WorldWideScience

Sample records for included graphite silicon

  1. Variation of the properties of siliconized graphite during neutron irradiation

    International Nuclear Information System (INIS)

    Virgil'ev, Y.S.; Chugunova, T.K.; Pikulik, R.G.

    1986-01-01

    The authors evaluate the radiation-induced property changes in siliconized graphite of the industrial grades SG-P and SG-M. The authors simultaneously tested the reference (control) specimens of graphite that are used as the base for obtaining the SG-M siliconized graphite by impregnating with silicon. The suggested scheme (model) atributes the dimensional changes of the siliconized graphite specimens to the effect of the quantitative ratio of the carbide phase and carbon under different conditions of irradiation. If silicon is insufficient for the formation of a dense skeleton, graphite plays a devisive role, and it may be assumed that at an irradiation temperature greater than 600 K, the material shrinks. The presence of isolated carbide inclusions also affects the physicomechanical properties (including the anitfriction properties)

  2. Purity of silicon: with great effect on its performance in graphite-silicon anode materials for lithium-ion batteries

    Science.gov (United States)

    Jin, Chenxin; Xu, Guojun; Liu, Liekai; Yue, Zhihao; Li, Xiaomin; Sun, Fugen; Tang, Hao; Huang, Haibin; Zhou, Lang

    2017-09-01

    Ferrosilicon, industrial grade silicon, solar grade silicon, and electronic grade silicon were ball-milled to form four types of silicon powders, which were mixed with graphite powders at weight ratio of 5:95, respectively, for being used as graphite-silicon anode materials in lithium-ion batteries (LIBs). The effect of the purity of silicon on its electrochemical performance in graphite-silicon anode materials for LIBs was investigated by the cycle and rate tests. Results show that silicon with higher purity shows higher capacity, better cycle, and rate performance. In addition, the significant difference in capacity of the four graphite-silicon anodes with different purities of silicon is not completely resulted from the content of silicon materials, and the influence of the impurity inside the silicon cannot be ignored as well. The sample prepared from electronic grade silicon presents the highest first discharge capacity, which is 440.5 mAh g-1.

  3. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang , Jing [School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; National Development Center of High Technology Green Materials, Beijing 100081 China; Innovation Center of Electric Vehicles, Beijing 100081 China; Bao, Wurigumula [School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; Ma, Lu [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439 USA; Tan, Guoqiang [School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; Su , Yuefeng [School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; National Development Center of High Technology Green Materials, Beijing 100081 China; Innovation Center of Electric Vehicles, Beijing 100081 China; Chen , Shi [School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; National Development Center of High Technology Green Materials, Beijing 100081 China; Innovation Center of Electric Vehicles, Beijing 100081 China; Wu , Feng [School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; National Development Center of High Technology Green Materials, Beijing 100081 China; Innovation Center of Electric Vehicles, Beijing 100081 China; Lu, Jun [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439 USA

    2015-11-09

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide–nickel–graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx/Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx/Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials.

  4. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  5. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-12-07

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A tribological studies of graphite solid lubrication effect on UHMW polyethylene in silicone oil lubricated conditions

    OpenAIRE

    Jabłoński Piotr; Patalas Adam; Czajka Piotr

    2017-01-01

    Recent advances in surface engineering and solid lubrication technologies offer unique possibilities for better controlling friction and wear under boundary or marginally lubricated rolling, sliding or rotating contact conditions. The aim of the study was to evaluate influence of graphite solid lubrication addition on silicone oil tribological performance. Studies of graphite solid lubrication effect was carried out with using tribological testing station UMT-2 Bruker. Tests were performed ag...

  7. A tribological studies of graphite solid lubrication effect on UHMW polyethylene in silicone oil lubricated conditions

    Directory of Open Access Journals (Sweden)

    Jabłoński Piotr

    2017-01-01

    Full Text Available Recent advances in surface engineering and solid lubrication technologies offer unique possibilities for better controlling friction and wear under boundary or marginally lubricated rolling, sliding or rotating contact conditions. The aim of the study was to evaluate influence of graphite solid lubrication addition on silicone oil tribological performance. Studies of graphite solid lubrication effect was carried out with using tribological testing station UMT-2 Bruker. Tests were performed against UHMW polyethylene samples and under various conditions, differing in relative speed and the load of interacting frictional pair.

  8. Frictional characteristics of silicon graphite lubricated with water at high pressure and high temperature

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Eun Hyun; Park, Jin Seok; Kim, Jong In

    2001-01-01

    Experimental frictional and wear characteristics of silicon graphite materials is studied in this paper. Those specimens are lubricated with high temperature and highly pressurized water to simulate the same operating condition for the journal bearing and the thrust bearing on the main coolant pump bearing in the newly developing nuclear reactor named SMART(System-integrated Modular Advanced ReacTor). Operating condition of the bearings is realized by the tribometer and the autoclave. Friction coefficient and wear loss are analyzed to choose the best silicon graphite material. Pin on plate test specimens are used and coned disk springs are used to control the applied force on the specimens. Wear loss and wear width are measured by a precision balance and a micrometer. The friction force is measured by the strain gauge which can be used under high temperature and high pressure. Three kinds of silicon graphite materials are examined and compared with each other, and each material shows similar but different results on frictional and wear characteristics

  9. Rice husk-originating silicon-graphite composites for advanced lithium ion battery anodes

    Science.gov (United States)

    Kim, Hye Jin; Choi, Jin Hyeok; Choi, Jang Wook

    2017-09-01

    Rice husk is produced in a massive amount worldwide as a byproduct of rice cultivation. Rice husk contains approximately 20 wt% of mesoporous SiO2. We produce mesoporous silicon (Si) by reducing the rice husk-originating SiO2 using a magnesio-milling process. Taking advantage of meso-porosity and large available quantity, we apply rice husk-originating Si to lithium ion battery anodes in a composite form with commercial graphite. By varying the mass ratio between these two components, trade-off relation between specific capacity and cycle life was observed. A controllable pre-lithiation scheme was adopted to increase the initial Coulombic efficiency and energy density. The series of electrochemical results suggest that rice husk-originating Si-graphite composites are promising candidates for high capacity lithium ion battery anodes, with the prominent advantages in battery performance and scalability.

  10. Improved Thermal Property of a Multilayered Graphite Nanoplatelets Filled Silicone Resin Composite

    Science.gov (United States)

    Lin, Jin; Zhang, Haiyan; Tang, Muyao; Tu, Wenying; Zhang, Xiubin

    2015-02-01

    We produced graphite nanoplatelets (GNP)/silicone resin composites at various loadings. The utilized GNPs were characterized by two-dimensional structure with high aspect ratio (~1810), and the GNP with approximately 10-30 nm thickness and 10-50 µm in length evenly dispersed throughout the resin matrix, which enables that GNPs effectively act as thermally conductive medium, thus contributed considerably to the formation of an efficient three-dimensional network for heat flow. The thermal conductivities of 5, 10, 15, and 20 wt.% GNP composite were 0.35, 1.02, 1.32, and 2.01 W/(m K), and were ca. 0.9, 4.7, 6.3, and 10.2 times higher than that of silicone resin at room temperature, respectively. The thermal conductivity decreased with elevated temperature in 25-200 °C, which was reminiscent at higher loading. Differential scanning calorimeter analysis showed that GNP addition increased the curing temperature of silicone resin from 90 to 119 °C, probably by hindering the free movement (mobility) of the silicone chains. The result showed that the GNP not only reduced the CTE but also improved the thermal stability of composite simultaneously.

  11. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide.

    Science.gov (United States)

    Emtsev, Konstantin V; Bostwick, Aaron; Horn, Karsten; Jobst, Johannes; Kellogg, Gary L; Ley, Lothar; McChesney, Jessica L; Ohta, Taisuke; Reshanov, Sergey A; Röhrl, Jonas; Rotenberg, Eli; Schmid, Andreas K; Waldmann, Daniel; Weber, Heiko B; Seyller, Thomas

    2009-03-01

    Graphene, a single monolayer of graphite, has recently attracted considerable interest owing to its novel magneto-transport properties, high carrier mobility and ballistic transport up to room temperature. It has the potential for technological applications as a successor of silicon in the post Moore's law era, as a single-molecule gas sensor, in spintronics, in quantum computing or as a terahertz oscillator. For such applications, uniform ordered growth of graphene on an insulating substrate is necessary. The growth of graphene on insulating silicon carbide (SiC) surfaces by high-temperature annealing in vacuum was previously proposed to open a route for large-scale production of graphene-based devices. However, vacuum decomposition of SiC yields graphene layers with small grains (30-200 nm; refs 14-16). Here, we show that the ex situ graphitization of Si-terminated SiC(0001) in an argon atmosphere of about 1 bar produces monolayer graphene films with much larger domain sizes than previously attainable. Raman spectroscopy and Hall measurements confirm the improved quality of the films thus obtained. High electronic mobilities were found, which reach mu=2,000 cm (2) V(-1) s(-1) at T=27 K. The new growth process introduced here establishes a method for the synthesis of graphene films on a technologically viable basis.

  12. Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures

    Science.gov (United States)

    Abderrafi, Kamal; García-Calzada, Raúl; Sanchez-Royo, Juan F.; Chirvony, Vladimir S.; Agouram, Saïd; Abargues, Rafael; Ibáñez, Rafael; Martínez-Pastor, Juan P.

    2013-04-01

    With the use of high-resolution transmission electron microscopy, selected area electron diffraction and x-ray photoelectron spectroscopy methods of analysis we show that the laser ablation of a Si target in chloroform (CHCl3) by nanosecond UV pulses (40 ns, 355 nm) results in the formation of about 50-80 nm core-shell nanoparticles with a polycrystalline core composed of small (5-10 nm) Si and SiC mono-crystallites, the core being coated by several layers of carbon with the structure of graphite (the shell). In addition, free carbon multilayer nanostructures (carbon nano-onions) are also found in the suspension. On the basis of a comparison with similar laser ablation experiments implemented in carbon tetrachloride (CCl4), where only bare (uncoated) Si nanoparticles are produced, we suggest that a chemical (solvent decomposition giving rise to highly reactive CH-containing radicals) rather than a physical (solvent atomization followed by carbon nanostructure formation) mechanism is responsible for the formation of graphitic shells. The silicon carbonization process found for the case of laser ablation in chloroform may be promising for silicon surface protection and functionalization.

  13. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Huang, Shiqiang; Cheong, Ling-Zhi; Wang, Deyu; Shen, Cai

    2017-07-19

    Silicon as the potential anode material for lithium-ion batteries suffers from huge volume change (up to 400%) during charging/discharging processes. Poor electrical conductivity of silicon also hinders its long-term cycling performance. Herein, we report a two-step ball milling method to prepare nanostructured P-doped Si/graphite composite. Both P-doped Si and coated graphite improved the conductivity by providing significant transport channels for lithium ions and electrons. The graphite skin is able to depress the volume expansion of Si by forming a stable SEI film. The as-prepared composite anode having 50% P-doped Si and 50% graphite exhibits outstanding cyclability with a specific capacity of 883.4 mAh/g after 200 cycles at the current density of 200 mA/g. The cost-effective materials and scalable preparation method make it feasible for large-scale application of the P-doped Si/graphite composite as anode for Li-ion batteries.

  15. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet

    International Nuclear Information System (INIS)

    Xu, Yonggang; Zhang, Deyuan; Cai, Jun; Yuan, Liming; Zhang, Wenqiang

    2013-01-01

    Silicone rubber composites filled with carbonyl iron particles (CIPs) and graphite platelet (GP) were prepared using non-coating or coating processes. The complex permittivity and permeability of the composites were measured using a vector network analyzer in the frequency range of 1–18 GHz and dc electric conductivity was measured by the standard four-point contact method. The results showed that CIPs/GP composites fabricated in the coating process had the highest permittivity and permeability due to the particle orientation and interactions between the two absorbents. The coating process resulted in a decreased effective eccentricity of the absorbents, and the dc conductivity increased according to Neelakanta's equations. The reflection loss (RL) value showed that the composites had an excellent absorbing property in the L-band, minimum −11.85 dB at 1.5 mm and −15.02 dB at 2 mm. Thus, GP could be an effective additive in preparing thin absorbing composites in the L-band. - Highlights: ► The added GP increased the permittivity and permeability of composites filled with CIPs. ► The enhancement was owing to interactions of the two absorbents and the fabrication process. ► The coating process decreased the effective eccentricity of the particles, and increased the conductivity of the composites. ► The composites to which CIPs/GP were added in coating process had excellent absorbing properties in the L-band.

  16. Simultaneous direct determination of aluminum, calcium and iron in silicon carbide and silicon nitride powders by slurry-sampling graphite furnace AAS.

    Science.gov (United States)

    Minami, Hirotsugu; Yada, Masako; Yoshida, Tomomi; Zhang, Qiangbin; Inoue, Sadanobu; Atsuya, Ikuo

    2004-03-01

    A fast and accurate analytical method was established for the simultaneous direct determination of aluminum, calcium and iron in silicon carbide and silicon nitride powders by graphite furnace atomic absorption spectrometry using a slurry sampling technique and a Hitachi Model Z-9000 atomic absorption spectrometer. The slurry samples were prepared by the ultrasonication of silicon carbide or silicon nitride powders with 0.1 M nitric acid. Calibration curves were prepared by using a mixed standard solution containing aluminum, calcium, iron and 0.1 M nitric acid. The analytical results of the proposed method for aluminum, calcium and iron in silicon carbide and silicon nitride reference materials were in good agreement with the reference values. The detection limits for aluminum, calcium and iron were 0.6 microg/g, 0.15 microg/g and 2.5 microg/g, respectively, in solid samples, when 200 mg of powdered samples were suspended in 20 ml of 0.1 M nitric acid and a 10 microl portion of the slurry sample was then measured. The relative standard deviation of the determination of aluminum, calcium and iron was 5 - 33%.

  17. Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources

    Science.gov (United States)

    Liu, Xingfang; Sun, Guosheng; Liu, Bin; Yan, Guoguo; Guan, Min; Zhang, Yang; Zhang, Feng; Chen, Yu; Dong, Lin; Zheng, Liu; Liu, Shengbei; Tian, Lixin; Wang, Lei; Zhao, Wanshun; Zeng, Yiping

    2013-01-01

    We report a new method for growing hexagonal columnar nanograin structured silicon carbide (SiC) thin films on silicon substrates by using graphene–graphitic carbon nanoflakes (GGNs) templates from solid carbon sources. The growth was carried out in a conventional low pressure chemical vapor deposition system (LPCVD). The GGNs are small plates with lateral sizes of around 100 nm and overlap each other, and are made up of nanosized multilayer graphene and graphitic carbon matrix (GCM). Long and straight SiC nanograins with hexagonal shapes, and with lateral sizes of around 200–400 nm are synthesized on the GGNs, which form compact SiC thin films. PMID:28809227

  18. Thermodynamic and transport properties of plasmas including silicon-based compounds

    Science.gov (United States)

    Colonna, G.; D’Angola, A.; Pietanza, L. D.; Capitelli, M.; Pirani, F.; Stevanato, E.; Laricchiuta, A.

    2018-01-01

    The characterization of the thermodynamic and transport properties of plasmas including silicon species could be of great interest for the investigation of many different systems containing the product of the ablation of silicon-based materials. Different plasma systems (pure silicon, silicon–argon, silicon dioxide and silicon carbide) have been investigated in a wide temperature range (103–4 104 K) and for different pressures (1, 10, 30 and 100 atm), relying on the construction of accurate and extended databases of internal energy levels and binary-interaction transport cross sections for the silicon compounds. The results have been compared with the available results in the literature also studying the dependence on the ratio of components.

  19. Micro-orientation control of silicon polymer thin films on graphite surfaces modified by heteroatom doping

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, Iwao, E-mail: shimoyama.iwao@jaea.go.jp [Material Science Research Center, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan); Baba, Yuji [Fukushima Administrative Department, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan); Hirao, Norie [Material Science Research Center, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan)

    2017-05-31

    Highlights: • Micro-orientation control method for organic polysilane thin films is proposed. • This method utilizes surface modification of graphite using heteroatom doping. • Lying, standing, and random orientations can be freely controlled by this method. • Micro-pattering of a polysilane film with controlled orientations is achieved. - Abstract: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is applied to study orientation structures of polydimethylsilane (PDMS) films deposited on heteroatom-doped graphite substrates prepared by ion beam doping. The Si K-edge NEXAFS spectra of PDMS show opposite trends of polarization dependence for non irradiated and N{sub 2}{sup +}-irradiated substrates, and show no polarization dependence for an Ar{sup +}-irradiated substrate. Based on a theoretical interpretation of the NEXAFS spectra via first-principles calculations, we clarify that PDMS films have lying, standing, and random orientations on the non irradiated, N{sub 2}{sup +}-irradiated, and Ar{sup +}-irradiated substrates, respectively. Furthermore, photoemission electron microscopy indicates that the orientation of a PDMS film can be controlled with microstructures on the order of μm by separating irradiated and non irradiated areas on the graphite surface. These results suggest that surface modification of graphite using ion beam doping is useful for micro-orientation control of organic thin films.

  20. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  1. Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects

    OpenAIRE

    Anandan, P.; Malathi, N.; Mohankumar, N.

    2014-01-01

    Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resi...

  2. High thermal conductivity of graphite fiber silicon carbide composites for fusion reactor application

    International Nuclear Information System (INIS)

    Snead, L.L.; Balden, M.; Causey, R.A.; Atsumi, H.

    2002-01-01

    The benefits of using CVI SiC/graphite fiber composites as low tritium retaining, high thermal conductivity composites for fusion applications are presented. Three-dimensional woven composites have been chemically vapor infiltrated with SiC and their thermophysical properties measured. One material used an intermediate grade graphite fiber in all directions (Amoco P55) while a second material used very high thermal conductive fiber (Amoco K-1100) in the high fiber density direction. The overall void was less than 20%. Strength as measured by four-point bending was comparable to those of SiC/SiC composite. The room temperature thermal conductivity in the high conductivity direction was impressive for both materials, with values >70 W/m K for the P-55 and >420 W/m K for the K-1100 variant. The thermal conductivity was measured as a function of temperature and exceeds the highest thermal conductivity of CVD SiC currently available at fusion relevant temperatures (>600 deg. C). Limited data on the irradiation-induced degradation in thermal conductivity is consistent with carbon fiber composite literature

  3. Design of Elastomer Structure to Facilitate Incorporation of Expanded Graphite in Silicones Without Compromising Electromechanical Integrity

    DEFF Research Database (Denmark)

    Hassouneh, Suzan Sager; Daugaard, Anders Egede; Skov, Anne Ladegaard

    2015-01-01

    The development of elastomer materials with a high dielectric permittivity has attracted increased interest over the past years due to their use in, for example, dielectric elastomers. For this particular use, both the electrically insulating properties - as well as the mechanical properties......-functional crosslinker, which allows for development of a suitable network matrix. The dielectric permittivity was increased by almost a factor of 4 compared to a benchmark silicone elastomer....

  4. Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles

    Directory of Open Access Journals (Sweden)

    T. Zhou

    2013-07-01

    Full Text Available In this work, an alternative type of carbon-based nanofiller, graphite nanoplatelets (GNPs with comparable properties, easier and lower-cost production, were used to improve the thermal conductivity of an epoxy. By adding 12 wt% GNPs or 71.7 wt% silicon carbide microparticles (micro-SiCs to epoxy, the thermal conductivity reached maxima that were respectively 6.3 and 20.7 times that of the epoxy alone. To further improve the thermal conductivity a mixture of the two fillers was utilized. The utilized GNPs are characterized by two-dimensional (2-D structure with high aspect ratio (~ 447, which enables GNPs effectively act as heat conductive bridges among 3-D micro-SiCs, thus contributes considerably to the formation of a more efficient 3-D percolating network for heat flow, resulting in higher thermal conductivity with relatively lower filler contents which is important for decreasing the density, viscosity and improving the processability of composites. A thermal conductivity, 26.1 times that of epoxy, was obtained with 7 wt% GNPs + 53 wt% micro-SiCs, thus not only break the bottleneck of further improving the thermal conductivity of epoxy composites but also broaden the applications of GNPs.

  5. The existence of optimal molecular weight for poly(acrylic acid) binders in silicon/graphite composite anode for lithium-ion batteries

    Science.gov (United States)

    Hu, Bin; Shkrob, Ilya A.; Zhang, Shuo; Zhang, Linghong; Zhang, Jingjing; Li, Yan; Liao, Chen; Zhang, Zhengcheng; Lu, Wenquan; Zhang, Lu

    2018-02-01

    Poly(acrylic acid) (PAA) based binders have been widely used for the high capacity silicon anodes of lithium-ion batteries. While numerous promising progress has been reported, there is no general guideline for choosing the right PAA binders for optimized cycling performance. In this report, aiming to optimize the cycling performance of the Si/graphite composite anodes (15 wt% Si), we systemically investigated a series of PAA binders by validating their molecular weights (MWs) and correlating them to the cycling performance of the anodes fabricated with such binders. The gel permeation chromatography (GPC) was used to validate the MWs of six PAA binders (PAA1 to PAA6). Those binders then underwent a series of characterizations, including rheology study, half-cell cycling, scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR). It is observed that the MWs of PAA binders not only affected the viscosities of the binder solutions but also impacted the cycling performance, possibly due to the cohesion changes. A range of 24-150 kDa is found to be optimal for minimizing the rate and extent of capacity fade and maintaining the cohesion in the electrode matrix despite the dramatic volumetric changes due to Si alloying.

  6. Nanodiamond infiltration into porous silicon through etching of solid carbon produced at different graphitization temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, C. R. B., E-mail: claudia_rbm@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais-INPE, Centro de Ciencias do Sistema Terrestre-CCST, Centro de Ciencias do Sistema Terrestre-CCST (Brazil); Baldan, M. R.; Beloto, A. F.; Ferreira, N. G. [CTE/INPE, Centro de Tecnologias Espaciais (Brazil)

    2011-09-15

    Nanocrystalline diamond (NCD) was grown on the porous silicon (PS) substrate using Reticulated Vitreous Carbon (RVC) as an additional solid carbon source. RVC was produced at different heat treatment temperatures of 1300, 1500, and 2000 Degree-Sign C, resulting in samples with different turbostratic carbon organizations. The PS substrate was produced by an electrochemical method. NCD film was obtained by the chemical vapor infiltration/deposition process where a RVC piece was positioned just below the PS substrate. The PS and NCD samples were characterized by Field Emission Gun-Scanning Electron Microscopy (FEG-SEM). NCD films presented faceted nanograins with uniform surface texture covering all the pores resulting in an apparent micro honeycomb structure. Raman's spectra showed the D and G bands, as well as, the typical two shoulders at 1,150 and 1,490 cm{sup -1} attributed to NCD. X-ray diffraction analyses showed the predominant (111) diamond orientation as well as the (220) and (311) peaks. The structural organization and the heteroatom presence on the RVC surface, analyzed from X-ray photoelectron spectroscopy, showed their significant influence on the NCD growth process. The hydrogen etching released, from RVC surface, associated to carbon and/or oxygen/nitrogen amounts led to different contributions for NCD growth.

  7. Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects

    Directory of Open Access Journals (Sweden)

    P. Anandan

    2014-01-01

    Full Text Available Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resistance shows significant improvement as the channel length decreases. The effects of thermal noise including self-heating of the device are explored. Moreover, significant reduction in noise with respect to channel thermal resistance, gate length, and biasing is analyzed.

  8. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    Science.gov (United States)

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  9. Process for making silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  10. Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite noduless

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat

    2015-01-01

    In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under the ass...

  11. Effect of expanded graphite and PEI-co-Silicon Rubber on the thermo mechanical, morphological as well as rheological properties of in situ composites based on poly (ether imide) and liquid crystalline polymer

    International Nuclear Information System (INIS)

    Hatui, Goutam; Malas, Asish; Bhattacharya, Pallab; Dhibar, Saptarshi; Kundu, Mrinal Kanti; Kumar Das, Chapal

    2015-01-01

    Highlights: • PEI/LCP/ PEI-co-Silicon Rubber/EG and PEI/LCP/MWCNT nano composites are prepared by melt blending method. • The dispersions of acid modified expanded graphite were improved in presence of PEI-co-Silicon Rubber. • Thermal stability was found to be highest for PLGC composite. • Storage modulus and Young’s modulus showed an upward trend with incorporation of only EG and EG in presence of PEI-co-Silicon Rubber. • Among the nano composites PLGC has highest viscosity. - Abstract: Nanocomposites of polyether imide (PEI) and liquid crystalline polymer (LCP) with either MWCNT, Expanded Graphite (EG) or in combination of both EG and PEI-co-Silicon Rubber were prepared by melt blending process. The compatibility between the polymeric phases (PEI and LCP) was observed to be increased by the addition of PEI-co-Silicon Rubber while the only MWCNT added system (PLC) resulted in smaller LCP droplets. A continuous morphology was produced in presence of both PEI-co-Silicon Rubber and EG both added system (PLGR). This was due to the compatibilizing effect of PEI-co-Silicon Rubber. FTIR analysis revealed interaction between PEI and LCP in presence of PEI-co-Silicon Rubber. Remarkable increment of storage modulus was observed with the addition of EG and PEI-co-Silicon Rubber. Transmission Electron Microscope (TEM) analysis showed better dispersion of multiple graphene layers of EG in presence of PEI-co-Silicon Rubber compatibilized system. Tensile and Young’s modulus both were highest for EG/ PEI-co-Silicon Rubber added system. This is due to flexible compatibilizing effect of PEI-co-Silicon Rubber which delayed the detachment of LCP domain from the PEI matrix and thus detains the fracture

  12. Silicon-Carbon Composite Electrode Materials Prepared by Pyrolysis of a Mixture of Manila Hemp, Silicon Powder, and Flake Artificial Graphite for Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Qin Si

    2017-11-01

    Full Text Available A high performance lithium anode is a key component for high energy density lithium batteries. Silicon based lithium anode materials are attractive for the lithium anode due to their high theoretical capacity. However, a severe problem is the huge volume change that occurs during cycling, resulting in a poor capacity retention. We have developed a silicon based anode that disperses silicon particles on a carbon paper made from Manila hemp. The composite silicon electrode materials showed a high initial coulombic efficiency of 83%. The initial capacity of 566 mAh g−1 based on the total weight of the electrode was retained at 491 mAh g−1 after 70 cycles at the charge and discharge rate of 100 mA g−1 and at room temperature.

  13. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method

    International Nuclear Information System (INIS)

    Li, Min; Wu, Zhishen; Tan, Jinmiao

    2012-01-01

    Highlights: ► Paraffin/SiO 2 /EG composite PCM was prepared with sol–gel method. ► The thermal conductivity of SiO 2 /paraffin/EG is 94.7% higher than paraffin. ► The latent heat of paraffin/SiO 2 /EG composite is 104.4 J/g. -- Abstract: A form-stable paraffin/silicon dioxide (SiO 2 )/expanded graphite (EG) composite phase change material (PCM) was prepared by sol–gel method. Silica gel acts as the supporting material and EG is used to increase the thermal conductivity. The mass fractions of silicon oxide and graphite are 20.8% and 7.2%, respectively. The composite PCM was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR) method. Thermal properties and thermal stability of the composite PCM were studied using differential scanning calorimetry (DSC). The result shows that paraffin was well dispersed in the network of silica gel and there is no chemical reaction between them. The phase change temperature of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 27.53 °C and 27.72 °C, respectively. The latent heat of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 112.8 J/g and 104.4 J/g, respectively. The thermal conductivity of the SiO 2 /paraffin composite and the SiO 2 /paraffin/EG composite are 28.2% and 94.7% higher than that of paraffin.

  14. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    Science.gov (United States)

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; Cao, Pengfei; Saito, Tomonori; Wood, David L.; Li, Jianlin

    2018-04-01

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this study, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency than those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.

  15. Apparatus for making molten silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  16. The formation of boron, silicon and calcium containing molecular species in a graphite furnace in Ar/O2 mixtures

    Directory of Open Access Journals (Sweden)

    MILAN MARKICEVIC

    2000-03-01

    Full Text Available The composition of the Ar/O2/C gas system in the presence of traces of either B, Si or Ca was calculated under the assumption of thermal equilibrium in the temperature range 500-5500 K. The mole concentration of oxygen was taken to be 1-4 %. Two sets of calculations were carried out. In the first one the presence of solid phase (graphite was ignored and the calculations were performed for a single-phase (gas system, at variable ratios C/O (0.5, 0.96, 1 and 2. In the second set of calculations the presence of solid carbon (graphite was taken into account and the composition of the gas system in equilibrium with solid carbon, at p = 1 atm, was determined. The results presented show that the equilibrium composition, particularly the concentration of different compounds involving the trace elements , is very sensitive to the amounts, and the ratio of the amounts of oxygen and carbon. Increasing the O/C ratio results in increasing partial pressures of molecular and atomic oxygen, which favours the formation of oxides of the trace elements and moves their atomization temperatures to higher values. On the other hand, increasing the C/O ratio (C/O >>1 favours atomization, but also carbide formation in the lower-temperature region. It was found that, over a relatively wide temperature interval (1000 << T << 3500 K, the composition of the Ar/O2/C/X (X = B, Si, Ca system, with comparable amounts of oxygen and carbon (C/O = 1, does not significantly depend on the presence of the solid phase. The results of calculations enable a reasonable interpretation of numerous experiments carried out on similar systems.

  17. Special graphites

    International Nuclear Information System (INIS)

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  18. Cementation of Nuclear Graphite Using Geopolymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H-J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2016-01-01

    Geopolymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geopolymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geopolymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated on how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfil the necessary specifications best. As a result, geopolymers have been identified as a promising matrix for graphite containing nuclear wastes. With geopolymers, both favourable properties in the cementation process and a high long time structural stability of the products can be achieved. Investigations include: • direct mixing of graphite with geopolymers with or without sand as a mechanically stabilizing medium; • production of cement-graphite granulates as intermediate products and embedding of these granulates in geopolymer; • coating of formed graphite pieces with geopolymer.The report shows that carbon in the form of graphite can both be integrated with different grain size spectra as well as shaped in the hydraulic binder geopolymer and meets the requirements for a stable long-term immobilisation. (author)

  19. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  20. Microstructure and mechanical behavior of stir-cast Zn–27Al based composites reinforced with rice husk ash, silicon carbide, and graphite

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2017-04-01

    Full Text Available The microstructure and mechanical properties of Zn–27Al based composites reinforced with rice husk ash (RHA, silicon carbide (SiC, and graphite (Cg particles have been investigated. The Zn–27Al composites consisting of varied weight ratios of the reinforcing materials were produced using the stir casting process. Hardness test, tensile properties evaluation, fracture toughness determination, and microstructural examination, were used to characterize the composites produced. Results show that the microstructures of the composites are similar, consisting of the dendritic structure of the Zn–27Al alloy matrix with fine dispersion of the reinforcing particles. The hardness of the composites decreased with increase in the weight percent of RHA (and corresponding decrease in SiC weight percent in the reinforcement. The tensile strength and yield strength decreased slightly with increase in the weight ratio of RHA in the composites with a maximum of 8.5% and 9.6% reductions respectively observed for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement. Although some of the composite compositions containing RHA had slightly higher % elongation values compared with those without RHA, it was generally observed that the % elongation was invariant to the composite RHA content. The fracture toughness of the composites increases with increase in the weight percent of RHA with as much as a 20% increase obtained for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement.

  1. Nuclear graphite ageing and turnaround

    International Nuclear Information System (INIS)

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  2. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  3. Effect of binder properties on electrochemical performance for silicon-graphite anode: Method and application of binder screening

    International Nuclear Information System (INIS)

    Yim, Taeeun; Choi, Soo Jung; Jo, Yong Nam; Kim, Tae-Hyun; Kim, Ki Jae; Jeong, Goojin; Kim, Young-Jun

    2014-01-01

    Highlights: • Binder properties are systematically characterized to estimate their suitability. • Interpretation of binder properties in connection with binding affinity, electrode properties, and degree of phase separation in slurry. • According to the screening results, hybridization of poly(acrylic acid) and poly(amide imide) is recommended. • The modified binder showed improved cycle performance based on enhanced binder properties. - Abstract: With increasing demand for lithium-ion batteries (LIBs) with high energy density, silicon-based negative electrode material has attracted much interest because of its high specific capacity. Practical utilization of Si remains unattainable, however, owing to severe volume expansion in the electrode, resulting in a loss of the electrical Si network, which is directly connected to drastic capacity fading of the cell. Therefore, there have been systematic studies on the characterization of fundamental binder properties to estimate the suitability of various binder materials. The binder properties are subdivided into mechanical and adhesion characteristics, electrode properties (rigidity and recovery), and phase separation behavior of slurry to correlate with the electrochemical performance and practical acceptance of candidate materials. Systematic screening showed that hybridization of poly(acrylic acid) (PAA) and poly(amide imide) (PAI) could complement each other's properties and the hybridized PAA–PAI was synthesized by a one-step, acid-catalyzed reaction. The PAA–PAI hybrid showed enhancement in overall properties as a result of co-polymerization and exhibited remarkable cycling performance after 300 cycles. Based on these results, it can be concluded that an understanding of binder characteristics provides useful insight into the search for a more efficient binder material, and fine tuning of fundamental binder properties through screening will be advantageous to the construction of more efficient LIB

  4. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  5. Fabrication of contacts for silicon solar cells including printing burn through layers

    Science.gov (United States)

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  6. Analysis of quantum ballistic electron transport in ultrasmall silicon devices including space-charge and geometric effects

    Science.gov (United States)

    Laux, S. E.; Kumar, A.; Fischetti, M. V.

    2004-05-01

    A two-dimensional device simulation program which self consistently solves the Schrödinger and Poisson equations with current flow is described in detail. Significant approximations adopted in this work are the absence of scattering and a simple six-valley, parabolic band structure for silicon. A modified version of the quantum transmitting boundary method is used to describe open boundary conditions permitting current flow in device solutions far from equilibrium. The continuous energy spectrum of the system is discretized by temporarily imposing two different forms of closed boundary conditions, resulting in energies which sample the density-of-states and establish the wave function normalization conditions. These standing wave solutions ("normal modes") are decomposed into their traveling wave constituents, each of which represents injection from only one of the open boundary contacts ("traveling eigencomponents"). These current-carrying states are occupied by a drifted Fermi distribution associated with their injecting contact and summed to form the electron density in the device. Holes are neglected in this calculation. The Poisson equation is solved on the same finite element computational mesh as the Schrödinger equation; devices of arbitrary geometry can be modeled. Computational performance of the program including characterization of a "Broyden+Newton" algorithm employed in the iteration for self consistency is described. Device results are presented for a narrow silicon resonant tunneling diode (RTD) and many variants of idealized silicon double-gate field effect transistors (DGFETs). The RTD results show two resonant conduction peaks, each of which demonstrates hysteresis. Three 7.5 nm channel length DGFET structures with identical intrinsic device configurations but differing access geometries (straight, taper and "dog bone") are studied and found to have differing current flows owing to quantum-mechanical reflection in their access regions

  7. Irradiation creep of graphite

    International Nuclear Information System (INIS)

    Kennedy, C.R.

    1990-01-01

    Displacement damage of graphite by neutron irradiation causes graphite to change dimensions. This dimensional instability requires careful attention when graphite is used as as moderator and reflector material in nuclear devices. Natural gradients in flux and temperature result in time-varying differential growth generating stresses similar to thermal stresses with an ever increasing temperature gradient. Graphite, however, does have the ability to creep under irradiation, allowing the stress intensity to relax below the fracture strength of the material. Creep strain also serves to average the radiation-induced strains, thus contributing to the stability of the core. As the dimensional instability is a function of temperature, so are the creep characteristics of graphite, and it is of interest to generalize the available data for extension to more extreme conditions of fluence and temperature. Irradiation creep of graphite is characterized by two stages of creep; a primary stage that saturates with time and a secondary stage that is generally assumed to be linear and constant with time. Virtually all past studies have not considered primary creep in detail primarily because there is limited available data at the very low fluences required to saturate primary creep. It is the purpose of this study to carefully examine primary creep in detail over the irradiation temperature range of 150 to 1000 degree C. These studies also include the combined effects of creep, differential growth, and structural changes in graphite by irradiation. 3 refs., 5 figs

  8. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  9. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  10. A dimensionally stable and fast-discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating.

    Science.gov (United States)

    Li, Fu-Sheng; Wu, Yu-Shiang; Chou, Jackey; Wu, Nae-Lih

    2015-05-18

    A high-performance graphite-Si composite anode for Li-ion batteries containing Si nanoparticles (NPs) attached onto graphite microparticles was synthesized by adopting a polymer-blend of poly(diallyl dimethyl-ammonium chloride) and poly(sodium 4-styrenesulfonate). The polymer-blend enabled uniform distribution of Si NPs during synthesis and served as a robust artificial solid-electrolyte interphase that substantially enhanced the cycle stability and rate performance of the composite electrode. The electrode exhibited a specific capacity of 450 mA h g(-1), 96% capacity retention at a 10 C-rate, 95% retention after 200 cycles, and the same electrode expansion behavior as a pristine graphite electrode.

  11. Process for making silicon from halosilanes and halosilicons

    Science.gov (United States)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  12. AGC-3 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  13. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  14. Graphite technology development plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-07-01

    This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

  15. Vacuum Die Casting of Silicon Sheet for Photovoltaic Applications

    Science.gov (United States)

    1979-01-01

    The development of a vacuum die-casting process for producing silicon sheet suitable for photovoltaic cells with a terrestrial efficiency greater than 12 percent and having the potential to be scaled for large quantity production is considered. The initial approach includes: (1) obtaining mechanical design parameters by using boron nitride, which has been shown to non-wetting to silicon; (2) optimizing silicon nitride material composition and coatings by sessile drop experiments; (3) testing effectiveness of fluoride salt interfacial media with a graphite mold; and (4) testing the effect of surface finish using both boron nitride and graphite. When the material and mechanical boundary conditions are established, a finalized version of the prototype assembly will be constructed and the casting variables determined.

  16. Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds

    OpenAIRE

    MELEZHYK A.V.; TKACHEV A.G.

    2014-01-01

    Ultrasonic exfoliation of expanded graphite compound obtained by cold expansion of graphite intercalated with peroxodisulfuric acid was shown to allow the creation of graphene nanoplatelets with thickness of about 5-10 nm. The resulting graphene material contained surface oxide groups. The expanded graphite intercalation compound was exfoliated by ultrasound much easier than thermally expanded graphite. A mechanism for the cleavage of graphite to graphene nanoplatelets is proposed. It include...

  17. Experimental evaluation of an adaptive Joule-Thomson cooling system including silicon-microfabricated heat exchanger and microvalve components.

    Science.gov (United States)

    Zhu, Weibin; Park, Jong M; White, Michael J; Nellis, Gregory F; Gianchandani, Yogesh B

    2011-03-01

    This article reports the evaluation of a Joule-Thomson (JT) cooling system that combines two custom micromachined components-a Si/glass-stack recuperative heat exchanger and a piezoelectrically actuated expansion microvalve. With the microvalve controlling the flow rate, this system can modulate cooling to accommodate varying refrigeration loads. The perforated plate Si/glass heat exchanger is fabricated with a stack of alternating silicon plates and Pyrex glass spacers. The microvalve utilizes a lead zirconate titanate actuator to push a Si micromachined valve seat against a glass plate, thus modulating the flow passing through the gap between the valve seat and the glass plate. The fabricated heat exchanger has a footprint of 1 × 1 cm(2) and a length of 35 mm. The size of the micromachined piezoelectrically actuated valve is about 1 × 1 × 1 cm(3). In JT cooling tests, the temperature of the system was successfully controlled by adjusting the input voltage of the microvalve. When the valve was fully opened (at an input voltage of -30 V), the system cooled down to a temperature as low as 254.5 K at 430 kPa pressure difference between inlet and outlet at steady state and 234 K at 710 kPa in a transient state. The system provided cooling powers of 75 mW at 255 K and 150 mW at 258 K. Parasitic heat loads at 255 K are estimated at approximately 700 mW.

  18. Graphite oral tattoo: case report

    OpenAIRE

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-01-01

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more f...

  19. AGC-2 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  20. Experimental evaluation of an adaptive Joule–Thomson cooling system including silicon-microfabricated heat exchanger and microvalve components

    Science.gov (United States)

    Zhu, Weibin; Park, Jong M.; White, Michael J.; Nellis, Gregory F.; Gianchandani, Yogesh B.

    2011-01-01

    This article reports the evaluation of a Joule–Thomson (JT) cooling system that combines two custom micromachined components—a Si/glass-stack recuperative heat exchanger and a piezoelectrically actuated expansion microvalve. With the microvalve controlling the flow rate, this system can modulate cooling to accommodate varying refrigeration loads. The perforated plate Si/glass heat exchanger is fabricated with a stack of alternating silicon plates and Pyrex glass spacers. The microvalve utilizes a lead zirconate titanate actuator to push a Si micromachined valve seat against a glass plate, thus modulating the flow passing through the gap between the valve seat and the glass plate. The fabricated heat exchanger has a footprint of 1×1 cm2 and a length of 35 mm. The size of the micromachined piezoelectrically actuated valve is about 1×1×1 cm3. In JT cooling tests, the temperature of the system was successfully controlled by adjusting the input voltage of the microvalve. When the valve was fully opened (at an input voltage of −30 V), the system cooled down to a temperature as low as 254.5 K at 430 kPa pressure difference between inlet and outlet at steady state and 234 K at 710 kPa in a transient state. The system provided cooling powers of 75 mW at 255 K and 150 mW at 258 K. Parasitic heat loads at 255 K are estimated at approximately 700 mW. PMID:21552354

  1. Graphite oxidation in HTGR atmosphere

    International Nuclear Information System (INIS)

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  2. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect

    Energy Technology Data Exchange (ETDEWEB)

    De Beer, M., E-mail: maritz.db@gmail.com [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Du Toit, C.G., E-mail: Jat.DuToit@nwu.ac.za [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Rousseau, P.G., E-mail: pieter.rousseau@uct.ac.za [Department of Mechanical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa)

    2017-04-01

    Highlights: • The radiation and conduction components of the effective thermal conductivity are separated. • Near-wall effects have a notable influence on the effective thermal conductivity. • Effective thermal conductivity is a function of the macro temperature gradient. • The effective thermal conductivity profile shows a characteristic trend. • The trend is a result of the interplay between conduction and radiation. - Abstract: The effective thermal conductivity represents the overall heat transfer characteristics of a packed bed of spheres and must be considered in the analysis and design of pebble bed gas-cooled reactors. During depressurized loss of forced cooling conditions the dominant heat transfer mechanisms for the passive removal of decay heat are radiation and conduction. Predicting the value of the effective thermal conductivity is complex since it inter alia depends on the temperature level and temperature gradient through the bed, as well as the pebble packing structure. The effect of the altered packing structure in the wall region must therefore also be considered. Being able to separate the contributions of radiation and conduction allows a better understanding of the underlying phenomena and the characteristics of the resultant effective thermal conductivity. This paper introduces a purpose-designed test facility and accompanying methodology that combines physical measurements with Computational Fluid Dynamics (CFD) simulations to separate the contributions of radiation and conduction heat transfer, including the wall effects. Preliminary results obtained with the methodology offer important insights into the trends observed in the experimental results and provide a better understanding of the interplay between the underlying heat transfer phenomena.

