WorldWideScience

Sample records for included explicit modeling

  1. Towards ligand docking including explicit interface water molecules.

    Directory of Open Access Journals (Sweden)

    Gordon Lemmon

    Full Text Available Small molecule docking predicts the interaction of a small molecule ligand with a protein at atomic-detail accuracy including position and conformation the ligand but also conformational changes of the protein upon ligand binding. While successful in the majority of cases, docking algorithms including RosettaLigand fail in some cases to predict the correct protein/ligand complex structure. In this study we show that simultaneous docking of explicit interface water molecules greatly improves Rosetta's ability to distinguish correct from incorrect ligand poses. This result holds true for both protein-centric water docking wherein waters are located relative to the protein binding site and ligand-centric water docking wherein waters move with the ligand during docking. Protein-centric docking is used to model 99 HIV-1 protease/protease inhibitor structures. We find protease inhibitor placement improving at a ratio of 9:1 when one critical interface water molecule is included in the docking simulation. Ligand-centric docking is applied to 341 structures from the CSAR benchmark of diverse protein/ligand complexes [1]. Across this diverse dataset we see up to 56% recovery of failed docking studies, when waters are included in the docking simulation.

  2. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    Energy Technology Data Exchange (ETDEWEB)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602 (Japan)

    2016-09-07

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  3. Modeling Implicit and Explicit Memory.

    NARCIS (Netherlands)

    Raaijmakers, J.G.W.; Ohta, N.; Izawa, C.

    2005-01-01

    Mathematical models of memory are useful for describing basic processes of memory in a way that enables generalization across a number of experimental paradigms. Models that have these characteristics do not just engage in empirical curve-fitting, but may also provide explanations for puzzling

  4. Explicit Nonlinear Model Predictive Control Theory and Applications

    CERN Document Server

    Grancharova, Alexandra

    2012-01-01

    Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...

  5. Spatially explicit modelling of cholera epidemics

    Science.gov (United States)

    Finger, F.; Bertuzzo, E.; Mari, L.; Knox, A. C.; Gatto, M.; Rinaldo, A.

    2013-12-01

    Epidemiological models can provide crucial understanding about the dynamics of infectious diseases. Possible applications range from real-time forecasting and allocation of health care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. We apply a spatially explicit model to the cholera epidemic that struck Haiti in October 2010 and is still ongoing. The dynamics of susceptibles as well as symptomatic and asymptomatic infectives are modelled at the scale of local human communities. Dissemination of Vibrio cholerae through hydrological transport and human mobility along the road network is explicitly taken into account, as well as the effect of rainfall as a driver of increasing disease incidence. The model is calibrated using a dataset of reported cholera cases. We further model the long term impact of several types of interventions on the disease dynamics by varying parameters appropriately. Key epidemiological mechanisms and parameters which affect the efficiency of treatments such as antibiotics are identified. Our results lead to conclusions about the influence of different intervention strategies on the overall epidemiological dynamics.

  6. Spatially explicit modeling in ecology: A review

    Science.gov (United States)

    DeAngelis, Donald L.; Yurek, Simeon

    2017-01-01

    The use of spatially explicit models (SEMs) in ecology has grown enormously in the past two decades. One major advancement has been that fine-scale details of landscapes, and of spatially dependent biological processes, such as dispersal and invasion, can now be simulated with great precision, due to improvements in computer technology. Many areas of modeling have shifted toward a focus on capturing these fine-scale details, to improve mechanistic understanding of ecosystems. However, spatially implicit models (SIMs) have played a dominant role in ecology, and arguments have been made that SIMs, which account for the effects of space without specifying spatial positions, have an advantage of being simpler and more broadly applicable, perhaps contributing more to understanding. We address this debate by comparing SEMs and SIMs in examples from the past few decades of modeling research. We argue that, although SIMs have been the dominant approach in the incorporation of space in theoretical ecology, SEMs have unique advantages for addressing pragmatic questions concerning species populations or communities in specific places, because local conditions, such as spatial heterogeneities, organism behaviors, and other contingencies, produce dynamics and patterns that usually cannot be incorporated into simpler SIMs. SEMs are also able to describe mechanisms at the local scale that can create amplifying positive feedbacks at that scale, creating emergent patterns at larger scales, and therefore are important to basic ecological theory. We review the use of SEMs at the level of populations, interacting populations, food webs, and ecosystems and argue that SEMs are not only essential in pragmatic issues, but must play a role in the understanding of causal relationships on landscapes.

  7. Explicitly represented polygon wall boundary model for the explicit MPS method

    Science.gov (United States)

    Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori

    2015-05-01

    This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.

  8. Integrating remote sensing and spatially explicit epidemiological modeling

    Science.gov (United States)

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rinaldo, Andrea

    2015-04-01

    Spatially explicit epidemiological models are a crucial tool for the prediction of epidemiological patterns in time and space as well as for the allocation of health care resources. In addition they can provide valuable information about epidemiological processes and allow for the identification of environmental drivers of the disease spread. Most epidemiological models rely on environmental data as inputs. They can either be measured in the field by the means of conventional instruments or using remote sensing techniques to measure suitable proxies of the variables of interest. The later benefit from several advantages over conventional methods, including data availability, which can be an issue especially in developing, and spatial as well as temporal resolution of the data, which is particularly crucial for spatially explicit models. Here we present the case study of a spatially explicit, semi-mechanistic model applied to recurring cholera outbreaks in the Lake Kivu area (Democratic Republic of the Congo). The model describes the cholera incidence in eight health zones on the shore of the lake. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers. Human mobility and its effect on the disease spread is also taken into account. Several model configurations are tested on a data set of reported cases. The best models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via cross validation. The best performing model accounts for seasonality, El Niño Southern Oscillation, precipitation and human mobility.

  9. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  10. Modelling conflict management in design: an explicit approach

    NARCIS (Netherlands)

    Brazier, F.M.; van Langen, P.H.G.; Treur, J.

    1995-01-01

    This paper focusses on how conflicts that arise during a design process and the management of conflicts can be modelled. A number of possible conflict types are distinguished and it is described how each of them can be detected during the design process, using an explicit meta-representation.

  11. Modeling single versus multiple systems in implicit and explicit memory.

    Science.gov (United States)

    Starns, Jeffrey J; Ratcliff, Roger; McKoon, Gail

    2012-04-01

    It is currently controversial whether priming on implicit tasks and discrimination on explicit recognition tests are supported by a single memory system or by multiple, independent systems. In a Psychological Review article, Berry and colleagues used mathematical modeling to address this question and provide compelling evidence against the independent-systems approach. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A new parallelization algorithm of ocean model with explicit scheme

    Science.gov (United States)

    Fu, X. D.

    2017-08-01

    This paper will focus on the parallelization of ocean model with explicit scheme which is one of the most commonly used schemes in the discretization of governing equation of ocean model. The characteristic of explicit schema is that calculation is simple, and that the value of the given grid point of ocean model depends on the grid point at the previous time step, which means that one doesn’t need to solve sparse linear equations in the process of solving the governing equation of the ocean model. Aiming at characteristics of the explicit scheme, this paper designs a parallel algorithm named halo cells update with tiny modification of original ocean model and little change of space step and time step of the original ocean model, which can parallelize ocean model by designing transmission module between sub-domains. This paper takes the GRGO for an example to implement the parallelization of GRGO (Global Reduced Gravity Ocean model) with halo update. The result demonstrates that the higher speedup can be achieved at different problem size.

  13. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, Sasha [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  14. Depletion benchmarks calculation of random media using explicit modeling approach of RMC

    International Nuclear Information System (INIS)

    Liu, Shichang; She, Ding; Liang, Jin-gang; Wang, Kan

    2016-01-01

    Highlights: • Explicit modeling of RMC is applied to depletion benchmark for HTGR fuel element. • Explicit modeling can provide detailed burnup distribution and burnup heterogeneity. • The results would serve as a supplement for the HTGR fuel depletion benchmark. • The method of adjacent burnup regions combination is proposed for full-core problems. • The combination method can reduce memory footprint, keeping the computing accuracy. - Abstract: Monte Carlo method plays an important role in accurate simulation of random media, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. Three stochastic geometry modeling methods including Random Lattice Method, Chord Length Sampling and explicit modeling approach with mesh acceleration technique, have been implemented in RMC to simulate the particle transport in the dispersed fuels, in which the explicit modeling method is regarded as the best choice. In this paper, the explicit modeling method is applied to the depletion benchmark for HTGR fuel element, and the method of combination of adjacent burnup regions has been proposed and investigated. The results show that the explicit modeling can provide detailed burnup distribution of individual TRISO particles, and this work would serve as a supplement for the HTGR fuel depletion benchmark calculations. The combination of adjacent burnup regions can effectively reduce the memory footprint while keeping the computational accuracy.

  15. Explicit estimating equations for semiparametric generalized linear latent variable models

    KAUST Repository

    Ma, Yanyuan

    2010-07-05

    We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.

  16. Modeling Active Aging and Explicit Memory: An Empirical Study.

    Science.gov (United States)

    Ponce de León, Laura Ponce; Lévy, Jean Pierre; Fernández, Tomás; Ballesteros, Soledad

    2015-08-01

    The rapid growth of the population of older adults and their concomitant psychological status and health needs have captured the attention of researchers and health professionals. To help fill the void of literature available to social workers interested in mental health promotion and aging, the authors provide a model for active aging that uses psychosocial variables. Structural equation modeling was used to examine the relationships among the latent variables of the state of explicit memory, the perception of social resources, depression, and the perception of quality of life in a sample of 184 older adults. The results suggest that explicit memory is not a direct indicator of the perception of quality of life, but it could be considered an indirect indicator as it is positively correlated with perception of social resources and negatively correlated with depression. These last two variables influenced the perception of quality of life directly, the former positively and the latter negatively. The main outcome suggests that the perception of social support improves explicit memory and quality of life and reduces depression in active older adults. The findings also suggest that gerontological professionals should design memory training programs, improve available social resources, and offer environments with opportunities to exercise memory.

