vinyl adhesive layer patterned through a cutting plotter. The proposed patterning method showed results resembling PDMS etching. Therefore, patterning PDMS over PDMS, glass, silicon, and gold substrates were tested to compare the results with conventional etching methods. Vinyl stencils with widths ranging from 200μm to 1500μm were used for the procedure. To evaluate the accuracy of the cutting plotter, stencil designed on the AutoCAD software and the actual stencil widths were compared. Furthermore, this method's accuracy was also evaluated by comparing the widths of the actual stencils and etched PDMS results.

  20. Fabrication of miniature elastomer lenses with programmable liquid mold for smartphone microscopy: curing polydimethylsiloxane with in situ curvature control

    Science.gov (United States)

    Karunakaran, Bhuvaneshwari; Tharion, Joseph; Dhawangale, Arvind Ramrao; Paul, Debjani; Mukherji, Soumyo

    2018-02-01

    Miniature lenses can transform commercial imaging systems, e.g., smartphones and webcams, into powerful, low-cost, handheld microscopes. To date, the reproducible fabrication of polymer lenses is still a challenge as they require controlled dispensing of viscous liquid. This paper reports a reproducible lens fabrication technique using liquid mold with programmable curvature and off-the-shelf materials. The lens curvature is controlled during fabrication by tuning the curvature of an interface of two immiscible liquids [polydimethylsiloxane (PDMS) and glycerol]. The curvature control is implemented using a visual feedback system, which includes a software-based guiding system to produce lenses of desired curvature. The technique allows PDMS lens fabrication of a wide range of sizes and focal lengths, within 20 min. The fabrication of two lens diameters: 1 and 5 mm with focal lengths ranging between 1.2 and 11 mm are demonstrated. The lens surface and bulk quality check performed using X-ray microtomography and atomic force microscopy reveal that the lenses are suitable for optical imaging. Furthermore, a smartphone microscope with ˜1.4-μm resolution is developed using a self-assembly of a single high power fabricated lens and microaperture. The lenses have various potential applications, e.g., optofluidics, diagnostics, forensics, and surveillance.

  1. A New Route for Preparation of Hydrophobic Silica Nanoparticles Using a Mixture of Poly(dimethylsiloxane and Diethyl Carbonate

    Directory of Open Access Journals (Sweden)

    Iryna Protsak

    2018-01-01

    Full Text Available Organosilicon layers chemically anchored on silica surfaces show high carbon content, good thermal and chemical stability and find numerous applications as fillers in polymer systems, thickeners in dispersing media, and as the stationary phases and carriers in chromatography. Methyl-terminated poly(dimethylsiloxanes (PDMSs are typically considered to be inert and not suitable for surface modification because of the absence of readily hydrolyzable groups. Therefore, in this paper, we report a new approach for surface modification of silica (SiO2 nanoparticles with poly(dimethylsiloxanes with different lengths of polymer chains (PDMS-20, PDMS-50, PDMS-100 in the presence of diethyl carbonate (DEC as initiator of siloxane bond splitting. Infrared spectroscopy (IR, elemental analysis (CHN, transmission electron microscopy (TEM, atomic force microscopy (AFM, rotational viscosity and contact angle of wetting were employed for the characterization of the raw fumed silica and modified silica nanoparticles. Elemental analysis data revealed that the carbon content in the grafted layer is higher than 8 wt % for all modified silicas, but it decreases significantly after sample treatment in polar media for silicas which were modified using neat PDMS. The IR spectroscopy data indicated full involvement of free silanol groups in the chemisorption process at a relatively low temperature (220 °C for all resulting samples. The contact angle studies confirmed hydrophobic surface properties of the obtained materials. The rheology results illustrated that fumed silica modified with mixtures of PDMS-x/DEC exhibited thixotropic behavior in industrial oil (I-40A, and exhibited a fully reversible nanostructure and shorter structure recovery time than nanosilicas modified with neat PDMS. The obtained results from AFM and TEM analysis revealed that the modification of fumed silica with mixtures of PDMS-20/DEC allows obtaining narrow particle size distribution with

  2. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong

    2017-08-23

    Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.

  3. Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate.

    Science.gov (United States)

    Akagi, Satoshi; Hosoe, Misa; Matsukawa, Kazutsugu; Ichikawa, Akihiko; Tanikawa, Tamio; Takahashi, Seiya

    2010-08-01

    We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group). After 7 days of culture, the embryos in the PDMS group developed to the blastocyst stage at the same rate of those in the control group cultured in a group of 20 embryos without PDMS-MP. There were no differences in total number of cells and the ratio of inner cell mass to total cells between the PDMS and control groups. In Experiment 2, we examined the in vitro developmental ability of parthenogenetically activated zona-free bovine embryos cultured individually on PDMS-MP. The zona-free embryos were cultured individually in each well of a PDMS-MP or in each well produced by pressing a darning needle onto the bottom of a culture dish (WOW group). After 7 days of culture, the blastocyst formation rate and cell number of blastocysts in the PDMS group did not differ from those of the zona-intact embryos in the control group. Also, there were no differences in the blastocyst formation rate and cell number of blastocysts between the WOW and PDMS groups. These results suggest that the culture system using PDMS-MP is useful for individual embryos or zona-free embryos in cattle.

  4. Oligomeric models for estimation of polydimethylsiloxane-water partition ratios with COSMO-RS theory: impact of the combinatorial term on absolute error.

    Science.gov (United States)

    Parnis, J Mark; Mackay, Donald

    2017-03-22

    A series of 12 oligomeric models for polydimethylsiloxane (PDMS) were evaluated for their effectiveness in estimating the PDMS-water partition ratio, K PDMS-w . Models ranging in size and complexity from the -Si(CH 3 ) 2 -O- model previously published by Goss in 2011 to octadeca-methyloctasiloxane (CH 3 -(Si(CH 3 ) 2 -O-) 8 CH 3 ) were assessed based on their RMS error with 253 experimental measurements of log K PDMS-w from six published works. The lowest RMS error for log K PDMS-w (0.40 in log K) was obtained with the cyclic oligomer, decamethyl-cyclo-penta-siloxane (D5), (-Si(CH 3 ) 2 -O-) 5 , with the mixing-entropy associated combinatorial term included in the chemical potential calculation. The presence or absence of terminal methyl groups on linear oligomer models is shown to have significant impact only for oligomers containing 1 or 2 -Si(CH 3 ) 2 -O- units. Removal of the combinatorial term resulted in a significant increase in the RMS error for most models, with the smallest increase associated with the largest oligomer studied. The importance of inclusion of the combinatorial term in the chemical potential for liquid oligomer models is discussed.

  5. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    Science.gov (United States)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  6. Physical properties of a high molecular weight hydroxyl-terminated polydimethylsiloxane modified castor oil based polyurethane/epoxy interpenetrating polymer network composites

    Science.gov (United States)

    Chen, Shoubing; Wang, Qihua; Wang, Tingmei

    2011-06-01

    A series of polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effects of HTPDMS content on the phase structure, damping properties and the glass transition temperature ( Tg) of the HTPDMS-modified PU/EP IPN composites were studied by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). Thermogravimetric analysis (TGA) showed that the thermal decomposition temperature of the composites increased with the increase of HTPDMS content. The tensile strength and impact strength of the IPN composites were also significantly improved, especially when the HTPDMS content was 10%. The modified IPN composites were expected to be used as structural damping materials in the future.

  7. XPS and μ-Raman study of nanosecond-laser processing of poly(dimethylsiloxane) (PDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Armyanov, S., E-mail: armyanov@ipc.bas.bg [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Stankova, N.E.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Valova, E.; Kolev, K.; Georgieva, J. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Steenhaut, O.; Baert, K.; Hubin, A. [Vrije Universiteit Brussels, Faculty of Engineering, Research Group, SURF “Electrochemical and Surface Engineering” (Belgium)

    2015-10-01

    Data about the chemical status of poly(dimethylsiloxane) (PDMS) after nanosecond Q-switched Nd:YAG laser treatment with near infrared, visible and ultraviolet radiation are presented. The μ-Raman spectroscopy analyses reveal as irradiation result a new sharp peak of crystalline silicon. In addition, broad bands appear assigned to D band of amorphous carbon and G band of microcrystalline and polycrystalline graphite. The μ-Raman spectra are variable taken in different inspected points in the trenches formed by laser treatment. The XPS surface survey spectra indicate the constituent elements of PDMS: carbon, oxygen and silicon. The spectra of detail XPS scans illustrate the influence of the laser treatment. The position of Si 2p peaks of the treated samples is close to the value of non-treated except that irradiated by 1064 nm 66 pulses, which is shifted by 0.9 eV. Accordingly, a shift by 0.4 eV is noticed of the O 1s peak, which reflects again a stronger oxidation of silicon. The curve fitting of Si 2p and O 1s peaks after this particular laser treatment shows the degree of conversion of organic to inorganic silicon that takes place during the irradiation.

  8. Polydimethylsiloxane pressure sensors for force analysis in tension band wiring of the olecranon.

    Science.gov (United States)

    Zens, Martin; Goldschmidtboeing, Frank; Wagner, Ferdinand; Reising, Kilian; Südkamp, Norbert P; Woias, Peter

    2016-11-14

    Several different surgical techniques are used in the treatment of olecranon fractures. Tension band wiring is one of the most preferred options by surgeons worldwide. The concept of this technique is to transform a tensile force into a compression force that adjoins two surfaces of a fractured bone. Currently, little is known about the resulting compression force within a fracture. Sensor devices are needed that directly transduce the compression force into a measurement quality. This allows the comparison of different surgical techniques. Ideally the sensor devices ought to be placed in the gap between the fractured segments. The design, development and characterization of miniaturized pressure sensors fabricated entirely from polydimethylsiloxane (PDMS) for a placement within a fracture is presented. The pressure sensors presented in this work are tested, calibrated and used in an experimental in vitro study. The pressure sensors are highly sensitive with an accuracy of approximately 3 kPa. A flexible fabrication process for various possible applications is described. The first in vitro study shows that using a single-twist or double-twist technique in tension band wiring of the olecranon has no significant effect on the resulting compression forces. The in vitro study shows the feasibility of the proposed measurement technique and the results of a first exemplary study.

  9. Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures.

    Science.gov (United States)

    Zhang, Xiao-Sheng; Zhu, Fu-Yun; Han, Meng-Di; Sun, Xu-Ming; Peng, Xu-Hua; Zhang, Hai-Xia

    2013-08-27

    This paper reports a novel single-step wafer-level fabrication of superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) films. The MNDS PDMS films were replicated directly from an ultralow-surface-energy silicon substrate at high temperature without any surfactant coating, achieving high precision. An improved deep reactive ion etching (DRIE) process with enhanced passivation steps was proposed to easily realize the ultralow-surface-energy MNDS silicon substrate and also utilized as a post-treatment process to strengthen the hydrophobicity of the MNDS PDMS film. The chemical modification of this enhanced passivation step to the surface energy has been studied by density functional theory, which is also the first investigation of C4F8 plasma treatment at molecular level by using first-principle calculations. From the results of a systematic study on the effect of key process parameters (i.e., baking temperature and time) on PDMS replication, insight into the interaction of hierarchical multiscale structures of polymeric materials during the micro/nano integrated fabrication process is experimentally obtained for the first time. Finite element simulation has been employed to illustrate this new phenomenon. Additionally, hierarchical PDMS pyramid arrays and V-shaped grooves have been developed and are intended for applications as functional structures for a light-absorption coating layer and directional transport of liquid droplets, respectively. This stable, self-cleaning PDMS film with functional micro/nano hierarchical structures, which is fabricated through a wafer-level single-step fabrication process using a reusable silicon mold, shows attractive potential for future applications in micro/nanodevices, especially in micro/nanofluidics.

  10. One-step surface modification of poly(dimethylsiloxane) by undecylenic acid

    Science.gov (United States)

    Zhou, Jinwen; McInnes, Steven J. P.; Md Jani, Abdul Mutalib; Ellis, Amanda V.; Voelcker, Nicolas H.

    2008-12-01

    Poly(dimethylsiloxane) (PDMS) is a popular material for microfluidic devices due to its relatively low cost, ease of fabrication, oxygen permeability and optical transmission characteristics. However, its highly hydrophobic surface is still the main factor limiting its wide application, in particular as a material for biointerfaces. A simple and rapid method to form a relatively stable hydrophilised PDMS surface is reported in this paper. The PDMS surface was treated with pure undecylenic acid (UDA) for 10 min, 1 h and 1 day at 80 °C in a sealed container. The effects of the surface modification were investigated using water contact angle (WCA) measurements, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), and streaming zeta-potential analysis. The water contact angle of 1 day UDAmodified PDMS was found to decrease from that of native PDMS (110 °) to 75 °, demonstrating an increase in wettability of the surface. A distinctive peak at 1715 cm-1 in the FTIR-ATR spectra after UDA treatment was representative of carboxylation of the PDMS surface. The measured zeta-potential (ζ) at pH 4 changed from -27 mV for pure PDMS to -19 mV after UDA treatment. In order to confirm carboxylation of the surface visually, Lucifer Yellow CH fluorescence dye was reacted via a condensation reaction to the 1 day UDA modified PDMS surface. Fluorescent microscopy showed Lucifer Yellow CH fluorescence on the carboxylated surface, but not on the pure PDMS surface. Stability experiments were also performed showing that 1 day modified UDA samples were stable in both MilliQ water at 50 °C for 17 h, and in a desiccator at room temperature for 19.5 h.

  11. Detection of polydimethylsiloxanes transferred from silicone-coated parchment paper to baked goods using direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Jakob, Andreas; Crawford, Elizabeth A; Gross, Jürgen H

    2016-04-01

    The non-stick properties of parchment papers are achieved by polydimethylsiloxane (PDMS) coatings. During baking, PDMS can thus be extracted from the silicone-coated parchment into the baked goods. Positive-ion direct analysis in real time (DART) mass spectrometry (MS) is highly efficient for the analysis of PDMS. A DART-SVP source was coupled to a quadrupole-time-of-flight mass spectrometer to detect PDMS on the contact surface of baked goods after use of silicone-coated parchment papers. DART spectra from the bottom surface of baked cookies and pizzas exhibited signals because of PDMS ions of the general formula [(C2H6SiO)n  + NH4 ](+) in the m/z 800-1900 range. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Non-Gaussian theory of rubberlike elasticity based on rotational isomeric state simulations of network chain configurations. II. Bimodal poly(dimethylsiloxane) networks

    International Nuclear Information System (INIS)

    Curro, J.G.; Mark, J.E.

    1984-01-01

    Bimodal, poly(dimethylsiloxane) (PDMS) networks containing a large mole fraction of very short chains have been shown to be unusually tough elastomers. The purpose of this investigation is to understand the rubber elasticity behavior of these bimodal networks. As a first approach, we have assumed that the average chain deformation is affine. This deformation, however, is partitioned nonaffinely between the long and short chains so that the free energy is minimized. Gaussian statistics are used for the long chains. The distribution function for the short chains is found from Monte Carlo calculations. This model predicts an upturn in the stress-strain curve, the steepness depending on the network composition, as is observed experimentally

  13. Polydimethylsiloxane-polymethacrylate block copolymers tethering quaternary ammonium salt groups for antimicrobial coating

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Xiaoshuai; Li, Yancai; Zhou, Fang; Ren, Lixia; Zhao, Yunhui, E-mail: zhaoyunhui@tju.edu.cn; Yuan, Xiaoyan

    2015-02-15

    Highlights: • A series of PDMS-b-QPDMAEMA block copolymers were synthesized via RAFT polymerization. • The composition and morphology of the copolymer films strongly depended on the content of QPDMAEMA. • Migration of QPDMAEMA blocks toward surface was promoted when contacting with water. • Heterogeneous film surfaces with higher N{sup +} content exhibited more obvious antimicrobial activity. - Abstract: Block copolymers PDMS-b-PDMAEMA were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization involving N,N-dimethylaminoethyl methacrylate (DMAEMA) by using poly(dimethylsiloxane) (PDMS) macro-chain transfer agent. And, the tertiary amino groups in PDMAEMA were quaternized with n-octyliodide to provide quaternary ammonium salts (QPDMAEMA). The well-defined copolymers generated composition variation and morphology evolvement on film surfaces, which were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements. The results indicated that the enrichment of QPDMAEMA brought about lower elemental ratios of Si/N on the film surfaces. The surface morphologies evolved with the variations of QPDMAEMA content, and the variation trend of film roughness was exactly opposite to that of water contact angle hysteresis. With regard to structure-antimicrobial relationships, the copolymer films had more evident antimicrobial activity against Gram-positive, Bacillus subtilis, and the surfaces with heterogeneous morphology and higher N{sup +} content presented better antimicrobial activity. The functionalized copolymers based PDMS and quaternary ammonium salts materials have the potential applications as antimicrobial coatings.

  14. Hybrid 2D patterning using UV laser direct writing and aerosol jet printing of UV curable polydimethylsiloxane

    Science.gov (United States)

    Obata, Kotaro; Schonewille, Adam; Slobin, Shayna; Hohnholz, Arndt; Unger, Claudia; Koch, Jürgen; Suttmann, Oliver; Overmeyer, Ludger

    2017-09-01

    The hybrid technique of aerosol jet printing and ultraviolet (UV) laser direct writing was developed for 2D patterning of thin film UV curable polydimethylsiloxane (PDMS). A dual atomizer module in an aerosol jet printing system generated aerosol jet streams from material components of the UV curable PDMS individually and enables the mixing in a controlled ratio. Precise control of the aerosol jet printing achieved the layer thickness of UV curable PDMS as thin as 1.6 μm. This aerosol jet printing system is advantageous because of its ability to print uniform thin-film coatings of UV curable PDMS on planar surfaces as well as free-form surfaces without the use of solvents. In addition, the hybrid 2D patterning using the combination of UV laser direct writing and aerosol jet printing achieved selective photo-initiated polymerization of the UV curable PDMS layer with an X-Y resolution of 17.5 μm.

  15. Prevention of polydimethylsiloxane microsphere migration using a mussel-inspired polydopamine coating for potential application in injection therapy.

    Directory of Open Access Journals (Sweden)

    Eun-Jae Chung

    Full Text Available The use of injectable bulking agents is a feasible alternative procedure for conventional surgical therapy. In this study, poly(dimethylsiloxane (PDMS microspheres coated with polydopamine (PDA were developed as a potential injection agent to prevent migration in vocal fold. Uniform PDMS microspheres are fabricated using a simple fluidic device and then coated with PDA. Cell attachment test reveals that the PDA-coated PDMS (PDA-PDMS substrate favors cell adhesion and attachment. The injected PDA-PDMS microspheres persist without migration on reconstructed axial CT images, whereas, pristine PDMS locally migrates over a period of 12 weeks. The gross appearance of the implants retrieved at 4, 8, 12 and 34 weeks indicates that the PDA-PDMS group maintained their original position without significant migration until 34 weeks after injection. By contrast, there is diffuse local migration of the pristine PDMS group from 4 weeks after injection. The PDA-coated PDMS microspheres can potentially be used as easily injectable, non-absorbable filler without migration.

  16. fs- and ns-laser processing of polydimethylsiloxane (PDMS) elastomer: Comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Atanasov, P.A.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Amoruso, S.; Wang, X.; Bruzzese, R. [CNR-SPIN, Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Grochowska, K.; Śliwiński, G. [Photophysics Department, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdańsk (Poland); Baert, K.; Hubin, A. [Vrije Universiteit Brussels, Faculty of Engineering, Research group, SURF “Electrochemical and Surface Engineering” (Belgium); Delplancke, M.P.; Dille, J. [Université Libre de Bruxelles, Materials Engineering, Characterization, Synthesis and Recycling (Service 4MAT), Faculté des Sciences Appliquées, 1050 Brussels (Belgium)

    2015-05-01

    Highlights: • fs- and ns-laser (266 and 532 nm) processing of PDMS-elastomer, in air, is studied. • High definition tracks (on the PDMS-elastomer surface) for electrodes are produced. • Selective Pt or Ni metallization of the tracks is produced via electroless plating. • Irradiated and metallized tracks are characterized by μ-Raman spectrometry and SEM. • DC resistance of Pt and Ni tracks is always between 0.5 and 15 Ω/mm. - Abstract: Medical grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial as encapsulation and/or as substrate insulator carrier for long term neural implants because of its remarkable properties. Femtosecond (λ = 263 and 527 nm) and nanosecond (266 and 532 nm) laser processing of PDMS-elastomer surface, in air, is investigated. The influence of different processing parameters, including laser wavelength, pulse duration, fluence, scanning speed and overlapping of the subsequent pulses, on the surface activation and the surface morphology are studied. High definition tracks and electrodes are produced. Remarkable alterations of the chemical composition and structural morphology of the ablated traces are observed in comparison with the native material. Raman spectra illustrate well-defined dependence of the chemical composition on the laser fluence, pulse duration, number of pulses and wavelength. An extra peak about ∼512–518 cm{sup −1}, assigned to crystalline silicon, is observed after ns- or visible fs-laser processing of the surface. In all cases, the intensities of Si−O−Si symmetric stretching at 488 cm{sup −1}, Si−CH{sub 3} symmetric rocking at 685 cm{sup −1}, Si−C symmetric stretching at 709 cm{sup −1}, CH{sub 3} asymmetric rocking + Si−C asymmetric stretching at 787 cm{sup −1}, and CH{sub 3} symmetric rocking at 859 cm{sup −1}, modes strongly decrease. The laser processed areas are also analyzed by SEM and optical microscopy. Selective Pt or Ni metallization of the laser processed

  17. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang

    2012-11-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst binder and diffusion layer, and compared to cathodes of the same structure having a Nafion binder. With PDMS binder, copper mesh cathodes produced a maximum power of 1710 ± 1 mW m -2, while SS mesh had a slightly lower power of 1680 ± 12 mW m -2, with both values comparable to those obtained with Nafion binder. Cathodes with PDMS binder had stable power production of 1510 ± 22 mW m -2 (copper) and 1480 ± 56 mW m -2 (SS) over 15 days at cycle 15, compared to a 40% decrease in power with the Nafion binder. Cathodes with the PDMS binder had lower total cathode impedance than those with Nafion. This is due to a large decrease in diffusion resistance, because hydrophobic PDMS effectively prevented catalyst sites from filling up with water, improving oxygen mass transfer. The cost of PDMS is only 0.23% of that of Nafion. These results showed that PDMS is a very effective and low-cost alternative to Nafion binder that will be useful for large scale construction of these cathodes for MFC applications. © 2012 Elsevier B.V.

  18. Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core-shell microspheres

    International Nuclear Information System (INIS)

    Cao Ruijian; Zhang Xiongfei; Wu Hong; Wang Jingtao; Liu Xiaofei; Jiang Zhongyi

    2011-01-01

    Pervaporative desulfurization based on membrane technology provides a promising alternative for removal of sulfur substances (as represented by thiophene) in fluid catalytic cracking (FCC) gasoline. The present study focused on the performance enhancement of polydimethylsiloxane (PDMS) membrane by incorporation of core-shell structured silver/silica microspheres. A silane coupling agent, N-[3-(trimethoxysily)propyl]-ethylenediamine (TSD), was used to chelate the Ag + via its amino groups and attach the silver seeds onto the silica surface via condensation of its methoxyl groups. The resultant microspheres were characterized by Zeta-positron annihilation lifetime spectroscopy (ZetaPALS), inductively coupled plasmaoptical emission spectrophotometer (ICP), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Ag + /SiO 2 -PDMS composite membranes were prepared by blending PDMS with the as-synthesized silver/silica microspheres. PALS analysis was used to correlate the apparent fractional free volume with permeation flux. The sorption selectivity towards thiophene was enhanced after incorporation of silver/silica microspheres due to the π-complexation between the silver on the microsphere surface and the thiophene molecules. The pervaporative desulfurization performance of the composite membrane was investigated using thiophene/n-octane mixture as a model gasoline. The composite membrane exhibited an optimum desulfurization performance with a permeation flux of 7.76 kg/(m 2 h) and an enrichment factor of 4.3 at the doping content of 5%.

  19. Functionalization of polydimethylsiloxane membranes to be used in the production of voice prostheses

    Directory of Open Access Journals (Sweden)

    Paula Ferreira, Álvaro Carvalho, Tiago Ruivo Correia, Bernardo Paiva Antunes, Ilídio Joaquim Correia and Patrícia Alves

    2013-01-01

    Full Text Available The voice is produced by the vibration of vocal cords which are located in the larynx. Therefore, one of the major consequences for patients subjected to laryngectomy is losing their voice. In these cases, a synthetic one-way valve set (voice prosthesis can be implanted in order to allow restoration of speech. Most voice prostheses are produced with silicone-based materials such as polydimethylsiloxane (PDMS. This material has excellent properties, such as optical transparency, chemical and biological inertness, non-toxicity, permeability to gases and excellent mechanical resistance that are fundamental for its application in the biomedical field. However, PDMS is very hydrophobic and this property causes protein adsorption which is followed by microbial adhesion and biofilm formation. To overcome these problems, surface modification of materials has been proposed in this study. A commercial silicone elastomer, SylgardTM 184 was used to prepare membranes whose surface was modified by grafting 2-hydroxyethylmethacrylate and methacrylic acid by low-pressure plasma treatment. The hydrophilicity, hydrophobic recovery and surface energy of the produced materials were determined. Furthermore, the cytotoxicity and antibacterial activity of the materials were also assessed. The results obtained revealed that the PDMS surface modification performed did not affect the material's biocompatibility, but decreased their hydrophobic character and bacterial adhesion and growth on its surface.

  20. Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS)

    Science.gov (United States)

    Davaasuren, Gaasuren; Ngo, Chi-Vinh; Oh, Hyun-Seok; Chun, Doo-Man

    2014-09-01

    Herein we describe an economical method to fabricate a transparent superhydrophobic surface that uses grid patterning, and we report on the effects of grid geometry in determining the wettability and transparency of the fabricated surfaces. A polymer casting method was utilized because of its applicability to economical manufacturing and mass production; the material polydimethylsiloxane (PDMS) was selected because of its moldability and transparency. PDMS was replicated from a laser textured mold fabricated by a UV nanosecond pulsed laser. Sapphire wafer was used for the mold because it has very low surface roughness (Ra ≤0.3 nm) and adequate mechanical properties. To study geometric effects, grid patterns of a series of step sizes were fabricated. The maximum water droplet contact angle (WDCA) observed was 171°. WDCAs depended on the wetting area and the wetting state. The experimental results of WDCA were analyzed with Wenzel and Cassie-Baxter equations. The designed grid pattern was suitably transparent and structurally stable. Transmittance of the optimal transparent superhydrophobic surface was measured by using a spectrophotometer. Transmittance loss due to the presence of the grid was around 2-4% over the wavelength region measured (300-1000 nm); the minimum transmittance observed was 83.1% at 300 nm. This study also demonstrates the possibility of using a nanosecond pulsed laser for the surface texturing of a superhydrophobic surface.

  1. Magnet-assisted device-level alignment for the fabrication of membrane-sandwiched polydimethylsiloxane microfluidic devices

    International Nuclear Information System (INIS)

    Lu, J-C; Liao, W-H; Tung, Y-C

    2012-01-01

    Polydimethylsiloxane (PDMS) microfluidic device is one of the most essential techniques that advance microfluidics research in recent decades. PDMS is broadly exploited to construct microfluidic devices due to its unique and advantageous material properties. To realize more functionalities, PDMS microfluidic devices with multi-layer architectures, especially those with sandwiched membranes, have been developed for various applications. However, existing alignment methods for device fabrication are mainly based on manual observations, which are time consuming, inaccurate and inconsistent. This paper develops a magnet-assisted alignment method to enhance device-level alignment accuracy and precision without complicated fabrication processes. In the developed alignment method, magnets are embedded into PDMS layers at the corners of the device. The paired magnets are arranged in symmetric positions at each PDMS layer, and the magnetic attraction force automatically pulls the PDMS layers into the aligned position during assembly. This paper also applies the method to construct a practical microfluidic device, a tunable chaotic micromixer. The results demonstrate the successful operation of the device without failure, which suggests the accurate alignment and reliable bonding achieved by the method. Consequently, the fabrication method developed in this paper is promising to be exploited to construct various membrane-sandwiched PDMS microfluidic devices with more integrated functionalities to advance microfluidics research. (paper)

  2. Direct detection of cancer biomarkers in blood using a "place n play" modular polydimethylsiloxane pump.

    Science.gov (United States)

    Zhang, Honglian; Li, Gang; Liao, Lingying; Mao, Hongju; Jin, Qinghui; Zhao, Jianlong

    2013-01-01

    Cancer biomarkers have significant potential as reliable tools for the early detection of the disease and for monitoring its recurrence. However, most current methods for biomarker detection have technical difficulties (such as sample preparation and specific detector requirements) which limit their application in point of care diagnostics. We developed an extremely simple, power-free microfluidic system for direct detection of cancer biomarkers in microliter volumes of whole blood. CEA and CYFRA21-1 were chosen as model cancer biomarkers. The system automatically extracted blood plasma from less than 3 μl of whole blood and performed a multiplex sample-to-answer assay (nano-ELISA (enzyme-linked immunosorbent assay) technique) without the use of external power or extra components. By taking advantage of the nano-ELISA technique, this microfluidic system detected CEA at a concentration of 50 pg/ml and CYFRA21-1 at a concentration of 60 pg/ml within 60 min. The combination of PnP polydimethylsiloxane (PDMS) pump and nano-ELISA technique in a single microchip system shows great promise for the detection of cancer biomarkers in a drop of blood.

  3. Amino modified multi-walled carbon nanotubes/polydimethylsiloxane coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental samples.

    Science.gov (United States)

    Hu, Cong; Chen, Beibei; He, Man; Hu, Bin

    2013-07-26

    In this work, amino modified multi-walled carbon nanotubes/polydimethylsiloxane (multi-walled carbon nanotubes-4,4'-diaminodiphenylmethane/polydimethylsiloxane, MWCNTs-DDM/PDMS) was synthesized, and utilized as a novel coating for stir bar sorptive extraction (SBSE) of seven phenols (phenol, 2-chlorophenol, 2-nitrophenol, 4-nitrophenol, 2,4-dimethylphenol, p-choro-m-cresol and 2,4,6-trichlorphenol) in environmental water and soil samples, followed by high performance liquid chromatography-ultraviolet detection (HPLC-UV). The prepared MWCNTs-DDM/PDMS coated stir bar was characterized and good preparation reproducibility was obtained with the relative standard deviations (RSDs) ranging from 4.7% to 11.3% (n=9) in one batch, and from 4.8% to 13.9% (n=8) among different batches. Several parameters affecting the extraction of seven target phenols by MWCNTs-DDM/PDMS-SBSE including extraction time, stirring rate, pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.14μg/L (2-nitrophenol) to 1.76μg/L (phenol) and the limits of quantification (LOQs, S/N=10) were found to be in the range of 0.46μg/L (2-nitrophenol) to 5.8μg/L (phenol). The linear range was 5-1000μg/L for phenol and 4-nitrophenol, 1-1000μg/L for 2-nitrophenol and 2-1000μg/L for other phenols, respectively. The RSDs of the developed method were in the range of 6.2-11.6% (n=8, c=10μg/L) and the enrichment factors were from 6.5 to 62.8-fold (theoretical enrichment factor was 100-fold). The proposed method was successfully applied to the analysis of phenols in environmental water and soil samples, and good recoveries were obtained for the spiked samples. The proposed method is simple, highly sensitive and suitable for the analysis of trace phenols in environmental samples with complex matrix. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Enhanced performance in capacitive force sensors using carbon nanotube/polydimethylsiloxane nanocomposites with high dielectric properties

    Science.gov (United States)

    Jang, Hyeyoung; Yoon, Hyungsuk; Ko, Youngpyo; Choi, Jaeyoo; Lee, Sang-Soo; Jeon, Insu; Kim, Jong-Ho; Kim, Heesuk

    2016-03-01

    Force sensors have attracted tremendous attention owing to their applications in various fields such as touch screens, robots, smart scales, and wearable devices. The force sensors reported so far have been mainly focused on high sensitivity based on delicate microstructured materials, resulting in low reproducibility and high fabrication cost that are limitations for wide applications. As an alternative, we demonstrate a novel capacitive-type force sensor with enhanced performance owing to the increased dielectric properties of elastomers and simple sensor structure. We rationally design dielectric elastomers based on alkylamine modified-multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS) composites, which have a higher dielectric constant than pure PDMS. The alkylamine-MWCNTs show excellent dispersion in a PDMS matrix, thus leading to enhanced and reliable dielectric properties of the composites. A force sensor array fabricated with alkylamine-MWCNT/PDMS composites presents an enhanced response due to the higher dielectric constant of the composites than that of pure PDMS. This study is the first to report enhanced performance of capacitive force sensors by modulating the dielectric properties of elastomers. We believe that the disclosed strategy to improve the sensor performance by increasing the dielectric properties of elastomers has great potential in the development of capacitive force sensor arrays that respond to various input forces.Force sensors have attracted tremendous attention owing to their applications in various fields such as touch screens, robots, smart scales, and wearable devices. The force sensors reported so far have been mainly focused on high sensitivity based on delicate microstructured materials, resulting in low reproducibility and high fabrication cost that are limitations for wide applications. As an alternative, we demonstrate a novel capacitive-type force sensor with enhanced performance owing to the increased

  5. Reorientational motion of a cross-link junction in a poly(dimethylsiloxane) network measured by time-resolved fluorescence depolarization

    International Nuclear Information System (INIS)

    Stein, A.D.; Hoffman, D.A.; Frank, C.W.; Fayer, M.D.

    1992-01-01

    The reorientational dynamics of a cross-link junction in poly(dimethylsiloxane) networks, measured by the fluorescence anisotropy decay of a chromophore tagged to the cross-link, have been investigated over a range of temperatures from T g +75 to T g +150. The probe chromophore, 1-dimethylamino-5-sulfonylnaphthalene amide (dansyl amide), is pendant to a trifunctional silane that acts as a cross-linking molecule. In cyclohexanol, the fluorescence anisotropy decay is in agreement with Debye--Stokes--Einstein hydrodynamic theory (rotational diffusion) demonstrating that the cross-linker can be used as a probe of orientational relaxation. The fluorescence anisotropy decays at a rapid rate in an end-linked poly(dimethyl siloxane) network reflecting fast reorientational motion of the cross-link junction. This reorientation appears diffusive and has a temperature dependence in accord with the Williams--Landel--Ferry equation. A model is proposed that suggests that reorientation and translational motion of the cross-link occur simultaneously and are both coupled to fluctuations of the polymer chain ends

  6. Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.

    Science.gov (United States)

    Sameenoi, Yupaporn; Mensack, Meghan M; Boonsong, Kanokporn; Ewing, Rebecca; Dungchai, Wijitar; Chailapakul, Orawan; Cropek, Donald M; Henry, Charles S

    2011-08-07

    Recently, the development of electrochemical biosensors as part of microfluidic devices has garnered a great deal of attention because of the small instrument size and portability afforded by the integration of electrochemistry in microfluidic systems. Electrode fabrication, however, has proven to be a major obstacle in the field. Here, an alternative method to create integrated, low cost, robust, patternable carbon paste electrodes (CPEs) for microfluidic devices is presented. The new CPEs are composed of graphite powder and a binder consisting of a mixture of poly(dimethylsiloxane) (PDMS) and mineral oil. The electrodes are made by filling channels molded in previously cross-linked PDMS using a method analogous to screen printing. The optimal binder composition was investigated to obtain electrodes that were physically robust and performed well electrochemically. After studying the basic electrochemistry, the PDMS-oil CPEs were modified with multi-walled carbon nanotubes (MWCNT) and cobalt phthalocyanine (CoPC) for the detection of catecholamines and thiols, respectively, to demonstrate the ease of electrode chemical modification. Significant improvement of analyte signal detection was observed from both types of modified CPEs. A nearly 2-fold improvement in the electrochemical signal for 100 μM dithiothreitol (DTT) was observed when using a CoPC modified electrode (4.0 ± 0.2 nA (n = 3) versus 2.5 ± 0.2 nA (n = 3)). The improvement in signal was even more pronounced when looking at catecholamines, namely dopamine, using MWCNT modified CPEs. In this case, an order of magnitude improvement in limit of detection was observed for dopamine when using the MWCNT modified CPEs (50 nM versus 500 nM). CoPC modified CPEs were successfully used to detect thiols in red blood cell lysate while MWCNT modified CPEs were used to monitor temporal changes in catecholamine release from PC12 cells following stimulation with potassium.

  7. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications.

    Science.gov (United States)

    Chabinyc, M L; Chiu, D T; McDonald, J C; Stroock, A D; Christian, J F; Karger, A M; Whitesides, G M

    2001-09-15

    This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (microAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-microm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state microAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 microm) colored polycarbonate filter was placed on the top of the embedded microAPD to absorb scattered excitation light before it reached the detector. The microAPD was placed below the microchannel and orthogonal to the axis of the optical fiber. The close proximity (approximately 200 microm) of the microAPD to the microchannel made it unnecessary to incorporate transfer optics; the pixel size of the microAPD (30 microm) matched the dimensions of the channels (50 microm). A blue light-emitting diode was used for fluorescence excitation. The microAPD was operated in Geiger mode to detect the fluorescence. The detection limit of the prototype (approximately 25 nM) was determined by finding the minimum detectable concentration of a solution of fluorescein. The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.

  8. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Leiqing; Cheng, Jun, E-mail: juncheng@zju.edu.cn; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2017-08-15

    Highlights: • Amino group was introduced to improve surface polarity of PDMS membrane. • The water contact angle of PDMS membrane decreased after the modification. • The concentration of N atom on surface of PDMS membrane reached up to ∼6%. • The density of PDMS membrane decreased while the swelling degree increased. • CO{sub 2} permeability increased while selectivity decreased after the modification. - Abstract: This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO{sub 2} permeability and decreased CO{sub 2}/H{sub 2} selectivity, CO{sub 2}/CH{sub 4} selectivity, and CO{sub 2}/N{sub 2} selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO{sub 2} permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.

  9. Fabrication of optical devices in poly(dimethylsiloxane) by proton microbeam

    International Nuclear Information System (INIS)

    Huszank, R.; Szilasi, S.Z.; Rajta, I.; Csik, A.