  3. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    International Nuclear Information System (INIS)

    Li, Da; Kunz, Thomas; Wolf, Nadine; Liebig, Jan Philipp; Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard; Göken, Mathias; Brabec, Christoph J.

    2015-01-01

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm 2 aperture area on the graphite substrate. The optical properties of the SiN x /a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN x /a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN x /a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance

  4. Inhibiting influence of traces of hydrogenated compounds on the combustion rate of artificial graphites

    International Nuclear Information System (INIS)

    Hoynant, Georges

    1959-01-01

    After having outlined that studies related to graphite oxidation by oxygen or by carbon dioxide in different experimental conditions (graphite type, temperature range, pressure range) gave results which revealed to be non reproducible, or not consistent, and that these discrepancies could be attributed to the graphite chemical purity, to the graphite structure or to the purity of the combustion agent, this research thesis notably focused on this last aspect. As no graphite is rigorously pure and perfectly crystallised, a chemically pure but imperfectly crystallised one has been chosen (the Acheson graphite) as well as a well crystallised but unclean graphite (graphite obtained by silicon carbide dissociation). After a presentation of these materials, the author reports the study of the texture of the Acheson graphites. Then, he highlights and studies inhibition phenomena, and discusses and interprets experimental results

  5. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  6. AC induction field heating of graphite foam

    Science.gov (United States)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    2017-08-22

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  7. Graphite Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  8. NGNP Graphite Selection and Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.; Bratton, R.; Windes, W.

    2007-09-30

    The nuclear graphite (H-451) previously used in the United States for High-Temperature Reactors (HTRs) is no longer available. New graphites have been developed and are considered suitable candidates for the Next-Generation Nuclear Plant (NGNP). A complete properties database for these new, available, candidate grades of graphite must be developed to support the design and licensing of NGNP core components. Data are required for the physical, mechanical (including radiation-induced creep), and oxidation properties of graphites. Moreover, the data must be statistically sound and take account of in-billet, between billets, and lot-to-lot variations of properties. These data are needed to support the ongoing development1 of the risk-derived American Society of Mechanical Engineers (ASME) graphite design code (a consensus code being prepared under the jurisdiction of the ASME by gas-cooled reactor and NGNP stakeholders including the vendors). The earlier Fort St. Vrain design of High-Temperature Reactor (HTRs) used deterministic performance models for H-451, while the NGNP will use new graphite grades and risk-derived (probabilistic) performance models and design codes, such as that being developed by the ASME. A radiation effects database must be developed for the currently available graphite materials, and this requires a substantial graphite irradiation program. The graphite Technology Development Plan (TDP)2 describes the data needed and the experiments planned to acquire these data in a timely fashion to support NGNP design, construction, and licensing. The strategy for the selection of appropriate grades of graphite for the NGNP is discussed here. The final selection of graphite grades depends upon the chosen reactor type and vendor because the reactor type (pebble bed or prismatic block) has a major influence on the graphite chosen by the designer. However, the time required to obtain the needed irradiation data for the selected NGNP graphite is sufficiently

  9. Characterization of commercial expandable graphite fire retardants

    Energy Technology Data Exchange (ETDEWEB)

    Focke, Walter Wilhelm, E-mail: walter.focke@up.ac.za; Badenhorst, Heinrich; Mhike, Washington; Kruger, Hermanus Joachim; Lombaard, Dewan

    2014-05-01

    Highlights: • Expandable graphite is less well-ordered than its graphite bisulfate progenitor. • It includes graphite oxide as a randomly interstratified phase. • CO{sub 2}, CO and SO{sub 2} are released during thermal-driven exfoliation. - Abstract: Thermal analysis and other techniques were employed to characterize two expandable graphite samples. The expansion onset temperatures of the expandable graphite's were ca. 220 °C and 300 °C respectively. The key finding is that the commercial products are not just pure graphite intercalation compounds with sulfuric acid species intercalated as guest ions and molecules in between intact graphene layers. A more realistic model is proposed where graphite oxide-like layers are also randomly interstratified in the graphite flakes. These graphite oxide-like layers comprise highly oxidized graphene sheets which contain many different oxygen-containing functional groups. This model explains the high oxygen to sulfur atomic ratios found in both elemental analysis of the neat materials and in the gas generated during the main exfoliation event.

  10. Experience with graphite in JET

    International Nuclear Information System (INIS)

    Pick, M.A.; Celentano, G.; Deksnis, E.; Dietz, K.J.; Shaw, R.; Sonnenberg, K.; Walravens, M.

    1987-01-01

    During the current operational period of JET more than 50% of the internal area of the machine is covered in graphite tiles. This includes the 15 m 2 of carbon tiles installed in the new toroidal limiter, the 40 poloidal belts of graphite tiles covering the U-joints and bellows as well as a two metre high ring (-- 20 m 2 ) or carbon tiles on the inner wall of the Torus. A ring of tiles in the equatorial plane (3 tiles high) consists of carbon-carbon fibre tiles. Test bed results indicated that the fine grained graphite tiles cracked at ∼ 1 kW/cm 2 for 2s of irradiation whereas the carbon-carbon fibre tiles were able to sustain a flux, limited by the irradiation facility, of 3.5 kW for 3s without any damage. The authors report on the generally positive experience they have had had with the installed graphite during the present and previous in-vessel configurations. This includes the physical integrity of the tiles under severe conditions such as high energy run-away electron beams, plasma disruptions and high heat fluxes. They report on the importance of the precise positioning of the inner wall and x-point tiles at the very high power fluxes of JET and the effect of deviations on both graphite and carbon-fibre tiles

  11. Radiation damage in graphite

    CERN Document Server

    Simmons, John Harry Walrond

    1965-01-01

    Nuclear Energy, Volume 102: Radiation Damage in Graphite provides a general account of the effects of irradiation on graphite. This book presents valuable work on the structure of the defects produced in graphite crystals by irradiation. Organized into eight chapters, this volume begins with an overview of the description of the methods of manufacturing graphite and of its physical properties. This text then presents details of the method of setting up a scale of irradiation dose. Other chapters consider the effect of irradiation at a given temperature on a physical property of graphite. This

  12. Industrial Applications of Graphite Fluoride Fibers

    Science.gov (United States)

    Hung, Ching-Cheh; Kucera, Donald

    1991-01-01

    Based on fluorination technology developed during 1934 to 1959, and the fiber technology developed during the 1970s, a new process was developed to produce graphite fluoride fibers. In the process, pitch based graphitized carbon fibers are at first intercalated and deintercalated several times by bromine and iodine, followed by several cycles of nitrogen heating and fluorination at 350 to 370 C. Electrical, mechanical, and thermal properties of this fiber depend on the fluorination process and the fluorine content of the graphite fluoride product. However, these properties are between those of graphite and those of PTFE (Teflon). Therefore, it is considered to be a semiplastic. The physical properties suggest that this new material may have many new and unexplored applications. For example, it can be a thermally conductive electrical insulator. Its coefficient of thermal expansion (CTE) can be adjusted to match that of silicon, and therefore, it can be a heat sinking printed circuit board which is CTE compatible with silicon. Using these fibers in printed circuit boards may provide improved electrical performance and reliability of the electronics on the board over existing designs. Also, since it releases fluorine at 300 C or higher, it can be used as a material to store fluorine and to conduct fluorination. This application may simplify the fluorination process and reduce the risk of handling fluorine.

  13. Graphite crystals grown within electromagnetically levitated metallic droplets

    International Nuclear Information System (INIS)

    Amini, Shaahin; Kalaantari, Haamun; Mojgani, Sasan; Abbaschian, Reza

    2012-01-01

    Various graphite morphologies were observed to grow within the electromagnetically levitated nickel–carbon melts, including primary flakes and spheres, curved surface graphite and eutectic flakes, as well as engulfed and entrapped particles. As the supersaturated metallic solutions were cooled within the electromagnetic (EM) levitation coil, the primary graphite flakes and spheres formed and accumulated near the periphery of the droplet due to EM circulation. The primary graphite islands, moreover, nucleated and grew on the droplet surface which eventually formed a macroscopic curved graphite crystal covering the entire liquid. Upon further cooling, the liquid surrounding the primary graphite went under a coupled eutectic reaction while the liquid in the center formed a divorced eutectic due to EM mixing. This brought about the formation of graphite fine flakes and agglomerated particles close to the surface and in the center of the droplet, respectively. The graphite morphologies, growth mechanisms, defects, irregularities and growth instabilities were interpreted with detailed optical and scanning electron microscopies.

  14. INCREASING OF MECHANICAL PROPERTIES OF CAST GRAPHITIZED STEEL

    Directory of Open Access Journals (Sweden)

    I. V. Akimov

    2015-06-01

    Full Text Available Purpose. Due to the presence of many essential properties (low prime cost, high manufacturability and damping ability, heat conductivity, fluidity and others,the graphitized cast irons are widely applied for parts operating under the conditions of static and cyclic loads, wear at dry friction and aggressive media at elevated temperatures. At the same time because of significant content of the graphite phase in the structure, the cast irons possess relatively low mechanical properties. Thereby the attention is drawn to graphitized steels, the peculiarity of which consists in the presence of graphite inclusions in the structure, which appoints specific cast iron's properties to these materials. But unlike cast irons, the graphite content in them is in 2…3 times lower and it affects positively on mechanical and service properties indices. This work deals with the optimization of the composition of cast graphitized steel, which has high mechanical properties indices. Methodology. The experimental design technique was used in this work. Alloys prototypes were smelted and their mechanical properties were investigated on the basis of these techniques. Findings were exposed to regression processing, and the dependences of the alloys components influence on its properties were obtained. By means of graphical optimization the optimal composition of steel with high mechanical properties indices has been determined. Findings.Ithasbeenestablishedthat carbon and silicon have the most significant influence on the strength and cyclic endurance of graphitized steels. The chemical composition of the cast graphitized steel with high static and cyclic strength indices was suggested in this work. Originality. With the use of mathematical experimental design techniques the dependences describing the influence of carbon, silicon and copper on the static and cyclic strength indices were obtained. They allow optimizing compositions of graphitized steels. Practical

  15. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  16. Modeling Fission Product Sorption in Graphite Structures

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  17. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  18. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  19. Graphite Fluoride Fiber Composites For Heat Sinking

    Science.gov (United States)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1989-01-01

    Graphite fluoride fiber/polymer composite materials consist of graphite fluoride fibers in epoxy, polytetrafluoroethylene, or polyimide resin. Combines high electrical resistivity with high thermal conductivity and solves heat-transfer problems of many electrical systems. Commercially available in powder form, for use as dry lubricant or cathode material in lithium batteries. Produced by direct fluorination of graphite powder at temperature of 400 to 650 degree C. Applications include printed-circuit boards for high-density power electronics, insulators for magnetic-field cores like those found in alternators and transformers, substrates for thin-film resistors, and electrical-protection layers in aircraft de-icers.

  20. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...

  1. Electrochemical treatment of graphite

    International Nuclear Information System (INIS)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  2. Graphite/SiC junctions and their electrical characteristics

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2017-01-01

    Roč. 214, č. 9 (2017), č. článku 1700143. ISSN 1862-6300 R&D Projects: GA ČR(CZ) GA17-00546S Institutional support: RVO:67985882 Keywords : Silicon carbide * Barrier homogeneities * Graphite Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 1.775, year: 2016

  3. Graphite structure and magnetic parameters of flake graphite cast iron

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan; Kage, H.

    2017-01-01

    Roč. 442, Nov (2017), s. 397-402 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * graphite structure * pearlite content Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  4. Status of Chronic Oxidation Studies of Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert W. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    data collected so far. Starting from here we propose a modification of the LH model to include temperature activation of graphite surface as a Boltzmann activation function. The enhanced Boltzmann-Langmuir-Hinshelwood model (BLH) was tested successfully on three grades of graphite. The model is a robust, comprehensive mathematical function that allows better fitting of experimental results spanning a wide range of temperature and partial pressures of water vapor and hydrogen. However, the model did not fit satisfactorily the data extracted from the old report on graphite H-451 oxidation by water.

  5. Superconducting Super Collider silicon tracking subsystem research and development

    International Nuclear Information System (INIS)

    Miller, W.O.; Thompson, T.C.; Ziock, H.J.; Gamble, M.T.

    1990-12-01

    The Alamos National Laboratory Mechanical Engineering and Electronics Division has been investigating silicon-based elementary particle tracking device technology as part of the Superconducting Super Collider-sponsored silicon subsystem collaboration. Structural, materials, and thermal issues have been addressed. This paper explores detector structural integrity and stability, including detailed finite element models of the silicon wafer support and predictive methods used in designing with advanced composite materials. The current design comprises a magnesium metal matrix composite (MMC) truss space frame to provide a sparse support structure for the complex array of silicon detectors. This design satisfies the 25-μm structural stability requirement in a 10-Mrad radiation environment. This stability is achieved without exceeding the stringent particle interaction constraints set at 2.5% of a radiation length. Materials studies have considered thermal expansion, elastic modulus, resistance to radiation and chemicals, and manufacturability of numerous candidate materials. Based on optimization of these parameters, the MMC space frame will possess a coefficient of thermal expansion (CTE) near zero to avoid thermally induced distortions, whereas the cooling rings, which support the silicon detectors and heat pipe network, will probably be constructed of a graphite/epoxy composite whose CTE is engineered to match that of silicon. Results from radiation, chemical, and static loading tests are compared with analytical predictions and discussed. Electronic thermal loading and its efficient dissipation using heat pipe cooling technology are discussed. Calculations and preliminary designs for a sprayed-on graphite wick structure are presented. A hydrocarbon such as butane appears to be a superior choice of heat pipe working fluid based on cooling, handling, and safety criteria

  6. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  7. Recent developments in graphite

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications

  8. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  9. Carbon/graphite composite material study. Appendix C: NASA studies on modification of carbon/graphite fibers and alternative materials

    Science.gov (United States)

    1981-01-01

    The feasibility of modifying resin matrix composites to reduce the potential of electrical shorting from fire released fiber was explored. The effort included modifications to or coatings for graphite fibers, alternative fibers, modifications to matrix materials, and hybrid composites. The objectives included reduction of the conductivity of the graphite fiber, char formation to reduce fiber release, glass formation to prevent fiber release, catalysis to assure fiber consumption in a fire, and replacement of the graphite fibers with nonconductive fibers of similar mechanical potential.

  10. Carbon-14 Graphitization Chemistry

    Science.gov (United States)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  11. Graphite Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; T. Burchell; R. Bratton

    2007-09-01

    This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

  12. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  13. Towards to Extraction of Nanodispersed Noble Metals From Natural Black Graphite Shales

    Directory of Open Access Journals (Sweden)

    Elena A. Mikhailenko

    2012-01-01

    Full Text Available A theoretical approach based on the density functional theory and the pseudopotential method was applied to consider diffusion and accumulation of Au, Pt, and Pd in graphite. It is shown that Pt atoms migrate easily inside graphite. They can stop at structure defects and accumulate there, attracting each other and forming plate clusters. Atoms of gold do not penetrate into graphite but link with edge atoms of broken graphite crystallites, forming three-dimensional metallic particles. Palladium behavior is intermediate between platinum and gold. Addition of silicon into graphite can promote the extraction of noble metals because Si atoms force out Pt, Pd, and Au atoms from their bonded states. Last effect can be used as a mechanism of striking off metals from graphite and their extraction from shales

  14. Effects of Oxidation on Oxidation-Resistant Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  15. Oxidizability and explosibility of pure graphite powder

    International Nuclear Information System (INIS)

    L Rahmani; D Roubineau; S Cornet

    2005-01-01

    Full text of publication follows: While graphite is widely considered a heat-resistant material, e.g. able to screen metallic shielding from thermal damage, and graphite powder is used as a fire extinguisher agent where water or carbon dioxide should not, it still can react with air and - being carbon - give forth a significant amount of heat. Whether this makes it a hazard in operations such as dismantling nuclear reactors that contain hundreds of tons of graphite, including a small percentage of powder, is a question that has to be answered, considering that dismantling implies the use of such potential fire initiators as thermal cutters and electrical equipment. For this reason EDF commissioned the Centre National de Prevention et Protection (CNPP) to carry out explosibility tests on unirradiated, nuclear grade (i.e. with about 100 ppm of impurities) graphite powder. CNPP tests were so designed as to simulate realistic conditions that might result from a severe mishap during a dismantling operation, such as the crash of heavy equipment on graphite blocks coupled with the bruise of a high power electrical cable. EDF-CNPP tests complement others, done either in Italy most notably on irradiated graphite dust contaminated with various pollutants, or in the UK where the ability of settled graphite dust to propagate an initial gas explosion into an adjacent volume was assessed. EDF-CNPP tests comprise two steps. Step one was intended to produce a qualitative understanding of how nuclear grade graphite behaves while heated in air. In a first series of experiments graphite samples were heated up to 900 C during two and a half hours and their mass loss measured: it was found that while fine powder is wholly oxidised, coarser powder and chunks retained about two thirds of their initial mass. Oxidation kinetics, as assessed by oven temperature shoot-up, begins at 580 C and is quite low, compared with that of iron powder. In a second series of experiments a graphite piece

  16. Oxidizability and explosibility of pure graphite powder

    International Nuclear Information System (INIS)

    Rahmani, L.; Roubineau, D.; Cornet, S.

    2005-01-01

    Full text of publication follows: While graphite is widely considered a heat-resistant material, e.g. able to screen metallic shielding from thermal damage, and graphite powder is used as a fire extinguisher agent where water or carbon dioxide should not, it still can react with air and - being carbon - give forth a significant amount of heat. Whether this makes it a hazard in operations such as dismantling nuclear reactors that contain hundreds of tons of graphite, including a small percentage of powder, is a question that has to be answered, considering that dismantling implies the use of such potential fire initiators as thermal cutters and electrical equipment. For this reason EDF commissioned the Centre National de Prevention et Protection (CNPP) to carry out explosibility tests on unirradiated, nuclear grade (i.e. with about 100 ppm of impurities) graphite powder. CNPP tests were so designed as to simulate realistic conditions that might result from a severe mishap during a dismantling operation, such as the crash of heavy equipment on graphite blocks coupled with the bruise of a high power electrical cable. EDF-CNPP tests complement others, done either in Italy most notably on irradiated graphite dust contaminated with various pollutants, or in the UK where the ability of settled graphite dust to propagate an initial gas explosion into an adjacent volume was assessed. EDF-CNPP tests comprise two steps. Step one was intended to produce a qualitative understanding of how nuclear grade graphite behaves while heated in air. In a first series of experiments graphite samples were heated up to 900 C during two and a half hours and their mass loss measured: it was found that while fine powder is wholly oxidised, coarser powder and chunks retained about two thirds of their initial mass. Oxidation kinetics, as assessed by oven temperature shoot-up, begins at 580 C and is quite low, compared with that of iron powder. In a second series of experiments a graphite piece

  17. Startup of a Joule-heated glass melter with a graphite slurry

    International Nuclear Information System (INIS)

    Allen, T.L.; Routt, K.R.; Porter, M.A.

    1983-01-01

    This paper discusses the theoretical equations and physical and electrical property data of various graphite slurries for starting up a glass melter. An application test is also included to demonstrate the graphite slurry startup technique

  18. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  19. Development of integrated waste management options for irradiated graphite

    Directory of Open Access Journals (Sweden)

    Alan Wareing

    2017-08-01

    Full Text Available The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  20. Development of integrated waste management options for irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wareing, Alan; Abrahamsen-Mills, Liam; Fowler, Linda; Jarvis, Richard; Banford, Anthony William [National Nuclear Laboratory, Warrington (United Kingdom); Grave, Michael [Doosan Babcock, Gateshead (United Kingdom); Metcalfe, Martin [National Nuclear Laboratory, Gloucestershire (United Kingdom); Norris, Simon [Radioactive Waste Management Limited, Oxon (United Kingdom)

    2017-08-15

    The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  1. Graphite matrix materials for nuclear waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  2. Graphite matrix materials for nuclear waste isolation

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept

  3. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  4. (Irradiation creep of graphite)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  5. Electron oxidation of graphite by fluorospecies

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, G.L.

    1984-09-01

    The fluoride-ion affinity (A/sub F/sup -//) of phosphorus pentafluoride was determined to be 100 kcal/mole from the heats of reaction of the Lewis bases SF/sub 4/ and ClO/sub 2/F with PF/sub 5/ near room temperature. The fluoride-ion affinity of boron trifluoride was determined to be 92 kcal/mole from the heat of reaction of ClO/sub 2/F with BF/sub 3/. The crystal structure of ClO/sub 2/BF/sub 4/ was determined and a precise lattice energy was calculated from this structure and used to determined A/sub F/sup -//. Both PF/sub 5/ and BF/sub 3/ were found to react with graphite in the presence of fluorine gas to yield a variety of non-stoichiometric compounds. The fluoride-ion affinity of silicon tetrafluoride is not known, but it does not react with graphite and F/sub 2/ except at high pressures. These and previous results suggested a threshold in oxidizing power of intercalating species below which the oxidative intercalation reaction would not occur. The reduction of C/sub x/PF/sub 6/ by PF/sub 3/ proved that the reaction is thermodynamically controlled to some extent. The displacement of PF/sub 5/ in C/sub x/PF/sub 6/ by BF/sub 3/ (with a smaller A/sub F/sup -//) suggested that two BF/sub 3/ molecules may have a larger fluoride-ion affinity than one PF/sub 5/ and that B/sub 2/F/sub 7//sup -/ may be a stable anion in graphite. Conductivity studies of PF/sub x/ and BF/sub y/ salts showed that a large drop in conductivity when the reaction reaches first stage is due in the most part to direct fluorination of carbon in graphite.

  6. Transition from glass to graphite in manufacture of composite aircraft structure

    Science.gov (United States)

    Buffum, H. E.; Thompson, V. S.

    1978-01-01

    The transition from fiberglass reinforced plastic composites to graphite reinforced plastic composites is described. Structural fiberglass design and manufacturing background are summarized. How this experience provides a technology base for moving into graphite composite secondary structure and then to composite primary structure is considered. The technical requirements that must be fulfilled in the transition from glass to graphite composite structure are also included.

  7. The wear properties of nuclear grade graphite IG-11 under different loads

    International Nuclear Information System (INIS)

    Luo Xiaowei; Zhang Lihong; Yu Suyuan

    2004-01-01

    The influence of normal load on wear performance of graphite used in a 10 MW high temperature gas-cooled reactor was investigated. The experiments included the wear between graphite and graphite specimens, and the wear between graphite and stainless steel specimens. The worn surfaces and abrasive particles were analysed with SEM and the wear mechanism was discussed. The sizes of abrasive particles were counted. (author)

  8. INCREASING OF WEAR RESISTANCE OF THE GRAPHITIZED STEEL

    Directory of Open Access Journals (Sweden)

    I. V. Akimov

    2013-11-01

    Full Text Available Purpose. Graphitized steels are alloys, in which carbon is partly in form of graphite inclusions. Due to this such steels possess good antifriction properties, wear resistance, heat conductivity and a variety of other mechanical properties, which decently distinguish them from cast irons. However, such steels are not studied enough and practically are not used in mechanical engineering. Purpose of the work is the research of the possibility of wear resistance increase for graphitized steels in the conditions of metal-to-metal dry friction sliding to use them in the railway systems. Methodology. Graphitized hypoeutectoid, eutectoid and hypereutectoid steels have been used as a research material. Experimental alloys have been studied in the condition after thermal hardening. Hardness of alloys has been determined by the Vickers method. Wear resistance of steels has been studied in the conditions of metal-to-metal dry friction sliding with the use of МI-1 friction machine (disk to disk. Findings. Data, which allow assessing the wear resistance of experimental graphitized steels depending on carbon, silicon and copper content have been obtained in this work. The regression dependence obtained as a result of statistical processing of the experimental data allowed determining an optimal chemical content of the steel, which is characterized by high wear resistance. Originality. A dependence describing carbon, silicon and copper content on the specimen's weight loss during metal-to-metal dry friction tests has been obtained in the work. Practical value. The optimized content of the graphitized steel can be used for production of products working in the conditions of wear such as brake blocks of rolling stock, separators of high-speed bearings, dies and others.

  9. Graphitic carbon growth on crystalline and amorphous oxide substrates using molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Kim Christine

    2011-01-01

    Full Text Available Abstract We report graphitic carbon growth on crystalline and amorphous oxide substrates by using carbon molecular beam epitaxy. The films are characterized by Raman spectroscopy and X-ray photoelectron spectroscopy. The formations of nanocrystalline graphite are observed on silicon dioxide and glass, while mainly sp2 amorphous carbons are formed on strontium titanate and yttria-stabilized zirconia. Interestingly, flat carbon layers with high degree of graphitization are formed even on amorphous oxides. Our results provide a progress toward direct graphene growth on oxide materials. PACS: 81.05.uf; 81.15.Hi; 78.30.Ly.

  10. Heat exchanger-ingot casting/slicing process, phase 1: Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1977-01-01

    A controlled growth, heat-flow and cool-down process is described that yielded silicon with a high degree of single crystallinity. Even when the seed melted out, very large grains formed. Solar cell samples made from cast material yielded conversion efficiency of over 9%. Representative characterizations of grown silicon demonstrated a dislocation density of less than 100/sq cm and a minority carrier diffusion length of 31 micron. The source of silicon carbide in silicon ingots was identified to be from graphite retainers in contact with silica crucibles. Higher growth rates were achieved with the use of a graphite plug at the bottom of the silica crucible.

  11. Measurements of anomalous neutron transport in bulk graphite

    International Nuclear Information System (INIS)

    Bowman, C.D.; Smith, G.A.; Vogelaar, B.; Howell, C.R.; Bilpuch, E.G.; Tornow, W.

    2003-01-01

    The neutron absorption of bulk granular graphite has been measured in a classical exponential diffusion experiment. Our first measurements of April 2002 implementing both exponential decay and pulsed die-away experiments and using the TUNL pulsed accelerator at Duke University as a neutron source indicated a capture cross section for graphite a striking factor of three lower than the measured value for carbon of 3.4 millibarns. Therefore a new exponential experiment with an improved geometry enabling greater accuracy has been performed giving an apparent cross section for carbon in the form of bulk granular graphite of less than 0.5 millibarns. This result confirms our first result and is also consistent with less than one part per million of boron in our graphite. The bulk density of the graphite is 1.02 compared with the actual particle density of 1.60 indicating a packing fraction of 0.64 or a void fraction of 0.36. We suspect that the apparent suppression of absorption in bulk graphite may be associated with the strong coherent diffraction of neutrons that dominates neutron transport in graphite. Coherent diffraction has never been taken into account in graphite reactor design and no neutron transport code including general use codes such as MCNP incorporate diffraction effects even though diffraction dominates many practical thermal neutron transport problems. (orig.)

  12. Graphites for nuclear applications; Les graphites pour les applications nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.P.; Gosmain, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DMN), Lab. de Microscopie et d' Etudes de l' Endommagement, 91 - Gif-sur-Yvette (France)

    2006-03-15

    Being an excellent neutron moderator, graphite is used as a structural material in many nuclear reactor types. By the end of the 50's, the French gas-cooled reactor development needed manufacturing of a nuclear-grade graphite. Graphite irradiation can lead to in-lattice energy accumulation, dimensional changes and physical properties modification. Moreover, the radiolytic corrosion induced by the coolant (CO{sub 2}) may generate mechanical properties degradation. Today, French gas-cooled reactors are all in their decommissioning phase that requires the knowledge of the radiological inventory of the irradiated graphites. At present time, graphite is still foreseen as a future material for hydrogen production by high temperature gas cooled nuclear plants. In the future, graphite will be the necessary moderator material for high temperature reactors with thermal neutron spectrum dedicated to hydrogen and electricity production. (authors)

  13. Harwell Graphite Calorimeter

    International Nuclear Information System (INIS)

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  14. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    Dariel, M.; Yeheskel, J.; Agam, S.; Edelstein, D.; Lebovits, O.; Ron, Y.

    1991-04-01

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  15. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  16. Impedance of electrochemically modified graphite.

    Science.gov (United States)

    Magdić, Katja; Kvastek, Krešimir; Horvat-Radošević, Višnja

    2014-01-01

    Electrochemical impedance spectroscopy, EIS, has been applied for characterization of electrochemically modified graphite electrodes in the sulphuric acid solution. Graphite modifications were performed by potential cyclization between potentials of graphite oxide formation/reduction, different number of cycles, and prolonged reduction steps after cyclization. Impedance spectra measured at two potential points within double-layer region of graphite have been successfully modeled using the concept of porous electrodes involving two different electrolyte diffusion paths, indicating existence of two classes of pores. The evaluated impedance parameter values show continuous changes with stages of graphite modification, indicating continuous structural changes of pores by number of potential cycles applied. Differences of impedance parameter values at two potential values indicate the potential induced changes of solution properties within the pores of modified graphite.

  17. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  18. Blunt indentation of core graphite

    International Nuclear Information System (INIS)

    Hartley, M.; McEnaney, B.

    1996-01-01

    Blunt indentation experiments were carried out on unoxidized and thermally oxidised IM1-24 graphite as a model to simulate local point stresses acting on graphite moderator bricks. Blunt indentation of unoxidized graphite initiates cracks close to the region of maximum tensile stress at the edge of the indentation. Cracks propagate and converge to form a cone of material. Failure is catastrophic, typically forming three pieces of graphite and ejecting the cone referred to above. The failure mode under indentation loading for highly oxidised graphite (weigh loss > 40%) is different from that for the unoxidized graphite. There is no longer a distinct crack path, the indentation is much deeper than in the case of the unoxidized graphite, and there is a region of crushed debris beneath the indentation, producing a crater-like structure. The reduction in the compressive fracture stress, σ cf , under indentation loading with increasing fractional weight loss on oxidation, x, can be fitted to σ cf /σ 0 = exp-[5.2x] where σ 0 is the compressive fracture stress of the unoxidized graphite. This indicates that the effect of thermal oxidation on indentation fracture stress is more severe than the effects of radiolytic oxidation on conventional strengths of nuclear graphites. (author). 8 refs, 12 figs

  19. Graphitic Carbon Foam Structural Cores and Multifunctional Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Graphitic carbon foams include a family of material forms and products with mechanical, thermal, and electrical properties that are tailor-able over a wide range....

  20. Modelling property changes in graphite irradiated at changing irradiation temperature

    CSIR Research Space (South Africa)

    Kok, S

    2011-01-01

    Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...

  1. Chemical analysis of high purity graphite

    International Nuclear Information System (INIS)

    1993-03-01

    The Sub-Committee on Chemical Analysis of Graphite was organized in April 1989, under the Committee on Chemical Analysis of Nuclear Fuels and Reactor Materials, JAERI. The Sub-Committee carried out collaborative analyses among eleven participating laboratories for the certification of the Certified Reference Materials (CRMs), JAERI-G5 and G6, after developing and evaluating analytical methods during the period of September 1989 to March 1992. The certified values were given for ash, boron and silicon in the CRM based on the collaborative analysis. The values for ten elements (Al, Ca, Cr, Fe, Mg, Mo, Ni, Sr, Ti, V) were not certified, but given for information. Preparation, homogeneity testing and chemical analyses for certification of reference materials were described in this paper. (author) 52 refs

  2. Silicone-containing composition

    Science.gov (United States)

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  3. Graphitic packing removal tool

    Science.gov (United States)

    Meyers, Kurt Edward; Kolsun, George J.

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  4. Assessment of management modes for graphite from reactor decommissioning

    International Nuclear Information System (INIS)

    White, I.F.; Smith, G.M.; Saunders, L.J.; Kaye, C.J.; Martin, T.J.; Clarke, G.H.; Wakerley, M.W.

    1984-01-01

    A technological and radiological assessment has been made of the management options for irradiated graphite wastes from the decommissioning of Magnox and advanced gas-cooled reactors. Detailed radionuclide inventories have been estimated, the main contribution being from activation of the graphite and its stable impurities. Three different packaging methods for graphite have been described; each could be used for either sea or land disposal, is logistically feasible and could be achieved at reasonable cost. Leaching tests have been carried out on small samples of irradiated graphite under a variety of conditions including those of the deep ocean bed; the different conditions had little effect on the observed leach rates of radiologically significant radionuclides. Radiological assessments were made of four generic options for disposal of packaged graphite: on the deep ocean bed, in deep geologic repositories at two different types of site, and by shallow land burial. Incineration of graphite was also considered, though this option presents logistical problems. With appropriate precautions during the lifetime of the Cobalt-60 content of the graphite, any of the options considered could give acceptably low doses to individuals, and all would merit further investigation in site-specific contexts

  5. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  6. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  7. Electrode material comprising graphene-composite materials in a graphite network

    Science.gov (United States)

    Kung, Harold H.; Lee, Jung K.

    2017-08-08

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  8. Comparison of frictional forces on graphene and graphite

    International Nuclear Information System (INIS)

    Lee, Hyunsoo; Lee, Naesung; Seo, Yongho; Eom, Jonghwa; Lee, SangWook

    2009-01-01

    We report on the frictional force between an SiN tip and graphene/graphite surfaces using lateral force microscopy. The cantilever we have used was made of an SiN membrane and has a low stiffness of 0.006 N m -1 . We prepared graphene flakes on a Si wafer covered with silicon oxides. The frictional force on graphene was smaller than that on the Si oxide and larger than that on graphite (multilayer of graphene). Force spectroscopy was also employed to study the van der Waals force between the graphene and the tip. Judging that the van der Waals force was also in graphite-graphene-silicon oxide order, the friction is suspected to be related to the van der Waals interactions. As the normal force acting on the surface was much weaker than the attractive force, such as the van der Waals force, the friction was independent of the normal force strength. The velocity dependency of the friction showed a logarithmic behavior which was attributed to the thermally activated stick-slip effect.

  9. Deuterium pumping and erosion behavior of selected graphite materials under high flux plasma bombardment in PISCES

    International Nuclear Information System (INIS)

    Hirooka, Y.; Conn, R.W.; Goebel, D.M.; LaBombard, B.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.

    1988-06-01

    Deuterium plasma recycling and chemical erosion behavior of selected graphite materials have been investigated using the PISCES-A facility. These materials include: Pyro-graphite; 2D-graphite weave; 4D-graphite weave; and POCO-graphite. Deuterium plasma bombardment conditions are: fluxes around 7 /times/ 10 17 ions s/sup /minus/1/cm/sup /minus/2/; exposure time in the range from 10 to 100 s; bombarding energy of 300 eV; and graphite temperatures between 20 and 120/degree/C. To reduce deuterium plasma recycling, several approaches have been investigated. Erosion due to high-fluence helium plasma conditioning significantly increases the surface porosity of POCO-graphite and 4D-graphite weave whereas little change for 2D-graphite weave and Pyro-graphite. The increased pore openings and refreshed in-pore surface sites are found to reduce the deuterium plasma recycling and chemical erosion rates at transient stages. The steady state recycling rates for these graphite materials can be also correlated to the surface porosity. Surface topographical modification by machined-grooves noticeably reduces the steady state deuterium recycling rate and the impurity emission from the surface. These surface topography effects are attributed to co-deposition of remitted deuterium, chemically sputtered hydrocarbon and physically sputtered carbon under deuterium plasma bombardment. The co-deposited film is found to have a characteristic surface morphology with dendritic microstructures. 18 ref., 4 figs., 1 tab

  10. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  11. Hypervelocity impacts into graphite

    Science.gov (United States)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  12. TRANSFORMATIONS IN NANO-DIAMONDS WITH FORMATION OF NANO-POROUS SILICON CARBIDE AT HIGH PRESSURE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  13. Radiolytic graphite oxidation revisited

    International Nuclear Information System (INIS)

    Minshall, P.C.; Sadler, I.A.; Wickham, A.J.

    1996-01-01

    The importance of radiolytic oxidation in graphite-moderated CO 2 -cooled reactors has long been recognised, especially in the Advanced Gas-Cooled Reactors where potential rates are higher because of the higher gas pressure and ratings than the earlier Magnox designs. In all such reactors, the rate of oxidation is partly inhibited by the CO produced in the reaction and, in the AGR, further reduced by the deliberate addition of CH 4 . Significant roles are also played by H 2 and H 2 O. This paper reviews briefly the mechanisms of these processes and the data on which they are based. However, operational experience has demonstrated that these basic principles are unsatisfactory in a number of respects. Gilsocarbon graphites produced by different manufacturers have demonstrated a significant difference in oxidation rate despite a similar specification and apparent equivalence in their pore size and distribution, considered to be the dominant influence on oxidation rate for a given coolant-gas composition. Separately, the inhibiting influence of CH 4 , which for many years had been considered to arise from the formation of a sacrificial deposit on the pore walls, cannot adequately be explained by the actual quantities of such deposits found in monitoring samples which frequently contain far less deposited carbon than do samples from Magnox reactors where the only source of such deposits is the CO. The paper also describes the current status of moderator weight-loss predictions for Magnox and AGR Moderators and the validation of the POGO and DIFFUSE6 codes respectively. 2 refs, 5 figs

  14. Graphite reactor physics

    International Nuclear Information System (INIS)

    Bacher, P.; Cogne, F.

    1964-01-01

    The study of graphite-natural uranium power reactor physics, undertaken ten years ago when the Marcoule piles were built, has continued to keep in step with the development of this type of pile. From 1960 onwards the critical facility Marius has been available for a systematic study of the properties of lattices as a function of their pitch, of fuel geometry and of the diameter of cooling channels. This study has covered a very wide field: lattice pitch varying from 19 to 38 cm. uranium rods and tubes of cross-sections from 6 to 35 cm 2 , channels with diameters between 70 and 140 mm. The lattice calculation methods could thus be checked and where necessary adapted. The running of the Marcoule piles and the experiments carried out on them during the last few years have supplied valuable information on the overall evolution of the neutronic properties of the fuel as a function of irradiation. More detailed experiments have also been performed in Marius with plutonium-containing fuels (irradiated or synthetic fuels), and will be undertaken at the beginning of 1965 at high temperature in the critical facility Cesar, which is just being completed at Cadarache. Spent fuel analyses complement these results and help in their interpretation. The thermalization and spectra theories developed in France can thus be verified over the whole valid temperature range. The efficiency of control rods as a function of their dimensions, the materials of which they are made and the lattices surrounding them has been measured in Marius, and the results compared with calculation on the one hand and with the measurements carried out in EDF 1 on the other. Studies on the control proper of graphite piles were concerned essentially with the risks of spatial instability and the means of detecting and controlling them, and with flux distortions caused by the control rods. (authors) [fr

  15. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  16. Graphite structure and magnetic parameters of flake graphite cast iron

    Science.gov (United States)

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, I.; Kage, H.

    2017-11-01

    Different matrix and graphite morphologies were generated by a special heat treatment in three chemically different series of flake graphite cast iron samples. As cast, furnace cooled and air cooled samples were investigated. The length of graphite particles and the pearlite volume of samples were determined by metallographic examination and these parameters were compared with the nondestructively measured magnetic parameters. Magnetic measurements were performed by the method of Magnetic Adaptive Testing, which is based on systematic measurement and evaluation of minor magnetic hysteresis loops. It was shown that linear correlation existed between the magnetic quantities and the graphite length, and also between the magnetic quantities and the relative pearlite content in the investigated cast iron. A numerical expression was also determined between magnetic descriptors and relative pearlite content, which does not depend on the detailed experimental conditions.

  17. Eutectic solidification mode of spheroidal graphite cast iron and graphitization

    Directory of Open Access Journals (Sweden)

    Hideo Nakae

    2007-02-01

    Full Text Available The shrinkage and chilling tendency of spheroidal graphite (abbreviated SG cast iron is much greater than that of the flake graphite cast iron in spite of its higher amount of C and Si contents. Why? The main reason should be the difference in their graphitization during the eutectic solidification. In this paper, we discuss the difference in the solidification mechanism of both cast irons for solving these problems using unidirectional solidification and the cooling curves of the spheroidal graphite cast iron. The eutectic solidification rate of the SG cast iron is controlled by the diffusion of carbon through the austenite shell, and the final thickness is 1.4 times the radius of the SG, therefore, the reduction of the SG size, namely, the increase in the number, is the main solution of these problems.

  18. Obtention of nuclear grade graphite

    International Nuclear Information System (INIS)

    Ferreira, M.L.

    1984-01-01

    The impurity level of natural graphite found in some of the most important mines of the State of Minas Gerais - Brasil is determined. It is also concerned with the development and use of natural graphite in nuclear reactors. Standard methods for chemical and instrumentsal analysis such as Spectrografic Determination by Emission, Spectrografic Determination by X-Rays, Spectrografic Determination by Atomic Asorption, Photometric Determination, and also chemical and physical methods for separation of impurities as well standard method for Estimating the Thermal Neutron Absorption Cross Section of graphite were employed. Some aditionals methods of purification to the ordinary treatment such as the use of metanol and halogens are also described. (Author) [pt

  19. Technique for production of graphite-carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.N.; Bentsianovskaya, I.A.; Filatova, V.A.; Nabokov, V.S.; Nestor, V.P.; Zil' bergleyt, I.M.