  17. Explicit chiral symmetry breaking in Gross-Neveu type models

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Christian

    2011-07-25

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well

  18. Explicit chiral symmetry breaking in Gross-Neveu type models

    International Nuclear Information System (INIS)

    Boehmer, Christian

    2011-01-01

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti ψiγ μ ∂ μ ψ-m 0 anti ψψ+(g 2 )/(2)(anti ψψ) 2 +(G 2 )/(2)(anti ψiγ 5 ψ) 2 in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL 2 model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL 2 model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL 2 model in (μ,T,γ) space, where γ arises from m 0 through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL 2 model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel ξ parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL 2 model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well-known that the massless NJL 2 model can be solved analytically. The same is true for the GN model, be it massless or massive. Here, the

  19. Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models.

    Energy Technology Data Exchange (ETDEWEB)

    Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh

    2009-05-01

    Phosphate hydrolysis is ubiquitous in biology. However, despite intensive research on this class of reactions, the precise nature of the reaction mechanism remains controversial. In this work, we have examined the hydrolysis of three homologous phosphate diesters. The solvation free energy was simulated by means of either an implicit solvation model (COSMO), hybrid quantum mechanical / molecular mechanical free energy perturbation (QM/MM-FEP) or a mixed solvation model in which N water molecules were explicitly included in the ab initio description of the reacting system (where N=1-3), with the remainder of the solvent being implicitly modelled as a continuum. Here, both COSMO and QM/MM-FEP reproduce Delta Gobs within an error of about 2kcal/mol. However, we demonstrate that in order to obtain any form of reliable results from a mixed model, it is essential to carefully select the explicit water molecules from short QM/MM runs that act as a model for the true infinite system. Additionally, the mixed models tend to be increasingly inaccurate the more explicit water molecules are placed into the system. Thus, our analysis indicates that this approach provides an unreliable way for modelling phosphate hydrolysis in solution.

  20. Explicit estimating equations for semiparametric generalized linear latent variable models

    KAUST Repository

    Ma, Yanyuan; Genton, Marc G.

    2010-01-01

    which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n

  1. Explicitly-correlated ring-coupled-cluster-doubles theory: Including exchange for computations on closed-shell systems

    Energy Technology Data Exchange (ETDEWEB)

    Hehn, Anna-Sophia; Holzer, Christof; Klopper, Wim, E-mail: klopper@kit.edu

    2016-11-10

    Highlights: • Ring-coupled-cluster-doubles approach now implemented with exchange terms. • Ring-coupled-cluster-doubles approach now implemented with F12 functions. • Szabo–Ostlund scheme (SO2) implemented for use in SAPT. • Fast convergence to the limit of a complete basis. • Implementation in the TURBOMOLE program system. - Abstract: Random-phase-approximation (RPA) methods have proven to be powerful tools in electronic-structure theory, being non-empirical, computationally efficient and broadly applicable to a variety of molecular systems including small-gap systems, transition-metal compounds and dispersion-dominated complexes. Applications are however hindered due to the slow basis-set convergence of the electron-correlation energy with the one-electron basis. As a remedy, we present approximate explicitly-correlated RPA approaches based on the ring-coupled-cluster-doubles formulation including exchange contributions. Test calculations demonstrate that the basis-set convergence of correlation energies is drastically accelerated through the explicitly-correlated approach, reaching 99% of the basis-set limit with triple-zeta basis sets. When implemented in close analogy to early work by Szabo and Ostlund [36], the new explicitly-correlated ring-coupled-cluster-doubles approach including exchange has the perspective to become a valuable tool in the framework of symmetry-adapted perturbation theory (SAPT) for the computation of dispersion energies of molecular complexes of weakly interacting closed-shell systems.

  2. BROMOCEA Code: An Improved Grand Canonical Monte Carlo/Brownian Dynamics Algorithm Including Explicit Atoms.

    Science.gov (United States)

    Solano, Carlos J F; Pothula, Karunakar R; Prajapati, Jigneshkumar D; De Biase, Pablo M; Noskov, Sergei Yu; Kleinekathöfer, Ulrich

    2016-05-10

    All-atom molecular dynamics simulations have a long history of applications studying ion and substrate permeation across biological and artificial pores. While offering unprecedented insights into the underpinning transport processes, MD simulations are limited in time-scales and ability to simulate physiological membrane potentials or asymmetric salt solutions and require substantial computational power. While several approaches to circumvent all of these limitations were developed, Brownian dynamics simulations remain an attractive option to the field. The main limitation, however, is an apparent lack of protein flexibility important for the accurate description of permeation events. In the present contribution, we report an extension of the Brownian dynamics scheme which includes conformational dynamics. To achieve this goal, the dynamics of amino-acid residues was incorporated into the many-body potential of mean force and into the Langevin equations of motion. The developed software solution, called BROMOCEA, was applied to ion transport through OmpC as a test case. Compared to fully atomistic simulations, the results show a clear improvement in the ratio of permeating anions and cations. The present tests strongly indicate that pore flexibility can enhance permeation properties which will become even more important in future applications to substrate translocation.

  3. Comparison of explicit and effective models for calculating ionic populations in argon plasmas

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.

    1994-01-01

    Calculations have been performed to model the state populations of argon plasmas at electron densities at and above those required for the validity of coronal equilibrium. Both effective and explicit models have been used, and both are based on the same set of atomic cross sections. The effective model includes ground and singly excited states explicitly, while the effect of autoionizing states is accounted for by branching factors which describe their depopulation into the various non-autoionizing states. The explicit model considers both autoionizing and non-autoionizing states explicitly. The effective model requires a significantly reduced amount of computer time and memory. Good agreement between the two models can be obtained through moderate densities if the branching factors include electron density dependent terms which describe the collisional stabilization of each autoionizing state. The effective model breaks down as density is increased because the population of individual autoionizing states become significant. Results for both ionization balance and radiated power loss are presented. (Author)

  4. Scaling-up spatially-explicit ecological models using graphics processors

    NARCIS (Netherlands)

    Koppel, Johan van de; Gupta, Rohit; Vuik, Cornelis

    2011-01-01

    How the properties of ecosystems relate to spatial scale is a prominent topic in current ecosystem research. Despite this, spatially explicit models typically include only a limited range of spatial scales, mostly because of computing limitations. Here, we describe the use of graphics processors to

  5. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    International Nuclear Information System (INIS)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2014-01-01

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  6. Developing an explicit strategy towards social responsibility in the NHS: a case for including NHS managers in this strategy.

    Science.gov (United States)

    Merali, Faruk

    2006-01-01

    To explore the concept of corporate social responsibility (CSR) within the UK National Health Service (NHS) and to examine how it may be developed to positively influence the psyche, behaviour and performance of NHS managers. Primary research based upon semi-structured individual face to face interviews with 20 NHS managers. Theoretical frameworks and concepts relating to organisational culture and CSR are drawn upon to discuss the findings. The NHS managers see themselves as being driven by altruistic core values. However, they feel that the public does not believe that they share the altruistic NHS value system. The study is based on a relatively small sample of NHS managers working exclusively in London and may not necessarily represent the views of managers either London-wide or nation-wide. It is suggested that an explicit recognition by the NHS of the socially responsible commitment of its managers within its CSR strategy would help challenge the existing negative public image of NHS managers and in turn improve the managers' self esteem and morale. This paper addresses the relative lacunae in research relating to public sector organisations (such as the NHS) explicitly including the role and commitment of its staff within the way it publicises its CSR strategy. This paper would be of interest to a wide readership including public sector and NHS policy formulators, NHS practitioners, academics and students.

  7. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.; Pistikopoulos, Efstratios N.

    2011-01-01

    are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  8. Fire Propagation Tracing Model in the Explicit Treatment of Events of Fire PSA

    International Nuclear Information System (INIS)

    Lim, Ho Gon; Han, Sang Hoon; Yang, Jun Eon

    2010-01-01

    The fire propagation model in a fire PSA has not been considered analytically instead a simplified analyst's intuition was used to consider the fire propagation path. A fire propagation equation is developed to trace all the propagation paths in the fire area in which a zone is defined to identify various fire ignition sources. An initiation of fire is assumed to take place in a zone. Then, the propagation is modeled with a Boolean equation. Since the explicit fire PSA modeling requires an exclusive event set to sum up the..., exclusive event sets are derived from the fire propagation equation. As an example, we show the exclusive set for a 2x3 rectangular fire zone. Also, the applicability the developed fire equation is discussed when the number of zone increases including the limitation of the explicit fire PSA modeling method

  9. Testing the cognitive catalyst model of rumination with explicit and implicit cognitive content.

    Science.gov (United States)

    Sova, Christopher C; Roberts, John E

    2018-06-01

    The cognitive catalyst model posits that rumination and negative cognitive content, such as negative schema, interact to predict depressive affect. Past research has found support for this model using explicit measures of negative cognitive content such as self-report measures of trait self-esteem and dysfunctional attitudes. The present study tested whether these findings would extend to implicit measures of negative cognitive content such as implicit self-esteem, and whether effects would depend on initial mood state and history of depression. Sixty-one undergraduate students selected on the basis of depression history (27 previously depressed; 34 never depressed) completed explicit and implicit measures of negative cognitive content prior to random assignment to a rumination induction followed by a distraction induction or vice versa. Dysphoric affect was measured both before and after these inductions. Analyses revealed that explicit measures, but not implicit measures, interacted with rumination to predict change in dysphoric affect, and these interactions were further moderated by baseline levels of dysphoria. Limitations include the small nonclinical sample and use of a self-report measure of depression history. These findings suggest that rumination amplifies the association between explicit negative cognitive content and depressive affect primarily among people who are already experiencing sad mood. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models

    Science.gov (United States)

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; Reynolds, Daniel R.; Ullrich, Paul A.; Woodward, Carol S.

    2018-04-01

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit - vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored. The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.

  11. Implicit–explicit (IMEX Runge–Kutta methods for non-hydrostatic atmospheric models

    Directory of Open Access Journals (Sweden)

    D. J. Gardner

    2018-04-01

    Full Text Available The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX additive Runge–Kutta (ARK methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.