    2009-01-01

    Complete text of publication follows. Optical diffraction grating and micro Fresnel zone plate type structures were fabricated in relatively thin poly(dimethylsiloxane) (PDMS) layers using proton beam writing technique and the performance of these optical devices was tested. Micro-optics is a key technology in many fields of common applications like, for example, data communication, lighting technology, industrial automation, display technology, sensing applications and data storage. It enables new functionalities and applications previously inaccessible and improves performance of the already available products with reduced cost, volume and weight. There are a few different fabrication techniques to produce refractive or diffractive micro-optical devices such as X-ray lithography, UV-lithography, e-beam lithography, laser writing, plasma etching, proton beam writing. In general, three different kinds of materials are used for micro-optics, such as glass, polymers and crystal. PDMS is a commonly used silicon-based organic polymer, optically clear, generally considered to be inert, non-toxic and biocompatible and it has been used as a resist material for direct write techniques only in very few cases. In this work, PDMS was used as a resist material; the structures were irradiated directly into the polymer. We were looking for a biocompatible, micropatternable polymer in which the chemical structure changes significantly due to proton beam exposure making the polymer capable of proton beam writing. We demonstrated that the change in the structure of the polymer is so significant that there is no need to perform any development processes. The proton irradiation causes refractive index change in the polymer, so diffraction gratings and other optical devices like Fresnel zone plates can be fabricated in this way. The observed high order diffraction patterns prove the high quality of the created optical devices [1]. This technique may be a useful tool for designing

  10. Assembly of hydrogel units for 3D microenvironment in a poly(dimethylsiloxane) channel

    Science.gov (United States)

    Cho, Chang Hyun; Kwon, Seyong; Park, Je-Kyun

    2017-12-01

    Construction of three-dimensional (3D) microenvironment become an important issue in recent biological studies due to their biological relevance compared to conventional two-dimensional (2D) microenvironment. Various fabrication techniques have been employed to construct a 3D microenvironment, however, it is difficult to fully satisfy the biological and mechanical properties required for the 3D cell culture system, such as heterogeneous tissue structures generated from the functional differences or diseases. We propose here an assembly method for facile construction of 3D microenvironment in a poly(dimethylsiloxane) (PDMS) channel using hydrogel units. The high-aspect-ratio of hydrogel units was achieved by fabricating these units using a 2D mold. With this approach, 3D heterogeneous hydrogel units were produced and assembled in a PDMS channel by structural hookup. In vivo-like 3D heterogeneous microenvironment in a precisely controllable fluidic system was also demonstrated using a controlled assembly of different types of hydrogel units, which was difficult to obtain from previous methods. By regulating the flow condition, the mechanical stability of the assembled hydrogel units was verified by the flow-induced deformation of hydrogel units. In addition, in vivo-like cell culture environment was demonstrated using an assembly of cell-coated hydrogel units in the fluidic channel. Based on these features, our method expects to provide a beneficial tool for the 3D cell culture module and biomimetic engineering.

  11. Irreversible bonding of polyimide and polydimethylsiloxane (PDMS) based on a thiol-epoxy click reaction

    International Nuclear Information System (INIS)

    Hoang, Michelle V; Chung, Hyun-Joong; Elias, Anastasia L

    2016-01-01

    Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (<0.01 N mm −1 ) is measured with a peel test, and adhesive failure occurs at the PDMS surface. With surface functionalization, however, remarkably higher peel strengths of ∼0.2 N mm −1 (method 1) and  >0.3 N mm −1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication. (paper)

  12. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane

    Science.gov (United States)

    Hu, Song; Guan, Yu; Cai, Di; Li, Shufeng; Qin, Peiyong; Karim, M. Nazmul; Tan, Tianwei

    2015-03-01

    Furfural is an important platform chemical with a wide range of applications. However, due to the low concentration of furfural in the hydrolysate, the conventional methods for furfural recovery are energy-intensive and environmentally unfriendly. Considering the disadvantages of pervaporation (PV) and distillation in furfural separation, a novel energy-efficient `green technique', gas stripping assisted vapor permeation (GSVP), was introduced in this work. In this process, the polydimethylsiloxane (PDMS) membrane was prepared by employing water as solvent. Coking in pipe and membrane fouling was virtually non-existent in this new process. In addition, GSVP was found to achieve the highest pervaporation separation index of 216200 (permeate concentration of 71.1 wt% and furfural flux of 4.09 kgm-2h-1) so far, which was approximately 2.5 times higher than that found in pervaporation at 95°C for recovering 6.0 wt% furfural from water. Moreover, the evaporation energy required for GSVP decreased by 35% to 44% relative to that of PV process. Finally, GSVP also displayed more promising potential in industrial application than PV, especially when coupled with the hydrolysis process or fermentation in biorefinery industry.

  13. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liang, Tao; Feng, Yuchun; Zeng, Xingrong

    2017-01-25

    Functional surfaces for reversibly switchable wettability and oil-water separation have attracted much interest with pushing forward an immense influence on fundamental research and industrial application in recent years. This article proposed a facile method to fabricate superhydrophobic surfaces on steel substrates via electroless replacement deposition of copper sulfate (CuSO 4 ) and UV curing of vinyl-terminated polydimethylsiloxane (PDMS). PDMS-based superhydrophobic surfaces exhibited water contact angle (WCA) close to 160° and water sliding angle (WSA) lower than 5°, preserving outstanding chemical stability that maintained superhydrophobicity immersing in different aqueous solutions with pH values from 1 to 13 for 12 h. Interestingly, the superhydrophobic surface could dramatically switch to the superhydrophilic state under UV irradiation and then gradually recover to the highly hydrophobic state with WCA at 140° after dark storage. The underlying mechanism was also investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Additionally, the PDMS-based steel mesh possessed high separation efficiency and excellent reusability in oil-water separation. Our studies provide a simple, fast, and economical fabrication method for wettability-transformable superhydrophobic surfaces and have the potential applications in microfluidics, the biomedical field, and oil spill cleanup.

  14. Unveiling the wet chemical etching characteristics of polydimethylsiloxane film for soft micromachining applications

    International Nuclear Information System (INIS)

    Kakati, A; Maji, D; Das, S

    2017-01-01

    Micromachining of a polydimethylsiloxane (PDMS) microstructure by wet chemical etching is explored for microelectromechanical systems (MEMS) and microfluidic applications. A 100 µ m thick PDMS film was patterned with different microstructure designs by wet chemical etching using a N-methyl-2-pyrrolidone (C 16 H 36 FN) and tetra-n-butylammonium fluoride (C 5 H 9 NO) mixture solution with 3:1 volume ratio after lithography for studying etching characteristics. The patterning parameters, such as etch rate, surface roughness, pH of etchant solution with time, were thoroughly investigated. A detailed study of surface morphology with etching time revealed nonlinear behaviour of the PDMS surface roughness and etch rate. A maximum rate of 1.45 µ m min −1 for 10 min etching with surface roughness of 360 nm was achieved. A new approach of wet chemical etching with pH controlled doped etchant was introduced for lower surface roughness of etched microstructures, and a constant etch rate during etching. Variation of the etching rate and surface roughness by pH controlled etching was performed by doping 5–15 gm l −1 of silicic acid (SiO 2xH2 O) into the traditional etchant solution. PDMS etching by silicic acid doped etchant solution showed a reduction in surface roughness from 400 nm to 220 nm for the same 15 µ m etching. This study is beneficial for micromachining of various MEMS and microfluidic structures such as micropillars, microchannels, and other PDMS microstructures. (paper)

  15. Characterization of ultraviolet light cured polydimethylsiloxane films for low-voltage, dielectric elastomer actuators

    Science.gov (United States)

    Töpper, Tino; Wohlfender, Fabian; Weiss, Florian; Osmani, Bekim; Müller, Bert

    2016-04-01

    The reduction the operation voltage has been the key challenge to realize of dielectric elastomer actuators (DEA) for many years - especially for the application fields of robotics, lens systems, haptics and future medical implants. Contrary to the approach of manipulating the dielectric properties of the electrically activated polymer (EAP), we intend to realize low-voltage operation by reducing the polymer thickness to the range of a few hundred nanometers. A study recently published presents molecular beam deposition to reliably grow nanometer-thick polydimethylsiloxane (PDMS) films. The curing of PDMS is realized using ultraviolet (UV) radiation with wavelengths from 180 to 400 nm radicalizing the functional side and end groups. The understanding of the mechanical properties of sub-micrometer-thin PDMS films is crucial to optimize DEAs actuation efficiency. The elastic modulus of UV-cured spin-coated films is measured by nano-indentation using an atomic force microscope (AFM) according to the Hertzian contact mechanics model. These investigations show a reduced elastic modulus with increased indentation depth. A model with a skin-like SiO2 surface with corresponding elastic modulus of (2.29 +/- 0.31) MPa and a bulk modulus of cross-linked PDMS with corresponding elastic modulus of (87 +/- 7) kPa is proposed. The surface morphology is observed with AFM and 3D laser microscopy. Wrinkled surface microstructures on UV-cured PDMS films occur for film thicknesses above (510 +/- 30) nm with an UV-irradiation density of 7.2 10-4 J cm-2 nm-1 at a wavelength of 190 nm.

  16. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Atanasov, P.A.; Nikov, Ru.G.; Nikov, R.G.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Fukata, N. [International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Ns-laser (266, 355, 532 and 1064 nm) processing of medical grade PDMS is performed. • Investigation of the optical transmittance as a function of the laser beam parameters. • Analyses of laser treated area by optical & laser microscope and μ-Raman spectrometry. • Application as (MEAs) neural interface for monitor and stimulation of neural activity. - Abstract: This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm{sup −2} for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm{sup −2} and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm{sup −2}. The threshold laser fluence needed to induce incubation process after certain

  17. Effect of silane coupling agents on the chemical and physical properties of photocrosslinked poly(dimethylsiloxane) dimethacrylate/poly(ethylene glycol) diacrylate hydrogel

    Science.gov (United States)

    Lim, K. W.; Hamid, Z. A. A.

    2017-07-01

    Inorganic-organic hydrogels based on dimethacrylated polydimethylsiloxane (PDMSMA) and diacrylated poly(ethylene glycol) (PEGDA) macromers were prepared via photocrosslinking method. Silane coupling agent was incorporated into the hydrogel formulations to overcome the phase incompatibility. Pure PEGDA (0:100) hydrogels showed the highest value of ESR %, while pure PDMSMA (100:0) hydrogels showed no swelling as we expected. Inclusion of more hydrophobic domains resulted in a lower value of ESR %, i.e. in 75:25 hybrid hydrogels. Beside, we had noticed 50:50 and 75:25 hybrid hydrogels disintegrate during swelling period. However, their integrity was improved and sustained after the coupling agent was added. Similarly, the value of E* for the hybrid hydrogels showed an increment after the coupling agent was incorporated, and this is in a good agreement with the SEM micrograph which display an improved interfacial adhesion.

  18. Polydimethylsiloxane rod extraction, a novel technique for the determination of organic micropollutants in water samples by thermal desorption-capillary gas chromatography-mass spectrometry.

    Science.gov (United States)

    Montero, L; Popp, P; Paschke, A; Pawliszyn, J

    2004-01-30

    A novel, simple and inexpensive approach to absorptive extraction of organic compounds from environmental samples is presented. It consists of a polydimethylsiloxane rod used as an extraction media, enriched with analytes during shaking, then thermally desorbed and analyzed by GC-MS. Its performance was illustrated and evaluated for the enrichment of sub- to ng/l of selected chlorinated compounds (chlorobenzenes and polychlorinated biphenyls) in water samples. The new approach was compared to the stir bar sorptive extraction performance. A natural ground water sample from Bitterfeld, Germany, was also extracted using both methods, showing good agreement. The proposed approach presented good linearity, high sensitivity, good blank levels and recoveries comparable to stir bars, together with advantages such as simplicity, lower cost and higher feasibility.

  19. Reorientational motion of a cross-link junction in a poly(dimethylsiloxane) network measured by time-resolved fluorescence depolarization

    Energy Technology Data Exchange (ETDEWEB)

    Stein, A.D. (Department of Chemistry, Stanford University, Stanford, California 94305 (United States)); Hoffman, D.A. (Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)); Frank, C.W. (Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States)); Fayer, M.D. (Department of Chemistry, Stanford University, Stanford, California 94305 (United States))

    1992-02-15

    The reorientational dynamics of a cross-link junction in poly(dimethylsiloxane) networks, measured by the fluorescence anisotropy decay of a chromophore tagged to the cross-link, have been investigated over a range of temperatures from {ital T}{sub {ital g}}+75 to {ital T}{sub {ital g}}+150. The probe chromophore, 1-dimethylamino-5-sulfonylnaphthalene amide (dansyl amide), is pendant to a trifunctional silane that acts as a cross-linking molecule. In cyclohexanol, the fluorescence anisotropy decay is in agreement with Debye--Stokes--Einstein hydrodynamic theory (rotational diffusion) demonstrating that the cross-linker can be used as a probe of orientational relaxation. The fluorescence anisotropy decays at a rapid rate in an end-linked poly(dimethyl siloxane) network reflecting fast reorientational motion of the cross-link junction. This reorientation appears diffusive and has a temperature dependence in accord with the Williams--Landel--Ferry equation. A model is proposed that suggests that reorientation and translational motion of the cross-link occur simultaneously and are both coupled to fluctuations of the polymer chain ends.

  20. Novel amphiphilic poly(dimethylsiloxane) based polyurethane networks tethered with carboxybetaine and their combined antibacterial and anti-adhesive property

    Science.gov (United States)

    Jiang, Jingxian; Fu, Yuchen; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu

    2017-08-01

    The traditional nonfouling materials are powerless against bacterial cells attachment, while the hydrophobic bactericidal surfaces always suffer from nonspecific protein adsorption and dead bacterial cells accumulation. Here, amphiphilic polyurethane (PU) networks modified with poly(dimethylsiloxane) (PDMS) and cationic carboxybetaine diol through simple crosslinking reaction were developed, which had an antibacterial efficiency of 97.7%. Thereafter, the hydrolysis of carboxybetaine ester into zwitterionic groups brought about anti-adhesive properties against bacteria and proteins. The surface chemical composition and wettability performance of the PU network surfaces were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The surface distribution of PDMS and zwitterionic segments produced an obvious amphiphilic heterogeneous surface, which was demonstrated by atomic force microscopy (AFM). Enzyme-linked immunosorbent assays (ELISA) were used to test the nonspecific protein adsorption behaviors. With the advantages of the transition from excellent bactericidal performance to anti-adhesion and the combination of fouling resistance and fouling release property, the designed PDMS-based amphiphilic PU network shows great application potential in biomedical devices and marine facilities.

  1. Molecular dynamics simulations on desulfurization of n-octane/thiophene mixture using silica filled polydimethylsiloxane nanocomposite membranes

    International Nuclear Information System (INIS)

    Shariatinia, Zahra; Jalali, Azin Mazloom; Taromi, Faramarz Afshar

    2016-01-01

    Molecular dynamics (MD) simulations were performed at 298.15 K and 1 atm in order to study microstructure and transport behaviors of polydimethylsiloxane (PDMS) membranes containing 0%–8% SiO 2 nanoparticles used for the separation of thiophene from n-octane. It was found that the fractional free volume (FFV) of 0% SiO 2 was the highest (47.24%) among five nanocomposite membranes and addition of 2%–8% silica nanoparticles led to dramatic decrease in the FFV of the cells. The x-ray diffraction (XRD) patterns of all membranes showed that they had a semi-crystalline structure containing a broad peak around 15°–18°. The radial distribution function (RDF) analysis proved that the smallest C(CH 2 -octane)–O(SiO 2 ), C(PDMS)–O(SiO 2 ) and H(thiophene)–O(SiO 2 ) distances were present in 4% SiO 2 membrane reflecting the silica–octane, silica–polymer and silica–thiophene interactions were the strongest in this membrane. The mean squared displacement (MSD) and diffusion coefficients of n-octane were both small in the 6% silica membrane but they were high for thiophene suggesting this membrane was the most suitable for the desulfurization process and separation of thiophene from n-octane. (paper)

  2. Comment on “Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: Release mechanisms, partitioning and persistence in air, water, soil and sediments”

    Energy Technology Data Exchange (ETDEWEB)

    Buser, Andreas M., E-mail: andreas.buser@alumni.ethz.ch; Bogdal, Christian; Scheringer, Martin

    2015-02-01

    The review article “Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: Release mechanisms, partitioning and persistence in air, water, soil and sediments” by Surita and Tansel covers a relevant topic, but there are several serious issues with this paper. The inappropriate handling of data gathered from various sources has resulted in a flawed dataset. In addition, the authors performed several erroneous or meaningless calculations with the data. Their dataset leads to incorrect and misleading interpretations and should not be used.

  3. Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG.

    Science.gov (United States)

    Chen, Chunyan; Wang, Jie; Chen, Zhan

    2004-11-09

    Surface structures of several different poly(dimethylsiloxane) (PDMS) materials, tetraethoxysilane-cured hydroxy-terminated PDMS (TEOS-PDMS), platinum-cured vinyl-terminated PDMS (Pt-PDMS), platinum-cured vinyl-terminated poly(diphenylsiloxane)-co-poly(dimethylsiloxane) (PDPS-co-PDMS), and PDMS-co-polystyrene (PDMS-co-PS) copolymer in air and water have been investigated by sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra collected from all PDMS surfaces in both air and water are dominated by methyl group stretches, indicating that all the surfaces are mainly covered by methyl groups. Other than surface-dominating methyl groups, some -Si-CH2-CH2- moieties on the Pt-PDMS surface have also been detected in air, which are present at cross-linking points. Information about the average orientation angle and angle distribution of the methyl groups on the PDMS surface has been evaluated. Surface restructuring of the methyl groups has been observed for all PDMS surfaces in water. Upon contacting water, the methyl groups on all PDMS surfaces tilt more toward the surface. The detailed restructuring behaviors of several PDMS surfaces in water and the effects of molecular weight on restructuring behaviors have been investigated. For comparison, in addition to air and water, surface structures of PDMS materials mentioned above in a nonpolar solvent, FC-75, have also been studied. By comparing the different response of phenyl groups to water on both PDPS-co-PDMS and PS-co-PDMS surfaces, we have demonstrated how the restructuring behaviors of surface phenyl groups are affected by the structural flexibility of the molecular chains where they are attached.

  4. Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films.

    Science.gov (United States)

    Lange, Jeffrey J; Collinson, Maryanne M; Culbertson, Christopher T; Higgins, Daniel A

    2009-12-15

    Single-molecule microscopic methods were used to probe the uptake, mobility, and entrapment of dye molecules in cured poly(dimethylsiloxane) (PDMS) films as a function of oligomer extraction. The results are relevant to the use of PDMS in microfluidic separations, pervaporation, solid-phase microextraction, and nanofiltration. PDMS films were prepared by spin-casting dilute solutions of Sylgard 184 onto glass coverslips, yielding approximately 1.4 microm thick films after curing. Residual oligomers were subsequently extracted from the films by "spin extraction". In this procedure, 200 microL aliquots of isopropyl alcohol were repeatedly dropped onto the film surface and spun off at 2000 rpm. Samples extracted 5, 10, 20, and 40 times were investigated. Dye molecules were loaded into these films by spin-casting nanomolar dye solutions onto the films. Both neutral perylene diimide (N,N'-bis(butoxypropyl)perylene-3,4,9,10-tetracarboxylic diimide) and cationic rhodamine 6G (R6G) dyes were employed. The films were imaged by confocal fluorescence microscopy. The images obtained depict nonzero populations of fixed and mobile molecules in all films. Cross-correlation methods were used to quantitatively determine the population of fixed molecules in a given region, while a Bayesian burst analysis was used to obtain the total population of molecules. The results show that the total amount of dye loaded increases with increased oligomer extraction, while the relative populations of fixed and mobile molecules decrease and increase, respectively. Bulk R6G data also show greater dye loading with increased oligomer extraction.

  5. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics.

    Science.gov (United States)

    Kim, Jeong Hun; Hwang, Ji-Young; Hwang, Ha Ryeon; Kim, Han Seop; Lee, Joong Hoon; Seo, Jae-Won; Shin, Ueon Sang; Lee, Sang-Hoon

    2018-01-22

    The development of various flexible and stretchable materials has attracted interest for promising applications in biomedical engineering and electronics industries. This interest in wearable electronics, stretchable circuits, and flexible displays has created a demand for stable, easily manufactured, and cheap materials. However, the construction of flexible and elastic electronics, on which commercial electronic components can be mounted through simple and cost-effective processing, remains challenging. We have developed a nanocomposite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) elastomer. To achieve uniform distributions of CNTs within the polymer, an optimized dispersion process was developed using isopropyl alcohol (IPA) and methyl-terminated PDMS in combination with ultrasonication. After vaporizing the IPA, various shapes and sizes can be easily created with the nanocomposite, depending on the mold. The material provides high flexibility, elasticity, and electrical conductivity without requiring a sandwich structure. It is also biocompatible and mechanically stable, as demonstrated by cytotoxicity assays and cyclic strain tests (over 10,000 times). We demonstrate the potential for the healthcare field through strain sensor, flexible electric circuits, and biopotential measurements such as EEG, ECG, and EMG. This simple and cost-effective fabrication method for CNT/PDMS composites provides a promising process and material for various applications of wearable electronics.

  6. Method for Measurement of Multi-Degrees-of-Freedom Motion Parameters Based on Polydimethylsiloxane Cross-Coupling Diffraction Gratings

    Science.gov (United States)

    Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen

    2017-08-01

    This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.

  7. Pulsed NMR studies of crosslinking and entanglements in high molecular weight linear polydimethylsiloxanes

    International Nuclear Information System (INIS)

    Folland, R.; Charlesby, A.

    1977-01-01

    Pulsed NMR studies of proton spin relaxation are used to investigate both radiation-induced cross linking and entanglements in three high molecular weight linear polydimethylsiloxanes (Msub(w) = 26,000, 63,000 and 110,000). Particular emphasis is placed on the spin-spin relaxation since this is determined by the slower relative translational motions of the polymer chains and hence profoundly affected by the presence of intermolecular couplings such as crosslinks or entanglements. The spin-lattice relaxation times, T 1 , are determined by the fast anisotropic chain rotations and are rather insensitive to such intermolecular couplings. The spin-spin relaxation in these materials is represented by a double exponential decay involving two time constants, Tsub(2S) and Tsub(2L). The shorter component, Tsub(2S), is attributed to network material, which may be either of a dynamic form arising from temporary entanglements or of a permanent nature due to crosslinks. The concentration of entanglements depends on the initial molecular weight of the sample whereas the concentration of crosslinks is a function of the radiation dose. The longer component, Tsub(2L), is attributed to the non-network molecules. On the time scale of the NMR measurements the entanglements are shown to act in the same way as crosslinks. The variation of the relative proportions of network and non-network material with dose is shown to be accounted for by using standard gelation theory when allowance is made for the initial effective crosslink density due to entanglements. The analysis provides a value for the average molecular weight per entanglement point of 27,000 +- 1000 which is consistent with the critical molecular weight for entanglements of 29,000. The dependences of Tsub(2S) and Tsub(2L) on dose and molecular weight are also discussed in terms of the molecular motion. (author)

  8. Optical properties of thin films of zinc oxide quantum dots and polydimethylsiloxane: UV-blocking and the effect of cross-linking.

    Science.gov (United States)

    Eita, Mohamed; El Sayed, Ramy; Muhammed, Mamoun

    2012-12-01

    Thin films of polydimethylsiloxane (PDMS) and ZnO quantum dots (QDs) were built up as multilayers by spin-coating. The films are characterized by a UV-blocking ability that increases with increasing number of bilayers. Photoluminescence (PL) emission spectra of the thin films occur at 522 nm, which is the PL wavelength of the ZnO QDs dispersion, but with a lower intensity and a quantum yield (QY) less than 1% that of the dispersion. Cross-linking has introduced new features to the absorption spectra in that the absorption peak was absent. These changes were attributed to the morphological and structural changes revealed by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR), respectively. TEM showed that the ZnO particle size in the film increased from 7 (±2.7) nm to 16 (±7.8) upon cross-linking. The FTIR spectra suggest that ZnO QDs are involved in the cross-linking of PDMS and that the surface of the ZnO QDs has been chemically modified. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Analysis of Hypodermic Needles and Syringes for the Presence of Blood and Polydimethylsiloxane (Silicone) Utilizing Microchemical Tests and Infrared Spectroscopy.

    Science.gov (United States)

    Crowe, John B; Lanzarotta, Adam; Witkowski, Mark R; Andria, Sara E

    2015-07-01

    Suspect hypodermic needles and syringes were seized from an unlicensed individual who was allegedly injecting patients with silicone (polydimethylsiloxane [PDMS]) for cosmetic enhancement. Since control syringe barrels and needles often contain an interfering PDMS lubricant, a risk for false positives of foreign PDMS exists. The focus of this report was to minimize this risk and determine a quick and reliable test for the presence of blood in PDMS matrices. Using ATR-FT-IR spectroscopy, the risk for false-positive identification of foreign PDMS was reduced by (i) overfilling the sampling aperture to prevent spectral distortions and (ii) sampling a region of the suspect syringe/needle assembly where manufacturer-applied PDMS is not typically located. Analysis for blood indicated that the Teichman microchemical test was effective for detecting blood in the presence of PDMS. Overall, detecting PDMS established intent and detecting blood established that the needle containing the PDMS had been used for injection. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. Application of Needle Trap Device Packed with Polydimethylsiloxane for Determination of Carbon Tetrachloride and Trichloroethylene in Air

    Directory of Open Access Journals (Sweden)

    M. Heidari

    2014-04-01

    Full Text Available Introduction & Objective: The use of modern microextraction techniques for determination and evaluation of pollutants is progressively increasing nowadays. Needle trap microextraction (NTME technique has privileges compared to the other techniques for sampling occupa-tional and environmental pollutants from air. In this study the application of NTD technique packed with polydimethylsiloxane as sorbent for determination of two organohalogen com-pounds (carbon tetrachloride and trichloroethylene was investigated. Material & Methods: In this experimental study NTDs were prepared with the same length of proposed sorbent and used after calibration of sampling pump. The parameters related to per-formance of NTD and proposed sorbent including temperature and relative humidity, sam-pling storage time and breakthrough volume were investigated. In analytical performances, the capability of NTD on time and temperature of desorption also carryover of analytes were assessed. Finally, the results for NTD microextraction e were compared to the NIOSH 1003 method. Results: Results have shown that, temperature and relative humidity had effects on the per-formance of NTD and it's sorbent, and NTD contained PDMS showed better performance in the lower temperature and relative humidity at the range of assessment. The performance of NTD and it's sorbent for storage of sampled analytes was more than 95% of analytes mass after 4 days of sampling. The proposed technique also showed a good performance for de-sorption parameters and desorption temperature and time was 290?C and 4 minutes, respec-tively. After desorption, the carryover was also investigated and measured as 4 min. Relative standard division (RSD for repeatability of method for NTD from different concentration levels of 1-250 µgL-1were 4.1-7.5%. Conclusions: The NTD technique as an active sampling method with high enrichment factor showed a good performance for sampling and analysis of volatile organohalogen

  11. Identification of defensive compounds in metathoracic glands of adults of the stink bug Dichelops melacanthus (Hemiptera: Pentatomidae)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Francisco A.; Wendler, Edison P.; Maia, Beatriz Helena L.N. Sales [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica]. E-mail: francisco.marques@pesquisador.cnpq.br; Ventura, Mauricio U.; Arruda-Gatti, Iara Cintra [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Agrarias. Dept. de Agronomia

    2007-07-01

    The contents of metathoracic glands of adults of the stink bug Dichelops melacanthus (Hemiptera: Pentatomidae) were analyzed. Compounds were identified by gas chromatography (GC), coupled GC-mass spectrometry and matching retention indices and mass spectra with those of authentic samples. Tridecane was the major component followed by lesser and approximately equal amounts of (E)-4-oxo-2-hexenal and (E)-2-octenal. Other compounds identified include (E)-2-hexenal, decane, (E)-2-hexenyl acetate, undecane, (E)-4-oxo-2-octenal, dodecane, (E)-2-octenyl acetate, 1-tridecene, tetradecane and pentadecane. (author)

  12. Identification of defensive compounds in metathoracic glands of adults of the stink bug Dichelops melacanthus (Hemiptera: Pentatomidae)

    International Nuclear Information System (INIS)

    Marques, Francisco A.; Wendler, Edison P.; Maia, Beatriz Helena L.N. Sales; Ventura, Mauricio U.; Arruda-Gatti, Iara Cintra

    2007-01-01

    The contents of metathoracic glands of adults of the stink bug Dichelops melacanthus (Hemiptera: Pentatomidae) were analyzed. Compounds were identified by gas chromatography (GC), coupled GC-mass spectrometry and matching retention indices and mass spectra with those of authentic samples. Tridecane was the major component followed by lesser and approximately equal amounts of (E)-4-oxo-2-hexenal and (E)-2-octenal. Other compounds identified include (E)-2-hexenal, decane, (E)-2-hexenyl acetate, undecane, (E)-4-oxo-2-octenal, dodecane, (E)-2-octenyl acetate, 1-tridecene, tetradecane and pentadecane. (author)

  13. Emphasizing the role of surface chemistry on hydrophobicity and cell adhesion behavior of polydimethylsiloxane/TiO2 nanocomposite films.

    Science.gov (United States)

    Yousefi, Seyedeh Zahra; Tabatabaei-Panah, Pardis-Sadat; Seyfi, Javad

    2018-07-01

    Improving the bioinertness of materials is of great importance for developing biomedical devices that contact human tissues. The main goal of this study was to establish correlations among surface morphology, roughness and chemistry with hydrophobicity and cell adhesion in polydimethylsiloxane (PDMS) nanocomposites loaded with titanium dioxide (TiO 2 ) nanoparticles. Firstly, wettability results showed that the nanocomposite loaded with 30 wt.% of TiO 2 exhibited a superhydrophobic behavior; however, the morphology and roughness analysis proved that there was no discernible difference between the surface structures of samples loaded with 20 and 30 wt.% of nanoparticles. Both cell culture and MTT assay experiments showed that, despite the similarity between the surface structures, the sample loaded with 30 wt.% nanoparticles exhibits the greatest reduction in the cell viability (80%) as compared with the pure PDMS film. According to the X-ray photoelectron spectroscopy results, the remarkable reduction in cell viability of the superhydrophobic sample could be majorly attributed to the role of surface chemistry. The obtained results emphasize the importance of adjusting the surface properties especially surface chemistry to gain the optimum cell adhesion behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Analysis of Endogenous Alkanes and Aldehydes in the Exhaled Breath of Workers Exposed to Silica Containing Dust

    Directory of Open Access Journals (Sweden)

    Mahdi Jalali

    2015-03-01

    Full Text Available Background & Objectives : Silica is one of the most air pollutant in workplaces which long-term occupational exposure to silica is associated with an increased risk for respiratory diseases such as silicosis. Silicosis is an oxidative stress related disease and can lead to the development of lung cancer. This study aims to analysis of endogenous alkanes and aldehydes in the exhaled breath of workers exposed to silica containing dusts. Methods: In this study, the exhaled breath of 20 workers exposed to silica containing dust (case group, 20 healthy non-smokers and 25 healthy smokers (control group were analyzed. The breath samples using 3-liter Tedlar bags were collected. The volatile organic compounds (VOCs were extracted with solid phase micro-extraction (SPME and analyzed using gas chromatography-mass spectrometry (GC- MS. Result: Totally, thirty nine VOCs were found in all breath samples (at least once. Aldehydes and alkanes such as acetaldehyde, hexanal, nonanal, decane, pentadecane, 2-methle propane, 3-methyle pentane and octane were detected in the exhaled breath subjects. Among the these compounds, mean peak area of acetaldehyde, hexanal, nonanal, decane and pentadecane were higher in the exhaled breath of an case group than control groups (Pvalue<0.05 . Conclusions : The use of exhaled breath analysis as well as new media in the occupational toxicology and exposure biomarker assessment studies. It seems that acetaldehyde, hexanal, nonanal, decane and pentadecane can be considered as useful breath biomarkers for exposure assessment of silica containing dust. However, additional studies are needed to confirm thes results.

  15. Low-cost fabrication and performance testing of Polydimethylsiloxane (PDMS) micromixers using an improved print-and-Peel (PAP) method

    Science.gov (United States)

    Abagon, Ma. Victoria; Buendia, Neil Daniel; Jasper Caracas, Corine; July Yap, Kristian

    2018-03-01

    The research presents different configurations of microfluidic mixers made from polydimethylsiloxane (PDMS) fabricated using an improved, low-cost print-and-peel (PAP) method. Processes, such as mixing, operated in the micro scale allow decreased equipment size-to-production capacity ratio and decreased energy consumption per unit product. In the study, saturated solutions of blue and yellow food dyes were introduced inside the channels using a LEGO® improvised microsyringe pump. Scanning Electron Microscopy (SEM) was used to determine the average depth of the fabricated micromixers which was found to be around 14 ¼m. The flows were observed and images were taken using a light microscope. The color intensities of the images were then measured using MATLAB®. From the relationship between color intensity and concentration, the mixing indices were calculated and found to be 0.9435 to 0.9941, which falls within the standard mixing index range (0.8 - 1.0) regardless of the flow rate and the configuration of the micromixer as verified through the two-way ANOVA. From the cost analysis, the cost of the device fabricated in this study is a hundred-fold less than expenses from standard fabrication procedures. Hence, the fabricated device provides an alternative for micromixers produced from expensive and conventional lithographic methods.

  16. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars.

    Science.gov (United States)

    Park, Heun; Jeong, Yu Ra; Yun, Junyeong; Hong, Soo Yeong; Jin, Sangwoo; Lee, Seung-Jung; Zi, Goangseup; Ha, Jeong Sook

    2015-10-27

    We report on the facile fabrication of a stretchable array of highly sensitive pressure sensors. The proposed pressure sensor consists of the top layer of Au-deposited polydimethylsiloxane (PDMS) micropillars and the bottom layer of conductive polyaniline nanofibers on a polyethylene terephthalate substrate. The sensors are operated by the changes in contact resistance between Au-coated micropillars and polyaniline according to the varying pressure. The fabricated pressure sensor exhibits a sensitivity of 2.0 kPa(-1) in the pressure range below 0.22 kPa, a low detection limit of 15 Pa, a fast response time of 50 ms, and high stability over 10000 cycles of pressure loading/unloading with a low operating voltage of 1.0 V. The sensor is also capable of noninvasively detecting human-pulse waveforms from carotid and radial artery. A 5 × 5 array of the pressure sensors on the deformable substrate, which consists of PDMS islands for sensors and the mixed thin film of PDMS and Ecoflex with embedded liquid metal interconnections, shows stable sensing of pressure under biaxial stretching by 15%. The strain distribution obtained by the finite element method confirms that the maximum strain applied to the pressure sensor in the strain-suppressed region is less than 0.04% under a 15% biaxial strain of the unit module. This work demonstrates the potential application of our proposed stretchable pressure sensor array for wearable and artificial electronic skin devices.

  17. Tailored adhesion behavior of polyelectrolyte thin films deposited on plasma-treated poly(dimethylsiloxane) for functionalized membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bassil, Joelle, E-mail: joelle.bassil@univ-lorraine.fr [Institut Jean Lamour (IJL), UMR CNRS 7198, Université de Lorraine, Parc de Saurupt CS50840, 54011 Nancy (France); Alem, Halima, E-mail: halima.alem@univ-lorraine.fr [Institut Jean Lamour (IJL), UMR CNRS 7198, Université de Lorraine, Parc de Saurupt CS50840, 54011 Nancy (France); Henrion, Gérard, E-mail: gerard.henrion@univ-lorraine.fr [Institut Jean Lamour (IJL), UMR CNRS 7198, Université de Lorraine, Parc de Saurupt CS50840, 54011 Nancy (France); Roizard, Denis, E-mail: denis.roizard@univ-lorraine.fr [Laboratoire Réactions et Génie des Procédés (LRGP), UMR CNRS 7274, ENSIC, Université de Lorraine, 1 rue Grandville, 54011 Nancy (France)

    2016-04-30

    Graphical abstract: - Highlights: • The surface of PDMS membrane was first modified by Ar/O{sub 2} plasma to increase its surface energy. • Subsequently, a homogeneous multilayer of the well-known couple of polyelectrolyte PDADMAC/PSS was deposited on the plasma treated PDMS. • The relation between the parameters of the modification processes and the morphology, wettability, structure and adhesion of the polyelectrolytes layers based PDMS membranes is investigated and enlightened. - Abstract: Completely homogenous films formed via the layer-by-layer assembly of poly(diallyldimethylammonium chloride) (PDADMAC) and the poly(styrene sulfonate) were successfully obtained on plasma-treated poly(dimethylsiloxane) (PDMS) substrates. To modify the hydrophobicity of the PDMS surface, a cold plasma treatment was previously applied to the membrane, which led to the creation of hydrophilic groups on the surface of the membrane. PDMS wettability and surface morphology were successfully correlated with the plasma parameters. A combination of contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis was used to demonstrate that homogeneous and hydrophilic surfaces could be achieved on PDMS cold-plasma-treated membranes. The stability of the assembled PEL layer on the PDMS was evaluated using a combination of pull-off testing and X-ray photoelectron spectroscopy (XPS), which confirmed the relevance of a plasma pre-treatment as the adhesion of the polyelectrolyte multilayers was greatly enhanced when the deposition was completed on an activated PDMS surface at 80 W for 5 min.

  18. Atomic force microscopy and nanoindentation investigation of polydimethylsiloxane elastomeric substrate compliancy for various sputtered thin film morphologies.

    Science.gov (United States)

    Maji, Debashis; Das, Soumen

    2018-03-01

    Crack free electrically continuous metal thin films over soft elastomeric substrates play an integral part in realization of modern day flexible bioelectronics and biosensors. Under nonoptimized deposition conditions, delamination, and/or cracking of the top film as well as the underlying soft substrate hinders optimal performance of these devices. Hence it is very important to understand and control not only the various deposition factors like power, time, or deposition pressure but also investigate the various interfacial physics playing a critical role in assuring thin film adhesion and substrate compliancy. In the present study, various nanomechanical information of the underlying substrate, namely, crack profile, average roughness, Young's modulus, and adhesion force were studied for uncracked and cracked polydimethylsiloxane (PDMS) surfaces along with pristine and conventional plasma treated PDMS samples as control. Quantification of the above parameters were done using three-dimensional surface profiler, scanning electron microscopy, nanoindentation, and atomic force microscopy techniques to elucidate the modulus range, average roughness, and adhesion force. Comparative analysis with control revealed remarkable similarity between increased modulus values, increased surface roughness, and reduced adhesion force accounting for reduced substrate compliancy and resulting in film cracking or buckling which are critical for development of various bioflexible devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 725-737, 2018. © 2017 Wiley Periodicals, Inc.

  19. Single molecule studies of solvent-dependent diffusion and entrapment in poly(dimethylsiloxane) thin films.

    Science.gov (United States)

    Lange, Jeffrey J; Culbertson, Christopher T; Higgins, Daniel A

    2008-12-15

    Single molecule microscopic and spectroscopic methods are employed to probe the mobility and physical entrapment of dye molecules in dry and solvent-loaded poly(dimethylsiloxane) (PDMS) films. PDMS films of approximately 220 nm thickness are prepared by spin casting dilute solutions of Sylgard 184 onto glass coverslips, followed by low temperature curing. A perylene diimide dye (BPPDI) is used to probe diffusion and molecule-matrix interactions. Two classes of dye-loaded samples are investigated: (i) those incorporating dye dispersed throughout the films ("in film" samples) and (ii) those in which the dye is restricted primarily to the PDMS surface ("on film" samples). Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase. A PDMS-coated quartz-crystal microbalance is employed to monitor solvent loading and drying of the PDMS and to ensure equilibrium conditions are achieved. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. Quantitative methods for counting the fluorescent spots produced by immobile single molecules in optical images of the samples demonstrate that the population of mobile molecules increases nonlinearly with IPA loading. Even under IPA saturated conditions, the population of fixed molecules is found to be greater than zero and is greatest for "in film" samples. Fluorescence correlation spectroscopy is used to measure the apparent diffusion coefficient for the mobile molecules, yielding a mean value of D = 1.4(+/-0.4) x 10(-8) cm(2)/s that is virtually independent of IPA loading and sample class. It is concluded that a nonzero population of dye molecules is physically entrapped within the PDMS matrix under all conditions. The increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly

  20. Desorption atmospheric pressure photoionization with polydimethylsiloxane as extraction phase and sample plate material

    International Nuclear Information System (INIS)

    Vaikkinen, A.; Kotiaho, T.; Kostiainen, R.; Kauppila, T.J.