    1982-01-01

    The technique for producing carbon-graphite products that includes filtration under a pressure of 0.1-015 MPa (through graphite stock) of an aqueous carbon material with the addition of surfactant, drying, and subsequent thermal treatment, is simplified and made less lengthy. Oxidized graphite is utilized with a prior addition of 1-10% water-soluble organic substance into the suspension -molasses, hemicellulose, sugar or polyacrylamide. A 0.03-1.5% suspension of oxidized graphite is utilized, with a particle size of 0.02-0.1 mkm. Thermal processing is done in a carbon fill, at a rate of 10-20 degrees/hour to 700-800/sup 0/, maintained 2-3 hours.

  20. CALANDRIA TYPE SODIUM GRAPHITE REACTOR

    Science.gov (United States)

    Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.

    1964-02-11

    A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)

  1. Graphite surveillance in N Reactor

    International Nuclear Information System (INIS)

    Woodruff, E.M.

    1991-09-01

    Graphite dimensional changes in N Reactor during its 24 yr operating history are reviewed. Test irradiation results, block measurements, stack profiles, top of reflector motion monitors, and visual observations of distortion are described. 18 refs., 14 figs., 1 tab

  2. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  3. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  4. Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal. Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2016-05-01

    Graphite is widely used in the nuclear industry and in research facilities and this has led to increasing amounts of irradiated graphite residing in temporary storage facilities pending disposal. This publication arises from a coordinated research project (CRP) on the processing of irradiated graphite to meet acceptance criteria for waste disposal. It presents the findings of the CRP, the general conclusions and recommendations. The topics covered include, graphite management issues, characterization of irradiated graphite, processing and treatment, immobilization and disposal. Included on the attached CD-ROM are formal reports from the participants

  5. Radiation resistant passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Swanson, R.M.; Gan, J.Y.; Gruenbaum, P.E.

    1991-01-01

    This patent describes a silicon solar cell having improved stability when exposed to concentrated solar radiation. It comprises a body of silicon material having a major surface for receiving radiation, a plurality of p and n conductivity regions in the body for collecting electrons and holes created by impinging radiation, and a passivation layer on the major surface including a first layer of silicon oxide in contact with the body and a polycrystalline silicon layer on the first layer of silicon oxide

  6. Thermogravimetric and Differential Scanning Calorimetric Behavior of Ball-Milled Nuclear Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung Seon; Kim, Min Hwan; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi Hyun; Cho, Seung Yon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An examination was made to characterize the oxidation behavior of ball-milled nuclear graphite powder through a TG-DSC analysis. With the ball milling time, the BET surface area increased with the reduction of particle size, but decreased with the chemisorptions of O{sub 2} on the activated surface. The enhancement of the oxidation after the ball milling is attributed to both increases in the specific surface area and atomic scale defects in the graphite structure. In a high temperature gas-cooled reactor, nuclear graphite has been widely used as fuel elements, moderator or reflector blocks, and core support structures owing to its excellent moderating power, mechanical properties and machinability. For the same reason, it will be used in a helium cooled ceramic reflector test blanket module for the ITER. Each submodule has a seven-layer breeding zone, including three neutron multiplier layers packed with beryllium pebbles, three lithium ceramic pebbles packed tritium breeder layers, and a reflector layer packed with 1 mm diameter graphite pebbles to reduce the volume of beryllium. The abrasion of graphite structures owing to relative motion or thermal cycle during operation may produce graphite dust. It is expected that graphite dust will be more oxidative than bulk graphite, and thus the oxidation behavior of graphite dust must be examined to analyze the safety of the reactors during an air ingress accident. In this study, the thermal stability of ball-milled graphite powder was investigated using a simultaneous thermogravimeter-differential scanning calorimeter.

  7. Macroscopic Properties of Restacked, Redox-Liquid Exfoliated Graphite and Graphite Mimics Produced in Bulk Quantities

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vikram K [ORNL; Quinlan, Ronald [ORNL; Agapov, Alexander L [ORNL; Dunlap, John R [ORNL; Nelson, Kimberly M [ORNL; Duranty, Edward R [ORNL; Sokolov, Alexei P [ORNL; Bhat, Gajanan [ORNL; Mays, Jimmy [ORNL

    2014-01-01

    The excellent properties exhibited by monolayer graphene have spurred the development of exfoliation techniques using bulk graphite to produce large quantities of pristine monolayer sheets. Development of simple chemistry to exfoliate and intercalate graphite and graphite mimics in large quantities is required for numerous applications. To determine the macroscopic behavior of restacked, exfoliated bulk materials, a systematic approach is presented using a simple, redox-liquid sonication process along to obtain large quantities of 2D and 3D hexagonally layered graphite, molybdenum disulfi de, and boron nitride, which are subsequently characterized to observe chemical and structural changes. For MoS 2 sonicated with the antioxidant sodium bisulfi te, results from Raman spectroscopy, X-ray diffraction, and electron microscopy indicate the presence of distorted phases from different polymorphs, and apparent nanotube structures in the bulk, restacked powder. Furthermore, using thermograviemtric analysis, the antioxidant enhances the resistance to oxidative degradation of MoS 2 , upon thermal treatment up to 900 C. The addition of the ionic antioxidant decreased dispersion stability in non-polar solvent, suggesting decreased compatibility with non-polar systems. Using simple chemical methods, the ability to generate tailored multidimensional layered materials with unique macroscopic properties is critical for numerous applications, including electrical devices, reinforced polymer composites, lithium ion capacitors, and chemical sensing.

  8. Carbon-14 in neutron-irradiated graphite for graphite-moderated reactors. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsuo, Hideto [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan)

    2002-12-01

    The graphite moderated gas cooled reactor operated by the Japan Atomic Power Company was stopped its commercial operation on March 1998, and the decommissioning process has been started. Graphite material is often used as the moderator and the reflector materials in the core of the gas cooled reactor. During the operation, a long life nuclide of {sup 14}C is generated in the graphite by several transmutation reactions. Separation of {sup 14}C isotope and the development of the separation method have been recognized to be critical issues for the decommissioning of the reactor core. To understand the current methodologies for the carbon isotope separation, literature on the subject was surveyed. Also, those on the physical and chemical behavior of {sup 14}C were surveyed. This is because the larger part of the nuclides in the graphite is produced from {sup 14}N by (n,p) reaction, and the location of them in the material tends to be different from those of the other carbon atoms. This report summarizes the result of survey on the open literature about the behavior of {sup 14}C and the separation methods, including the list of the literature on these subjects. (author)

  9. Q -factors of CVD monolayer graphene and graphite inductors

    International Nuclear Information System (INIS)

    Wang, Zidong; Peng, Pei; Tian, Zhongzheng; Ren, Liming; Zhang, Xing; Huang, Ru; Fu, Yunyi; Zhang, Qingping; Wen, Jincai

    2017-01-01

    A carbon-based inductor may serve as an important passive component in a carbon-based radio-frequency (RF) integrated circuit (IC). In this work, chemical vapor deposition (CVD) synthesized monolayer graphene and graphite inductors are fabricated and their Q -factors are investigated. We find that the large series resistance of signal path (including coil resistance and contact resistance) in monolayer graphene inductors causes negative Q -factors at the whole frequency range in measurement. Comparatively, some of the graphite inductors have all of their Q -factors above zero, due to their small signal path resistance. We also note that some other graphite inductors have negative Q -factor values at low frequency regions, but positive Q -factor values at high frequency regions. With an equivalent circuit model, we confirm that the negative Q -factors of some graphite inductors at low frequency regions are related to their relatively large contact resistances, and we are able to eliminate these negative Q -factors by improving the graphite-metal contact. Furthermore, the peak Q -factor ( Q p ) can be enhanced by lowering down the resistance of graphite coil. For an optimized 3/4-turn graphite inductor, the measured maximum Q -factor ( Q m ) can reach 2.36 and the peak Q -factor is theoretically predicted by the equivalent circuit to be as high as 6.46 at a high resonant frequency, which is beyond the testing frequency range. This research indicates that CVD synthesized graphite thin film is more suitable than graphene for fabricating inductors in carbon-based RF IC in the future. (paper)

  10. Graphite nanobelts characterization and application for blood pulse sensing★

    Directory of Open Access Journals (Sweden)

    Alaferdov Andrei V.

    2017-01-01

    Full Text Available In this work, graphite nanobelts-based films as a promising material for applications in flexible blood pulse sensors with low power consumption are studied. A modified Langmuir Blodgett method used here for the sensor fabrication, is a reliable, simple and scalable technique allowing for controlled deposition of conducting films with desired electrical properties. The nanobelts, deposited over oxidized silicon or onto flexible polydimethylsiloxane substrates, were morphologically and electrically characterized. The response of the sensors to blood pulses measured on wrists and necks of two different persons (a male and a female and the ways of the sensor response optimization are discussed.

  11. Pyrolysis and its potential use in nuclear graphite disposal

    International Nuclear Information System (INIS)

    Mason, J.B.; Bradbury, D.

    2001-01-01

    Graphite is used as a moderator material in a number of nuclear reactor designs, such as MAGNOX and AGR gas cooled reactors in the United Kingdom and the RBMK design in Russia. During construction the moderator of the reactor is usually installed as an interlocking structure of graphite bricks. At the end of reactor life the graphite moderator, weighing typically 2,000 tonnes, is a radioactive waste which requires eventual management. Radioactive graphite disposal options conventionally include: In-situ SAFESTORE for extended periods to permit manual disassembly of the graphite moderator through decay of short-lived radionuclides. Robotic or manual disassembly of the reactor core followed by disposal of the graphite blocks. Robotic or manual disassembly of the reactor core followed by incineration of the graphite and release of the resulting carbon dioxide Studsvik, Inc. is a nuclear waste management and waste processing company organised to serve the US nuclear utility and government facilities. Studsvik's management and technical staff have a wealth of experience in processing liquid, slurry and solid low level radioactive waste using (amongst others) pyrolysis and steam reforming techniques. Bradtec is a UK company specialising in decontamination and waste management. This paper describes the use of pyrolysis and steam reforming techniques to gasify graphite leading to a low volume off-gas product. This allows the following options/advantages. Safe release of any stored Wigner energy in the graphite. The process can accept small pieces or a water-slurry of graphite, which enables the graphite to be removed from the reactor core by mechanical machining or water cutting techniques, applied remotely in the reactor fuel channels. In certain situations the process could be used to gasify the reactor moderator in-situ. The low volume of the off-gas product enables non-carbon radioactive impurities to be efficiently separated from the off-gas. The off-gas product can

  12. Steps towards silicon optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Starovoytov, A

    1999-07-01

    This thesis addresses the issue of a potential future microelectronics technology, namely the possibility of utilising the optical properties of nanocrystalline silicon for optoelectronic circuits. The subject is subdivided into three chapters. Chapter 1 is an introduction. It formulates the oncoming problem for microelectronic development, explains the basics of Integrated Optoelectronics, introduces porous silicon as a new light-emitting material and gives a brief review of other competing light-emitting material systems currently under investigation. Examples of existing porous silicon devices are given. Chapter 2 reviews the basic physics relevant to the subject of this thesis and in-forms on the present situation in this field of research, including both experimental and theoretical knowledge gained up-to-date. The chapter provides the necessary background for correct interpretation of the results reported in Chapter 3 and for a realistic decision on the direction for future work. Chapter 3 describes my own experimental and computational results within the framework of the subject, obtained at De Montfort University. These include: one-step preparation of laterally structured porous silicon with photoluminescence and microscopy characterisation, Raman spectroscopy of porous silicon, a polarisation study of the photoluminescence from porous silicon, computer simulations of the conductivity of two-component media and of laser focused atomic deposition for nanostructure fabrication. Thus, this thesis makes a dual contribution to the chosen field: it summarises the present knowledge on the possibility of utilising optical properties of nanocrystalline silicon in silicon-based electronics, and it reports new results within the framework of the subject. The main conclusion is that due to its promising optoelectronic properties nanocrystalline silicon remains a prospective competitor for the cheapest and fastest microelectronics of the next century. (author)

  13. Rules for design of nuclear graphite core components - some considerations and approaches

    International Nuclear Information System (INIS)

    Svalbonas, V.; Stilwell, T.C.; Zudans, Z.

    1977-01-01

    In the High Temperature Gas reactor (HTGR) core a large number of elements are constructed of nuclear graphite. This paper discusses the attendant difficulties, and presents some approaches, for ASME code safety-consistent design and analysis. The statistical scatter of material properties, which complicates even the definitions of allowable stress, as well as the brittle, anisotropic, inhomogeneous nature of the graphite was considered. It was found that analytic statistical methods used to arrive at a definition of minimum ultimate strength were totally unrealistic It was concluded on the basis of presently available evidence that the distinctions between secondary and primary stresses are inappropriate to graphite structures. The proposed overall design criteria and stress limits for graphite structure were reviewed. The use of the homologous stress concept is graphite fatigue calculations was reviewed. The overall design philosophy for brittle materials is applied to HTGR core structure design including such areas as graphite oxidation, component proof tests, experimental seismic modeling and fracture analysis. (Auth.)

  14. Silicon Based Anodes for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

    2012-06-15

    Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the

  15. Infrared signal generation from AC induction field heating of graphite foam

    Energy Technology Data Exchange (ETDEWEB)

    Klett, James W.; Rios, Orlando

    2018-02-27

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.

  16. Graphite Formation in Cast Iron

    Science.gov (United States)

    Stefanescu, D. M.

    1985-01-01

    In the first phase of the project it was proven that by changing the ratio between the thermal gradient and the growth rate for commercial cast iron samples solidifying in a Bridgman type furnace, it is possible to produce all types of graphite structures, from flake to spheroidal, and all types of matrices, from ferritic to white at a certain given level of cerium. KC-135 flight experiments have shown that in a low-gravity environment, no flotation occurs even in spheroidal graphite cast irons with carbon equivalent as high as 5%, while extensive graphite flotation occurred in both flake and spheroidal graphite cast irons, in high carbon samples solidified in a high gravity environment. This opens the way for production of iron-carbon composite materials, with high carbon content (e.g., 10%) in a low gravity environment. By using KC-135 flights, the influence of some basic elements on the solidification of cast iron will be studied. The mechanism of flake to spheroidal graphite transition will be studied, by using quenching experiments at both low and one gravity for different G/R ratios.

  17. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  18. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  19. Mechanical properties of graphites and carbon materials

    International Nuclear Information System (INIS)

    Jouquet, Gilbert.

    1977-01-01

    The mechanical behavior of graphites and artificial carbons is related to the structure of these materials. The influence of structural modifications in a graphite monocrystal on the deformation and fracture properties is studied [fr

  20. RECOVERY OF VALUABLE MATERIAL FROM GRAPHITE BODIES

    Science.gov (United States)

    Fromm, L.W. Jr.

    1959-09-01

    An electrolytic process for recovering uranium from a graphite fuel element is described. The uraniumcontaining graphite body is disposed as the anode of a cell containing a nitric acid electrolyte and a 5 amp/cm/sup 2/ current passed to induce a progressive disintegration of the graphite body. The dissolved uranium is quickly and easily separated from the resulting graphite particles by simple mechanical means, such as centrifugation, filtration, and decontamination.

  1. Evaluation of co-cokes from bituminous coal with vacuum resid or decant oil, and evaluation of anthracites, as precursors to graphite

    Science.gov (United States)

    Nyathi, Mhlwazi S.

    2011-12-01

    graphitization and crystallite dimensions, of the final product is dependent on the nature of the precursor co-coke. The methodology for studying anthracites was to select two anthracites on basis of rank, PSOC1515 being semi-anthracite and DECS21 anthracite. The selected anthracites were graphitized, in both native and demineralized states, under the same conditions as co-cokes. Products obtained from DECS21 showed higher degrees of graphitization and larger crystallite dimensions than products obtained from PSOC1515. Demineralization of anthracites served to increase the degree of graphitization, indicating that the minerals contained in these anthracites have no graphitization-enhancing ability. A larger crystallite length for products obtained from native versions, compared to demineralized versions, was attributed to a formation and decomposition of a silicon carbide during graphitization of native versions. In order to examine the anisotropic and isotropic properties, nuclear-grade graphite samples obtained from Oak Ridge National Laboratory (ORNL) and commercial graphite purchased from Fluka were characterized under similar conditions as graphitized co-cokes and anthracites. These samples served as representatives of "two extremes", with ORNL samples being the isotropic end and commercial graphite being the anisotropic end. Through evaluating relationships between structural parameters, it was observed that graphitized co-cokes are situated, structurally, somewhere between the "two extremes", whereas graphitized anthracites are closer to the anisotropic end. Basically, co-cokes have a better potential than anthracites to transform to isotropic or near-isotropic graphite upon graphitization. By co-coking vacuum resid/coal instead of decant oil/coal or using 500 °C instead of 465 °C, a shift away from commercial graphite towards ORNL samples was attained. Graphitizing a semi-anthracite or demineralizing anthracites before graphitization also caused a shift towards ORNL

  2. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  3. Development of Nanoscale Graphitic Devices and The Transport Characterization

    International Nuclear Information System (INIS)

    Gunasekaran, Venugopal

    2011-02-01

    This dissertation describes the development of graphitic based nanoscale devices with its fabrication and transport characterization results. It covers graphite nano-scale stacked-junctions fabricated using focused ion beam (FIB) 3-D etching technique, a single layer graphite layer (graphene) preparation and its electrical transport characterization results and the synthesis and investigation of electrical transport behavior of graphene oxide based thin film devices. The first chapter describes the basic information about the carbon family in detail in which the electronic properties and structure of graphite, graphene and graphene oxide are discussed. In addition, the necessity of developing nanoscale graphitic devices is given. The second chapter explains the experimental techniques used in this research for fabricating nanoscale devices which includes focused ion beam 3-D fabrication procedures, mechanical exfoliation technique and photolithographic methods. In third chapter, we have reported the results on temperature dependence of graphite planar-type structures fabricated along ab-plane. In the fourth and fifth chapters, the fabrication and electrical transport characteristics of large in-plane area graphite planar-type structures (fabricated along ab-plane and c-axis) were discussed and their transport anisotropy properties were investigated briefly. In the sixth chapter, we focused the fabrication of the submicron sized graphite stacked junctions and their electrical transport characterization studies. In which, FIB was used to fabricated the submicron junctions with various in-plane area (with same stack height) are and their transport characteristics were compared. The seventh chapter reports investigation of electrical transport results of nanoscale graphite stacked-junctions in which the temperature dependent transport (R-T) studies, current-voltage measurements for the various in-plane areas and for various stack height samples were analyzed. The

  4. Gas transport in graphitic materials

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1995-02-01

    The characterization of the gas transport properties of porous solids is of interest in several fields of science and technology. Many catalysts, adsorbents, soils, graphites and carbons are porous. The gas transport through most porous solids can be well described by the dusty gas model invented by Evans, Watson and Mason. This model includes all modes of gas tranport under steady-state conditions, which are Knudsen diffusion, combined Knudsen/continuum diffusion and continuum diffusion, both for gas pairs with equal and different molecular weights. In the absence of a pressure difference gas transport in a pore system can be described by the combined Knudsen/continuum diffusion coefficient D 1 for component 1 in the pores, the Knudsen diffusion coefficient D 1K in the pores, and the continuum diffusion coefficient D 12 for a binary mixture in the pores. The resistance to stationary continuum diffusion of the pores is characterized by a geometrical factor (ε/τ) 12 = (ε/τ)D 12 , were D 12 is the continuum diffusion coefficient for a binary mixture in free space. The Wicke-Kallenbach method was often used to measure D 1 as function of pressure. D 12 and D 1K can be derived from a plot 1/D 1 νs P, and ε/τcan be calculated since D 12 is known. D 1K and the volume of dead end pores can be derived from transient measurements of the diffusional flux at low pressures. From D 1K the expression (ε/τ c ) anti l por may be calculated, which characterizes the pore system for molecular diffusion, where collisions with the pore walls are predominant. (orig.)

  5. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  6. GRAFEC: A New Spanish Program to Investigate Waste Management Options for Radioactive Graphite - 12399

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, Eva; Pina, Gabriel; Rodriguez, Marina [CIEMAT, Av. Complutense, 22, 28040-MADRID (Spain); Fachinger, Johannes; Grosse, Karl-Heinz [Furnaces Nuclear Application Grenoble SAS (FNAG), 4, avenue Charles de Gaulle, 38800 Le Pont de Claix (France); Leganes Nieto, Jose Luis; Quiros Gracian, Maria [ENRESA, C/ Emilio Vargas,7 - 28043 - MADRID (Spain); Seemann, Richard [ALD Vacuum Technologies GmbH, Wilhelm-Rohn-Strasse 35, 63450 Hanau (Germany)

    2012-07-01

    encapsulation of the graphite in a long term stable glass matrix. The principal applicability has been already proved by FNAG. Crushed graphite mixed with a suitable glass powder has been pressed at elevated temperature under vacuum. The vacuum is required to avoid gas enclosures in the obtained product. The obtained products, named IGM for 'Impermeable Graphite Matrix', have densities above 99% of theoretical density. The amount of glass has been chosen with respect to the pore volume of the former graphite parts. The method allows the production of encapsulated graphite without increasing the disposal volume. This paper will give a short overview of characterisation results of different irradiated graphite materials obtained at CIEMAT and in the Carbowaste project as well as the proposed methods and the actual status of the program including first results about leaching of non-radioactive IGM samples and hopefully first tendencies concerning the C-14 separation from graphite of Vandellos I by thermal treatment. Both processes, the thermal treatment as well as the IGM, have the potential to solve problems related to the management of irradiated graphite in Spain. However the methods have only been tested with different types of i-graphite and virgin graphite, respectively. Only investigations with real i-graphite from Spain will reveal whether the described methods are applicable to graphite from Vandellos I. However all partners are convinced that one of these new methods or a combination of them will lead to a feasible option to manage i-graphite in Spain on an industrial scale. (authors)

  7. Method For Producing Mechanically Flexible Silicon Substrate

    KAUST Repository

    Hussain, Muhammad Mustafa

    2014-08-28

    A method for making a mechanically flexible silicon substrate is disclosed. In one embodiment, the method includes providing a silicon substrate. The method further includes forming a first etch stop layer in the silicon substrate and forming a second etch stop layer in the silicon substrate. The method also includes forming one or more trenches over the first etch stop layer and the second etch stop layer. The method further includes removing the silicon substrate between the first etch stop layer and the second etch stop layer.

  8. Obtaining graphene nanoplatelets from various graphite intercalation compounds

    Science.gov (United States)

    Melezhyk, A.; Galunin, E.; Memetov, N.

    2015-11-01

    The work compares the exfoliation ability of different graphite materials (expanded graphite intercalation compound, thermally expanded and oxidatively intercalated graphites) and describes the properties of graphene nanoplatelets (GNPs) obtained dependently on intercalation/deintercalation conditions and reagents. Among the studied materials, the graphite intercalated with ammonium persulfate in sulfuric acid and expanded at 40 °C possesses the maximum ability for ultrasonic exfoliation in the presence of a surfactant. The exfoliation efficiency strongly depends on the content of water in sulfuric acid during the intercalation. The highest efficiency was achieved for the expanded graphite intercalation compound (EGIC) prepared in sulfuric acid containing diluted oleum, which may be explained by increased acidity of the medium and, correspondingly, redox potential of the persulfate compound. This is also related to increased amounts of oxygen groups in the GNPs obtained from the EGIC synthesized in 100% sulfuric acid and diluted oleum. Besides, the nature of surface groups on the GNPs strongly depends on the nature of a deintercalating reagent. Thus, the treatment of the EGIC with different nucleophilic molecules (such as water, ammonia, carbamide, hexamethylenetetramine, organic amines, etc.) can yield GNPs with various surface groups. The interaction between the EGIC and nucleophilic molecules does not only include the substitution of sulfate groups, but also redox reactions with participation of graphene layers. Depending on the nature of the nucleophile, those reactions can lead to the formation of different groups attached to the graphene surface. GNPs with almost pure surface were obtained when using ammonia and carbamide.

  9. Graphite nanoreinforcements in polymer nanocomposites

    Science.gov (United States)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  10. Effects of silicon carbide on the phase developments in mullite-carbon ceramic composite

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of the addition of silicon carbide and sintering temperatures on the phases developed, in sintered ceramic composite produced from kaolin and graphite was investigated. The kaolin and graphite of known mineralogical composition were thoroughly blended with 4 and 8 vol % silicon carbide. From the homogeneous mixture of kaolin, graphite and silicon carbide, standard samples were prepared via uniaxial compaction. The test samples produced were subjected to firing (sintering at 1300°C, 1400°C and 1500°C. The sintered samples were characterized for the developed phases using x‐ray diffractometry analysis, microstructural morphology using ultra‐high resolution field emission scanning electron microscope (UHRFEGSEM. It was observed that microstructural morphology of the samples revealed the evolution of mullite, cristobalite and microcline. The kaolinite content of the raw kaolin undergoes transformation into mullite and excess silica, the mullite and the silica phases contents increased with increased sintering temperature. It is also generally observed that the graphite content progressively reduced linearly with increased sintering temperature. It is concluded that silicon carbide acts as anti-oxidant for the graphite, this anti-oxidant effect was more effective at 4 vol % silicon carbide.

  11. Final report on graphite irradiation test OG-3

    International Nuclear Information System (INIS)

    Price, R.J.; Beavan, L.A.

    1977-01-01

    The results of dimensional, thermal expansivity, thermal conductivity, Young's modulus, and tensile strength measurements on graphite specimens irradiated in capsule OG-3 are presented. The graphite grades investigated included near-isotropic H-451 (three different preproduction lots), TS-1240, and SO818; needle coke H-327; and European coal tar pitch coke grades P 3 JHA 2 N, P 3 JHAN, and ASI2-500. Data were obtained in the temperature range 823 0 K to 1673 0 K. The peak fast neutron fluence in the experiment was 3 x 10 25 n/m 3 (E greater than 29 fJ)/sub HTGR/; the total accumulated fluence exceeded 9 x 10 25 n/m 2 on some H-451 specimens and 6 x 10 25 n/m 2 on some TS-1240 specimens. Irradiation-induced dimensional changes on H-451 graphite differed slightly from earlier predictions. For an irradiation temperature of about 1225 0 K, axial shrinkage rates at high fluences were somewhat higher than predicted, and the fluence at which radial expansion started (about 9 x 10 25 n/m 2 at 1275 0 K) was lower. TS-1240 graphite underwent smaller dimensional changes than H-451 graphite, while limited data on SO818 and ASI2-500 graphites showed similar behavior to H-451. P 3 JHAN and P 3 JHA 2 N graphites displayed anisotropic behavior with rapid axial shrinkage. Comparison of dimensional changes between specimens from three logs of H-451 and of TS-1240 graphites showed no significant log-to-log variations for H-451, and small but significant log-to-log variations for TS-1240. The thermal expansivity of the near-isotropic graphites irradiated at 865-1045 0 K first increased by 5 percent to 10 percent and then decreased. At higher irradiation temperatures the thermal expansivity decreased by up to 50 percent. Changes in thermal conductivity were consistent with previously established curves. Specimens which were successively irradiated at two different temperatures took on the saturation conductivity for the new temperature

  12. INVESTIGATION OF EFFICIENCY OF GRAY CAST IRON GRAPHITIZING MODIFICATION BY DISPERSION-FILLED CONSUMABLE PATTERN

    Directory of Open Access Journals (Sweden)

    I. A. Nebozhak

    2015-01-01

    Full Text Available The key criteria of the process of graphitizing modification of matrix melt silicon concentration and silicon assimilation evaluated were on samples of gray cast iron grade СЧ20 State Standard 1412-85. These criteria of evaluation on the structure and properties of casting ingots proved an efficiency of intra-mold modification of molten gray cast iron by dispersed ferrosilicon grade ФС75 State Standard 1415-93 (ISO 5445-80 using lost-foam casting (LFC-process.

  13. Seismic Study of TMSR Graphite Core Structure

    International Nuclear Information System (INIS)

    Tsang, Derek; Huang Chao Chao

    2014-01-01

    Graphite plays an important role in the thorium based molten salt reactor (TMSR) nuclear energy system. The graphite core acts as reflector, moderator and structural material in the TMSR core. The graphite core assembly has hundreds of graphite bricks interconnected with graphite keys and dowels. In other words, the graphite core is a kind of discrete stack structure with highly nonlinear dynamic behaviour, and it will show totally different dynamics responses comparing with welded structure or bolted structure when subjected to the seismic loading. Hence it is important to investigate the dynamics characteristics of the TMSR graphite core assembly and to meet the seismic design requirement. The most popular way to investigate the nonlinearity of graphite core is to do finite element analyses. Due to the large number of nonlinear behaviour caused by contacts, collisions and impacts between the graphite bricks and keys, the computational costs on seismic analysis of the whole core would be very high. Many methods have been developed in the past 20 years to conquer this difficulty. In this work substructure method and finite element method have been used to study the dynamic behaviour of a stack of graphite bricks under seismic loading. The numerical results of these two methods will be compared. The results show that the super element method is an efficient method for graphite core seismic analyses. (author)

  14. AGC-2 Graphite Preirradiation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  15. Expansion and exfoliation of graphite to form graphene

    KAUST Repository

    Patole, Shashikan P.

    2017-07-27

    Graphene production methods are described based on subjecting non- covalent graphite intercalated compounds, such as graphite bisulfate, to expansion conditions such as shocks of heat and/or microwaves followed by turbulence-assisted exfoliation to produce few-layer, high quality graphene flakes. Depending on the approach selected for the exfoliation step, free-flowing graphene powder, graphene slurry, or an aqueous graphene mixture can be obtained. Surfactants can aid in dispersion, and graphene inks can be formed. The parameters of the process are simple, efficient and low-cost enabling therefore the scale- up of production. Applications include electrodes and energy storage devices.

  16. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  18. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  19. Direct laser writing of nanorough cell microbarriers on anatase/Si and graphite/Si

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y.C. [Departamento de Física Aplicada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid (Spain); Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Martínez-Martínez, R.M. [Departamento de Física Aplicada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid (Spain); Torres-Costa, V. [Departamento de Física Aplicada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid (Spain); Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, Madrid (Spain); Agulló-Rueda, F. [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid (Spain); García-Ruiz, J.P. [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Manso-Silván, M., E-mail: miguel.manso@uam.es [Departamento de Física Aplicada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid (Spain)

    2016-09-01

    The formation of hierarchical structures consisting of microstripe barriers decorated with nanorough ablated materials prepared by direct laser writing is described. Linear features of circa 25 μm width and 12 μm height are achieved on amorphous and crystalline titania and graphitic carbon films deposited on silicon. Ablated protrusions build up barriers decorated by nanoscale Si-film reconstructions, as indicated by EDX maps and micro-Raman spectroscopy. Wettability tests show a dramatic change in water contact angle, which leads to almost full wetting after irradiation, irrespective of the original film composition. Fluorescence microscopy images of human mesenchymal stem cells cultured on 1D and 2D structures demonstrate the short term biocompatibility of the ablated surfaces. It is shown that cells adhere, extend and polarize on feature edges, independently of the type of surface, thus suggesting that the created nanoroughness is at the origin of the antifouling behavior. In particular, irradiated anatase and graphite surfaces demonstrate an increased performance of crystalline films for the creation of cell guiding and trapping devices. The results suggest that such laser processing of films may serve as a time-and-cost-efficient method for the design of few-cells analytical surfaces. - Graphical abstract: Response of human mesenchymal stem cells to the microbarriers grown by direct laser writing on anatase/Si. Microbarriers show low colonization and high induction of cellular polarization on the feature edges. Display Omitted - Highlights: • Hierarchical microbarriers by direct IR laser writing on thin films. • Complex reconstruction of irradiated materials includes nanorough features. • Ablated areas become fully wettable. • Short term biocompatibility of the grown hierarchical structures confirmed. • Particular designs functional for cell guiding or trapping.

  20. High-performance lithium battery anodes using silicon nanowires.

    Science.gov (United States)

    Chan, Candace K; Peng, Hailin; Liu, Gao; McIlwrath, Kevin; Zhang, Xiao Feng; Huggins, Robert A; Cui, Yi

    2008-01-01

    There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

  1. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-06-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  2. Nonequilibrium Growth of GaN/Si(1-x-y)Ge(x)C(y)/Silicon-on-Insulator

    National Research Council Canada - National Science Library

    Ho, Wilson

    2000-01-01

    ... of this growth technique. Research highlights include the successful growth of silicon carbide, gallium nitride, and aluminum nitride thin films on silicon and miscut silicon substrates, on four-inches silicon wafers...

  3. A discussion of possible mechanisms affecting fission product transport in irradiated and unirradiated nuclear grade graphite

    International Nuclear Information System (INIS)

    Firth, M.J.

    1977-09-01

    137 Cs, 85 Sr, and sup(110m)Ag adsorption experiments were conducted on three graphite powders with differing amounts of specific basal and edge surface areas. No direct proportionality was found between the specific amounts of the isotopes adsorbed and either of the surface characteristics. There appears to be some correlation with the specific basal surface area despite the fact that each isotope behaves differently. Factors that might influence the adsorption behaviour of Cs and Ag during reactor irradiation and heat treatment of nuclear grade graphites are discussed. These include the form of Cs with the graphite surface. A model based on Cs adsorption at vacancy clusters is used to analyse adsorption experiments. A possible explanation for the behaviour of Ag through the migration of graphite impurities from the bulk of the graphite to the pore surface is also discussed. (author)

  4. Graphite moderated 252Cf source

    International Nuclear Information System (INIS)

    Sajo B, L.; Barros, H.; Greaves, E. D.; Vega C, H. R.

    2014-08-01

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252 Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252 Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  5. Untreated Natural Graphite as a Graphene Source for High-Performance Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    María Simón

    2018-03-01

    Full Text Available Graphene nanosheets (GNS are synthesized from untreated natural graphite (NG for use as electroactive materials in Li-ion batteries (LIBs, which avoids the pollution-generating steps of purifying graphite. Through a modified Hummer method and subsequent thermal exfoliation, graphitic oxide and graphene were synthesized and characterized structurally, morphologically and chemically. Untreated natural graphite samples contain 45–50% carbon by weight; the rest is composed of different elements such as aluminium, calcium, iron, silicon and oxygen, which are present as calcium carbonate and silicates of aluminium and iron. Our results confirm that in the GO and GNS synthesized, calcium is removed due to oxidation, though other impurities are maintained because they are not affected by the synthesis. Despite the remaining mineral phases, the energy storage capacity of GNS electrodes is very promising. In addition, an electrochemical comparison between GNS and NG demonstrated that the specific capacity in GNS is higher during the whole cycling process, 770 mA·g−1 at 100th cycle, which is twice that of graphite.

  6. Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal. Results of a Coordinated Research Project. Companion CD-ROM

    International Nuclear Information System (INIS)

    2016-05-01

    Graphite is widely used in the nuclear industry and in research facilities and this has led to increasing amounts of irradiated graphite residing in temporary storage facilities pending disposal. This publication arises from a coordinated research project (CRP) on the processing of irradiated graphite to meet acceptance criteria for waste disposal. It presents the findings of the CRP, the general conclusions and recommendations. The topics covered include, graphite management issues, characterization of irradiated graphite, processing and treatment, immobilization and disposal. Included on the attached CD-ROM are formal reports from the participants

  7. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  8. Silicon-on-ceramic coating process. Silicon sheet growth development for the Large-Area Silicon Sheet and Cell Development Tasks of the Low-Cost Silicon Solar Array Project. Quarterly report No. 8, December 28, 1977--March 28, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P.W. Zook, J.D.; Heaps, J D; Maclolek, R B; Koepke, B; Butter, C D; Schult, S B

    1978-04-20

    A research program to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon is described. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 12 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A dip-coating method for putting silicon on ceramic (SOC) has been shown to produce solar-cell-quality sheet silicon. This method and a continuous coating process also being investigated have excellent scale-up potential which offers an outstanding cost-effective way to manufacture large-area solar cells. A variety of ceramic materials have been dip-coated with silicon. The investigation has shown that mullite substrates containing an excess of SiO/sub 2/ best match the thermal expansion coefficient of silicon and hence produce the best SOC layers. With such substrates, smooth and uniform silicon layers 25 cm/sup 2/ in area have been achieved with single-crystal grains as large as 4 mm in width and several cm in length. Solar cells with areas from 1 to 10 cm/sup 2/ have been fabricated from material withas-grown surface. Recently, an antireflection (AR) coating has been applied to SOC cells. Conversion efficiencies greater than 9% have been achieved without optimizing series resistance characteristics. Such cells typically have open-circuit voltages and short-circuit current densities of 0.51 V and 20 mA/cm/sup 2/, respectively.

  9. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  10. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  11. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  12. Silicone materials for LED packaging

    Science.gov (United States)

    Bahadur, Maneesh; Norris, Ann W.; Zarisfi, Afrooz; Alger, James S.; Windiate, Christopher C.

    2006-08-01

    Silicone based materials have attracted considerable attention from light emitting diode (LED) manufacturers for use as encapsulants and lenses for many high brightness LED (HB LED) devices. Currently silicones function in two key roles in HB LED devices, (1) as protective lenses and (2) stress relieving encapsulants for wire bond protection. The key attributes of silicones that make them attractive as light path materials for high brightness HB LEDs include their high transparency in the UV-visible region, controlled refractive index (RI), stable thermo-mechanical properties, and tuneable modulus from soft gels to hard resins. This paper will describe recent developments in moldable silicone hard resin materials. Progress on cavity moldable and liquid injection moldable (LIM) silicone compositions for discreet components is described. Also, an example of liquid injection overmolding is presented.

  13. Initial Comparison of Baseline Physical and Mechanical Properties for the VHTR Candidate Graphite Grades

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Mark C. [Idaho National Lab. (INL), Idaho Falls, ID (United States). VHTR Program

    2014-09-01

    process. An analysis of the comparison between each of these grades will include not only the differences in fundamental and statistically-significant individual strength levels, but also the differences in the overall variability in properties within each of the grades that will ultimately provide the basis for predicting in-service performance. The comparative performance of the different types of nuclear-grade graphites will naturally continue to evolve as thousands more specimens are fully characterized with regard to strength, physical properties, and thermal performance from the numerous grades of graphite being evaluated.

  14. Improved Graphite Fiber Adhesion.

    Science.gov (United States)

    1981-09-01

    hydroxyls, and quinone-like carbonyls. A variety of other carbon-oxygen groups have been suggested, including lactones , anhydrides, peroxides, ethers and...cyclic alkanes (cyclopropanes) could form via addition reactions with the a, 0 unsaturations of quinones and other olefinic carbon bonds. Carbon and...HI hydrolysis of ethers is also expected. C-14 labelled methylene added to a, 0 unsaturated bonds of quinones or other olefinic bonds, however, would

  15. Radiation behaviour of graphite for HTGR

    International Nuclear Information System (INIS)

    Shtrombakh, Ya.I.; Platonov, P.A.; Gurovich, B.A.; Alekseev, V.M.

    1996-01-01

    The paper presents the results of investigations of different graphite materials, among with the standard reactor graphite manufacturing by electrode technology and a number of advanced graphites of new generation. During the investigation of radiation stability of standard reactor graphite the basic mechanisms of radiation damage of its structure were studied. With the help of transmission electron microscopy deformations and cracking of filler and binder were detected in the vicinity of the boundaries, separating these two components. Cracking begins with crystallite splitting and ends in full fracture of boundary layers. Such process of degradation can be explained by disjoint deformations resulting from difference in growth rate of filler and binder crystallites, in its turn caused by considerable difference between their sizes. It has been concluded that radiation stability of graphite may be improved by creating such graphite materials, in which the difference in sizes of crystallites of different structure components would be the minimal possible. When developing production technology of isotropic graphite for high temperature reactors, some progress was made towards the solution of this problem. Despite considerable swelling at high temperature this type of graphite appeared to be substantially less susceptible to the degradation of the structure and to deterioration of physico-mechanical properties. In addition to graphites manufactured by tradition technology, the graphite was investigated, in which pyrocarbon precipitated from gas phase under 1000 deg. C was used as binder. Carbon precipitated in such a way was non-graphitized at high temperatures and therefore it demonstrated sharp shrinkage under irradiation at high temperature, and shrinkage rate correlated with pyrocarbon quota in graphite structure. (author). 5 refs, 18 figs, 1 tab

  16. ISX-A graphite limiter experiment

    International Nuclear Information System (INIS)

    Langley, R.A.; Colchin, R.J.; Isler, R.C.; Murakami, M.; Simpkins, J.E.; Cecchi, J.L.; Corso, V.L.; Dylla, H.F.; Ellis, R.A. Jr.; Nishi, M.

    1979-01-01

    Graphite limiters were installed and tested in the ISX-A tokamak as part of the ISX-A surface physics program and the TFTR materials research program. The puropse of the experiment was to compare plasma performance using graphite limiters as opposed to the standard ISX-A stainless steel limiters. Heaters were installed in the graphite limiters so that the effects of operation at elevated temperatures could be evaluated

  17. Sealing nuclear graphite with pyrolytic carbon

    International Nuclear Information System (INIS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-01-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR)

  18. Graphitic Carbon Nitride Materials for Energy Applications

    OpenAIRE

    Belen Jorge, A.; Dedigama, I.; Mansor, N.; Jervis, R.; Corà, F.; McMillan, P. F.; Brett, D.

    2015-01-01

    Polymeric layered carbon nitrides were investigated for use as catalyst support materials for proton exchange membrane fuel cells (PEMFCs) and water electrolyzers (PEMWEs). Three different carbon nitride materials were prepared: a heptazine-based graphitic carbon nitride material (gCNM), poly (triazine) imide carbon nitride intercalated with LiCl component (PTI-Li+Cl-) and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride mate...

  19. Dynamics of graphite flake on a liquid

    Science.gov (United States)

    Miura, K.; Tsuda, D.; Kaneta, Y.; Harada, R.; Ishikawa, M.; Sasaki, N.

    2006-11-01

    One-directional motion, where graphite flakes are driven by a nanotip on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. A transition from quasiperiodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid.

  20. Graphite-to-metal bonding techniques

    International Nuclear Information System (INIS)

    Lindquist, L.O.; Mah, R.

    1977-11-01

    The results of various bonding methods to join graphite to different metals are reported. Graphite/metal bonds were tested for thermal flux limits and thermal flux cycling lifetimes. The most successful bond transferred a heat flux of 6.50 MW/m 2 in more than 500 thermal cycles. This bond was between pyrolytic graphite and copper with Ti-Cu-Sil as the bonding agent

  1. IAEA international database on irradiated nuclear graphite properties

    International Nuclear Information System (INIS)

    Burchell, T.D.; Clark, R.E.H.; Stephens, J.A.; Eto, M.; Haag, G.; Hacker, P.; Neighbour, G.B.; Janev, R.K.; Wickham, A.J.