  12. Explicit all-atom modeling of realistically sized ligand-capped nanocrystals

    KAUST Repository

    Kaushik, Ananth P.

    2012-01-01

    We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), capped with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well-tested intermolecular potential model, MM3 (molecular mechanics 3), for the studies presented here. These studies include determining the preferred conformation of an isolated single nanocrystal (NC), pairs of isolated NCs, and (presaging studies of superlattice arrays) unit cells of NC superlattices. We observe that very small NCs (3 nm) behave differently in a superlattice as compared to larger NCs (6 nm and above) due to the conformations adopted by the capping ligands on the NC surface. Short ligands adopt a uniform distribution of orientational preferences, including some that lie against the face of the nanocrystal. In contrast, longer ligands prefer to interdigitate. We also study the effect of changing ligand length and ligand coverage on the NCs on the preferred ligand configurations. Since explicit all-atom modeling constrains the maximum system size that can be studied, we discuss issues related to coarse-graining the representation of the ligands, including a comparison of two commonly used coarse-grained models. We find that care has to be exercised in the choice of coarse-grained model. The data provided by these realistically sized ligand-capped NCs, determined using explicit all-atom models, should serve as a reference standard for future models of coarse-graining ligands using united atom models, especially for self-assembly processes. © 2012 American Institute of Physics.

  13. Quantum decay model with exact explicit analytical solution

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  14. Generalized Heteroskedasticity ACF for Moving Average Models in Explicit Forms

    OpenAIRE

    Samir Khaled Safi

    2014-01-01

    The autocorrelation function (ACF) measures the correlation between observations at different   distances apart. We derive explicit equations for generalized heteroskedasticity ACF for moving average of order q, MA(q). We consider two cases: Firstly: when the disturbance term follow the general covariance matrix structure Cov(wi, wj)=S with si,j ¹ 0 " i¹j . Secondly: when the diagonal elements of S are not all identical but sij = 0 " i¹j, i.e. S=diag(s11, s22,&hellip...

  15. Generalized Heteroskedasticity ACF for Moving Average Models in Explicit Forms

    Directory of Open Access Journals (Sweden)

    Samir Khaled Safi

    2014-02-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 The autocorrelation function (ACF measures the correlation between observations at different   distances apart. We derive explicit equations for generalized heteroskedasticity ACF for moving average of order q, MA(q. We consider two cases: Firstly: when the disturbance term follow the general covariance matrix structure Cov(wi, wj=S with si,j ¹ 0 " i¹j . Secondly: when the diagonal elements of S are not all identical but sij = 0 " i¹j, i.e. S=diag(s11, s22,…,stt. The forms of the explicit equations depend essentially on the moving average coefficients and covariance structure of the disturbance terms.   /* Style Definitions */ table.MsoNormalTable {mso-style-name:"جدول عادي"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

  16. Explicit equilibria in a kinetic model of gambling

    Science.gov (United States)

    Bassetti, F.; Toscani, G.

    2010-06-01

    We introduce and discuss a nonlinear kinetic equation of Boltzmann type which describes the evolution of wealth in a pure gambling process, where the entire sum of wealths of two agents is up for gambling, and randomly shared between the agents. For this equation the analytical form of the steady states is found for various realizations of the random fraction of the sum which is shared to the agents. Among others, the exponential distribution appears as steady state in case of a uniformly distributed random fraction, while Gamma distribution appears for a random fraction which is Beta distributed. The case in which the gambling game is only conservative-in-the-mean is shown to lead to an explicit heavy tailed distribution.

  17. Multiscale modeling of a rectifying bipolar nanopore: explicit-water versus implicit-water simulations.

    Science.gov (United States)

    Ható, Zoltán; Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezsö

    2017-07-21

    In a multiscale modeling approach, we present computer simulation results for a rectifying bipolar nanopore at two modeling levels. In an all-atom model, we use explicit water to simulate ion transport directly with the molecular dynamics technique. In a reduced model, we use implicit water and apply the Local Equilibrium Monte Carlo method together with the Nernst-Planck transport equation. This hybrid method makes the fast calculation of ion transport possible at the price of lost details. We show that the implicit-water model is an appropriate representation of the explicit-water model when we look at the system at the device (i.e., input vs. output) level. The two models produce qualitatively similar behavior of the electrical current for different voltages and model parameters. Looking at the details of concentration and potential profiles, we find profound differences between the two models. These differences, however, do not influence the basic behavior of the model as a device because they do not influence the z-dependence of the concentration profiles which are the main determinants of current. These results then address an old paradox: how do reduced models, whose assumptions should break down in a nanoscale device, predict experimental data? Our simulations show that reduced models can still capture the overall device physics correctly, even though they get some important aspects of the molecular-scale physics quite wrong; reduced models work because they include the physics that is necessary from the point of view of device function. Therefore, reduced models can suffice for general device understanding and device design, but more detailed models might be needed for molecular level understanding.

  18. An explicit solution of the mathematical model for osmotic desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Yeon; Gu, Boram; Yang, Dae Ryook [Korea University, Seoul (Korea, Republic of)

    2013-09-15

    Membrane processes such as reverse osmosis and forward osmosis for seawater desalination have gained attention in recent years. Mathematical models have been used to interpret the mechanism of membrane processes. The membrane process model, consisting of flux and concentration polarization (CP) models, is coupled with balance equations and solved simultaneously. This set of model equations is, however, implicit and nonlinear; consequently, the model must be solved iteratively and numerically, which is time- and cost-intensive. We suggest a method to transform implicit equations to their explicit form, in order to avoid an iterative procedure. In addition, the performance of five solving methods, including the method that we suggest, is tested and compared for accuracy, computation time, and robustness based on input conditions. Our proposed method shows the best performance based on the robustness of various simulation conditions, accuracy, and a cost-effective computation time.

  19. Explicit ions/implicit water generalized Born model for nucleic acids

    Science.gov (United States)

    Tolokh, Igor S.; Thomas, Dennis G.; Onufriev, Alexey V.

    2018-05-01

    The ion atmosphere around highly charged nucleic acid molecules plays a significant role in their dynamics, structure, and interactions. Here we utilized the implicit solvent framework to develop a model for the explicit treatment of ions interacting with nucleic acid molecules. The proposed explicit ions/implicit water model is based on a significantly modified generalized Born (GB) model and utilizes a non-standard approach to define the solute/solvent dielectric boundary. Specifically, the model includes modifications to the GB interaction terms for the case of multiple interacting solutes—disconnected dielectric boundary around the solute-ion or ion-ion pairs. A fully analytical description of all energy components for charge-charge interactions is provided. The effectiveness of the approach is demonstrated by calculating the potential of mean force for Na+-Cl- ion pair and by carrying out a set of Monte Carlo (MC) simulations of mono- and trivalent ions interacting with DNA and RNA duplexes. The monovalent (Na+) and trivalent (CoHex3+) counterion distributions predicted by the model are in close quantitative agreement with all-atom explicit water molecular dynamics simulations used as reference. Expressed in the units of energy, the maximum deviations of local ion concentrations from the reference are within kBT. The proposed explicit ions/implicit water GB model is able to resolve subtle features and differences of CoHex distributions around DNA and RNA duplexes. These features include preferential CoHex binding inside the major groove of the RNA duplex, in contrast to CoHex biding at the "external" surface of the sugar-phosphate backbone of the DNA duplex; these differences in the counterion binding patters were earlier shown to be responsible for the observed drastic differences in condensation propensities between short DNA and RNA duplexes. MC simulations of CoHex ions interacting with the homopolymeric poly(dA.dT) DNA duplex with modified (de

  20. Explicit prediction of ice clouds in general circulation models

    Science.gov (United States)

    Kohler, Martin

    1999-11-01

    Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted

  1. Explicit state representation and the ATLAS event data model: theory and practice

    International Nuclear Information System (INIS)

    Nowak, M; Snyder, S; Cranmer, K; Malon, D; Gemmeren, P v; Schaffer, A; Binet, S

    2008-01-01

    In anticipation of data taking, ATLAS has undertaken a program of work to develop an explicit state representation of the experiment's complex transient event data model. This effort has provided both an opportunity to consider explicitly the structure, organization, and content of the ATLAS persistent event store before writing tens of petabytes of data (replacing simple streaming, which uses the persistent store as a core dump of transient memory), and a locus for support of event data model evolution, including significant refactoring, beyond the automatic schema evolution capabilities of underlying persistence technologies. ATLAS has encountered the need for such non-trivial schema evolution on several occasions already. This paper describes the state representation strategy (transient/persistent separation) and its implementation, including both the payoffs that ATLAS has seen (significant and sometimes surprising space and performance improvements, the extra layer notwithstanding, and extremely general schema evolution support) and the costs (additional and relatively pervasive additional infrastructure development and maintenance). The paper further discusses how these costs are mitigated, and how ATLAS is able to implement this strategy without losing the ability to take advantage of the (improving!) automatic schema evolution capabilities of underlying technology layers when appropriate. Implications of state representations for direct ROOT browsability, and current strategies for associating physics analysis views with such state representations, are also described

  2. Explicit Modeling of Solid Ocean Floor in Shallow Underwater Explosions

    Directory of Open Access Journals (Sweden)

    A.P. Walters

    2013-01-01

    Full Text Available Current practices for modeling the ocean floor in underwater explosion simulations call for application of an inviscid fluid with soil properties. A method for modeling the ocean floor as a Lagrangian solid, vice an Eulerian fluid, was developed in order to determine its effects on underwater explosions in shallow water using the DYSMAS solver. The Lagrangian solid bottom model utilized transmitting boundary segments, exterior nodal forces acting as constraints, and the application of prestress to minimize any distortions into the fluid domain. For simplicity, elastic materials were used in this current effort, though multiple constitutive soil models can be applied to improve the overall accuracy of the model. Even though this method is unable to account for soil cratering effects, it does however provide the distinct advantage of modeling contoured ocean floors such as dredged channels and sloped bottoms absent in Eulerian formulations. The study conducted here showed significant differences among the initial bottom reflections for the different solid bottom contours that were modeled. The most important bottom contour effect was the distortion to the gas bubble and its associated first pulse timing. In addition to its utility in bottom modeling, implementation of the non-reflecting boundary along with realistic material models can be used to drastically reduce the size of current fluid domains.