    2010-01-01

    Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry (MS) that can be used to ionize polar as well as neutral and completely non-polar analytes. In this study polydimethylsiloxane (PDMS) was used as a solid phase extraction sorbent for DAPPI-MS analysis. Pieces of PDMS polymer were soaked in an aqueous sample, where the analytes were sorbed from the sample solution to PDMS. After this, the extracted analytes were desorbed directly from the polymer by the hot DAPPI spray solvent plume, without an elution step. Swelling and extracting the PDMS with a cleaning solvent prior to extraction diminished the high background in the DAPPI mass spectrum caused by PDMS oligomers. Acetone, hexane, pentane, toluene, diisopropylamine and triethylamine were tested for this purpose. The amines were most efficient in reducing the PDMS background, but they also suppressed the signals of low proton affinity analytes. Toluene was chosen as the optimum cleaning solvent, since it reduced the PDMS background efficiently and gave intensive signals of most of the studied analytes. The effects of DAPPI spray solvents toluene, acetone and anisole on the PDMS background and the ionization of analytes were also compared and extraction conditions were optimized. Anisole gave a low background for native PDMS, but toluene ionized the widest range of analytes. Analysis of verapamil, testosterone and anthracene from purified, spiked wastewater was performed to demonstrate that the method is suited for in-situ analysis of water streams. In addition, urine spiked with several analytes was analyzed by the PDMS method and compared to the conventional DAPPI procedure, where sample droplets are applied on PMMA surface. With the PDMS method the background ion signals caused by the urine matrix were lower, the S/N ratios of analytes were 2-10 times higher, and testosterone, anthracene and benzo[a]pyrene that were not detected from PMMA in urine

  1. Desorption atmospheric pressure photoionization with polydimethylsiloxane as extraction phase and sample plate material

    Energy Technology Data Exchange (ETDEWEB)

    Vaikkinen, A. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kotiaho, T. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Kostiainen, R. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kauppila, T.J., E-mail: tiina.kauppila@helsinki.fi [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland)

    2010-12-03

    Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry (MS) that can be used to ionize polar as well as neutral and completely non-polar analytes. In this study polydimethylsiloxane (PDMS) was used as a solid phase extraction sorbent for DAPPI-MS analysis. Pieces of PDMS polymer were soaked in an aqueous sample, where the analytes were sorbed from the sample solution to PDMS. After this, the extracted analytes were desorbed directly from the polymer by the hot DAPPI spray solvent plume, without an elution step. Swelling and extracting the PDMS with a cleaning solvent prior to extraction diminished the high background in the DAPPI mass spectrum caused by PDMS oligomers. Acetone, hexane, pentane, toluene, diisopropylamine and triethylamine were tested for this purpose. The amines were most efficient in reducing the PDMS background, but they also suppressed the signals of low proton affinity analytes. Toluene was chosen as the optimum cleaning solvent, since it reduced the PDMS background efficiently and gave intensive signals of most of the studied analytes. The effects of DAPPI spray solvents toluene, acetone and anisole on the PDMS background and the ionization of analytes were also compared and extraction conditions were optimized. Anisole gave a low background for native PDMS, but toluene ionized the widest range of analytes. Analysis of verapamil, testosterone and anthracene from purified, spiked wastewater was performed to demonstrate that the method is suited for in-situ analysis of water streams. In addition, urine spiked with several analytes was analyzed by the PDMS method and compared to the conventional DAPPI procedure, where sample droplets are applied on PMMA surface. With the PDMS method the background ion signals caused by the urine matrix were lower, the S/N ratios of analytes were 2-10 times higher, and testosterone, anthracene and benzo[a]pyrene that were not detected from PMMA in urine

  2. Performance of polydimethylsiloxane membrane contactor process for selective hydrogen sulfide removal from biogas.

    Science.gov (United States)

    Tilahun, Ebrahim; Bayrakdar, Alper; Sahinkaya, Erkan; Çalli, Bariş

    2017-03-01

    H 2 S in biogas affects the co-generation performance adversely by corroding some critical components within the engine and it has to be removed in order to improve the biogas quality. This work presents the use of polydimethylsiloxane (PDMS) membrane contactor for selective removal of H 2 S from the biogas. Experiments were carried out to evaluate the effects of different pH of absorption liquid, biogas flowrate and temperature on the absorption performances. The results revealed that at the lowest loading rate (91mg H 2 S/m 2 ·h) more than 98% H 2 S and 59% CO 2 absorption efficiencies were achieved. The CH 4 content in the treated gas increased from 60 to 80% with nearly 5% CH 4 loss. Increasing the pH (7-10) and loading rate (91-355mg H 2 S/m 2 ·h) enhanced the H 2 S absorption capacity, and the maximum H 2 S/CO 2 and H 2 S/CH 4 selectivity factors were 2.5 and 58, respectively. Temperature played a key role in the process and lower temperature was beneficial for intensifying H 2 S absorption performance. The highest H 2 S fluxes at pH 10 and 7 were 3.4g/m 2 ·d and 1.8g/m 2 ·d with overall mass transfer coefficients of 6.91×10 -6 and 4.99×10 -6 m/s, respectively. The results showed that moderately high H 2 S fluxes with low CH 4 loss may be achieved by using a robust and cost-effective membrane based absorption process for desulfurization of biogas. A tubular PDMS membrane contactor was tested for the first time to remove H 2 S from biogas under slightly alkaline conditions and the suggested process could be a promising for real scale applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Deoxygenation of Palmitic and Lauric Acids over Pt/ZIF-67 Membrane/Zeolite 5A Bead Catalysts.

    Science.gov (United States)

    Yang, Liqiu; Carreon, Moises A

    2017-09-20

    The deoxygenation of palmitic and lauric acids over 0.5 wt % Pt/ZIF-67 membrane/zeolite 5A bead catalysts is demonstrated. Almost complete conversion (% deoxygenation of ≥95%) of these two fatty acids was observed over both fresh and recycled catalyst after a 2 h reaction time. The catalysts displayed high selectivity to pentadecane and undecane via decarboxylation reaction pathway even at low 0.5 wt % Pt loading. Selectivity to pentadecane and undecane as high as ∼92% and ∼94% was observed under CO 2 atmosphere when palmitic and lauric acids were used respectively as reactants. Depending on the reaction gas atmosphere, two distinctive reaction pathways were observed: decarboxylation and hydrodeoxygenation. Specifically, it was found that decarboxylation reaction pathway was more favorable in the presence of helium and CO 2 , while hydrodeoxygenation pathway strongly competed against the decarboxylation pathway when hydrogen was employed during the deoxygenation reactions. Esters were identified as the key reaction intermediates leading to decarboxylation and hydrodeoxygenation pathways.

  4. Investigations on effects of the hole size to fix electrodes and interconnection lines in polydimethylsiloxane

    Science.gov (United States)

    Behkami, Saber; Frounchi, Javad; Ghaderi Pakdel, Firouz; Stieglitz, Thomas

    2017-11-01

    Translational research in bioelectronics medicine and neural implants often relies on established material assemblies made of silicone rubber (polydimethylsiloxane-PDMS) and precious metals. Longevity of the compound is of utmost importance for implantable devices in therapeutic and rehabilitation applications. Therefore, secure mechanical fixation can be used in addition to chemical bonding mechanisms to interlock PDMS substrate and insulation layers with metal sheets for interconnection lines and electrodes. One of the best ways to fix metal lines and electrodes in PDMS is to design holes in electrode rims to allow for direct interconnection between top to bottom layer silicone. Hence, the best layouts and sizes of holes (up to 6) which provide sufficient stability against lateral and vertical forces have been investigated with a variety of numbers of hole in line electrodes, which are simulated and fabricated with different layouts, sizes and materials. Best stability was obtained with radii of 100, 72 and 62 µm, respectively, and a single central hole in aluminum, platinum and MP35N foil line electrodes of 400  ×  500 µm2 size and of thickness 20 µm. The study showed that the best hole size which provides line electrode immobility (of thickness less than 30 µm) within a central hole is proportional to reverse value of Young’s Modulus of the material used. Thus, an array of line electrodes was designed and fabricated to study this effect. Experimental results were compared with simulation data. Subsequently, an approximation curve was generated as design rule to propose the best radius to fix line electrodes according to the material thickness between 10 and 200 µm using PDMS as substrate material.

  5. In Vitro Characterization of the Biomimetic Properties of Poly(dimethylsiloxane) To Simulate Oral Drug Absorption.

    Science.gov (United States)

    Sinko, Patrick D; Gidley, David; Vallery, Richard; Lamoureux, Aaron; Amidon, Gordon L; Amidon, Gregory E

    2017-12-04

    The potential use of poly(dimethylsiloxane) (PDMS) as an in vitro biomimetic analogue of the passive drug absorption process in the human gastrointestinal tract (GI) is assessed. PDMS is biomimetic because of similarities in small molecule transport, such as mechanism, ionization selectivity, lipophilicity. Nine molecular probes are used to evaluate the transport pathways and properties used to predict human oral absorption rates. The transport pathways through PDMS (bulk/pore) are analogous to transcellular (TCDT) and paracellular (PCDT) drug transport pathways. PDMS PCDT is assessed using positronium annihilation lifetime spectroscopy (PALS) and partition experiments; TCDT using diffusion and partition experiments. PALS determined that PDMS pores were uniform (D ∼ 0.85 nm), isolated, and void volume was unaffected by drug accumulation after equilibrium partitioning. Therefore, there is no PCDT or convective flow through PDMS. A strong linear correlation exists between predicted octanol-water partition coefficients and PDMS partition coefficients (LogK PDMS = 0.736 × LogP O-W - 0.971, R 2 = 0.981). The pH-partition hypothesis is confirmed in PDMS using ibuprofen over pH 2-12. Diffusivity through PDMS is a function of lipophilicity and polar surface area K × D PDMS = 4.46 × 10 -8 × e 2.91×LogK PDMS (R 2 = 0.963) and [Formula: see text] (R 2 = 0.973). Varying the mass% of curing agent changed the lipophilicity and diffusivity (p < 0.02), but not practically (K × D = 2.23 × 10 -5 cm 2 s -1 vs 2.60 × 10 -5 cm 2 s -1 ), and does affect elastic modulus (3.2% = 0.3 MPa to 25% = 3.2 MPa).

  6. Development of a polydimethylsiloxane-thymol/nitroprusside composite based sensor involving thymol derivatization for ammonium monitoring in water samples.

    Science.gov (United States)

    Prieto-Blanco, M C; Jornet-Martínez, N; Moliner-Martínez, Y; Molins-Legua, C; Herráez-Hernández, R; Verdú Andrés, J; Campins-Falcó, P

    2015-01-15

    This report describes a polydimethylsiloxane (PDMS)-thymol/nitroprusside delivery composite sensor for direct monitoring of ammonium in environmental water samples. The sensor is based on a PDMS support that contains the Berthelot's reaction reagents. To prepare the PDMS-thymol/nitroprusside composite discs, thymol and nitroprusside have been encapsulated in the PDMS matrix, forming a reagent release support which significantly simplifies the analytical measurements, since it avoids the need to prepare derivatizing reagents and sample handling is reduced to the sampling step. When, the PDMS-thymol/nitroprusside composite was introduced in water samples spontaneous release of the chromophore and catalyst was produced, and the derivatization reaction took place to form the indothymol blue. Thus, qualitative analysis of NH4(+) could be carried out by visual inspection, but also, it can be quantified by measuring the absorbance at 690 nm. These portable devices provided good sensitivity (LODdetection of ammonium. The PDMS-NH4(+) sensor has been successfully applied to determine ammonium in water samples and in the aqueous extracts of particulate matter PM10 samples. Moreover, the reliability of the method for qualitative analysis has been demonstrated. Finally, the advantages of the PDMS-NH4(+) sensor have been examined by comparing some analytical and complementary characteristics with the properties of well-established ammonium determination methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Polydimethylsiloxane/MIL-100(Fe) coated stir bar sorptive extraction-high performance liquid chromatography for the determination of triazines in environmental water samples.

    Science.gov (United States)

    Lei, Yun; Chen, Beibei; You, Linna; He, Man; Hu, Bin

    2017-12-01

    Polydimethylsiloxane (PDMS)/MIL-100(Fe) coated stir bar was prepared by sol gel technique, and good preparation reproducibility was achieved with relative standard deviations (RSDs) ranging from 2.6% to 7.5% (n=7) and 3.6% to 10.8% (n=7) for bar-to-bar and batch-to-batch, respectively. Compared with commercial PDMS coated stir bar (Gerstel) and PEG coated stir bar (Gerstel), the prepared PDMS/MIL-100(Fe) stir bar showed better extraction efficiency for target triazines compounds. It also exhibited relatively fast extraction/desorption kinetics and long lifespan. Based on it, a method of PDMS/MIL-100(Fe) coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detector (HPLC-UV) was developed for the determination of six triazines (simazine, atrazine, prometon, ametryn, prometryne and prebane) in environmental water samples. Several parameters affecting SBSE of six target triazines including extraction time, stirring rate, sample pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.021-0.079μgL -1 . The repeatability RSDs were in the range of 2.3-6.3% (n=7, c=0.5μgL -1 ) and the enrichment factors (EFs) ranged from 51.1 to 102-fold (theoretical EF was 200-fold). The proposed method was applied to the analysis of target triazines in environmental water samples, with recoveries of 98.0-118% and 94.0-107% for spiked East Lake water and local pond water samples, respectively. Copyright © 2017. Published by Elsevier B.V.

  8. Comparison of lipase-catalyzed synthesis of cyclopentadecanolide ...

    African Journals Online (AJOL)

    Methyl 15-hydroxy-pentadecanate, which is made from Malana oleifera chum oil, is an ideal material to synthesize cyclopentadecanolide, an important macrocycle musk, with wide applications in the fields of perfume, cosmetic, food and medicine, etc. One kind of screened lipase from Candida sp.GXU08 strain was used to ...

  9. Bio-inspired enhancement of friction and adhesion at the polydimethylsiloxane-intestine interface and biocompatibility characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongyu, E-mail: zhanghyu@tsinghua.edu.cn [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Wang, Yi [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Vasilescu, Steven [School of Mathematics and Physical Science, Faculty of Science, University of Technology Sydney, New South Wales 2007 (Australia); Gu, Zhibin [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, Tao [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2017-05-01

    An active navigation of self-propelled miniaturized robot along the intestinal tract without injuring the soft tissue remains a challenge as yet. Particularly in this case an effective control of the interfacial friction and adhesion between the material used and the soft tissue is crucial. In the present study, we investigated the frictional and adhesive properties between polydimethylsiloxane (PDMS, microscopically patterned with micro-pillar arrays and non-patterned with a flat surface) and rabbit small intestinal tract using a universal material tester. The friction coefficient-time plot and adhesive force-time plot were recorded during the friction test (sliding speed: 0.25 mm/s; normal loading: 0.4 N) and adhesion test (preloading: 0.5 N; hoisting speed: 2.5 × 10{sup −3} mm/s). In addition, biocompatibility of the PDMS samples was characterized in terms of cell morphology (scanning electron microscope) and cell cytotoxicity (alamarBlue assay) using human vascular endothelial cells (HUVECs). The results demonstrated that the interfacial friction (0.27 vs 0.19) and adhesion (34.9 mN vs 26.7 mN) were greatly increased using microscopically patterned PDMS, in comparison with non-patterned PDMS. HUVECs adhered to and proliferated on non-patterned/microscopically patterned PDMS very well, with a relative cell viability of about 90% following seeding at 1 d, 3 d, and 5 d. The favorable enhancement of the frictional and adhesive properties, along with the excellent biocompatibility of the microscopically patterned PDMS, makes it a propitious choice for clinical application of self-propelled miniaturized robots. - Highlights: • Micro-pillars enhanced friction and adhesion between PDMS and intestinal tract. • Micro-patterned PDMS showed good cell morphology and cytotoxicity using HUVECs. • Micro-pattern technology may be applied in self-propelled miniaturized robot.

  10. Bio-inspired enhancement of friction and adhesion at the polydimethylsiloxane-intestine interface and biocompatibility characterization

    International Nuclear Information System (INIS)

    Zhang, Hongyu; Wang, Yi; Vasilescu, Steven; Gu, Zhibin; Sun, Tao

    2017-01-01

    An active navigation of self-propelled miniaturized robot along the intestinal tract without injuring the soft tissue remains a challenge as yet. Particularly in this case an effective control of the interfacial friction and adhesion between the material used and the soft tissue is crucial. In the present study, we investigated the frictional and adhesive properties between polydimethylsiloxane (PDMS, microscopically patterned with micro-pillar arrays and non-patterned with a flat surface) and rabbit small intestinal tract using a universal material tester. The friction coefficient-time plot and adhesive force-time plot were recorded during the friction test (sliding speed: 0.25 mm/s; normal loading: 0.4 N) and adhesion test (preloading: 0.5 N; hoisting speed: 2.5 × 10 −3 mm/s). In addition, biocompatibility of the PDMS samples was characterized in terms of cell morphology (scanning electron microscope) and cell cytotoxicity (alamarBlue assay) using human vascular endothelial cells (HUVECs). The results demonstrated that the interfacial friction (0.27 vs 0.19) and adhesion (34.9 mN vs 26.7 mN) were greatly increased using microscopically patterned PDMS, in comparison with non-patterned PDMS. HUVECs adhered to and proliferated on non-patterned/microscopically patterned PDMS very well, with a relative cell viability of about 90% following seeding at 1 d, 3 d, and 5 d. The favorable enhancement of the frictional and adhesive properties, along with the excellent biocompatibility of the microscopically patterned PDMS, makes it a propitious choice for clinical application of self-propelled miniaturized robots. - Highlights: • Micro-pillars enhanced friction and adhesion between PDMS and intestinal tract. • Micro-patterned PDMS showed good cell morphology and cytotoxicity using HUVECs. • Micro-pattern technology may be applied in self-propelled miniaturized robot.

  11. Determination of 222Rn in water by absorption in polydimethylsiloxane mixed with activated carbon and gamma-ray spectrometry: An example application in the radon budget of Paterno submerged sinkhole (Central Italy)

    International Nuclear Information System (INIS)

    Voltaggio, M.; Spadoni, M.

    2013-01-01

    Highlights: ► Polydimethylsiloxane and Activated Carbon were used as passive gas accumulator. ► Water-impermeable properties of PDMS combine with adsorptive properties of AC. ► PDMS–AC accumulators can be used to study 222 Rn in water. ► Measured 222 Rn specific activity in PDMS–AC matches the theoretical results. ► We used PDMS–AC in the radon budget of a submerged sinkhole. - Abstract: Passive gas accumulators made of polydimethylsiloxane (PDMS) mixed with activated C (AC) were studied to measure their efficiency for sampling Rn in water. In this composite the water-impermeable properties of PDMS act synergistically with adsorptive properties of AC, even when the accumulators are immersed in water for many days. A series of tests where cylindrical shaped PDMS–AC disks were exposed to different 222 Rn-enriched waters showed that measured 222 Rn specific activity matches the theoretical results coming from the equation that describes the process of internal diffusion integrated with the Rn decay term. The linear relationship between 222 Rn in water and the accumulation process in PDMS–AC, the influence of temperature and the different sensitivity of the composite and its components were also studied and discussed. The high Rn volumetric enrichment factor in PDMS–AC disks respect to water resulted in about 206: 1, so lowering detection limits for 222 Rn in water to 20 Bq m −3 when the total activity of Rn progeny in disks is measured by high resolution gamma-ray spectrometry. The use of PDMS–AC accumulators was tested at the Paterno submerged sinkhole, in central Italy. This study allowed the production of a detailed synchronous vertical profile of the Rn content in the middle of the lake and to define the Rn balance by assessing the discharge rate of submerged springs and the average residence time of the lake water

  12. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Neus Jornet-Martínez

    2015-08-01

    Full Text Available In the present work, the performance of carbon nanotubes (c-CNTs functionalized polydimethylsiloxane (PDMS based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME coupled to Capillary LC (CapLC has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs and carboxylic-multi walled carbon nanotubes (c-MWNTs have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS extractive phase has also been evaluated. The extraction capability of the capillary columns has been tested for different organic pollutants, nitrogen heterocyclic compounds and polycyclic aromatic compounds (PAHs. The results indicated that the use of the c-CNTs-PDMS capillary columns improve pyriproxyfen and mainly PAH extraction. Triazines were better extracted by unmodified TRB-35 and modified c-CNTs-PDMSTRB-5. The results showed that the extraction capability of the c-CNT capillary columns depends not only on the polarity of the analytes (as it occurs with PDMS columns but also on the interactions that the analytes can establish with the immobilized c-CNTs on the PDMS columns. The extraction efficiency has been evaluated on the basis of the preconcentration rate that can be achieved, and, in this sense, the best c-CNTs-PDMS capillary column for each group of compounds can be proposed.

  13. Morphology and conductivity of Au films on polydimethylsiloxane using (3-mercaptopropyl)trimethoxysilane (MPTMS) as an adhesion promoter

    Science.gov (United States)

    Osmani, Bekim; Deyhle, Hans; Weiss, Florian M.; Töpper, Tino; Karapetkova, Maria; Leung, Vanessa; Müller, Bert

    2016-04-01

    Dielectric elastomer actuators (DEA) are often referred to as artificial muscles due to their high specific continuous power, which is comparable to that of human skeletal muscles, and because of their millisecond response time. We intend to use nanometer-thin DEA as medical implant actuators and sensors to be operated at voltages as low as a few tens of volts. The conductivity of the electrode and the impact of its stiffness on the stacked structure are key to the design and operation of future devices. The stiffness of sputtered Au electrodes on polydimethylsiloxane (PDMS) was characterized using AFM nanoindentation techniques. 2500 nanoindentations were performed on 10 x 10 μm2 regions at loads of 100 to 400 nN using a spherical tip with a radius of (522 +/- 2) nm. Stiffness maps based on the Hertz model were calculated using the Nanosurf Flex-ANA system. The low adhesion of Au to PDMS has been reported in the literature and leads to the formation of Au-nanoclusters. The size of the nanoclusters was (25 +/- 10) nm and can be explained by the low surface energy of PDMS leading to a Volmer-Weber growth mode. Therefore, we propose (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive to promote the adhesion between the PDMS and Au electrode. A beneficial side effect of these self-assembling monolayers is the significant improvement of the electrode's conductivity as determined by four-point probe measurements. Therefore, the application of a soft adhesive layer for building a dielectric elastomer actuator appears promising.

  14. Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet

    International Nuclear Information System (INIS)

    Jofre-Reche, José Antonio; Martín-Martínez, José Miguel; Pulpytel, Jérôme; Arefi-Khonsari, Farzaneh

    2016-01-01

    The surface properties of polydimethylsiloxane (PDMS) were modified by treatment with an atmospheric pressure rotating plasma jet (APPJ) and the surface modifications were studied to assess its hydrophilicity and adhesion to acrylic adhesive tape intended for medical applications. Furthermore, the extent of hydrophobic recovery under different storage conditions was studied. The surface treatment of PDMS with the APPJ under optimal conditions noticeably increased the oxygen content and most of the surface silicon species were fully oxidized. A brittle silica-like layer on the outermost surface was created showing changes in topography due to the formation of grooves and cracks. A huge improvement in T-peel and the shear adhesive strength of the APPJ-treated PDMS surface/acrylic tape joints was obtained. On the other hand, the hydrophilicity of the PDMS surface increased noticeably after the APPJ treatment, but 24 h after treatment almost 80% hydrophobicity was recovered and the adhesive strength was markedly reduced with time after the APPJ treatment. However, the application of an acrylic adhesive layer on the just-APPJ-treated PDMS surface retained the adhesive strength, limiting the extent of hydrophobic recovery. (paper)

  15. Improved radioiodination of 1,2-dipalmitoyl-3-IPPA via a tributyltin intermediate

    International Nuclear Information System (INIS)

    McPherson, D.W.; Luo, H.; Kropp, J.; Knapp, F.F.

    1999-01-01

    1,2-Palmitoyl-3-[15-(4-iodophenyl)pentadecan-3-oyl]-rac-glyceroI (MIPAG) is a new agent for the clinical evaluation of pancreatic lipase activity and has demonstrated promise in preliminary clinical studies with patients affected with pancreatic insufficiency. Iodine-131-MIPAG was initially prepared via thallium-iodide displacement. Because of the need for a simple method which is amendable for the routine clinical use of MIPAG we have investigated the preparation and radioiodination of MIPAG utilizing the tributyltin precursor, 1,2-palmitoyl-3-[15-(-4-tributylstannylphenyl)pentadecan-3-oyl] -rac-glyceroI (TBT-MIPAG, 2). Compound 2 was prepared via the condensation of 1,2-palmitoyl-rac-glycerol with 15-(4-tributylstannylphenyl)pentadecanoic acid (TBT-PPA) prepared from 4-bromophenylacetylene. Electrophilic radioiodination using peracetic acid with sodium iodide-125 in ethanol at 80 deg. C for 60 min afforded I-125-MIPAG in 65.9% (±11.5%) yield and radiochemical purity of 94% (±3.0%) after C-18 Sep-Pak purification (n=6). This improved method for radioiodination utilizing TBT-MIPAG now provides radioiodinated MIPAG for routine clinical evaluation

  16. Improved radioiodination of 1,2-dipalmitoyl-3-IPPA via a tributyltin intermediate

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, D.W. E-mail: phm@oml.gov; Luo, H.; Kropp, J.; Knapp, F.F

    1999-10-01

    1,2-Palmitoyl-3-[15-(4-iodophenyl)pentadecan-3-oyl]-rac-glyceroI (MIPAG) is a new agent for the clinical evaluation of pancreatic lipase activity and has demonstrated promise in preliminary clinical studies with patients affected with pancreatic insufficiency. Iodine-131-MIPAG was initially prepared via thallium-iodide displacement. Because of the need for a simple method which is amendable for the routine clinical use of MIPAG we have investigated the preparation and radioiodination of MIPAG utilizing the tributyltin precursor, 1,2-palmitoyl-3-[15-(-4-tributylstannylphenyl)pentadecan-3-oyl] -rac-glyceroI (TBT-MIPAG, 2). Compound 2 was prepared via the condensation of 1,2-palmitoyl-rac-glycerol with 15-(4-tributylstannylphenyl)pentadecanoic acid (TBT-PPA) prepared from 4-bromophenylacetylene. Electrophilic radioiodination using peracetic acid with sodium iodide-125 in ethanol at 80 deg. C for 60 min afforded I-125-MIPAG in 65.9% ({+-}11.5%) yield and radiochemical purity of 94% ({+-}3.0%) after C-18 Sep-Pak purification (n=6). This improved method for radioiodination utilizing TBT-MIPAG now provides radioiodinated MIPAG for routine clinical evaluation.

  17. Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors

    KAUST Repository

    Zhang, Fang; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    2010-01-01

    A new and simplified approach for making cathodes for microbial fuel cells (MFCs) was developed by using metal meshcurrent collectorsandinexpensive polymer/carbon diffusion layers (DLs). Rather than adding a current collector to a cathode material such as carbon cloth, we constructed the cathode around the metal mesh itself, thereby avoiding the need for the carbon cloth or other supporting material. A base layer of poly(dimethylsiloxane) (PDMS) and carbon black was applied to the air-side of a stainless steel mesh, and Pt on carbon black with Nafion binder was applied to the solutionside as catalyst for oxygen reduction. The PDMS prevented water leakage and functioned as a DL by limiting oxygen transfer through the cathode and improving coulombic efficiency. PDMS is hydrophobic, stable, and less expensive than other DL materials, such as PTFE, that are commonly applied to air cathodes. Multiple PDMS/carbon layers were applied in order to optimize the performance of the cathode. Two PDMS/ carbon layers achieved the highest maximum power density of 1610 ± 56 mW/m 2 (normalized to cathode projected surface area; 47.0 ± 1.6 W/m3 based on liquid volume). This power output was comparable to the best result of 1635 ± 62 mW/m2 obtained using carbon cloth with three PDMS/carbon layers and a Pt catalyst. The coulombic efficiency of the mesh cathodes reached more than 80%, and was much higher than the maximum of 57% obtained with carbon cloth. These findings demonstrate that cathodes can be constructed around metal mesh materials such as stainless steel, and that an inexpensive coating of PDMS can prevent water leakage and lead to improved coulombic efficiencies. © 2010 American Chemical Society.

  18. Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors

    KAUST Repository

    Zhang, Fang

    2010-02-15

    A new and simplified approach for making cathodes for microbial fuel cells (MFCs) was developed by using metal meshcurrent collectorsandinexpensive polymer/carbon diffusion layers (DLs). Rather than adding a current collector to a cathode material such as carbon cloth, we constructed the cathode around the metal mesh itself, thereby avoiding the need for the carbon cloth or other supporting material. A base layer of poly(dimethylsiloxane) (PDMS) and carbon black was applied to the air-side of a stainless steel mesh, and Pt on carbon black with Nafion binder was applied to the solutionside as catalyst for oxygen reduction. The PDMS prevented water leakage and functioned as a DL by limiting oxygen transfer through the cathode and improving coulombic efficiency. PDMS is hydrophobic, stable, and less expensive than other DL materials, such as PTFE, that are commonly applied to air cathodes. Multiple PDMS/carbon layers were applied in order to optimize the performance of the cathode. Two PDMS/ carbon layers achieved the highest maximum power density of 1610 ± 56 mW/m 2 (normalized to cathode projected surface area; 47.0 ± 1.6 W/m3 based on liquid volume). This power output was comparable to the best result of 1635 ± 62 mW/m2 obtained using carbon cloth with three PDMS/carbon layers and a Pt catalyst. The coulombic efficiency of the mesh cathodes reached more than 80%, and was much higher than the maximum of 57% obtained with carbon cloth. These findings demonstrate that cathodes can be constructed around metal mesh materials such as stainless steel, and that an inexpensive coating of PDMS can prevent water leakage and lead to improved coulombic efficiencies. © 2010 American Chemical Society.

  19. Patternable Poly(chloro-p-xylylene Film with Tunable Surface Wettability Prepared by Temperature and Humidity Treatment on a Polydimethylsiloxane/Silica Coating

    Directory of Open Access Journals (Sweden)

    Yonglian Yu

    2018-03-01

    Full Text Available Poly(chloro-p-xylylene (PPXC film has a water contact angle (WCA of only about 84°. It is necessary to improve its hydrophobicity to prevent liquid water droplets from corroding or electrically shorting metallic circuits of semiconductor devices, sensors, microelectronics, and so on. Herein, we reported a facile approach to improve its surface hydrophobicity by varying surface pattern structures under different temperature and relative humidity (RH conditions on a thermal curable polydimethylsiloxane (PDMS and hydrophobic silica (SiO2 nanoparticle coating. Three distinct large-scale surface patterns were obtained mainly depending on the contents of SiO2 nanoparticles. The regularity of patterns was mainly controlled by the temperature and RH conditions. By changing the pattern structures, the surface wettability of PPXC film could be improved and its WCA was increased from 84° to 168°, displaying a superhydrophobic state. Meanwhile, it could be observed that water droplets on PPXC film with superhydrophobicity were transited from a “Wenzel” state to a “Cassie” state. The PPXC film with different surface patterns of 200 μm × 200 μm and the improved surface hydrophobicity showed wide application potentials in self-cleaning, electronic engineering, micro-contact printing, cell biology, and tissue engineering.

  20. Structural Properties and Antifungal Activity against Candida albicans Biofilm of Different Composite Layers Based on Ag/Zn Doped Hydroxyapatite-Polydimethylsiloxanes

    Directory of Open Access Journals (Sweden)

    Andreea Groza

    2016-04-01

    Full Text Available Modern medicine is still struggling to find new and more effective methods for fighting off viruses, bacteria and fungi. Among the most dangerous and at times life-threatening fungi is Candida albicans. Our work is focused on surface and structural characterization of hydroxyapatite, silver doped hydroxyapatite and zinc doped hydroxyapatite deposited on a titanium substrate previously coated with polydimethylsiloxane (HAp-PDMS, Ag:HAp-PDMS, Zn:HAp-PDMS by different techniques: Scanning Electron Microscopy (SEM, Glow Discharge Optical Emission Spectroscopy (GDOES and Fourier Transform Infrared Spectroscopy (FTIR. The morphological studies revealed that the use of the PDMS polymer as an interlayer improves the quality of the coatings. The structural characterizations of the thin films revealed the basic constituents of both apatitic and PDMS structure. In addition, the GD depth profiles indicated the formation of a composite material as well as the successful embedding of the HAp, Zn:HAp and Ag:HAp into the polymer. On the other hand, in vitro evaluation of the antifungal properties of Ag:HAp-PDMS and Zn:HAp-PDMS demonstrated the fungicidal effects of Ag:HAp-PDMS and the potential antifungal effect of Zn:HAp-PDMS composite layers against C. albicans biofilm. The results acquired in this research complete previous research on the potential use of new complex materials produced by nanotechnology in biomedicine.

  1. Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model.

    Science.gov (United States)

    Zhang, Qiulan; Karadimitriou, N K; Hassanizadeh, S M; Kleingeld, P J; Imhof, A

    2013-07-01

    As a representation of a porous medium, a closed micro-fluidic device made of polydimethylsiloxane (PDMS), with uniform wettability and stable hydrophobic properties, was designed and fabricated. A flow network, with a mean pore size of 30 μm, was formed in a PDMS slab, covering an area of 1 mm × 10 mm. The PDMS slab was covered and bonded with a 120-μm-thick glass plate to seal the model. The glass plate was first spin-coated with a thin layer, roughly 10 μm, of PDMS. The micro-model was treated with silane in order to make it uniformly and stably hydrophobic. Fluorescent particles of 300 μm in diameter were used as colloids. It is known that more removal of colloids occurs under unsaturated conditions, compared to saturated flow in soil. At the same time, the change of saturation has been observed to cause remobilization of attached colloids. The mechanisms for these phenomena are not well understood. This is the first time that a closed micro-model, made of PDMS with uniform and stable wettability, has been used in combination with confocal microscopy to study colloid transport under transient two-phase flow conditions. With confocal microscopy, the movement of fluorescent particles and flow of two liquids within the pores can be studied. One can focus at different depths within the pores and thus determine where the particles exactly are. Thus, remobilization of attached colloids by moving fluid-fluid interfaces was visualized. In order to allow for the deposition and subsequent remobilization of colloids during two-phase flow, three micro-channels for the injection of liquids with and without colloids were constructed. An outlet channel was designed where effluent concentration breakthrough curves can be quantified by measuring the fluorescence intensity. A peak concentration also indicated in the breakthrough curve with the drainage event. The acquired images and breakthrough curve successfully confirmed the utility of the combination of such a PDMS

  2. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    Science.gov (United States)

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  3. Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples.

    Science.gov (United States)

    Zhong, Cheng; He, Man; Liao, Huaping; Chen, Beibei; Wang, Cheng; Hu, Bin

    2016-04-08

    In this work, covalent triazine frameworks (CTFs) were introduced in stir bar sorptive extraction (SBSE) and a novel polydimethylsiloxane(PDMS)/CTFs stir bar coating was prepared by sol-gel technique for the sorptive extraction of eight phenols (including phenol, 2-chlorophenol, 2-nitrophenol, 4-nitrophenol, 2,4-dimethylphenol, p-chloro-m-cresol and 2,4-dichlorophenol, 2,4,6-trichlorophenol) from environmental water samples followed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection. The prepared PDMS/CTFs coated stir bar showed good preparation reproducibility with the relative standard deviations (RSDs) ranging from 3.5 to 5.7% (n=7) in one batch, and from 3.7 to 9.3% (n=7) among different batches. Several parameters affecting SBSE of eight target phenols including extraction time, stirring rate, sample pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.08-0.30 μg/L. The linear range was 0.25-500 μg/L for 2-nitrophenol, 0.5-500 μg/L for phenol, 2-chlorophenol, 4-nitrophenol as well as 2,4-dimethylphenol, and 1-500 μg/L for p-chloro-m-cresol, 2,4-dichlorophenol as well as 2,4,6-trichlorophenol, respectively. The intra-day relative standard deviations (RSDs) were in the range of 4.3-9.4% (n=7, c=2 μg/L) and the enrichment factors ranged from 64.9 to 145.6 fold (theoretical enrichment factor was 200-fold). Compared with commercial PDMS coated stir bar (Gerstel) and PEG coated stir bar (Gerstel), the prepared PDMS/CTFs stir bar showed better extraction efficiency for target phenol compounds. The proposed method was successfully applied to the analysis of phenols in environmental water samples and good relative recoveries were obtained with the spiking level at 2, 10, 50 μg/L, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Piezoelectric-Induced Triboelectric Hybrid Nanogenerators Based on the ZnO Nanowire Layer Decorated on the Au/polydimethylsiloxane-Al Structure for Enhanced Triboelectric Performance.

    Science.gov (United States)

    Jirayupat, Chaiyanut; Wongwiriyapan, Winadda; Kasamechonchung, Panita; Wutikhun, Tuksadon; Tantisantisom, Kittipong; Rayanasukha, Yossawat; Jiemsakul, Thanakorn; Tansarawiput, Chookiat; Liangruksa, Monrudee; Khanchaitit, Paisan; Horprathum, Mati; Porntheeraphat, Supanit; Klamchuen, Annop

    2018-02-21

    Here, we demonstrate a novel device structure design to enhance the electrical conversion output of a triboelectric device through the piezoelectric effect called as the piezo-induced triboelectric (PIT) device. By utilizing the piezopotential of ZnO nanowires embedded into the polydimethylsiloxane (PDMS) layer attached on the top electrode of the conventional triboelectric device (Au/PDMS-Al), the PIT device exhibits an output power density of 50 μW/cm 2 , which is larger than that of the conventional triboelectric device by up to 100 folds under the external applied force of 8.5 N. We found that the effect of the external piezopotential on the top Au electrode of the triboelectric device not only enhances the electron transfer from the Al electrode to PDMS but also boosts the internal built-in potential of the triboelectric device through an external electric field of the piezoelectric layer. Furthermore, 100 light-emitting diodes (LEDs) could be lighted up via the PIT device, whereas the conventional device could illuminate less than 20 LED bulbs. Thus, our results highlight that the enhancement of the triboelectric output can be achieved by using a PIT device structure, which enables us to develop hybrid nanogenerators for various self-power electronics such as wearable and mobile devices.