    2000-02-01

    This report describes an IAEA database containing data on the properties of irradiated nuclear graphites. Development and implementation of the graphite database followed initial discussions at an IAEA Specialists' Meeting held in September 1995. The design of the database is based upon developments at the University of Bath (United Kingdom), work which the UK Health and Safety Executive initially supported. The database content and data management policies were determined during two IAEA Consultants' Meetings of nuclear reactor graphite specialists held in 1998 and 1999. The graphite data are relevant to the construction and safety case developments required for new and existing HTR nuclear power plants, and to the development of safety cases for continued operation of existing plants. The database design provides a flexible structure for data archiving and retrieval and employs Microsoft Access 97. An instruction manual is provided within this document for new users, including installation instructions for the database on personal computers running Windows 95/NT 4.0 or higher versions. The data management policies and associated responsibilities are contained in the database Working Arrangement which is included as an Appendix to this report. (author)

  2. Recent advances in graphite powder-based electrodes.

    Science.gov (United States)

    Bellido-Milla, Dolores; Cubillana-Aguilera, Laura Ma; El Kaoutit, Mohammed; Hernández-Artiga, Ma Purificación; Hidalgo-Hidalgo de Cisneros, José Luis; Naranjo-Rodríguez, Ignacio; Palacios-Santander, José Ma

    2013-04-01

    Graphite powder-based electrodes have the electrochemical performance of quasi-noble metal electrodes with intrinsic advantages related to the possibility of modification to enhance selectivity and their easily renewable surface, with no need for hazardous acids or bases for their cleaning. In contrast with commercial electrodes, for example screen-printed or sputtered-chip electrodes, graphite powder-based electrodes can also be fabricated in any laboratory with the form and characteristics desired. They are also readily modified with advanced materials, with relatively high reproducibility. All these characteristics make them a very interesting option for obtaining a large variety of electrodes to resolve different kinds of analytical problems. This review summarizes the state-of-the-art, advantages, and disadvantages of graphite powder-based electrodes in electrochemical analysis in the 21st century. It includes recent trends in carbon paste electrodes, devoting special attention to the use of emergent materials as new binders and to the development of other composite electrodes. The most recent advances in the use of graphite powder-modified sol-gel electrodes are also described. The development of sonogel-carbon electrodes and their use in electrochemical sensors and biosensors is included. These materials extend the possibilities of applications, especially for industrial technology-transfer purposes, and their development could affect not only electroanalytical green chemistry but other interesting areas also, for example catalysis and energy conversion and storage.

  3. Numerical simulation and fabrication of silicon sheet via spin casting.

    Science.gov (United States)

    Lee, Jaewoo; Kim, Hyunhui; Lee, Changbum; Kim, Joonsoo; Jang, Bo-Yun; Lee, Jinseok; Ahn, Youngsoo; Yoon, Wooyoung

    2013-05-01

    A spin-casting process for fabricating polycrystalline silicon sheets for use as solar cell wafers is proposed, and the parameters that control the sheet thickness are investigated. A numerical study of the fluidity of molten silicon indicates that the formation of thin silicon sheets without a mold and via spin casting is feasible. The faster the rotation speed of graphite mold, the thinner the thickness of sheet. After the spread of the molten silicon to cover the graphite mold with rotation speed of above 500 rpm, the solidification has to start. Silicon sheets can be produced by using the centrifugal force under appropriate experimental conditions. The spin-cast sheet had a vertical columnar microstructure due to the normal heat extraction to the substrate, and the sheet lifetime varied from 0.1 microS to 0.3 microS measured by using the microwave photoconductance decay (MW-PCD) to confirm that the spin-cast silicon sheet is applicable to photovoltaics.

  4. THE FIRST DISCOVERY OF PRESOLAR GRAPHITE GRAINS FROM THE HIGHLY REDUCING QINGZHEN (EH3) METEORITE

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuchen; Lin, Yangting; Zhang, Jianchao; Hao, Jialong, E-mail: linyt@mail.iggcas.ac.cn [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2016-07-10

    Presolar graphite grains have been extensively studied, but are limited in carbonaceous chondrites, particularly in Murchison (CM2) and Orgueil (CI1), which sampled materials from the oxidizing regions in the solar nebula. Here, we report the first discovery of presolar graphite grains from the Qingzhen (EH3) enstatite chondrite which formed under a highly reducing condition. Eighteen presolar graphite grains were identified by C-isotope mapping of the low-density fraction (1.75–1.85 g cm{sup 3}) from Qingzhen acid residue. Another 58 graphite spherules were found in different areas of the same sample mount using a scanning electron microscope and were classified into three morphologies, including cauliflower, onion, and cauliflower–onion. The Raman spectra of these spherules vary from ordered, disordered, and glassy to kerogen-like, suggestive of a wide range of thermal metamorphisms. NanoSIMS analysis of the C- and Si-isotopes of these graphite spherules confirmed 23 presolar grains. The other 35 graphite spherules have no significant isotopic anomalies, but they share similar morphologies and Raman spectra with the presolar ones. Another three grains were identified during NanoSIMS analysis. Of all the 44 presolar graphite grains identified, six grains show {sup 28}Si-excesses, suggestive of supernovae origins, and four grains are {sup 12}C- and {sup 29,30}Si-rich, consistent with low-metallicity asymptotic giant branch star origins. Another two graphite spherules have extremely low {sup 12}C/{sup 13}C ratios with marginal solar Si-isotopes. The morphologies, Raman spectra, and C- and Si-isotopic distributions of the presolar graphite grains from the Qingzhen enstatite chondrite are similar to those of the low-density fractions from Murchison carbonaceous chondrites. This study suggests a homogeneous distribution of presolar graphite grains in the solar nebula.

  5. The Fracture Toughness of Nuclear Graphites Grades

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erdman, III, Donald L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Rick R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunter, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hannel, Cara C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    New measurements of graphite mode I critical stress intensity factor, KIc (commonly referred to as the fracture toughness) and the mode II critical shear stress intensity, KIIc, are reported and compared with prior data for KIc and KIIc. The new data are for graphite grades PCEA, IG-110 and 2114. Variations of KIc and acoustic emission (AE) data with graphite texture are reported and discussed. The Codes and Standards applications of fracture toughness, KIc, data are also discussed. A specified minimum value for nuclear graphite KIc is recommended.

  6. Production of nuclear graphite in France

    International Nuclear Information System (INIS)

    Legendre, P.; Mondet, L.; Arragon, Ph.; Cornuault, P.; Gueron, J.; Hering, H.

    1955-01-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [fr

  7. Study of corrosion resistance graphite in oxygen

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Odejchuk, N.P.; Petel'guzov, I.A.; Ryzhov, V.P.; Yakovlev, V.K.

    2011-01-01

    The paper presents the results of the corrosion resistance of MPG, ARV and GSP graphite grades in oxygen at temperatures of 400, 600 and 800 o C. The oxidation kinetics of graphites is defined. It is shown, that interaction process of graphites with oxygen is characterized by a decrease of sample weights. The description of installation for carrying out of tests and a technique of carrying out of tests and researches is resulted. It is shown that the best corrosion resistance in the investigated temperature range has GSP graphite with density of 1.8-1.9 g/cm 3 of NSC KIPT production.

  8. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  9. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  10. Fundamental Investigation of Silicon Anode in Lithium-Ion Cells

    Science.gov (United States)

    Wu, James J.; Bennett, William R.

    2012-01-01

    Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is 10 times of graphite and it is an abundant element on Earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. Understanding solid electrolyte interphase (SEI) formation along with the lithium ion insertion/de-insertion kinetics in silicon anodes will provide greater insight into overcoming these issues, thereby lead to better cycle performance. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of a Si anode during the first cycle; the lithium ion insertion and de-insertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design better Si anodes, and the combination of cyclic voltammetry with impedance spectroscopy provides a useful tool to evaluate the effectiveness of the design modifications on the Si anode performance.

  11. ICP-MS measurement of silver diffusion coefficient in graphite IG-110 between 1048K and 1284K

    Science.gov (United States)

    Carter, L. M.; Seelig, J. D.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2018-01-01

    Silver-110m has been shown to permeate intact silicon carbide and pyrolytic carbon coating layers of the TRISO fuel particles during normal High Temperature Gas-Cooled Reactor (HTGR) operational conditions. The diffusion coefficients for silver in graphite IG-110 measured using a release method designed to simulate HTGR conditions of high temperature and flowing helium in the temperature range 1048-1253 K are reported. The measurements were made using spheres milled from IG-110 graphite that were infused with silver using a pressure vessel technique. The Ag diffusion was measured using a time release technique with an ICP-MS instrument for detection. The results of this work are:

  12. Temperature control of the graphite stack of the reactor RBMK-1500

    International Nuclear Information System (INIS)

    Lesnoj, S.

    1998-01-01

    The paper includes general information about RBMK-1500 reactor, construction features and main technical data; graphite moderator stack, temperature channel, thermocouple TXA-1379, its basic technical and metrologic parameters as well as its advantages and disadvantages

  13. Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed the surface of Mercury has high S abundances (approximately 4 wt%) and low Iron(II) Oxide abundances (less than 2 wt%). Based on these extreme values, the oxygen fugacity of Mercury's surface materials was estimated to be approximately 3 to 7 log(sub 10) units below the IW buffer (Delta IW-3 to Delta IW-7). This highly reducing nature of the planet has resulted in a large core and relatively thin mantle, extending to only approximately 420 km depth (corresponding to a core-mantle boundary pressure of approximately 4-7 GPa) within the planet. Furthermore, MESSENGER results have suggested the presence of carbon on the surface of the planet. Previous experimental results from have also suggested the possibility of a primary floatation crust on Mercury composed of graphite, produced after a global magma ocean event. With these exotic conditions of this compositional end-member planet, it begs the question, what is the core composition of Mercury? Although no definitive conclusion has been reached, previous studies have made advances towards answering this question. Riner et al. and Chen et al. looked at iron sulfide systems and implemented various crystallization and layered core scenarios to try and determine the composition and structure of Mercury's core. Malavergne et al. examined core crystallization scenarios in the presence of sulfur and silicon. Hauck et al. used the most recent geophysical constraints from the MESSENGER spacecraft to model the internal structure of Mercury, including the core, in a iron-sulfur-silicon system. More recently, Chabot et al. conducted a series of metal-silicate partitioning experiments in a iron-sulfur-silicon system. These results showed the core of Mercury has the potential to contain more than 15 wt% silicon. However, with the newest results from MESSENGER's low altitude campaign, carbon is another

  14. Silicone nanocomposite coatings for fabrics

    Science.gov (United States)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  15. The influence of buoyant forces and volume fraction of particles on the particle pushing/entrapment transition during directional solidification of Al/SiC and Al/graphite composites

    Science.gov (United States)

    Stefanescu, Doru M.; Moitra, Avijit; Kacar, A. Sedat; Dhindaw, Brij K.

    1990-01-01

    Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or silicon-carbide particles were first dispersed in aluminum-base alloys via a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which consideres process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions.

  16. Hypervelocity impacts into porous graphite: experiments and simulations.

    Science.gov (United States)

    Hébert, D; Seisson, G; Rullier, J-L; Bertron, I; Hallo, L; Chevalier, J-M; Thessieux, C; Guillet, F; Boustie, M; Berthe, L

    2017-01-28

    We present experiments and numerical simulations of hypervelocity impacts of 0.5 mm steel spheres into graphite, for velocities ranging between 1100 and 4500 m s -1 Experiments have evidenced that, after a particular striking velocity, depth of penetration no longer increases but decreases. Moreover, the projectile is observed to be trapped below the crater surface. Using numerical simulations, we show how this experimental result can be related to both materials, yield strength. A Johnson-Cook model is developed for the steel projectile, based on the literature data. A simple model is proposed for the graphite yield strength, including a piecewise pressure dependence of the Drucker-Prager form, which coefficients have been chosen to reproduce the projectile penetration depth. Comparisons between experiments and simulations are presented and discussed. The damage properties of both materials are also considered, by using a threshold on the first principal stress as a tensile failure criterion. An additional compressive failure model is also used for graphite when the equivalent strain reaches a maximum value. We show that the experimental crater diameter is directly related to the graphite spall strength. Uncertainties on the target yield stress and failure strength are estimated.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  17. Thermal Evaluation of Scorched Graphite-Epoxy Panels by Infrared Scanning.

    Science.gov (United States)

    Slifka, A J; Hall, T; Boltz, E S

    2003-01-01

    A simple measurement system is described for evaluating damage to graphite-epoxy panels, such as those used in high-performance aircraft. The system uses a heating laser and infrared imaging system to measure thermal performance. Thermal conductivity or diffusivity is a sensitive indicator of damage in materials, allowing this thermal measurement to show various degrees of damage in graphite-epoxy composites. Our measurements track well with heat-flux damage to graphite epoxy panels. This measurement system, including analysis software, could easily be used in the field, such as on the deck of an aircraft carrier or at remote air strips.

  18. Graphite Microstructural Characterization Using Time-Domain and Correlation-Based Ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, James [Johns Hopkins Univ., Baltimore, MD (United States)

    2017-12-06

    Among techniques that have been used to determine elastic modulus in nuclear graphites, ultrasonic methods have enjoyed wide use and standards using contacting piezoelectric tranducers have been developed to ensure repeatability of these types of measurements. However, the use of couplants and the pressures used to effectively couple transducers to samples can bias measurements and produce results that are not wholly related to the properties of the graphite itself. In this work, we have investigated the use of laser ultrasonic methods for making elastic modulus measurements in nuclear graphites. These methods use laser-based transmitters and receivers to gather data and do not require use of ultrasonic couplants or mechanical contact with the sample. As a result, information directly related to the elastic responses of graphite can be gathered even if the graphite is porous, brittle and compliant. In particular, we have demonstrated the use of laser ultrasonics for the determination of both Young’s modulus and shear modulus in a range of nuclear graphites including those that are being considered for use in future nuclear reactors. These results have been analyzed to assess the contributions of porosity and microcracking to the elastic responses of these graphites. Laser-based methods have also been used to assess the moduli of NBG-18 and IG-110 where samples of each grade were oxidized to produce specific changes in porosity. These data were used to develop new models for the elastic responses of nuclear graphites and these models have been used to infer specific changes in graphite microstructure that occur during oxidation that affect elastic modulus. Specifically, we show how ultrasonic measurements in oxidized graphites are consistent with nano/microscale oxidation processes where basal plane edges react more readily than basal plane surfaces. We have also shown the use of laser-based methods to perform shear-wave birefringence measurements and have shown

  19. Low temperature chemical processing of graphite-clad nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  20. Effect of graphite target power density on tribological properties of graphite-like carbon films

    Science.gov (United States)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  1. Flexible PVC flame retarded with expandable graphite

    CSIR Research Space (South Africa)

    Focke, WW

    2014-02-01

    Full Text Available The utility of expandable graphite as a flame retardant for PVC, plasticized with 60 phr of a phosphate ester, was investigated. Cone calorimeter results, at a radiant flux of 35 kW m 2, revealed that adding only 5 wt.% expandable graphite lowered...

  2. Mechanical properties of graphite and carbon materials

    International Nuclear Information System (INIS)

    Jouquet, G.

    1976-01-01

    The elastic properties of the graphite monocrystal, the role of internal characteristics (texture, porosity) on the mechanical behavior of carbons, effects caused by the gaseous environment and neutron irradiation, and the resistance of graphites to cyclic mechanical stresses are discussed [fr

  3. Significance of primary irradiation creep in graphite

    CSIR Research Space (South Africa)

    Erasmus, C

    2013-05-01

    Full Text Available Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux...

  4. Investigation on wear behavior of graphite baII under different pneumatic conveying environments

    International Nuclear Information System (INIS)

    Chen Zhipeng; Zheng Yanhua; Shi Lei; Yu Suyuan

    2014-01-01

    An experimental platform was built in the Institute of Nuclear and New Energy Technology (INET) to investigate the wear behavior of the graphite ball under the operational condition of the high temperature gas-cooled reactor (HTGR) fuel handling system. In this experimental platform, a series of experiments were carried out under different pneumatic conveying environments with the graphite balls, which were made of the material same as the fuel element matrix graphite (A3) of the 10 MW high temperature gas cooled reactor (HTR-10). The effect of the pneumatic conveying condition on the wear rate of graphite ball has been investigated, and the results include: (1) There is an obvious linear relationship between the wear rate and the feeding velocity of graphite ball elevated in the stainless steel elevating tube, and the wear rate will increase with the increase of the feeding velocity. (2) The wear rate of graphite ball under helium environment is significantly greater than that under air and nitrogen environments, which is caused by the different effects of various gas environments on mechanical properties of graphite. (author)

  5. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  6. Microstructural Characterization of Next Generation Nuclear Graphites

    Energy Technology Data Exchange (ETDEWEB)

    Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  7. Design of large sample silicon ingots irradiation facilities using MCNP

    International Nuclear Information System (INIS)

    Abd EL - Latif, S.S.M.

    2012-01-01

    When silicon is irradiated the objective is to produce number of phosphorus atoms in the target sample in order to obtain a given resistivity after the treatment. The resistivity of the sample is decreased by the transmutation of the silicon, by neutrons to phosphorus. Irradiation is carried out by thermal neutrons. The irradiation of silicon ingot large diameter has been carried out in heavy water research reactor since the thermal neutron flux to the fast neutron flux in order of 1000:1. The neutron spectrum is highly thermalized and some of these neutrons can reach the center of the silicon ingot and gives the radial resistivity gradient in accept range. Due to the disadvantages of heavy water research reactor such as tritium generation as a result of the neutron capture by deuterium. The tritium is radioactive emitting beta particles with a half life of 12.3 years so the heavy water research reactor is closed to avoid the intake of bete particles. The new trend in light water research reactor to design a neutron filter from heavy water or graphite to moderate the neutron to offer neutron spectrum like heavy water reactors, and keep the advantages of light water research reactors such as open pool. In this work we try to use graphite, heavy water and light water to design a neutron filter using the MCNP for different silicon ingot diameter.The light water research reactors can irradiate silicon ingot up to 10 inches diameter with accepted radial resistivity gradient (RRG). Graphite is the best filter in case of 10 inch with maximum radial variation (MRV) 7.564%; Light water is the best filter in case of 6 and 8 inch with MRV 2.197% and 4.85% respectively. In case of 6 and 10 inch Heavy water is the second choice.

  8. Virus-enabled silicon anode for lithium-ion batteries.

    Science.gov (United States)

    Chen, Xilin; Gerasopoulos, Konstantinos; Guo, Juchen; Brown, Adam; Wang, Chunsheng; Ghodssi, Reza; Culver, James N

    2010-09-28

    A novel three-dimensional Tobacco mosaic virus assembled silicon anode is reported. This electrode combines genetically modified virus templates for the production of high aspect ratio nanofeatured surfaces with electroless deposition to produce an integrated nickel current collector followed by physical vapor deposition of a silicon layer to form a high capacity silicon anode. This composite silicon anode produced high capacities (3300 mAh/g), excellent charge-discharge cycling stability (0.20% loss per cycle at 1C), and consistent rate capabilities (46.4% at 4C) between 0 and 1.5 V. The biological templated nanocomposite electrode architecture displays a nearly 10-fold increase in capacity over currently available graphite anodes with remarkable cycling stability.

  9. LSA Large Area Silicon Sheet Task Continuous Czochralski Process Development

    Science.gov (United States)

    Rea, S. N.

    1979-01-01

    A commercial Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a small, in-situ premelter with attendant silicon storage and transport mechanisms. Using a vertical, cylindrical graphite heater containing a small fused quartz test tube linear from which the molten silicon flowed out the bottom, approximately 83 cm of nominal 5 cm diamter crystal was grown with continuous melt addition furnished by the test tube premelter. High perfection crystal was not obtained, however, due primarily to particulate contamination of the melt. A major contributor to the particulate problem was severe silicon oxide buildup on the premelter which would ultimately drop into the primary melt. Elimination of this oxide buildup will require extensive study and experimentation and the ultimate success of continuous Czochralski depends on a successful solution to this problem. Economically, the continuous Czochralski meets near-term cost goals for silicon sheet material.

  10. Direct atomic absorption determination of silicon in metallic niobium

    International Nuclear Information System (INIS)

    Blinova, Eh.S.; Guzeev, I.D.; Nedler, V.V.; Khokhrin, V.M.

    1984-01-01

    Consideration is being given to realization of the basic advantage of non-flame atomizer-analysis of directly solid samples-for silicon determination in niobium for the content of the first one of less than 1x10 -3 mass %. Analysis technique is described. Diagrams of the dependences of atomic silicon absorption in graphite cells of usual type as well as lined by tungsten carbide and atomic silicon absorption on the value of niobium weighed amount are presented. It is shown that Si determination in metallic niobium according to aqueous reference solutions results in understatement of results 2.4 times. The optimal conditions for Si determination in niobium are the following: 2400 deg C temperature, absence of carbon and oxygen. Different niobium specimens with the known silicon content were used as reference samples

  11. Silicon nitride-fabrication, forming and properties

    International Nuclear Information System (INIS)

    Yehezkel, O.

    1983-01-01

    This article, which is a literature survey of the recent years, includes description of several methods for the formation of silicone nitride, and five methods of forming: Reaction-bonded silicon nitride, sintering, hot pressing, hot isostatic pressing and chemical vapour deposition. Herein are also included data about mechanical and physical properties of silicon nitride and the relationship between the forming method and the properties. (author)

  12. Process for Polycrystalline film silicon growth

    Science.gov (United States)

    Wang, Tihu; Ciszek, Theodore F.

    2001-01-01

    A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.

  13. The fracture of graphite; La rupture des graphites

    Energy Technology Data Exchange (ETDEWEB)

    Rouby, D. [Institut National des Sciences Appliquees (INSA), Groupe d' Etudes de Metallurgie Physique et de Physique des Materiaux, UMR CNRS 5510, 69 - Villeurbanne (France); Monchaux, St. [Institut National des Sciences Appliquees (INSA), Dept. Science et Genie des Materiaux, 69 - Villeurbanne (France); Tahon, B. [Laboratoire SGL Carbon SAS, 74 - Passy (France)

    2006-03-15

    By mechanical loading, the behaviour of poly-granular graphites for industrial uses is globally brittle: when a pre-existing flaw becomes critical a crack initiates and then propagates more or less catastrophically. This scheme implies several features which are described in the present paper. First, as the crack will be initiated at a critical flaw, the ultimate stress appears as largely dispersed and the strength is not an intrinsic material's parameter. Secondly, the processing route introduces in the material some microstructure anisotropy, largely influencing the strength dispersion. Finally, the crack propagation is controlled by a bridging mechanism of the lips which depends on the microstructure. This effect can be described by the so-called crack growth resistance curve: the R-curve. (authors)

  14. Novel Non-Carbonate Based Electrolytes for Silicon Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ye [Wildcat Discovery Technologies, San Diego, CA (United States); Yang, Johnny [Wildcat Discovery Technologies, San Diego, CA (United States); Cheng, Gang [Wildcat Discovery Technologies, San Diego, CA (United States); Carroll, Kyler [Wildcat Discovery Technologies, San Diego, CA (United States); Clemons, Owen [Wildcat Discovery Technologies, San Diego, CA (United States); Strand, Diedre [Wildcat Discovery Technologies, San Diego, CA (United States)

    2016-09-09

    Substantial improvement in the energy density of rechargeable lithium batteries is required to meet the future needs for electric and plug-in electric vehicles (EV and PHEV). Present day lithium ion battery technology is based on shuttling lithium between graphitic carbon and inorganic oxides. Non-graphitic anodes, such as silicon can provide significant improvements in energy density but are currently limited in cycle life due to reactivity with the electrolyte. Wildcat/3M proposes the development of non-carbonate electrolyte formulations tailored for silicon alloy anodes. Combining these electrolytes with 3M’s anode and an NMC cathode will enable up to a 20% increase in the volumetric cell energy density, while still meeting the PHEV/EV cell level cycle/calendar life goals.

  15. Investigation on Mechanical Properties and Wear Behavior of Al-Si-SiC-Graphite Composite using SEM and EDAX

    Science.gov (United States)

    Karthikeyan, A.; Nallusamy, S.

    2017-08-01

    In this research article mechanical properties and wear performance with regard to the tribological behavior of aluminum metal matrix composites reinforced with silicon carbide particulates and added with graphite particulates as a second reinforcement has been analysed. The method of stir casting procedure was used for the preparation of composite samples for analysis and those samples were tested for the presence of reinforcement particles using scanning electron microscope and EDAX. Uniform distribution of reinforcements and their presence was well established using characterization. The different mechanical properties have been tested and found to be better than the base alloy. Wear tests were performed to study the influence of graphite particulates and SiC particles through pin on disc tester. The experimental results of wear test reveal that, the formation of lubricate film with 4 kg of load establish the influence of graphite in the composite materials.

  16. Graphite Oxidation Thermodynamics/Reactions

    International Nuclear Information System (INIS)

    Propp, W.A.

    1998-01-01

    The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study

  17. Silicon-on-ceramic process: silicon sheet growth and device development for the Large-Area Silicon Sheet and Cell Development Tasks of the Low-Cost Solar Array Project. Quarterly report No. 11, January 1-March 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P.W.; Zook, J.D.; Heaps, J.D.; Grung, B.L.; Koepke, B.; Schuldt, S.B.

    1979-04-30

    The purpose of the research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 12 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A dip-coating method for putting silicon on ceramic (SOC) has been shown to produce solar-cell-quality sheet silicon. This method and a continuous coating process also being investigated have excellent scale-up potential which offers an outstanding, cost-effective way to manufacture large-area solar cells. Results and accomplishments are described.

  18. Quality control procedures on graphite, pyrocarbon and silconcarbide

    Energy Technology Data Exchange (ETDEWEB)

    Koizlik, K. [comp.

    1974-09-01

    The presented report includes those papers presented at the 8th meeting of the DP-QCWP in Winfrith which have been written by collaborators of the Institut fuer Reaktorwerkstoffe der Kernforschungsanlage Juelich, together with other co-authors. The papers deal with problems of standardizing characterization methods for the routine quality control of graphites and pyrolytic carbons as well as with more basic procedures (transmission electron microscopy, microporosity) for the analysis of pyrocarbon structure.

  19. Scattering characteristics from porous silicon

    Directory of Open Access Journals (Sweden)

    R. Sabet-Dariani

    2000-12-01

    Full Text Available   Porous silicon (PS layers come into existance as a result of electrochemical anodization on silicon. Although a great deal of research has been done on the formation and optical properties of this material, the exact mechanism involved is not well-understood yet.   In this article, first, the optical properties of silicon and porous silicon are described. Then, previous research and the proposed models about reflection from PS and the origin of its photoluminescence are reveiwed. The reflecting and scattering, absorption and transmission of light from this material, are then investigated. These experiments include,different methods of PS sample preparation their photoluminescence, reflecting and scattering of light determining different characteristics with respect to Si bulk.

  20. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  1. Synthesis of soluble graphite and graphene.

    Science.gov (United States)

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without

  2. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube

    Science.gov (United States)

    Zhang, Zhiqiang [Lexington, KY; Lockwood, Frances E [Georgetown, KY

    2008-03-25

    A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

  3. Computer simulation of the steam--graphite reaction under isothermal and steady-state conditions

    International Nuclear Information System (INIS)

    Joy, D.S.; Stem, S.C.

    1975-05-01

    A mathematical model was formulated to describe the isothermal, steady-state diffusion and reaction of steam in a graphite matrix. A generalized Langmuir-Hinshelwood equation is used to represent the steam-graphite reaction rate. The model also includes diffusion in the gas phase adjacent to the graphite matrix. A computer program, written to numerically integrate the resulting differential equations, is described. The coupled nonlinear differential equations in the graphite phase are solved using the IBM Continuous System Modeling Program. Classical finite difference techniques are used for the gas-phase calculations. An iterative procedure is required to couple the two sets of calculations. Several sample problems are presented to demonstrate the utility of the model. (U.S.)

  4. Contact Angle Hysteresis on Graphene Surfaces and Hysteresis-free Behavior on Oil-infused Graphite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cyuan-Jhang; Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Woon, Wei-Yen [Department of Physics, National Central University, Jhongli 320, Taiwan (China); Sheng, Yu-Jane, E-mail: yjsheng@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsao, Heng-Kwong, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Department of Physics, National Central University, Jhongli 320, Taiwan (China)

    2016-11-01

    Highlights: • Contact angle hysteresis(CAH) on four graphitic surfacesisinvestigated. • The hysteresis loopof water drops on the polished graphite sheetshowsparticularly small receding contact angle. • The significant CAH observed on CVD graphene and highly oriented pyrolytic graphite is attributed mainly to adhesion hysteresis. • An oil-infused surface of a graphite sheet is produced by imbibition of hexadecane into its porous structure. • The hysteresis-free property for water drops on such a surface is examined and quantitatively explained. - Abstract: Contact angle hysteresis (CAH) on graphitic surfaces, including chemical vapor deposition (CVD) graphene, reduced electrophoretic deposition (EPD) graphene, highly oriented pyrolytic graphite (HOPG), and polished graphite sheet, has been investigated. The hysteresis loops of water drops on the first three samples are similar but the receding contact angle is particularly small for the polished graphite sheet.The significant CAH observed on CVD graphene and HOPG associated with atom-scale roughness has to be attributed mainly to adhesion hysteresis (surface relaxation), instead of roughness or defects.The difference of the wetting behavior among those four graphitic samples has been further demonstrated by hexadecane drops. On the surface of HOPG or CVD graphene,the contact line expands continuously with time, indicating total wetting for which the contact angle does not exist and contact line pinning disappears. In contrast, on the surface of reduced EPD graphene, spontaneous spreading is halted by spikes on it and partial wetting with small contact angle (θ≈4°) is obtained. On the surface of polished graphite sheet, the superlipophilicity and porous structure are demonstrated by imbibition and capillary rise of hexadecane. Consequently, an oil-infused graphite surface can be fabricated and the ultralow CAH of water (∆θ≈2°) is achieved.

  5. Stable dispersions of polymer-coated graphitic nanoplatelets

    Science.gov (United States)

    Stankovich, Sasha (Inventor); Nguyen, Sonbinh T. (Inventor); Ruoff, Rodney S. (Inventor)

    2011-01-01

    A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.

  6. Identification of a Mammalian Silicon Transporter

    OpenAIRE

    Ratcliffe, Sarah; Jugdaohsingh, Ravin; Ma, Jian Feng; Mitani-Ueno, Nakimi; Vivancos, Julien; Deshmukh, Rupesh; Boekschoten, Mark; Muller, Michael; Mawhinney, Robert; Marron, Alan; Isenring, Paul; Kinrade, Stephen; Bélanger, Richard; Powell, Jonathan

    2017-01-01

    Silicon (Si) has long been known to play a major physiological role in certain organisms, including some sponges and many diatoms and higher plants, leading to the recent identification of multiple proteins responsible for silicon transport in a range of algal and plant species. In mammals, despite several convincing studies suggesting that silicon is an important factor in bone development and connective tissue health, there is a critical lack of understanding in biochemical pathways that en...

  7. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  8. Assessments of the stresses and deformations in an RBMK graphite moderator brick

    International Nuclear Information System (INIS)

    Jones, C.J.; Davies, M.A.; Marsden, B.J.; Bougaenko, S.E.; Baldin, V.D.; Demintievski, V.N.; Rodtchenkov, B.S.; Sinitsyn, E.N.

    1996-01-01

    The RBMK reactors, designed by RDIPE (Moscow), are graphite moderated and cooled by light water. Graphite dimensions and thermo-mechanical properties change significantly in a complex manner during reactor life due to fast neutron damage and these changes have implications on the safe operation of all graphite moderated reactors. A joint programme of work is being carried out between AEA Technology (UK) and RDIPE (Russia) to assess the life of the RBMK graphite stack under normal operating conditions. The programme has included the modelling of graphite dimensional changes due to irradiation through reactor life and the assessment of the implications of these changes on the stresses and deformations in the graphite stack. Calculations have been carried out to assess the deformations of a moderator brick over a period from start of life up to 30 years of operation. The assessment have also included an analysis of the stresses in the bricks so that the time to brick failure could be determined. This paper describes the RBMK core design, the data and assessment methodology used in the analysis of the RBMK core and presents some results from analyses of the Leningrad Unit 1 RBMK reactor. (author). 2 refs, 8 figs

  9. Preliminary design study of a large scale graphite oxidation loop

    International Nuclear Information System (INIS)

    Epel, L.G.; Majeski, S.J.; Schweitzer, D.G.; Sheehan, T.V.

    1979-08-01

    A preliminary design study of a large scale graphite oxidation loop was performed in order to assess feasibility and to estimate capital costs. The nominal design operates at 50 atmospheres helium and 1800 F with a graphite specimen 30 inches long and 10 inches in diameter. It was determined that a simple single walled design was not practical at this time because of a lack of commercially available thick walled high temperature alloys. Two alternative concepts, at reduced operating pressure, were investigated. Both were found to be readily fabricable to operate at 1800 F and capital cost estimates for these are included. A design concept, which is outside the scope of this study, was briefly considered

  10. Preparation of graphene by electrical explosion of graphite sticks.

    Science.gov (United States)

    Gao, Xin; Xu, Chunxiao; Yin, Hao; Wang, Xiaoguang; Song, Qiuzhi; Chen, Pengwan

    2017-08-03

    Graphene nanosheets were produced by electrical explosion of high-purity graphite sticks in distilled water at room temperature. The as-prepared samples were characterized by various techniques to find different forms of carbon phases, including graphite nanosheets, few-layer graphene, and especially, mono-layer graphene with good crystallinity. Delicate control of energy injection is critical for graphene nanosheet formation, whereas mono-layer graphene was produced under the charging voltage of 22.5-23.5 kV. On the basis of electrical wire explosion and our experimental results, the underlying mechanism that governs the graphene generation was carefully illustrated. This work provides a simple but innovative route for producing graphene nanosheets.

  11. Deposition of DNA Nanostructures on Highly Oriented Pyrolytic Graphite.

    Science.gov (United States)

    Ricardo, Karen B; Xu, Anqin; Salim, Muhammad; Zhou, Feng; Liu, Haitao

    2017-04-25

    We report the deposition of DNA origami nanostructures on highly oriented pyrolytic graphite (HOPG). The DNA origami goes through a structural rearrangement and the DNA base is exposed to interact with the graphite surface. Exposure to ambient air, which is known to result in a hydrophilic-to-hydrophobic wetting transition of HOPG, does not significantly impact the deposition yield or the shape deformation of DNA nanostructures. The deposited DNA nanostructures maintain their morphology for at least a week and promote site-selective chemical vapor deposition of SiO 2 . This process is potentially useful for a range of applications that include but are not limited to nanostructure fabrication, sensing, and electronic and surface engineering.

  12. Silicone chain extender

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a silicone chain extender, more particularly a chain extender for silicone polymers and copolymers, to a chain extended silicone polymer or copolymer and to a functionalized chain extended silicone polymer or copolymer, to a method for the preparation thereof...

  13. Optical motion control of maglev graphite.

    Science.gov (United States)

    Kobayashi, Masayuki; Abe, Jiro

    2012-12-26

    Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.

  14. Large Scale Reduction of Graphite Oxide

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction...

  15. Graphite Oxide and Aromatic Amines : Size Matters

    NARCIS (Netherlands)

    Spyrou, Konstantinos; Calvaresi, Matteo; Diamanti, Evmorfi A. K.; Tsoufis, Theodoros; Gournis, Dimitrios; Rudolf, Petra; Zerbetto, Francesco

    2015-01-01

    Experimental and theoretical studies are performed in order to illuminate, for first time, the intercalation mechanism of polycyclic aromatic molecules into graphite oxide. Two representative molecules of this family, aniline and naphthalene amine are investigated. After intercalation, aniline

  16. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  17. Analysis of Picosecond Pulsed Laser Melted Graphite

    Science.gov (United States)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  18. Analysis of picosecond pulsed laser melted graphite

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm/sup -1/ and the disorder-induced mode at 1360 cm/sup -1/, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  19. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  20. Immobilization of Rocky Flats Graphite Fines Residue

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1999-01-01

    The development of the immobilization process for graphite fines has proceeded through a series of experimental programs. The experimental procedures and results from each series of experiments are discussed in this report

  1. Poly (propylene carbonate)/exfoliated graphite nanocomposites ...

    Indian Academy of Sciences (India)

    propylene carbonate)/exfoliated graphite nanocomposites: selective adsorbent for the extraction and detection of gold(III). Sher Bahadar Khan Hadi M Marwani Jongchul Seo Esraa M Bakhsh Kalsoom Akhtar Dowan Kim Abdullah M Asiri. Volume 38 ...

  2. The impacts of lithium and silicon coating on the W source in EAST

    Directory of Open Access Journals (Sweden)

    Hongmin Mao

    2017-08-01

    Full Text Available Application of lithium (Li or silicon (Si wall coating in the Experimental Advanced Superconducting Tokamak (EAST has proven to be an effective method to reduce fuel recycling and control impurity level, and also to improve the plasma performance. In 2014, the upper graphite divertor in EAST was upgraded into a full tungsten (W one with ITER-like actively water-cooled monoblock structure. Note that there is still large surface area of first wall covered by graphite tiles, including the lower divertor, NBI shine through armor, the outboard guard limiters, etc. In 2016 spring campaign, both Li and Si were used to coat the first wall in experimental sequences that lasted more than one month each. The spectroscopic observation reveals that compared to Si coating, Li coating more effectively suppresses in-vessel impurities, thus mitigating the W source in upper divertor. This is further quantified by a reduction of the effective W sputtering yield calculation. Carbon (C impurity is suggested as the main impurity governing W sputtering, and correlates inverselywith the wall coating evolution during both one-day experiments and the whole campaign. The impurity concentration increases measurably after every vacuum vessel exposure to air during the campaign; substantial time is required for impurities to return to baseline levels. Real-time Li aerosol injection into the upper divertor effectively reduces the W sputtering by cooling the edge plasma and dissipating the power flux to divertor target, consequently providing an active tool for radiation divertor control.

  3. A general classification of silicon utilizing organisms

    Science.gov (United States)

    Das, P.; Das, S.

    2010-12-01

    Silicon utilizing organisms may be defined as organisms with high silicon content (≥ 1% dry weight) and they can metabolize silicon with or without demonstrable silicon transporter genes (SIT) in them(Das,2010). Silicon is the second most abundant element in the lithosphere (27.70%) and it is as important as phosphorus and magnesium (0.03%) in the biota. Hydrated silica represents the second most abundant biogenic mineral after carbonate minerals. Silicon is accumulated and metabolized by some prokaryotes, and Si compounds can stimulate the growth of a range of fungi. It is well known that Si is essential for diatoms. In mammals, Si is considered an essential trace element, required in bone, cartilage and connective tissue formation, enzymatic activities and other metabolic processes. Silicon was suggested to act as a phosphoprotein effector in bone. In mammals, Si is also reported to positively influence the immune system and to be required for lymphocyte proliferation. The aqueous chemistry of Si is dominated by silicic acid at biological pH ranges. Monosilicic acid can form stable complexes with organic hydroxy-containing molecules . Biosilica also has been identified associated with various biomolecules including proteins and carbohydrates. There are main seven groups of silicon utilizing organisms belonging to Gram positive bacteria, algae, protozoa, sponges, fungi, lichens, and monocotyledon plants. In each group again all the members are not silicon utilizing organisms, thus selective members in each group are further classified depending their degree of silicon utilization. Important silicon utilizing bacteria are Mycobacteria, Nocardia, Streptomyces, Staphylococcus, Bacillus, Lactobacillus spp. etc., Important silicon utilizing algae are Centrobacillariophyceae, Pennatibacillariophyceae and Chrysophyceae. Many protozoa belonging to Heterokonta, Choanoflagellida, Actinopoda are well known silicon utilizing microorganisms. Hexactinellida ( glass sponges

  4. Energy evaluations, graphite corrosion in Bugey I

    International Nuclear Information System (INIS)

    Brisbois, J.; Fiche, C.

    1967-01-01

    Bugey I presents a problem of radiolytic corrosion of the graphite by the CO 2 under pressure at high temperature. This report aims to evaluate the energy transferred to the gas by a Bugey I core cell, in normal operating conditions. The water, the carbon oxides and the hydrogen formed quantities are deduced as the consumed graphite and methane. Experimental studies are realized in parallel to validate the presented results. (A.L.B.)

  5. Elastic properties of graphite and interstitial defects

    International Nuclear Information System (INIS)

    Ayasse, J.-B.

    1977-01-01

    The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr

  6. Silicon plasmonics at midinfrared using silicon-insulator-silicon platform

    Science.gov (United States)

    Gamal, Rania; Shafaay, Sarah; Ismail, Yehea; Swillam, Mohamed A.

    2017-01-01

    We propose devices based on doped silicon. Doped silicon is designed to act as a plasmonic medium in the midinfrared (MIR) range. The surface plasmon frequency of the doped silicon can be tuned within the MIR range, which gives rise to useful properties in the material's dispersion. We propose various plasmonic configurations that can be utilized for silicon on-chip applications in MIR. These devices have superior performance over conventional silicon devices and provide unique functionalities such as 90-sharp degree bends, T- and X-junction splitters, and stubs. These devices are CMOS-compatible and can be easily integrated with other electronic devices. In addition, the potential for biological and environmental sensing using doped silicon nanowires is demonstrated.

  7. Measurement of the cleavage energy of graphite.

    Science.gov (United States)

    Wang, Wen; Dai, Shuyang; Li, Xide; Yang, Jiarui; Srolovitz, David J; Zheng, Quanshui

    2015-08-28

    The basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m(-2) for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitive to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m(-2), is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches.