  3. Making decision process knowledge explicit using the product data model

    NARCIS (Netherlands)

    Petrusel, R.; Vanderfeesten, I.T.P.; Dolean, Cristina; Mican, D.

    2011-01-01

    In this paper, we present a new knowledge acquisition and formalization method: the decision mining approach. Basically, we aim to produce a model of the workflow of mental actions performed by decision makers during the decision process. We show that through the use of a Product Data Model (PDM) we

  4. Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols

    Science.gov (United States)

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2017-09-01

    Despite an important role the aerosols play in all stages of cloud lifecycle, their representation in numerical weather prediction models is often rather crude. This paper investigates the effects the explicit versus implicit inclusion of aerosols in a microphysics parameterization scheme in Weather Research and Forecasting (WRF) - Advanced Research WRF (WRF-ARW) model has on cloud dynamics and microphysics. The testbed selected for this study is a severe mesoscale convective system with supercells that struck west and central parts of Serbia in the afternoon of July 21, 2014. Numerical products of two model runs, i.e. one with aerosols explicitly (WRF-AE) included and another with aerosols implicitly (WRF-AI) assumed, are compared against precipitation measurements from surface network of rain gauges, as well as against radar and satellite observations. The WRF-AE model accurately captured the transportation of dust from the north Africa over the Mediterranean and to the Balkan region. On smaller scales, both models displaced the locations of clouds situated above west and central Serbia towards southeast and under-predicted the maximum values of composite radar reflectivity. Similar to satellite images, WRF-AE shows the mesoscale convective system as a merged cluster of cumulonimbus clouds. Both models over-predicted the precipitation amounts; WRF-AE over-predictions are particularly pronounced in the zones of light rain, while WRF-AI gave larger outliers. Unlike WRF-AI, the WRF-AE approach enables the modelling of time evolution and influx of aerosols into the cloud which could be of practical importance in weather forecasting and weather modification. Several likely causes for discrepancies between models and observations are discussed and prospects for further research in this field are outlined.

  5. A comparative study of explicit and implicit modelling of ...

    Indian Academy of Sciences (India)

    effects. In applications where training and testing data are limited and of poor quality due to varied environmental effects, like mobile phone speech, there is a need for deriving robust features for speaker ..... thesis parameters. These include ...

  6. MOS modeling hierarchy including radiation effects

    International Nuclear Information System (INIS)

    Alexander, D.R.; Turfler, R.M.

    1975-01-01

    A hierarchy of modeling procedures has been developed for MOS transistors, circuit blocks, and integrated circuits which include the effects of total dose radiation and photocurrent response. The models were developed for use with the SCEPTRE circuit analysis program, but the techniques are suitable for other modern computer aided analysis programs. The modeling hierarchy permits the designer or analyst to select the level of modeling complexity consistent with circuit size, parametric information, and accuracy requirements. Improvements have been made in the implementation of important second order effects in the transistor MOS model, in the definition of MOS building block models, and in the development of composite terminal models for MOS integrated circuits

  7. SOMPROF: A vertically explicit soil organic matter model

    NARCIS (Netherlands)

    Braakhekke, M.C.; Beer, M.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2011-01-01

    Most current soil organic matter (SOM) models represent the soil as a bulk without specification of the vertical distribution of SOM in the soil profile. However, the vertical SOM profile may be of great importance for soil carbon cycling, both on short (hours to years) time scale, due to

  8. Analysis of explicit model predictive control for path-following control

    Science.gov (United States)

    2018-01-01

    In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration. PMID:29534080

  9. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-04-01

    This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.

  10. Analysis of explicit model predictive control for path-following control.

    Science.gov (United States)

    Lee, Junho; Chang, Hyuk-Jun

    2018-01-01

    In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration.

  11. Explicit versus Implicit Solvent Modeling of Raman Optical Activity Spectra

    Czech Academy of Sciences Publication Activity Database

    Hopmann, K. H.; Ruud, K.; Pecul, M.; Kudelski, A.; Dračínský, Martin; Bouř, Petr

    2011-01-01

    Roč. 115, č. 14 (2011), s. 4128-4137 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : raman optical activity * lactamide * solvent models Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  12. Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics

    Science.gov (United States)

    Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar

    2018-02-01

    In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  13. Model of high-tech businesses management under the trends of explicit and implicit knowledge markets: classification and business model

    OpenAIRE

    Guzel Isayevna Gumerova; Elmira Shamilevna Shaimieva

    2015-01-01

    Objective to define the notion of ldquohightech businessrdquo to elaborate classification of hightech businesses to elaborate the business model for hightech business management. Methods general scientific methods of theoretical and empirical cognition. Results the research presents a business model of hightech businesses management basing on the trends of explicit and explicit knowledge market with the dominating implicit knowledge market classification of hightech business...

  14. The truthful signalling hypothesis: an explicit general equilibrium model.

    Science.gov (United States)

    Hausken, Kjell; Hirshleifer, Jack

    2004-06-21

    In mating competition, the truthful signalling hypothesis (TSH), sometimes known as the handicap principle, asserts that higher-quality males signal while lower-quality males do not (or else emit smaller signals). Also, the signals are "believed", that is, females mate preferentially with higher-signalling males. Our analysis employs specific functional forms to generate analytic solutions and numerical simulations that illuminate the conditions needed to validate the TSH. Analytic innovations include: (1) A Mating Success Function indicates how female mating choices respond to higher and lower signalling levels. (2) A congestion function rules out corner solutions in which females would mate exclusively with higher-quality males. (3) A Malthusian condition determines equilibrium population size as related to per-capita resource availability. Equilibria validating the TSH are achieved over a wide range of parameters, though not universally. For TSH equilibria it is not strictly necessary that the high-quality males have an advantage in terms of lower per-unit signalling costs, but a cost difference in favor of the low-quality males cannot be too great if a TSH equilibrium is to persist. And although the literature has paid less attention to these points, TSH equilibria may also fail if: the quality disparity among males is too great, or the proportion of high-quality males in the population is too large, or if the congestion effect is too weak. Signalling being unprofitable in aggregate, it can take off from a no-signalling equilibrium only if the trait used for signalling is not initially a handicap, but instead is functionally useful at low levels. Selection for this trait sets in motion a bandwagon, whereby the initially useful indicator is pushed by male-male competition into the domain where it does indeed become a handicap.

  15. A spatially explicit scenario-driven model of adaptive capacity to global change in Europe

    NARCIS (Netherlands)

    Acosta, L.; Klein, R.J.T.; Reidsma, P.; Metzger, M.J.; Rounsevell, M.D.A.; Leemans, R.

    2013-01-01

    Traditional impact models combine exposure in the form of scenarios and sensitivity in the form of parameters, providing potential impacts of global change as model outputs. However, adaptive capacity is rarely addressed in these models. This paper presents the first spatially explicit

  16. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.

    Science.gov (United States)

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  17. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    Directory of Open Access Journals (Sweden)

    C. Mouchel-Vallon

    2013-01-01

    Full Text Available The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation to 70% (octane oxidation of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively. Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  18. Three Dimensional Explicit Model for Cometary Tail Ions Interactions with Solar Wind

    Science.gov (United States)

    Al Bermani, M. J. F.; Alhamed, S. A.; Khalaf, S. Z.; Ali, H. Sh.; Selman, A. A.

    2009-06-01

    The different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density rho, the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the plasma of the solar wind, which increases the average molecular weight and result in many unique characteristics of the cometary tail. These characteristics were explained in the presence of the IMF.

  19. A novel explicit approach to model bromide and pesticide transport in soils containing macropores

    Science.gov (United States)

    Klaus, J.; Zehe, E.

    2011-01-01

    The present study tests whether an explicit treatment of worm burrows is feasible for simulating water flow, bromide and pesticide transport in structured heterogeneous soils. The essence is to represent worm burrows as morphologically connected paths of low flow resistance in the spatially highly resolved model domain. A recent Monte Carlo study (Klaus and Zehe, 2010) revealed that this approach allowed successful reproduction of tile drain event discharge recorded during an irrigation experiment at a tile drained field site. However, several "hillslope architectures" that were all consistent with the available extensive data base allowed a good reproduction of tile drain flow response. Our second objective was thus to find out whether this "equifinality" in spatial model setups may be reduced when including bromide tracer data in the model falsification process. We thus simulated transport of bromide and Isoproturon (IPU) for the 13 spatial model setups, which performed best with respect to reproduce tile drain event discharge, without any further calibration. All model setups allowed a very good prediction of the temporal dynamics of cumulated bromide leaching into the tile drain, while only four of them matched the accumulated water balance and accumulated bromide loss into the tile drain. The number of behavioural model architectures could thus be reduced to four. One of those setups was used for simulating transport of IPU, using different parameter combinations to characterise adsorption according to the Footprint data base. Simulations could, however, only reproduce the observed leaching behaviour, when we allowed for retardation coefficients that were very close to one.

  20. DEFINING RECOVERY GOALS AND STRATEGIES FOR ENDANGERED SPECIES USING SPATIALLY-EXPLICIT POPULATION MODELS

    Science.gov (United States)

    We used a spatially explicit population model of wolves (Canis lupus) to propose a framework for defining rangewide recovery priorities and finer-scale strategies for regional reintroductions. The model predicts that Yellowstone and central Idaho, where wolves have recently been ...

  1. Flood vulnerability assessment of residential buildings by explicit damage process modelling

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2015-01-01

    The present paper introduces a vulnerability modelling approach for residential buildings in flood. The modelling approach explicitly considers relevant damage processes, i.e. water infiltration into the building, mechanical failure of components in the building envelope and damage from water...

  2. An Explicit Formula for Symmetric Polynomials Related to the Eigenfunctions of Calogero-Sutherland Models

    Directory of Open Access Journals (Sweden)

    Martin Hallnäs

    2007-03-01

    Full Text Available We review a recent construction of an explicit analytic series representation for symmetric polynomials which up to a groundstate factor are eigenfunctions of Calogero-Sutherland type models. We also indicate a generalisation of this result to polynomials which give the eigenfunctions of so-called 'deformed' Calogero-Sutherland type models.