  5. One-step surface modification for irreversible bonding of various plastics with a poly(dimethylsiloxane) elastomer at room temperature.

    Science.gov (United States)

    Wu, Jing; Lee, Nae Yoon

    2014-05-07

    Here, we introduce a simple and facile method for bonding poly(dimethylsiloxane) (PDMS) to various plastics irreversibly via a one-step chemical treatment at room temperature. This was mediated by poly[dimethylsiloxane-co-(3-aminopropyl)methylsiloxane] (amine-PDMS linker), a chemical composed of a PDMS backbone incorporating an amine side group. Room temperature anchoring of the linker was achieved via a reaction between the amine functionality of the linker and the carbon backbone of the plastics, thereby producing urethane bonds. This resulted in the PDMS functionality being exposed on the plastic surface, mimicking the surface properties of bulk PDMS. Following corona treatment of the PDMS-modified plastic and a sheet of PDMS, the two surfaces were placed in contact with each other and heated at 80 °C for 1 h. This resulted in permanent bonding between PDMS and the plastic. To examine the effectiveness of the amine-PDMS linker coating procedure, the surfaces were characterized by measuring water contact angles and by employing X-ray photoelectron spectroscopy (XPS). Polycarbonate (PC), poly(ethylene terephthalate) (PET), poly(vinylchloride) (PVC), and polyimide (PI) were bonded successfully to PDMS using this method, with bond strengths of PC, PET, and PVC with PDMS measured to be approximately 428.5 ± 17.9, 361.7 ± 31.2, and 430.0 ± 14.9 kPa, respectively. The bond strength of a PC-PC homogeneous assembly, also realized using the proposed method, was measured to be approximately 343.9 ± 7.4 kPa. Delamination tests revealed that the PC-PC assembly was able to withstand intense introduction of a liquid whose per-minute injection volume was approximately 278 times greater than the total internal volume of the microchannel fabricated in PC. This demonstrated the robustness of the seal formed using the proposed technique.

  6. Facile electrochemical pretreatment of multiwalled carbon nanotube - Polydimethylsiloxane paste electrode for enhanced detection of dopamine and uric acid

    Science.gov (United States)

    Buenaventura, Angelo Gabriel E.; Yago, Allan Christopher C.

    2018-05-01

    A facile electrochemical pretreatment via anodization was done on Carbon Paste Electrodes (CPEs) composed of Multiwalled Carbon Nanotubes (MWCNTs) and Polydimethylsiloxane (PDMS) binder to produce `anodized' CPEs (ACPE). Cyclic Voltammetry (CV) technique was used to anodize the CPEs. The anodization step, performed in various solutions (0.2 M NaOH(aq), 0.06 M BR Buffer at pH 7.0, and 0.2 M HNO3(aq)), were found to enhance the electrochemical properties of the ACPEs compared to non-anodized CPE. Electrochemical Impedance Spectroscopy (EIS) measurements revealed a significantly lower charge transfer resistance (Rct) for the ACPEs (4.01-6.25 kΩ) as compared to CPE (25.9 kΩ). Comparison of the reversibility analysis for Fe(CN)63-/4- redox couple showed that the ACPEs have peak current ratio (Ia/Ic) at range of 0.97-1.10 while 1.92 for the CPE; this result indicated better electrochemical reversible behaviors for Fe(CN)63-/4- redox couple using the ACPEs. CV Anodization process was further optimized by varying solution and CV parameters (i.e. pH, composition, number of cycles, and potential range), and the resulting optimized ACPE was used for enhanced detection of Dopamine (DA) and Uric Acid (UA) in the presence of excess Ascorbic Acid (AA). Employing Differential Pulse Voltammetry technique, enhanced voltammetric signal for DA and significant peak separation between DA and UA was obtained. The anodic peak currents for the oxidation of DA and UA appeared at 0.263V and 0.414 V, respectively, and it was observed to be linearly increasing with increasing concentrations of biomolecules (25-100 µM). The detection limit was determined to be 3.86 µM for DA and 5.61 µM for UA. This study showed a quick and cost-effective pretreatment for CPEs based on MWCNT-PDMS composite which lead to significant enhancement on its electrochemical properties.

  7. Determination of Phenols Isomers in Water by Novel Nanosilica/Polydimethylsiloxane-Coated Stirring Bar Combined with High Performance Liquid Chromatography-Fourier Transform Infrared Spectroscopy.

    Science.gov (United States)

    Zheng, Bei; Li, Wentao; Liu, Lin; Wang, Xin; Chen, Chen; Yu, Zhiyong; Li, Hongyan

    2017-08-18

    A novel nanosilica/polydimethylsiloxane (SiO 2 /PDMS) coated stirring bar was adopted in the sorption extraction (SBSE) of phenols in water, and the high performance liquid chromatography-fourier transform infrared spectroscopy (HPLC-FTIR) was subsequently used to determination of phenol concentration. The SiO 2 /PDMS coating was prepared by sol-gel method and characterized with respect to morphology and specific surface area. The results of field-emission scanning electron microscope (FE-SEM) and N 2 adsorption-desorption as well as phenol adsorption experiments denoted that SiO 2 /PDMS has larger surface area and better adsorption capacity than commercial PDMS. The extraction efficiency of phenol with SiO 2 /PDMS coated stirring bar was optimized in terms of ion strength, flow rate of phenol-involved influent, type of desorption solvent and desorption time. More than 75% of phenol desorption efficiency could be kept even after 50 cycles of extraction, indicating the high stability of the SiO 2 /PDMS coated stirring bar. Approximately 0.16 mg/L 2, 5-dimethylphenol (2, 5-DMP), which was 34-fold more toxic than phenol, was detected in water through HPLC-FTIR. However, 2, 5-DMP could be oxidized to 5-methy-2-hydroxy benzaldehyde after disinfection in drinking water treatment process. Therefore, the proposed method of SiO 2 /PDMS-SBSE-HPLC-FTIR is successfully applied in the analysis of phenols isomers in aqueous environment.

  8. PDMS membranes as sensing element in optical sensors for gas detection in water

    Directory of Open Access Journals (Sweden)

    Stefania Torino

    2017-11-01

    Full Text Available Polydimethylsiloxane (PDMS has been introduced the first time about 20years ago. This polymer is worldwide used for the rapid prototyping of microfluidic device through a replica molding process. However, the great popularity of PDMS is not only related to its easy processability, but also to its chemical and physical properties. For its interesting properties, the polymer has been implied for several applications, including sensing. In this work, we investigated how to use functionalized PDMS membranes as sensing elements in optical sensors for gas detection in water samples. Keywords: Polydimethylsiloxane (PDMS, Surface Plasmon Resonance (SPR sensors, Gas sensor

  9. Use of solid phase microextraction (SPME) for profiling the volatile metabolites produced by Glomerella cingulata.

    Science.gov (United States)

    Miyazawa, Mitsuo; Kimura, Minako; Yabe, Yoshito; Tsukamoto, Daisuke; Sakamoto, Masaya; Horibe, Isao; Okuno, Yoshiharu

    2008-01-01

    The profile of volatile organic compounds (VOCs) released from Glomerella cingulata using solid phase microextraction (SPME) with different fibers, Polydimethylsiloxane (PDMS), Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), Carboxen/Polydimethylsiloxane (CAR/PDMS) and Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), was investigated. C4-C6 aliphatic alcohols were the predominant fraction of VOCs isolated by CAR/PDMS fiber. Sesquiterpene hydrocarbons represented 20.3% of VOCs isolated by PDMS fiber. During the growth phase, Ochracin was produced in the large majority of VOCs. 3-Methylbutanol and phenylethyl alcohol were found in the log phase of it. Alcohols were found in cultures of higher age, while sesquiterpenes were found to be characteristic of initial growth stage of G. cingulata.

  10. The Effectiveness of Polydimethylsiloxane (PDMS) and Hexamethyldisiloxane (HMDSO) As Compatibilizer on the Preparation of Betel Nut Fiber (BNF) and Polypropylene (PP) /Polystyrene (PS) Wood Composites

    International Nuclear Information System (INIS)

    Nurul Izzaty Khalid; Azizah Baharum; Siti Sarah Ramli; Siti Norhana Mohd Nor

    2014-01-01

    This research was carried out to investigate the effectiveness of polydimethylsiloxane (PDMS) and hexamethyldisiloxane (HMDSO) as compatibilizing agent in producing wood composites of betel nut fiber/ polypropylene (BNF/ PP) and betel nut fiber/ polystyrene (BNF/ PS). Wood composite was prepared by blending 40 % of matrix polymer and 60 % of treated and untreated BNF using internal mixer Brabender Plasticoder at 170 degree Celsius with 50 rpm rotor speed for 13 minutes. The treatment was done prior to blending the materials by immersing the BNF in PDMS and HMDSO solutions with 1 %, 3 % and 5 % of concentrations for 24 hours. The effects of 1 % HMDSO treatment on BNF/ PP composite contributed to high flexure strength and impact strength which are 19.2 MPa and 7.9 kJ/M2 respectively while the percentage of water absorption showed the minimum value of 6.7%. The impact strength of BNF/ PS composite treated with 3% HMDSO showed maximum value that is 4.7 kJ/ M 2 and minimum percentage of water absorption, 6.8 %. However, the flexure strength of untreated BNF/ PS composite is higher than treated BNF/ PS composite with value of 4.7 MPa. The morphology of treated BNF/ PP composites from SEM micrographs showed better interface interaction between fibers and matrices. FTIR spectra showed the presence of siloxane groups such as Si-O, Si-CH 3 , Si-(CH 3 ) and Si(CH 3 ) as a result of HMDSO and PDMS treatment. Based on the characterization analysis, HMDSO treated composite of BNF/ PP showed more effective interfacial interaction between BNF and matrices. (author)

  11. TiO2 coatings via atomic layer deposition on polyurethane and polydimethylsiloxane substrates: Properties and effects on C. albicans growth and inactivation process

    Science.gov (United States)

    Pessoa, R. S.; dos Santos, V. P.; Cardoso, S. B.; Doria, A. C. O. C.; Figueira, F. R.; Rodrigues, B. V. M.; Testoni, G. E.; Fraga, M. A.; Marciano, F. R.; Lobo, A. O.; Maciel, H. S.

    2017-11-01

    Atomic layer deposition (ALD) surges as an attractive technology to deposit thin films on different substrates for many advanced biomedical applications. Herein titanium dioxide (TiO2) thin films were successful obtained on polyurethane (PU) and polydimethylsiloxane (PDMS) substrates using ALD. The effect of TiO2 films on Candida albicans growth and inactivation process were also systematic discussed. TiCl4 and H2O were used as precursors at 80 °C, while the reaction cycle number ranged from 500 to 2000. Several chemical, physical and physicochemical techniques were used to evaluate the growth kinetics, elemental composition, material structure, chemical bonds, contact angle, work of adhesion and surface morphology of the ALD TiO2 thin films grown on both substrates. For microbiological analyses, yeasts of standard strains of C. albicans were grown on non- and TiO2-coated substrates. Next, the antifungal and photocatalytic activities of the TiO2 were also investigated by counting the colony-forming units (CFU) before and after UV-light treatment. Chlorine-doped amorphous TiO2 films with varied thicknesses and Cl concentration ranging from 2 to 12% were obtained. In sum, the ALD TiO2 films suppressed the yeast-hyphal transition of C. albicans onto PU, however, a high adhesion of yeasts was observed. Conversely, for PDMS substrate, the yeast adhesion did not change, as observed in control. Comparatively to control, the TiO2-covered PDMS had a reduction in CFU up to 59.5% after UV treatment, while no modification was observed to TiO2-covered PU. These results pointed out that ALD chlorine-doped amorphous TiO2 films grown on biomedical polymeric surfaces may act as fungistatic materials. Furthermore, in case of contamination, these materials may also behave as antifungal materials under UV light exposure.

  12. Final report on CCM key comparison CCM.D-K2: Comparison of liquid density standards

    Science.gov (United States)

    Bettin, Horst; Jacques, Claude; Zelenka, Zoltán; Fujii, Ken-ichi; Kuramoto, Naoki; Chang, Kyung-Ho; Lee, Yong Jae; Becerra, Luis Omar; Domostroeva, Natalia

    2013-01-01

    The results are presented of the key comparison CCM.D-K2 that covered the density measurements of four liquids: the density of water at 20 °C, of pentadecane at 15 °C, 20 °C, 40 °C and 60°C, of tetrachloroethlyene at 5 °C and 20 °C and of a viscous oil at 20 °C. Seven national metrology institutes measured the densities at atmospheric pressure by hydrostatic weighing of solid density standards in the time interval from 27 April 2004 to 28 June 2004. Since the participants were asked not to include components for a possible drift or inhomogeneity of the liquid in their uncertainty budget, these uncertainty contributions are investigated for the final evaluation of the data. For this purpose, results of stability and homogeneity measurements of the pilot laboratory are used. The participants decided not to include a possible drift of the liquid's density since no significant drift could be detected, and the influence of the drift and its uncertainty are negligible. Similarly, the inhomogeneity of the water and pentadecane samples is not significant and has no influence on the evaluation. Thus, it was neglected. Only the inhomogeneities of tetrachloroethylene and of the viscous oil were significant. Consequently, they were included in the evaluation. With one or two exceptions, the results show good agreement among the participants. Only in the case of water are the results clearly discrepant. The key comparison reference values were calculated by the weighted mean (taking into account a small correlation between two participants) in the case of consistent results. Otherwise the Procedure B of Cox was used. The expanded uncertainties of all reference densities are below 1 × 10-5 in relative terms. This satisfies the needs of all customers who wish to calibrate or check liquid density measuring instruments such as oscillation-type density meters. The comparison fully supports the calibration measurement capabilities table in the BIPM key comparison database

  13. Sorptive extraction using polydimethylsiloxane/metal-organic framework coated stir bars coupled with high performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    Science.gov (United States)

    Hu, Cong; He, Man; Chen, Beibei; Zhong, Cheng; Hu, Bin

    2014-08-22

    In this work, metal-organic frameworks (MOFs, Al-MIL-53-NH₂) were synthesized via the hydrothermal method, and novel polydimethylsiloxane/metal-organic framework (PDMS/MOFs, PDMS/Al-MIL-53-NH₂)-coated stir bars were prepared by the sol-gel technique. The preparation reproducibility of the PDMS/MOFs-coated stir bar was good, with relative standard deviations (RSDs) ranging from 4.8% to 14.9% (n=7) within one batch and from 6.2% to 16.9% (n=6) among different batches. Based on this fact, a new method of PDMS/MOFs-coated stir bar sorptive extraction (SBSE) and ultrasonic-assisted liquid desorption (UALD) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD) was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. To obtain the best extraction performance for PAHs, several parameters affecting SBSE, such as extraction time, stirring rate, and extraction temperature, were investigated. Under optimal experimental conditions, wide linear ranges and good RSDs (n=7) were obtained. With enrichment factors (EFs) of 16.1- to 88.9-fold (theoretical EF, 142-fold), the limits of detection (LODs, S/N=3) of the developed method for the target PAHs were found to be in the range of 0.05-2.94 ng/L. The developed method was successfully applied to the analysis of PAHs in Yangtze River and East Lake water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Silicone nanocomposite coatings for fabrics

    Science.gov (United States)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  15. Simulations of smog-chamber experiments using the two-dimensional volatility basis set: linear oxygenated precursors.

    Science.gov (United States)

    Chacon-Madrid, Heber J; Murphy, Benjamin N; Pandis, Spyros N; Donahue, Neil M

    2012-10-16

    We use a two-dimensional volatility basis set (2D-VBS) box model to simulate secondary organic aerosol (SOA) mass yields of linear oxygenated molecules: n-tridecanal, 2- and 7-tridecanone, 2- and 7-tridecanol, and n-pentadecane. A hybrid model with explicit, a priori treatment of the first-generation products for each precursor molecule, followed by a generic 2D-VBS mechanism for later-generation chemistry, results in excellent model-measurement agreement. This strongly confirms that the 2D-VBS mechanism is a predictive tool for SOA modeling but also suggests that certain important first-generation products for major primary SOA precursors should be treated explicitly for optimal SOA predictions.

  16. Stereodivergent synthesis of jaspine B and its isomers using a carbohydrate-derived alkoxyallene as C3-building block

    Directory of Open Access Journals (Sweden)

    Volker M. Schmiedel

    2013-11-01

    Full Text Available Herein we present the synthesis of the anhydrophytosphingosine jaspine B and three of its stereoisomers using a carbohydrate-derived alkoxyallene in order to obtain the products in enantiopure form. Key step of the reaction sequence is the addition of the lithiated alkoxyallene to pentadecanal, setting the configuration at the later C-2 of the ring system. This reaction step proceeds with moderate selectivity and therefore leads to a stereodivergent approach to the natural product and its enantiomer. The gold-catalyzed 5-endo-cyclization affords the corresponding dihydrofurans, which after separation, azidation of the enol ether moiety and two subsequent reduction steps give the natural product and its stereoisomers.

  17. Hydrocracking of Cerbera manghas Oil with Co-Ni/HZSM-5 as Double Promoted Catalyst

    Directory of Open Access Journals (Sweden)

    Lenny Marlinda

    2017-05-01

    Full Text Available The effect of various reaction temperature on the hydrocracking of Cerbera manghas oil to produce a paraffin-rich mixture of hydrocarbons with Co-Ni/HZSM-5 as doubled promoted catalyst were studied. The Co-Ni/HZSM-5 catalyst with various metal loading and metal ratio was prepared by incipient wetness impregnation. The catalysts were characterized by XRD, AAS, and N2 adsorption-desorption. Surface area, pore diameter, and pore volume of catalysts decreased with the increasing of metals loading. The hydrocracking process was conducted under hydrogen initial pressure in batch reactor equipped with a mechanical stirrer. The reaction was carried out at a temperature of 300-375 oC for 2 h.  Depending on the experimental condition, the reaction pressure changed between 10 bar and 15 bar.   Several parameters were used to evaluate biofuel produced, including oxygen removal, hydrocarbon composition and gasoline/kerosene/diesel yields. Biofuel was analyzed by Fourier Transform Infrared Spectroscopic (FTIR and gas chromatography-mass spectrometry (GC-MS. The composition of hydrocarbon compounds in liquid products was similar to the compounds in the gasoil sold in unit of Pertamina Gas Stations, namely pentadecane, hexadecane, heptadecane, octadecane, and nonadecane with different amounts for each biofuel produced at different reaction temperatures. However, isoparaffin compounds were not formed at all operating conditions. Pentadecane (n-C15 and heptadecane (n-C17 were the most abundant composition in gasoil when Co-Ni/HZSM-5 catalyst was used. Cerbera Manghas oil can be recommended as the source of non-edible vegetable oil to produce gasoil as an environmentally friendly transportation fuel. Copyright © 2017 BCREC Group. All rights reserved Received: 20th May 2016; Revised: 30th January 2017; Accepted: 10th February 2017 How to Cite: Marlinda, L., Al-Muttaqii, M., Gunardi, I., Roesyadi, A., Prajitno, D.H. (2017. Hydrocracking of Cerbera manghas Oil

  18. Fabricating Super-hydrophobic Polydimethylsiloxane Surfaces by a Simple Filler-Dissolved Process

    Science.gov (United States)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2010-12-01

    The self-cleaning effect of super-hydrophobic surfaces has attracted the attention of researchers. Typical ways of manufacturing super-hydrophobic surfaces include the use of either dedicated equipment or a complex chemical process. In this study, a simple innovative filler-dissolved method is developed using mainly powder salt and rinsing to form hydrophobic surfaces. This method can produce large super-hydrophobic surfaces with porous and micro rib surface structures. It can also be applied to curved surfaces, including flexible membranes. The contact angle of the manufactured artificial hydrophobic surface is about 160°. Furthermore, water droplets roll off the surface readily at a sliding angle of less than 5°, resembling the nonwetting lotus like effect.

  19. Flexible Polydimethylsiloxane Foams Decorated with Multiwalled Carbon Nanotubes Enable Unprecedented Detection of Ultralow Strain and Pressure Coupled with a Large Working Range.

    Science.gov (United States)

    Iglio, Rossella; Mariani, Stefano; Robbiano, Valentina; Strambini, Lucanos; Barillaro, Giuseppe

    2018-04-25

    Low-cost piezoresistive strain/pressure sensors with large working range, at the same time able to reliably detect ultralow strain (≤0.1%) and pressure (≤1 Pa), are one of the challenges that have still to be overcome for flexible piezoresistive materials toward personalized health-monitoring applications. In this work, we report on unprecedented, simultaneous detection of ultrasmall strain (0.1%, i.e., 10 μm displacement over 10 mm) and subtle pressure (20 Pa, i.e., a force of only 2 mN over an area of 1 cm 2 ) in compression mode, coupled with a large working range (i.e., up to 60% for strain-6 mm in displacement-and 50 kPa for pressure) using piezoresistive, flexible three-dimensional (3D) macroporous polydimethylsiloxane (pPDMS) foams decorated with pristine multiwalled carbon nanotubes (CNTs). pPDMS/CNT foams with pore size up to 500 μm (i.e., twice the size of those of commonly used foams, at least) and porosity of 77%, decorated with a nanostructured surface network of CNTs at densities ranging from 7.5 to 37 mg/cm 3 are prepared using a low-cost and scalable process, through replica molding of sacrificial sugar templates and subsequent drop-casting of CNT ink. A thorough characterization shows that piezoresistive properties of the foams can be finely tuned by controlling the CNT density and reach an optimum at a CNT density of 25 mg/cm 3 , for which a maximum change of the material resistivity (e.g., ρ 0 /ρ 50 = 4 at 50% strain) is achieved under compression. Further static and dynamic characterization of the pPDMS/CNT foams with 25 mg/cm 3 of CNTs highlights that detection limits for strain and pressure are 0.03% (3 μm displacement over 10 mm) and 6 Pa (0.6 mN over an area of 1 cm 2 ), respectively; moreover, good stability and limited hysteresis are apparent by cycling the foams with 255 compression-release cycles over the strain range of 0-60%, at different strain rates up to 10 mm/min. Our results on piezoresistive, flexible pPDMS/CNT foams

  20. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density.

    Science.gov (United States)

    He, Xianming; Guo, Hengyu; Yue, Xule; Gao, Jun; Xi, Yi; Hu, Chenguo

    2015-02-07

    Nanogenerators with capacitor structures based on piezoelectricity, pyroelectricity, triboelectricity and electrostatic induction have been extensively investigated. Although the electron flow on electrodes is well understood, the maximum efficiency-dependent structure design is not clearly known. In this paper, a clear understanding of triboelectric generators with capacitor structures is presented by the investigation of polydimethylsiloxane-based composite film nanogenerators, indicating that the generator, in fact, acts as both an energy storage and output device. Maximum energy storage and output depend on the maximum charge density on the dielectric polymer surface, which is determined by the capacitance of the device. The effective thickness of polydimethylsiloxane can be greatly reduced by mixing a suitable amount of conductive nanoparticles into the polymer, through which the charge density on the polymer surface can be greatly increased. This finding can be applied to all the triboelectric nanogenerators with capacitor structures, and it provides an important guide to the structural design for nanogenerators. It is demonstrated that graphite particles with sizes of 20-40 nm and 3.0% mass mixed into the polydimethylsiloxane can reduce 34.68% of the effective thickness of the dielectric film and increase the surface charges by 111.27% on the dielectric film. The output power density of the triboelectric nanogenerator with the composite polydimethylsiloxane film is 3.7 W m(-2), which is 2.6 times as much as that of the pure polydimethylsiloxane film.

  1. HS-SPME-GC-MS ANALYSIS OF VOLATILE AND SEMI-VOLATILE COMPOUNDS FROM DRIED LEAVES OF Mikania glomerata Sprengel

    Directory of Open Access Journals (Sweden)

    Esmeraldo A. Cappelaro

    2015-03-01

    Full Text Available This paper reports on the identification of volatile and semi-volatile compounds and a comparison of the chromatographic profiles obtained by Headspace Solid-Phase Microextraction/Gas Chromatography with Mass Spectrometry detection (HS-SPME-GC-MS of dried leaves of Mikania glomerata Sprengel (Asteraceae, also known as 'guaco.' Three different types of commercial SPME fibers were tested: polydimethylsiloxane (PDMS, polydimethylsiloxane/divinylbenzene (PDMS/DVB and polyacrylate (PA. Fifty-nine compounds were fully identified by HS-SPME-HRGC-MS, including coumarin, a marker for the quality control of guaco-based phytomedicines; most of the other identified compounds were mono- and sesquiterpenes. PA fibers performed better in the analysis of coumarin, while PDMS-DVB proved to be the best choice for a general and non-selective analysis of volatile and semi-volatile guaco-based compounds. The SPME method is faster and requires a smaller sample than conventional hydrodistillation of essential oils, providing a general overview of the volatile and semi-volatile compounds of M. glomerata.

  2. Study of the Mechanical Behavior of a Hyperelastic Membrane

    Directory of Open Access Journals (Sweden)

    Bourbaba Houaria

    2014-04-01

    Full Text Available The benefits in emloying plastics material in microfluidic devices manufactures are extremely attractive that include reduced cost and simplified manufacturing procedures, particularly when compared to silicon. An additional benefit is the wide range of available plastic materials which allow the manufacturer to choose materials' properties suitable for their specific application. The Polydimethylsiloxane is commonly used in a wide range of microfluidic applications due to its flexibility and low cost. In addition the properties of the Polymethyl methacrylate such as the low cost, high transparency, and good chemical properties are needed in microfluidics applications. In this paper, we have used Finit Elements method to simulate the mechanical behavior of Polydimethylsiloxane and Polymethylmethacrylate using hyper elastic and linear elastic model. Sevral parameters have been studied; such as, thickness and number of mesh in order to optimize the dimension of the membrane. Also, we have studied the impact of the mesh form on the membrane’s displacement.

  3. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC-qMSD for evaluation the chemical profile in alcoholic beverages

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, F.; Caldeira, M. [Centro de Quimica da Madeira, Departamento de Quimica, Universidade da Madeira, Campus Universitario da Penteada, 9000-390 Funchal (Portugal); Camara, J.S. [Centro de Quimica da Madeira, Departamento de Quimica, Universidade da Madeira, Campus Universitario da Penteada, 9000-390 Funchal (Portugal)], E-mail: jsc@uma.pt

    2008-02-18

    In the present study, a simple and sensitive methodology based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography with quadrupole mass detection (GC-qMSD), was developed and optimized for the determination of volatile (VOCs) and semi-volatile (SVOCs) compounds from different alcoholic beverages: wine, beer and whisky. Key experimental factors influencing the equilibrium of the VOCs and SVOCs between the sample and the SPME fibre, as the type of fibre coating, extraction time and temperature, sample stirring and ionic strength, were optimized. The performance of five commercially available SPME fibres was evaluated and compared, namely polydimethylsiloxane (PDMS, 100 {mu}m); polyacrylate (PA, 85 {mu}m); polydimethylsiloxane/divinylbenzene (PDMS/DVB, 65 {mu}m); carboxen{sup TM}/polydimethylsiloxane (CAR/PDMS, 75 {mu}m) and the divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS, 50/30 {mu}m) (StableFlex). An objective comparison among different alcoholic beverages has been established in terms of qualitative and semi-quantitative differences on volatile and semi-volatile compounds. These compounds belong to several chemical families, including higher alcohols, ethyl esters, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, furanic compounds, terpenoids, C13-norisoprenoids and volatile phenols. The optimized extraction conditions and GC-qMSD, lead to the successful identification of 44 compounds in white wines, 64 in beers and 104 in whiskys. Some of these compounds were found in all of the examined beverage samples. The main components of the HS-SPME found in white wines were ethyl octanoate (46.9%), ethyl decanoate (30.3%), ethyl 9-decenoate (10.7%), ethyl hexanoate (3.1%), and isoamyl octanoate (2.7%). As for beers, the major compounds were isoamyl alcohol (11.5%), ethyl octanoate (9.1%), isoamyl acetate (8.2%), 2-ethyl-1-hexanol (5.9%), and octanoic acid (5.5%). Ethyl

  4. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC-qMSD for evaluation the chemical profile in alcoholic beverages

    International Nuclear Information System (INIS)

    Rodrigues, F.; Caldeira, M.; Camara, J.S.

    2008-01-01

    In the present study, a simple and sensitive methodology based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography with quadrupole mass detection (GC-qMSD), was developed and optimized for the determination of volatile (VOCs) and semi-volatile (SVOCs) compounds from different alcoholic beverages: wine, beer and whisky. Key experimental factors influencing the equilibrium of the VOCs and SVOCs between the sample and the SPME fibre, as the type of fibre coating, extraction time and temperature, sample stirring and ionic strength, were optimized. The performance of five commercially available SPME fibres was evaluated and compared, namely polydimethylsiloxane (PDMS, 100 μm); polyacrylate (PA, 85 μm); polydimethylsiloxane/divinylbenzene (PDMS/DVB, 65 μm); carboxen TM /polydimethylsiloxane (CAR/PDMS, 75 μm) and the divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS, 50/30 μm) (StableFlex). An objective comparison among different alcoholic beverages has been established in terms of qualitative and semi-quantitative differences on volatile and semi-volatile compounds. These compounds belong to several chemical families, including higher alcohols, ethyl esters, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, furanic compounds, terpenoids, C13-norisoprenoids and volatile phenols. The optimized extraction conditions and GC-qMSD, lead to the successful identification of 44 compounds in white wines, 64 in beers and 104 in whiskys. Some of these compounds were found in all of the examined beverage samples. The main components of the HS-SPME found in white wines were ethyl octanoate (46.9%), ethyl decanoate (30.3%), ethyl 9-decenoate (10.7%), ethyl hexanoate (3.1%), and isoamyl octanoate (2.7%). As for beers, the major compounds were isoamyl alcohol (11.5%), ethyl octanoate (9.1%), isoamyl acetate (8.2%), 2-ethyl-1-hexanol (5.9%), and octanoic acid (5.5%). Ethyl decanoate (58

  5. Investigation of the Thermostability of Bovine Submaxillary Mucin (BSM) and its Impact on Lubrication

    DEFF Research Database (Denmark)

    Madsen, Jan Busk; Pakkanen, Kirsi I.; Lee, Seunghwan

    2013-01-01

    Bovine Submaxillary Mucin (BSM) generates thin film layers via spontaneous adsorption onto hydrophobic surfaces such as Poly(dimethylsiloxane) (PDMS) and High Density Polyethylene (HDPE). A characteristic feature of mucin is its tribological- or lubricating properties. Circular dichroismspectrosc......Bovine Submaxillary Mucin (BSM) generates thin film layers via spontaneous adsorption onto hydrophobic surfaces such as Poly(dimethylsiloxane) (PDMS) and High Density Polyethylene (HDPE). A characteristic feature of mucin is its tribological- or lubricating properties. Circular...

  6. Free volume dilatation in polymers by ortho-positronium

    DEFF Research Database (Denmark)

    Winberg, P.; Eldrup, Morten Mostgaard; Maurer, F.H.J.

    2012-01-01

    The possibility of positronium induced free volume cavity expansion in some polymers above the glass transition temperature was investigated using experimental positron annihilation lifetime data from the literature for polydimethylsiloxane, polyisobutylene, and polybutadiene as function of tempe......The possibility of positronium induced free volume cavity expansion in some polymers above the glass transition temperature was investigated using experimental positron annihilation lifetime data from the literature for polydimethylsiloxane, polyisobutylene, and polybutadiene as function...

  7. Synthesis of Renewable Diesel Range Alkanes by Hydrodeoxygenation of Palmitic Acid over 5% Ni/CNTs under Mild Conditions

    Directory of Open Access Journals (Sweden)

    Yanan Duan

    2017-03-01

    Full Text Available Recently, the catalytic upgrading of bio-oil to renewable diesel has been attracting more and more attention. In the current paper, carbon nanotube (CNT-supported nickel catalysts, namely, 5% Ni/CNTs, were prepared for liquid hydrocarbon production through the deoxygenation of palmitic acid, the model compound of bio-oil under a mild condition of 240 °C reaction temperature and 2 MPa H2 pressure. The experimental results revealed that the main reaction product was pentadecane (yield of 89.64% at an optimum palmitic acid conversion of 97.25% via the hydrodecarbonylation (HDC process. The deoxygenation mechanism for palmitic acid conversion was also investigated. This study provides technical parameters and a theoretical basis for further industrialization in the bio-oil upgrading process.

  8. Bilaterally Microstructured Thin Polydimethylsiloxane Film Production

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Yu, Liyun; Hassouneh, Suzan Sager

    2015-01-01

    Thin PDMS films with complex microstructures are used in the manufacturing of dielectric electro active polymer (DEAP) actuators, sensors and generators, to protect the metal electrode from large strains and to assure controlled actuation. The current manufacturing process at Danfoss Polypower A/...

  9. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding

    OpenAIRE

    Hinton, Thomas J.; Hudson, Andrew; Pusch, Kira; Lee, Andrew; Feinberg, Adam W.

    2016-01-01

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In...

  10. Monolithic PDMS Laminates for Dielectric Elastomer Transducers through Open-Air PlasmATreatment

    DEFF Research Database (Denmark)

    Hassouneh, Suzan Sager; Oubæk, Jakob; Daugaard, Anders Egede

    2016-01-01

    The present study investigates the use of an open-air plasma-treatment system for the surface modification of polydimethylsiloxane (PDMS), in order to improve layer-to-layer adhesion. The procedure presented herein is more cost efficient compared to conventional vacuum-based plasma-treatment, and......The present study investigates the use of an open-air plasma-treatment system for the surface modification of polydimethylsiloxane (PDMS), in order to improve layer-to-layer adhesion. The procedure presented herein is more cost efficient compared to conventional vacuum-based plasma...

  11. Clear Castable Polyurethane Elastomer for Fabrication of Microfluidic Devices

    Science.gov (United States)

    Domansky, Karel; Leslie, Daniel C.; McKinney, James; Fraser, Jacob P.; Sliz, Josiah D.; Hamkins-Indik, Tiama; Hamilton, Geraldine A.; Bahinski, Anthony; Ingber, Donald E.

    2013-01-01

    Polydimethylsiloxane (PDMS) has numerous desirable properties for fabricating microfluidic devices, including optical transparency, flexibility, biocompatibility, and fabrication by casting; however, partitioning of small hydrophobic molecules into the bulk of PDMS hinders industrial acceptance of PDMS microfluidic devices for chemical processing and drug development applications. Here we describe an attractive alternative material that is similar to PDMS in terms of optical transparency, flexibility and castability, but that is also resistant to absorption of small hydrophobic molecules. PMID:23954953

  12. Biodegradation waste of the stations service by Rhodococcus erythropolis ohp-al-gp

    International Nuclear Information System (INIS)

    Pucci, Oscar Hector; Acuna, Adrian Javier; Pucci, Graciela Natalia

    2013-01-01

    The strain Rhodococcus erythropolis ohp-al-gp was isolated from turbine oil contaminated soil from northern Santa Cruz province, Argentina. Because of its potential in bioremediation, the aim was to know the abilities for degradation of pure compounds and mixtures of hydrocarbons, as well as degradation in the presence and absence of diesel nitrogen measured by gas chromatography. The strain possesses the ability to use diesel, kerosene, lubricating oil, pristane, hexane, heptane, octane, pentadecane and hexadecane. R. erythropolis ohp-al-gp has excellent potential for bioremediation of hydrocarbons, which are conflictive as lubricating oils, their potential use in removing mud from washing engines or gas stations would be its most important application. The degradation rate in optimal culture conditions, gives it an additional advantage. It also has a low degradation in the absence of nitrogen, a frequent limiting factor in Patagonian soils.

  13. [Chemical components from essential oil of Pandanus amaryllifolius leaves].

    Science.gov (United States)

    Chen, Xiao-Kai; Ge, Fa-Huan

    2014-04-01

    To analyze the chemical compositions of Pandanus amaryllifolius leaves essential oil extracted by steam distillation. The essential oil of Pandanus amaryllifolius leaves was analyzed by gas chromatography-mass spectrum, and the relative content of each component was determined by area normalization method. 128 peaks were separated and 95 compounds were identified, which weighed 97.75%. The main chemical components of the essential oil were phytol (42.15%), squalene (16.81%), what's more pentadecanal (6.17%), pentadecanoic acid (4.49%), 3, 7, 11, 15-tetramethyl-2-hexadecen-1-ol (3.83%), phytone (2.05%) and the other 74 chemical compositions were firstly identified from the essential oil of Pandanus amaryllifolius leaves. The chemical compositions of Pandanu samaryllifolius leaves essential oil was systematically, deeply isolated and identified for the first time. This experiment has provided scientific foundation for further utilization of Pandanus amaryllifolius leaves.

  14. The characteristics of palm oil plantation solid biomass wastes as raw material for bio oil

    Science.gov (United States)

    Yanti, RN; Hambali, E.; Pari, G.; Suryani, A.

    2018-03-01

    Indonesia is the largest palm oil plantations estate in the world. It reached 11,30 million hectares in 2015 and increased up to 11,67 million hectares in 2016. The advancement of technology recent, the solid waste of palm oil plantation can be re-produced become bio oil through pyrolysis hydrothermal process and utilized for biofuel. The purpose of this research was to analyze the characteristics of feedstock of bio oil of solid waste of palm oil plantations estate. The feedstock used was derived from solid waste of palm oil plantations in Riau Province. Characteristic analysis of waste oil included chemical compound content (cellulose, hemicellulose, lignin), ultimate analysis (C, H, N, O, S) to know height heating value (HHV). The result of analysis of chemical content showed that solid waste of palm cellulose 31,33 – 66,36 %, hemicellulose 7,54 – 17,94 %, lignin 21,43 - 43,1. The HHV of hydrothermal pyrolysis feedstock was 15,18 kJ/gram - 19,57 kJ/gram. Generally, the solid waste of palm oil plantations estate containing lignocellulose can be utilized as bio oil through hydrothermal pyrolysis. The CG-MS analysis of bio oil indicated hydrocarbon contents such as pentadecane, octadecane, hexadecane and benzene.

  15. Replica-moulded polydimethylsiloxane culture vessel lids attenuate ...

    Indian Academy of Sciences (India)

    Prakash

    In general, the longevity and functional availability of cell cultures are mainly .... environment by simply sealing the culture container. However, depending on the .... rate about twice as high as that through a 1 mm PDMS membrane, while it ...

  16. Replica-moulded polydimethylsiloxane culture vessel lids attenuate ...

    Indian Academy of Sciences (India)

    Prakash

    gases, which can be up to 100 times greater than natural or ... chemical technology (New York: John Wiley) pp 69–81 ... elastomer kit (product information) (www.dowcorning.com) ... expansion of transparent elastomeric media; Rev. Sci.