  8. Silicon photonics for telecommunications and biomedicine

    CERN Document Server

    Fathpour, Sasan

    2011-01-01

    Given silicon's versatile material properties, use of low-cost silicon photonics continues to move beyond light-speed data transmission through fiber-optic cables and computer chips. Its application has also evolved from the device to the integrated-system level. A timely overview of this impressive growth, Silicon Photonics for Telecommunications and Biomedicine summarizes state-of-the-art developments in a wide range of areas, including optical communications, wireless technologies, and biomedical applications of silicon photonics. With contributions from world experts, this reference guides

  9. Release of Si from Silicon, a Ferrosilicon (FeSi) Alloy and a Synthetic Silicate Mineral in Simulated Biological Media

    Science.gov (United States)

    Herting, Gunilla; Jiang, Tao; Sjöstedt, Carin; Odnevall Wallinder, Inger

    2014-01-01

    Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media. PMID:25225879

  10. CFD investigating the air ingress accident for a HTGR simulation of graphite corrosion oxidation

    International Nuclear Information System (INIS)

    Ferng, Y.M.; Chi, C.W.

    2012-01-01

    Highlights: ► A CFD model is proposed to investigate graphite oxidation corrosion in the HTR-10. ► A postulated air ingress accident is assumed in this paper. ► Air ingress flowrate is the predicted result, instead of the preset one. ► O 2 would react with graphite on pebble surface, causing the graphite corrosion. ► No fuel exposure is predicted to be occurred under the air ingress accident. - Abstract: Through a compressible multi-component CFD model, this paper investigates the characteristics of graphite oxidation corrosion in the HTR-10 core under the postulated accident of gas duct rupture. In this accident, air in the steam generator cavity would enter into the core after pressure equilibrium is achieved between the core and the cavity, which is also called as the air ingress accident. Oxygen in the air would react with graphite on pebble surface, subsequently resulting in oxidation corrosion and challenging fuel integrity. In this paper, characteristics of graphite oxidation corrosion during the air ingress accident can be reasonably captured, including distributions of graphite corrosion amount on the different cross-sections, time histories of local corrosion amount at the monitoring points and overall corrosion amount in the core, respectively. Based on the transient simulation results, the corrosion pattern and its corrosion rate would approach to the steady-state conditions as the accident continuously progresses. The total amount of graphite corrosion during a 3-day accident time is predicted to be about 31 kg with the predicted asymptotic corrosion rate. This predicted value is less than that from the previous work of Gao and Shi.

  11. Statistical Comparison of the Baseline Mechanical Properties of NBG-18 and PCEA Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Mark C. Carroll; David T. Rohrbaugh

    2013-08-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR), a graphite-moderated, helium-cooled design that is capable of producing process heat for power generation and for industrial process that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is endeavoring to minimize the conservative estimates of as-manufactured mechanical and physical properties by providing comprehensive data that captures the level of variation in measured values. In addition to providing a comprehensive comparison between these values in different nuclear grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons and variations between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between the two grades of graphite that were initially favored in the two main VHTR designs. NBG-18, a medium-grain pitch coke graphite from SGL formed via vibration molding, was the favored structural material in the pebble-bed configuration, while PCEA, a smaller grain, petroleum coke, extruded graphite from GrafTech was favored for the prismatic configuration. An analysis of the comparison between these two grades will include not only the differences in fundamental and statistically-significant individual strength levels, but also the differences in variability in properties within each of the grades that will ultimately provide the basis for the prediction of in-service performance. The comparative performance of the different types of nuclear grade graphites will continue to evolve as thousands more specimens are fully characterized from the numerous grades of graphite being evaluated.

  12. Large-area graphene films by simple solution casting of edge-selectively functionalized graphite.

    Science.gov (United States)

    Bae, Seo-Yoon; Jeon, In-Yup; Yang, Jieun; Park, Noejung; Shin, Hyeon Suk; Park, Sungjin; Ruoff, Rodney S; Dai, Liming; Baek, Jong-Beom

    2011-06-28

    We report edge-selective functionalization of graphite (EFG) for the production of large-area uniform graphene films by simply solution-casting EFG dispersions in dichloromethane on silicon oxide substrates, followed by annealing. The resultant graphene films show ambipolar transport properties with sheet resistances of 0.52-3.11 kΩ/sq at 63-90% optical transmittance. EFG allows solution processing methods for the scalable production of electrically conductive, optically transparent, and mechanically robust flexible graphene films for use in practice.

  13. Incident energy dependence of scattering behavior of water molecules on Si (100) and graphite surfaces

    Science.gov (United States)

    Kihara, G.; Kotsubo, Y.; Yoshimoto, Y.; Kinefuchi, I.; Takagi, S.

    2016-11-01

    The interaction between water molecules and solid surfaces has a great impact on water vapor flows in nanostructures. We conduct molecular beam scattering experiments covering the incident energy range corresponding to the thermal energy at room temperature to investigate the scattering behavior of water molecules on silicon and graphite surfaces. The incident energy dependence of the scattering distributions exhibits opposite trends on these surfaces. Molecular dynamics simulations reveal that the difference is caused by the inertia effect of the incident molecules and the surface corrugations.

  14. Dust explosion hazard in ITER: Explosion indices of fine graphite and tungsten dusts and their mixtures

    International Nuclear Information System (INIS)

    Denkevits, A.; Dorofeev, S.

    2005-01-01

    Addressing the dust explosion hazard in ITER, a standard method with a 20-l-spherical combustion chamber was used to measure the explosion indices of fine graphite and tungsten dusts and their mixtures. The indices include maximum overpressure, maximum rate of pressure rise, and lower explosion concentration limit. The effect of dust particle size was studied on the explosion behaviour of graphite dusts in the range 4-45 μm. The explosion indices of 1 μm tungsten dust and its mixtures with 4 μm graphite dust were measured. The graphite dust particle size is shown to have a profound effect on the explosion characteristics. The finest dust features the highest maximum overpressure and rate of pressure rise, and the lowest explosible concentration. Four tungsten/graphite dust mixtures with molar ratios of W/C = 1/30, 1/4, 1/1, and 3/1 were tested at the concentrations at which the dust combustion consumed all the oxygen in air producing maximum overpressures and rates of pressure rise. The maximum overpressure decreases slightly with increasing tungsten content, while the maximum rate of pressure rise has a pronounced peak at W/C=1/1, i.e. this mixture burns faster than both pure graphite and pure tungsten dusts alone. All the tested dusts belong to the mildest explosion class

  15. Growth of carbon nanotubes in arc plasma treated graphite disc: microstructural characterization and electrical conductivity study

    Science.gov (United States)

    Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.

    2018-03-01

    Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.

  16. Source Term Analysis of the Irradiated Graphite in the Core of HTR-10

    Directory of Open Access Journals (Sweden)

    Xuegang Liu

    2017-01-01

    Full Text Available The high temperature gas-cooled reactor (HTGR has potential utilization due to its featured characteristics such as inherent safety and wide diversity of utilization. One distinct difference between HTGR and traditional pressurized water reactor (PWR is the large inventory of graphite in the core acting as reflector, moderator, or structure materials. Some radionuclides will be generated in graphite during the period of irradiation, which play significant roles in reactor safety, environmental release, waste disposal, and so forth. Based on the actual operation of the 10 MW pebble bed high temperature gas-cooled reactor (HTR-10 in Tsinghua University, China, an experimental study on source term analysis of the irradiated graphite has been done. An irradiated graphite sphere was randomly collected from the core of HTR-10 as sample in this study. This paper focuses on the analytical procedure and the establishment of the analytical methodology, including the sample collection, graphite sample preparation, and analytical parameters. The results reveal that the Co-60, Cs-137, Eu-152, and Eu-154 are the major γ contributors, while H-3 and C-14 are the dominating β emitting nuclides in postirradiation graphite material of HTR-10. The distribution profiles of the above four nuclides are also presented.

  17. Beryllium and graphite performance in ITER during a disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Ehst, D.A.; Gahl, J.

    1993-09-01

    Plasma disruptions are considered one of the most limiting factors for successful operation of magnetic fusion reactors. During a disruption, a sharp, rapid release of energy strikes components such as the divertor or limiter plates. Severe surface erosion and melting of these components may then occur. The amount of material eroded from both ablation and melting is important to the reactor design and component lifetime. The anticipated performance of both beryllium and graphite as plasma-facing materials during such abnormal events is analyzed and compared. Recent experimental data obtained with both plasma guns and electron beams are carefully evaluated and compared to results of analytical modeling, including vapor shielding effect. Initial results from plasma gun experiments indicate that the Be erosion rate is about five times larger than that for a graphite material under the same disruption conditions. Key differences between simulation experiments and reactor disruption on the net erosion rate, and consequently on the lifetime of the divertor plate, are discussed in detail. The advantages and disadvantages of Be over graphite as a divertor plasma-facing material are discussed

  18. Surface analysis of graphite fiber reinforced polyimide composites

    Science.gov (United States)

    Messick, D. L.; Progar, D. J.; Wightman, J. P.

    1983-01-01

    Several techniques have been used to establish the effect of different surface pretreatments on graphite-polyimide composites. Composites were prepared from Celion 6000 graphite fibers and the polyimide LARC-160. Pretreatments included mechanical abrasion, chemical etching and light irradiation. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used in the analysis. Contact angle of five different liquids of varying surface tensions were measured on the composites. SEM results showed polymer-rich peaks and polymer-poor valleys conforming to the pattern of the release cloth used durng fabrication. Mechanically treated and light irradiated samples showed varying degrees of polymer peak removal, with some degradation down to the graphite fibers. Minimal changes in surface topography were observed on concentrations of surface fluorine even after pretreatment. The light irradiation pretreatment was most effective at reducing surface fluorine concentrations whereas chemical pretreatment was the least effective. Critical surface tensions correlated directly with the surface fluorine to carbon ratios as calculated from XPS.

  19. Graphite core stability during 'care and maintenance' and 'safe storage'

    International Nuclear Information System (INIS)

    Wickham, A.J.; Marsden, B.J.; Sellers, R.M.; Pilkington, N.J.

    1998-01-01

    The current decommissioning strategy for the graphite-moderated reactors operated by Magnox Electric plc, Nuclear Electric Ltd and Scottish Nuclear Ltd is to delay dismantling and to initiate a monitored period of care and maintenance followed by a period of safe storage totaling up to 135 years. This philosophy has the considerable advantage of permitting the majority of radionuclides to decay, thereby minimising personnel dose during dismantling which itself will require far less complex remote-handling equipment. It also defers the disposal of the graphite and other components so that the provision of a deep land-based repository can be achieved. A comprehensive review of all relevant data on the chemical, physical and mechanical properties of the graphite and its potential reactions, including radioactivity transport, has been undertaken in order to demonstrate that there are no potential mechanisms which might lead to degradation of the core during the storage period. It is concluded that no significant experimental work is necessary to support the safe storage philosophy although, since the ingress of rainwater over long periods of time cannot be assumed incredible, a number of anomalies in chemical leaching rates may be worthy of re-examination. No other potential chemical reactions, such as the radiolytic formation of nitric acid leading to corrosion problems, are considered significant. (author)

  20. Roughness analysis of graphite surfaces of casting elements

    Directory of Open Access Journals (Sweden)

    M. Wieczorowski

    2010-01-01

    Full Text Available In the paper profilometric measurements of graphite casting elements were described. Basic topics necessary to assess roughness of their surfaces and influence of asperities on various properties related to manufacturing and use were discussed. Stylus profilometer technique of surface irregularities measurements including its limits resulting from pickup geometry and its contact with measured object were ana-lyzed. Working principle of tactile profilometer and phenomena taking place during movement of a probe on a measured surface were shown. One of the important aspects is a flight phenomenon, which means movement of a pickup without contact with a surface during inspection resulting from too high scanning speed. results of comparison research for graphite elements of new and used mould and pin composing a set were presented. Using some surface roughness, waviness and primary profile parameters (arithmetical mean of roughness profile heights Ra, biggest roughness profile height Rz, maximum primary profile height Pt as well as maximum waviness profile height Wt a possibility of using surface asperities parameters as a measure of wear of chill graphite elements was proved. The most often applied parameter is Ra, but with a help of parameters from W and P family it was shown, that big changes occur not only for roughness but also for other components of surface irregularities.

  1. Natural and synthetic graphite powders: production and main industrial uses; Graphites naturels et synthetiques pulverulents

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, H.A. [Timcal Graphite et Carton, CH (Switzerland); L' heureux, J. [Timcal Graphite et Carton, Quebec (Canada)

    2006-03-15

    Large volumes of natural and synthetic graphite powders are yearly used worldwide in applications as different as alkaline and lithium-ion batteries, refractory, lubricant and carbon brushes for instance... After a short description of the conventional processes used to obtain these powders, the role of graphite material into chosen applications is detailed. (authors)

  2. Expanding the versatility of silicon carbide thin films and nanowires

    Science.gov (United States)

    Luna, Lunet

    Silicon carbide (SiC) based electronics and sensors hold promise for pushing past the limits of current technology to achieve small, durable devices that can function in high-temperature, high-voltage, corrosive, and biological environments. SiC is an ideal material for such conditions due to its high mechanical strength, excellent chemical stability, and its biocompatibility. Consequently, SiC thin films and nanowires have attracted interest in applications such as micro- and nano-electromechanical systems, biological sensors, field emission cathodes, and energy storage devices. However to fully realize SiC in such technologies, the reliability of metal contacts to SiC at high temperatures must be improved and the nanowire growth mechanism must be understood to enable strict control of nanowire crystal structure and orientation. Here, we present a novel metallization scheme, utilizing solid-state graphitization of SiC, to improve the long-term reliability of Pt/Ti contacts to polycrystalline n-type SiC films at high temperature. The metallization scheme includes an alumina protection layer and exhibits low, stable contact resistivity even after long-term (500 hr) testing in air at 450 ºC. We also report the crystal structure and growth mechanism of Ni-assisted silicon carbide nanowires using single-source precursor, methyltrichlorosilane. The effects of growth parameters, such as substrate and temperature, on the structure and morphology of the resulting nanowires will also be presented. Overall, this study provides new insights towards the realization of novel SiC technologies, enabled by advanced electron microscopy techniques located in the user facilities at the Molecular Foundry in Berkeley, California. This work was performed in part at the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  3. Silicon photonics for multicore fiber communication

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices....

  4. Identification of a Mammalian Silicon Transporter

    NARCIS (Netherlands)

    Ratcliffe, Sarah; Jugdaohsingh, Ravin; Ma, Jian Feng; Mitani-Ueno, Nakimi; Vivancos, Julien; Deshmukh, Rupesh; Boekschoten, Mark; Muller, Michael; Mawhinney, Robert; Marron, Alan; Isenring, Paul; Kinrade, Stephen; Bélanger, Richard; Powell, Jonathan

    2017-01-01

    Silicon (Si) has long been known to play a major physiological role in certain organisms, including some sponges and many diatoms and higher plants, leading to the recent identification of multiple proteins responsible for silicon transport in a range of algal and plant species. In mammals, despite

  5. EEL Calculations and Measurements of Graphite and Graphitic-CNx Core-Losses

    International Nuclear Information System (INIS)

    Seepujak, A; Bangert, U; Harvey, A J; Blank, V D; Kulnitskiy, B A; Batov, D V

    2006-01-01

    Core EEL spectra of MWCNTs (multi-wall carbon nanotubes) grown in a nitrogen atmosphere were acquired utilising a dedicated STEM equipped with a Gatan Enfina system. Splitting of the carbon K-edge π* resonance into two peaks provided evidence of two nondegenerate carbon bonding states. In order to confirm the presence of a CN x bonding state, a full-potential linearised augmented plane-wave method was utilised to simulate core EEL spectra of graphite and graphitic-CN x compounds. The simulations confirmed splitting of the carbon K-edge π* resonance in graphitic-CN x materials, with the pristine graphite π* resonance remaining unsplit. The simulations also confirmed the increasing degree of amorphicity with higher concentrations (25%) of substitutional nitrogen in graphite

  6. Removal of 14C from Irradiated Graphite for Graphite Recycle and Waste Volume Reduction

    International Nuclear Information System (INIS)

    Dunzik-Gougar, Mary Lou; Windes, Will; Marsden, Barry

    2014-01-01

    The aim of the research presented here was to identify the chemical form of 14 C in irradiated graphite. A greater understanding of the chemical form of this longest-lived isotope in irradiated graphite will inform not only management of legacy waste, but also development of next generation gas-cooled reactors. Approximately 250,000 metric tons of irradiated graphite waste exists worldwide, with the largest single quantity originating in the Magnox and AGR reactors of UK. The waste quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation I gas-cooled, graphite moderated reactors. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 14 C, with a half-life of 5730 years.

  7. Radiation cured epoxy acrylate composites based on graphene, graphite oxide and functionalized graphite oxide with enhanced properties.

    Science.gov (United States)

    Guo, Yuqiang; Bao, Chenlu; Song, Lei; Qian, Xiaodong; Yuan, Bihe; Hu, Yuan

    2012-03-01

    Epoxy acrylate (EA) composites containing graphite oxide (GO), graphene and nitrogen-double bond functionalized graphite oxide (FGO) were fabricated using UV-radiation and electron beam radiation via in-situ polymerization. Graphene and FGO were homogenously dispersed in EA matrix and enhanced properties, including thermal stability, flame retardancy, electrical conductivity and reduced deleterious gas releasing in thermo decomposition were obtained. Microscale combustion colorimeter results illustrated improved flame retardancy; EA/FGO composites achieved a 29.7% reduction in total heat release (THR) when containing only 0.1% FGO and a 38.6% reduction in peak-heat release rate (PHRR) when containing 3% FGO. The onset decomposition temperatures were delayed and the maximum decomposition values were reduced, according to thermogravimetric analysis which indicated enhanced thermal stabilities. The electrical conductivity was increased by 6 orders of magnitude (3% graphene) and the deleterious gas released during the thermo decomposition was reduced with the addition of all the graphite samples. This study represented a new approach to functionalize GO with flame retardant elements and active curable double bond to achieve better dispersion of GO into polymer matrix to obtain nanocomposites and paved a way for achieving graphene-based materials with high-performance of graphene in enhancement of flame retardancy of polymers for practical applications.

  8. Polymeric photocatalysts based on graphitic carbon nitride.

    Science.gov (United States)

    Cao, Shaowen; Low, Jingxiang; Yu, Jiaguo; Jaroniec, Mietek

    2015-04-01

    Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. LSSA large area silicon sheet task continuous Czochralski process development

    Science.gov (United States)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  10. Battery, especially for portable devices, has an anode containing silicon

    NARCIS (Netherlands)

    Kan, S.Y.

    2002-01-01

    The anode (2) contains silicon. A battery with a silicon-containing anode is claimed. An Independent claim is also included for a method used to make the battery, comprising the doping of a silicon substrate (1) with charge capacity-increasing material (preferably boron, phosphorous or arsenic),

  11. A tracer aided study on silicon chemistry in biological systems

    NARCIS (Netherlands)

    Brasser, H.J.

    2009-01-01

    Silicon (Si) is omnipresent in nature, and it is involved in important but diverse roles in a broad range of organisms, including diatoms, higher plants and humans. Some organisms, like the diatoms, need high amounts of silicon, and master silicon chemistry to a high extend using several enzymes.

  12. Cerebral migration of intraocular silicone oil: an MRI study

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Milea, Dan; Løgager, Vibeke

    2011-01-01

    for retinal detachment. Methods: Nineteen patients included in this study were referred for silicone oil removal after uncomplicated retinal detachment surgery using internal silicone oil tamponade. Patients with a previous history of intraocular silicone oil, glaucoma or optic pit were excluded. After...

  13. Silicon-on ceramic process. Silicon sheet growth and device developmentt for the Large-Area Silicon Sheet Task of the Low-Cost Solar Array Project. Quarterly report No. 13, October 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P W; Zook, J D; Grung, B L; McHenry, K; Schuldt, S B

    1980-02-15

    Research on the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon is reported. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 11 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A variety of ceramic materials have been dip coated with silicon. The investigation has shown that mullite substrates containing an excess of SiO/sub 2/ best match the thermal expansion coefficient of silicon and hence produce the best SOC layers. With such substrates, smooth and uniform silicon layers 25 cm/sup 2/ in area have been achieved with single-crystal grains as large as 4 mm in width and several cm in length. Crystal length is limited by the length of the substrate. The thickness of the coating and the size of the crystalline grains are controlled by the temperature of the melt and the rate at which the substrate is withdrawn from the melt. The solar-cell potential of this SOC sheet silicon is promising. To date, solar cells with areas from 1 to 10 cm/sup 2/ have been fabricated from material with an as-grown surface. Conversion efficiencies of about 10 percent with antireflection (AR) coating have been achieved. Such cells typically have open-circuit voltage and short-circuit current densities of 0.55V and 23 mA/cm/sup 2/, respectively.

  14. Glassy carbon coated graphite for nuclear applications

    International Nuclear Information System (INIS)

    Delpeux S; Cacciaguerra T; Duclaux L

    2005-01-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF 2 , ThF 4 , and UF 4 ) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm 3 and closed pores with nano-metric size (∼ 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The deposit regions where

  15. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    Science.gov (United States)

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  16. 76 FR 63282 - Foreign-Trade Zone 140-Flint, Michigan; Application for Subzone; Dow Corning Corporation (Silicon...

    Science.gov (United States)

    2011-10-12

    ... products including elastomers, resins, fluids, silanes, polymers, gums, sealants and emulsions. Components..., acticide, organosilane solution, silicone resin solution, silicone dispersion, carbopol, polycerin and KBM...

  17. Effect of the packing structure of silicon chunks on the melting process and carbon reduction in Czochralski silicon crystal growth

    Science.gov (United States)

    Liu, Xin; Nakano, Satoshi; Kakimoto, Koichi

    2017-06-01

    Carbon (C) contamination in Czochralski silicon (CZ-Si) crystal growth mainly originates from carbon monoxide (CO) generation on the graphite components, which reaches a maximum during the melting stage. Loading a crucible with poly-Si feedstock includes many technical details for optimization of the melting and growth processes. To investigate the effect of the packing structure of Si chunks on C accumulation in CZ-Si crystal growth, transient global simulations of heat and mass transport were performed for the melting process with different packing structures of poly-Si. The heat transport modeling took into account the effective thermal conductivity (ETC) of the Si feedstock, which is affected by the packing structure. The effect of the chunk size on the melting process and C accumulation were investigated by parametric studies of different packing structures. The heat transport and melting process in the crucible were affected by the ETC and the emissivity of the Si feedstock. It was found that smaller Si chunks packed in the upper part could speed up the melting process and smooth the power profile. Decreasing the duration of the melting process is favorable for reduction of C contamination in the Si feedstock. Parametric studies indicated that optimization of the melting process by the packing structure is possible and essential for C reduction in CZ-Si crystal growth.

  18. All-solid-state supercapacitors on silicon using graphene from silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bei; Ahmed, Mohsin; Iacopi, Francesca, E-mail: f.iacopi@griffith.edu.au [Environmental Futures Research Institute, Griffith University, Nathan 4111 (Australia); Wood, Barry [Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia 4072 (Australia)

    2016-05-02

    Carbon-based supercapacitors are lightweight devices with high energy storage performance, allowing for faster charge-discharge rates than batteries. Here, we present an example of all-solid-state supercapacitors on silicon for on-chip applications, paving the way towards energy supply systems embedded in miniaturized electronics with fast access and high safety of operation. We present a nickel-assisted graphitization method from epitaxial silicon carbide on a silicon substrate to demonstrate graphene as a binder-free electrode material for all-solid-state supercapacitors. We obtain graphene electrodes with a strongly enhanced surface area, assisted by the irregular intrusion of nickel into the carbide layer, delivering a typical double-layer capacitance behavior with a specific area capacitance of up to 174 μF cm{sup −2} with about 88% capacitance retention over 10 000 cycles. The fabrication technique illustrated in this work provides a strategic approach to fabricate micro-scale energy storage devices compatible with silicon electronics and offering ultimate miniaturization capabilities.

  19. All-solid-state supercapacitors on silicon using graphene from silicon carbide

    Science.gov (United States)

    Wang, Bei; Ahmed, Mohsin; Wood, Barry; Iacopi, Francesca

    2016-05-01

    Carbon-based supercapacitors are lightweight devices with high energy storage performance, allowing for faster charge-discharge rates than batteries. Here, we present an example of all-solid-state supercapacitors on silicon for on-chip applications, paving the way towards energy supply systems embedded in miniaturized electronics with fast access and high safety of operation. We present a nickel-assisted graphitization method from epitaxial silicon carbide on a silicon substrate to demonstrate graphene as a binder-free electrode material for all-solid-state supercapacitors. We obtain graphene electrodes with a strongly enhanced surface area, assisted by the irregular intrusion of nickel into the carbide layer, delivering a typical double-layer capacitance behavior with a specific area capacitance of up to 174 μF cm-2 with about 88% capacitance retention over 10 000 cycles. The fabrication technique illustrated in this work provides a strategic approach to fabricate micro-scale energy storage devices compatible with silicon electronics and offering ultimate miniaturization capabilities.

  20. Pressure and graphite effects on electrical conductivity in pyroxene

    Science.gov (United States)

    Wang, D.; Liu, T.; Shen, K.; Li, B.

    2017-12-01

    The geophysical observations including magnetotelluric (MT) and geomagnetic deep sounding show the distribution of electrical conductivity in the Earth's interior. The laboratory-based conductivity measurements of minerals and rocks are usually used to interpret the geophysical observations. Pyroxene is the second most abundant components in the upper mantle, and the electrical conductivity of pyroxene is important to understanding the bulk electrical conductivity. The electrical conductivity of a mineral is affected by many factors, such as its chemical composition, temperature, pressure. Here we report the effects of pressure and graphite on the electrical conductivity of pyroxene and applied to interpretation of MT observation. The starting materials are natural of orthopyroxene and clinopyroxe crystals. A powder sample with grain size 10 um was packed in a Mo capsule and hot-pressed at high pressures and temperatures using a 1000-ton Walker-type uniaxial split-cylinder apparatus. A mixture of pyroxene and a few percent of diamond was annealed at high pressure and temperature. All the hot-pressed samples before and after electrical conductivity measurements, were characterized by scanning electron microscopy, Fourier-Transform Infrared and Raman spectroscopy. High pressure conductivity experiments were carried out in a Walker-type multi-anvil apparatus using a 14/8 assembly. We use a Solartron 1260 Impedance/Gain -phase analyzer with 1V applied voltage within a frequency range of 1M-0.1 Hz to collect data. Complex impedance data on were collected in several heating and cooling cycles The electrical conductivity of pyroxene was made at 4,7,10 GPa, and electrical conductivity of the graphite-bearing pyroxene was measured at 4GPa. The results show the electrical conductivity decrease with the increasing of pressure, which may correspond to the transform from orthopyroxene to clinopyroxene. The results can be used to explain a drop of the electrical conductivity in

  1. Characterization of radiation damage induced by swift heavy ions in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Christian

    2016-05-15

    Graphite is a classical material in neutron radiation environments, being widely used in nuclear reactors and power plants as a moderator. For high energy particle accelerators, graphite provides ideal material properties because of the low Z of carbon and its corresponding low stopping power, thus when ion projectiles interact with graphite is the energy deposition rather low. This work aims to improve the understanding of how the irradiation with swift heavy ions (SHI) of kinetic energies in the range of MeV to GeV affects the structure of graphite and other carbon-based materials. Special focus of this project is given to beam induced changes of thermo-mechanical properties. For this purpose the Highly oriented pyrolytic graphite (HOPG) and glassy carbon (GC) (both serving as model materials), isotropic high density polycrystalline graphite (PG) and other carbon based materials like carbon fiber carbon composites (CFC), chemically expanded graphite (FG) and molybdenum carbide enhanced graphite composites (MoC) were exposed to different ions ranging from {sup 131}Xe to {sup 238}U provided by the UNILAC accelerator at GSI in Darmstadt, Germany. To investigate structural changes, various in-situ and off-line measurements were performed including Raman spectroscopy, x-ray diffraction and x-ray photo-electron spectroscopy. Thermo-mechanical properties were investigated using the laser-flash-analysis method, differential scanning calorimetry, micro/nano-indentation and 4-point electrical resistivity measurements. Beam induced stresses were investigated using profilometry. Obtained results provided clear evidence that ion beam-induced radiation damage leads to structural changes and degradation of thermal, mechanical and electrical properties of graphite. PG transforms towards a disordered sp2 structure, comparable to GC at high fluences. Irradiation-induced embrittlement is strongly reducing the lifetime of most high-dose exposed accelerator components. For

  2. Properties of graphite composites based on natural and synthetic graphite powders and a phenolic novolac binder

    Science.gov (United States)

    Magampa, P. P.; Manyala, N.; Focke, W. W.

    2013-05-01

    Model graphite composites, similar to those used in nuclear applications as encasement material in fuel pebbles, were prepared by uniaxial cold compression moulding. They contained natural flake graphite, synthetic graphite and 20 wt.% phenolic novolac resin binder. The materials were carbonised at 900 °C in a nitrogen atmosphere and then annealed at 1800 °C in helium atmosphere. The X-ray diffraction studies showed that the graphite in these composites had hexagonal crystal structure after annealing. Raman spectroscopy revealed the presence of the structurally disordered phase derived from the carbonised resin. Optical microscopy revealed a flake-like microstructure for composites containing mainly natural graphite and needle-coke like particles for composites containing mainly synthetic graphite. The composites featured anisotropic property behaviour as the particles were partially aligned in a direction perpendicular to the compression direction. Thermogravimetric analysis studies showed that the annealed graphite composites were stable in air to 650 °C. The linear thermal expansion coefficients measured by thermomechanical analysis (20-600 °C) in the direction of pressing were in the range 5-9 × 10-6 K-1 and in the range 1.2-2 × 10-6 K-1 in the direction normal to pressing. The thermal conductivity of the composites were measured using Xenon flash method from 100 to 1000 °C and the values ranged from 19 to 30 W m-1 K-1.

  3. Carbon Nanotubes Growth on Graphite Fibers

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanotubes (CNT) were synthesized on graphite fibers by thermal Chemical Vapor Deposition (CVD). On the fiber surface, iron nanoparticles are coated and act as catalysts for CNT growth. The growth temperature ranges from 550 to 1000 C at an ambient pressure. Methane and hydrogen gases with methane contents of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than 800 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in a rough fiber surface with no CNT grown on the surface. When the growth temperature is relatively low (650 - 800 C), CNT are fabricated on the graphite surface with catalytic particles on the nanotube top ends. Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT can be determined, depending on methane concentrations.

  4. Graphite moderated reactor for thermoelectric generation

    International Nuclear Information System (INIS)

    Akazawa, Issei; Yamada, Akira; Mizogami, Yorikata

    1998-01-01

    Fuel rods filled with cladded fuel particles distributed and filled are buried each at a predetermined distance in graphite blocks situated in a reactor core. Perforation channels for helium gas as coolants are formed to the periphery thereof passing through vertically. An alkali metal thermoelectric power generation module is disposed to the upper lid of a reactor container while being supported by a securing receptacle. Helium gas in the coolant channels in the graphite blocks in the reactor core absorbs nuclear reaction heat, to be heated to a high temperature, rises upwardly by the reduction of the specific gravity, and then flows into an upper space above the laminated graphite block layer. Then the gas collides against a ceiling and turns, and flows down in a circular gap around the circumference of the alkali metal thermoelectric generation module. In this case, it transfers heat to the alkali metal thermoelectric generation module. (I.N.)

  5. New Nanostructured Li 2 S/Silicon Rechargeable Battery with High Specific Energy

    KAUST Repository

    Yang, Yuan

    2010-04-14

    Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, sulfur-based cathodes have to be paired with metallic lithium anodes as the lithium source, which can result in serious safety issues. Here we report a novel lithium metal-free battery consisting of a Li 2S/mesoporous carbon composite cathode and a silicon nanowire anode. This new battery yields a theoretical specific energy of 1550 Wh kg ?1, which is four times that of the theoretical specific energy of existing lithium-ion batteries based on LiCoO2 cathodes and graphite anodes (∼410 Wh kg?1). The nanostructured design of both electrodes assists in overcoming the issues associated with using sulfur compounds and silicon in lithium-ion batteries, including poor electrical conductivity, significant structural changes, and volume expansion. We have experimentally realized an initial discharge specific energy of 630 Wh kg ?1 based on the mass of the active electrode materials. © 2010 American Chemical Society.

  6. Effect of bainite transformation and retained austenite on mechanical properties of austempered spheroidal graphite cast steel

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Toshio; Abe, Toshihiko; Tada, Shuji [Tohoku National Industrial Research Inst., Sendai (Japan). Materials Engineering Div.

    1996-06-01

    Austempered ductile iron (ADI) has excellent mechanical properties, but its Young`s modulus is low. Austempered spheroidal graphite cast steel (AGS) has been developed in order to obtain a new material with superior mechanical properties to ADI. Its carbon content (approximately 1.0 pct) is almost one-third that of a standard ADI; thus, the volume of graphite is also less. Young`s modulus of AGS is 195 to 200 GPa and is comparable to that of steel. Austempered spheroidal graphite cast steel has an approximately 200 MPa higher tensile strength than ADI and twice the Charpy absorbed energy of ADI. The impact properties and the elongation are enhanced with increasing volume fraction of carbon-enriched retained austenite. At the austempering temperature of 650 K, the volume fraction of austenite is approximately 40 pct for 120 minutes in the 2.4 pct Si alloy, although it decreases rapidly in the 1.4 pct Si alloy. The X-ray diffraction analysis shows that appropriate quantity of silicon retards the decomposition of the carbon-enriched retained austenite. For austempering at 570 K, the amount of the carbon-enriched austenite decreases and the ferrite is supersaturated with carbon, resulting in high tensile strength but low toughness.

  7. The electrochemical properties of graphite and carbon

    International Nuclear Information System (INIS)

    Yeager, E.; Gupta, S.; Molla, J.A.

    1983-01-01

    Carbon and graphite are often used as supports for electrocatalysts, but also have an electrocatalytic function in such electrode reactions as O 2 reduction in alkaline electrolytes, Cl 2 generation in brine and SOCl 2 reduction in lithium-thionyl chloride batteries. These catalytic functions involve specific chemical functional groups bound to the carbon and graphite surfaces. The factors controlling O 2 reduction with various types of carbon electrodes of both low and high surface area are reviewed. Of particular importance is the role of hydrogen peroxide. The role of the functionality of the carbon in the electrocatalysis will be discussed

  8. London forces in highly oriented pyrolytic graphite

    Directory of Open Access Journals (Sweden)

    L.V. Poperenko

    2017-07-01

    Full Text Available Surface of highly oriented pyrolytic graphite with terrace steps was studied using scanning tunneling microscopy with high spatial resolution. Spots with positive and negative charges were found in the vicinity of the steps. Values of the charges depended both on the microscope needle scan velocity and on its motion direction. The observed effect was theoretically explained with account of London forces that arise between the needle tip and the graphite surface. In this scheme, a terrace step works as a nanoscale diode for surface electric currents.

  9. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    Science.gov (United States)

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  10. Vacuum brazing of graphite-metals

    International Nuclear Information System (INIS)

    Jacquot, P.; Coll, B.; Gabriel, M.; Speri, R.

    1989-01-01

    This conference paper discusses the brazing in vacuum of stainless steel (304 L) and graphite. In order to reduce stresses induced in the brazed system, molybdenum and copper foils are inserted between the two base materials. The filler metal used for brazing is the alloy 69AG27Cu4Ti (Ticusil). The structure of the metal-graphite joint is explained in detail, and a microhardness profile is given. This type of joint is primarily applied in devices for thermonuclear fusion (Tokamak devices). (MM) [de

  11. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite...... and diamond samples implanted by keV-energy size-selected cobalt and argon clusters. One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the development of scaling law for cluster...

  12. Direct reading spectrochemical analysis of nuclear graphite

    International Nuclear Information System (INIS)

    Roca Adell, M.; Becerro Ruiz, E.; Alvarez Gonzalez, F.

    1964-01-01

    A description is given about the application of a direct-reading spectrometer the Quantometer, to the determination of boron. calcium, iron, titanium and vanadium in nuclear grade graphite. for boron the powdered sample is mixed with 1% cupric fluoride and excited in a 10-amperes direct current arc and graphite electrodes with a crater 7 mm wide and 10 mm deep. For the other elements a smaller crater has been used and dilution with a number of matrices has been investigated; the best results are achieved by employing 25% cupric fluoride. The sensitivity limit for boron is 0,15 ppm. (Author) 21 refs

  13. Graphite target for the spiral project

    Energy Technology Data Exchange (ETDEWEB)

    Putaux, J.C.; Ducourtieux, M.; Ferro, A.; Foury, P.; Kotfila, L.; Mueller, A.C.; Obert, J.; Pauwels, N.; Potier, J.C.; Proust, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Bertrand, P. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Loiselet, M. [Universite Catholique de Louvain, Louvain-La-Neuve (Belgium)] [and others

    1996-12-31

    A study of the thermal and physical properties of graphite targets for the SPIRAL project is presented. The main objective is to develop an optimized set-up both mechanically and thermally resistant, presenting good release properties (hot targets with thin slices). The results of irradiation tests concerning the mechanical and thermal resistance of the first prototype of SPIRAL target with conical geometry are presented. The micro-structural properties of the graphite target is also studied, in order to check that the release properties are not deteriorated by the irradiation. Finally, the results concerning the latest pilot target internally heated by an electrical current are shown. (author). 5 refs.

  14. Large Scale Reduction of Graphite Oxide Project

    Science.gov (United States)

    Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy

    2015-01-01

    This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.

  15. Electrical properties of Egyptian natural graphite

    International Nuclear Information System (INIS)

    El-Shazly, O.; El-Wahidy, E.F.; Elanany, N.; Saad, N.A.

    1992-06-01

    The electrical properties of Egyptian natural graphite flakes, obtained from the graphite schists of Wadi Bent, Eastern Desert, were measured. The flakes were ground and compressed into pellets. The standard four probe dc method was used to measure the temperature dependence of the electric resistivity from room temperature down to 12 K. The transverse and longitudinal magnetoresistance were measured in the low magnetic field range at temperatures 300 K, 77 K and 12 K. The transverse magnetoresistance data was used to estimate the average mobility, assuming a simple two-band model. (author). 20 refs, 4 figs, 1 tab

  16. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City Univ. (CUNY), NY (United States)

    2017-04-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  17. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City College of New York, NY (United States)

    2016-05-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08. Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  18. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  19. Let’s talk silicon

    Science.gov (United States)

    While silicon (Si) has been a known plant nutrient for centuries, how plants use this element is still poorly understood. Researchers have identified how plants acquire Si from the environment and transport the element to all plant tissues, including roots, stems, petioles, leaves and flowers. We ...

  20. Modifications of Graphite and Multiwall Carbon Nanotubes in the Presence of Urea

    Science.gov (United States)

    Duraia, El-Shazly M.; Fahami, Abbas; Beall, Gary W.

    2018-02-01

    The effect of high-energy ball milling on two carbon allotropes, graphite and multiwall carbon nanotubes (MWCNT) in the presence of urea has been studied. Samples were investigated using Raman spectroscopy, x-ray diffraction, scanning electron microscope (SEM) and x-ray photoelectron spectroscopy (XPS). Nitrogen-doped graphene has been successfully synthesized via a simple scalable mechanochemistry method using urea and graphite powder precursors. XPS results revealed the existence of the different nitrogen atoms configurations including pyridine, pyrrodic and graphitic N. SEM observations showed that the graphene nanosheets morphology become more wrinkles folded and crumbled as the milling time increased. The ID/IG ratio also increased as the milling time rose. The presence of both D' and G + D bands at 1621 cm-1 and 2940 cm-1, respectively, demonstrated the nitrogen incorporation in the graphene lattice Two factors contribute to the used urea: first it helps to exfoliate graphite into graphene, and second it preserves the graphitic structure from damage during the milling process as well as acting as a solid-state nitrogen source. Based on the phase analysis, the d-spacing of MWCNT samples in the presence of urea decreased due to the mechanical force in the milling process as the milling time increased. On the other hand, in the graphite case, due to its open flat surface, the graphite (002) peak shifts toward lower two theta as the milling time increase. Such findings are important and could be used for large-scale production of N-doped graphene, diminishing the use of either dangerous chemicals or sophisticated equipment.

  1. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    Science.gov (United States)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  2. Properties of silicon nanocrystals with boron and phosphorus doping fabricated via silicon rich oxide and silicon dioxide bilayers

    Science.gov (United States)

    Chien-Jen Yang, Terry; Nomoto, Keita; Puthen-Veettil, Binesh; Lin, Ziyun; Wu, Lingfeng; Zhang, Tian; Jia, Xuguang; Conibeer, Gavin; Perez-Wurfl, Ivan

    2017-07-01

    Effects of boron and phosphorus doping on the structural, electrical, and optical properties of silicon nanocrystals in superlattice thin films were investigated. Silicon nanocrystals were fabricated via magnetron sputtering of stoichiometric silicon rich oxide and silicon dioxide bilayers followed by high temperature annealing at 1100 degrees Celsius. The characterization techniques used include: high-resolution transmission electron microscopy with energy filtering, grazing incidence x-ray diffraction, Raman, photoluminescence, and photothermal deflection spectroscopy, as well as electrical measurements. Results showed that phosphorus doping causes the loss of the bilayer structure and an increase in the average size of the silicon nanocrystals due to softening of the silicon dioxide matrix during post-sputter annealing. The result was a decrease in quantum confinement and a redshift in photoluminescence spectrum with an absorption profile similar to crystalline silicon. The undoped (intrinsic) sample maintained its bilayer structure and displayed stronger quantum confinement with higher photoluminescence peak energy and higher absorption coefficient. In-between, the boron doped sample was more similar structurally to the intrinsic sample, although merging between bilayers resulted in an extensive silicon nanocrystalline network. Optically, it displayed different effects due to photoluminescence quenching and free carrier absorption. Finally, both doped samples exhibited a decrease in electrical resistivity.