  3. The Importance of Representing Certain Key Vegetation Canopy Processes Explicitly in a Land Surface Model

    Science.gov (United States)

    Napoly, A.; Boone, A. A.; Martin, E.; Samuelsson, P.

    2015-12-01

    Land surface models are moving to more detailed vegetation canopy descriptions in order to better represent certain key processes, such as Carbon dynamics and snowpack evolution. Since such models are usually applied within coupled numerical weather prediction or spatially distributed hydrological models, these improvements must strike a balance between computational cost and complexity. The consequences of simplified or composite canopy approaches can be manifested in terms of increased errors with respect to soil temperatures, estimates of the diurnal cycle of the turbulent fluxes or snow canopy interception and melt. Vegetated areas and particularly forests are modeled in a quite simplified manner in the ISBA land surface model. However, continuous developments of surface processes now require a more accurate description of the canopy. A new version of the the model now includes a multi energy balance (MEB) option to explicitly represent the canopy and the forest floor. It will be shown that certain newly included processes such as the shading effect of the vegetation, the explicit heat capacity of the canopy, and the insulating effect of the forest floor turn out to be essential. A detailed study has been done for four French forested sites. It was found that the MEB option significantly improves the ground heat flux (RMSE decrease from 50W/m2 to 10W/m2 on average) and soil temperatures when compared against measurements. Also the sensible heat flux calculation was improved primarily owing to a better phasing with the solar insulation owing to a lower vegetation heat capacity. However, the total latent heat flux is less modified compared to the classical ISBA simulation since it is more related to water uptake and the formulation of the stomatal resistance (which are unchanged). Next, a benchmark over 40 Fluxnet sites (116 cumulated years) was performed and compared with results from the default composite soil-vegetation version of ISBA. The results show

  4. High Performance Programming Using Explicit Shared Memory Model on Cray T3D1

    Science.gov (United States)

    Simon, Horst D.; Saini, Subhash; Grassi, Charles

    1994-01-01

    The Cray T3D system is the first-phase system in Cray Research, Inc.'s (CRI) three-phase massively parallel processing (MPP) program. This system features a heterogeneous architecture that closely couples DEC's Alpha microprocessors and CRI's parallel-vector technology, i.e., the Cray Y-MP and Cray C90. An overview of the Cray T3D hardware and available programming models is presented. Under Cray Research adaptive Fortran (CRAFT) model four programming methods (data parallel, work sharing, message-passing using PVM, and explicit shared memory model) are available to the users. However, at this time data parallel and work sharing programming models are not available to the user community. The differences between standard PVM and CRI's PVM are highlighted with performance measurements such as latencies and communication bandwidths. We have found that the performance of neither standard PVM nor CRI s PVM exploits the hardware capabilities of the T3D. The reasons for the bad performance of PVM as a native message-passing library are presented. This is illustrated by the performance of NAS Parallel Benchmarks (NPB) programmed in explicit shared memory model on Cray T3D. In general, the performance of standard PVM is about 4 to 5 times less than obtained by using explicit shared memory model. This degradation in performance is also seen on CM-5 where the performance of applications using native message-passing library CMMD on CM-5 is also about 4 to 5 times less than using data parallel methods. The issues involved (such as barriers, synchronization, invalidating data cache, aligning data cache etc.) while programming in explicit shared memory model are discussed. Comparative performance of NPB using explicit shared memory programming model on the Cray T3D and other highly parallel systems such as the TMC CM-5, Intel Paragon, Cray C90, IBM-SP1, etc. is presented.

  5. Model for safety reports including descriptive examples

    International Nuclear Information System (INIS)

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository

  6. Explicit simulation of ice particle habits in a Numerical Weather Prediction Model

    Science.gov (United States)

    Hashino, Tempei

    2007-05-01

    This study developed a scheme for explicit simulation of ice particle habits in Numerical Weather Prediction (NWP) Models. The scheme is called Spectral Ice Habit Prediction System (SHIPS), and the goal is to retain growth history of ice particles in the Eulerian dynamics framework. It diagnoses characteristics of ice particles based on a series of particle property variables (PPVs) that reflect history of microphysieal processes and the transport between mass bins and air parcels in space. Therefore, categorization of ice particles typically used in bulk microphysical parameterization and traditional bin models is not necessary, so that errors that stem from the categorization can be avoided. SHIPS predicts polycrystals as well as hexagonal monocrystals based on empirically derived habit frequency and growth rate, and simulates the habit-dependent aggregation and riming processes by use of the stochastic collection equation with predicted PPVs. Idealized two dimensional simulations were performed with SHIPS in a NWP model. The predicted spatial distribution of ice particle habits and types, and evolution of particle size distributions showed good quantitative agreement with observation This comprehensive model of ice particle properties, distributions, and evolution in clouds can be used to better understand problems facing wide range of research disciplines, including microphysics processes, radiative transfer in a cloudy atmosphere, data assimilation, and weather modification.

  7. An Efficient Explicit-time Description Method for Timed Model Checking

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2009-12-01

    Full Text Available Timed model checking, the method to formally verify real-time systems, is attracting increasing attention from both the model checking community and the real-time community. Explicit-time description methods verify real-time systems using general model constructs found in standard un-timed model checkers. Lamport proposed an explicit-time description method using a clock-ticking process (Tick to simulate the passage of time together with a group of global variables to model time requirements. Two methods, the Sync-based Explicit-time Description Method using rendezvous synchronization steps and the Semaphore-based Explicit-time Description Method using only one global variable were proposed; they both achieve better modularity than Lamport's method in modeling the real-time systems. In contrast to timed automata based model checkers like UPPAAL, explicit-time description methods can access and store the current time instant for future calculations necessary for many real-time systems, especially those with pre-emptive scheduling. However, the Tick process in the above three methods increments the time by one unit in each tick; the state spaces therefore grow relatively fast as the time parameters increase, a problem when the system's time period is relatively long. In this paper, we propose a more efficient method which enables the Tick process to leap multiple time units in one tick. Preliminary experimental results in a high performance computing environment show that this new method significantly reduces the state space and improves both the time and memory efficiency.

  8. Spatially Explicit Estimation of Optimal Light Use Efficiency for Improved Satellite Data Driven Ecosystem Productivity Modeling

    Science.gov (United States)

    Madani, N.; Kimball, J. S.; Running, S. W.

    2014-12-01

    Remote sensing based light use efficiency (LUE) models, including the MODIS (MODerate resolution Imaging Spectroradiometer) MOD17 algorithm are commonly used for regional estimation and monitoring of vegetation gross primary production (GPP) and photosynthetic carbon (CO2) uptake. A common model assumption is that plants in a biome matrix operate at their photosynthetic capacity under optimal climatic conditions. A prescribed biome maximum light use efficiency parameter defines the maximum photosynthetic carbon conversion rate under prevailing climate conditions and is a large source of model uncertainty. Here, we used tower (FLUXNET) eddy covariance measurement based carbon flux data for estimating optimal LUE (LUEopt) over a North American domain. LUEopt was first estimated using tower observed daily carbon fluxes, meteorology and satellite (MODIS) observed fraction of photosynthetically active radiation (FPAR). LUEopt was then spatially interpolated over the domain using empirical models derived from independent geospatial data including global plant traits, surface soil moisture, terrain aspect, land cover type and percent tree cover. The derived LUEopt maps were then used as primary inputs to the MOD17 LUE algorithm for regional GPP estimation; these results were evaluated against tower observations and alternate MOD17 GPP estimates determined using Biome-specific LUEopt constants. Estimated LUEopt shows large spatial variability within and among different land cover classes indicated from a sparse North American tower network. Leaf nitrogen content and soil moisture are two important factors explaining LUEopt spatial variability. GPP estimated from spatially explicit LUEopt inputs shows significantly improved model accuracy against independent tower observations (R2 = 0.76; Mean RMSE plant trait information can explain spatial heterogeneity in LUEopt, leading to improved GPP estimates from satellite based LUE models.

  9. Dynamic optimization and robust explicit model predictive control of hydrogen storage tank

    KAUST Repository

    Panos, C.

    2010-09-01

    We present a general framework for the optimal design and control of a metal-hydride bed under hydrogen desorption operation. The framework features: (i) a detailed two-dimension dynamic process model, (ii) a design and operational dynamic optimization step, and (iii) an explicit/multi-parametric model predictive controller design step. For the controller design, a reduced order approximate model is obtained, based on which nominal and robust multi-parametric controllers are designed. © 2010 Elsevier Ltd.

  10. Dynamic optimization and robust explicit model predictive control of hydrogen storage tank

    KAUST Repository

    Panos, C.; Kouramas, K.I.; Georgiadis, M.C.; Pistikopoulos, E.N.

    2010-01-01

    We present a general framework for the optimal design and control of a metal-hydride bed under hydrogen desorption operation. The framework features: (i) a detailed two-dimension dynamic process model, (ii) a design and operational dynamic optimization step, and (iii) an explicit/multi-parametric model predictive controller design step. For the controller design, a reduced order approximate model is obtained, based on which nominal and robust multi-parametric controllers are designed. © 2010 Elsevier Ltd.

  11. EPS Mid-Career Award 2011. Are there multiple memory systems? Tests of models of implicit and explicit memory.

    Science.gov (United States)

    Shanks, David R; Berry, Christopher J

    2012-01-01

    This article reviews recent work aimed at developing a new framework, based on signal detection theory, for understanding the relationship between explicit (e.g., recognition) and implicit (e.g., priming) memory. Within this framework, different assumptions about sources of memorial evidence can be framed. Application to experimental results provides robust evidence for a single-system model in preference to multiple-systems models. This evidence comes from several sources including studies of the effects of amnesia and ageing on explicit and implicit memory. The framework allows a range of concepts in current memory research, such as familiarity, recollection, fluency, and source memory, to be linked to implicit memory. More generally, this work emphasizes the value of modern computational modelling techniques in the study of learning and memory.