  17. Fundamentals of microfluidics for high school students with no prior knowledge of fluid mechanics.

    Science.gov (United States)

    Tandon, Vishal; Peck, Walter

    2013-01-01

    Three microfluidics-based laboratory exercises were developed and implemented in a high school science classroom setting. The first exercise demonstrated ways in which flows are characterized, including viscosity, turbulence, shear stress, reversibility, compressibility, and hydrodynamic resistance. Students characterized flows in poly(dimethylsiloxane) microfluidic devices in the other two exercises, where they observed the mixing characteristics of laminar flows, and conservation of volumetric flow rate for incompressible flows. In surveys, the students self-reported increased knowledge of microfluidics, and an improved attitude toward science and nanotechnology.

  18. Nickel(II) Complexes with [2 sup4.3sup1]Adamanzane, 1,4,7,10-Tetraazabicyclo[5.5.3]pentadecane

    DEFF Research Database (Denmark)

    Sanzenbacher, Ralf; Søtofte, Inger; Springborg, Johan

    1999-01-01

    this crude product pure {Ni(L)}sub2 (mu-Br)sub2](ClO sub4)sub2 and {Ni(L)}sub 2 (mu-Cl)sub 2](ClO sub4)sub2 have been obtained. In aqueous solution these dinuclear species hydrolyse to the parent mononuclear diaqua species, which was isolated as [Ni(L)(H sub2O)sub2]S sub2O sub6 x 2H sub2O. The reaction......)sub2]S sub2O sub6 x 2H sub2O, [Ni(L)(NO sub2)]PF sub6 and Ni(L) (NO sub3)]ClO sub4 have been determined by X-ray diffraction techniques. The coordination geometry about the nickel(II) ion is a distorted octahedron in all the structures....

  19. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    Science.gov (United States)

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  20. Accelerated solvent extraction method with one-step clean-up for hydrocarbons in soil

    International Nuclear Information System (INIS)

    Nurul Huda Mamat Ghani; Norashikin Sain; Rozita Osman; Zuraidah Abdullah Munir

    2007-01-01

    The application of accelerated solvent extraction (ASE) using hexane combined with neutral silica gel and sulfuric acid/ silica gel (SA/ SG) to remove impurities prior to analysis by gas chromatograph with flame ionization detector (GC-FID) was studied. The efficiency of extraction was evaluated based on the three hydrocarbons; dodecane, tetradecane and pentadecane spiked to soil sample. The effect of ASE operating conditions (extraction temperature, extraction pressure, static time) was evaluated and the optimized condition obtained from the study was extraction temperature of 160 degree Celsius, extraction pressure of 2000 psi with 5 minutes static extraction time. The developed ASE with one-step clean-up method was applied in the extraction of hydrocarbons from spiked soil and the amount extracted was comparable to ASE extraction without clean-up step with the advantage of obtaining cleaner extract with reduced interferences. Therefore in the developed method, extraction and clean-up for hydrocarbons in soil can be achieved rapidly and efficiently with reduced solvent usage. (author)

  1. Formation of hydrocarbon compounds during the hydrocracking of non-edible vegetable oils with cobalt-nickel supported on hierarchical HZSM-5 catalyst

    Science.gov (United States)

    Marlinda, L.; Al-Muttaqii, M.; Roesyadi, A.; Prajitno, D. H.

    2017-05-01

    The hierarchical Co-Ni/HZSM-5 catalyst with hierarchical pore structure was prepared by desilication and incipient wetness impregnation. Hydrocracking of non-edible vegetable oils at temperature of 400 °C, 20±5 bar for 2 h was performed in the presence of this type of catalyst under hydrogen initial pressure in pressured batch reactor. Non-edible vegetable oils, such as Reutealis trisperma (Blanco) airy shaw (sunan candlenut) and Hevea brasiliensis (rubber seed) were chosen to study the effect of the degree of saturation and lateral chain length on hydrocarbon compounds obtained through hydrocracking. Cerbera manghas oil was also tested for comparison because the composition of fatty acid was different with the other oils The hydrocracking test indicated that liquid product produced has a similar hydrocarbon compounds with petroleum diesel. The most abundant hydrocarbon is pentadecane (n-C15) and heptadecane (n-C17). The high aromatic compounds were found in liquid product produced in hydrocracking of Sunan candlenut oil.

  2. PHYTOCHEMICAL STUDY OF CELL CULTURE JATROPHA CURCAS

    Directory of Open Access Journals (Sweden)

    KOMAR RUSLAN

    2011-01-01

    Full Text Available Jatropha curcas belongs to the Euphorbiaceae family which has potential economically. This plant has been reported to contain toxic compounds such as curcin and phorbol ester and its derivatives. These compounds may become a problem if J. curcas will be explored as a source of biofuel. In order to provide safety plants, the research on the study of phytochemical and initiation of cell and organ culture have been carried out. J curcas which has been collected from different regions in Indonesia showed to contain relatively the same profile of chemical contents. Dominant compounds that were detected by GCMS are hidrocarbon such as 2-heptenal, decadienal, hexsadecane, pentadecane, cyclooctane etc, fatty acid such as oktadecanoate acid, etthyl linoleate, ethyl stearate, heksadecanoate acid and steroid such as stigmasterol, fucosterol, sitosterol. No phorbol ester and its derivatives have been detected yet by the GCMS method. Callus and suspension cultures of J. curcas have been established to be used for further investigation.

  3. Fabrication of micropillar substrates using replicas of alpha-particle irradiated and chemically etched PADC films

    International Nuclear Information System (INIS)

    Ng, C.K.M.; Chong, E.Y.W.; Roy, V.A.L.; Cheung, K.M.C.; Yeung, K.W.K.; Yu, K.N.

    2012-01-01

    We proposed a simple method to fabricate micropillar substrates. Polyallyldiglycol carbonate (PADC) films were irradiated by alpha particles and then chemically etched to form a cast with micron-scale spherical pores. A polydimethylsiloxane (PDMS) replica of this PADC film gave a micropillar substrate with micron-scale spherical pillars. HeLa cells cultured on such a micropillar substrate had significantly larger percentage of cells entering S-phase, attached cell numbers and cell spreading areas. - Highlights: ► We proposed a simple method to fabricate micropillar substrates. ► Polyallyldiglycol carbonate films were irradiated and etched to form casts. ► Polydimethylsiloxane replica then formed the micropillar substrates. ► Attachment and proliferation of HeLa cells were enhanced on these substrates.

  4. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system

    DEFF Research Database (Denmark)

    Zhuang, Guisheng; Jensen, Thomas G.; Kutter, Jörg P.

    2012-01-01

    constrained in the out‐of‐plane direction into a narrow sheet, and then focused in‐plane into a small core region, obtaining on‐chip three‐dimensional (3D) hydrodynamic focusing. All the microoptical elements, including waveguides, microlens, and fiber‐to‐waveguide couplers, and the in‐plane focusing channels...... are fabricated in one SU‐8 layer by standard photolithography. The channels for out‐of‐plane focusing are made in a polydimethylsiloxane (PDMS) layer by a single cast using a SU‐8 master. Numerical and experimental results indicate that the device can realize 3D hydrodynamic focusing reliably over a wide range...

  5. High-throughput creation of micropatterned PDMS surfaces using microscale dual roller casting

    International Nuclear Information System (INIS)

    DiBartolomeo, Franklin J; Ge, Ning; Trinkle, Christine A

    2012-01-01

    This work introduces microscale dual roller casting (MDRC), a novel high-throughput fabrication method for creating continuous micropatterned surfaces using thermosetting polymers. MDRC utilizes a pair of rotating, heated cylindrical molds with microscale surface patterns to cure a continuous microstructured film. Using unmodified polydimethylsiloxane as the thermosetting polymer, we were able to create optically transparent, biocompatible surfaces with submicron patterning fidelity. Compared to other roll-to-roll fabrication processes, this method offers increased flexibility in the types of materials and topography that can be generated, including dual-sided patterning, embedded materials and tunable film thickness. (paper)

  6. Generation of tunable and pulsatile concentration gradients via microfluidic network

    KAUST Repository

    Zhou, Bingpu; Xu, Wei; Wang, Cong; Chau, Yeungyeung; Zeng, Xiping; Zhang, Xixiang; Shen, Rong; Wen, Weijia

    2014-01-01

    We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios

  7. Generation of emulsion droplets and micro-bubbles in microfluidic devices

    KAUST Repository

    Zhang, Jiaming

    2016-01-01

    pro- cesses in the food, healthcare and cosmetic industries. Polydimethylsiloxane (PDMS) soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. In ad

  8. Rare thoracic cancers, including peritoneum mesothelioma

    NARCIS (Netherlands)

    Siesling, Sabine; van der Zwan, Jan Maarten; Izarzugaza, Isabel; Jaal, Jana; Treasure, Tom; Foschi, Roberto; Ricardi, Umberto; Groen, Harry; Tavilla, Andrea; Ardanaz, Eva

    Rare thoracic cancers include those of the trachea, thymus and mesothelioma (including peritoneum mesothelioma). The aim of this study was to describe the incidence, prevalence and survival of rare thoracic tumours using a large database, which includes cancer patients diagnosed from 1978 to 2002,

  9. Rare thoracic cancers, including peritoneum mesothelioma

    NARCIS (Netherlands)

    Siesling, Sabine; Zwan, J.M.V.D.; Izarzugaza, I.; Jaal, J.; Treasure, T.; Foschi, R.; Ricardi, U.; Groen, H.; Tavilla, A.; Ardanaz, E.

    2012-01-01

    Rare thoracic cancers include those of the trachea, thymus and mesothelioma (including peritoneum mesothelioma). The aim of this study was to describe the incidence, prevalence and survival of rare thoracic tumours using a large database, which includes cancer patients diagnosed from 1978 to 2002,

  10. Analytic device including nanostructures

    KAUST Repository

    Di Fabrizio, Enzo M.; Fratalocchi, Andrea; Totero Gongora, Juan Sebastian; Coluccio, Maria Laura; Candeloro, Patrizio; Cuda, Gianni

    2015-01-01

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  11. Static, Lightweight Includes Resolution for PHP

    NARCIS (Netherlands)

    M.A. Hills (Mark); P. Klint (Paul); J.J. Vinju (Jurgen)

    2014-01-01

    htmlabstractDynamic languages include a number of features that are challenging to model properly in static analysis tools. In PHP, one of these features is the include expression, where an arbitrary expression provides the path of the file to include at runtime. In this paper we present two

  12. Mixed Matrix Silicone and Fluorosilicone/Zeolite 4A Membranes for Ethanol Dehydration by Pervaporation

    Science.gov (United States)

    The ability of homogeneous and mixed matrix membranes prepared using standard silicone rubber, poly(dimethylsiloxane) (PDMS), and fluorosilicone rubber, poly(trifluoropropylmethylsiloxane) (PTFPMS), to dehydrate ethanol by pervaporation was evaluated. Although PDMS is generally c...

  13. Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation

    CSIR Research Space (South Africa)

    Ashok, AC

    2010-03-01

    Full Text Available The authors describe the realization of integrated optical chromatography, in conjunction with on-chip fluorescence excitation, in a monolithically fabricated poly-dimethylsiloxane (PDMS) microfluidic chip. The unique endlessly-single-mode guiding...

  14. 76 FR 61741 - Bmc Software, Inc. Including On-Site Leased Workers From COMSYS ITS Including Remote Workers...

    Science.gov (United States)

    2011-10-05

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,540] Bmc Software, Inc... November 23, 2010, applicable to workers of BMC Software, Inc., including on-site leased workers from... BMC Software, inc., including on-site leased workers from Comsys ITS, and including remote workers...

  15. Fabrication of micropillar substrates using replicas of alpha-particle irradiated and chemically etched PADC films

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.K.M. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chong, E.Y.W. [Department of Orthopaedics and Traumatology, University of Hong Kong (Hong Kong); Roy, V.A.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Cheung, K.M.C.; Yeung, K.W.K. [Department of Orthopaedics and Traumatology, University of Hong Kong (Hong Kong); Yu, K.N., E-mail: appetery@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2012-07-15

    We proposed a simple method to fabricate micropillar substrates. Polyallyldiglycol carbonate (PADC) films were irradiated by alpha particles and then chemically etched to form a cast with micron-scale spherical pores. A polydimethylsiloxane (PDMS) replica of this PADC film gave a micropillar substrate with micron-scale spherical pillars. HeLa cells cultured on such a micropillar substrate had significantly larger percentage of cells entering S-phase, attached cell numbers and cell spreading areas. - Highlights: Black-Right-Pointing-Pointer We proposed a simple method to fabricate micropillar substrates. Black-Right-Pointing-Pointer Polyallyldiglycol carbonate films were irradiated and etched to form casts. Black-Right-Pointing-Pointer Polydimethylsiloxane replica then formed the micropillar substrates. Black-Right-Pointing-Pointer Attachment and proliferation of HeLa cells were enhanced on these substrates.

  16. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  17. Controlled release in hard to access places by poly(methyl methacrylate) microcapsules triggered by gamma irradiation

    DEFF Research Database (Denmark)

    Kostrzewska, Malgorzata; Ma, Baoguang; Javakhishvili, Irakli

    2015-01-01

    microcapsules were shown to become permeable after irradiation and release an encapsulated cross-linker, which enables the remotely controlled formation of polydimethylsiloxanes in traditionally unavailable places. Therefore, the activation method has significant implications for industrial application....

  18. New seismograph includes filters

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-02

    The new Nimbus ES-1210 multichannel signal enhancement seismograph from EG and G geometrics has recently been redesigned to include multimode signal fillers on each amplifier. The ES-1210F is a shallow exploration seismograph for near subsurface exploration such as in depth-to-bedrock, geological hazard location, mineral exploration, and landslide investigations.

  19. Thermal conductivity and stability of nano size carbon black filled PDMS: Fuel cell perspective

    CSIR Research Space (South Africa)

    Chen, H

    2011-01-01

    Full Text Available Carbon black filled Polydimethylsiloxane (PDMS) was considered as a prospective bipolar plate material candidate for a Fuel Cell. In this perspective, thermal conductivity and stability of the composites were investigated. Samples with filler weight...

  20. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    Science.gov (United States)

    Pervaporation is potentially a cost-effective means of recovering biofuels, such as ethanol, from biomass fermentation broths for small- to medium-scale applications (~2 - 20 million liters per year). Hydrophobic zeolite-filled polydimethylsiloxane (PDMS) membranes have been sho...

  1. Depletion interaction measured by colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Wijting, W.K.; Knoben, W.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2004-01-01

    We investigated the depletion interaction between stearylated silica surfaces in cyclohexane in the presence of dissolved polydimethylsiloxane by means of colloidal probe atomic force microscopy. We found that the range of the depletion interaction decreases with increasing concentration.

  2. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Hans Martin

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observ...

  3. 42 CFR 410.100 - Included services.

    Science.gov (United States)

    2010-10-01

    ... service; however, maintenance therapy itself is not covered as part of these services. (c) Occupational... increase respiratory function, such as graded activity services; these services include physiologic... rehabilitation plan of treatment, including physical therapy services, occupational therapy services, speech...

  4. Fabricating small-scale, curved, polymeric structures with convex and concave menisci through interfacial free energy equilibrium.

    Science.gov (United States)

    Cheng, Chao-Min; Matsuura, Koji; Wang, I-Jan; Kuroda, Yuka; LeDuc, Philip R; Naruse, Keiji

    2009-11-21

    Polymeric curved structures are widely used in imaging systems including optical fibers and microfluidic channels. Here, we demonstrate that small-scale, poly(dimethylsiloxane) (PDMS)-based, curved structures can be fabricated through controlling interfacial free energy equilibrium. Resultant structures have a smooth, symmetric, curved surface, and may be convex or concave in form based on surface tension balance. Their curvatures are controlled by surface characteristics (i.e., hydrophobicity and hydrophilicity) of the molds and semi-liquid PDMS. In addition, these structures are shown to be biocompatible for cell culture. Our system provides a simple, efficient and economical method for generating integrateable optical components without costly fabrication facilities.

  5. Contact printed masks for 3D microfabrication in negative resists

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Boisen, Anja

    2005-01-01

    We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded into the ......We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded...... into the negative resist to protect buried material from UV-exposure. Unlike direct evaporation-deposition of a mask onto the SU-8, printing avoids high stress and radiation, thus preventing resist wrinkling and prepolymerization. We demonstrate effective monolithic fabrication of soft, 4-μm thick and 100-μm long...

  6. Structure and Optical Properties of Titania-PDMS Hybrid Nanocomposites Prepared by In Situ Non-Aqueous Synthesis

    Directory of Open Access Journals (Sweden)

    Antoine R. M. Dalod

    2017-12-01

    Full Text Available Organic-inorganic hybrid materials are attractive due to the combination of properties from the two distinct types of materials. In this work, transparent titania-polydimethylsiloxane hybrid materials with up to 15.5 vol. % TiO2 content were prepared by an in situ non-aqueous method using titanium (IV isopropoxide and hydroxy-terminated polydimethylsiloxane as precursors. Spectroscopy (Fourier transform infrared, Raman, Ultraviolet-visible, ellipsometry and small-angle X-ray scattering analysis allowed to describe in detail the structure and the optical properties of the nanocomposites. Titanium alkoxide was successfully used as a cross-linker and titania-like nanodomains with an average size of approximately 4 nm were shown to form during the process. The resulting hybrid nanocomposites exhibit high transparency and tunable refractive index from 1.42 up to 1.56, depending on the titania content.

  7. Electrolyte solutions including a phosphoranimine compound, and energy storage devices including same

    Science.gov (United States)

    Klaehn, John R.; Dufek, Eric J.; Rollins, Harry W.; Harrup, Mason K.; Gering, Kevin L.

    2017-09-12

    An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure ##STR00001## where X is an organosilyl group or a tert-butyl group and each of R.sup.1, R.sup.2, and R.sup.3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.

  8. Saskatchewan resources. [including uranium

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.

  9. Stretchable Binary Fresnel Lens for Focus Tuning

    NARCIS (Netherlands)

    Li, X.; Wei, L.; Poelma, R.H.; Vollebregt, S.; Wei, J.; Urbach, Paul; Sarro, P.M.; Zhang, G.Q.

    2016-01-01

    This paper presents a tuneable binary amplitude Fresnel lens produced by wafer-level microfabrication. The Fresnel lens is fabricated by encapsulating lithographically defined vertically aligned carbon nanotube (CNT) bundles inside a polydimethyl-siloxane (PDMS) layer. The composite lens material

  10. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Science.gov (United States)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  11. Theory including future not excluded

    DEFF Research Database (Denmark)

    Nagao, K.; Nielsen, H.B.

    2013-01-01

    We study a complex action theory (CAT) whose path runs over not only past but also future. We show that, if we regard a matrix element defined in terms of the future state at time T and the past state at time TA as an expectation value in the CAT, then we are allowed to have the Heisenberg equation......, Ehrenfest's theorem, and the conserved probability current density. In addition,we showthat the expectation value at the present time t of a future-included theory for large T - t and large t - T corresponds to that of a future-not-included theory with a proper inner product for large t - T. Hence, the CAT...

  12. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    NARCIS (Netherlands)

    Ivan, M.G.; Vivet, F.; Meinders, E.R.

    2010-01-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure

  13. Enhanced adhesion of bioinspired nanopatterned elastomets via colloidal surface assembly

    NARCIS (Netherlands)

    Akerboom, S.; Appel, J.; Labonte, D.; Federle, W.; Sprakel, J.H.B.; Kamperman, M.M.G.

    2015-01-01

    We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the

  14. Equilibrium passive sampling as a tool to study polycyclic aromatic hydrocarbons in Baltic Sea sediment pore-water systems

    DEFF Research Database (Denmark)

    Lang, Susann-Cathrin; Hursthouse, Andrew; Mayer, Philipp

    2015-01-01

    Solid Phase Microextraction (SPME) was applied to provide the first large scale dataset of freely dissolved concentrations for 9 polycyclic aromatic hydrocarbons (PAHs) in Baltic Sea sediment cores. Polydimethylsiloxane (PDMS) coated glass fibers were used for ex-situ equilibrium sampling followed...

  15. Wetting in a colloidal liquid-gas system

    NARCIS (Netherlands)

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of

  16. Deactivation by polysiloxane and phenyl containing disilazane : a 29Si CP-MAS NMR study after the formation of polysiloxane chains at the surface

    NARCIS (Netherlands)

    Hetem, M.J.J.; Rutten, G.A.F.M.; Ven, van de L.J.M.; Haan, de J.W.; Cramers, C.A.M.G.

    1988-01-01

    A high degree of deactivation of glass and fused-silica capillary column walls is attainable by means of high temperature silylation (HTS) with or without a preceding leaching process. HTS with a phenyl containing disilazane, diphenyltetramethyldisilazane (DPTMDS), and polydimethylsiloxane (PDMS)

  17. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    Science.gov (United States)

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  18. Design and Development of a Sub-Zero Fluid System for Demonstration of Orion's Phase Change Material Heat Exchangers on ISS

    Science.gov (United States)

    Sheth, Rubik B.; Ahlstrom, Thomas D.; Le, Hung V.

    2016-01-01

    NASA's Orion Multipurpose Crew Vehicle's Exploration Mission 2 is expected to loiter in Lunar orbit for a relatively long period of time. In low Lunar orbit (LLO) the thermal environment is cyclic - extremely cold in the eclipse and relatively hot near the subsolar point. Phase change material heat exchangers (PCM HXs) are the best option for long term missions in these environments. A PCM HX allows a vehicle to store excess waste energy by thawing a phase change material such as n-pentadecane wax. During portions of the orbit that are extremely cold, the excess energy is rejected, resolidifying the wax. Due to the inherent risk of compromising the heat exchanger during multiple freeze and thaw cycles, a unique payload was designed for the International Space Station to test and demonstration the functions of a PCM HX. The payload incorporates the use of a pumped fluid system and a thermoelectric heat exchanger to promote the freezing and thawing of the PCM HX. This paper shall review the design and development undertaken to build such a system.

  19. Determination of volatile organic compounds responsible for flavour in cooked river buffalo meat

    Directory of Open Access Journals (Sweden)

    A. Di Luccia

    2010-02-01

    Full Text Available Flavour is an important consumer attractive that directly influences the success of food products on the market. The determination of odorous molecules and their identification allows to useful knowledge for producers to valorise their own products. Buffalo meat has a different chemical composition from pork and beef and requires some cautions in cooking and processing. This work aims at the identification of volatile molecules responsible for flavours in river buffalo meat. The determination was carried out by solid phase micro-extraction (SPME technique and analysed by gas chromatography coupled to mass spectrometry (GC-MS. The most relevant results were the higher odorous impact of buffalo meat and the higher content of sulphide compounds responsible for wild aroma respect to pork and beef. These results were obtained comparing the total area of peaks detected in every chromatogram. We have also found significant differences concerning the contents of pentadecane, 1-hexanol-2 ethyl, butanoic acid, furano-2-penthyl. The origin of volatile organic compounds and their influence on the river buffalo aromas were discussed.

  20. 75 FR 16513 - B&C Corporation, JR Engineering Division, Including B&C Distribution Center, Including On-Site...

    Science.gov (United States)

    2010-04-01

    ... Engineering Division, Including B&C Distribution Center, Including On-Site Leased Workers From B&C Services... occurred during the relevant time period at the B&C Distribution Center, Inc. of the B&C Corporation, JR Engineering Division, Barberton, Ohio. The B&C Distribution Center provides distribution and logistical...

  1. Hot-embossing of microstructures on addition-curing polydimethylsiloxane films

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Yu, Liyun; Hassouneh, Suzan Sager

    2013-01-01

    ) film, which is thermosetting elastomer, was established based on the existing and widely applied technology for thermoplasts. We focus on hot-embossing as it is one of the simplest, most cost-effective and time saving methods for replicating structures for thermoplasts. Addition curing silicones...

  2. Microfabrication of cavities in polydimethylsiloxane using DRIE silicon molds

    OpenAIRE

    Giang, Ut-Binh T.; Lee, Dooyoung; King, Michael R.; DeLouise, Lisa A.

    2007-01-01

    We present a novel method to create cavities in PDMS that is simple and exhibits wide process latitude allowing control over the radius of curvature to form shallow concave pits or deep spherical cavities.

  3. How Ionic Liquid Changes Properties of Dense Polydimethylsiloxane Membrane?

    Czech Academy of Sciences Publication Activity Database

    Kohoutová, Marie; Sikora, Antonín; Hovorka, Š.; Randová, A.; Schauer, Jan; Poloncarzová, Magda; Izák, Pavel

    2010-01-01

    Roč. 14, 1-3 (2010), s. 78-82 ISSN 1944-3994 R&D Projects: GA ČR GA203/08/0465 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40500505 Keywords : pervaporation * ionic liquid * fermentation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.752, year: 2010

  4. Surface analysis of polydimethylsiloxane fouled with bovine serum albumin

    CSIR Research Space (South Africa)

    Windvoel, T

    2010-01-01

    Full Text Available -specific adsorption of proteins. The non specific adsorption becomes a limitation in applications that require clean hydrophobic surfaces and the use of proteins. This paper investigates the changes in the surface of PDMS after being in contact with bovine serum...

  5. Modeling of microdevices for SAW-based acoustophoresis - A study of boundary conditions

    DEFF Research Database (Denmark)

    Skov, Nils Refstrup; Bruus, Henrik

    2016-01-01

    We present a finite-element method modeling of acoustophoretic devices consisting of a single, long, straight, water-filled microchannel surrounded by an elastic wall of either borosilicate glass (pyrex) or the elastomer polydimethylsiloxane (PDMS) and placed on top of a piezoelectric transducer...

  6. Contact angle studies on PDMS surfaces fouled by bovine serum albumin

    CSIR Research Space (South Africa)

    Windvoel, VT

    2010-01-01

    Full Text Available Polydimethylsiloxane (PDMS) has a hydrophobic surface, forming a contact angle of around 110º with deionised water. It is due to its hydrophobic nature that the elastomer is prone to bio-fouling, such as non-specific adsorption of biomaterials like...

  7. Direct solid-phase microextraction combined with gas and liquid chromatography for the determination of lidocaine in human urine

    NARCIS (Netherlands)

    Koster, E.H M; Hofman, N.S K; de Jong, G.J.

    Solid-phase microextraction (SPME) has been combined with gas chromatography (GC) and liquid chromatography (LC) for the determination of lidocaine in human urine. A polydimethylsiloxane (PDMS) coated fibre was directly immersed into buffered urine. Extraction conditions such as time, pH, ionic

  8. A microfluidic device with fluorimetric detection for intracellular components analysis

    DEFF Research Database (Denmark)

    Kwapiszewski, Radosław; Skolimowski, Maciej; Ziółkowska, Karina

    2011-01-01

    An integrated microfluidic system that coupled lysis of two cell lines: L929 fibroblasts and A549 epithelial cells, with fluorescence-based enzyme assay was developed to determine β-glucocerebrosidase activity. The microdevice fabricated in poly(dimethylsiloxane) consists of three main parts...

  9. PMMA highlights the layering transition of PDMS in Langmuir films

    NARCIS (Netherlands)

    Bernardini, C.; Stoyanov, S.D.; Cohen Stuart, M.A.; Arnaudov, L.N.; Leermakers, F.A.M.

    2011-01-01

    We report a system consisting of a mixed Langmuir monolayer, made of water-insoluble, spreadable, fluid-like polymers polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA) with a minority P(DMS-b-MMA) copolymer. We have performed both Langmuir trough pressure/area isotherm measurements and

  10. Materials testing and requirement for the ERDA nuclear-powered artificial heart. Technical progress report, July 15, 1975--May 30, 1976. [BIOMER and AVCOTHANE

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, J. D.; Hufferd, W. L.; Lyman, D. J.

    1976-01-01

    The two materials currently being used for the artificial heart fabrication are BIOMER and AVCOTHANE. BIOMER is a polyether urethane polymer. AVCOTHANE is a proprietary polyurethane/polydimethylsiloxane polymer blend. Research progress on the chemical degradation, mechanical strength, and blood compatibility is reported. (TFD)

  11. Synthesis, characterization and self-assembly of well-defined linear heptablock quaterpolymers

    KAUST Repository

    Ntaras, Christos; Polymeropoulos, George; Zapsas, George; Ntetsikas, Konstantinos; Liontos, George; Karanastasis, Apostolos; Moschovas, Dimitrios; Rangou, Sofia; Stewart-Sloan, Charlotte; Hadjichristidis, Nikolaos; Thomas, Edwin L.; Avgeropoulos, Apostolos

    2016-01-01

    Two well-defined heptablock quaterpolymers of the ABCDCBA type [Α: polystyrene (PS), B: poly(butadiene) with ∼90% 1,4-microstructure (PB1,4), C: poly(isoprene) with ∼55% 3,4-microstructure (PI3,4) and D: poly(dimethylsiloxane) (PDMS)] were

  12. Materials testing and requirement for the ERDA nuclear-powered artificial heart. Technical progress report, July 15, 1975--May 30, 1976

    International Nuclear Information System (INIS)

    Andrade, J.D.; Hufferd, W.L.; Lyman, D.J.

    1976-01-01

    The two materials currently being used for the artificial heart fabrication are BIOMER and AVCOTHANE. BIOMER is a polyether urethane polymer. AVCOTHANE is a proprietary polyurethane/polydimethylsiloxane polymer blend. Research progress on the chemical degradation, mechanical strength, and blood compatibility is reported

  13. Polarization-independent nematic liquid crystal waveguides for optofluidic applications

    NARCIS (Netherlands)

    d'Alessandro, A.; Martini, L.; Gilardi, G.; Beccherelli, R.; Asquini, R.

    2015-01-01

    We present the fabrication and the characterization of waveguides made of a nematic liquid crystal infiltrated in poly(dimethylsiloxane) channels. They are made by means of cast and molding technique and patterned using soft photolithography. The orientation of the nematic liquid crystal molecules

  14. Fabrication of polymer microlenses on single mode optical fibers for light coupling

    Science.gov (United States)

    Zaboub, Monsef; Guessoum, Assia; Demagh, Nacer-Eddine; Guermat, Abdelhak

    2016-05-01

    In this paper, we present a technique for producing fibers optics micro-collimators composed of polydimethylsiloxane PDMS microlenses of different radii of curvature. The waist and working distance values obtained enable the optimization of optical coupling between optical fibers, fibers and optical sources, and fibers and detectors. The principal is based on the injection of polydimethylsiloxane (PDMS) into a conical micro-cavity chemically etched at the end of optical fibers. A spherical microlens is then formed that is self-centered with respect to the axis of the fiber. Typically, an optimal radius of curvature of 10.08 μm is obtained. This optimized micro-collimator is characterized by a working distance of 19.27 μm and a waist equal to 2.28 μm for an SMF 9/125 μm fiber. The simulation and experimental results reveal an optical coupling efficiency that can reach a value of 99.75%.

  15. Including Indigenous Minorities in Decision-Making

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    Based on theories of public sphere participation and deliberative democracy, this book presents empirical results from a study of experiences with including Aboriginal and Maori groups in political decision-making in respectively Western Australia and New Zealand......Based on theories of public sphere participation and deliberative democracy, this book presents empirical results from a study of experiences with including Aboriginal and Maori groups in political decision-making in respectively Western Australia and New Zealand...

  16. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures

    Science.gov (United States)

    Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe

    2016-06-01

    Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm-2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel-elastomer hybrids including anti-dehydration hydrogel-elastomer hybrids, stretchable and reactive hydrogel-elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer.

  17. A generalized method for alignment of block copolymer films: solvent vapor annealing with soft shear.

    Science.gov (United States)

    Qiang, Zhe; Zhang, Yuanzhong; Groff, Jesse A; Cavicchi, Kevin A; Vogt, Bryan D

    2014-08-28

    One of the key issues associated with the utilization of block copolymer (BCP) thin films in nanoscience and nanotechnology is control of their alignment and orientation over macroscopic dimensions. We have recently reported a method, solvent vapor annealing with soft shear (SVA-SS), for fabricating unidirectional alignment of cylindrical nanostructures. This method is a simple extension of the common SVA process by adhering a flat, crosslinked poly(dimethylsiloxane) (PDMS) pad to the BCP thin film. The impact of processing parameters, including annealing time, solvent removal rate and the physical properties of the PDMS pad, on the quality of alignment quantified by the Herman's orientational factor (S) is systematically examined for a model system of polystyrene-block-polyisoprene-block-polystyrene (SIS). As annealing time increases, the SIS morphology transitions from isotropic rods to highly aligned cylinders. Decreasing the rate of solvent removal, which impacts the shear rate imposed by the contraction of the PDMS, improves the orientation factor of the cylindrical domains; this suggests the nanostructure alignment is primarily induced by contraction of PDMS during solvent removal. Moreover, the physical properties of the PDMS controlled by the crosslink density impact the orientation factor by tuning its swelling extent during SVA-SS and elastic modulus. Decreasing the PDMS crosslink density increases S; this effect appears to be primarily driven by the changes in the solubility of the SVA-SS solvent in the PDMS. With this understanding of the critical processing parameters, SVA-SS has been successfully applied to align a wide variety of BCPs including polystyrene-block-polybutadiene-block-polystyrene (SBS), polystyrene-block-poly(N,N-dimethyl-n-octadecylammonium p-styrenesulfonate) (PS-b-PSS-DMODA), polystyrene-block-polydimethylsiloxane (PS-b-PDMS) and polystyrene-block-poly(2-vinlypyridine) (PS-b-P2VP). These results suggest that SVA-SS is a generalizable

  18. Assessment of groundwater, soil-gas, and soil contamination at the Vietnam Armor Training Facility, Fort Gordon, Georgia, 2009-2011

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the groundwater, soil gas, and soil for contaminants at the Vietnam Armor Training Facility (VATF) at Fort Gordon, from October 2009 to September 2011. The assessment included the detection of organic compounds in the groundwater and soil gas, and inorganic compounds in the soil. In addition, organic contaminant assessment included organic compounds classified as explosives and chemical agents in selected areas. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. This report is a revision of "Assessment of soil-gas, surface-water, and soil contamination at the Vietnam Armor Training Facility, Fort Gordon, Georgia, 2009-2010," Open-File Report 2011-1200, and supersedes that report to include results of additional samples collected in July 2011. Four passive samplers were deployed in groundwater wells at the VATF in Fort Gordon. Total petroleum hydrocarbons and benzene and octane were detected above the method detection level at all four wells. The only other volatile organic compounds detected above their method detection level were undecane and pentadecane, which were detected in two of the four wells. Soil-gas samplers were deployed at 72 locations in a grid pattern across the VATF on June 3, 2010, and then later retrieved on June 9, 2010. Total petroleum hydrocarbons were detected in 71 of the 72 samplers (one sampler was destroyed in the field and not analyzed) at levels above the method detection level, and the combined mass of benzene, toluene, ethylbenzene, and total xylene (BTEX) was detected above the detection level in 31 of the 71 samplers that were analyzed. Other volatile organic compounds

  19. (including travel dates) Proposed itinerary

    Indian Academy of Sciences (India)

    Ashok

    31 July to 22 August 2012 (including travel dates). Proposed itinerary: Arrival in Bangalore on 1 August. 1-5 August: Bangalore, Karnataka. Suggested institutions: Indian Institute of Science, Bangalore. St Johns Medical College & Hospital, Bangalore. Jawaharlal Nehru Centre, Bangalore. 6-8 August: Chennai, TN.

  20. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which ra...

  1. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  2. Study on the morphology and thermomechanical properties of poly(urethane-siloxane) networks based on hyperbranched polyester

    Czech Academy of Sciences Publication Activity Database

    Pergal, M. V.; Džunuzović, J. V.; Špírková, Milena; Poreba, Rafal; Steinhart, Miloš; Pergal, M. M.; Ostojić, S.

    2013-01-01

    Roč. 67, č. 6 (2013), s. 871-879 ISSN 0367-598X R&D Projects: GA ČR GAP108/10/0195 Institutional support: RVO:61389013 Keywords : polyurethane networks * poly(dimethylsiloxane) * hyperbranched polyester Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.562, year: 2013

  3. Engineering durable hydrophobic surfaces on porous alumina ceramics using in-situ formed inorganic-organic hybrid nanoparticles

    NARCIS (Netherlands)

    Gu, Jianqiang; Wang, Junwei; Li, Yanan; Xu, Xin; Chen, Chusheng; Winnubst, Louis

    2017-01-01

    Hydrophobic surfaces are required for a variety of applications owing to their water repellent and self-cleaning properties. In this work, we present a novel approach to prepare durable hydrophobic surfaces on porous ceramics. A polydimethylsiloxane (PDMS) film was applied to a porous alumina wafer,

  4. Metabolomics in melon: A new opportunity for aroma analysis

    NARCIS (Netherlands)

    Allwood, J.W.; Cheung, W.W.L.; Xu, Y.; Mumm, R.; Vos, de C.H.; Deborde, C.; Biais, B.; Maucourt, M.; Berger, Y.; Schaffer, A.; Rolin, D.; Moing, A.; Hall, R.D.; Goodacre, R.

    2014-01-01

    Cucumis melo fruit is highly valued for its sweet and refreshing flesh, however the flavour and value are also highly influenced by aroma as dictated by volatile organic compounds (VOCs). A simple and robust method of sampling VOCs on polydimethylsiloxane (PDMS) has been developed. Contrasting

  5. Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions : Impact of Particle Size, Line Tension, and Surface Functionality

    NARCIS (Netherlands)

    Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G. Julius

    2017-01-01

    Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO2-blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell

  6. Retention model for sorptive extraction-thermal desorption of aqueous samples : application to the automated analysis of pesticides and polyaromatic hydrocarbons in water samples

    NARCIS (Netherlands)

    Baltussen, H.A.; David, F.; Sandra, P.J.F.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1998-01-01

    In this report, an automated method for sorptive enrichment of aqueous samples is presented. It is based on sorption of the analytes of interest into a packed bed containing 100% polydimethylsiloxane (PDMS) particles followed by thermal desorption for complete transfer of the enriched solutes onto

  7. Comparison of Biocompatibility and Adsorption Properties of Different Plastics for Advanced Microfluidic Cell and Tissue Culture Models

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Janse, Arnout; Merema, M.T.; Groothuis, Geny M. M.; Verpoorte, Elisabeth

    2012-01-01

    Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision cut

  8. Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane

    Science.gov (United States)

    Tianliang Zhai; Qifeng Zheng; Zhiyong Cai; Lih-Sheng Turng; Hesheng Xia; Shaoqin Gong

    2015-01-01

    Superhydrophobic poly(vinyl alcohol) (PVA)/ cellulose nanofibril (CNF) aerogels with a unidirectionally aligned microtubular porous structure were prepared using a unidirectional freeze-drying process, followed by the thermal chemical vapor deposition of methyltrichlorosilane. The silanized aerogels were characterized using various techniques including scanning...

  9. Launch Lock Assemblies Including Axial Gap Amplification Devices and Spacecraft Isolation Systems Including the Same

    Science.gov (United States)

    Barber, Tim Daniel (Inventor); Hindle, Timothy (Inventor); Young, Ken (Inventor); Davis, Torey (Inventor)

    2014-01-01

    Embodiments of a launch lock assembly are provided, as are embodiments of a spacecraft isolation system including one or more launch lock assemblies. In one embodiment, the launch lock assembly includes first and second mount pieces, a releasable clamp device, and an axial gap amplification device. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement; and, when actuated, releases the first and second mount pieces from clamped engagement to allow relative axial motion there between. The axial gap amplification device normally residing in a blocking position wherein the gap amplification device obstructs relative axial motion between the first and second mount pieces. The axial gap amplification device moves into a non-blocking position when the first and second mount pieces are released from clamped engagement to increase the range of axial motion between the first and second mount pieces.