  3. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  4. Fracture behavior of nuclear graphites under tensile impact loading

    International Nuclear Information System (INIS)

    Ugachi, Hirokazu; Ishiyama, Shintaro; Eto, Motokuni

    1994-01-01

    Impact tensile strength test was performed with two kinds of HTTR graphites, fine grained isotropic graphite, IG-11 and coarse grained near isotropic graphite, PGX and deformation and fracture behavior under the strain rate of over 100s -1 was measured and the following results were derived: (1) Tensile strength for IG-11 graphite does not depend on the strain rate less than 1 s -1 , but over 1 s -1 , tensile strength for IG-11 graphite increase larger than that measured under 1 s -1 . At the strain rate more than 100 s -1 , remarkable decrease of tensile strength for IG-11 graphite was found. Tensile strength of PGX graphite does not depend on the strain rate less than 1 s -1 , but beyond this value, the sharp tensile strength decrease occurs. (2) Under 100 s -1 , fracture strain for both graphites increase with increase of strain rate and over 100 s -1 , drastic increase of fracture strain for IG-11 graphite was found. (3) At the part of gage length, volume of specimen increase with increase of tensile loading level and strain rate. (4) Poisson's ratio for both graphites decrease with increase of tensile loading level and strain rate. (5) Remarkable change of stress-strain curve for both graphites under 100 s -1 was not found, but over 100 s -1 , the slope of these curve for IG-11 graphite decrease drastically. (author)

  5. Porous graphite electrodes for rechargeable ion-transfer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Novak, P.; Scheifele, W.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The influence of preparation pressure and pore-forming additives on the properties of graphite-based, Li{sup +}-intercalating electrodes for ion-transfer batteries have been investigated. The electrochemical performance of graphite electrodes could be improved by adjusting the porosity. Specific charge of >300 Ah/kg (with respect to the graphite mass) could be achieved. (author) 4 figs., 2 refs.

  6. Graphitic matrix materials for spherical HTR fuel elements

    International Nuclear Information System (INIS)

    Schulze, R.E.; Schulze, H.A.

    1981-02-01

    The report comprises the graphical documentation of irradiation results on graphitic matrix materials for spherical HTR fuel elements. The plotted results are based on data analyses of the series of exposures in the High Flux Reactor Petten (HFR). The documentation includes information about the changes of - the dimensions - the dynamic modulus of elasticity - the coefficient of thermal expansion of the materials after irradiation with fast neutrons. The irradiation experiments and the data analyses are part of the matrix development and irradiation programme, whose objective, realization and results obtained are summarized. (orig./IHOE) [de

  7. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  8. Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Stojczew A.

    2014-08-01

    Full Text Available The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.

  9. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization

    Czech Academy of Sciences Publication Activity Database

    Kumar, A. R. S. S.; Piana, Francesco; Mičušík, M.; Pionteck, J.; Banerjee, S.; Voit, B.

    2016-01-01

    Roč. 182, 1 October (2016), s. 237-245 ISSN 0254-0584 Institutional support: RVO:61389013 Keywords : graphite oxide * surface modification * conductive nanoparticles Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.084, year: 2016

  10. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  11. Studies on POM/graphite/Ekonol composites

    Indian Academy of Sciences (India)

    Unknown

    behaviour was also investigated by the friction and wear experiment. The worn surface of the composite was studied by SEM technique, and on its basis, the wear mechanism was analysed. Results show that it was possible to prepare POM/graphite/Ekonol composites of high tribology performance and good mechanical.

  12. Studies on POM/graphite/Ekonol composites

    Indian Academy of Sciences (India)

    POM/graphite/Ekonol composites were prepared by the Torque Rheometer mixing and compression molding, and their hardness, compressive and impact strengths have been tested. The tribology behaviour was also investigated by the friction and wear experiment. The worn surface of the composite was studied by SEM ...

  13. US graphite reactor D&D experience

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE).

  14. Thermoexpanded graphite modification by titanium dioxide

    International Nuclear Information System (INIS)

    Semko, L.S.; Gorbik, P.P.; Chujko, O.O.; Kruchek, Ya.Yi.; Dzyubenko, L.S.; Orans'ka, O.Yi.

    2006-01-01

    A method of the synthesis of thermoexpanded graphite (TEG) powders coated by titanium dioxide is developed. The conversion of n-buthylorthotitanate into TiO 2 on the TEG surface is investigated. The optimal parameters of the synthesis and the structure of titanium dioxide clusters on the TEG surface are determined

  15. Ultrafast Multiphoton Thermionic Photoemission from Graphite

    Directory of Open Access Journals (Sweden)

    Shijing Tan

    2017-01-01

    Full Text Available Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.

  16. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    International Nuclear Information System (INIS)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-01-01

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs

  17. The role of manganese and copper in the eutectoid transformation of spheroidal graphite cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Lacaze, J.; Boudot, A.; Gerval, V.; Oquab, D. [Ecole Nationale Superieure de Chimie de Toulouse (France). Equipe Metallurgie Physique; Santos, H. [Univ. do Porto (Portugal). Dept. de Engenharia Metalurgia

    1997-10-01

    The decomposition of austenite to ferrite plus graphite or to pearlite in spheroidal graphite (SG) cast iron is known to depend on a number of factors among which are the nodule count, the cooling rate, and the alloying additions (Si, Mn, Cu, etc.). This study was undertaken in order to deepen the understanding of the effect of alloying with Mn and/or Cu on the eutectoid reaction. For this purpose, differential thermal analyses (DTAs) were carried out in which samples were subjected to a short homogenization treatment designed to smooth out the microsegregations originating from the solidification step. The effect of various additions of copper and manganese and of the cooling rate on the temperature of the onset of the stable and metastable eutectoid reactions was investigated. The experimental results can be explained if the appropriate reference temperature is used. The cooling rate affects the temperature of the onset of the ferrite plus graphite growth in the same way as for the eutectic reaction, with a measured undercooling that can be extrapolated to a zero value when the cooling rate is zero. The growth undercooling of pearlite had values that were in agreement with similar data obtained on silicon steels. The detrimental effect of Mn on the growth kinetics of ferrite during the decomposition of austenite in the stable system is explained in terms of the driving force for diffusion of carbon through the ferrite ring around the graphite nodules. Finally, it is found that copper can have a pearlite promoter role only when combined with a low addition of manganese.

  18. Experimental approach and modelling of the mechanical behaviour of graphite fuel elements subjected to compression pulses

    Directory of Open Access Journals (Sweden)

    Forquin P.

    2010-06-01

    Full Text Available Among the activities led by the Generation IV International Forum (GIF relative to the future nuclear systems, the improvement of recycling of fuel elements and their components is a major issue. One of the studied systems by the GIF is the graphite-moderated high-temperature gas cooled reactor (HTGR. The fuel elements are composed of fuel roads half-inch in diameter named compacts. The compacts contain spherical particles made of actinide kernels about 500 m in diameter coated with three layers of carbon and silicon carbide, each about 50 m thick, dispersed in a graphite matrix. Recycling of compacts requires first a separation of triso-particles from the graphite matrix and secondly, the separation of the triso-coating from the kernels. This aim may be achieved by using pulsed currents: the compacts are placed within a cell filled by water and exposed to high voltage between 200 – 500 kV and discharge currents from 10 to 20 kA during short laps of time (about 2 µs [1-2]. This repeated treatment leads to a progressive fragmentation of the graphite matrix and a disassembly of the compacts. In order to improve understanding of the fragmentation properties of compacts a series of quasi-static and dynamic experiments have been conducted with similar cylindrical samples containing 10% (volume fraction of SiC particles coated in a graphite matrix. First, quasi-static compression tests have been performed to identify the mechanical behaviour of the material at low strain-rates (Fig.1. The experiments reveal a complex elasto-visco-plastic behaviour before a brittle failure. The mechanical response is characterised by a low yield stress (about 1 MPa, a strong strain-hardening in the loading phase and marked hysteresis-loops during unloading-reloading stages. Brittle failure is observed for axial stress about 13 MPa. In parallel, a series of flexural tests have been performed with the aim to characterise the quasi-static tensile strength of the

  19. The dark side of silicon energy efficient computing in the dark silicon era

    CERN Document Server

    Liljeberg, Pasi; Hemani, Ahmed; Jantsch, Axel; Tenhunen, Hannu

    2017-01-01

    This book presents the state-of-the art of one of the main concerns with microprocessors today, a phenomenon known as "dark silicon". Readers will learn how power constraints (both leakage and dynamic power) limit the extent to which large portions of a chip can be powered up at a given time, i.e. how much actual performance and functionality the microprocessor can provide. The authors describe their research toward the future of microprocessor development in the dark silicon era, covering a variety of important aspects of dark silicon-aware architectures including design, management, reliability, and test. Readers will benefit from specific recommendations for mitigating the dark silicon phenomenon, including energy-efficient, dedicated solutions and technologies to maximize the utilization and reliability of microprocessors. Enables readers to understand the dark silicon phenomenon and why it has emerged, including detailed analysis of its impacts; Presents state-of-the-art research, as well as tools for mi...

  20. Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K.

    Science.gov (United States)

    Kwolek, Emma J; Lei, Huaping; Lii-Rosales, Ann; Wallingford, Mark; Zhou, Yinghui; Wang, Cai-Zhuang; Tringides, Michael C; Evans, James W; Thiel, Patricia A

    2016-12-07

    We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison with the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.

  1. Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K

    International Nuclear Information System (INIS)

    Kwolek, Emma J.; Lii-Rosales, Ann; Lei, Huaping; Wang, Cai-Zhuang; Tringides, Michael C.; Evans, James W.; Wallingford, Mark; Zhou, Yinghui; Thiel, Patricia A.

    2016-01-01

    We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison with the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.

  2. Use of a subepithelial connective tissue graft to treat an area pigmented with graphite.

    Science.gov (United States)

    Phillips, Gregory E; John, Vanchit

    2005-09-01

    Pigmentations of the oral cavity are commonly noted in clinical practice and may have physiologic, non-physiologic, or pathologic etiologies. The most common non-physiologic localized pigmentation is the amalgam tattoo; another, less common, non-physiologic pigmentation is the graphite tattoo. Graphite tattoos may easily be confused with amalgam tattoos but have only infrequently been reported in the literature. This case report discusses a patient with a localized pigmented lesion involving the free gingiva, attached gingiva, and alveolar mucosa. The patient was referred for esthetic enhancement of the area in question. Dental history revealed trauma to the area involving falling on a pencil as a child. The lesion was excised and submitted for histologic examination; a subepithelial connective tissue graft was harvested and utilized to prevent an esthetic defect. Histologic evaluation confirmed graphite within the soft tissue as the etiology of the discoloration. At the 2-month postoperative appointment, a highly esthetic outcome was obtained utilizing a connective tissue graft. Although less common than the amalgam tattoo, the graphite tattoo may be encountered in the course of routine dental examinations and should be included in a differential diagnosis of any localized pigmented lesion. Although histologic evaluation is necessary to rule out pathology, if the dental history is consistent with the clinical impression of a nonpathologic lesion, such as the graphite tattoo in this case report, treatment with an autogenous connective tissue graft at the time of excision can produce a highly esthetic result and avoid additional surgical procedures in the future.

  3. Smooth Particle Hydrodynamics Simulation of Micro-Cup-Extrusion Using a Graphit-ic Coating

    Directory of Open Access Journals (Sweden)

    Li Shi-Cheng

    2014-01-01

    Full Text Available Microextrusion is becoming increasingly important for the manufacturing of microcomponents. However, this reduction in scale to a microlevel means that the influence of friction and the need for suitable lubrication are greatly increased. This study therefore looks at the use of a low-friction and highly wear resistant Graphit-ic coating on the mold-forming section of a microextrusion mold, this coating being applied by a closed-field unbalanced magnetron sputter ion plating technique. A microcup of CuZn33 brass alloy was then extruded, with a wall thickness of 0.45 mm, outside diameter of 2.9 mm, and an internal diameter of 2 mm. The experimental results in which extrusion uses the mold coating with Graphit-ic film are compared against the experimental results in which extrusion uses the mold uncoating with Graphit-ic film. This showed that the load was decreased a lot and the self-lubricating solid coating facilitates a smooth extrusion process. As the extrusion rate was quite high, smoothed particle hydrodynamics method simulations of the extrusion process were conducted, these being then compared with the experimental results. These result showed that the SPH simulation can be applied to show the deformation of materials and predict the load trend.

  4. Graphite oxidation and structural strength of graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  5. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  6. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes.

    Science.gov (United States)

    Zhang, Huigang; Braun, Paul V

    2012-06-13

    Silicon-based lithium ion battery anodes are attracting significant attention because of silicon's exceptionally high lithium capacity. However, silicon's large volume change during cycling generally leads to anode pulverization unless the silicon is dispersed throughout a matrix in nanoparticulate form. Because pulverization results in a loss of electric connectivity, the reversible capacity of most silicon anodes dramatically decays within a few cycles. Here we report a three-dimensional (3D) bicontinuous silicon anode formed by depositing a layer of silicon on the surface of a colloidal crystal templated porous nickel metal scaffold, which maintains electrical connectivity during cycling due to the scaffold. The porous metal framework serves to both impart electrical conductivity to the anode and accommodate the large volume change of silicon upon lithiation and delithiation. The initial capacity of the bicontinuous silicon anode is 3568 (silicon basis) and 1450 mAh g(-1) (including the metal framework) at 0.05C. After 100 cycles at 0.3C, 85% of the capacity remains. Compared to a foil-supported silicon film, the 3D bicontinuous silicon anode exhibits significantly improved mechanical stability and cycleability.

  7. Neutronographic investigations into homogeneity and crystalline anisotropy of graphite materials

    International Nuclear Information System (INIS)

    Kajzar, F.; Oles, A.; Pawpowski, K.; Szudek, M.

    1976-01-01

    A numerical methods is proposed for evaluating the share of components having various graphitization degree in the graphite material. This method consists in adjusting the diffraction lines of separated components characterized by a different graphitization degree to the profile of an experimental diffraction line. Results are also given which were obtained by this method for some selected graphite materials manufactured at the Coal Electrodes Factory in Nowy Sacz. Using the technique of neutron diffraction, investigation were carried out in like manner into crystalline anisotropy in the semi-conducting graphite and in the connecting material. (author)

  8. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  9. NTD Silicon; Product Characteristics, Main Uses and Growth Potential

    International Nuclear Information System (INIS)

    Hansen, M. G.; Bjorling, C. F.

    2013-01-01

    Topsil is a specialised manufacturer of ultrapure float zone silicon since 1959, headquartered in Denmark. Topsil co-pioneered the invention of Neutron Transmutation Doped (NTD) monocrystalline silicon with research institute Risoe in the 1970s and has since then been world leading manufacturer of NTD silicon for the power market. This presentation will focus on NTD silicon; its characteristics, invention and main uses. It will address the trends of the power market and market projections for NTD, and discuss the growth potential in the years ahead, including larger silicon wafers and management of the NTD supply chain

  10. High temperature corrosion of silicon carbide and silicon nitride in the presence of chloride compound

    International Nuclear Information System (INIS)

    McNallan, M.

    1993-01-01

    Silicon carbide and silicon nitride are resistant to oxidation because a protective silicon dioxide films on their surfaces in most oxidizing environments. Chloride compounds can attack the surface in two ways: 1) chlorine can attack the silicon directly to form a volatile silicon chloride compound or 2) alkali compounds combined with the chlorine can be transported to the surface where they flux the silica layer by forming stable alkali silicates. Alkali halides have enough vapor pressure that a sufficient quantity of alkali species to cause accelerated corrosion can be transported to the ceramic surface without the formation of a chloride deposit. When silicon carbide is attacked simultaneously by chlorine and oxygen, the corrosion products include both volatile and condensed spices. Silicon nitride is much more resistance to this type of attack than silicon carbide. Silicon based ceramics are exposed to oxidizing gases in the presence of alkali chloride vapors, the rate of corrosion is controlled primarily by the driving force for the formation of alkali silicate, which can be quantified as the activity of the alkali oxide in equilibrium with the corrosive gas mixture. In a gas mixture containing a fixed partial pressure of KCl, the rate of corrosion is accelerated by increasing the concentration of water vapor and inhibited by increasing the concentration of HCl. Similar results have been obtained for mixtures containing other alkalis and halogens. (Orig./A.B.)

  11. The Silicon Lattice Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J

    2003-11-24

    Previously, the generalized luminosity L was defined and calculated for all incident channels based on an NLC e{sup +}e{sup -} design. Alternatives were then considered to improve the differing beam-beam effects in the e{sup -}e{sup -}, e{gamma} and {gamma}{gamma} channels. One example was tensor beams composed of bunchlets n{sub ijk} implemented with a laser-driven, silicon accelerator based on micromachining techniques. Problems were considered and expressions given for radiative broadening due to bunchlet manipulation near the final focus to optimize luminosity via charge enhancement, neutralization or bunch shaping. Because the results were promising, we explore fully integrated structures that include sources, optics (for both light and particles) and acceleration in a common format--an accelerator-on-chip. Acceptable materials (and wavelengths) must allow velocity synchronism between many laser and electron pulses with optimal efficiency in high radiation environments. There are obvious control and cost advantages that accrue from using silicon structures if radiation effects can be made acceptable and the structures fabricated. Tests related to deep etching, fabrication and radiation effects on candidate amorphous and crystalline materials indicate Si(1.2 < {lambda}{sub L} < 10 {micro}m) and fused c-SiO{sub 2}(0.3 < {lambda}{sub L} < 4 {micro}m) to be ideal.

  12. SILICON AND BONE HEALTH

    Science.gov (United States)

    JUGDAOHSINGH, R.

    2009-01-01

    Low bone mass (osteoporosis) is a silent epidemic of the 21st century, which presently in the UK results in over 200,000 fractures annually at a cost of over one billion pounds. Figures are set to increase worldwide. Understanding the factors which affect bone metabolism is thus of primary importance in order to establish preventative measures or treatments for this condition. Nutrition is an important determinant of bone health, but the effects of the individual nutrients and minerals, other than calcium, is little understood. Accumulating evidence over the last 30 years strongly suggest that dietary silicon is beneficial to bone and connective tissue health and we recently reported strong positive associations between dietary Si intake and bone mineral density in US and UK cohorts. The exact biological role(s) of silicon in bone health is still not clear, although a number of possible mechanisms have been suggested, including the synthesis of collagen and/or its stabilization, and matrix mineralization. This review gives an overview of this naturally occurring dietary element, its metabolism and the evidence of its potential role in bone health. PMID:17435952

  13. Haematic silicon in drowning.

    Science.gov (United States)

    Pierucci, Giovanni; Merlano, Federica; Chen, Yao; Sturini, Michela; Maraschi, Federica; Profumo, Antonella

    2016-04-01

    The aim of this paper was to evaluate silicon (Si) concentration in human whole ventricular blood as a further potential chemical marker in the diagnosis of drowning. We employed an acidic digestion for the extraction of soluble Si, and an alkaline digestion for the determination of total Si, including particulate matter, both arising from drowning medium. 29 suspected drowning situations, 24 in fresh water (Fw) and 5 in seawater (Sw), were examined. The difference in Si concentration between the left and right ventricular blood (Si ΔL-R) was measured and alkaline Si ΔL-R seems, indeed, a potentially significant complementary tool in the diagnosis of Fw drowning, because insoluble silicon fraction does not undergo hemo-dilution or hemo-concentration, and the ΔL-R is not affected by exogenous factors. In spite of the limited number of cases investigated, a good correlation was observed between the analytical results and the macro-microscopic autoptic findings. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  14. Neutron transmutation doping of polycrystalline silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1976-04-01

    Chemical vapor deposition (CVD) of doped silane has been used by others to deposit a polycrytalline silicon film (polysil) on metal or graphite substrates, but dopant migration to grain boundaries during deposition apparently prohibits attaining a uniform or desired dopant concentration. In contrast, we have used neutron transmutation doping to introduce a uniform phosphorus dopant concentration in commercially available undoped CVD polysil at doping concentrations greater than or equal to 2 x 10 15 cm -3 . Radiation damage annealing to 800 0 C did not indicate dopant migration. Carrier mobility increased with doping concentration and the minority carrier lifetime (MCL) appears to be comparable to that of neutron transmutation doped (NTD) single crystal Si. Application of this technique to photovoltaic solar cell fabrication is discussed

  15. On the stable eutectic solidification of iron–carbon–silicon alloys

    International Nuclear Information System (INIS)

    Stefanescu, Doru M.; Alonso, Gorka; Larrañaga, Pello; Suarez, Ramon

    2016-01-01

    Extensive effort was expanded to elucidate the growth and morphology of the stable eutectic grains during early solidification of continuous cooled Fe–C–Si alloys. To this purpose, quenching experiments at successive stages during solidification have been carried out on five cast irons with various magnesium and titanium levels designed to produce graphite morphologies ranging from lamellar to mixed compacted–spheroidal. The graphite shape factors were measured on the metallographic samples, and their evolution as a function of the chemical composition and the solid fraction was analyzed. Extensive scanning electron microscopy was carried on to evaluate the change in graphite shape during early solidification, to establish the fraction of solid at which the transition from spheroidal-to-compacted-to-lamellar graphite occurs, and to outline the early morphology of the eutectic grains. It was confirmed that solidification of Mg containing irons started with the development of spheroidal graphite even at Mg levels as low as 0.013 mass%. Then, as solidification proceeds, when some spheroids developed one or more tails (tadpole graphite), the spheroidal-to-compacted graphite transition occurs. The new findings were then integrated in previous knowledge to produce an understanding of the eutectic solidification of these materials. It was concluded that in hypoeutectic lamellar graphite iron austenite/graphite eutectic grains can nucleate at the austenite/liquid interface or in the bulk of the liquid, depending on the sulfur content and on the cooling rate. When graphite nucleation occurs on the primary austenite, several eutectic grains can nucleate and grow on the same dendrite. The primary austenite continues growing as eutectic austenite and therefore the two have the same crystallographic orientation. Thus, a final austenite grain may include several eutectic grains. In eutectic irons the eutectic grains nucleate and grow mostly in the liquid. The eutectic

  16. GRAPHITIZATION OF METASEDIMENTARY ROCKS IN THE WESTERN KONYA

    Directory of Open Access Journals (Sweden)

    Hüseyin KURT

    2000-01-01

    Full Text Available The Paleozoic-Mesozoic metasedimentary rocks in the study area are metacarbonate, metachert, metapelite, metasandstone and metaconglomerate. Graphite layers are 1cm to 2m thick, extend laterally for tens of meters and are intercalated with metasedimentary rocks. Generally, the graphite is black in color, with a well developed cleavage which is concordant with the cleavage of the host rocks. In addition, the crystal and flake graphites formed in metasedimentary rocks are mostly aligned parallel to the cleavage planes. These metamorphic rocks are subjected to shearing and granulation providing structural control for the development of graphite. It was probably this phenomenon that first led to emphasize the relationship between graphite and metasedimentary rocks. Graphite mineralization has been controlled by bedding, microfractures and granulations. Briefly, the metamorphism has converted carbonaceous matter into graphite .

  17. Hydrophilization of graphite using plasma above/in a solution

    Science.gov (United States)

    Hoshino, Shuhei; Kawahara, Kazuma; Takeuchi, Nozomi

    2018-01-01

    A hydrophilization method for graphite is required for applications such as conductive ink. In typical chemical oxidation methods for graphite have the problems of producing many defects in graphite and a large environmental impact. In recent years, the plasma treatment has attracted attention because of the high quality of the treated samples and the low environmental impact. In this study, we proposed an above-solution plasma treatment with a high contact probability of graphite and plasma since graphite accumulates on the solution surface due to its hydrophobicity, which we compared with a so-called solution plasma treatment. Graphite was hydrophilized via reactions with OH radicals generated by the plasma. It was confirmed that hydroxyl and carboxyl groups were modified to the graphite and the dispersibility was improved. The above-solution plasma achieved more energy-efficient hydrophilization than the solution plasma and it was possible to enhance the dispersibility by increasing the plasma-solution contact area.

  18. Ion irradiated graphite exposed to fusion-relevant deuterium plasma

    International Nuclear Information System (INIS)

    Deslandes, Alec; Guenette, Mathew C.; Corr, Cormac S.; Karatchevtseva, Inna; Thomsen, Lars; Ionescu, Mihail; Lumpkin, Gregory R.; Riley, Daniel P.

    2014-01-01

    Graphite samples were irradiated with 5 MeV carbon ions to simulate the damage caused by collision cascades from neutron irradiation in a fusion environment. The ion irradiated graphite samples were then exposed to a deuterium plasma in the linear plasma device, MAGPIE, for a total ion fluence of ∼1 × 10 24 ions m −2 . Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopy were used to characterize modifications to the graphitic structure. Ion irradiation was observed to decrease the graphitic content and induce disorder in the graphite. Subsequent plasma exposure decreased the graphitic content further. Structural and surface chemistry changes were observed to be greatest for the sample irradiated with the greatest fluence of MeV ions. D retention was measured using elastic recoil detection analysis and showed that ion irradiation increased the amount of retained deuterium in graphite by a factor of four

  19. The influence of roughness on tribological properties of nuclear grade graphite

    International Nuclear Information System (INIS)

    Luo Xiaowei; Yu Suyuan; Sheng Xuanyu; He Shuyan

    2006-01-01

    The influence of surface roughness on tribological properties of graphite IG-11 was investigated on a standard SRV tester. The experimental condition was selected as: 30 N normal load, room temperature and a 10 Hz frequency with different strokes. The experiments environments included helium and air. Five types of roughness were studied in the experiments. The experiments revealed that the surface roughness greatly affected the graphite friction behavior. When the friction surface was smooth, the friction coefficient was high because of intensive adhesion accompanied by many pits at the friction surface. When the friction surface was rough, the adhesion was very poor, but the wear was excessive and generated many graphite particles at the friction surface. These particles can separate the friction surfaces, which reduced the friction action between them. For very rough specimens, the friction coefficient decreased with sliding velocity at about 0.004 m/s and then increases gradually

  20. Sub-parts-per-quadrillion-level graphite furnace atomic absorption spectrophotometry based on laser wave mixing.

    Science.gov (United States)

    Mickadeit, Fritz K; Berniolles, Sandrine; Kemp, Helen R; Tong, William G

    2004-03-15

    Nonlinear laser wave mixing in a common graphite furnace atomizer is presented as a zeptomole-level, sub-Doppler, high-resolution atomic absorption spectrophotometric method. A nonplanar three-dimensional wave-mixing optical setup is used to generate the signal beam in its own space. Signal collection is efficient and convenient using a template-based optical alignment. The graphite furnace atomizer offers advantages including fast and convenient introduction of solid, liquid, or gas analytes, clean atomization environment, and minimum background noise. Taking advantage of the unique features of the wave-mixing optical method and those of the graphite furnace atomizer, one can obtain both excellent spectral resolution and detection sensitivity. A preliminary concentration detection limit of 0.07 parts-per-quadrillion and a preliminary mass detection limit of 0.7 ag or 8 zmol are determined for rubidium using a compact laser diode as the excitation source.

  1. Interstellar Silicon Depletion and the Ultraviolet Extinction

    Science.gov (United States)

    Mishra, Ajay; Li, Aigen

    2018-01-01

    Spinning small silicate grains were recently invoked to account for the Galactic foreground anomalous microwave emission. These grains, if present, will absorb starlight in the far ultraviolet (UV). There is also renewed interest in attributing the enigmatic 2175 Å interstellar extinction bump to small silicates. To probe the role of silicon in the UV extinction, we explore the relations between the amount of silicon required to be locked up in silicates [Si/H]dust and the 2175 Å bump or the far-UV extinction rise, based on an analysis of the extinction curves along 46 Galactic sightlines for which the gas-phase silicon abundance [Si/H]gas is known. We derive [Si/H]dust either from [Si/H]ISM - [Si/H]gas or from the Kramers- Kronig relation which relates the wavelength-integrated extinction to the total dust volume, where [Si/H]ISM is the interstellar silicon reference abundance and taken to be that of proto-Sun or B stars. We also derive [Si/H]dust from fi�tting the observed extinction curves with a mixture of amorphous silicates and graphitic grains. We fi�nd that in all three cases [Si/H]dust shows no correlation with the 2175 Å bump, while the carbon depletion [C/H]dust tends to correlate with the 2175 Å bump. This supports carbon grains instead of silicates as the possible carrier of the 2175 Å bump. We also �find that neither [Si/H]dust nor [C/H]dust alone correlates with the far-UV extinction, suggesting that the far-UV extinction is a combined effect of small carbon grains and silicates.

  2. The Determination of Trace Metals in Saline Waters and Biological Tissues Using the Heated Graphite Atomizer

    Science.gov (United States)

    Segar, D. A.

    1971-01-01

    A selective, volatalization technique utilizing the heated graphite atomizer atomic absorption technique has been developed for the analysis of iron in sea water. A similar technique may be used to determine vanadium, copper, nickel and cobalt in saline waters when their concentrations are higher than those normally encountered'in unpolluted sea waters. A preliminary solvent extraction using ammonium pyrolidine dithiocarbamate and methyl iso-butyl ketone permits the determination of a number of elements including iron, copper, zinc, nickel, cobalt and lead in sea water. The heated graphite atomized technique has also been applied to the determination of a range of trace transition elements in marine plant and animal tissues.

  3. Investigation of graphite composite anodes surfaces by atomic force microscopy and related techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hirasawa, Karen Akemi; Nishioka, Keiko; Sato, Tomohiro; Yamaguchi, Shoji; Mori, Shoichiro [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan)

    1997-11-01

    The surface of a synthetic graphite (KS-44) and polyvinylidene difluoride binder (PVDF) anode for lithium-ion secondary batteries is imaged using atomic force microscopy (AFM) and several related scanning probe microscope (SPM) instruments including: dynamic force microscopy (DFM), friction force microscopy (FFM), laterally-modulated friction force microscopy (LM-FFM), visco-elasticity atomic force microscopy (VE-AFM), and AFM/simultaneous current measurement mode (SCM). DFM is found to be an exceptional mode for topographic imaging while FFM results in the clearest contrast distinction between PVDF binder and KS-44 graphite regions. (orig.)

  4. Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots.

    Science.gov (United States)

    Holá, Kateřina; Sudolská, Mária; Kalytchuk, Sergii; Nachtigallová, Dana; Rogach, Andrey L; Otyepka, Michal; Zbořil, Radek

    2017-12-26

    Carbon dots (CDs) are a stable and highly biocompatible fluorescent material offering great application potential in cell labeling, optical imaging, LED diodes, and optoelectronic technologies. Because their emission wavelengths provide the best tissue penetration, red-emitting CDs are of particular interest for applications in biomedical technologies. Current synthetic strategies enabling red-shifted emission include increasing the CD particle size (sp 2 domain) by a proper synthetic strategy and tuning the surface chemistry of CDs with suitable functional groups (e.g., carboxyl). Here we present an elegant route for preparing full-color CDs with well-controllable fluorescence at blue, green, yellow, or red wavelengths. The two-step procedure involves the synthesis of a full-color-emitting mixture of CDs from citric acid and urea in formamide followed by separation of the individual fluorescent fractions by column chromatography based on differences in CD charge. Red-emitting CDs, which had the most negative charge, were separated as the last fraction. The trend in the separation, surface charge, and red-shift of photoluminescence was caused by increasing amount of graphitic nitrogen in the CD structure, as was clearly proved by XPS, FT-IR, Raman spectroscopy, and DFT calculations. Importantly, graphitic nitrogen generates midgap states within the HOMO-LUMO gap of the undoped systems, resulting in significantly red-shifted light absorption that in turn gives rise to fluorescence at the low-energy end of the visible spectrum. The presented findings identify graphitic nitrogen as another crucial factor that can red-shift the CD photoluminescence.

  5. Development of a graphite probe calorimeter for absolute clinical dosimetry

    International Nuclear Information System (INIS)

    Renaud, James; Seuntjens, Jan; Sarfehnia, Arman; Marchington, David

    2013-01-01

    The aim of this work is to present the numerical design optimization, construction, and experimental proof of concept of a graphite probe calorimeter (GPC) conceived for dose measurement in the clinical environment (U.S. provisional patent 61/652,540). A finite element method (FEM) based numerical heat transfer study was conducted using a commercial software package to explore the feasibility of the GPC and to optimize the shape, dimensions, and materials used in its design. A functioning prototype was constructed inhouse and used to perform dose to water measurements under a 6 MV photon beam at 400 and 1000 MU/min, in a thermally insulated water phantom. Heat loss correction factors were determined using FEM analysis while the radiation field perturbation and the graphite to water absorbed dose conversion factors were calculated using Monte Carlo simulations. The difference in the average measured dose to water for the 400 and 1000 MU/min runs using the TG-51 protocol and the GPC was 0.2% and 1.2%, respectively. Heat loss correction factors ranged from 1.001 to 1.002, while the product of the perturbation and dose conversion factors was calculated to be 1.130. The combined relative uncertainty was estimated to be 1.4%, with the largest contributors being the specific heat capacity of the graphite (type B, 0.8%) and the reproducibility, defined as the standard deviation of the mean measured dose (type A, 0.6%). By establishing the feasibility of using the GPC as a practical clinical absolute photon dosimeter, this work lays the foundation for further device enhancements, including the development of an isothermal mode of operation and an overall miniaturization, making it potentially suitable for use in small and composite radiation fields. It is anticipated that, through the incorporation of isothermal stabilization provided by temperature controllers, a subpercent overall uncertainty will be achieved.

  6. Analysis of Natural Graphite, Synthetic Graphite, and Thermosetting Resin Candidates for Use in Fuel Compact Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Trammell, Michael P [ORNL; Pappano, Peter J [ORNL

    2011-09-01

    The AGR-1 and AGR-2 compacting process involved overcoating TRISO particles and compacting them in a steel die. The overcoating step is the process of applying matrix to the OPyC layer of TRISO particles in a rotating drum in order to build up an overcoat layer of desired thickness. The matrix used in overcoating is a mixture of natural graphite, synthetic graphite, and thermosetting resin in the ratio, by weight, of 64:16:20. A wet mixing process was used for AGR-1 and AGR-2, in that the graphites and resin were mixed in the presence of ethyl alcohol. The goal of the wet mixing process was to 'resinate' the graphite particles, or coat each individual graphite particle with a thin layer of resin. This matrix production process was similar to the German, Chinese, Japanese, and South African methods, which also use various amount of solvent during mixing. See Appendix 1 for information on these countries matrix production techniques. The resin used for AGR-1 and AGR-2 was provided by Hexion, specifically Hexion grade Durite SC1008. Durite SC1008 is a solvated (liquid) resole phenolic resin. A resole resin does not typically have a hardening agent added. The major constituent of SC1008 is phenol, with minor amounts of formaldehyde. Durite SC1008 is high viscosity, so additional ethyl alcohol was added during matrix production in order to reduce its viscosity and enhance graphite particle resination. The current compacting scale up plan departs from a wet mixing process. The matrix production method specified in the scale up plan is a co-grinding jet mill process where powdered phenolic resin and graphite are all fed into a jet mill at the same time. Because of the change in matrix production style, SC1008 cannot be used in the jet milling process because it is a liquid. The jet milling/mixing process requires that a suite of solid or powdered resins be investigated. The synthetic graphite used in AGR-1 and AGR-2 was provided by SGL Carbon, grade KRB2000. KRB

  7. Progress in radioactive graphite waste management. Additional information

    International Nuclear Information System (INIS)

    2010-06-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  8. Erosion of pyrolytic graphite and Ti-doped graphite due to high flux irradiation

    International Nuclear Information System (INIS)

    Ohtsuka, Yusuke; Ohashi, Junpei; Ueda, Yoshio; Isobe, Michiro; Nishikawa, Masahiro

    1997-01-01

    The erosion of pyrolytic graphite and titanium doped graphite RG-Ti above 1,780 K was investigated by 5 keV Ar beam irradiation with the flux from 4x10 19 to 1x10 21 m -2 ·s -1 . The total erosion yields were significantly reduced with the flux. This reduction would be attributed to the reduction of RES (radiation enhanced sublimation) yield, which was observed in the case of isotropic graphite with the flux dependence of RES yield of φ -0.26 (φ: flux) obtained in our previous work. The yield of pyrolytic graphite was roughly 30% higher than that of isotropic graphite below the flux of 10 20 m -2 ·s -1 whereas each yield approached to very close value at the highest flux of 1x10 21 m -2 ·s -1 . This result indicated that the effect of graphite structure on the RES yield, which was apparent in the low flux region, would disappear in the high flux region probably due to the disordering of crystal structure. In the case of irradiation to RG-Ti at 1,780 K, the surface undulations evolved with a mean height of about 3 μm at 1.2x10 20 m -2 ·s -1 , while at higher flux of 8.0x10 20 m -2 ·s -1 they were unrecognizable. These phenomena can be explained by the reduction of RES of graphite parts excluding TiC grains. (author)

  9. Copper-assisted, anti-reflection etching of silicon surfaces

    Science.gov (United States)

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  10. Microelectromechanical pump utilizing porous silicon

    Science.gov (United States)

    Lantz, Jeffrey W [Albuquerque, NM; Stalford, Harold L [Norman, OK

    2011-07-19

    A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

  11. Impurities of oxygen in silicon

    International Nuclear Information System (INIS)

    Gomes, V.M.S.

    1985-01-01

    The electronic structure of oxygen complex defects in silicon, using molecular cluster model with saturation by watson sphere into the formalism of Xα multiple scattering method is studied. A systematic study of the simulation of perfect silicon crystal and an analysis of the increasing of atom number in the clusters are done to choose the suitable cluster for the calculations. The divacancy in three charge states (Si:V 2 + , Si:V 2 0 , Si:V 2 - ), of the oxygen pair (Si:O 2 ) and the oxygen-vacancy pair (Si:O.V) neighbours in the silicon lattice, is studied. Distortions for the symmetry were included in the Si:V 2 + and Si:O 2 systems. The behavior of defect levels related to the cluster size of Si:V 2 0 and Si:O 2 systems, the insulated oxygen impurity of silicon in interstitial position (Si:O i ), and the complexes involving four oxygen atoms are analysed. (M.C.K.) [pt

  12. Thermal Expansion and Swelling of Cured Epoxy Resin Used in Graphite/Epoxy Composite

    Science.gov (United States)

    Adamson, M. J.

    1979-01-01

    The thermal expansion and swelling of resin material as influenced by variations in temperature during moisture absorption is discussed. Comparison measurements using composites constructed of graphite fibers and each of two epoxy resin matrices are included. Polymer theory relative to these findings is discussed and modifications are proposed.

  13. Lithium ion batteries based on nanoporous silicon

    Science.gov (United States)

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  14. Plastic strain caused by contraction of pores in polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Yoda, Shinichi; Konishi, Takashi.

    1989-01-01

    The effects of porosity on mechanical properties and deformation behavior of four isotropic polycrystalline graphites were studied. The pore size distributions of the graphites were measured using a conventional mercury penetration technique. The average pore radius of ISO-88 graphite was about one-tenth of that of ISEM-1, IG-11 or IG-15 graphites. Young's modulus of the graphites decreased with increasing porosity. The stress-strain curve of each graphite was measured in its lateral and axial directions. Young's modulus of graphite decreased with increasing load. The plastic strain at a given compressive load was calculated from the stress-strain curve and the initial gradient of the unloading curve at the load. The ratio of lateral plastic strain to axial plastic strain for the graphites was less than 0.5, indicating that the volume of the graphites decreased during compressive loading. By assuming that the volume change was caused by contraction of pores, plastic strain associated with contraction of pores was calculated from the axial plastic strain and lateral plastic strain by slips along the basal planes. The plastic strain increased with increasing axial plastic strain and porosity of graphite. (author)

  15. Effect of graphite reflector on activation of fusion breeding blanket

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Lee, Young-Ouk; Lee, Dong Won; Cho, Seungyon; Ahn, Mu-Young

    2016-01-01

    Highlights: • The graphite reflector concept has been applied in the design of the Korea HCCR TBM for ITER and this concept is also a candidate design option for Korea Demo. • In the graphite reflector, C-14, B-11 and Be-10 are produced after an irradiation. Impurities in both case of beryllium and graphite is dominant in the shutdown dose after an irradiation. • Based on the evaluation, the graphite reflector is a good alternative of the beryllium multiplier in the view of induced activity and shutdown dose. But C-14 produced in the graphite reflector should be considered carefully in the view of radwaste management. - Abstract: Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. In this paper, activity analysis was performed and the effect of graphite reflector in the view of activation was compared to the beryllium multiplier. As a result, it is expected that using the graphite reflector instead of the beryllium multiplier decreases total activity very effectively. But the graphite reflector produces C-14 about 17.2 times than the beryllium multiplier. Therefore, C-14 produced in the graphite reflector is expected as a significant nuclide in the view of radwaste management.

  16. Theoretical analysis of the graphitization of a nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S Joon; Park, Jae-Gwan [Nano Science and Technology Division, Korea Institute of Science and Technology (KIST), PO Box 131, Cheongryang, Seoul, 130-650 (Korea, Republic of)

    2007-09-26

    We report on a theoretical analysis of the graphitization of a nanosize diamond (nanodiamond) in the metastable state. A nanodiamond annealed at a relatively lower temperature suffers morphological transition into a nanodiamond-graphite core-shell structure. Thermodynamic stability analysis of the nanodiamond showed that the phase diagram (relationship between the annealing temperature and radius) of the nanodiamond-graphite has three regimes: smaller nanodiamond, nanodiamond-graphite, and larger nanodiamond. These regimes of nanodiamond-graphite are due to an additional phase boundary from finding the maximum size of the nanodiamond which can be graphitized. In the theoretical analysis, the most probable and the maximum volume fractions of graphite in the nanodiamond were 0.76 and 0.84 respectively, which were independent of the annealing temperature and the initial radius of the nanodiamond. Therefore, the nanodiamond is not completely transformed into graphite by simple annealing at relatively lower process temperature and pressure. The highest graphitization probability decreased with increasing annealing temperature. Raman spectra for the F{sub 2g} vibration mode of nanodiamond were also calculated, and we found that the variation in properties of the spectral line was strongly dependent on the graphitization temperature and the initial size of the nanodiamond.

  17. Theoretical analysis of the graphitization of a nanodiamond

    International Nuclear Information System (INIS)

    Kwon, S Joon; Park, Jae-Gwan

    2007-01-01

    We report on a theoretical analysis of the graphitization of a nanosize diamond (nanodiamond) in the metastable state. A nanodiamond annealed at a relatively lower temperature suffers morphological transition into a nanodiamond-graphite core-shell structure. Thermodynamic stability analysis of the nanodiamond showed that the phase diagram (relationship between the annealing temperature and radius) of the nanodiamond-graphite has three regimes: smaller nanodiamond, nanodiamond-graphite, and larger nanodiamond. These regimes of nanodiamond-graphite are due to an additional phase boundary from finding the maximum size of the nanodiamond which can be graphitized. In the theoretical analysis, the most probable and the maximum volume fractions of graphite in the nanodiamond were 0.76 and 0.84 respectively, which were independent of the annealing temperature and the initial radius of the nanodiamond. Therefore, the nanodiamond is not completely transformed into graphite by simple annealing at relatively lower process temperature and pressure. The highest graphitization probability decreased with increasing annealing temperature. Raman spectra for the F 2g vibration mode of nanodiamond were also calculated, and we found that the variation in properties of the spectral line was strongly dependent on the graphitization temperature and the initial size of the nanodiamond

  18. Graphite moderated {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Sajo B, L.; Barros, H.; Greaves, E. D. [Universidad Simon Bolivar, Nuclear Physics Laboratory, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a {sup 252}Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the {sup 252}Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  19. Fracture toughness of reactor grade graphites, 3

    International Nuclear Information System (INIS)

    Sato, Sennosuke; Awaji, Hideo; Akuzawa, Hironobu; Kon, Junichi.