  12. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  13. A stage-structured, spatially explicit migration model for Myotis bats: mortality location affects system dynamics

    Science.gov (United States)

    Erickson, Richard A.; Thogmartin, Wayne E.; Russell, Robin E.; Diffendorfer, James E.; Szymanski, Jennifer A.

    2014-01-01

    Bats are ecologically and economically important species because they consume insects, transport nutrients, and pollinate flowers.  Many species of bats, including those in the Myotis genus, are facing population decline and increased extinction risk.  Despite these conservation concerns, few models exist for providing insight into the population dynamics of bats in a spatially explicit context.  We developed a model for bats by considering the stage-structured colonial life history of Myotis bats with their annual migration behavior.  This model provided insight into network dynamics.  We specifically focused on two Myotis species living in the eastern United States: the Indiana bat (M. sodalis), which is a Federally listed endangered species, and the little brown bat (M. lucifugus), which is under consideration for listing as an endangered species.  We found that multiple equilibria exist for the local, migratory subpopulations even though the total population was constant.  These equilibria suggest the location and magnitude of stressors such as White-nose Syndrome, meteorological phenomena, or impacts of wind turbines on survival influence system dynamics and risk of population extirpation in difficult to predict ways.

  14. Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems

    KAUST Repository

    Khajuria, Harish

    2011-01-01

    Pressure swing adsorption (PSA) is a flexible, albeit complex gas separation system. Due to its inherent nonlinear nature and discontinuous operation, the design of a model based PSA controller, especially with varying operating conditions, is a challenging task. This work focuses on the design of an explicit/multi-parametric model predictive controller for a PSA system. Based on a system involving four adsorbent beds separating 70% H2, 30% CH4 mixture into high purity hydrogen, the key controller objective is to fast track H2 purity to a set point value of 99.99%. To perform this task, a rigorous and systematic framework is employed. First, a high fidelity detailed dynamic model is built to represent the system\\'s real operation, and understand its dynamic behavior. The model is then used to derive appropriate linear models by applying suitable system identification techniques. For the reduced models, a model predictive control (MPC) step is formulated, where latest developments in multi-parametric programming and control are applied to derive a novel explicit MPC controller. To test the performance of the designed controller, closed loop simulations are performed where the dynamic model is used as the virtual plant. Comparison studies of the derived explicit MPC controller are also performed with conventional PID controllers. © 2010 Elsevier Ltd. All rights reserved.

  15. Predicting continental-scale patterns of bird species richness with spatially explicit models

    DEFF Research Database (Denmark)

    Rahbek, Carsten; Gotelli, Nicholas J; Colwell, Robert K

    2007-01-01

    the extraordinary diversity of avian species in the montane tropics, the most species-rich region on Earth. Our findings imply that correlative climatic models substantially underestimate the importance of historical factors and small-scale niche-driven assembly processes in shaping contemporary species-richness......The causes of global variation in species richness have been debated for nearly two centuries with no clear resolution in sight. Competing hypotheses have typically been evaluated with correlative models that do not explicitly incorporate the mechanisms responsible for biotic diversity gradients....... Here, we employ a fundamentally different approach that uses spatially explicit Monte Carlo models of the placement of cohesive geographical ranges in an environmentally heterogeneous landscape. These models predict species richness of endemic South American birds (2248 species) measured...

  16. A novel explicit approach to model bromide and pesticide transport in connected soil structures

    Directory of Open Access Journals (Sweden)

    J. Klaus

    2011-07-01

    Full Text Available The present study tests whether an explicit treatment of worm burrows and tile drains as connected structures is feasible for simulating water flow, bromide and pesticide transport in structured heterogeneous soils at hillslope scale. The essence is to represent worm burrows as morphologically connected paths of low flow resistance in a hillslope model. A recent Monte Carlo study (Klaus and Zehe, 2010, Hydrological Processes, 24, p. 1595–1609 revealed that this approach allowed successful reproduction of tile drain event discharge recorded during an irrigation experiment at a tile drained field site. However, several "hillslope architectures" that were all consistent with the available extensive data base allowed a good reproduction of tile drain flow response. Our second objective was thus to find out whether this "equifinality" in spatial model setups may be reduced when including bromide tracer data in the model falsification process. We thus simulated transport of bromide for the 13 spatial model setups that performed best with respect to reproduce tile drain event discharge, without any further calibration. All model setups allowed a very good prediction of the temporal dynamics of cumulated bromide leaching into the tile drain, while only four of them matched the accumulated water balance and accumulated bromide loss into the tile drain. The number of behavioural model architectures could thus be reduced to four. One of those setups was used for simulating transport of Isoproturon, using different parameter combinations to characterise adsorption according to the Footprint data base. Simulations could, however, only reproduce the observed leaching behaviour, when we allowed for retardation coefficients that were very close to one.

  17. A novel explicit approach to model bromide and pesticide transport in connected soil structures

    Science.gov (United States)

    Klaus, J.; Zehe, E.

    2011-07-01

    The present study tests whether an explicit treatment of worm burrows and tile drains as connected structures is feasible for simulating water flow, bromide and pesticide transport in structured heterogeneous soils at hillslope scale. The essence is to represent worm burrows as morphologically connected paths of low flow resistance in a hillslope model. A recent Monte Carlo study (Klaus and Zehe, 2010, Hydrological Processes, 24, p. 1595-1609) revealed that this approach allowed successful reproduction of tile drain event discharge recorded during an irrigation experiment at a tile drained field site. However, several "hillslope architectures" that were all consistent with the available extensive data base allowed a good reproduction of tile drain flow response. Our second objective was thus to find out whether this "equifinality" in spatial model setups may be reduced when including bromide tracer data in the model falsification process. We thus simulated transport of bromide for the 13 spatial model setups that performed best with respect to reproduce tile drain event discharge, without any further calibration. All model setups allowed a very good prediction of the temporal dynamics of cumulated bromide leaching into the tile drain, while only four of them matched the accumulated water balance and accumulated bromide loss into the tile drain. The number of behavioural model architectures could thus be reduced to four. One of those setups was used for simulating transport of Isoproturon, using different parameter combinations to characterise adsorption according to the Footprint data base. Simulations could, however, only reproduce the observed leaching behaviour, when we allowed for retardation coefficients that were very close to one.

  18. Grand unified models including extra Z bosons

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-01-01

    The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present

  19. Explicit Modeling of Ancestry Improves Polygenic Risk Scores and BLUP Prediction.

    Science.gov (United States)

    Chen, Chia-Yen; Han, Jiali; Hunter, David J; Kraft, Peter; Price, Alkes L

    2015-09-01

    Polygenic prediction using genome-wide SNPs can provide high prediction accuracy for complex traits. Here, we investigate the question of how to account for genetic ancestry when conducting polygenic prediction. We show that the accuracy of polygenic prediction in structured populations may be partly due to genetic ancestry. However, we hypothesized that explicitly modeling ancestry could improve polygenic prediction accuracy. We analyzed three GWAS of hair color (HC), tanning ability (TA), and basal cell carcinoma (BCC) in European Americans (sample size from 7,440 to 9,822) and considered two widely used polygenic prediction approaches: polygenic risk scores (PRSs) and best linear unbiased prediction (BLUP). We compared polygenic prediction without correction for ancestry to polygenic prediction with ancestry as a separate component in the model. In 10-fold cross-validation using the PRS approach, the R(2) for HC increased by 66% (0.0456-0.0755; P ancestry, which prevents ancestry effects from entering into each SNP effect and being overweighted. Surprisingly, explicitly modeling ancestry produces a similar improvement when using the BLUP approach, which fits all SNPs simultaneously in a single variance component and causes ancestry to be underweighted. We validate our findings via simulations, which show that the differences in prediction accuracy will increase in magnitude as sample sizes increase. In summary, our results show that explicitly modeling ancestry can be important in both PRS and BLUP prediction. © 2015 WILEY PERIODICALS, INC.

  20. The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    S. Madronich

    2007-11-01

    Full Text Available Our current understanding of secondary organic aerosol (SOA formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i the potential for products of multiple oxidation steps contributing to SOA, and (ii the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i support interpretations of SOA formation observed in laboratory chamber experiments, (ii give some insights on SOA formation under atmospherically relevant conditions and (iii investigate implications for the regional/global lifetimes of the SOA.

  1. A unitary signal-detection model of implicit and explicit memory.

    Science.gov (United States)

    Berry, Christopher J; Shanks, David R; Henson, Richard N A

    2008-10-01

    Do dissociations imply independent systems? In the memory field, the view that there are independent implicit and explicit memory systems has been predominantly supported by dissociation evidence. Here, we argue that many of these dissociations do not necessarily imply distinct memory systems. We review recent work with a single-system computational model that extends signal-detection theory (SDT) to implicit memory. SDT has had a major influence on research in a variety of domains. The current work shows that it can be broadened even further in its range of application. Indeed, the single-system model that we present does surprisingly well in accounting for some key dissociations that have been taken as evidence for independent implicit and explicit memory systems.

  2. An Explicit Approach Toward Modeling Thermo-Coupled Deformation Behaviors of SMPs

    Directory of Open Access Journals (Sweden)

    Hao Li

    2017-03-01

    Full Text Available A new elastoplastic J 2 -flow models with thermal effects is proposed toward simulating thermo-coupled finite deformation behaviors of shape memory polymers. In this new model, an elastic potential evolving with development of plastic flow is incorporated to characterize the stress-softening effect at unloading and, moreover, thermo-induced plastic flow is introduced to represent the strain recovery effect at heating. It is shown that any given test data for both effects may be accurately simulated by means of direct and explicit procedures. Numerical examples for model predictions compare well with test data in literature.

  3. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    Science.gov (United States)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    ) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay

  4. Extending Primitive Spatial Data Models to Include Semantics

    Science.gov (United States)

    Reitsma, F.; Batcheller, J.