  10. Large-area nanoimprinting on various substrates by reconfigurable maskless laser direct writing

    KAUST Repository

    Lee, Daeho

    2012-08-10

    Laser-assisted, one-step direct nanoimprinting of metal and semiconductor nanoparticles (NPs) was investigated to fabricate submicron structures including mesh, line, nanopillar and nanowire arrays. Master molds were fabricated with high-speed (200mms 1) laser direct writing (LDW) of negative or positive photoresists on Si wafers. The fabrication was completely free of lift-off or reactive ion etching processes. Polydimethylsiloxane (PDMS) stamps fabricated from master molds replicated nanoscale structures (down to 200nm) with no or negligible residual layers on various substrates. The low temperature and pressure used for nanoimprinting enabled direct nanofabrication on flexible substrates. With the aid of high-speed LDW, wafer scale 4inch direct nanoimprinting was demonstrated. © 2012 IOP Publishing Ltd.

  11. Membrane introduction proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Alexander, M.; Boscaini, E.; Maerk, T.; Lindinger, W.

    2002-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a rapidly expanding field with multiple applications in ion physics, atmospheric chemistry, food chemistry, volatile organic compounds monitoring and biology. Initial studies that combine PTR-MS and membrane introduction mass spectrometry (MIMS) were researched and outlined. First using PTR-MS, certain fundamental physical properties of a poly-dimethylsiloxane (PDMS) membrane including solubilities and diffusion coefficients were measured. Second, it was shown how the chemical selectivity of the (PDMS) can be used to extend the capabilities of the PTR-MS instrument by eliminating certain isobaric interferences and excluding water from volatile organic compounds (VOCs). Experiments with mixtures of several VOCs (toluene, benzene, acetone, propanal, methanol) are presented. (nevyjel)

  12. Immobilisation of barley aleurone layers enables parallelisation of assays and analysis of transient gene expression in single cells

    DEFF Research Database (Denmark)

    Zor, Kinga; Mark, Christina; Heiskanen, Arto

    2017-01-01

    at a single time point. By immobilising barley aleurone layer tissue on polydimethylsiloxane pillars in the lid of a multiwell plate, continuous monitoring of living tissue is enabled using multiple non-destructive assays in parallel. Cell viability and menadione reducing capacity were monitored in the same...

  13. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    Science.gov (United States)

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  14. Confined flow of polymer blends

    NARCIS (Netherlands)

    Tufano, C.; Peters, G.W.M.; Meijer, H.E.H.

    2008-01-01

    The influence of confinement on the steady-state morphology of two different emulsions is investigated. The blends, made from polybutene (PB) in polydimethylsiloxane (PDMS) and polybutadiene (PBD) in PDMS, are sheared between two parallel plates, mostly with a standard gap spacing of 40 m, in the

  15. Fabrication and Analysis of Photonic Crystals

    Science.gov (United States)

    Campbell, Dean J.; Korte, Kylee E.; Xia, Younan

    2007-01-01

    These laboratory experiments are designed to explore aspects of nanoscale chemistry by constructing and spectroscopically analyzing thin films of photonic crystals. Films comprised of colloidal spheres and polydimethylsiloxane exhibit diffraction-based stop bands that shift reversibly upon exposure to some common solvents. Topics covered in these…

  16. Enhancing relative permittivity by incorporating PDMS-PEG multi block copolymers in binary polymer blends

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    Polydimethylsiloxanes (PDMS) are well-known to actuate with relatively large strains due to low modulus, but they possess lowpermittivity. Contrary, polyethyleneglycols (PEG) are not stretchable but possess high permittivity. Combination of the two polymers in a block copolymer depicts a possibil......Polydimethylsiloxanes (PDMS) are well-known to actuate with relatively large strains due to low modulus, but they possess lowpermittivity. Contrary, polyethyleneglycols (PEG) are not stretchable but possess high permittivity. Combination of the two polymers in a block copolymer depicts...... a possibility for substantial improvement of properties such as high permittivity, stretchability and non-conductivity – if carefully designed. The objective is to synthesize PDMS-PEG multiblock copolymer assembling into discontinuous morphologies in PEG based on variation of volume fractions of PDMS....... The utilized synthesis of PDMS-PEG multiblock copolymer is based on hydrosilylation reaction, which is amended from Klasner et al.1 and Jukarainen etal.2 Variation in the ratio between the two constituents introduces distinctive properties in terms of dielectric permittivity and rheological behaviour. PDMS...

  17. Monolithically integrated biophotonic lab-on-a-chip for cell culture and simultaneous pH monitoring

    NARCIS (Netherlands)

    Munoz-Berbel, Xavier; Rodriguez-Rodriguez, Rosalia; Vigues, Nuria; Demming, Stefanie; Mas, Jordi; Buettgenbach, Stephanus; Verpoorte, Elisabeth; Ortiz, Pedro; Llobera, Andreu

    2013-01-01

    A poly(dimethylsiloxane) biophotonic lab-on-a-chip (bioPhLoC) containing two chambers, an incubation chamber and a monitoring chamber for cell retention/proliferation and pH monitoring, respectively, is presented. The bioPhLoC monolithically integrates a filter with 3 mu m high size-exclusion

  18. Simple method to transfer graphene from metallic catalytic substrates to flexible surfaces without chemical etching

    International Nuclear Information System (INIS)

    Ko, P J; Takahashi, H; Sakai, H; Thu, T V; Okada, H; Sandhu, A; Koide, S

    2013-01-01

    Graphene shows promise for applications in flexible electronics. Here, we describe our procedure to transfer graphene grown on copper substrates by chemical vapor deposition to polydimethylsiloxane (PDMS) and SiO 2 /Si surfaces. The transfer of graphene was achieved by a simple, etching-free method onto flexible PDMS substrates.

  19. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures · Axel Blau Tanja Neumann Christiane Ziegler Fabio Benfenati ... otherwise conventional cell culture conditions. pp 71-83 Articles. Molecular evolution of the E8 promoter in tomato and some of its relative wild species.

  20. Impact of the poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly(propylene oxide) macrodiols on the surface-related properties of polyurethane copolymers

    Czech Academy of Sciences Publication Activity Database

    Stefanović, I. S.; Godevac, D.; Špírková, Milena; Jovančić, P.; Tešević, V.; Milačić, V.; Pergal, M. V.

    2016-01-01

    Roč. 70, č. 6 (2016), s. 725-738 ISSN 0367-598X R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : segmented polyurethanes * poly(dimethylsiloxane) * 2D NMR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.459, year: 2016

  1. Inelastic scattering in condensed matter with high intensity moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1991-05-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is not fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using Bragg scattering filters to suppress unwanted radiation. These have led to a Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to make a novel independent determination of interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na metal and the charge density wave satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. Using a specially constructed sample cell which enables us to vary temperatures from -10 C to 110 C, we have begun quasielastic diffusion studies in viscous liquids and current results are summarized. Included are the temperature and Q dependence of the scattering in pentadecane and diffusion in glycerol

  2. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    Science.gov (United States)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-07-01

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of "statistical associating fluid theory" that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH2 and CH3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ˜2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ˜1% from simulation data while the theory reproduces the excess

  3. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    International Nuclear Information System (INIS)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-01-01

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH 2 and CH 3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory reproduces

  4. Being Included and Excluded

    DEFF Research Database (Denmark)

    Korzenevica, Marina

    2016-01-01

    Following the civil war of 1996–2006, there was a dramatic increase in the labor mobility of young men and the inclusion of young women in formal education, which led to the transformation of the political landscape of rural Nepal. Mobility and schooling represent a level of prestige that rural...... politics. It analyzes how formal education and mobility either challenge or reinforce traditional gendered norms which dictate a lowly position for young married women in the household and their absence from community politics. The article concludes that women are simultaneously excluded and included from...... community politics. On the one hand, their mobility and decision-making powers decrease with the increase in the labor mobility of men and their newly gained education is politically devalued when compared to the informal education that men gain through mobility, but on the other hand, schooling strengthens...

  5. Births and deaths including fetal deaths

    Data.gov (United States)

    U.S. Department of Health & Human Services — Access to a variety of United States birth and death files including fetal deaths: Birth Files, 1968-2009; 1995-2005; Fetal death file, 1982-2005; Mortality files,...

  6. Separation of Azeotropic Mixture Acetone + Hexane by Using Polydimethylsiloxane Membrane.

    Czech Academy of Sciences Publication Activity Database

    Randová, A.; Bartovská, L.; Kačírková, Marie; Ledesma, Oscar Iván Hernández; Červenková Šťastná, Lucie; Izák, Pavel; Žitková, Andrea; Friess, K.

    2016-01-01

    Roč. 170, OCT 1 (2016), s. 256-263 ISSN 1383-5866 R&D Projects: GA MŠk(CZ) LD14094 Institutional support: RVO:67985858 Keywords : azeotropic mixture * PDMS membrane * pervaporation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  7. Friction, adhesion and wear properties of PDMS films on silicon sidewalls

    International Nuclear Information System (INIS)

    Penskiy, I; Gerratt, A P; Bergbreiter, S

    2011-01-01

    This paper demonstrates the first tests of friction, adhesion and wear properties of thin poly(dimethylsiloxane) (PDMS) films on the sidewalls of silicon-on-insulator structures. The test devices were individually calibrated using a simple method that included optical and electrical measurements. The static coefficient of friction versus normal pressure curves were obtained for PDMS–PDMS, PDMS–silicon and silicon–silicon sidewall interfaces. The effects of aging on friction and adhesion properties of PDMS were also evaluated. The results of friction tests showed that the static coefficient of friction follows the JKR contact model, which means that the friction force depends on the apparent area of contact. The wear tests showed high resistance of PDMS to abrasion over millions of cycles.

  8. Manufacturing PDMS micro lens array using spin coating under a multiphase system

    International Nuclear Information System (INIS)

    Sun, Rongrong; Yang, Hanry; Rock, D Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R; Li, Lei

    2017-01-01

    The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time. (paper)

  9. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  10. On optimal length of hydrocarbon chain of fatty-acid collectors of rare earth ions

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Sazonova, V.F.; Markina, Eh.L.

    1978-01-01

    The mechanism of the effect of the length of alkyl chain in fatty-acid collectors on the efficiency of flotation separation of the ions of rare earth elements (REE) collected by them has been investigated. REE flotation separation was studied on gadolinium chloride. Aqueous solutions of potassium caprinata, indecanate, laurate, tridecanate, myristate, pentadecanate and palmitate were used as collectors of Gd ions. The interaction of Gd ions with these compounds proceeds rapidly and is accompanied by stable colloidal solutions of Gd soaps being formed. Infrared spectra and radiograms of the sublates have been studied. It has been found that, with the number of carbon atoms in the collector molecule increasing from 10 to 16, the rate of flotation separation of Gd ions from solutions with pH 6 and 8 at first practically does not change (for potassium caprinate, undecanate and laurate), then drops sharply (potassium tridecanate and myristate), after which is again increases sharply (potassium pentadecanata and palmitate). The separation rate of Gd ions does not rise in solutions with pH 10. The nature of the sublate is shown to be determined by the solubility of the corresponing fatty acids and gadolinium soaps

  11. Deoxygenation of Plant Fatty Acid using NiSnK/ SiO2 as Catalyst

    International Nuclear Information System (INIS)

    Chiam, L.T.; Tye, C.T.

    2013-01-01

    Environmental friendly bio-oil which offers supply reliability as a potential alternative fuel, has spurred to rapid development of bio fuels technology. Palm oil is a potential renewable energy source for bio fuels production in the future and Malaysia is one of the world largest palm oil producers. However, undesired oxygen content in the plant fatty acid that contributes to low energy density, high viscosity, and low stability, makes the palm oil not effective to be used as bio fuels directly. In the present study, the performance of silica supported trimetal catalyst, NiSnK/ SiO 2 , on deoxygenation of used palm oil was evaluated. In addition, the effects of operating parameters, such as reaction temperature and weight hourly space velocity were investigated. Conversion of palmitic acid as high as 90 % was achieved in deoxygenation of used palm oil at reaction temperature 350 degree Celsius. In order to have a better understanding on the deoxygenation reaction, model compound system using the major saturated fatty acid in the used palm oil, palmitic acid was also carried out. Palmitic acid was found mainly decarboxylated into n-pentadecane with some decarboxylation and isomerization products. (author)

  12. Stir Bar Sorptive Extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles

    NARCIS (Netherlands)

    Baltussen, H.A.; Sandra, P.J.F.; David, F.; Cramers, C.A.M.G.

    1999-01-01

    The theory and practice of a novel approach for sample enrichment, namely the application of stir bars coated with the sorbent polydimethylsiloxane (PDMS) and referred to as stir bar sorptive extraction (SBSE) are presented. Stir bars with a length of 10 and 40 mm coated with 55 and 219 L of PDMS

  13. Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels

    Indian Academy of Sciences (India)

    A stable gel of Au nanoparticles in polydimethylsiloxane (PDMS) nanocomposite is prepared by employing the curing agent of PDMS elastomer as a reducing agent for the formation of Au nanoparticles by an in-situ process. The viscoelastic nature of these gels is very sensitive to the Au nanoparticle loading and the ...

  14. Analysis of dynamic mechanical, thermal and surface properties of poly(urethane-ester-siloxane) networks based on hyperbranched polyester

    Czech Academy of Sciences Publication Activity Database

    Džunuzović, J. V.; Pergal, M. V.; Poreba, Rafal; Vodnik, V. V.; Simonović, B. R.; Špírková, Milena; Jovanović, S.

    2012-01-01

    Roč. 358, č. 23 (2012), s. 3161-3169 ISSN 0022-3093 R&D Projects: GA ČR GAP108/10/0195 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : polyurethane network * hyperbranched polyester * poly(dimethylsiloxane) Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.597, year: 2012

  15. Flexible Piezoelectric Touch Sensor by Alignment of Lead-Free Alkaline Niobate Microcubes in PDMS

    NARCIS (Netherlands)

    Deutz, D.B.; Mascarenhas, N.T.; Schelen, J.B.J.; de Leeuw, D.M.; van der Zwaag, S.; Groen, W.A.

    2017-01-01

    A highly sensitive, lead-free, and flexible piezoelectric touch sensor is reported based on composite films of alkaline niobate K0.485Na0.485Li0.03NbO3 (KNLN) powders aligned in a polydimethylsiloxane (PDMS) matrix. KNLN powder is fabricated by

  16. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  17. Gas storage materials, including hydrogen storage materials

    Science.gov (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  18. Electric Power Monthly, August 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  19. Should Relational Aggression Be Included in DSM-V?

    Science.gov (United States)

    Keenan, Kate; Coyne, Claire; Lahey, Benjamin B.

    2008-01-01

    The study examines whether relational aggression should be included in DSM-V disruptive behavior disorders. The results conclude that some additional information is gathered from assessing relational aggression but not enough to be included in DSM-V.

  20. Electrochemical cell structure including an ionomeric barrier

    Science.gov (United States)

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  1. 28 CFR 20.32 - Includable offenses.

    Science.gov (United States)

    2010-07-01

    ... Exchange of Criminal History Record Information § 20.32 Includable offenses. (a) Criminal history record... vehicular manslaughter, driving under the influence of drugs or liquor, and hit and run), when unaccompanied by a § 20.32(a) offense. These exclusions may not be applicable to criminal history records...

  2. Formulation Study of Topically Applied Lotion: In Vitro and In Vivo Evaluation

    Directory of Open Access Journals (Sweden)

    Syed Nisar Hussain Shah

    2013-01-01

    Full Text Available ntroduction: This article presents the development and evaluation of a new topical formulation of diclofenac diethylamine (DDA as a locally applied analgesic lotion. Methods: To this end, the lotion formulations were formulated with equal volume of varying concentrations (1%, 2%, 3%, 4%; v/v of permeation enhancers, namely propylene glycol (PG and turpentine oil (TO. These lotions were subjected to physical studies (pH, viscosity, spreadability, homogeneity, and accelerated stability, in vitro permeation, in vivo animal studies and sensatory perception testing. In vitro permeation of DDA from lotion formulations was evaluated across polydimethylsiloxane membrane and rabbit skin using Franz cells. Results: It was found that PG and TO content influenced the permeation of DDA across model membranes with the lotion containing 4% v/v PG and TO content showed maximum permeation enhancement of DDA. The flux values for L4 were 1.20±0.02 μg.cm-2.min-1 and 0.67 ± 0.02 μg.cm-2.min-1 for polydimethylsiloxane and rabbit skin, respectively. Flux values were significantly different (p < 0.05 from that of the control. The flux enhancement ratio of DDA from L4 was 31.6-fold and 4.8-fold for polydimethylsiloxane and rabbit skin, respectively. In the in vivo animal testing, lotion with 4% v/v enhancer content showed maximum anti-inflammatory and analgesic effect without inducing any irritation. Sensatory perception tests involving healthy volunteers rated the formulations between 3 and 4 (values ranging between -4 to +4, indicating a range of very bad to excellent, respectively. Conclusion: It was concluded that the DDA lotion containing 4% v/v PG and TO exhibit the best performance overall and that this specific formulation should be the basis for further clinical investigations.

  3. Biomimetic PDMS-hydroxyurethane terminated with catecholic moieties for chemical grafting on transition metal oxide-based surfaces

    Science.gov (United States)

    de Aguiar, Kelen R.; Rischka, Klaus; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Cavalcanti, Welchy Leite; Rodrigues-Filho, Ubirajara P.

    2018-01-01

    The aim of this work was to synthesize a non-isocyanate poly(dimethylsiloxane) hydroxyurethane with biomimetic terminal catechol moieties, as a candidate for inorganic and metallic surface modification. Such surface modifier is capable to strongly attach onto metallic and inorganic substrates forming layers and, in addition, providing water-repellent surfaces. The non-isocyanate route is based on carbon dioxide cycloaddition into bis-epoxide, resulting in a precursor bis(cyclic carbonate)-polydimethylsiloxane (CCPDMS), thus fully replacing isocyanate in the manufacture process. A biomimetic approach was chosen with the molecular composition being inspired by terminal peptides present in adhesive proteins of mussels, like Mefp (Mytilus edulis foot protein), which bear catechol moieties and are strong adhesives even under natural and saline water. The catechol terminal groups were grafted by aminolysis reaction into a polydimethylsiloxane backbone. The product, PDMSUr-Dopamine, presented high affinity towards inhomogeneous alloy surfaces terminated by native oxide layers as demonstrated by quartz crystal microbalance (QCM-D), as well as stability against desorption by rinsing with ethanol. As revealed by QCM-D, X-ray photoelectron spectroscopy (XPS) and computational studies, the thickness and composition of the resulting nanolayers indicated an attachment of PDMSUr-Dopamine molecules to the substrate through both terminal catechol groups, with the adsorbate exposing the hydrophobic PDMS backbone. This hypothesis was investigated by classical molecular dynamic simulation (MD) of pure PDMSUr-Dopamine molecules on SiO2 surfaces. The computationally obtained PDMSUr-Dopamine assembly is in agreement with the conclusions from the experiments regarding the conformation of PDMSUr-Dopamine towards the surface. The tendency of the terminal catechol groups to approach the surface is in agreement with proposed model for the attachment PDMSUr-Dopamine. Remarkably, the versatile

  4. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    DEFF Research Database (Denmark)

    Li, Li; Molin, Søren; Yang, Liang

    2013-01-01

    -b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment...

  5. Wetting in a Colloidal Liquid-Gas System

    Science.gov (United States)

    Wijting, W. K.; Besseling, N. A.; Stuart, M. A.

    2003-05-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  6. Wetting in a colloidal liquid-gas system

    OpenAIRE

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  7. VOLATILE COMPOUNDS IDENTIFIED IN BARBADOS CHERRY ‘BRS-366 JABURÚ’

    Directory of Open Access Journals (Sweden)

    Y. M. Garcia

    2016-07-01

    Full Text Available In foods, the flavor and aroma are very important attributes, thus the main objective of this study was to identify the volatile compounds (VC of the "BRS-366 Jaburú" acerola variety, for which we used the solid phase microextraction method (SPE. The separation and identification of volatile compounds was made using gas chromatography-mass spectrometry (GC-MS. Three fibers were evaluated, Polydimethylsiloxane / Divinylbenzene (PDMS / DVB, 65 micrometres Divinylbenzene / Carboxen / Polydimethylsiloxane (DVB / CAR / PDMS 50/30 m and polyacrylate (PA 85 uM to compare the extraction of its components. Thirty-three volatile compounds were identified and classified into eight chemical classes: carboxylic acids, alcohols, aldehydes, ketones, esters, hydrocarbons, phenylpropanoids and terpenoids. The peak areas of each of the extracted compounds were expressed as percentages to indicate the relative concentration of each, of which ethyl acetate is distinguished by being responsible for the fruity aroma notes. Thus, the fiber PDMS / DVB was the best as it enabled to extract a greater amount of volatile compounds

  8. Including Students with Visual Impairments: Softball

    Science.gov (United States)

    Brian, Ali; Haegele, Justin A.

    2014-01-01

    Research has shown that while students with visual impairments are likely to be included in general physical education programs, they may not be as active as their typically developing peers. This article provides ideas for equipment modifications and game-like progressions for one popular physical education unit, softball. The purpose of these…

  9. Isolators Including Main Spring Linear Guide Systems

    Science.gov (United States)

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)

    2017-01-01

    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  10. Including gauge corrections to thermal leptogenesis

    International Nuclear Information System (INIS)

    Huetig, Janine

    2013-01-01

    This thesis provides the first approach of a systematic inclusion of gauge corrections to leading order to the ansatz of thermal leptogenesis. We have derived a complete expression for the integrated lepton number matrix including all resummations needed. For this purpose, a new class of diagram has been invented, namely the cylindrical diagram, which allows diverse investigations into the topic of leptogenesis such as the case of resonant leptogenesis. After a brief introduction of the topic of the baryon asymmetry in the universe and a discussion of its most promising solutions as well as their advantages and disadvantages, we have presented our framework of thermal leptogenesis. An effective model was described as well as the associated Feynman rules. The basis for using nonequilibrium quantum field theory has been built in chapter 3. At first, the main definitions have been presented for equilibrium thermal field theory, afterwards we have discussed the Kadanoff-Baym equations for systems out of equilibrium using the example of the Majorana neutrino. The equations have also been solved in the context of leptogenesis in chapter 4. Since gauge corrections play a crucial role throughout this thesis, we have also repeated the naive ansatz by replacing the free equilibrium propagator by propagators including thermal damping rates due to the Standard Model damping widths for lepton and Higgs fields. It is shown that this leads to a comparable result to the solutions of the Boltzmann equations for thermal leptogenesis. Thus it becomes obvious that Standard Model corrections are not negligible for thermal leptogenesis and therefore need to be included systematically from first principles. In order to achieve this we have started discussing the calculation of ladder rung diagrams for Majorana neutrinos using the HTL and the CTL approach in chapter 5. All gauge corrections are included in this framework and thus it has become the basis for the following considerations

  11. Including gauge corrections to thermal leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Huetig, Janine

    2013-05-17

    This thesis provides the first approach of a systematic inclusion of gauge corrections to leading order to the ansatz of thermal leptogenesis. We have derived a complete expression for the integrated lepton number matrix including all resummations needed. For this purpose, a new class of diagram has been invented, namely the cylindrical diagram, which allows diverse investigations into the topic of leptogenesis such as the case of resonant leptogenesis. After a brief introduction of the topic of the baryon asymmetry in the universe and a discussion of its most promising solutions as well as their advantages and disadvantages, we have presented our framework of thermal leptogenesis. An effective model was described as well as the associated Feynman rules. The basis for using nonequilibrium quantum field theory has been built in chapter 3. At first, the main definitions have been presented for equilibrium thermal field theory, afterwards we have discussed the Kadanoff-Baym equations for systems out of equilibrium using the example of the Majorana neutrino. The equations have also been solved in the context of leptogenesis in chapter 4. Since gauge corrections play a crucial role throughout this thesis, we have also repeated the naive ansatz by replacing the free equilibrium propagator by propagators including thermal damping rates due to the Standard Model damping widths for lepton and Higgs fields. It is shown that this leads to a comparable result to the solutions of the Boltzmann equations for thermal leptogenesis. Thus it becomes obvious that Standard Model corrections are not negligible for thermal leptogenesis and therefore need to be included systematically from first principles. In order to achieve this we have started discussing the calculation of ladder rung diagrams for Majorana neutrinos using the HTL and the CTL approach in chapter 5. All gauge corrections are included in this framework and thus it has become the basis for the following considerations

  12. Energy principle with included boundary conditions

    International Nuclear Information System (INIS)

    Lehnert, B.

    1994-01-01

    Earlier comments by the author on the limitations of the classical form of the extended energy principle are supported by a complementary analysis on the potential energy change arising from free-boundary displacements of a magnetically confined plasma. In the final formulation of the extended principle, restricted displacements, satisfying pressure continuity by means of plasma volume currents in a thin boundary layer, are replaced by unrestricted (arbitrary) displacements which can give rise to induced surface currents. It is found that these currents contribute to the change in potential energy, and that their contribution is not taken into account by such a formulation. A general expression is further given for surface currents induced by arbitrary displacements. The expression is used to reformulate the energy principle for the class of displacements which satisfy all necessary boundary conditions, including that of the pressure balance. This makes a minimization procedure of the potential energy possible, for the class of all physically relevant test functions which include the constraints imposed by the boundary conditions. Such a procedure is also consistent with a corresponding variational calculus. (Author)

  13. 7 CFR 1437.303 - Aquaculture, including ornamental fish.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Aquaculture, including ornamental fish. 1437.303... ASSISTANCE PROGRAM Determining Coverage Using Value § 1437.303 Aquaculture, including ornamental fish. (a... human consumption as determined by CCC. (2) Fish raised as feed for other fish that are consumed by...

  14. Impedance Spectroscopic Characterisation of Porosity in 3D Cell Culture Scaffolds with Different Channel Networks

    DEFF Research Database (Denmark)

    Canali, Chiara; Mohanty, Soumyaranjan; Heiskanen, Arto

    2015-01-01

    We present the application of electrochemical impedance spectroscopy (EIS) as a method for discriminating between different polydimethylsiloxane (PDMS) scaffolds for three-dimensional (3D) cell cultures. The validity of EIS characterisation for scaffolds having different degree of porosity...... serve as means of single-frequency measurements for fast scaffold characterization combined with in vitro monitoring of 3D cell cultures....

  15. Improved optical solutions for on-chip light scattering detection

    DEFF Research Database (Denmark)

    Jensen, Thomas Glasdam

    nødvendigt at udvikle LabVIEW programmet "RayLab" for at kunne simulere den optiske opførsel af forskellige bølgeleder og mikrolinse konfigurationer. Det første vellykkede eksperiment blev lavet med en mikrofluid enhed bestående af et glas substrat med et SU-8 og et polydimethylsiloxan (PDMS) lag. Enheden...

  16. 29 CFR 780.616 - Operations included in raising livestock.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Operations included in raising livestock. 780.616 Section... Employment in Agriculture and Livestock Auction Operations Under the Section 13(b)(13) Exemption Requirements for Exemption § 780.616 Operations included in raising livestock. Raising livestock includes such...

  17. 48 CFR 536.213-371 - Bids that include options.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Bids that include options... Contracting for Construction 536.213-371 Bids that include options. (a) Subject to the limitations in paragraph (c) of this section, you may include options in contracts if it is in the Government's interest...

  18. Photoactive devices including porphyrinoids with coordinating additives

    Science.gov (United States)

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  19. Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Choux, Martin; Hovland, Geir; Blanke, Mogens

    2012-01-01

    Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an adapt......Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants...... of an adaptive backstepping tracking controller with earlier results. The new control architecture is analysed and enhanced tracking performance is demonstrated when including the extended friction model. The complexity of the backstepping procedure is significantly reduced due to the cascade structure. Hence...

  20. Microfluidic devices and methods including porous polymer monoliths

    Science.gov (United States)

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  1. Microwell Arrays for Studying Many Individual Cells

    Science.gov (United States)

    Folch, Albert; Kosar, Turgut Fettah

    2009-01-01

    "Laboratory-on-a-chip" devices that enable the simultaneous culturing and interrogation of many individual living cells have been invented. Each such device includes a silicon nitride-coated silicon chip containing an array of micromachined wells sized so that each well can contain one cell in contact or proximity with a patch clamp or other suitable single-cell-interrogating device. At the bottom of each well is a hole, typically 0.5 m wide, that connects the well with one of many channels in a microfluidic network formed in a layer of poly(dimethylsiloxane) on the underside of the chip. The microfluidic network makes it possible to address wells (and, thus, cells) individually to supply them with selected biochemicals. The microfluidic channels also provide electrical contact to the bottoms of the wells.

  2. Towards ligand docking including explicit interface water molecules.

    Directory of Open Access Journals (Sweden)

    Gordon Lemmon

    Full Text Available Small molecule docking predicts the interaction of a small molecule ligand with a protein at atomic-detail accuracy including position and conformation the ligand but also conformational changes of the protein upon ligand binding. While successful in the majority of cases, docking algorithms including RosettaLigand fail in some cases to predict the correct protein/ligand complex structure. In this study we show that simultaneous docking of explicit interface water molecules greatly improves Rosetta's ability to distinguish correct from incorrect ligand poses. This result holds true for both protein-centric water docking wherein waters are located relative to the protein binding site and ligand-centric water docking wherein waters move with the ligand during docking. Protein-centric docking is used to model 99 HIV-1 protease/protease inhibitor structures. We find protease inhibitor placement improving at a ratio of 9:1 when one critical interface water molecule is included in the docking simulation. Ligand-centric docking is applied to 341 structures from the CSAR benchmark of diverse protein/ligand complexes [1]. Across this diverse dataset we see up to 56% recovery of failed docking studies, when waters are included in the docking simulation.

  3. Nuclear reactor shield including magnesium oxide

    International Nuclear Information System (INIS)

    Rouse, C.A.; Simnad, M.T.

    1981-01-01

    An improvement is described for nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux. The reactor shielding includes means providing structural support, neutron moderator material, neutron absorber material and other components, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron

  4. The study of fingerprint characteristics of Dayi Pu-Erh tea using a fully automatic HS-SPME/GC-MS and combined chemometrics method.

    Directory of Open Access Journals (Sweden)

    Shidong Lv

    Full Text Available The quality of tea is presently evaluated by the sensory assessment of professional tea tasters, however, this approach is both inconsistent and inaccurate. A more standardized and efficient method is urgently needed to objectively evaluate tea quality. In this study, the chemical fingerprint of 7 different Dayi Pu-erh tea brands and 3 different Ya'an tea brands on the market were analyzed using fully automatic headspace solid-phase microextraction (HS-SPME combined with gas chromatography-mass spectrometry (GC-MS. A total of 78 volatiles were separated, among 75 volatiles were identified by GC-MS in seven Dayi Pu-erh teas, and the major chemical components included methoxyphenolic compounds, hydrocarbons, and alcohol compounds, such as 1,2,3-trimethoxybenzene, 1,2,4-trimethoxybenzene, 2,6,10,14-tetramethyl-pentadecane, linalool and its oxides, α-terpineol, and phytol. The overlapping ratio of peaks (ORP of the chromatogram in the seven Dayi Pu-erh tea samples was greater than 89.55%, whereas the ORP of Ya'an tea samples was less than 79.10%. The similarity and differences of the Dayi Pu-erh tea samples were also characterized using correlation coefficient similarity and principal component analysis (PCA. The results showed that the correlation coefficient of similarity of the seven Dayi Pu-erh tea samples was greater than 0.820 and was gathered in a specific area, which showed that samples from different brands were basically the same, despite have some slightly differences of chemical indexes was found. These results showed that the GC-MS fingerprint combined with the PCA approach can be used as an effective tool for the quality assessment and control of Pu-erh tea.

  5. Jet-calculus approach including coherence effects

    International Nuclear Information System (INIS)

    Jones, L.M.; Migneron, R.; Narayanan, K.S.S.

    1987-01-01

    We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional ''incoherent'' jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics

  6. Glycerol as high-permittivity liquid filler in dielectric silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Yu, Liyun; Gerhard, R.

    2016-01-01

    A recently reported novel class of elastomers was tested with respect to its dielectric properties. The new elastomer materialis based on a commercially available poly(dimethylsiloxane) composition, which has been modified by embedding glycerol droplets intoits matrix. The approach has two major ......, and the applicability ofthe models is discussed. VC 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44153....

  7. Ceramic substrate including thin film multilayer surface conductor

    Science.gov (United States)

    Wolf, Joseph Ambrose; Peterson, Kenneth A.

    2017-05-09

    A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on an upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.

  8. Neoclassical transport including collisional nonlinearity.

    Science.gov (United States)

    Candy, J; Belli, E A

    2011-06-10

    In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.

  9. [Origin of sennosides in health teas including Malva leaves].

    Science.gov (United States)

    Kojima, T; Kishi, M; Sekita, S; Satake, M

    2001-06-01

    The aim of this study is to clarify whether sennosides are contained in the leaf of Malva verticillata L., and then to clarify the source of sennosides in health teas including malva leaves. The identification and determination of sennosides were performed with thin layer chromatography and high performance liquid chromatography. The leaf of Malva verticillata L. did not contain sennosides A or B and could be easily distinguished from senna leaf. Our previous report showed that sennosides are contained in weight-reducing herbal teas including malva leaves, and that senna leaf is a herbal component in some teas. Furthermore, in 10 samples of health tea including malva leaves that were bought last year, the smallest amount of sennosides was 6.1 mg/bag, and all health teas including malva leaves contained the leaf and midrib of senna. We suggest that sennosides A and B are not contained in the leaf of Malva verticillata L., and that the sennosides in health teas including malva leaves are not derived from malva leaf but from senna leaf.

  10. Truck Drivers And Risk Of STDs Including HIV

    Directory of Open Access Journals (Sweden)

    Bansal R.K

    1995-01-01

    Full Text Available Research Question: Whether long distance truck drivers are at a higher risk of contracting and transmitting STDs including HIV? Objectives: i To study the degree of knowledge of HIV and AIDS among long- distance truck drivers. ii Assess their sexual behaviour including condom use. iii Explore their prevailing social influences and substance abuse patterns. iv Explore their treatment seeking bahaviour as regards STDs. v Deduce their risk of contracting and transmitting STDs including HIV. Study Design: Cross- sectional interview. Setting: Transport Nagar, Indore (M.P Participants: 210 senior drivers (First drivers and 210 junior drivers (Second drivers. Study Variables: Extra-Marital sexual intercourse, condom usage, past and present history of STDs, treatment and counseling, substance abuse, social â€" cultural milieu. Outcome Variables: Risk of contraction of STDs. Statistical Analysis: Univariate analysis. Results: 94% of the drivers were totally ignorant about AIDS. 82.9% and 43.8 % of the senior and junior drivers had a history of extra- marital sex and of these only 2 regularly used condoms. 13.8% and 3.3 % of the senior and junior drivers had a past or present history suggestive of STD infection. Alcohol and Opium were regularly used by them. Conclusion: The studied drivers are at a high risk of contracting and transmitting STDs including HIV.

  11. Dictionary of scientific units including dimensionless numbers and scales

    National Research Council Canada - National Science Library

    Jerrard, H.G; McNeill, D.B

    1992-01-01

    .... The text includes the most recently accepted values of all units. Several disciplines, which have in the past employed few scientific principles and the dictionary has been extended to include examples of these.

  12. Separation Properties of Supported Ionic Liquid-Polydimethylsiloxane Membrane in Pervaporation Process

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Friess, K.; Hynek, V.; Ruth, W.; Fei, Z.; Dyson, J.P.; Kragl, U.

    2009-01-01

    Roč. 241, 1-3 (2009), s. 182-187 ISSN 0011-9164 Institutional research plan: CEZ:AV0Z40720504 Keywords : ionic liquid * diffusion coefficient * sorption isotherm Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.034, year: 2009

  13. Polydimethylsiloxane microspheres with poly(methyl methacrylate) coating: Modelling, preparation, and characterization

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren

    2015-01-01

    functional PDMS microspheres were coated with poly(methyl methacrylate) (PMMA) by spin coating with different concentrations of PMMA solutions. The quality of the resulting PMMA shell is investigated using rheological measurements at 50 8C with a timesweep procedure. The results strongly suggest that PMMA-coated...... PDMS microspheres react around 20 times slower than the uncoated ones, and that the PMMA shell significantly hinders the reaction between the PDMS microsphere and cross-linker. Thus the thin PMMA shells are very efficient in protecting the reactive PDMS microspheres, since the PMMA shell forms...

  14. Sealing ability of a new polydimethylsiloxane-based root canal filling material

    NARCIS (Netherlands)

    Özok, A.R.; van der Sluis, L.W.M.; Wu, M.K.; Wesselink, P.R.

    2008-01-01

    We tested the null hypothesis that there is no difference in the sealing ability of GuttaFlow, RoekoSeal, and AH26 in root canals. Sixty extracted mandibular premolars were filled with AH26 (lateral compaction), RoekoSeal, or GuttaFlow (modified single-cone). The sealing ability of the root canal

  15. Sealing ability of a new polydimethylsiloxane-based root canal filling material

    NARCIS (Netherlands)

    Ozok, Ahmet R.; van der Sluis, Lucas W. M.; Wu, Min-Kai; Wesselink, Paul R.

    We tested the null hypothesis that there is no difference in the sealing ability of GuttaFlow, RoekoSeal, and AH26 in root canals. Sixty extracted mandibular premolars were filled with AH26 (lateral compaction), RoekoSeal, or GuttaFlow (modified single-cone). The sealing ability of the root canal

  16. [Renal patient's diet: Can fish be included?].

    Science.gov (United States)

    Castro González, M I; Maafs Rodríguez, A G; Galindo Gómez, C

    2012-01-01

    Medical and nutritional treatment for renal disease, now a major public health issue, is highly complicated. Nutritional therapy must seek to retard renal dysfunction, maintain an optimal nutritional status and prevent the development of underlying pathologies. To analyze ten fish species to identify those that, because of their low phosphorus content, high biological value protein and elevated n-3 fatty acids EPA and DHA, could be included in renal patient's diet. The following fish species (Litte tunny, Red drum, Spotted eagleray, Escolar, Swordfish, Big-scale pomfret, Cortez flounder, Largemouth blackbass, Periche mojarra, Florida Pompano) were analyzed according to the AOAC and Keller techniques to determine their protein, phosphorus, sodium, potassium, cholesterol, vitamins D(3) and E, and n-3 EPA+DHA content. These results were used to calculate relations between nutrients. The protein in the analyzed species ranged from 16.5 g/100 g of fillet (Largemouth black bass) to 27.2 g/100 g (Red drum); the lowest phosphorus value was 28.6 mg/100 g (Periche mojarra) and the highest 216.3 mg/100 g (Spotted eagle ray). 80% of the fish presented > 100 mg EPA + DHA in 100 g of fillet. By its Phosphorus/gProtein ratio, Escolar and Swordfish could not be included in the renal diet; Little tunny, Escolar, Big-scale pomfret, Largemouth black-bass, Periche mojarra and Florida Pompano presented a lower Phosphorus/EPA + DHA ratio. Florida pompano is the most recommended specie for renal patients, due to its optimal nutrient relations. However, all analyzed species, except Escolar and Swordfish, could be included in renal diets.