    1979-01-01

    In our recent papers, we presented a new technique for determining the thermal shock fracture toughness, using a disk specimen with an edge crack. The thermal shock fracture toughness is defined as K sub( ic)k/Eα(K sub( ic) standing for fracture toughness; k for thermal conductivity; E for Young's modulus; α for thermal expansion coefficient) and it can be determined en bloc by measuring the threshold electric power of the arc discharge heating produced when an edge crack propagates in the disk. The value obtained is the fracture toughness corresponding to the thermal shock resistance defined as σk/Eα (σ standing for tensile strength). The experimental data shown in the following discussion concern themselves with four kinds of reactor grade graphite and some varieties of electrode graphite. (author)

  20. Spectroscopical determination of impurities in nuclear graphite

    International Nuclear Information System (INIS)

    Lordello, A.R.; Tognini, R.P.

    1975-01-01

    A spectrochemical method for the direct determination of B, Cd, Si, Hg, Fe, Mg, Mn, Cr, Ni, Al, Mo, Ti, Sr, Na, Zn, and As in nuclear grade graphite is described. A 9:1 ratio of graphite to copper difluoride is used in the preparation of samples and standards. The excitation is carried out in a d-c at 10 amperes. The copper fluoride used as spectrographic buffer serves to increase the volatilization rate of the impurities and to diminish the differences in the nature of the analytical and calibration samples. The relative standard deviations for the determination of the 16 trace elements, except Sr, Fe, Cd, Al and Si, are in the range of 8 - 20% in their appropriate calibration levels. For the latter five elements they are approximately 20-40%

  1. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  2. Characterization of graphite dust produced by pneumatic lift

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

  3. Chunky graphite formation in small section ductile iron castings; Formacion de grafito chunky en piezas de pequeno espesor fabricadas utilizando fundicion de hierro con grafito esferoidal

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, I.; Larranaga, P.; Sertucha, J.

    2011-07-01

    Chunky graphite is a degenerated graphite form which can be found in the thermal centre of ductile iron heavy section castings. Previous studies made on cubic blocks (300 and 180 mm in side) manufactured using alloys with fully ferritic matrix structures show that low cooling rates, excessive post-inoculation and high silicon and/or cerium contents in the melts are the most important factors that promote this kind of defect. The enhancement of these critical factors led to obtain chunky graphite in sections lower than 50 mm. Different experimental conditions have been used in order to establish the main parameters that affect this graphite malformation. The use of cutting-edge techniques in the analysis of chemical compositions has revealed that no significant differences can be found when comparing chunky areas and well-formed spheroidal graphite areas. On the other hand, it has not been possible to establish any correlation between the oxygen contents and the scale of the defect. However, it is noteworthy that the oxygen content is related to the use of magnesium or cerium as nodulized agent. (Author) 23 refs.

  4. Breast Implants: Saline vs. Silicone

    Science.gov (United States)

    ... differ in material and consistency, however. Saline breast implants Saline implants are filled with sterile salt water. ... of any age for breast reconstruction. Silicone breast implants Silicone implants are pre-filled with silicone gel — ...

  5. Atomic resolution images of graphite in air

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, D.A.; Shedd, G.M.; Griffis, D.; Russell, P.E.

    1988-12-01

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  6. Temperature dependence of phonons in pyrolitic graphite

    International Nuclear Information System (INIS)

    Brockhouse, B.N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4 0 K and 1500 0 C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes

  7. Electronic chip cooling system using graphite fins

    OpenAIRE

    Xue , Dong; Wu , Long; Xun , Lian

    2017-01-01

    International audience; As electronic devices get smaller, cooling systems with higher thermal efficiency is demanding by fast growing electronic industry. Great amount of research has been performed on the cooling systems but research on the materials of the cooling systems needs more work. Graphite with high thermal conductivity and light weight is a great candidate to be used in electronic devices. The bottleneck of using graphene in the cooling systems is the thermal transport among the i...

  8. Automated assembly of Gallium Arsenide and 50-micron thick silicon solar cell modules

    Science.gov (United States)

    Mesch, H. G.

    1984-01-01

    The TRW automated solar array assembly equipment was used for the module assembly of 300 GaAs solar cells and 300 50 micron thick silicon solar cells (2 x 4 cm in size). These cells were interconnected with silver plated Invar tabs by means of welding. The GaAs cells were bonded to Kapton graphite aluminum honeycomb graphite substrates and the thin silicon cells were bonded to 0.002 inch thick single layer Kapton substrates. The GaAs solar cell module assembly resulted in a yield of 86% and the thin cell assembly produced a yield of 46% due to intermittent sticking of weld electrodes during the front cell contact welding operation. (Previously assembled thin cell solar modules produced an overall assembly yield of greater than 80%).

  9. Nanowires of silicon carbide and 3D SiC/C nanocomposites with inverse opal structure

    International Nuclear Information System (INIS)

    Emelchenko, G.A.; Zhokhov, A.A.; Masalov, V.M.; Kudrenko, E.A.; Tereshenko, A.N.; Steinman, E.A.; Khodos, I.I.; Zinenko, V.I.; Agafonov, Yu.A.

    2011-01-01

    Synthesis, morphology, structural and optical characteristics of SiC NWs and SiC/C nanocomposites with an inverse opal lattice have been investigated. The samples were prepared by carbothermal reduction of silica (SiC NWs) and by thermo-chemical treatment of opal matrices (SiC/C) filled with carbon compounds which was followed by silicon dioxide dissolution. It was shown that the nucleation of SiC NWs occurs at the surface of carbon fibers felt. It was observed three preferred growth direction of the NWs: [111], [110] and [112]. HRTEM studies revealed the mechanism of the wires growth direction change. SiC/C- HRTEM revealed in the structure of the composites, except for silicon carbide, graphite and amorphous carbon, spherical carbon particles containing concentric graphite shells (onion-like particles).

  10. Revised activation estimates for silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States); Cheng, E.T.; Mann, F.M.

    1996-10-01

    Recent progress in nuclear data development for fusion energy systems includes a reevaluation of neutron activation cross sections for silicon and aluminum. Activation calculations using the newly compiled Fusion Evaluated Nuclear Data Library result in calculated levels of {sup 26}Al in irradiated silicon that are about an order of magnitude lower than the earlier calculated values. Thus, according to the latest internationally accepted nuclear data, SiC is much more attractive as a low activation material, even in first wall applications.

  11. Nitrogen-Doped Graphitic Nanoribbons: Synthesis, Characterization and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaoting [Massachusetts Institute of Technology (MIT); Dresselhaus, M [Massachusetts Institute of Technology (MIT); Cruz Silva, Eduardo [ORNL; Munoz-Sandoval, E [Instituto de Microelectronica de Madrid (CNM, CSIC); Sumpter, Bobby G [ORNL; Terrones Maldonado, Humberto [ORNL; Terrones Maldonado, Humberto [ORNL; Lopez, Florentino [IPICyT

    2013-01-01

    Nitrogen-doped graphitic nanoribbons (Nx-GNRs), synthesized by chemical vapor deposition (CVD) using pyrazine as a nitrogen precursor, are reported for the first time. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) reveal that the synthesized materials are formed by multi-layered corrugated graphitic nanoribbons (GNRs) which in most cases exhibit the formation of curved graphene edges (loops). This suggests that during growth, nitrogen atoms promote loop formation; undoped GNRs do not form loops at their edges. Transport measurements on individual pure carbon GNRs exhibit a linear I-V (current-voltage) behavior, whereas Nx-GNRs show reduced current responses following a semiconducting-like behavior, which becomes more prominent for high nitrogen concentrations. To better understand the experimental findings, electron density of states (DOS), quantum conductance for nitrogen doped zigzag and armchair single-layer GNRs are calculated for different N doping concentrations using Density Functional Theory (DFT) and non-equilibrium Green functions. These calculations confirm the crucial role of nitrogen atoms in the transport properties, confirming that the nonlinear I-V curves are due to the presence of nitrogen atoms within the Nx-GNRs lattice that act as scattering sites. These characteristic Nx-GNRs transport could be advantageous in the fabrication of electronic devices including sensors in which metal-like undoped GNRs are unsuitable.

  12. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    Directory of Open Access Journals (Sweden)

    N. Simos

    2017-07-01

    Full Text Available In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF of the Deep Underground Neutrino Experiment (DUNE four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ∼6.1×10^{20}  p/cm^{2} and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ∼10^{20}  cm^{−2} where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite

  13. Electrochemically anodized porous silicon: Towards simple and affordable anode material for Li-ion batteries.

    Science.gov (United States)

    Ikonen, T; Nissinen, T; Pohjalainen, E; Sorsa, O; Kallio, T; Lehto, V-P

    2017-08-11

    Silicon is being increasingly studied as the next-generation anode material for Li-ion batteries because of its ten times higher gravimetric capacity compared with the widely-used graphite. While nanoparticles and other nanostructured silicon materials often exhibit good cyclability, their volumetric capacity tends to be worse or similar than that of graphite. Furthermore, these materials are commonly complicated and expensive to produce. An effortless way to produce nanostructured silicon is electrochemical anodization. However, there is no systematic study how various material properties affect its performance in LIBs. In the present study, the effects of particle size, surface passivation and boron doping degree were evaluated for the mesoporous silicon with relatively low porosity of 50%. This porosity value was estimated to be the lowest value for the silicon material that still can accommodate the substantial volume change during the charge/discharge cycling. The optimal particle size was between 10-20 µm, the carbide layer enhanced the rate capability by improving the lithiation kinetics, and higher levels of boron doping were beneficial for obtaining higher specific capacity at lower rates. Comparison of pristine and cycled electrodes revealed the loss of electrical contact and electrolyte decay to be the major contributors to the capacity decay.

  14. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jeongwoon Hwang

    2015-10-01

    Full Text Available We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV. As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  15. New Insights of Graphite Anode Stability in Rechargeable Batteries: Li-Ion Coordination Structures Prevail over Solid Electrolyte Interphases

    KAUST Repository

    Ming, Jun

    2018-01-04

    Graphite anodes are not stable in most noncarbonate solvents (e.g., ether, sulfoxide, sulfone) upon Li ion intercalation, known as an urgent issue in present Li ions and next-generation Li–S and Li–O2 batteries for storage of Li ions within the anode for safety features. The solid electrolyte interphase (SEI) is commonly believed to be decisive for stabilizing the graphite anode. However, here we find that the solvation structure of the Li ions, determined by the electrolyte composition including lithium salts, solvents, and additives, plays a more dominant role than SEI in graphite anode stability. The Li ion intercalation desired for battery operation competes with the undesired Li+–solvent co-insertion, leading to graphite exfoliation. The increase in organic lithium salt LiN(SO2CF3)2 concentration or, more effectively, the addition of LiNO3 lowers the interaction strength between Li+ and solvents, suppressing the graphite exfoliation caused by Li+–solvent co-insertion. Our findings refresh the knowledge of the well-known SEI for graphite stability in metal ion batteries and also provide new guidelines for electrolyte systems to achieve reliable and safe Li–S full batteries.

  16. Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: The coupled effect of ultrasound and wedging nanoparticles.

    Science.gov (United States)

    Hadi, Alireza; Zahirifar, Jafar; Karimi-Sabet, Javad; Dastbaz, Abolfazl

    2018-06-01

    This study aims to investigate a novel technique to improve the yield of liquid phase exfoliation of graphite to graphene sheets. The method is based on the utilization of magnetic Fe 3 O 4 nanoparticles as "particle wedge" to facilitate delamination of graphitic layers. Strong shear forces resulted from the collision of Fe 3 O 4 particles with graphite particles, and intense ultrasonic waves lead to enhanced exfoliation of graphite. High quality of graphene sheets along with the ease of Fe 3 O 4 particle separation from graphene solution which arises from the magnetic nature of Fe 3 O 4 nanoparticles are the unique features of this approach. Initial graphite flakes and produced graphene sheets were characterized by various methods including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Zeta potential analysis. Moreover, the effect of process factors comprising initial graphite concentration, Fe 3 O 4 nanoparticles concentration, sonication time, and sonication power were investigated. Results revealed that graphene preparation yield and the number of layers could be manipulated by the presence of magnetic nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Porous silicon technology for integrated microsystems

    Science.gov (United States)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially

  18. Thermal Conductivity Measurement of the Silicon Sensor Support Frames of the CMS Tracker

    CERN Document Server

    Clerbaux, Barbara; Van der Velde, C; Vancaldenhoven, M; Van Lancker, Luc

    2005-01-01

    The silicon sensor support elements of the CMS tracker detector are made of carbon fiber, epoxy resin and/or graphite material. A function of the supports is to remove heat generated in the sensors and in the frontend electronics. In this note we present the results of studies we have performed of the thermal conductivity of these support elements. Results are presented for various production batches.

  19. Fabrication of TREAT Fuel with Increased Graphite Loading

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leckie, Rafael M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Papin, Pallas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-05

    As part of the feasibility study exploring the replacement of the HEU fuel core of the TREAT reactor at Idaho National Laboratory with LEU fuel, this study demonstrates that it is possible to increase the graphite content of extruded fuel by reformulation. The extrusion process was use to fabricate the “upgrade” core1 for the TREAT reactor. The graphite content achieved is determined by calculation and has not been measured by any analytical method. In conjunction, a technique, Raman Spectroscopy, has been investigated for measuring the graphite content. This method shows some promise in differentiating between carbon and graphite; however, standards that would allow the technique to be calibrated to quantify the graphite concentration have yet to be fabricated. Continued research into Raman Spectroscopy is on going. As part of this study, cracking of graphite extrusions due to volatile evolution during heat treatment has been largely eliminated. Continued research to optimize this extrusion method is required.

  20. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Santha Kumar, Arunjunai Raja Shankar [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Piana, Francesco [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany); Mičušík, Matej [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava (Slovakia); Pionteck, Jürgen, E-mail: pionteck@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Banerjee, Susanta [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Voit, Brigitte [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany)

    2016-10-01

    Heavily oxidized and ordered graphene nanoplatelets were produced from natural graphite by oxidation using a mixture of phosphoric acid, sulphuric acid, and potassium permanganate (Marcano's method). The atomic percentage of oxygen in the graphite oxide produced was more than 30% confirmed by XPS studies. The graphite oxide produced had intact basal planes and remains in a layered structure with interlayer distance of 0.8 nm, analyzed by WAXS. The graphite oxide was treated with 4,4′-methylenebis(phenyl isocyanate) (MDI) to produce grafted isocyanate functionalization. Introduction of these bulky functional groups widens the interlayer distance to 1.3 nm. In addition, two reduction methods, namely benzyl alcohol mediated reduction and thermal reduction were carried out on isocyanate modified and unmodified graphite oxides and compared to each other. The decrease in the oxygen content and the sp{sup 3} defect-repair were studied with XPS and RAMAN spectroscopy. Compared to the thermal reduction process, which is connected with large material loss, the benzyl alcohol mediated reduction process is highly effective in defect repair. This resulted in an increase of conductivity of at least 9 orders of magnitude compared to the graphite oxide. - Highlights: • Preparation of GO by Marcano's method results in defined interlayer spacing. • Treatment of GO with diisocyanate widens the interlayer spacing to 1.3 nm. • Chemical reduction of GO with benzyl alcohol is effective in defect repair. • Electrical conductivity increases by 9 orders of magnitude during chemical reduction. • The isocyanate functionalization is stable under chemical reducing conditions.

  1. ALICE silicon strip module

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    This small silicon detector strip will be inserted into the inner tracking system (ITS) on the ALICE detector at CERN. This detector relies on state-of-the-art particle tracking techniques. These double-sided silicon strip modules have been designed to be as lightweight and delicate as possible as the ITS will eventually contain five square metres of these devices.

  2. Mode II interlaminar fracture of graphite/epoxy and graphite/PEEK

    Science.gov (United States)

    Carlsson, L. A.; Gillespie, J. W.; Trethewey, B. R.

    1986-01-01

    The end notched flexure (ENF) specimen is employed in an investigation of the interlaminar fracture toughness in Mode II (skew symmetric shear) loading of unidirectional graphite/epoxy and graphite/PEEK composites. Important experimental parameters such as the influence of precracking and the data reduction scheme for the Mode II toughness are discussed. Nonlinear load-deflection response is significant for the tough thermoplastic resin composite but is also present for the brittle thermoset composite. The observed nonlinearities, which are highly rate dependent, are attributed to a combination of slow stable crack growth preceding unstable crack growth and material inelastic behavior in the process zone around the crack tip.

  3. Change in properties of graphite on stake of Obninsk NPP

    International Nuclear Information System (INIS)

    Virgul'ev, Yu.S.; Gundorov, V.V.; Kalyagina, I.P.; Belinskaya, N.T.; Dolgov, V.V.; Komissarov, O.V.; Stuzhnev, Yu.A.

    1997-01-01

    The results of testing the graphite from the AM-1 reactor masonry at the Obninsk NPP for its operation period are discussed. It is shown that the masonry graphite state after 42 years of the reactor operation remains satisfactory in the most cells inspected. Separate cells requiring a repair resulted from oxidation are characterized by strength decreased by several times. The laws of radiation changes in graphite properties are analyzed. The conclusion on possibility of the further masonry operation is drawn

  4. Vermicular graphite cast iron current state of the art

    OpenAIRE

    Murthy, VSR; Seshan, S; Seshan, K

    1985-01-01

    Vermicular graphite cast iron is a new addition to the family of cast irons. Various methods for producing vermicular graphite cast iron are briefly discussed in this paper. The mechanical and physical properties of cast irons with vermicular graphite have been found to be intermediate between those of gray and ductile irons. Other properties such as casting characteristics, scaling resistance, damping capacity and machinability have been compared with those of gray and ductile irons. Probabl...

  5. Huge magnetoresistance effect of highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Du Youwei; Wang Zhiming; Ni Gang; Xing Dingyu; Xu Qingyu

    2004-01-01

    Graphite is a quasi-two-dimensional semimetal. However, for usual graphite the magnetoresistance is not so high due to its small crystal size and no preferred orientation. Huge positive magnetoresistance up to 85300% at 4.2 K and 4950% at 300 K under 8.15 T magnetic field was found in highly oriented pyrolytic graphite. The mechanism of huge positive magnetoresistance is not only due to ordinary magnetoresistance but also due to magnetic-field-driven semimetal-insulator transition

  6. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    OpenAIRE

    Mansor, N.; Jorge, A. B.; Corà, F.; Gibbs, C.; Jervis, R.; McMillan, P. F.; Wang, X.; Brett, D. J.

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion...

  7. A systematic study of acoustic emission from nuclear graphites

    International Nuclear Information System (INIS)

    Neighbour, G.B.; McEnaney, B.

    1996-01-01

    Acoustic emission (AE) monitoring has been identified as a possible method to determine internal stresses in nuclear graphites using the Kaiser effect, i.e., on stressing a graphite that has been subject to a prior stress, the onset of AE occurs at the previous peak stress. For three nuclear graphites (PGA, IM1-24 and VNEC), AE was monitored during both monotonic and cyclic loading to failure in tensile, compressive and flexural test modes. For unirradiated graphites, the Kaiser effect was not found in cyclic loading, but a Felicity effect was observed, i.e., the onset of AE occurred below the previously applied peak stress. The Felicity effect was attributed to time-dependent relaxation and recovery processes and was characterized using a new parameter, the Recovery ratio. It was shown that AE can be used to monitor creep strain and creep recovery in graphites at zero load. The AE-time responses from these experiments were fitted to equations similar to those used for creep strain-time at elevated temperatures. The number of AE counts from irradiated graphites were greater than those from unirradiated graphites, subject to similar stresses, due to increases in porosity caused by radiolytic oxidation. A Felicity effect was also observed on cyclic loading of irradiated graphites, but no evidence for a Kaiser effect was found for irradiated graphites loaded monotonically to failure. Thus internal stresses in irradiated graphites could not be measured using AE. This was attributed to relaxation and recovery processes that occur between removing the irradiated graphite from the reactor and AE testing. This work indicated that AE monitoring is not a suitable technique for measuring internal stresses in irradiated graphite. (author). 19 refs, 6 figs, 6 tabs

  8. Atomic structure of the adsorption of transition metals on silicon surfaces

    International Nuclear Information System (INIS)

    Cocoletzi, G.H.; Takeuchi, N.

    2007-01-01

    Full text: Solid state devices are useful for their high sensitivity in a small volume. Applications of such devices as dose materials include semi-conducting dose-rate, and dose-reading measuring devices. Transition metals (TM) have electronic and atomic properties similar to those of rare earth elements when they are adsorbed on silicon surfaces. The interfaces of transition metals silicides with Si (111) have very small lattice mismatches, sharp interfaces, and low Schottky barrier, making them ideal in electronic devices, such as infrared detectors and rectifying contacts. In this work we shall describe our first principles total energy calculations to investigate structural properties of bulk ScSi and YSi, the two dimensional arrangement of ScSi 2 and YSi 2 on the Si(111) surface, and the growth of a few layers of ScSi 1.7 and YSi 1.7 on the Si(111) surface. Our calculated bulk structural parameters are in excellent agreement with experimental values. It will be shown that one monolayer of a TM on Si( l l 1) yields a two dimensional phase with (lxl) periodicity consisting of a layer of TM atoms on T4 sites and a Si bilayer on top. This double layer of Si atoms is very close to ideal Si(111)-(1x1) surface, but rotated 180 with respect to the rest of the crystal. More layers of TM silicide epitaxially grown on Si(l 11) result in a hexagonal structure similar to bulk ScSi2 and YSi2: graphite-like Si planes (with vacancies) intercalated with TM planes, and forming a (√3x√3) arrangement with a ScSi 1.7 and YSi 1.7 stoichiometry. The top Si layer does not contain vacancies and it does not present a graphite-like structure, but forms a bilayer arrangement as in bulk Si. (Author)

  9. Atomic structure of the adsorption of transition metals on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cocoletzi, G.H. [IF-BUAP, 72000 Puebla (Mexico); Takeuchi, N. [CCMC-UNAM, Ensenada, BCN (Mexico)

    2007-07-01

    Full text: Solid state devices are useful for their high sensitivity in a small volume. Applications of such devices as dose materials include semi-conducting dose-rate, and dose-reading measuring devices. Transition metals (TM) have electronic and atomic properties similar to those of rare earth elements when they are adsorbed on silicon surfaces. The interfaces of transition metals silicides with Si (111) have very small lattice mismatches, sharp interfaces, and low Schottky barrier, making them ideal in electronic devices, such as infrared detectors and rectifying contacts. In this work we shall describe our first principles total energy calculations to investigate structural properties of bulk ScSi and YSi, the two dimensional arrangement of ScSi{sub 2} and YSi{sub 2} on the Si(111) surface, and the growth of a few layers of ScSi{sub 1.7} and YSi{sub 1.7} on the Si(111) surface. Our calculated bulk structural parameters are in excellent agreement with experimental values. It will be shown that one monolayer of a TM on Si( l l 1) yields a two dimensional phase with (lxl) periodicity consisting of a layer of TM atoms on T4 sites and a Si bilayer on top. This double layer of Si atoms is very close to ideal Si(111)-(1x1) surface, but rotated 180 with respect to the rest of the crystal. More layers of TM silicide epitaxially grown on Si(l 11) result in a hexagonal structure similar to bulk ScSi2 and YSi2: graphite-like Si planes (with vacancies) intercalated with TM planes, and forming a ({radical}3x{radical}3) arrangement with a ScSi{sub 1.7} and YSi{sub 1.7} stoichiometry. The top Si layer does not contain vacancies and it does not present a graphite-like structure, but forms a bilayer arrangement as in bulk Si. (Author)

  10. Black silicon integrated aperture

    Science.gov (United States)

    Liu, Tianbo; Dickensheets, David L.

    2017-10-01

    This paper describes the incorporation of nanotextured black silicon as an optical absorbing material into silicon-based micro-optoelectromechanical systems devices to reduce stray light and increase optical contrast during imaging. Black silicon is created through a maskless dry etch process and characterized for two different etch conditions, a cold etch performed at 0°C and a cryogenic etch performed at -110°C. We measure specular reflection at visible wavelengths to be black velvet paint used to coat optical baffles and compare favorably with other methods to produce black surfaces from nanotextured silicon or using carbon nanotubes. We illustrate the use of this material by integrating a black silicon aperture around the perimeter of a deformable focus-control mirror. Imaging results show a significant improvement in contrast and image fidelity due to the effective reduction in stray light achieved with the self-aligned black aperture.

  11. Advances in silicon nanophotonics

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Pu, Minhao

    plasma effect have been tested up to 40 Gbit/s, and hybrid evanescent silicon lasers have been realized both in the form of distributed feed-back lasers and micro-disk lasers. For enhancing the impact of silicon photonics in future ultrafast and energy-efficient all-optical signal processing, e.......g. in high-bit-rate optical communication circuits and networks, it is vital that the nonlinear optical effects of silicon are being strongly enhanced. This can among others be achieved in photonic-crystal slow-light waveguides and in nano-engineered photonic-wires (Fig. 1). In this talk I shall present some......Silicon has long been established as an ideal material for passive integrated optical circuitry due to its high refractive index, with corresponding strong optical confinement ability, and its low-cost CMOS-compatible manufacturability. However, the inversion symmetry of the silicon crystal lattice...

  12. Apparatus for silicon nitride precursor solids recovery

    Science.gov (United States)

    Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.

    1995-04-04

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  13. Method for silicon nitride precursor solids recovery

    Science.gov (United States)

    Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.

    1992-12-15

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  14. Electroretinogram Changes following Silicone Oil Removal

    Directory of Open Access Journals (Sweden)

    Mohsen Azarmina

    2011-01-01

    Full Text Available Purpose: To evaluate electroretinogram (ERG changes after silicone oil removal. Methods: Scotopic and photopic ERGs, and best-corrected visual acuity (BCVA were checked before and shortly after silicone oil removal in eyes that had previously undergone vitrectomy and silicone oil injection for complex retinal detachment. Preand postoperative ERG a- and b-wave amplitudes were compared. Results: Twenty-eight eyes of 28 patients including 20 male and 8 female subjects with mean age of 39.3 ± 0.06 (range, 12 to 85 years were studied. Mean interval from primary vitreoretinal surgery to silicone oil removal was 21.04 ± 0.52 (range, 7 to 39 months. Mean duration from silicone oil removal to second ERG was 13.04 ± 1.75 (range, 10 to 16 days. Before silicone oil removal, mean a-wave amplitudes in maximal combined response, rod response and cone response ERGs were 27.4 ± 19.9, 7.2 ± 4.5 and 5.5 ± 3.4 μv, respectively. These values increased to 48.8 ± 31.9, 15.1 ± 14.4 and 17.4 ± 22.2 μv, respectively after silicone oil removal (P < 0.001. Mean b-wave amplitudes in the same order, were 69.41 ± 51, 41.2 ± 30.4 and 25.1 ± 33.9 μv before silicone oil removal, increasing to 165.6 ± 102.5, 81.7 ± 53.7 and 44.7 ± 34.1 μv respectively, after silicone oil removal (P < 0.001. Mean BCVA significantly improved from 1.10 ± 0.34 at baseline to 1.02 ± 0.33 logMAR after silicone oil removal (P < 0.001. Conclusion: The amplitudes of ERG a- and b-waves under scotopic and photopic conditions increased significantly shortly after silicone oil removal. An increase in BCVA was also observed. These changes may be explained by the insulating effect of silicone oil on the retina.

  15. Silicon hollow sphere anode with enhanced cycling stability by a template-free method.

    Science.gov (United States)

    Chen, Song; Chen, Zhuo; Luo, Yunjun; Xia, Min; Cao, Chuanbao

    2017-04-21

    Silicon is a promising alternative anode material since it has a ten times higher theoretical specific capacity than that of a traditional graphite anode. However, the poor cycling stability due to the huge volume change of Si during charge/discharge processes has seriously hampered its widespread application. To address this challenge, we design a silicon hollow sphere nanostructure by selective etching and a subsequent magnesiothermic reduction. The Si hollow spheres exhibit enhanced electrochemical properties compared to the commercial Si nanoparticles. The initial discharge and charge capacities of the Si hollow sphere anode are 2215.8 mAh g -1 and 1615.1 mAh g -1 with a high initial coulombic efficiency (72%) at a current density of 200 mA g -1 , respectively. In particular, the reversible capacity is 1534.5 mAh g -1 with a remarkable 88% capacity retention against the second cycle after 100 cycles, over four times the theoretical capacity of the traditional graphite electrode. Therefore, our work demonstrates the considerable potential of silicon structures for displacing commercial graphite, and might open up new opportunities to rationally design various nanostructured materials for lithium ion batteries.

  16. Silicon hollow sphere anode with enhanced cycling stability by a template-free method

    Science.gov (United States)

    Chen, Song; Chen, Zhuo; Luo, Yunjun; Xia, Min; Cao, Chuanbao

    2017-04-01

    Silicon is a promising alternative anode material since it has a ten times higher theoretical specific capacity than that of a traditional graphite anode. However, the poor cycling stability due to the huge volume change of Si during charge/discharge processes has seriously hampered its widespread application. To address this challenge, we design a silicon hollow sphere nanostructure by selective etching and a subsequent magnesiothermic reduction. The Si hollow spheres exhibit enhanced electrochemical properties compared to the commercial Si nanoparticles. The initial discharge and charge capacities of the Si hollow sphere anode are 2215.8 mAh g-1 and 1615.1 mAh g-1 with a high initial coulombic efficiency (72%) at a current density of 200 mA g-1, respectively. In particular, the reversible capacity is 1534.5 mAh g-1 with a remarkable 88% capacity retention against the second cycle after 100 cycles, over four times the theoretical capacity of the traditional graphite electrode. Therefore, our work demonstrates the considerable potential of silicon structures for displacing commercial graphite, and might open up new opportunities to rationally design various nanostructured materials for lithium ion batteries.

  17. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  18. Graphite structure and its relation to mechanical engineering design

    International Nuclear Information System (INIS)

    Brocklehurst, J.E.; Kelly, B.T.

    1980-01-01

    The inhomogeneous nature of polycrystalline graphite requires property measurements to be made over dimensions large enough to average the local variations in the structure. This is particularly true for mechanical integrity, and experimental data are presented which illustrate the importance of the real aggregate structure of graphite and the difficulties of interpreting strength data from different tests. The classical statistical treatments do not hold generally, and the problem of defining a failure criterion for graphite is discussed. It is suggested that the stress conditions in graphite components might be classified in terms of the dimensions and stress gradients related to the characteristic flaw size of the material as determined experimentally. (author)

  19. A study on wear behaviour of Al/6101/graphite composites

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2017-03-01

    Full Text Available The current research work scrutinizes aluminium alloy 6101-graphite composites for their mechanical and tribological behaviour in dry sliding environments. The orthodox liquid casting technique had been used for the manufacturing of composite materials and imperilled to T6 heat treatment. The content of reinforcement particles was taken as 0, 4, 8, 12 and 16 wt.% of graphite to ascertain it is prospective as self-lubricating reinforcement in sliding wear environments. Hardness, tensile strength and flexural strength of cast Al6101 metal matrix and manufactured composites were evaluated. Hardness, tensile strength and flexural strength decreases with increasing volume fraction of graphite reinforcement as compared to cast Al6101 metal matrix. Wear tests were performed on pin on disc apparatus to assess the tribological behaviour of composites and to determine the optimum volume fraction of graphite for its minimum wear rate. Wear rate reduces with increase in graphite volume fraction and minimum wear rate was attained at 4 wt.% graphite. The wear was found to decrease with increase in sliding distance. The average co-efficient of friction also reduces with graphite addition and its minimum value was found to be at 4 wt.% graphite. The worn surfaces of wear specimens were studied through scanning electron microscopy. The occurrence of 4 wt.% of graphite reinforcement in the composites can reveal loftier wear possessions as compared to cast Al6101 metal matrix.

  20. Dependence of strength on particle size in graphite

    International Nuclear Information System (INIS)

    Kennedy, E.P.; Kennedy, C.R.

    The strength to particle size relationship for specially fabricated graphites has been demonstrated and rationalized using fracture mechanics. In the past, similar studies have yielded empirical data using only commercially available material. Thus, experimental verification of these relationships has been difficult. However, the graphites of this study were fabricated by controlling the particle size ranges for a series of isotropic graphites. All graphites that were evaluated had a constant 1.85 g/cm 3 density. Thus, particle size was the only variable. This study also considered the particle size effect on other physical properties; coefficient of thermal expansion (CTE), electrical resistivity, fracture strain, and Young's modulus

  1. Preparation of in-house graphite reference material for boron

    International Nuclear Information System (INIS)

    Kumar, Sanjukta A.; Venkatesh, K.; Swain, Kallola K.; Manisha, V.; Kamble, Granthali S.; Pandey, Shailaja P.; Remya Devi, P.S.; Ghosh, M.; Verma, R.

    2016-05-01

    Graphite is extensively used in nuclear technology. Boron concentration in graphite is one of the important parameters that decide its acceptability for nuclear applications. Reliable analytical methods are essential for the determination of boron in graphite at concentration about 5 mg kg -1 . Reference materials are used for validation of existing analytical methods and developing new methodologies. In view of the importance of determination of boron in graphite and unavailability of graphite reference material, an In-house graphite reference material was prepared in Analytical Chemistry Division. Graphite source material was procured, processed to obtain powder of ≤ 75 μm (200 mesh) and bottled. Procedures were developed for the determination of boron in graphite using inductively coupled plasma optical emission spectrometry (ICPOES) and inductively coupled plasma mass spectrometry (ICPMS) techniques. Homogeneity testing was carried out on the bottled units and boron content along with the combined and expanded uncertainties were established. The assigned boron concentration in the In-house graphite reference material is (7.3±0.46) mg kg -1 . (author)

  2. Graphite moderator lifecycle behaviour. Proceedings of a specialists meeting

    International Nuclear Information System (INIS)

    1996-08-01

    The meeting provided the forum for graphite specialists representing operating and research organizations worldwide to exchange information in the following areas: the status of graphite development; operation and safety procedures for existing and future graphite moderated reactors; graphite testing techniques; review of the experiences gained and data acquired on the influence of neutron irradiation and oxidizing conditions on key graphite properties; and to exchange information useful for decommissioning activities. The participants provided twenty-seven papers on behalf of their countries and respective technical organizations. An open discussion followed each of the presentations. A consistently reoccurring theme throughout the specialists meeting was the noticeable reduction in the number of graphite experts remaining the nuclear power industry. Graphite moderated power reactors have provided a significant contribution to the generation of electricity throughout the past forty years and will continue to be a prominent energy source for the future. Yet, many of the renowned experts in the field of nuclear graphites are nearing the end of their careers without apparent replacement. This, coupled with changes in the focus on nuclear power by some industrialized countries, has prompted the IAEA to initiate an evaluation on the feasibility and interest by Member States of establishing a central archive facility for the storage of data on irradiated graphites. Refs, figs, tabs

  3. Effect of gamma radiation on graphite - PTFE dry lubrication system

    Science.gov (United States)

    Singh, Sachin; Tyagi, Mukti; Seshadri, Geetha; Tyagi, Ajay Kumar; Varshney, Lalit

    2017-12-01

    An effect of gamma radiation on lubrication behavior of graphite -PTFE dry lubrication system has been studied using (TR-TW-30L) tribometer with thrust washer attachment in plane contact. Different compositions of graphite and PTFE were prepared and irradiated by gamma rays. Gamma radiation exposure significantly improves the tribological properties indicated by decrease in coefficient of friction and wear properties of graphite -PTFE dry lubrication system. SEM and XRD analysis confirm the physico-chemical modification of graphite-PTFE on gamma radiation exposure leading to a novel dry lubrication system with good slip and anti friction properties.

  4. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.

    Science.gov (United States)

    Peng, Fei; Su, Yuanyuan; Zhong, Yiling; Fan, Chunhai; Lee, Shuit-Tong; He, Yao

    2014-02-18

    Silicon nanomaterials are an important class of nanomaterials with great potential for technologies including energy, catalysis, and biotechnology, because of their many unique properties, including biocompatibility, abundance, and unique electronic, optical, and mechanical properties, among others. Silicon nanomaterials are known to have little or no toxicity due to favorable biocompatibility of silicon, which is an important precondition for biological and biomedical applications. In addition, huge surface-to-volume ratios of silicon nanomaterials are responsible for their unique optical, mechanical, or electronic properties, which offer exciting opportunities for design of high-performance silicon-based functional nanoprobes, nanosensors, and nanoagents for biological analysis and detection and disease treatment. Moreover, silicon is the second most abundant element (after oxygen) on earth, providing plentiful and inexpensive resources for large-scale and low-cost preparation of silicon nanomaterials for practical applications. Because of these attractive traits, and in parallel with a growing interest in their design and synthesis, silicon nanomaterials are extensively investigated for wide-ranging applications, including energy, catalysis, optoelectronics, and biology. Among them, bioapplications of silicon nanomaterials are of particular interest. In the past decade, scientists have made an extensive effort to construct a silicon nanomaterials platform for various biological and biomedical applications, such as biosensors, bioimaging, and cancer treatment, as new and powerful tools for disease diagnosis and therapy. Nonetheless, there are few review articles covering these important and promising achievements to promote the awareness of development of silicon nanobiotechnology. In this Account, we summarize recent representative works to highlight the recent developments of silicon functional nanomaterials for a new, powerful platform for biological and

  5. Surface areas of turbostratic graphitic carbons prepared from a resin using nickel particles, 20 nm, as graphitization catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Oya, A.; Inoue, E.; Otani, S.; Marsh, H.

    1981-11-01

    Nickel particles were used to graphitize catalytically a non-graphitizing carbon to create a turbostratic graphitic material called the T/SUB/s-component. This method was examined by X-ray diffraction. Coals on heat treatment to temperatures >1270 K form T/SUB/s-component carbons. Therefore, considerations of the properties of the T/SUB/s-component carbon may have relevance to considerations of the operational performances of blast furnace coke. (22 refs.)

  6. Battery, especially for portable devices, has an anode containing silicon

    OpenAIRE

    Kan, S.Y.

    2002-01-01

    The anode (2) contains silicon. A battery with a silicon-containing anode is claimed. An Independent claim is also included for a method used to make the battery, comprising the doping of a silicon substrate (1) with charge capacity-increasing material (preferably boron, phosphorous or arsenic), etching the doped substrate layer in order to increase its porosity, and applying a cathode (3) in the form of a lithium oxide compound onto the resulting anode and applying an electrolyte (4) to the ...

  7. The low-aluminium cast iron of reduced silicon content treated with cerium mischmetal

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-07-01

    Full Text Available The work presents the effect of cerium mischmetal used in quantities of 0.1 and 0.2 wt-% and ferrosilicon used in quantities from 0.5% to 1.5% on the alloy matrix and the shape of graphite precipitates in the low-aluminium cast iron from seven heats, basing on the examination of its structure. The hypereutectic cast iron of the relatively high carbon content (4.0÷4.2% at the prior-to-treatment silicon and manganese content equal to ca. 0.6% and ca. 0.04%, respectively, has been examined.It has been found that the performed treatment leads to the change in the alloy matrix from the nearly almost pearlitic to the ferritic-pearlitic one accompanied by changes in the shape of graphite precipitates. Due to applying both of the mentioned substances in the above stated amounts the graphite precipitates in cast iron have taken the shape of nodular and vermicular ones, and no presence of flake graphite has been revealed. A quantitative analysis of the performed treatment i.e. determining the fractions of graphite precipitates of different shapes has been possible by means of a computer image analyser.

  8. Modeling the elastic behavior of ductile cast iron including anisotropy in the graphite nodules

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2016-01-01

    by means of a 3D periodic unit cell model. In this respect, an explicit procedure to enforce both periodic displacement and periodic traction boundary conditions in ABAQUS is presented, and the importance of fulfilling the traction continuity conditions at the unit cell boundaries is discussed. It is shown...

  9. Misorientations in spheroidal graphite: some new insights about spheroidal graphite growth in cast irons

    Science.gov (United States)

    Lacaze, J.; Theuwissen, K.; Laffont, L.; Véron, M.

    2016-03-01

    Local diffraction patterning, orientation mapping and high resolution transmission electron microscopy imaging have been used to characterize misorientations in graphite spheroids of cast irons. Emphasis is put here on bulk graphite, away from the nucleus as well as from the outer surface of the spheroids in order to get information on their growth during solidification. The results show that spheroidal graphite consists in conical sectors made of elementary blocks piled up on each other. These blocks are elongated along the prismatic a direction of graphite with the c axes roughly parallel to the radius of the spheroids. This implies that the orientation of the blocks rotates around the spheroid centre giving low angle tilting misorientations along tangential direction within each sector. Misorientations between neighbouring sectors are of higher values and their interfaces show rippled layers which are characteristic of defects in graphene. Along a radius of the spheroid, clockwise and anticlockwise twisting between blocks is observed. These observations help challenging some of the models proposed to explain spheroidal growth in cast ions.

  10. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  11. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-02-25

    In today\\'s traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry\\'s most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. © 2014 American Chemical Society.