    2009-04-01

    Our traditional geospatial data model involves associating some measurable quality, such as temperature, or observable feature, such as a tree, with a point or region in space and time. When capturing data we implicitly subscribe to some kind of conceptualisation. If we can make this explicit in an ontology and associate it with the captured data, we can leverage formal semantics to reason with the concepts represented in our spatial data sets. To do so, we extend our fundamental representation of geospatial data in a data model by including a URI in our basic data model that links it to our ontology defining our conceptualisation, We thus extend Goodchild et al's geo-atom [1] with the addition of a URI: (x, Z, z(x), URI) . This provides us with pixel or feature level knowledge and the ability to create layers of data from a set of pixels or features that might be drawn from a database based on their semantics. Using open source tools, we present a prototype that involves simple reasoning as a proof of concept. References [1] M.F. Goodchild, M. Yuan, and T.J. Cova. Towards a general theory of geographic representation in gis. International Journal of Geographical Information Science, 21(3):239-260, 2007.

  5. Spatially explicit models for inference about density in unmarked or partially marked populations

    Science.gov (United States)

    Chandler, Richard B.; Royle, J. Andrew

    2013-01-01

    Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating

  6. Spatially explicit modeling of conflict zones between wildlife and snow sports: prioritizing areas for winter refuges.

    Science.gov (United States)

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2011-04-01

    Outdoor winter recreation exerts an increasing pressure upon mountain ecosystems, with unpredictable, free-ranging activities (e.g., ski mountaineering, snowboarding, and snowshoeing) representing a major source of stress for wildlife. Mitigating anthropogenic disturbance requires the spatially explicit prediction of the interference between the activities of humans and wildlife. We applied spatial modeling to localize conflict zones between wintering Black Grouse (Tetrao tetrix), a declining species of Alpine timberline ecosystems, and two free-ranging winter sports (off-piste skiing [including snow-boarding] and snowshoeing). Track data (snow-sports and birds' traces) obtained from aerial photographs taken over a 585-km transect running along the timberline, implemented within a maximum entropy model, were used to predict the occurrence of snow sports and Black Grouse as a function of landscape characteristics. By modeling Black Grouse presence in the theoretical absence of free-ranging activities and ski infrastructure, we first estimated the amount of habitat reduction caused by these two factors. The models were then extrapolated to the altitudinal range occupied by Black Grouse, while the spatial extent and intensity of potential conflict were assessed by calculating the probability of human-wildlife co-occurrence. The two snow-sports showed different distribution patterns. Skiers' occurrence was mainly determined by ski-lift presence and a smooth terrain, while snowshoers' occurrence was linked to hiking or skiing routes and moderate slopes. Wintering Black Grouse avoided ski lifts and areas frequented by free-ranging snow sports. According to the models, Black Grouse have faced a substantial reduction of suitable wintering habitat along the timberline transect: 12% due to ski infrastructure and another 16% when adding free-ranging activities. Extrapolating the models over the whole study area results in an overall habitat loss due to ski infrastructure of

  7. Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation

    Science.gov (United States)

    Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu

    2005-01-01

    Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...

  8. Probabilistic modelling in urban drainage – two approaches that explicitly account for temporal variation of model errors

    DEFF Research Database (Denmark)

    Löwe, Roland; Del Giudice, Dario; Mikkelsen, Peter Steen

    of input uncertainties observed in the models. The explicit inclusion of such variations in the modelling process will lead to a better fulfilment of the assumptions made in formal statistical frameworks, thus reducing the need to resolve to informal methods. The two approaches presented here...

  9. An improved risk-explicit interval linear programming model for pollution load allocation for watershed management.

    Science.gov (United States)

    Xia, Bisheng; Qian, Xin; Yao, Hong

    2017-11-01

    Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.

  10. Seepage Model for PA Including Drift Collapse

    International Nuclear Information System (INIS)

    Li, G.; Tsang, C.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to

  11. Seepage Model for PA Including Dift Collapse

    Energy Technology Data Exchange (ETDEWEB)

    G. Li; C. Tsang

    2000-12-20

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in

  12. An unified framework to integrate biotic, abiotic processes and human activities in spatially explicit models of agricultural landscapes

    Directory of Open Access Journals (Sweden)

    Fabrice eVinatier

    2016-02-01

    Full Text Available Recent concern over possible ways to sustain ecosystem services has triggered important research worldwide on ecosystem processes at the landscape scale. Understanding this complexity of landscape functioning calls for coupled and spatially-explicit modelling approaches. However, disciplinary boundaries have limited the number of multi-process studies at the landscape scale, and current progress in coupling processes at this scale often reveals strong imbalance between biotic and abiotic processes, depending on the core discipline of the modellers. We propose a spatially-explicit, unified conceptual framework that allows researchers from different fields to develop a shared view of agricultural landscapes. In particular,we distinguish landscape elements that are mobile in space and represent biotic or abiotic objects (for example water, fauna or flora populations, and elements that are immobile and represent fixed landscape elements with a given geometry (for example ditch section or plot. The shared representation of these elements allows setting common objects and spatio-temporal process boundaries that may otherwise differ between disciplines. We present guidelines and an assessment of the applicability of this framework to a virtual landscape system with realistic properties. This framework allows the complex system to be represented with a limited set of concepts but leaves the possibility to include current modelling strategies specific to biotic or abiotic disciplines. Future operational challenges include model design, space and time discretization, and the availability of both landscape modelling platforms and data.

  13. Short-Range Prediction of Monsoon Precipitation by NCMRWF Regional Unified Model with Explicit Convection

    Science.gov (United States)

    Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.

    2018-03-01

    There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and

  14. An explicit formula for the interface tension of the 2D Potts model

    Science.gov (United States)

    Borgs, Christian; Janke, Wolfhard

    1992-11-01

    We consider the exact correlation length calculations for the two-dimensional Potts model at the transition point β_t by Klümper, Schadschneider and Zittartz, and by Buffenoir and Wallon. We argue that the correlation length calculated by the latter authors is the correlation length in the disordered phase and then combine their result with duality and the assumption of complete wetting to give an explicit formula for the order-disorder interface tension σ_od of this model. The result is used to clarify a controversy stemming from different numerical simulations of σ_od.

  15. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a

  16. Modeling mixed retention and early arrivals in multidimensional heterogeneous media using an explicit Lagrangian scheme

    Science.gov (United States)

    Zhang, Yong; Meerschaert, Mark M.; Baeumer, Boris; LaBolle, Eric M.

    2015-08-01

    This study develops an explicit two-step Lagrangian scheme based on the renewal-reward process to capture transient anomalous diffusion with mixed retention and early arrivals in multidimensional media. The resulting 3-D anomalous transport simulator provides a flexible platform for modeling transport. The first step explicitly models retention due to mass exchange between one mobile zone and any number of parallel immobile zones. The mobile component of the renewal process can be calculated as either an exponential random variable or a preassigned time step, and the subsequent random immobile time follows a Hyper-exponential distribution for finite immobile zones or a tempered stable distribution for infinite immobile zones with an exponentially tempered power-law memory function. The second step describes well-documented early arrivals which can follow streamlines due to mechanical dispersion using the method of subordination to regional flow. Applicability and implementation of the Lagrangian solver are further checked against transport observed in various media. Results show that, although the time-nonlocal model parameters are predictable for transport with retention in alluvial settings, the standard time-nonlocal model cannot capture early arrivals. Retention and early arrivals observed in porous and fractured media can be efficiently modeled by our Lagrangian solver, allowing anomalous transport to be incorporated into 2-D/3-D models with irregular flow fields. Extensions of the particle-tracking approach are also discussed for transport with parameters conditioned on local aquifer properties, as required by transient flow and nonstationary media.

  17. A Bidirectional Subsurface Remote Sensing Reflectance Model Explicitly Accounting for Particle Backscattering Shapes

    Science.gov (United States)

    He, Shuangyan; Zhang, Xiaodong; Xiong, Yuanheng; Gray, Deric

    2017-11-01

    The subsurface remote sensing reflectance (rrs, sr-1), particularly its bidirectional reflectance distribution function (BRDF), depends fundamentally on the angular shape of the volume scattering functions (VSFs, m-1 sr-1). Recent technological advancement has greatly expanded the collection, and the knowledge of natural variability, of the VSFs of oceanic particles. This allows us to test the Zaneveld's theoretical rrs model that explicitly accounts for particle VSF shapes. We parameterized the rrs model based on HydroLight simulations using 114 VSFs measured in three coastal waters around the United States and in oceanic waters of North Atlantic Ocean. With the absorption coefficient (a), backscattering coefficient (bb), and VSF shape as inputs, the parameterized model is able to predict rrs with a root mean square relative error of ˜4% for solar zenith angles from 0 to 75°, viewing zenith angles from 0 to 60°, and viewing azimuth angles from 0 to 180°. A test with the field data indicates the performance of our model, when using only a and bb as inputs and selecting the VSF shape using bb, is comparable to or slightly better than the currently used models by Morel et al. and Lee et al. Explicitly expressing VSF shapes in rrs modeling has great potential to further constrain the uncertainty in the ocean color studies as our knowledge on the VSFs of natural particles continues to improve. Our study represents a first effort in this direction.

  18. Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

    Directory of Open Access Journals (Sweden)

    M. H. Savoji

    2014-09-01

    Full Text Available Gaussian Mixture Models (GMMs of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equations whose solutions lead to the first estimates of speech and noise power spectra. The noise source is also identified and the input SNR estimated in this first step. These first estimates are then refined using approximate but explicit MMSE and MAP estimation formulations. The refined estimates are then used in a Wiener filter to reduce noise and enhance the noisy speech. The proposed schemes show good results. Nevertheless, it is shown that the MAP explicit solution, introduced here for the first time, reduces the computation time to less than one third with a slight higher improvement in SNR and PESQ score and also less distortion in comparison to the MMSE solution.

  19. Modelling the Hydraulic Behaviour of Growing Media with the Explicit Finite Volume Solution

    Directory of Open Access Journals (Sweden)

    Marco Carbone

    2015-02-01

    Full Text Available The increasing imperviousness of urban areas reduces the infiltration and evapotranspiration capacity of urban catchments and results in increased runoff. In the last few decades, several solutions and techniques have been proposed to prevent such impacts by restoring the hydrological cycle. A limiting factor in spreading the use of such systems is the lack of proper modelling tools for design, especially for the infiltration processes in a growing medium. In this research, a physically-based model, employing the explicit Finite Volume Method (FVM, is proposed for modelling infiltration into growing media. The model solves a modified version of the Richards equation using a formulation which takes into account the main characteristics of green infrastructure substrates. The proposed model was verified against the HYDRUS-1D software and the comparison of results confirmed the suitability of the proposed model for correctly describing the hydraulic behaviour of soil substrates.