  17. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.; Buttner, Ulrich; Yi, Ying

    2016-01-01

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  18. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.

    2016-03-31

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  19. Extending flood damage assessment methodology to include ...

    African Journals Online (AJOL)

    Optimal and sustainable flood plain management, including flood control, can only be achieved when the impacts of flood control measures are considered for both the man-made and natural environments, and the sociological aspects are fully considered. Until now, methods/models developed to determine the influences ...

  20. Simultaneous Determination of Parathion, Malathion, Diazinon, and Pirimiphos Methyl in Dried Medicinal Plants Using Solid-Phase Microextraction Fibre Coated with Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Reza Ahmadkhaniha

    2012-01-01

    Full Text Available A reliable and sensitive headspace solid-phase microextraction gas chromatography-mass spectrometry method for simultaneous determination of different organophosphorus pesticides in dried medicinal plant samples is described. The analytes were extracted by single-walled carbon nanotubes as a new solid-phase microextraction adsorbent. The developed method showed good performance. For diazinon and pirimiphos methyl calibration, curves were linear (r2≥0.993 over the concentration ranges from 1.5 to 300 ng g−1, and the limit of detection at signal-to-noise ratio of 3 was 0.3 ng g−1. For parathion and malathion, the linear range and limit of detection were 2.5–300 (r2≥0.991 and 0.5 ng g−1, respectively. In addition, a comparative study between the single-walled carbon nanotubes and a commercial polydimethylsiloxane fibre for the determination of target analytes was carried out. Single-walled carbon nanotubes fibre showed higher extraction capacity, better thermal stability (over 350∘C, and longer lifespan (over 250 times than the commercial polydimethylsiloxane fibre. The developed method was successfully applied to determine target organophosphorus pesticides in real samples.

  1. LDRD final report on nanocomposite materials based on hydrocarbon-bridged siloxanes

    Energy Technology Data Exchange (ETDEWEB)

    Ulibarri, T.A.; Bates, S.E.; Loy, D.A.; Jamison, G.M.; Emerson, J.A.; Curro, J.G.

    1997-05-01

    Silicones [polydimethylsiloxane (PDMS) polymers] are environmentally safe, nonflammable, weather resistant, thermally stable, low T{sub g} materials which are attractive for general elastomer applications because of their safety and their performance over a wide temperature range. However, PDMS is inherently weak due to its low glass transition temperature (T{sub g}) and lack of stress crystallization. The major goal of this project was to create a family of reinforced elastomers based on silsesquioxane/PDMS networks. Polydimethylsiloxane-based (PDMS) composite materials containing a variety of alkylene-arylene-bridged polysilsesquioxanes were synthesized in order to probe short chain and linkage effects in bimodal polymer networks. Monte Carlo simulations on the alkylene-bridged silsesquioxane/PDMS system predicted that the introduction of the silsesquioxane short chains into the long chain PDMS network would have a significant reinforcing effect on the elastomer. The silsesquioxane-PDMS networks were synthesized and evaluated. Analysis of the mechanical properties of the resulting materials indicated that use of the appropriate silisesquioxane generated materials with greatly enhanced properties. Arylene and activated alkylene systems resulted in materials that showed superior adhesive strength for metal-to-metal adhesion.

  2. "Bio-glues" to Enhance Slipperiness of Mucins: Improved Lubricity and Wear Resistance of Porcine Gastric Mucin (PGM) Layers Assisted by Mucoadhesion with Chitosan

    DEFF Research Database (Denmark)

    Nikogeorgos, Nikolaos; Efler, Petr; Lee, Seunghwan

    2015-01-01

    A synergetic lubricating effect between porcine gastric mucin (PGM) and chitosan based on their mucoadhesive interaction is reported at a hydrophobic interface comprised of self-mated polydimethylsiloxane (PDMS) surfaces. In acidic solution (pH 3.2) and low concentrations (0.1 mg mL- 1), the inte......A synergetic lubricating effect between porcine gastric mucin (PGM) and chitosan based on their mucoadhesive interaction is reported at a hydrophobic interface comprised of self-mated polydimethylsiloxane (PDMS) surfaces. In acidic solution (pH 3.2) and low concentrations (0.1 mg mL- 1......), the interaction of PGM with chitosan led to surface recharge and size shrinkage of their aggregates. This resulted in higher mass adsorption on the PDMS surface with increasing weight ratio of [chitosan]/[PGM + chitosan] up to 0.50. While neither PGM nor chitosan exhibited slippery characteristics, coefficient...... of friction being close to 1, their mixture improved considerably the lubricating efficiency (coefficient of friction 0.011 at optimum mixing ratio) and wear resistance of the adsorbed layers. These findings are explained by the role of chitosan as a physical crosslinker within the adsorbed PGM layers...

  3. New method for the discovery of adulterated cognacs and brandies based on solid-phase microextraction and gas chromatography - mass spectrometry

    Directory of Open Access Journals (Sweden)

    Darya Mozhayeva

    2014-10-01

    Full Text Available The article represents new method for discovery of adulterated cognacs and brandies based on solidphase microextraction (SPME in combination with gas chromatography – mass spectrometry (GC-MS. The work comprised optimization of SPME parameters (extraction temperature and time, concentration of added salt with subsequent analysis of authentic samples and comparison of the obtained chromatograms using principal component analysis (PCA. According to the obtained results, increase of extraction temperature resulted in an increase of response of the most volatile brandy constituents. To avoid chemical transformations and/or degradation of the samples, the extraction temperature must be limited to 30!C. Increase of the extraction time lead to higher total peak area, but longer extraction times (>10 min for 100 µm polydimethylsiloxane and >2 min for divinylbenzene/Carboxen/polydimethylsiloxane fibers caused displacement of analytes. Salt addition increased total response of analytes, but caused problems with reproducibility. The developed method was successfully applied for discovery of adulterated samples of brandy, cognac, whisky and whiskey sold in Kazakhstan. The obtained data was analyzed applying principal component analysis (PCA. Five adulterated brandy and whisky samples were discovered and confirmed. The developed method is recommended for application in forensic laboratories.

  4. Device including a contact detector

    DEFF Research Database (Denmark)

    2011-01-01

    arms (12) may extend from the supporting body in co-planar relationship with the first surface. The plurality of cantilever arms (12) may extend substantially parallel to each other and each of the plurality of cantilever arms (12) may include an electrical conductive tip for contacting the area......The present invention relates to a probe for determining an electrical property of an area of a surface of a test sample, the probe is intended to be in a specific orientation relative to the test sample. The probe may comprise a supporting body defining a first surface. A plurality of cantilever...... of the test sample by movement of the probe relative to the surface of the test sample into the specific orientation.; The probe may further comprise a contact detector (14) extending from the supporting body arranged so as to contact the surface of the test sample prior to any one of the plurality...

  5. GC-MS study of Nigella sativa (seeds fatty oil

    Directory of Open Access Journals (Sweden)

    Mehta, B. K.

    2002-06-01

    Full Text Available The GC-MS study of N. sativa (seeds fatty oil revealed the presence of 26 compounds which were identified as methyl hept-6-enoate,1-phenylhepta-2,4-dione, pentadecane, hexadec-1-ene, 1-phenyldecan-2-one, octadec-1-ene, octadecane, methyl pentadecanoate, bis(3-chlorophenyl ketone, diethyl phthalate, ethyl octadec-7-enoate, methyl octadecanoate, tricos-9-ene, octadeca-9,12-dienoic acid, hexadecanoic acid, methyl hexadecanoate, methyl octadec-15-enoate, henicosan-10-one, 2-methyl octadecanoic acid, docos-1-ene, ethyl octadecanoate, methyl octadecanoate, pentacos-5-ene,12-methyltricosane, dibutyl phthalate and 2-methyltetracosane.El estudio por GC-MS del aceite de la semilla de Nigella sativa reveló la presencia de 26 compuestos los cuales fueron identificados como: hept-6-enoato de metilo, 1-fenilhepta-2,4-diona, pentadecano, hexadec-1-eno, 1-fenildecan-2-ona, octadec-1-eno, octadecano, pentadecanoato de metilo, bis(3-clorofenil cetona, ftalato de dietilo, octadec-7-enoato de etilo, octadecanoato de metilo, tricos-9-eno, ácido octadeca-9,12-dienoico, ácido hexadecanoico, hexadecanoato de metilo, octadec-15-enoato de metilo, henicosan-10-ona, ácido 2-metil octadecanoico, docos-1-eno, octadecanoato de etilo, octadecanoato de metilo, pentacos-5-eno, 12-metiltricosano, ftalato de dibutilo y 2-metiltetracosano.

  6. Including Children Dependent on Ventilators in School.

    Science.gov (United States)

    Levine, Jack M.

    1996-01-01

    Guidelines for including ventilator-dependent children in school are offered, based on experience with six such students at a New York State school. Guidelines stress adherence to the medical management plan, the school-family partnership, roles of the social worker and psychologist, orientation, transportation, classroom issues, and steps toward…

  7. 41 CFR 301-74.4 - What should cost comparisons include?

    Science.gov (United States)

    2010-07-01

    ... comparisons include? 301-74.4 Section 301-74.4 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES AGENCY RESPONSIBILITIES 74-CONFERENCE PLANNING Agency Responsibilities § 301-74.4 What should cost comparisons include? Cost comparisons should include...

  8. 20 CFR 404.1013 - Included-excluded rule.

    Science.gov (United States)

    2010-04-01

    ... least one-half of your time in the pay period is in covered work. If you spend most of your time in a... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Included-excluded rule. 404.1013 Section 404.1013 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY...

  9. BIOLOGIC AND ECONOMIC EFFECTS OF INCLUDING DIFFERENT ...

    African Journals Online (AJOL)

    The biologic and economic effects of including three agro-industrial by-products as ingredients in turkey poult diets were investigated using 48 turkey poults in a completely randomised design experiment. Diets were formulated to contain the three by-products – wheat offal, rice husk and palm kernel meal, each at 20% level ...

  10. LTRACK: Beam-transport calculation including wakefield effects

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Cooper, R.K.

    1988-01-01

    LTRACK is a first-order beam-transport code that includes wakefield effects up to quadrupole modes. This paper will introduce the readers to this computer code by describing the history, the method of calculations, and a brief summary of the input/output information. Future plans for the code will also be described

  11. 27 CFR 53.181 - Further manufacture included.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Further manufacture... Further manufacture included. (a) In general. The payment of tax imposed by chapter 32 of the Code on the... of any use in further manufacture, or sale as part of a second manufactured article, described in...

  12. 15 CFR 754.3 - Petroleum products not including crude oil.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Petroleum products not including crude... SUPPLY CONTROLS § 754.3 Petroleum products not including crude oil. (a) License requirement. As indicated... required to all destinations, including Canada, for the export of petroleum products, excluding crude oil...

  13. 15 CFR 9.3 - Appliances and equipment included in program.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Appliances and equipment included in... VOLUNTARY LABELING PROGRAM FOR HOUSEHOLD APPLIANCES AND EQUIPMENT TO EFFECT ENERGY CONSERVATION § 9.3 Appliances and equipment included in program. The appliances and equipment included in this program are room...

  14. Development of an Alternative Mixed Odor Delivery Device (MODD) for Canine Training

    Science.gov (United States)

    2017-05-10

    solid phase microextraction (SPME) and analysis by gas chromatography / mass spectrometry (GC/MS). Like the computational modeling, the laboratory...outlet was extracted by solid phase microextraction (SPME) and analyzed by gas chromatography with mass spectrometry (GC/MS). A polydimethylsiloxane...mixtures," Applied Animal Behaviour Science, vol. 151, pp. 84-93, 2014. [11] L. E. DeGreeff, S. L. . Rose-Pehrsson, M. Malito and C. J. Katilie

  15. Characterization of Ferrofluid-based Stimuli-responsive Elastomers

    OpenAIRE

    Sandra dePedro; Xavier Munoz-Berbel; Rosalia Rodríguez-Rodríguez; Jordi Sort; Jose Antonio Plaza; Juergen Brugger; Andreu Llobera; Victor J Cadarso

    2016-01-01

    Stimuli-responsive materials undergo physicochemical and/or structural changes when a specific actuation is applied. They are heterogeneous composites, consisting of a non-responsive matrix where functionality is provided by the filler. Surprisingly, the synthesis of polydimethylsiloxane (PDMS)-based stimuli-responsive elastomers (SRE) has seldomly been presented. Here, we present the structural, biological, optical, magnetic, and mechanical properties of several magnetic SRE (M-SRE) obtained...

  16. Vertically aligned nanowires on flexible silicone using a supported alumina template prepared by pulsed anodization

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.

    2009-01-01

    Carpets of vertically aligned nanowires on flexible substrates are successfully realized by a template method. Applying special pulsed anodization conditions, defect-free nanoporous alumina structures supported on polydimethylsiloxane (PDMS), a flexible silicone elastomer, are created. By using...... this template with nanopores ending on a conducting underlayer, a high-density nanowire array can be simply grown by direct DCelectrodeposition on the top of the silicone rubber....

  17. Novel high dielectric constant hybrid elastomers based on glycerol-insilicone emulsions

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Skov, Anne Ladegaard

    2016-01-01

    Novel hybrid elastomers were prepared by speedmixing of two virtually immiscible liquids – glycerol and polydimethylsiloxane (PDMS) prepolymer. Upon crosslinking ofthe PDMS phase of the resulting glycerol-in-silicone emulsion freestanding films were obtained. In this way glycerol became uniformly...... elastomeractuators. Conductivities of samples based on various PDMS compositions with different loadings of embedded glycerol were thoroughly investigated providing useful information about the dielectric behavior....

  18. Synthesis of block copolymers of methyl siloxane, phenyl siloxane, vinyl siloxane, etc

    International Nuclear Information System (INIS)

    Ibemesi, J.A.; Meier, D.J.

    1979-01-01

    Synthesis of homo poly(dimethylsiloxane) PDMS, homo poly(diphenylsiloxane PDPS, and di- and tri- block copolymers of PDMS and PDPS have been carried out by anionic living polymerization, using the following reagents: hexamethylcyclotrisiloxane, HMTS and hexaphenylcyclotrisiloxane, HPTS (monomers), n-BuLi and dilithium diphenyldisilanolate, DLS (initiators), DMSO and THF (promoters) and Toluene (solvent). Lithium based catalysts are used in order to minimize siloxane rearrangement (equilibration) reactions

  19. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection

    OpenAIRE

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C.; Ye, Bang-Ce

    2013-01-01

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated ...

  20. 31 CFR 103.51 - Dollars as including foreign currency.

    Science.gov (United States)

    2010-07-01

    ... RECORDKEEPING AND REPORTING OF CURRENCY AND FOREIGN TRANSACTIONS General Provisions § 103.51 Dollars as including foreign currency. Wherever in this part an amount is stated in dollars, it shall be deemed to mean... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Dollars as including foreign currency...

  1. 26 CFR 1.1013-1 - Property included in inventory.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Property included in inventory. 1.1013-1 Section... inventory. The basis of property required to be included in inventory is the last inventory value of such property in the hands of the taxpayer. The requirements with respect to the valuation of an inventory are...

  2. Energy storage device including a redox-enhanced electrolyte

    Science.gov (United States)

    Stucky, Galen; Evanko, Brian; Parker, Nicholas; Vonlanthen, David; Auston, David; Boettcher, Shannon; Chun, Sang-Eun; Ji, Xiulei; Wang, Bao; Wang, Xingfeng; Chandrabose, Raghu Subash

    2017-08-08

    An electrical double layer capacitor (EDLC) energy storage device is provided that includes at least two electrodes and a redox-enhanced electrolyte including two redox couples such that there is a different one of the redox couples for each of the electrodes. When charged, the charge is stored in Faradaic reactions with the at least two redox couples in the electrolyte and in a double-layer capacitance of a porous carbon material that comprises at least one of the electrodes, and a self-discharge of the energy storage device is mitigated by at least one of electrostatic attraction, adsorption, physisorption, and chemisorption of a redox couple onto the porous carbon material.

  3. Articles which include chevron film cooling holes, and related processes

    Science.gov (United States)

    Bunker, Ronald Scott; Lacy, Benjamin Paul

    2014-12-09

    An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.

  4. XFEL OSCILLATOR SIMULATION INCLUDING ANGLE-DEPENDENT CRYSTAL REFLECTIVITY

    International Nuclear Information System (INIS)

    Fawley, William; Lindberg, Ryan; Kim, K.-J.; Shvyd'ko, Yuri

    2010-01-01

    The oscillator package within the GINGER FEL simulation code has now been extended to include angle-dependent reflectivity properties of Bragg crystals. Previously, the package was modified to include frequencydependent reflectivity in order to model x-ray FEL oscillators from start-up from shot noise through to saturation. We present a summary of the algorithms used for modeling the crystal reflectivity and radiation propagation outside the undulator, discussing various numerical issues relevant to the domain of high Fresnel number and efficient Hankel transforms. We give some sample XFEL-O simulation results obtained with the angle-dependent reflectivity model, with particular attention directed to the longitudinal and transverse coherence of the radiation output.

  5. Reliability evaluation of containments including soil-structure interaction

    International Nuclear Information System (INIS)

    Pires, J.; Hwang, H.; Reich, M.

    1985-12-01

    Soil-structure interaction effects on the reliability assessment of containment structures are examined. The probability-based method for reliability evaluation of nuclear structures developed at Brookhaven National Laboratory is extended to include soil-structure interaction effects. In this method, reliability of structures is expressed in terms of limit state probabilities. Furthermore, random vibration theory is utilized to calculate limit state probabilities under random seismic loads. Earthquake ground motion is modeled by a segment of a zero-mean, stationary, filtered Gaussian white noise random process, represented by its power spectrum. All possible seismic hazards at a site, represented by a hazard curve, are also included in the analysis. The soil-foundation system is represented by a rigid surface foundation on an elastic halfspace. Random and other uncertainties in the strength properties of the structure, in the stiffness and internal damping of the soil, are also included in the analysis. Finally, a realistic reinforced concrete containment is analyzed to demonstrate the application of the method. For this containment, the soil-structure interaction effects on; (1) limit state probabilities, (2) structural fragility curves, (3) floor response spectra with probabilistic content, and (4) correlation coefficients for total acceleration response at specified structural locations, are examined in detail. 25 refs., 21 figs., 12 tabs

  6. The COG database: an updated version includes eukaryotes

    Directory of Open Access Journals (Sweden)

    Sverdlov Alexander V

    2003-09-01

    Full Text Available Abstract Background The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. Results We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens, one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the

  7. Aerosol simulation including chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs

  8. MOS modeling hierarchy including radiation effects

    International Nuclear Information System (INIS)

    Alexander, D.R.; Turfler, R.M.

    1975-01-01

    A hierarchy of modeling procedures has been developed for MOS transistors, circuit blocks, and integrated circuits which include the effects of total dose radiation and photocurrent response. The models were developed for use with the SCEPTRE circuit analysis program, but the techniques are suitable for other modern computer aided analysis programs. The modeling hierarchy permits the designer or analyst to select the level of modeling complexity consistent with circuit size, parametric information, and accuracy requirements. Improvements have been made in the implementation of important second order effects in the transistor MOS model, in the definition of MOS building block models, and in the development of composite terminal models for MOS integrated circuits

  9. Suddenly included: cultural differences in experiencing re-inclusion.

    Science.gov (United States)

    Pfundmair, Michaela; Graupmann, Verena; Du, Hongfei; Frey, Dieter; Aydin, Nilüfer

    2015-03-01

    In the current research, we examined whether re-inclusion (i.e. the change from a previous state of exclusion to a new state of inclusion) was perceived differently by people with individualistic and collectivistic cultural backgrounds. Individualists (German and Austrian participants) but not collectivists (Chinese participants) experienced re-inclusion differently than continued inclusion: While collectivistic participants did not differentiate between both kinds of inclusion, individualistic participants showed reduced fulfilment of their psychological needs under re-inclusion compared to continued inclusion. The results moreover revealed that only participants from individualistic cultures expressed more feelings of exclusion when re-included than when continually included. These exclusionary feelings partially mediated the relationship between the different states of inclusion and basic need fulfilment. © 2014 International Union of Psychological Science.

  10. Designing monitoring programs for chemicals of emerging concern in potable reuse--what to include and what not to include?

    Science.gov (United States)

    Drewes, J E; Anderson, P; Denslow, N; Olivieri, A; Schlenk, D; Snyder, S A; Maruya, K A

    2013-01-01

    This study discussed a proposed process to prioritize chemicals for reclaimed water monitoring programs, selection of analytical methods required for their quantification, toxicological relevance of chemicals of emerging concern regarding human health, and related issues. Given that thousands of chemicals are potentially present in reclaimed water and that information about those chemicals is rapidly evolving, a transparent, science-based framework was developed to guide prioritization of which compounds of emerging concern (CECs) should be included in reclaimed water monitoring programs. The recommended framework includes four steps: (1) compile environmental concentrations (e.g., measured environmental concentration or MEC) of CECs in the source water for reuse projects; (2) develop a monitoring trigger level (MTL) for each of these compounds (or groups thereof) based on toxicological relevance; (3) compare the environmental concentration (e.g., MEC) to the MTL; CECs with a MEC/MTL ratio greater than 1 should be prioritized for monitoring, compounds with a ratio less than '1' should only be considered if they represent viable treatment process performance indicators; and (4) screen the priority list to ensure that a commercially available robust analytical method is available for that compound.

  11. Mogul-Patterned Elastomeric Substrate for Stretchable Electronics.

    Science.gov (United States)

    Lee, Han-Byeol; Bae, Chan-Wool; Duy, Le Thai; Sohn, Il-Yung; Kim, Do-Il; Song, You-Joon; Kim, Youn-Jea; Lee, Nae-Eung

    2016-04-01

    A mogul-patterned stretchable substrate with multidirectional stretchability and minimal fracture of layers under high stretching is fabricated by double photolithography and soft lithography. Au layers and a reduced graphene oxide chemiresistor on a mogul-patterned poly(dimethylsiloxane) substrate are stable and durable under various stretching conditions. The newly designed mogul-patterned stretchable substrate shows great promise for stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ultrasonic and dielectric studies of polymer PDMS composites with ZnO and onion-like carbons nanoinclusions

    OpenAIRE

    Samulionis, Vytautas; Macutkevič, Jan; Banys, Jūras; Shenderova, Olga

    2015-01-01

    The ultrasonic and dielectric temperature investigations were performed in polydi-methylsiloxane (PDMS) with zinc oxide (ZnO) and onion-like carbon (OLC) nanocomposites. In the glass transition region, the ultrasonic velocity dispersion and large ultrasonic attenuation maxima were observed. The positions of ultrasonic attenuation peaks were slightly shifted to higher temperatures after doping PDMS with OLC and ZnO nanoparticles. The ultrasonic relaxation was compared to that of dielectric and...

  13. Solvothermal Synthesis of One-Dimensional Transition Metal Doped ZnO Nanocrystals and Their Applications in Smart Window Devices

    OpenAIRE

    Šutka, A; Timusk, M; Kisand, V; Saal, K; Joost, U; Lõhmus, R

    2015-01-01

    Oxide semiconductor nanowire (NW) suspension based devices have been attracted growing interest in smart window applications due to their great controllability of light transmittance, simplicity and long term stability. Recently, we demonstrated smart window device using the suspension of electrospun TiO2 or solvothermally synthesized ZnO NWs in viscous polydimethylsiloxane (PDMS) matrix. The operating principle of the oxide semiconductor NW and PDMS device is based on the alterable orientati...

  14. Optical Properties of Electrophoretically Manipulated ZnO Nanowire Suspensions and Their High Application Potential in Smart Window Devices

    OpenAIRE

    Šutka, A; Timusk, M; Saal, K; Kisand, V

    2015-01-01

    Optical properties of zinc oxide nanowire (NW) dilute suspensions in polydimethylsiloxane (PDMS) were investigated. Optical transmittance was found to decrease at the transition from chaotically oriented state to electrophoretically ordered state with the alignment of the NW along the direction of incident light. Previously reported observations of the behavior of dispersions containing oblong particles indicate that the transition of the orientation of particles from chaotic to ordered state...

  15. Biofunctionalization of PDMS-based microfluidic systems

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Bergoi Ibarlucea, Cesar Fernández-Sánchez, Stefanie Demming, Stephanus Büttgenbach & Andreu Llobera ### Abstract Three simple approaches for the selective immobilization of biomolecules on the surface of poly(dimethylsiloxane) (PDMS) microfluidic systems that do not require any specific instrumentation, are described and compared. They are based in the introduction of hydroxyl groups on the PDMS surface by direct adsorption of either polyethylene glycol (PEG) or polyvinyl alc...

  16. Feasibility of bovine submaxillary mucin (BSM) films as biomimetic coating for polymeric biomaterials

    DEFF Research Database (Denmark)

    Lee, Seunghwan; Madsen, Jan Busk; Pakkanen, Kirsi I.

    2013-01-01

    Feasibility of bovine submaxillary mucin (BSM) films generated via spontaneous adsorption from aqueous solutions onto polydimethylsiloxane (PDMS) and polystyrene (PS) surfaces have been investigated as biomimetic coatings for polymeric biomaterials. Two attributes as biomedical coatings, namely a......-on-disk tribometry, employing compliant PDMS as tribopairs, has shown that BSM coatings generated on PDMS surface via spontaneous adsorption from aqueous solution has effective lubricating properties, but for very limited duration only....

  17. Toxicity of jet fuel aliphatic and aromatic hydrocarbon mixtures on human epidermal Keratinocytes: evaluation based on in vitro cytotoxicity and interleukin-8 release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen-Hung (Chung-Shan Medical University Hospital, Department of Dermatology, Taichung, Taiwan, R.O.C); Lee, Chia-Hue; Tsang, Chau-Loong [National Chung-Hsing University, College of Veterinary Medicine, Taichung (Taiwan); Monteiro-Riviere, Nancy A.; Riviere, Jim E. [North Carolina State University, Center for Chemical Toxicology Research and Pharmacokinetics (CCTRP), Raleigh, NC (United States); Chou, Chi-Chung [National Chung-Hsing University, College of Veterinary Medicine, Taichung (Taiwan); National Chung-Hsing University, College of Veterinary Medicine, Taichung (Taiwan)

    2006-08-15

    Jet fuels are complex mixtures of aliphatic (ALI) and aromatic (ARO) hydrocarbons that vary significantly in individual cytotoxicity and proinflammatory activity in human epidermal keratinocytes (HEK). In order to delineate the toxicological interactions among individual hydrocarbons in a mixture and their contributions to cutaneous toxicity, nine ALI and five ARO hydrocarbons were each divided into five (high/medium/low cytotoxic and strong/weak IL-8 induction) groups and intra/inter-mixed to assess for their mixture effects on HEK mortality and IL-8 release. Addition of single hydrocarbon to JP-8 fuel was also evaluated for their changes in fuel dermatotoxicity. The results indicated that when hydrocarbons were mixed, HEK mortality and IL-8 release were not all predictable by their individual ability affecting these two parameters. The lowest HEK mortality (7%) and the highest IL-8 production were induced with mixtures including high cytotoxic and weak IL-8 inductive ARO hydrocarbons. Antagonistic reactions not consistently correlated with ALI carbon chain length and ARO structure were evident and carried different weight in the overall mixture toxicities. Single addition of benzene, toluene, xylene or ethylbenzene for up to tenfold in JP-8 did not increase HEK mortality while single addition of ALI hydrocarbons exhibited dose-related differential response in IL-8. In an all ALI environment, no single hydrocarbon is the dominating factor in the determination of HEK cytotoxicity while deletion of hexadecane resulted in a 2.5-fold increase in IL-8 production. Overall, decane, undecane and dodecane were the major hydrocarbons associated with high cytotoxicity while tetradecane, pentadecane and hexadecane were those which had the greatest buffering effect attenuating dermatotoxicity. The mixture effects must be considered when evaluating jet fuel toxicity to HEK. (orig.)

  18. Partially ionized plasmas including the third symposium on uranium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M. [ed.

    1976-09-01

    Separate abstracts are included for 28 papers on electrically generated plasmas, fission generated plasmas, nuclear pumped lasers, gaseous fuel reactor research, and applications. Five papers have been previously abstracted and included in ERA.

  19. Including estimates of the future in today's financial statements

    OpenAIRE

    Mary Barth

    2006-01-01

    This paper explains why the question is how, not if, today's financial statements should include estimates of the future. Including such estimates is not new, but their use is increasing. This increase results primarily because standard setters believe asset and liability measures that reflect current economic conditions and up-to-date expectations of the future will result in more useful information for making economic decisions, which is the objective of financial reporting. This is why sta...

  20. Model for safety reports including descriptive examples

    International Nuclear Information System (INIS)

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository

  1. Diabetes Nutrition: Including Sweets in Your Meal Plan

    Science.gov (United States)

    Diabetes nutrition: Including sweets in your meal plan Diabetes nutrition focuses on healthy foods, but sweets aren't necessarily ... your meal plan. By Mayo Clinic Staff Diabetes nutrition focuses on healthy foods. But you can eat ...

  2. Electric drive systems including smoothing capacitor cooling devices and systems

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Ercan Mehmet; Zhou, Feng

    2017-02-28

    An electric drive system includes a smoothing capacitor including at least one terminal, a bus bar electrically coupled to the at least one terminal, a thermoelectric device including a first side and a second side positioned opposite the first side, where the first side is thermally coupled to at least one of the at least one terminal and the bus bar, and a cooling element thermally coupled to the second side of the thermoelectric device, where the cooling element dissipates heat from the thermoelectric device.

  3. Frictional patterning of a soft elastic polymer surface

    International Nuclear Information System (INIS)

    Watson, G.S.; Brown, C.L.; Myhra, S.; Hu, S.; Roch, N.C.; Watson, J.A.

    2005-01-01

    The surface structure and chemistry of polymers affect their functionality for a great range of applications in areas as diverse as biosensors, corrosion protection, semiconductor processing, biofouling, tissue engineering and biomaterials technology. Attachment of biological moieties at surfaces and interfaces has shown to be highly dependant on local chemistry at the intended site of attachment. Additionally, the local molecular-scale geometry may promote or hinder attachment events, as in the case of biofilms. To date, however, the effect of frictional properties of surfaces for chemical and biomolecular attachment is a much less understood phenomenon. In this study we show controlled frictional pattering of a polymer surface (polydimethylsiloxane (PDMS)) using atomic force microscopy (AFM) manipulation. PDMS is a bio-active/selective polymer having a broad range of applications, such as material for biomedical devices, molecular stamps, hydraulic fluid devices and in soft lithography. The various outcomes including frictional profiling, differentiation and controlled manipulation are examined by altering various parameters, including loading force, scan size and contact dimensions of the AFM probe-to-polymer contact. (author). 2 refs., 4 figs

  4. High-pressure stainless steel active membrane microvalves

    International Nuclear Information System (INIS)

    Sharma, G; Svensson, S; Ogden, S; Klintberg, L; Hjort, K

    2011-01-01

    In this work, high-pressure membrane microvalves have been designed, manufactured and evaluated. The valves were able to withstand back-pressures of 200 bar with a response time of less than 0.6 s. These stainless steel valves, manufactured with back-end batch production, utilize the large volume expansion coupled to the solid–liquid phase transition in paraffin wax. When membrane materials were evaluated, parylene coated stainless steel was found to be the best choice as compared to polydimethylsiloxane and polyimide. Also, the influence of the orifice placement and diameter is included in this work. If the orifice is placed too close to the rim of the membrane, the valve can stay sealed even after turning the power off, and the valve will not open until the pressure in the system is released. The developed steel valves, evaluated for both water and air, provide excellent properties in terms of mechanical stability, ease of fabrication, and low cost. Possible applications include sampling at high pressures, chemical microreactors, high performance liquid chromatography, pneumatics, and hydraulics

  5. Nanoparticle-Incorporated PDMS Film as an Improved Performance SPME Fiber for Analysis of Volatile Components of Eucalyptus Leaf

    Directory of Open Access Journals (Sweden)

    Parviz Aberoomand Azar

    2013-01-01

    Full Text Available A new fabrication strategy was proposed to prepare polydimethylsiloxane (PDMS- coated solid-phase microextraction (SPME on inexpensive and unbreakable Cu fiber. PDMS was covalently bonded to the Cu substrate using self-assembled monolayer (SAM of (3-mercaptopropyltrimethoxysilane (3MPTS as binder. To increase the performance of the fiber, the incorporation effect of some nanomaterials including silica nanoparticles (NPs, carbon nanotubes (CNTs, and carboxylated carbon nanotubes (CNT-COOH to PDMS coating was compared. The surface morphology of the prepared fibers was characterized by scanning electron microscopy (SEM, and their applicability was evaluated through the extraction of some volatile organic compounds (VOCs of Eucalyptus leaf in headspace mode, and parameters affecting the extraction efficiency including extraction temperature and extraction time were optimized. Extracted compounds were analyzed by GC-MS instrument. The results obtained indicated that prepared fibers have some advantages relative to previously prepared SPME fibers, such as higher thermal stability and improved performance of the fiber. Also, results showed that SPME is a fast, simple, quick, and sensitive technique for sampling and sample introduction of Eucalyptus VOCs.

  6. Determination of N,N-dimethyltryptamine in beverages consumed in religious practices by headspace solid-phase microextraction followed by gas chromatography ion trap mass spectrometry.

    Science.gov (United States)

    Gaujac, Alain; Dempster, Nicola; Navickiene, Sandro; Brandt, Simon D; de Andrade, Jailson Bittencourt

    2013-03-15

    A novel analytical approach combining solid-phase microextraction (SPME)/gas chromatography ion trap mass spectrometry (GC-IT-MS) was developed for the detection and quantification N,N-dimethyltryptamine (DMT), a powerful psychoactive indole alkaloid present in a variety of South American indigenous beverages, such as ayahuasca and vinho da jurema. These particular plant products, often used within a religious context, are increasingly consumed throughout the world following an expansion of religious groups and the availability of plant material over the Internet and high street shops. The method described in the present study included the use of SPME in headspace mode combined GC-IT-MS and included the optimization of the SPME procedure using multivariate techniques. The method was performed with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber in headspace mode (70 min at 60 °C) which resulted in good precision (RSDvinho da jurema samples, obtained from Brazilian religious groups, which revealed DMT concentration levels between 0.10 and 1.81 g L(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Equilibrium Passive Sampling of POP in Lipid-Rich and Lean Fish Tissue: Quality Control Using Performance Reference Compounds.

    Science.gov (United States)

    Rusina, Tatsiana P; Carlsson, Pernilla; Vrana, Branislav; Smedes, Foppe

    2017-10-03

    Passive sampling is widely used to measure levels of contaminants in various environmental matrices, including fish tissue. Equilibrium passive sampling (EPS) of persistent organic pollutants (POP) in fish tissue has been hitherto limited to application in lipid-rich tissue. We tested several exposure methods to extend EPS applicability to lean tissue. Thin-film polydimethylsiloxane (PDMS) passive samplers were exposed statically to intact fillet and fish homogenate and dynamically by rolling with cut fillet cubes. The release of performance reference compounds (PRC) dosed to passive samplers prior to exposure was used to monitor the exchange process. The sampler-tissue exchange was isotropic, and PRC were shown to be good indicators of sampler-tissue equilibration status. The dynamic exposures demonstrated equilibrium attainment in less than 2 days for all three tested fish species, including lean fish containing 1% lipid. Lipid-based concentrations derived from EPS were in good agreement with lipid-normalized concentrations obtained using conventional solvent extraction. The developed in-tissue EPS method is robust and has potential for application in chemical monitoring of biota and bioaccumulation studies.

  8. Positron scattering by atomic hydrogen including positronium formation

    International Nuclear Information System (INIS)

    Higgins, K.; Burke, P.G.

    1993-01-01

    Positron scattering by atomic hydrogen including positronium formation has been formulated using the R-matrix method and a general computer code written. Partial wave elastic and ground state positronium formation cross sections have been calculated for L ≤ 6 using a six-state approximation which includes the ground state and the 2s and 2p pseudostates of both hydrogen and positronium. The elastic scattering results obtained are in good agreement with those derived from a highly accurate calculation based upon the intermediate energy R-matrix approach. As in a previous coupled-channel static calculation, resonance effects are observed at intermediate energies in the S-wave positronium formation cross section. However, in the present results, the dominant resonance arises in the P-wave cross sections at an energy of 2.73 Ryd and with a width of 0.19 Ryd. (author)

  9. Microfluidic System Simulation Including the Electro-Viscous Effect

    Science.gov (United States)

    Rojas, Eileen; Chen, C. P.; Majumdar, Alok

    2007-01-01

    This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data.

  10. Electric power monthly, September 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  11. Electrolytes including fluorinated solvents for use in electrochemical cells

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  12. Tunable cavity resonator including a plurality of MEMS beams

    Science.gov (United States)

    Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah; Liu, Xiaoguang; Irshad, Wasim; Arif, Muhammad Shoaib

    2015-10-20

    A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.

  13. 45 CFR 1308.11 - Eligibility criteria: Hearing impairment including deafness.

    Science.gov (United States)

    2010-10-01

    ... OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR... impairment including deafness. (a) A child is classified as deaf if a hearing impairment exists which is so... hearing loss can include impaired listening skills, delayed language development, and articulation...

  14. Initiation devices, initiation systems including initiation devices and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Condit, Reston A.; Rasmussen, Nikki; Wallace, Ronald S.

    2018-04-10

    Initiation devices may include at least one substrate, an initiation element positioned on a first side of the at least one substrate, and a spark gap electrically coupled to the initiation element and positioned on a second side of the at least one substrate. Initiation devices may include a plurality of substrates where at least one substrate of the plurality of substrates is electrically connected to at least one adjacent substrate of the plurality of substrates with at least one via extending through the at least one substrate. Initiation systems may include such initiation devices. Methods of igniting energetic materials include passing a current through a spark gap formed on at least one substrate of the initiation device, passing the current through at least one via formed through the at least one substrate, and passing the current through an explosive bridge wire of the initiation device.

  15. Progressive IRP Models for Power Resources Including EPP

    Directory of Open Access Journals (Sweden)

    Yiping Zhu

    2017-01-01

    Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.

  16. Meta-structure and tunable optical device including the same

    Science.gov (United States)

    Han, Seunghoon; Papadakis, Georgia Theano; Atwater, Harry

    2017-12-26

    A meta-structure and a tunable optical device including the same are provided. The meta-structure includes a plurality of metal layers spaced apart from one another, an active layer spaced apart from the plurality of metal layers and having a carrier concentration that is tuned according to an electric signal applied to the active layer and the plurality of metal layers, and a plurality of dielectric layers spaced apart from one another and each having one surface contacting a metal layer among the plurality of metal layers and another surface contacting the active layer.