  12. Effect of Nanoadditives on the Wear Behavior of Spheroidal Graphite Cast Irons

    Directory of Open Access Journals (Sweden)

    J. Kaleicheva

    2017-09-01

    Full Text Available The tribological characteristics of spheroidal graphite cast irons with and without nanosized additives are investigated. The tests are performed as in cast iron condition as well after austempering. The spheroidal graphite irons are undergone to austempering in the bainite field, including heating at 900 °С for an hour, after that isothermal retention at 280 °С, 2 h and at 380 °C, 2 h. The lower bainitic and upper bainitic structures are formed during the process. Nanosized additives of titanium carbonitride and titanium nitride TiCN+TiN influence on the graphite phase characteristics and on the microstructure of the cast and austempered spheroidal graphite irons. The changes in the micro structure the irons with nanoadditives lead to an abrasive wear resistance increase. The formation of the strain induced martensite from the retained austenite in the friction contact area during wear is determined in the austempered irons. This is the reason for the wear resistance increase of the irons. The experimental testing of the wear is carried out by cinematic scheme tapper-discunder friction on the fixed abrasive. The microstructure of the patterns is observed by optical and quantitative metallography, X-Ray analysis, SEM and EDX analysis. The hardness testing is performed by Brinnel and Vickers methods.

  13. Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins

    Science.gov (United States)

    Mu, Mulan; Wan, Chaoying; McNally, Tony

    2017-12-01

    The outstanding thermal conductivity (λ) of graphene and its derivatives offers a potential route to enhance the thermal conductivity of epoxy resins. Key challenges still need to be overcome to ensure effective dispersion and distribution of 2D graphitic fillers throughout the epoxy matrix. 2D filler type, morphology, surface chemistry and dimensions are all important factors in determining filler thermal conductivity and de facto the thermal conductivity of the composite material. To achieve significant enhancement in the thermal conductivity of epoxy composites, different strategies are required to minimise phonon scattering at the interface between the nano-filler and epoxy matrix, including chemical functionalisation of the filler surfaces such that interactions between filler and matrix are promoted and interfacial thermal resistance (ITR) reduced. The combination of graphitic fillers with dimensions on different length scales can potentially form an interconnected multi-dimensional filler network and, thus contribute to enhanced thermal conduction. In this review, we describe the relevant properties of different 2D nano-structured graphitic materials and the factors which determine the translation of the intrinsic thermal conductivity of these 2D materials to epoxy resins. The key challenges and perspectives with regard achieving epoxy composites with significantly enhanced thermal conductivity on addition of 2D graphitic materials are presented.

  14. Graphite deposits in Siskiyou County, California

    Science.gov (United States)

    Rynearson, Garn A.

    1945-01-01

    The graphite deposits examined are in sec. 7, T. 47 N., R. 11 W., Siskiyou County, Calif., on the summit of the Siskiyou Mts. between Elk Meadow and the northeast end of "mill 6220" (see map of the Seias quadrangle). Four claims, designated as the Black Jack Nos. 1, 2, 3, and 4 claims, and a five-acre mill site have been located by W. H. Gassaway, W. B. Stewart, and E. R. Stewart. Development consists of four small cuts and several shallow trenches.

  15. Neutron irradiation effects on graphite cloth

    International Nuclear Information System (INIS)

    Gray, W.J.

    1976-01-01

    A series of cloth and fiber samples has been irradiated to fluences of 3.5, 7.3, and 10 x 10 21 cm -2 EFF* at 470 0 C. Data from the first set of samples show large shrinkages relative to that found for typical nuclear graphites. Nevertheless, all but one of the 2-dimensional cloths were unchanged except for the shrinkage. The 3-dimensional cloths, on the other hand, have deteriorated apparently because these types of weaves are less able to accommodate the large axial fiber shrinkages

  16. Coating for gasifiable carbon-graphite fibers

    Science.gov (United States)

    Harper-Tervet, Jan (Inventor); Dowler, Warren L. (Inventor); Yen, Shiao-Ping S. (Inventor); Mueller, William A. (Inventor)

    1982-01-01

    A thin, uniform, firmly adherent coating of metal gasification catalyst is applied to a carbon-graphite fiber by first coating the fiber with a film-forming polymer containing functional moieties capable of reaction with the catalytic metal ions. Multivalent metal cations such as calcium cross-link the polymer such as a polyacrylic acid to insolubilize the film by forming catalytic metal macro-salt links between adjacent polymer chains. The coated fibers are used as reinforcement for resin composites and will gasify upon combustion without evolving conductive airborne fragments.

  17. Metallic Coatings for Graphite/Epoxy Composites

    Science.gov (United States)

    1980-08-01

    Perforated Foil-Coated Graphite/ Epoxy Panel .............. ........................... 4-6 4-4 Two-In. -Diameter 5052 Aluminum Alloy Repair Patch...The Phase I L i4-1 I1 evaluation indicated a need for a more corrosion-resistant aluminum alloy . The coating system selected was 0.0019-in. -thick 5052 ...application techniques on moisture resistance. The selected foil was 0.0025 in.-thick, 5052 aluminum alloy perforated with 0.010-in.-dlameter holes at a

  18. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    Science.gov (United States)

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  19. Silicon applications in photonics

    Science.gov (United States)

    Jelenski, A. M.; Gawlik, G.; Wesolowski, M.

    2005-09-01

    Silicon technology enabled the miniaturization of computers and other electronic system for information storage, transmission and transformation allowing the development of the Knowledge Based Information Society. Despite the fact that silicon roadmap indicates possibilities for further improvement, already now the speed of electrons and the bandwidth of electronic circuits are not sufficient and photons are commonly utilized for signal transmission through optical fibers and purely photonic circuits promise further improvements. However materials used for these purposes II/V semiconductor compounds, glasses make integration of optoelectronic circuits with silicon complex an expensive. Therefore research on light generation, transformation and transmission in silicon is very active and recently, due to nanotechnology some spectacular results were achieved despite the fact that mechanisms of light generation are still discussed. Three topics will be discussed. Porous silicon was actively investigated due to its relatively efficient electroluminescence enabling its use in light sources. Its index of refraction, differs considerably from the index of silicon, and this allows its utilization for Bragg mirrors, wave guides and photonic crystals. The enormous surface enables several applications on medicine and biotechnology and in particular due to the effective chemo-modulation of its refracting index the design of optical chemosensors. An effective luminescence of doped and undoped nanocrystalline silicon opened another way for the construction of silicon light sources. Optical amplification was already discovered opening perspectives for the construction of nanosilicon lasers. Luminescences was observed at red, green and blue wavelengths. The used technology of silica and ion implantation are compatible with commonly used CMOS technology. Finally the recently developed and proved idea of optically pumped silicon Raman lasers, using nonlinearity and vibrations in the

  20. HTGR Fuels and Core Development Program. Quarterly progress report for the period ending August 31, 1976. [Graphite and fuel irradiation; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-24

    The work reported includes studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and, where appropriate, the data are presented in tables, graphs, and photographs.

  1. Recrystallization of polycrystalline silicon

    Science.gov (United States)

    Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.

    1981-01-01

    Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.

  2. Silicon etch process

    International Nuclear Information System (INIS)

    Day, D.J.; White, J.C.

    1984-01-01

    A silicon etch process wherein an area of silicon crystal surface is passivated by radiation damage and non-planar structure produced by subsequent anisotropic etching. The surface may be passivated by exposure to an energetic particle flux - for example an ion beam from an arsenic, boron, phosphorus, silicon or hydrogen source, or an electron beam. Radiation damage may be used for pattern definition and/or as an etch stop. Ethylenediamine pyrocatechol or aqueous potassium hydroxide anisotropic etchants may be used. The radiation damage may be removed after etching by thermal annealing. (author)

  3. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  4. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  5. Stable configurations of graphene on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam; Shenoy, Bhamy Maithry [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Ravikumar, Abhilash [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India); Hegde, G.M. [Center for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); Rizwan, M.R. [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India)

    2017-08-31

    Highlights: • Simulations of epitaxial growth process for silicon–graphene system is performed. • Identified the most favourable orientation of graphene sheet on silicon substrate. • Atomic local strain due to the silicon–carbon bond formation is analyzed. - Abstract: Integration of graphene on silicon-based nanostructures is crucial in advancing graphene based nanoelectronic device technologies. The present paper provides a new insight on the combined effect of graphene structure and silicon (001) substrate on their two-dimensional anisotropic interface. Molecular dynamics simulations involving the sub-nanoscale interface reveal a most favourable set of temperature independent orientations of the monolayer graphene sheet with an angle of ∽15° between its armchair direction and [010] axis of the silicon substrate. While computing the favorable stable orientations, both the translation and the rotational vibrations of graphene are included. The possible interactions between the graphene atoms and the silicon atoms are identified from their coordination. Graphene sheet shows maximum bonding density with bond length 0.195 nm and minimum bond energy when interfaced with silicon substrate at 15° orientation. Local deformation analysis reveals probability distribution with maximum strain levels of 0.134, 0.047 and 0.029 for 900 K, 300 K and 100 K, respectively in silicon surface for 15° oriented graphene whereas the maximum probable strain in graphene is about 0.041 irrespective of temperature. Silicon–silicon dimer formation is changed due to silicon–carbon bonding. These results may help further in band structure engineering of silicon–graphene lattice.

  6. Molecular hydrogen isotopes adsorbed on krypton-preplated graphite

    Science.gov (United States)

    Turnbull, Joseph; Boninsegni, Massimo

    2007-09-01

    Adsorption of ortho-deuterium and para-hydrogen films on a graphite substrate, preplated with a single atomic layer of krypton, is studied theoretically by means of quantum Monte Carlo simulations at low temperature. Our model explicitly includes substrate corrugation. Energetic and structural properties of these adsorbed films are computed for a range of hydrogen coverages. Thermodynamically stable adsorbed films are solid, with no clear evidence of any liquidlike phase. Quantum exchanges of ortho-deuterium and para-hydrogen are essentially absent in this system, down to zero temperature; consequently, this system displays no superfluidity in this limit. Our simulations provide evidence of a stable domain-wall fluid at low temperature, consistent with recent experimental observations.

  7. Graphitic Carbon Nitride Materials: Sensing, Imaging and Therapy.

    Science.gov (United States)

    Dong, Yongqiang; Wang, Qian; Wu, Haishan; Chen, Yingmei; Lu, Chun-Hua; Chi, Yuwu; Yang, Huang-Hao

    2016-10-01

    Graphitic carbon nitrides (g-C 3 N 4 ) are a class of 2D polymeric materials mainly composed of carbon and nitrogen atoms. g-C 3 N 4 are attracting dramatically increasing interest in the areas of sensing, imaging, and therapy, due to their unique optical and electronic properties. Here, the luminescent properties (mainly includes photoluminescence and electrochemiluminescence), and catalytic and photoelectronic properties related to sensing and therapy applications of g-C 3 N 4 materials are reviewed. Furthermore, the fabrication and advantages of sensing, imaging and therapy systems based on g-C 3 N 4 materials are summarized. Finally, the future perspectives for developing the sensing, imaging and therapy applications of the g-C 3 N 4 materials are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fluorescent Silicon Clusters and Nanoparticles

    OpenAIRE

    von Haeften, Klaus

    2017-01-01

    The fluorescence of silicon clusters is reviewed. Atomic clusters of silicon have been at the focus of research for several decades because of the relevance of size effects for material properties, the importance of silicon in electronics and the potential applications in bio-medicine. To date numerous examples of nanostructured forms of fluorescent silicon have been reported. This article introduces the principles and underlying concepts relevant for fluorescence of nanostructured silicon su...

  9. The use of graphite oxide to produce mesoporous carbon supporting Pt, Ru, or Pd nanoparticles

    OpenAIRE

    Gotoh, Kazuma; Kawabata, Koji; Fujii, Eiji; Morishige, Kunimitsu; Kinumoto, Taro; Miyazaki, Yuki; Ishida, Hiroyuki

    2009-01-01

    Mesoporous carbon having platinum, ruthenium or palladium nanoparticles on exfoliated graphene sheets were produced from graphite oxide (GO) and metal complexes. The Pt included carbon was made by heating of the intercalation compound including tetraammineplatinum (II) chloride monohydrate. Samples having Ru or Pd are producible by heating in nitrogen gas atmosphere using hexaammineruthenium (III) chloride or tetraamminepalladium (II) chloride monohydrate instead of Pt complex. The particle s...

  10. Silicon carbide alloys: Research reports in materials science

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, M.M.

    1986-01-01

    The book draws from work done on other silicon materials, silicon nitrides and sialons, to emphasize the importance of the SiC system. A comprehensive treatment of non-oxide silicon ceramics, this work is of special interest to researchers involved in ceramics, materials science, and high-temperature technology. This book covers the alloys of silicon carbide with aluminum nitride. Crystallography and experimental methods including sample preparation, furnace methods, X-ray and electron diffraction, optical and electron microscopy and chemical analysis are covered.

  11. Plasma-made silicon nanograss and related nanostructures

    International Nuclear Information System (INIS)

    Shieh, Jiann; Ravipati, Srikanth; Ko, Fu-Hsiang; Ostrikov, Kostya

    2011-01-01

    Plasma-made nanostructures show outstanding potential for applications in nanotechnology. This paper provides a concise overview on the progress of plasma-based synthesis and applications of silicon nanograss and related nanostructures. The materials described here include black silicon, Si nanotips produced using a self-masking technique as well as self-organized silicon nanocones and nanograss. The distinctive features of the Si nanograss, two-tier hierarchical and tilted nanograss structures are discussed. Specific applications based on the unique features of the silicon nanograss are also presented.

  12. Measurement of the specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Picard, S.; Burns, D.T.; Roger, P.

    2006-01-01

    With the objective of implementing graphite calorimetry at the BIPM to measure absorbed dose, an experimental assembly has recently been constructed to measure the specific heat capacity of graphite. A status description of the apparatus and results from the first measurements are given. The outcome is discussed and the experimental uncertainty is reviewed. (authors)

  13. 'Indicator'carbonaceous phyllite/graphitic schist in the Archean ...

    Indian Academy of Sciences (India)

    Carbonaceous rocks in the form of graphitic schist and carbonaceous phyllite are the major host rocks of the gold mineralization in Kundarkocha gold deposit of the Precambrian Singhbhum orogenic belt in eastern India. The detection of organic carbon, essentially in the carbonaceous phyllite and graphitized schist within ...

  14. Carboxylic acid terminated, solution exfoliated graphite by organic ...

    Indian Academy of Sciences (India)

    Graphite nanosheets are considered as a promising material for a range of applications from flexible electronics to functional nanodevices such as biosensors, intelligent coatings and drug delivery. Chemical functionalizationof graphite nanosheets with organic/inorganic materials offers an alternative approach to control ...

  15. Evaluation of ac conductivity behaviour of graphite filled

    Indian Academy of Sciences (India)

    Composites of epoxy resin having different amounts of graphite particles have been prepared by solution casting method. Temperature dependence of dielectric constant, tan and a.c. conductivity was measured in the frequency range, 1–20 kHz, temperature range, 40–180°C for 0.99, 1.96 and 2.91 wt% graphite filled ...

  16. The role of graphite morphology and matrix structure on low ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Thermal cycling resistance; graphite morphology; grey cast iron; austempered ductile iron; compacted/vermicular graphite iron; matrix decompo- sition. 1. Introduction. When a material is subjected to a temperature gradient, it tends to expand differentially. During this process, thermal stresses are induced. The source of ...

  17. Industry technology assessment of graphite-polymide composite materials. [conferences

    Science.gov (United States)

    1975-01-01

    An assessment of the current state of the art and the future prospects for graphite polyimide composite material technology is presented. Presentations and discussions given at a minisymposium of major issues on the present and future use, availability, processing, manufacturing, and testing of graphite polyimide composite materials are summarized.

  18. Linear expansion of products out of thermal splitting graphite

    International Nuclear Information System (INIS)

    Tishina, E.A.; Kurnevich, G.I.

    1994-01-01

    Linear expansion of thermally split graphite in the form of foil and pressed items of different density was studied. It is ascertained that the extreme character of temperature dependence of linear expansion factor of pressed samples of thermally split graphite is determined by the formation of closed pores containing air in the course of their production. 3 refs., 2 figs

  19. A TEM Study on the Microstructure of Fine Flaky Graphite

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tiedje, Niels Skat; Horsewell, Andy

    In this investigation the microstructure of the graphite flakes in titanium alloyed cast iron is studied using electron microscopy techniques. Based on this information, growth models for the platelets in the fine graphite flakes in cast iron are considered. Detailed crystallographic analysis...

  20. Silicon in the Earth's core.

    Science.gov (United States)

    Georg, R Bastian; Halliday, Alex N; Schauble, Edwin A; Reynolds, Ben C

    2007-06-28

    Small isotopic differences between the silicate minerals in planets may have developed as a result of processes associated with core formation, or from evaporative losses during accretion as the planets were built up. Basalts from the Earth and the Moon do indeed appear to have iron isotopic compositions that are slightly heavy relative to those from Mars, Vesta and primitive undifferentiated meteorites (chondrites). Explanations for these differences have included evaporation during the 'giant impact' that created the Moon (when a Mars-sized body collided with the young Earth). However, lithium and magnesium, lighter elements with comparable volatility, reveal no such differences, rendering evaporation unlikely as an explanation. Here we show that the silicon isotopic compositions of basaltic rocks from the Earth and the Moon are also distinctly heavy. A likely cause is that silicon is one of the light elements in the Earth's core. We show that both the direction and magnitude of the silicon isotopic effect are in accord with current theory based on the stiffness of bonding in metal and silicate. The similar isotopic composition of the bulk silicate Earth and the Moon is consistent with the recent proposal that there was large-scale isotopic equilibration during the giant impact. We conclude that Si was already incorporated as a light element in the Earth's core before the Moon formed.

  1. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  2. Roll-to-Roll Laser-Printed Graphene-Graphitic Carbon Electrodes for High-Performance Supercapacitors.

    Science.gov (United States)

    Kang, Sangmin; Lim, Kyungmi; Park, Hyeokjun; Park, Jong Bo; Park, Seong Chae; Cho, Sung-Pyo; Kang, Kisuk; Hong, Byung Hee

    2018-01-10

    Carbon electrodes including graphene and thin graphite films have been utilized for various energy and sensor applications, where the patterning of electrodes is essentially included. Laser scribing in a DVD writer and inkjet printing were used to pattern the graphene-like materials, but the size and speed of fabrication has been limited for practical applications. In this work, we devise a simple strategy to use conventional laser-printer toner materials as precursors for graphitic carbon electrodes. The toner was laser-printed on metal foils, followed by thermal annealing in hydrogen environment, finally resulting in the patterned thin graphitic carbon or graphene electrodes for supercapacitors. The electrochemical cells made of the graphene-graphitic carbon electrodes show remarkably higher energy and power performance compared to conventional supercapacitors. Furthermore, considering the simplicity and scalability of roll-to-roll (R2R) electrode patterning processes, the proposed method would enable cheaper and larger-scale synthesis and patterning of graphene-graphitic carbon electrodes for various energy applications in the future.

  3. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    Science.gov (United States)

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  4. Structures and Performance of Graphene/Polyimide Composite Graphite Fibers

    Directory of Open Access Journals (Sweden)

    LI Na

    2017-09-01

    Full Text Available Dry-wet spinning process was used to gain graphene oxide/polyimide composite fibers, then graphene/polyimide composite carbon and graphite fibers were obtained through carbonized and graphitized. Different graphene oxide contents of the composite carbon and graphite fibers were measured by thermal gravimetric analysis, Raman, mechanical properties, electrical properties,SEM and so on. The results show that when the GO content is 0.3%(mass fraction,the same below, the thermal property of the graphene oxide/polyimide composite fibers is the best. The mechanical and electrical properties are obriously improved by the addition of GO, graphitization degree also increases. When the composite carbon fibers are treated at 2800℃, GO content increases to 2.0%, the thermal conductivity of the composite graphite fibers reaches 435.57W·m-1·K-1 and cross-section structures of carbon fibers are more compact.

  5. Fort St. Vrain graphite site mechanical separation concept selection

    International Nuclear Information System (INIS)

    Berry, S.M.

    1993-09-01

    One of the alternatives to the disposal of the Fort St. Vrain (FSV) reactor spent nuclear fuel involves the separation of the fuel rods composed of compacts from the graphite fuel block assembly. After the separation of these two components, the empty graphite fuel blocks would be disposed of as a low level waste (provided the appropriate requirements are met) and the fuel compacts would be treated as high level waste material. This report deals with the mechanical separation aspects concerning physical disassembly of the FSV graphite fuel element into the empty graphite fuel blocks and fuel compacts. This report recommends that a drilling technique is the preferred choice for accessing the, fuel channel holes and that each hole is drilled separately. This report does not cover any techniques or methods to separate the triso fuel particles from the graphite matrix of the fuel compacts

  6. Cluster Deposition and Implantation on/in Graphite

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2013-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects on the surface, modification and processing of surfaces and shallow layers on an atomic scale. In this chapter an overview of research on cluster interaction with graphite is presented....... One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the phenomenon of cluster stopping and the development of scaling law for cluster implantation in graphite. Graphite...... is chosen for surface experiments because it is a good model material; it has an atomically smooth surface that makes it easy to resolve very small deposited clusters or damaged areas. Layered structure of graphite with strong covalent bonds in the graphene sheets and very week van der Waals interactions...

  7. Graphitization of diamond with a metallic coating on ferritic matrix

    International Nuclear Information System (INIS)

    Cabral, Stenio Cavalier; Oliveira, Hellen Cristine Prata de; Filgueira, Marcello

    2010-01-01

    Iron is a strong catalyst of graphitization of diamonds. This graphitization occurs mainly during the processing of composites - conventional sintering or hot pressing, and during cutting operations. Aiming to avoid or minimize this deleterious effect, there is increasing use of diamond coated with metallic materials in the production of diamond tools processed via powder metallurgy. This work studies the influence of Fe on diamond graphitization diamond-coated Ti after mixing of Fe-diamonds, hot pressing parameters were performed with 3 minutes/35MPa/900 deg C - this is the condition of pressing hot used in industry for production of diamond tools. Microstructural features were observed by SEM, diffusion of Fe in diamond was studied by EDS. Graphitization was analyzed by X-ray diffraction and Raman spectroscopy. It was found that Fe not activate graphitization on the diamond under the conditions of hot pressing. (author)

  8. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-03

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li + Cl - ), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li + Cl - catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  9. The DELPHI silicon tracker

    CERN Document Server

    Pernegger, H

    1997-01-01

    The DELPHI collaboration has upgraded the Silicon Vertex Detector in order to cope with the physics requirements for LEP200. The new detector consists of a barrel section with three layers of microstrip detectors and a forward extension made of hybrid pixel and large pitch strip detectors. The layout of the detector and the techniques used for the different parts of the new silicon detector shall be described.

  10. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  11. Dynamic Silicon Nanophotonics

    Science.gov (United States)

    2013-07-31

    sensitive to fabrication imperfections and small temperature changes, therefore they are challenging to integrate into high yield mass production ... Cocoa Beach, Florida, September 2012. 15. Ali Wanis Elshaari, “Photon Manipulation in Silicon Nanophotonic Circuits,” Ph.D. Dissertation, Rochester...1.5-micron Light using Silicon Nanocrystals,” 2012 IEEE Avionics, Fiber Optics and Photonics Conference (AVFOP 2012), ThB3, Cocoa Beach, Florida

  12. Silicon microphotonic waveguides

    International Nuclear Information System (INIS)

    Ta'eed, V.; Steel, M.J.; Grillet, C.; Eggleton, B.; Du, J.; Glasscock, J.; Savvides, N.

    2004-01-01

    Full text: Silicon microphotonic devices have been drawing increasing attention in the past few years. The high index-difference between silicon and its oxide (Δn = 2) suggests a potential for high-density integration of optical functions on to a photonic chip. Additionally, it has been shown that silicon exhibits strong Raman nonlinearity, a necessary property as light interaction can occur only by means of nonlinearities in the propagation medium. The small dimensions of silicon waveguides require the design of efficient tapers to couple light to them. We have used the beam propagation method (RSoft BeamPROP) to understand the principles and design of an inverse-taper mode-converter as implemented in several recent papers. We report on progress in the design and fabrication of silicon-based waveguides. Preliminary work has been conducted by patterning silicon-on-insulator (SOI) wafers using optical lithography and reactive ion etching. Thus far, only rib waveguides have been designed, as single-mode ridge-waveguides are beyond the capabilities of conventional optical lithography. We have recently moved to electron beam lithography as the higher resolutions permitted will provide the flexibility to begin fabricating sub-micron waveguides

  13. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  14. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  15. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  16. Silicon-Based Light Sources for Silicon Integrated Circuits

    Directory of Open Access Journals (Sweden)

    L. Pavesi

    2008-01-01

    Full Text Available Silicon the material per excellence for electronics is not used for sourcing light due to the lack of efficient light emitters and lasers. In this review, after having introduced the basics on lasing, I will discuss the physical reasons why silicon is not a laser material and the approaches to make it lasing. I will start with bulk silicon, then I will discuss silicon nanocrystals and Er3+ coupled silicon nanocrystals where significant advances have been done in the past and can be expected in the near future. I will conclude with an optimistic note on silicon lasing.

  17. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/PEEK

    Science.gov (United States)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Smiley, A. J.

    1987-01-01

    In this paper the mode I fracture behavior of graphite/epoxy and graphite/PEEK composites is examined over four decades of crosshead rates (0.25-250 mm/min). Straight-sided double-cantilever-beam specimens consisting of unidirectional laminates were tested at room temperature. For graphite/epoxy the load-deflection response was linear to fracture, and stable slow crack growth initiating at the highest load level was observed for all rates tested. In contrast, mode I crack growth in the graphite/PEEK material was often unstable and showed stick-slip behavior. Subcritical crack growth occurring prior to the onset of fracture was observed at intermediate displacement rates. A mechanism for the fracture behavior of the graphite/PEEK material (based on viscoelastic, plastic, and microcrack coalescence in the process zone) is proposed and related to the observed rate-dependent phenomena.

  18. Liquid Silicon Pouch Anode

    Science.gov (United States)

    2017-09-06

    collector 18 can be made from nickel; however, other high conductivity metals and alloys can be used for this such as gold, silver , platinum, alloys of...The conductive particles can be carbon such as carbon black or graphite. These particles can also be metals such as copper, nickel, silver , gold...anode cycling characteristics, higher battery capacity, and longer cycle life. [0005] Rechargeable batteries with lithium metal anodes have been

  19. Structurally controlled deposition of silicon onto nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weijie; Liu, Zuqin; Han, Song; Bornstein, Jonathan; Stefan, Constantin Ionel

    2018-03-20

    Provided herein are nanostructures for lithium ion battery electrodes and methods of fabrication. In some embodiments, a nanostructure template coated with a silicon coating is provided. The silicon coating may include a non-conformal, more porous layer and a conformal, denser layer on the non-conformal, more porous layer. In some embodiments, two different deposition processes, e.g., a PECVD layer to deposit the non-conformal layer and a thermal CVD process to deposit the conformal layer, are used. Anodes including the nanostructures have longer cycle lifetimes than anodes made using either a PECVD or thermal CVD method alone.

  20. Effect of an electrolyte salt dissolving in polysiloxane-based electrolyte on passive film formation on a graphite electrode

    Science.gov (United States)

    Nakahara, Hiroshi; Nutt, Steven

    Electrochemical impedance spectroscopy (EIS) was performed during the first charge of a graphite/lithium metal test cell to determine the effect of an electrolyte salt on passive film formation in a polysiloxane-based electrolyte. The graphite electrode was separated from the lithium metal electrode by a porous polyethylene membrane immersed in a polysiloxane-based electrolyte with the dissolved lithium bis(oxalato) borate (LiBOB) or lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). In case of LiTFSI, the conductivity of system decreased at 1.2 V. In contrast, for the case of LiBOB, the conductivity decreased at 1.7 V. The magnitudes of charge transfer resistance and film resistance for LiTFSI were smaller than that for LiBOB. Passive films on highly oriented pyrolytic graphite (HOPG) after charging (lithiating) in polysiloxane-based electrolyte were inspected microscopically. Gel-like film and island-like films were observed for LiBOB [H. Nakahara, A. Masias, S.Y. Yoon, T. Koike, K. Takeya, Proceedings of the 41st Power Sources Conference, vol. 165, Philadelphia, June 14-17, 2004; H. Nakahara, S.Y. Yoon, T. Piao, S. Nutt, F. Mansfeld, J. Power Sources, in press; H. Nakahara, S.Y. Yoon, S. Nutt, J. Power Sources, in press]. However, for LiTFSI, there was sludge accumulation on the HOPG surface. Compositional analysis revealed the presence of silicon on both HOPG specimens with LiBOB and with LiTFSI. The electrolyte salt dissolved in the polysiloxane-based electrolyte changed the electrochemical and morphological nature of passive films on graphite electrode.

  1. Study of hot corrosion of flakes of non purified graphite and of purified graphite

    International Nuclear Information System (INIS)

    Boule, Michel

    1967-01-01

    The author reports the study of hot corrosion of the Ticonderoga graphite. He reports the study of the defects of graphite flakes (structure defects due to impurities), the dosing of these impurities, and then their removal by purification. Flakes have then been oxidised by means of a specially designed apparatus. Based on photographs taken by optical and electronic microscopy, the author compares the oxidation features obtained in dry air and in humid air, between purified and non purified flakes. He also reports the study of the evolution of oxidation with respect to the initial rate of impurities, and the study of the evolution of oxidation features in humid air during oxidation. All these comparisons are made while taking the oxidation rate into account [fr

  2. Empirical Validation of Heat Transfer Performance Simulation of Graphite/PCM Concrete Materials for Thermally Activated Building System

    Directory of Open Access Journals (Sweden)

    Jin-Hee Song

    2017-01-01

    Full Text Available To increase the heat capacity in lightweight construction materials, a phase change material (PCM can be introduced to building elements. A thermally activated building system (TABS with graphite/PCM concrete hollow core slab is suggested as an energy-efficient technology to shift and reduce the peak thermal load in buildings. An evaluation of heat storage and dissipation characteristics of TABS in graphite/PCM concrete has been conducted using dynamic simulations, but empirical validation is necessary to acceptably predict the thermal behavior of graphite/PCM concrete. This study aimed to validate the thermal behavior of graphite/PCM concrete through a three-dimensional transient heat transfer simulation. The simulation results were compared to experimental results from previous studies of concrete and graphite/PCM concrete. The overall thermal behavior for both materials was found to be similar to experiment results. Limitations in the simulation modeling, which included determination of the indoor heat transfer coefficient, assumption of constant thermal conductivity with temperature, and assumption of specimen homogeneity, led to slight differences between the measured and simulated results.

  3. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  4. Study of the main parameters involved in carbothermal reduction reaction of silica aiming to obtain silicon nitride powder

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Greca, M.C.

    1989-01-01

    The influence of main parameters involved in the method of silicon nitride attainment by carbothermal reduction of silica followed by nitridation were studied in isothermal experiments of fine powder mixtures of silica and graphite in a nitrogen gas flow. The time, temperature, rate C/SiO 2 and flow of nitrogen were varied since they are the main parameters involved in this kind of reaction. The products of reaction were analysed by X-ray diffraction to identify the crystalline phases and as a result was obtained the nucleation of silicon nitride phase. Meanwhile, corroborating prior results, we verified to be difficult the progress of the reaction and the inhibition of formation of silicon carbide phase, the last one being associated to the formation of silicon nitride phase due to thermodynamic matters [pt

  5. Hydrogenated amorphous silicon photonics

    Science.gov (United States)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  6. Experiments with HEU (93.14 wt.%) metal annuli with internal graphite cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wehmann, Udo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    A variety of critical experiments were constructed of enriched uranium metal (oralloy ) during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, only three experimental configurations are described here. They are internal graphite reflected metal uranium assemblies with three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches). These experiments can be found in Reference 1 and in their associated logbook

  7. New insights into canted spiro carbon interstitial in graphite

    Science.gov (United States)

    EL-Barbary, A. A.

    2017-12-01

    The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.

  8. Design Procedure of Graphite Components by ASME HTR Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji-Ho; Jo, Chang Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet.

  9. Air oxidation behavior of carbon and graphite materials for HTGR

    International Nuclear Information System (INIS)

    Kawakami, Haruo

    1986-01-01

    Most components in the core of high temperature gas-cooled reactors are made of carbon and graphite which are efficient neutron moderators, and have high strength at high temperature. The demerit of these materials in HTGR use is that these are readily oxidized by the impurity oxidants in helium coolant in the normal operating condition, and by air in the case of an air ingress accident. In order to examine the candidate materials for the experimental very high temperature gas-cooled reactor in Japan, the air oxidation experiment on some carbon and graphite was carried out. The materials tested were isotropic fine grain graphite (1G-11, 1G-110), anisotropic molded graphite (PGX, TS-1621), and anisotropic molded carbon (ASR-ORB, ASR-IRB, P3JHA-B). The uniform oxidation in the temperature range from 430 to 650 deg C and the non-uniform oxidation in the temperature range from 700 to 1000 deg C were tested. The oxidation of graphite by air was enhanced by the impurities in the graphite such as Co, Ni and V. The reaction rate of PGX graphite was nearly proportional to oxygen partial pressure. Below 650 deg C, the ratio of reaction products CO/CO 2 increased as temperature rose, but above 800 deg C, CO was oxidized to CO 2 . (Kako, I.)

  10. Automatic classification of graphite in cast iron.

    Science.gov (United States)

    Gomes, Otávio da F M; Paciornik, Sidnei

    2005-08-01

    A method for automatic classification of the shape of graphite particles in cast iron is proposed. In a typical supervised classification procedure, the standard charts from the ISO-945 standard are used as a training and validation population. Several shape and size parameters are described and used as discriminants. A new parameter, the average internal angle, is proposed and is shown to be relevant for accurate classification. The ideal parameter sets are determined, leading to validation success rates above 90%. The classifier is then applied to real cast iron samples and provides results that are consistent with visual examination. The method provides classification results per particle, different from the traditional per field chart comparison methods. The full procedure can run automatically without user interference.

  11. (Fuel, fission product, and graphite technology)

    Energy Technology Data Exchange (ETDEWEB)

    Stansfield, O.M.

    1990-07-25

    Travel to the Forschungszentrum (KFA) -- Juelich described in this report was for the purpose of participating in the annual meeting of subprogram managers for the US/DOE Umbrella Agreement for Fuel, Fission Product, and Graphite Technology. At this meeting the highlights of the cooperative exchange were reviewed for the time period June 1989 through June 1990. The program continues to contribute technology in an effective way for both countries. Revision 15 of the Subprogram Plan will be issued as a result of the meeting. There was interest expressed by KFA management in the level of support received from the NPR program and in potential participation in the COMEDIE loop experiment being conducted at the CEA.

  12. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  13. Nanodiamond graphitization: a magnetic resonance study

    International Nuclear Information System (INIS)

    Panich, A M; Shames, A I; Sergeev, N A; Olszewski, M; McDonough, J K; Mochalin, V N; Gogotsi, Y

    2013-01-01

    We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) study of the high-temperature nanodiamond-to-onion transformation. 1 H, 13 C NMR and EPR spectra of the initial nanodiamond samples and those annealed at 600, 700, 800 and 1800 ° C were measured. For the samples annealed at 600 to 800 ° C, our NMR data reveal the early stages of the surface modification, as well as a progressive increase in sp 2 carbon content with increased annealing temperature. Such quantitative experimental data were recorded for the first time. These findings correlate with EPR data on the sensitivity of the dangling bond EPR line width to air content, progressing with rising annealing temperature, that evidences consequent graphitization of the external layers of the diamond core. The sample annealed at 1800 ° C shows complete conversion of nanodiamond particles into carbon onions. (paper)

  14. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes.

    Science.gov (United States)

    Hwang, Tae Hoon; Lee, Yong Min; Kong, Byung-Seon; Seo, Jin-Seok; Choi, Jang Wook

    2012-02-08

    Because of its unprecedented theoretical capacity near 4000 mAh/g, which is approximately 10-fold larger compared to those of the current commercial graphite anodes, silicon has been the most promising anode for lithium ion batteries, particularly targeting large-scale energy storage applications including electrical vehicles and utility grids. Nevertheless, Si suffers from its short cycle life as well as the limitation for scalable electrode fabrication. Herein, we develop an electrospinning process to produce core-shell fiber electrodes using a dual nozzle in a scalable manner. In the core-shell fibers, commercially available nanoparticles in the core are wrapped by the carbon shell. The unique core-shell structure resolves various issues of Si anode operations, such as pulverization, vulnerable contacts between Si and carbon conductors, and an unstable sold-electrolyte interphase, thereby exhibiting outstanding cell performance: a gravimetric capacity as high as 1384 mAh/g, a 5 min discharging rate capability while retaining 721 mAh/g, and cycle life of 300 cycles with almost no capacity loss. The electrospun core-shell one-dimensional fibers suggest a new design principle for robust and scalable lithium battery electrodes suffering from volume expansion. © 2011 American Chemical Society

  15. Graphite fluoride fibers and their applications in the space industry

    Science.gov (United States)

    Hung, Ching-Chen; Long, Martin; Dever, Therese

    1990-01-01

    Characterization and potential space applications of graphite fluoride fibers from commercially available graphitized carbon fibers are presented. Graphite fluoride fibers with fluorine to carbon ratios of 0.65 and 0.68 were found to have electrical resistivity values of 10(exp 4) and 10(exp 11) Ohms-cm, respectively, and thermal conductivity values of 24 and 5 W/m-K, respectively. At this fluorine content range, the fibers have tensile strength of 0.25 + or - 0.10 GPa (36 + or - 14 ksi), Young's modulus of 170 + or - 30 GPa (25 + or - 5 Msi). The coefficient of thermal expansion value of a sample with fluorine to carbon ratio of 0.61 was found to be 7 ppm/C. These properties change and approach the graphite value as the fluorine content approach 0. Electrically insulative graphite fluoride fiber is at least five times more thermally conductive than fiberglass. Therefore, it can be used as a heat sinking printed circuit board material for low temperature, long life power electronics in spacecraft. Also, partially fluorinated fiber with tailor-made physical properties to meet the requirements of certain engineering design can be produced. For example, a partially fluorinated fiber could have a predetermined CTE value in -1.5 to 7 ppm/C range and would be suitable for use in solar concentrators in solar dynamic power systems. It could also have a predetermined electrical resistivity value suitable for use as a low observable material. Experimental data indicate that slightly fluorinated graphite fibers are more durable in the atomic oxygen environment than pristine graphite. Therefore, fluorination of graphite used in the construction of spacecraft that would be exposed to the low Earth orbit atomic oxygen may protect defect sites in atomic oxygen protective coatings and therefore decrease the rate of degradation of graphite.

  16. Properties of unirradiated fuel element graphites H-451 and TS-1240

    International Nuclear Information System (INIS)

    Johnson, W.R.; Engle, G.B.

    1976-01-01

    Nuclear graphite grades H-451 (Great Lakes Carbon Company) and TS-1240 (Union Carbide Corporation) are described and property data are presented for the unirradiated state. Properties measured included bulk density, ultimate tensile strength, modulus of elasticity, Poisson's ratio, thermal expansivity, and thermal conductivity. The data presented represent the minimum and maximum property values of the prototype full-size production logs and are indicative of property values to be expected in commercial production

  17. Method of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement

    Science.gov (United States)

    Knoell, A. C.; Maxwell, H. G. (Inventor)

    1977-01-01

    A method is described for adhering bone to the surface of a rigid substrate such as a metal or resin prosthesis using an improved surgical bone cement. The bone cement has mechanical properties more nearly matched to those of animal bone and thermal curing characteristics which result in less traumatization of body tissues and comprises a dispersion of short high modulus graphite fibers within a bonder composition including polymer dissolved in reactive monomer such as polymethylmethacrylate dissolved in methylmethacrylate monomer.

  18. Vandellos 1 Graphite Solubilisation and Activity Determination of 36Cl, 99Tc and 129I

    International Nuclear Information System (INIS)

    Rodríguez Alcalá, Marina; Piña Lucas, Gabriel; López Gutiérrez, Jose María; Leganés Nieto, Jose Luis

    2016-01-01

    During the characterization processes of irradiate graphite performed in the dismantling of the UNGG NPP of Vandellós 1, and as a consequence of the sample treatment carried out for measuring the main radionuclides of interest included in the El Cabril inventory, it was not possible to measure the activity of 99 Tc, 129 I and 36 Cl. Further R&D projects have been developed to solve this issue and finally a proper sample treatment has been accomplished. (author)

  19. Ultra-High-Modulus Graphite-Epoxy Conical Shell Development. Supplement

    Science.gov (United States)

    1979-04-01

    and evaluation was conducted of candidate ring materials including both metals (aluminum, titanium, Invar , beryllium, and magnesium) and advanced...the most promise of success. All the metals introduced severe bondline thermal stress problems with Invar being the least critical. Among the...22 inch thick GY-70/X-30 graphite/epoxy (element 1), and 0. 25 inch thick aluminum alloy plates (elements 2). The length of bond L was 1. 5 inches

  20. Factors responsible for a stable biosphere of silicon utilizing organisms

    Science.gov (United States)

    Mitra, D.; Das, S.

    2012-12-01

    Silicon utilizing microorganisms are defined as micro-organisms with high silicon content (≥ 1% dry weight) and the capability to metabolize silicon with or without demonstrable silicon transporter genes (SIT). Important characteristics found in these microorganisms, on account of having high silicon concentration in their body, include increased autotrophic activity, ability to encounter metal toxicities (including iron toxicity), increased mechanical strength, ability to prevent infections, capacity to survive in nutritionally compromised states and in high and low pressure zones, higher light transmission and reduced salinity stress. They can also grow in the dark for at least three months even in the absence of any organic substrate. In living cells, silicon helps in cell wall formation, regulates citric acid cycle (acting on an isoenzyme of isocitrate dehydrogenase), synthesizes special proteins for chromosomes and chloroplasts, and regulates chlorophyll synthesis. Silicon metabolism also requires 30% less energy than carbon and that might be one of the reasons why it was not abandoned in over 100 million years of evolution; even in the presence of a well advanced and dominating carbon world. Additionally, silicon utilizing organisms have undergone resistance and capacity adaptations during their long existence on the Earth. Their inherent ability to tolerate a wide variety of stress was manifested by their exceptional survival during periods of extinction on Earth. The phenomenon of 'selective survival' of the biosphere shaped by these organisms across major extinction boundaries in the geologic past is very prominent. Approximately 46% of diatom species, the most important silicon utilizing organisms, survived the transition from the Cretaceous to the Upper Paleocene period, suggesting their significant turnover across the K-Pg boundary. Another important silicon utilizing organism, radiolarian, also showed no evidence of mass extinction across the K