  17. A new polyethylene glycol fiber prepared by coating porous zinc electrodeposited onto silver for solid-phase microextraction of styrene

    International Nuclear Information System (INIS)

    Sungkaew, Sakchaibordee; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2010-01-01

    A new polyethylene glycol fiber was developed for solid-phase microextraction (SPME) of styrene by electrodepositing porous Zn film on Ag wire substrate followed by coating with polyethylene glycol sol-gel (Ag/Zn/PEG sol-gel fiber). The scanning electron micrographs of fibers surface revealed a highly porous structure. The extraction property of the developed fiber-to-styrene residue from polystyrene packaged food was investigated by headspace solid-phase microextraction (HS-SPME) and analyzed with a gas chromatograph coupled with flame ionization detection (GC-FID). The new Ag/Zn/PEG sol-gel fiber is simple to prepare, low cost, robust, has high thermal stability and long lifetime, up to 359 extractions. Repeatability of one fiber (n = 6) was in the range of 4.7-7.5% and fiber-to-fiber reproducibility (n = 4) for five concentration values were in the range 3.4-10%. This Ag/Zn/PEG sol-gel fiber was compared to two commercial SPME fibers, 75 μm carboxen/polydimethylsiloxane (CAR/PDMS) and 100 μm polydimethylsiloxane (PDMS). Under their optimum conditions, Ag/Zn/PEG sol-gel fiber showed the highest sensitivity and the lowest detection limit at 0.28 ± 0.01 ng mL -1 .

  18. Responses of Cells to Flow in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-06-01

    Full Text Available The response of cells to a flow has been studied in vitro. The response of cells was examined in two types of flow channels: a circumnutating flow in a donut-shaped open channel in a culture dish, and a one-way flow in a parallelepiped rhombus flow channel. Variation was made on the material of the parallelepiped channel to study on adhesion of cells to the plates: glass and polydimethylsiloxane. Behavior of cells on the plate was observed under a flow of a medium with an inverted phase-contrast-microscope. The shear stress on the plate is calculated with an estimated parabolic distribution of the velocity between the parallel plates. The adhesion of cells was evaluated with the cumulated shear, which is a product of the shear stress and the exposure time. The experimental results show that cells are responsive to the flow, which governs orientation, exfoliation, and differentiation. The response depends on the kinds of cells: endothelial cells orient along the stream line, although myocytes orient perpendicular to the stream line. The adhesion depends on the combination between scaffold and cell: myocytes are more adhesive to glass than cartilage cells, and fibroblasts are more adhesive to oxygenated polydimethylsiloxane than glass.

  19. Dielectric silicone elastomers with mixed ceramic nanoparticles

    International Nuclear Information System (INIS)

    Stiubianu, George; Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian; Ignat, Mircea

    2015-01-01

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles

  20. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stiubianu, George, E-mail: george.stiubianu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ignat, Mircea [National R& D Institute for Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, District 3, Bucharest 030138 (Romania)

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  1. 42 CFR 493.941 - Hematology (including routine hematology and coagulation).

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Hematology (including routine hematology and....941 Hematology (including routine hematology and coagulation). (a) Program content and frequency of challenge. To be approved for proficiency testing for hematology, a program must provide a minimum of five...

  2. 45 CFR 1308.13 - Eligibility criteria: Visual impairment including blindness.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Visual impairment including... impairment including blindness. (a) A child is classified as visually impaired when visual impairment, with...) A child is classified as having a visual impairment if central acuity with corrective lenses is...

  3. A framework for including family health spillovers in economic evaluation

    NARCIS (Netherlands)

    H. Al-Janabi (Hareth); N.J.A. van Exel (Job); W.B.F. Brouwer (Werner); J. Coast (Joanna)

    2016-01-01

    textabstractHealth care interventions may affect the health of patients' family networks. It has been suggested that these health spillovers? should be included in economic evaluation, but there is not a systematic method for doing this. In this article, we develop a framework for including health

  4. Methods to ease the release of thin polydimethylsiloxane films from difficult substrates

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Skov, Anne Ladegaard

    2014-01-01

    permissible thickness is around 25–50 µm. The relatively small Young's modulus for these elastomers is a requirement for actuation capabilities. However, peeling and release of such films during manufacture processes are very difficult. To ease the release of the films, techniques such as the use of release....... Polysorbate-20, a non-ionic surfactant, fulfills all requirements and gives the lowest peel forces for the films....

  5. Poly(dimethylsiloxane) / tetraethyl orthosilicate modified hydroxyapatite composites: mechanical properties and biocompatibility evaluation

    International Nuclear Information System (INIS)

    Bareiro, O.; Santos, L. A.

    2012-01-01

    A composite of poly(dimethylsiloxane)/hydroxyapatite (PDMS/HAp) has been developed and its mechanical properties and biocompatibility were assessed. The processing of the composite involved the surface modification of HAp with 5 or 10 %(wt/wt) tetraethyl orthosilicate (TEOS) solutions, followed by mixing in a two roll open mixer with the silicone. The energy dispersive spectroscopy (EDS) spectra indicated evidence of a silane layer in the HAp modified surface. In tensile property measurement, the PDMS/modified-HAp composite showed higher values of tensile strength (2.41 MPa) and lower elongation at break (73.44 %) than the PDMS/unmodified HAp composite, 2.26 MPa and 365.58 % respectively. In both cases, the composites showed higher values of tensile strength than the original silicone (1.97 MPa). Scanning electron microscopy (SEM) micrographs of the PDMS/unmodified-HAp composite exhibited debonding of the HAp particles from the elastomeric matrix at the fracture surface. On the other hand, HAp particles remained well attached to the matrix in the PDMS/modified-HAp composite. The presence of HAp improved the biocompatibility of the silicone. The soaking of the composites for 7 days in a simulated body fluid (SBF) formed a dense and homogeneous layer of HAp like crystals in the surface of the composites. The surface modification of HAp powders with TEOS solutions formed a strong interface PDMS/HAp, this enhanced the tensile strength of the composite. (author)

  6. Fabrication of Polydimethylsiloxane Microlenses Utilizing Hydrogel Shrinkage and a Single Molding Step

    Directory of Open Access Journals (Sweden)

    Bader Aldalali

    2014-05-01

    Full Text Available We report on polydimethlysiloxane (PDMS microlenses and microlens arrays on flat and curved substrates fabricated via a relatively simple process combining liquid-phase photopolymerization and a single molding step. The mold for the formation of the PDMS lenses is fabricated by photopolymerizing a polyacrylamide (PAAm pre-hydrogel. The shrinkage of PAAm after its polymerization forms concave lenses. The lenses are then transferred to PDMS by a single step molding to form PDMS microlens array on a flat substrate. The PAAm concave lenses are also transferred to PDMS and another flexible polymer, Solaris, to realize artificial compound eyes. The resultant microlenses and microlens arrays possess good uniformity and optical properties. The focal length of the lenses is inversely proportional to the shrinkage time. The microlens mold can also be rehydrated to change the focal length of the ultimate PDMS microlenses. The spherical aberration is 2.85 μm and the surface roughness is on the order of 204 nm. The microlenses can resolve 10.10 line pairs per mm (lp/mm and have an f-number range between f/2.9 and f/56.5. For the compound eye, the field of view is 113°.

  7. AFM study of adsorption of protein A on a poly(dimethylsiloxane) surface

    International Nuclear Information System (INIS)

    Yu Ling; Lu Zhisong; Gan Ye; Liu Yingshuai; Li, C M

    2009-01-01

    In this paper, the morphology and kinetics of adsorption of protein A on a PDMS surface is studied by AFM. The results of effects of pH, protein concentration and contact time of the adsorption reveal that the morphology of adsorbed protein A is significantly affected by pH and adsorbed surface concentration, in which the pH away from the isoelectric point (IEP) of protein A could produce electrical repulsion to change the protein conformation, while the high adsorbed surface protein volume results in molecular networks. Protein A can form an adsorbed protein film on PDMS with a maximum volume of 2.45 x 10 -3 μm 3 . This work enhances our fundamental understanding of protein A adsorption on PDMS, a frequently used substrate component in miniaturized immunoassay devices.

  8. Water evaporation on highly viscoelastic polymer surfaces.

    Science.gov (United States)

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  9. Self-formation of polymer nanostructures in plasma etching: mechanisms and applications

    Science.gov (United States)

    Du, Ke; Jiang, Youhua; Huang, Po-Shun; Ding, Junjun; Gao, Tongchuan; Choi, Chang-Hwan

    2018-01-01

    In recent years, plasma-induced self-formation of polymer nanostructures has emerged as a simple, scalable and rapid nanomanufacturing technique to pattern sub-100 nm nanostructures. High-aspect-ratio nanostructures (>20:1) are fabricated on a variety of polymer surfaces such as poly(methylmethacrylate) (PMMA), polystyrene (PS), polydimethylsiloxane (PDMS), and fluorinated ethylene propylene (FEP). Sub-100 nm nanostructures (i.e. diameter  ⩽  50 nm) are fabricated in this one-step process without relying on slow and expensive nanolithography techniques. This review starts with discussion of the self-formation mechanisms including surface modulation, random masks, and materials impurities. Emphasis is put on the applications of polymer nanostructures in the fields of hierarchical nanostructures, liquid repellence, adhesion, lab-on-a-chip, surface enhanced Raman scattering (SERS), organic light emitting diode (OLED), and energy harvesting. The unique advantages of this nanomanufacturing technique are illustrated, followed by prospects.

  10. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations.

    Science.gov (United States)

    Waldbaur, Ansgar; Kittelmann, Jörg; Radtke, Carsten P; Hubbuch, Jürgen; Rapp, Bastian E

    2013-06-21

    We describe a generic microfluidic interface design that allows the connection of microfluidic chips to established industrial liquid handling stations (LHS). A molding tool has been designed that allows fabrication of low-cost disposable polydimethylsiloxane (PDMS) chips with interfaces that provide convenient and reversible connection of the microfluidic chip to industrial LHS. The concept allows complete freedom of design for the microfluidic chip itself. In this setup all peripheral fluidic components (such as valves and pumps) usually required for microfluidic experiments are provided by the LHS. Experiments (including readout) can be carried out fully automated using the hardware and software provided by LHS manufacturer. Our approach uses a chip interface that is compatible with widely used and industrially established LHS which is a significant advancement towards near-industrial experimental design in microfluidics and will greatly facilitate the acceptance and translation of microfluidics technology in industry.

  11. Refractive-index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns

    International Nuclear Information System (INIS)

    Meichner, Christoph; Kador, Lothar; Schedl, Andreas E.; Neuber, Christian; Kreger, Klaus; Schmidt, Hans-Werner

    2015-01-01

    We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (Sylgard ® 184) and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidth of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025 ∘ results in an error of the refractive index of typically ±5 ⋅ 10 −4 . Information on the sample thickness is not required

  12. Modelling a linear PM motor including magnetic saturation

    NARCIS (Netherlands)

    Polinder, H.; Slootweg, J.G.; Compter, J.C.; Hoeijmakers, M.J.

    2002-01-01

    The use of linear permanent-magnet (PM) actuators increases in a wide variety of applications because of the high force density, robustness and accuracy. The paper describes the modelling of a linear PM motor applied in, for example, wafer steppers, including magnetic saturation. This is important

  13. 12 CFR 516.120 - What information should a comment include?

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false What information should a comment include? 516.120 Section 516.120 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY APPLICATION PROCESSING PROCEDURES Comment Procedures § 516.120 What information should a comment include? (a...

  14. 33 CFR 150.15 - What must the operations manual include?

    Science.gov (United States)

    2010-07-01

    ... containment; (iii) Connecting and disconnecting transfer equipment, including a floating hose string for a...) Connecting and disconnecting of transfer equipment, including to a floating hose string for a SPM; (iv) Line..., bolted flanges, and quick-disconnect coupling. (10) A description of the method used to water and de...

  15. 40 CFR 1045.205 - What must I include in my application?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What must I include in my application... Engine Families § 1045.205 What must I include in my application? This section specifies the information... system components for controlling exhaust emissions, including all auxiliary emission control devices...

  16. Addressing Stillbirth in India Must Include Men.

    Science.gov (United States)

    Roberts, Lisa; Montgomery, Susanne; Ganesh, Gayatri; Kaur, Harinder Pal; Singh, Ratan

    2017-07-01

    Millennium Development Goal 4, to reduce child mortality, can only be achieved by reducing stillbirths globally. A confluence of medical and sociocultural factors contribute to the high stillbirth rates in India. The psychosocial aftermath of stillbirth is a well-documented public health problem, though less is known of the experience for men, particularly outside of the Western context. Therefore, men's perceptions and knowledge regarding reproductive health, as well as maternal-child health are important. Key informant interviews (n = 5) were analyzed and 28 structured interviews were conducted using a survey based on qualitative themes. Qualitative themes included men's dual burden and right to medical and reproductive decision making power. Wives were discouraged from expressing grief and pushed to conceive again. If not successful, particularly if a son was not conceived, a second wife was considered a solution. Quantitative data revealed that men with a history of stillbirths had greater anxiety and depression, perceived less social support, but had more egalitarian views towards women than men without stillbirth experience. At the same time fathers of stillbirths were more likely to be emotionally or physically abusive. Predictors of mental health, attitudes towards women, and perceived support are discussed. Patriarchal societal values, son preference, deficient women's autonomy, and sex-selective abortion perpetuate the risk for future poor infant outcomes, including stillbirth, and compounds the already higher risk of stillbirth for males. Grief interventions should explore and take into account men's perceptions, attitudes, and behaviors towards reproductive decision making.

  17. 40 CFR 1054.205 - What must I include in my application?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What must I include in my application... Certifying Emission Families § 1054.205 What must I include in my application? This section specifies the... controlling exhaust emissions, including all auxiliary emission control devices (AECDs) and all fuel-system...

  18. 15 CFR 2006.1 - Information to be included in petition.

    Science.gov (United States)

    2010-01-01

    ... property right, or foreign direct investment matter for which the rights of the United States under the... nature of any foreign direct investment proposed by the United States person, including estimates of... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Information to be included in petition...

  19. Methods of producing adsorption media including a metal oxide

    Science.gov (United States)

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  20. Designing monitoring programs for chemicals of emerging concern in potable reuse ⋯ What to include and what not to include?

    KAUST Repository

    Drewes, Jorg; Anderson, Paul D.; Denslow, Nancy D.; Olivieri, Adam W.; Schlenk, Daniel K.; Snyder, Shane A.; Maruya, Keith

    2012-01-01

    This study discussed a proposed process to prioritize chemicals for reclaimed water monitoring programs, selection of analytical methods required for their quantification, toxicological relevance of chemicals of emerging concern regarding human health, and related issues. Given that thousands of chemicals are potentially present in reclaimed water and that information about those chemicals is rapidly evolving, a transparent, science-based framework was developed to guide prioritization of which compounds of emerging concern (CECs) should be included in reclaimed water monitoring programs. The recommended framework includes four steps: (1) compile environmental concentrations (e.g., measured environmental concentration or MEC) of CECs in the source water for reuse projects; (2) develop a monitoring trigger level (MTL) for each of these compounds (or groups thereof) based on toxicological relevance; (3) compare the environmental concentration (e.g., MEC) to the MTL; CECs with a MEC/MTL ratio greater than 1 should be prioritized for monitoring, compounds with a ratio less than '1' should only be considered if they represent viable treatment process performance indicators; and (4) screen the priority list to ensure that a commercially available robust analytical method is available for that compound. © IWA Publishing 2013.

  1. Designing monitoring programs for chemicals of emerging concern in potable reuse ⋯ What to include and what not to include?

    KAUST Repository

    Drewes, Jorg

    2012-11-01

    This study discussed a proposed process to prioritize chemicals for reclaimed water monitoring programs, selection of analytical methods required for their quantification, toxicological relevance of chemicals of emerging concern regarding human health, and related issues. Given that thousands of chemicals are potentially present in reclaimed water and that information about those chemicals is rapidly evolving, a transparent, science-based framework was developed to guide prioritization of which compounds of emerging concern (CECs) should be included in reclaimed water monitoring programs. The recommended framework includes four steps: (1) compile environmental concentrations (e.g., measured environmental concentration or MEC) of CECs in the source water for reuse projects; (2) develop a monitoring trigger level (MTL) for each of these compounds (or groups thereof) based on toxicological relevance; (3) compare the environmental concentration (e.g., MEC) to the MTL; CECs with a MEC/MTL ratio greater than 1 should be prioritized for monitoring, compounds with a ratio less than \\'1\\' should only be considered if they represent viable treatment process performance indicators; and (4) screen the priority list to ensure that a commercially available robust analytical method is available for that compound. © IWA Publishing 2013.

  2. Field study of the long-term release of block copolymers from fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, A.; Hvilsted, Søren

    2017-01-01

    The addition of block copolymers (i.e. oils) is a common technique to enhance the biofouling-resistance properties of poly(dimethylsiloxane) (PDMS)-based fouling-release coatings. These copolymers diffuse from the bulk to the surface of the coating, thus modifying the properties of the surface an...... fouling-release coatings. Finally, the potential of long-term field-studies is discussed, as compared to short-term laboratory experiments usually performed within fouling-release coatings studies....

  3. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    OpenAIRE

    Ivan, M.G.; Vivet, F.; Meinders, E.R.

    2010-01-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure to plasma and UV treatment, its transparency in UV-Vis regions of the light spectrum, and biocompatibility. The dual-detection mechanism allows the user more freedom in choosing the detection tool, ...

  4. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings.

    Science.gov (United States)

    Chung, Kyungjae; Yu, Sunkyu; Heo, Chul-Joon; Shim, Jae Won; Yang, Seung-Man; Han, Moon Gyu; Lee, Hong-Seok; Jin, Yongwan; Lee, Sang Yoon; Park, Namkyoo; Shin, Jung H

    2012-05-08

    Thin-film color reflectors inspired by Morpho butterflies are fabricated. Using a combination of directional deposition, silica microspheres with a wide size distribution, and a PDMS (polydimethylsiloxane) encasing, a large, flexible reflector is created that actually provides better angle-independent color characteristics than Morpho butterflies and which can even be bent and folded freely without losing its Morpho-mimetic photonic properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 31 CFR 306.87 - Partnerships (including nominee partnerships).

    Science.gov (United States)

    2010-07-01

    ... (including nominee partnerships). An assignment of a security registered in the name of or assigned to a... appropriate for winding up partnership affairs. In those cases where assignments by or in behalf of all... dissolution. Upon voluntary dissolution, for any jurisdiction where a general partner may not act in winding...

  6. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  7. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  8. Systems and strippable coatings for decontaminating structures that include porous material

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  9. 26 CFR 31.3402(e)-1 - Included and excluded wages.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Included and excluded wages. 31.3402(e)-1... SOURCE Collection of Income Tax at Source § 31.3402(e)-1 Included and excluded wages. (a) If a portion of... not more than 31 consecutive days constitutes wages, and the remainder does not constitute wages, all...

  10. A Kantorovich Type of Szasz Operators Including Brenke-Type Polynomials

    Directory of Open Access Journals (Sweden)

    Fatma Taşdelen

    2012-01-01

    convergence properties of these operators by using Korovkin's theorem. We also present the order of convergence with the help of a classical approach, the second modulus of continuity, and Peetre's -functional. Furthermore, an example of Kantorovich type of the operators including Gould-Hopper polynomials is presented and Voronovskaya-type result is given for these operators including Gould-Hopper polynomials.

  11. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

  12. Alternating phase focussing including space charge

    International Nuclear Information System (INIS)

    Cheng, W.H.; Gluckstern, R.L.

    1992-01-01

    Longitudinal stability can be obtained in a non-relativistic drift tube accelerator by traversing each gap as the rf accelerating field rises. However, the rising accelerating field leads to a transverse defocusing force which is usually overcome by magnetic focussing inside the drift tubes. The radio frequency quadrupole is one way of providing simultaneous longitudinal and transverse focusing without the use of magnets. One can also avoid the use of magnets by traversing alternate gaps between drift tubes as the field is rising and falling, thus providing an alternation of focussing and defocusing forces in both the longitudinal and transverse directions. The stable longitudinal phase space area is quite small, but recent efforts suggest that alternating phase focussing (APF) may permit low velocity acceleration of currents in the 100-300 ma range. This paper presents a study of the parameter space and a test of crude analytic predictions by adapting the code PARMILA, which includes space charge, to APF. 6 refs., 3 figs

  13. Periodic mesoporous organosilica-doped nanocomposite membranes and systems including same

    KAUST Repository

    Hammami, Mohamed Amen

    2017-12-28

    A periodic mesoporous organosilica (PMO) nanoparticle functionalized nanocomposite membrane (NCM) for membrane distillation, the NCM including: polymer fibers such as polyetherimide fibers aggregated into a matrix; and hydrophobic PMO nanoparticles disposed on the polymer fibers. The PMO nanoparticles include a framework connected by organic groups and pentafluorophenyl groups. Good membrane flux and anti-fouling was demonstrated. Membranes can be prepared by electrospinning.

  14. Periodic mesoporous organosilica-doped nanocomposite membranes and systems including same

    KAUST Repository

    Hammami, Mohamed Amen; Francis, Lijo; Croissant, Jonas; Ghaffour, NorEddine; Alsaiari, Shahad; Khashab, Niveen M.

    2017-01-01

    A periodic mesoporous organosilica (PMO) nanoparticle functionalized nanocomposite membrane (NCM) for membrane distillation, the NCM including: polymer fibers such as polyetherimide fibers aggregated into a matrix; and hydrophobic PMO nanoparticles disposed on the polymer fibers. The PMO nanoparticles include a framework connected by organic groups and pentafluorophenyl groups. Good membrane flux and anti-fouling was demonstrated. Membranes can be prepared by electrospinning.

  15. Synthetic pulse radar including a microprocessor based controller

    International Nuclear Information System (INIS)

    Fowler, J.C.; Rubin, L.A.; Still, W.L.

    1980-01-01

    This invention relates to pulse radar detection of targets in extended media, including natural phenomena such as oil, coal and ore deposits within the earth. In particular, this invention relates to a pulse radar system employing a synthetic pulse formed from a fourier spectrum of frequencies generated and detected by a digitally controlled transmitter and receiver circuits

  16. Chemical Composition, Antimicrobial Activity, and Mode of Action of Essential Oils against Paenibacillus larvae, Etiological Agent of American Foulbrood on Apis mellifera.

    Science.gov (United States)

    Pellegrini, María C; Alonso-Salces, Rosa M; Umpierrez, María L; Rossini, Carmen; Fuselli, Sandra R

    2017-04-01

    This study aimed to characterize the chemical composition of Aloysia polystachia, Acantholippia seriphioides, Schinus molle, Solidago chilensis, Lippia turbinata, Minthostachys mollis, Buddleja globosa, and Baccharis latifolia essential oils (EOs), and to evaluate their antibacterial activities and their capacity to provoke membrane disruption in Paenibacillus larvae, the bacteria that causes the American Foulbrood (AFB) disease on honey bee larvae. The relationship between the composition of the EOs and these activities on P. larvae was also analyzed. Monoterpenes were the most abundant compounds in all EOs. All EOs showed antimicrobial activity against P. larvae and disrupted the cell wall and cytoplasmic membrane of P. larvae provoking the leakage of cytoplasmic constituents (with the exception of B. latifolia EO). While, the EOs' antimicrobial activity was correlated most strongly to the content of pulegone, carvone, (Z)-β-ocimene, δ-cadinene, camphene, terpinen-4-ol, elemol, β-pinene, β-elemene, γ-cadinene, α-terpineol, and bornyl acetate; the volatiles that better explained the membrane disruption were carvone, limonene, cis-carvone oxide, pentadecane, trans-carvyl acetate, trans-carvone oxide, trans-limonene oxide, artemisia ketone, trans-carveol, thymol, and γ-terpinene (positively correlated) and biciclogermacrene, δ-2-carene, verbenol, α-pinene, and α-thujene (negatively correlated). The studied EOs are proposed as natural alternative means of control for the AFB disease. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  17. 40 CFR 60.1125 - What must I include in my siting analysis?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What must I include in my siting... § 60.1125 What must I include in my siting analysis? (a) Include an analysis of how your municipal...) Vegetation. (b) Include an analysis of alternatives for controlling air pollution that minimize potential...

  18. Critical point anomalies include expansion shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2014-02-15

    From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

  19. Management of radioactive waste from reprocessing including disposal aspects

    International Nuclear Information System (INIS)

    Malherbe, J.

    1991-01-01

    Based on a hypothetical scenario including a reactor park of 20 GWe consisting of Pressurised-Water-Reactors with a resulting annual production of 600 tonnes of heavy metal of spent fuel, all aspects of management of resulting wastes are studied. Waste streams from reprocessing include gaseous and liquid effluents, and a number of solid conditioned waste types. Disposal of waste is supposed to be performed either in a near-surface engineered repository, as long as the content of alpha-emitting radionuclides is low enough, and in a deep geological granite formation. After having estimated quantities, cost and radiological consequences, the sensitivity of results to modification in reactor park size, burn-up and the introduction of mixed-oxide fuel (MOX) is evaluated

  20. The Coffin-Siris syndrome: five new cases including two siblings.

    Science.gov (United States)

    Carey, J C; Hall, B D

    1978-07-01

    Five new cases and one previously reported case of the Coffin-Siris syndrome are described. These cases plus the remaining four already published bring to ten the number of cases available for scrutiny. Constant features (100% frequency) include variable degrees of mental retardation, nail hypoplasia or absence with predominantly fifth digit involvement, hypotonia, infancy feeding problems, and retarded bone age. Frequent features (75% to 90%) include postnatal growth deficiency, microcephaly, wide nasal tip and mouth, prominent lips, eyebrow/eyelash hypertrichosis, and scalp hair hypotrichosis. Significant but less frequent findings include short philtrum (50%, scoliosis (40%), decreased fetal activity (40%), smallness for gestational age (30%), and congenital heart defects (30%). We found the craniofacial phenotype to be mild in the young infant, but progressively more characteristic with age. Autosomal recessive inheritance is suspected on the basis of our brother-and-sister pair.

  1. Classical mechanics including an introduction to the theory of elasticity

    CERN Document Server

    Hentschke, Reinhard

    2017-01-01

    This textbook teaches classical mechanics as one of the foundations of physics. It describes the mechanical stability and motion in physical systems ranging from the molecular to the galactic scale. Aside from the standard topics of mechanics in the physics curriculum, this book includes an introduction to the theory of elasticity and its use in selected modern engineering applications, e.g. dynamic mechanical analysis of viscoelastic materials. The text also covers many aspects of numerical mechanics, ranging from the solution of ordinary differential equations, including molecular dynamics simulation of many particle systems, to the finite element method. Attendant Mathematica programs or parts thereof are provided in conjunction with selected examples. Numerous links allow the reader to connect to related subjects and research topics. Among others this includes statistical mechanics (separate chapter), quantum mechanics, space flight, galactic dynamics, friction, and vibration spectroscopy. An introductory...

  2. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    OpenAIRE

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-01-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160?nm and an average length of 2??m. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255?nm...

  3. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors.

    Science.gov (United States)

    Yu, Minghao; Zhang, Yangfan; Zeng, Yinxiang; Balogun, Muhammad-Sadeeq; Mai, Kancheng; Zhang, Zishou; Lu, Xihong; Tong, Yexiang

    2014-07-16

    A kind of multiwalled carbon-nanotube (MWCNT)/polydimethylsiloxane (PDMS) film with excellent conductivity and mechanical properties is developed using a facile and large-scale water surface assisted synthesis method. The film can act as a conductive support for electrochemically active PANI nano fibers. A device based on these PANI/MWCNT/PDMS electrodes shows good and stable capacitive behavior, even under static and dynamic stretching conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 3D Porous Sponge-Inspired Electrode for Stretchable Lithium-Ion Batteries.

    Science.gov (United States)

    Liu, Wei; Chen, Zheng; Zhou, Guangmin; Sun, Yongming; Lee, Hye Ryoung; Liu, Chong; Yao, Hongbin; Bao, Zhenan; Cui, Yi

    2016-05-01

    A stretchable Li4 Ti5 O12 anode and a LiFePO4 cathode with 80% stretchability are prepared using a 3D interconnected porous polydimethylsiloxane sponge based on sugar cubes. 82% and 91% capacity retention for anode and cathode are achieved after 500 stretch-release cycles. Slight capacity decay of 6% in the battery using the electrode in stretched state is observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. In-Channel-Grown Polypyrrole Nanowire for the Detection of DNA Hybridization in an Electrochemical Microfluidic Biosensor

    OpenAIRE

    Tran, Thi Luyen; Chu, Thi Xuan; Do, Phuc Quan; Pham, Duc Thanh; Trieu, Van Vu Quan; Huynh, Dang Chinh; Mai, Anh Tuan

    2015-01-01

    A triple electrode setup with a Pt pseudo-reference electrode integrated in a polydimethylsiloxane- (PDMS-) based microchamber was designed and fabricated. The integrated electrodes were deposited onto SiO2/Si substrate by sputtering. The PDMS microchamber was patterned using an SU-8 mold and sealed with electrodes in oxygen plasma. Polypyrrole nanowires (PPy NWs) were electrochemically grown in situ at an accurate position of the working electrode in the sealed microchamber instead of in an ...

  6. Mechanically compliant electrodes and dielectric elastomers from PEG-PDMS copolymers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2016-01-01

    Soft conducting elastomers have been prepared from polydimethylsiloxane-polyethyleneglycol (PDMS-PEG) copolymer and surfactant-stabilized multi-walled carbon nanotubes (MWCNTs). The copolymer was chain-extended with PDMS of molecular weight 17.2 kg mol-1 in order to obtain a crosslinkable PDMS...... showed high conductivity combined with inherent softness. The high conductivity and softness, PDMS-PEG copolymers with incorporated MWCNTs hold great promises as compliant and highly stretchable electrodes for stretchable devices such as electro-mechanical transducers....

  7. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals.

    Science.gov (United States)

    Wang, Xuewen; Gu, Yang; Xiong, Zuoping; Cui, Zheng; Zhang, Ting

    2014-03-05

    Flexible and transparent E-skin devices are achieved by combining silk-molded micro-patterned polydimethylsiloxane (PDMS) with single-walled carbon nanotube (SWNT) ultrathin films. The E-skin sensing device demonstrates superior sensitivity, a very low detectable pressure limit, a fast response time, and a high stability for the detection of superslight pressures, which may broaden their potential use as cost-effective wearable electronics for healthcare applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. J. Genet. classic 227 NOTE: The pagination in the original included ...

    Indian Academy of Sciences (India)

    Unknown

    , December 2005. 227. NOTE: The pagination in the original included the reverse of plate 1 on p. 445, which was a blank. The blank is not included here, but the original page numbers have been retained.

  9. Including investment risk in large-scale power market models

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Meibom, P.

    2003-01-01

    Long-term energy market models can be used to examine investments in production technologies, however, with market liberalisation it is crucial that such models include investment risks and investor behaviour. This paper analyses how the effect of investment risk on production technology selection...... can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate...... the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice...

  10. Measurement network design including traveltime determinations to minimize model prediction uncertainty

    NARCIS (Netherlands)

    Janssen, G.M.C.M.; Valstar, J.R.; Zee, van der S.E.A.T.M.

    2008-01-01

    Traveltime determinations have found increasing application in the characterization of groundwater systems. No algorithms are available, however, to optimally design sampling strategies including this information type. We propose a first-order methodology to include groundwater age or tracer arrival

  11. Risk Factors for Breast Cancer, Including Occupational Exposures

    Directory of Open Access Journals (Sweden)

    Elisabete Weiderpass

    2011-03-01

    Full Text Available The knowledge on the etiology of breast cancer has advanced substantially in recent years, and several etiological factors are now firmly established. However, very few new discoveries have been made in relation to occupational risk factors. The International Agency for Research on Cancer has evaluated over 900 different exposures or agents to-date to determine whether they are carcinogenic to humans. These evaluations are published as a series of Monographs (www.iarc.fr. For breast cancer the following substances have been classified as “carcinogenic to humans” (Group 1: alcoholic beverages, exposure to diethylstilbestrol, estrogen-progestogen contraceptives, estrogen-progestogen hormone replacement therapy and exposure to X-radiation and gamma-radiation (in special populations such as atomic bomb survivors, medical patients, and in-utero exposure. Ethylene oxide is also classified as a Group 1 carcinogen, although the evidence for carcinogenicity in epidemiologic studies, and specifically for the human breast, is limited. The classification “probably carcinogenic to humans” (Group 2A includes estrogen hormone replacement therapy, tobacco smoking, and shift work involving circadian disruption, including work as a flight attendant. If the association between shift work and breast cancer, the most common female cancer, is confirmed, shift work could become the leading cause of occupational cancer in women.

  12. Internet addiction neuroscientific approaches and therapeutical implications including smartphone addiction

    CERN Document Server

    Reuter, Martin

    2017-01-01

    The second edition of this successful book provides further and in-depth insight into theoretical models dealing with Internet addiction, as well as includes new therapeutical approaches. The editors also broach the emerging topic of smartphone addiction. This book combines a scholarly introduction with state-of-the-art research in the characterization of Internet addiction. It is intended for a broad audience including scientists, students and practitioners. The first part of the book contains an introduction to Internet addiction and their pathogenesis. The second part of the book is dedicated to an in-depth review of neuroscientific findings which cover studies using a variety of biological techniques including brain imaging and molecular genetics. The third part of the book focuses on therapeutic interventions for Internet addiction. The fourth part of the present book is an extension to the first edition and deals with a new emerging potential disorder related to Internet addiction – smartphone addicti...

  13. A Framework for Including Family Health Spillovers in Economic Evaluation.

    Science.gov (United States)

    Al-Janabi, Hareth; van Exel, Job; Brouwer, Werner; Coast, Joanna

    2016-02-01

    Health care interventions may affect the health of patients' family networks. It has been suggested that these "health spillovers" should be included in economic evaluation, but there is not a systematic method for doing this. In this article, we develop a framework for including health spillovers in economic evaluation. We focus on extra-welfarist economic evaluations where the objective is to maximize health benefits from a health care budget (the "health care perspective"). Our framework involves adapting the conventional cost-effectiveness decision rule to include 2 multiplier effects to internalize the spillover effects. These multiplier effects express the ratio of total health effects (for patients and their family networks) to patient health effects. One multiplier effect is specified for health benefit generated from providing a new intervention, one for health benefit displaced by funding this intervention. We show that using multiplier effects to internalize health spillovers could change the optimal funding decisions and generate additional health benefits to society. © The Author(s) 2015.

  14. Production, control and utilization of radioisotopes including radiopharmaceuticals

    International Nuclear Information System (INIS)

    Muenze, R.

    1985-05-01

    From April 29th to May 5th, 1984 27 participants from 21 developing countries stayed within an IAEA Study Tour ('Production, Control and Utilization of Radioisotopes including Radiopharmaceuticals') in the GDR. In the CINR, Rossendorf the reactor, the cyclotron, the technological centre as well as the animal test laboratory were visited. The participants were made familiar by 10 papers with the development, production and control of radiopharmaceuticals in the CINR, Rossendorf. (author)

  15. Superhydrophobic transparent films from silica powder: Comparison of fabrication methods

    KAUST Repository

    Liu, Li-Der; Lin, Chao-Sung; Tikekar, Mukul; Chen, Ping-Hei

    2011-01-01

    The lotus leaf is known for its self-clean, superhydrophobic surface, which displays a hierarchical structure covered with a thin wax-like material. In this study, three fabrication techniques, using silicon dioxide particles to create surface roughness followed by a surface modification with a film of polydimethylsiloxane, were applied on a transparent glass substrate. The fabrication techniques differed mainly on the deposition of silicon dioxide particles, which included organic, inorganic, and physical methods. Each technique was used to coat three samples of varying particle load. The surface of each sample was evaluated with contact angle goniometer and optical spectrometer. Results confirmed the inverse relationships between contact angle and optical transmissivity independent of fabrication techniques. Microstructural morphologies also suggested the advantage of physical deposition over chemical methods. In summary, the direct sintering method proved outstanding for its contact angle vs transmissivity efficiency, and capable of generating a contact angle as high as 174°. © 2011 Elsevier B.V. All rights reserved.

  16. A Pneumatic Actuated Microfluidic Beads-Trapping Device

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guocheng; Cai, Ziliang; Wang, Jun; Wang, Wanjun; Lin, Yuehe

    2011-08-20

    The development of a polydimethylsiloxane (PDMS) microfluidic microbeads trapping device is reported in this paper. Besides fluid channels, the proposed device includes a pneumatic control chamber and a beads-trapping chamber with a filter array structure. The pneumatic flow control chamber and the beads-trapping chamber are vertically stacked and separated by a thin membrane. By adjusting the pressure in the pneumatic control chamber, the membrane can either be pushed against the filter array to set the device in trapping mode or be released to set the device in releasing mode. In this paper, a computational fluid dynamics simulation was conducted to optimize the geometry design of the filter array structure; the device fabrication was also carried out. The prototype device was tested and the preliminary experimental results showed that it can be used as a beads-trapping unit for various biochemistry and analytical chemistry applications, especially for flow injection analysis systems.

  17. Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array.

    Science.gov (United States)

    Kuo, Ching-Te; Wang, Jong-Yueh; Lin, Yu-Fen; Wo, Andrew M; Chen, Benjamin P C; Lee, Hsinyu

    2017-06-29

    Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.

  18. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.

    Science.gov (United States)

    Cui, Zheng; Han, Yiwei; Huang, Qijin; Dong, Jingyan; Zhu, Yong

    2018-04-19

    A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc. With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices.

  19. Stimuli-responsive transformation in carbon nanotube/expanding microsphere–polymer composites

    International Nuclear Information System (INIS)

    Loomis, James; Xu Peng; Panchapakesan, Balaji

    2013-01-01

    Our work introduces a class of stimuli-responsive expanding polymer composites with the ability to unidirectionally transform their physical dimensions, elastic modulus, density, and electrical resistance. Carbon nanotubes and core–shell acrylic microspheres were dispersed in polydimethylsiloxane, resulting in composites that exhibit a binary set of material properties. Upon thermal or infrared stimuli, the liquid cores encapsulated within the microspheres vaporize, expanding the surrounding shells and stretching the matrix. The microsphere expansion results in visible dimensional changes, regions of reduced polymeric chain mobility, nanotube tensioning, and overall elastic to plastic-like transformation of the composite. Here, we show composite transformations including macroscopic volume expansion (>500%), density reduction (>80%), and elastic modulus increase (>675%). Additionally, conductive nanotubes allow for remote expansion monitoring and exhibit distinct loading-dependent electrical responses. With the ability to pattern regions of tailorable expansion, strength, and electrical resistance into a single polymer skin, these composites present opportunities as structural and electrical building blocks in smart systems. (paper)

  20. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    Science.gov (United States)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.