  20. Towards Linking 3D SAR and Lidar Models with a Spatially Explicit Individual Based Forest Model

    Science.gov (United States)

    Osmanoglu, B.; Ranson, J.; Sun, G.; Armstrong, A. H.; Fischer, R.; Huth, A.

    2017-12-01

    In this study, we present a parameterization of the FORMIND individual-based gap model (IBGM)for old growth Atlantic lowland rainforest in La Selva, Costa Rica for the purpose of informing multisensor remote sensing techniques for above ground biomass techniques. The model was successfully parameterized and calibrated for the study site; results show that the simulated forest reproduces the structural complexity of Costa Rican rainforest based on comparisons with CARBONO inventory plot data. Though the simulated stem numbers (378) slightly underestimated the plot data (418), particularly for canopy dominant intermediate shade tolerant trees and shade tolerant understory trees, overall there was a 9.7% difference. Aboveground biomass (kg/ha) showed a 0.1% difference between the simulated forest and inventory plot dataset. The Costa Rica FORMIND simulation was then used to parameterize a spatially explicit (3D) SAR and lidar backscatter models. The simulated forest stands were used to generate a Look Up Table as a tractable means to estimate aboveground forest biomass for these complex forests. Various combinations of lidar and radar variables were evaluated in the LUT inversion. To test the capability of future data for estimation of forest height and biomass, we considered data of 1) L- (or P-) band polarimetric data (backscattering coefficients of HH, HV and VV); 2) L-band dual-pol repeat-pass InSAR data (HH/HV backscattering coefficients and coherences, height of scattering phase center at HH and HV using DEM or surface height from lidar data as reference); 3) P-band polarimetric InSAR data (canopy height from inversion of PolInSAR data or use the coherences and height of scattering phase center at HH, HV and VV); 4) various height indices from waveform lidar data); and 5) surface and canopy top height from photon-counting lidar data. The methods for parameterizing the remote sensing models with the IBGM and developing Look Up Tables will be discussed. Results

  1. A new method for explicit modelling of single failure event within different common cause failure groups

    International Nuclear Information System (INIS)

    Kančev, Duško; Čepin, Marko

    2012-01-01

    Redundancy and diversity are the main principles of the safety systems in the nuclear industry. Implementation of safety components redundancy has been acknowledged as an effective approach for assuring high levels of system reliability. The existence of redundant components, identical in most of the cases, implicates a probability of their simultaneous failure due to a shared cause—a common cause failure. This paper presents a new method for explicit modelling of single component failure event within multiple common cause failure groups simultaneously. The method is based on a modification of the frequently utilised Beta Factor parametric model. The motivation for development of this method lays in the fact that one of the most widespread softwares for fault tree and event tree modelling as part of the probabilistic safety assessment does not comprise the option for simultaneous assignment of single failure event to multiple common cause failure groups. In that sense, the proposed method can be seen as an advantage of the explicit modelling of common cause failures. A standard standby safety system is selected as a case study for application and study of the proposed methodology. The results and insights implicate improved, more transparent and more comprehensive models within probabilistic safety assessment.

  2. Spatially-Explicit Bayesian Information Entropy Metrics for Calibrating Landscape Transformation Models

    Directory of Open Access Journals (Sweden)

    Kostas Alexandridis

    2013-06-01

    Full Text Available Assessing spatial model performance often presents challenges related to the choice and suitability of traditional statistical methods in capturing the true validity and dynamics of the predicted outcomes. The stochastic nature of many of our contemporary spatial models of land use change necessitate the testing and development of new and innovative methodologies in statistical spatial assessment. In many cases, spatial model performance depends critically on the spatially-explicit prior distributions, characteristics, availability and prevalence of the variables and factors under study. This study explores the statistical spatial characteristics of statistical model assessment of modeling land use change dynamics in a seven-county study area in South-Eastern Wisconsin during the historical period of 1963–1990. The artificial neural network-based Land Transformation Model (LTM predictions are used to compare simulated with historical land use transformations in urban/suburban landscapes. We introduce a range of Bayesian information entropy statistical spatial metrics for assessing the model performance across multiple simulation testing runs. Bayesian entropic estimates of model performance are compared against information-theoretic stochastic entropy estimates and theoretically-derived accuracy assessments. We argue for the critical role of informational uncertainty across different scales of spatial resolution in informing spatial landscape model assessment. Our analysis reveals how incorporation of spatial and landscape information asymmetry estimates can improve our stochastic assessments of spatial model predictions. Finally our study shows how spatially-explicit entropic classification accuracy estimates can work closely with dynamic modeling methodologies in improving our scientific understanding of landscape change as a complex adaptive system and process.

  3. Spatially Explicit Modeling Reveals Cephalopod Distributions Match Contrasting Trophic Pathways in the Western Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Patricia Puerta

    Full Text Available Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla and sea surface temperature (SST, and trophic (prey density conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents

  4. A spatially explicit model for an Allee effect: why wolves recolonize so slowly in Greater Yellowstone.

    Science.gov (United States)

    Hurford, Amy; Hebblewhite, Mark; Lewis, Mark A

    2006-11-01

    A reduced probability of finding mates at low densities is a frequently hypothesized mechanism for a component Allee effect. At low densities dispersers are less likely to find mates and establish new breeding units. However, many mathematical models for an Allee effect do not make a distinction between breeding group establishment and subsequent population growth. Our objective is to derive a spatially explicit mathematical model, where dispersers have a reduced probability of finding mates at low densities, and parameterize the model for wolf recolonization in the Greater Yellowstone Ecosystem (GYE). In this model, only the probability of establishing new breeding units is influenced by the reduced probability of finding mates at low densities. We analytically and numerically solve the model to determine the effect of a decreased probability in finding mates at low densities on population spread rate and density. Our results suggest that a reduced probability of finding mates at low densities may slow recolonization rate.

  5. Pedagogical Model for Explicit Teaching of Reading Comprehension to English Language Learners

    Directory of Open Access Journals (Sweden)

    Al Tiyb Al Khaiyali

    2017-09-01

    Full Text Available Reading comprehension instruction is considered one of the major challenges that most English language teachers and students encounter. Therefore, providing a systematic, explicit, and flexible model to teaching reading comprehension strategies could help resolve some of these challenges and increase the possibility of teaching reading comprehension, particularly in language learners’ classrooms. Consequently, the purpose of this paper is to provide a model to teach reading comprehension strategies in language learning classrooms. The proposed instructional model is divided into three systematic phases through which strategies are taught before reading, during reading, and after reading. Each phase is explained and elaborated using recommended models for teachers. Finally, suggested considerations to consolidate this model are provided.

  6. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics.

    Science.gov (United States)

    Zheng, Jianqiu; Doskey, Paul V

    2015-02-17

    An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.

  7. A Risk Assessment Example for Soil Invertebrates Using Spatially Explicit Agent-Based Models

    DEFF Research Database (Denmark)

    Reed, Melissa; Alvarez, Tania; Chelinho, Sonia

    2016-01-01

    Current risk assessment methods for measuring the toxicity of plant protection products (PPPs) on soil invertebrates use standardized laboratory conditions to determine acute effects on mortality and sublethal effects on reproduction. If an unacceptable risk is identified at the lower tier...... population models for ubiquitous soil invertebrates (collembolans and earthworms) as refinement options in current risk assessment. Both are spatially explicit agent-based models (ABMs), incorporating individual and landscape variability. The models were used to provide refined risk assessments for different...... application scenarios of a hypothetical pesticide applied to potato crops (full-field spray onto the soil surface [termed “overall”], in-furrow, and soil-incorporated pesticide applications). In the refined risk assessment, the population models suggest that soil invertebrate populations would likely recover...

  8. [Application of spatially explicit landscape model in soil loss study in Huzhong area].

    Science.gov (United States)

    Xu, Chonggang; Hu, Yuanman; Chang, Yu; Li, Xiuzhen; Bu, Renchang; He, Hongshi; Leng, Wenfang

    2004-10-01

    Universal Soil Loss Equation (USLE) has been widely used to estimate the average annual soil loss. In most of the previous work on soil loss evaluation on forestland, cover management factor was calculated from the static forest landscape. The advent of spatially explicit forest landscape model in the last decade, which explicitly simulates the forest succession dynamics under natural and anthropogenic disturbances (fire, wind, harvest and so on) on heterogeneous landscape, makes it possible to take into consideration the change of forest cover, and to dynamically simulate the soil loss in different year (e.g. 10 years and 20 years after current year). In this study, we linked a spatially explicit landscape model (LANDIS) with USLE to simulate the soil loss dynamics under two scenarios: fire and no harvest, fire and harvest. We also simulated the soil loss with no fire and no harvest as a control. The results showed that soil loss varied periodically with simulation year, and the amplitude of change was the lowest under the control scenario and the highest under the fire and no harvest scenario. The effect of harvest on soil loss could not be easily identified on the map; however, the cumulative effect of harvest on soil loss was larger than that of fire. Decreasing the harvest area and the percent of bare soil increased by harvest could significantly reduce soil loss, but had no significant effects on the dynamic of soil loss. Although harvest increased the annual soil loss, it tended to decrease the variability of soil loss between different simulation years.

  9. BETR-World: a geographically explicit model of chemical fate: application to transport of α-HCH to the Arctic

    International Nuclear Information System (INIS)

    Toose, L.; Woodfine, D.G.; MacLeod, M.; Mackay, D.; Gouin, J.

    2004-01-01

    The Berkeley-Trent (BETR)-World model, a 25 compartment, geographically explicit fugacity-based model is described and applied to evaluate the transport of chemicals from temperate source regions to receptor regions (such as the Arctic). The model was parameterized using GIS and an array of digital data on weather, oceans, freshwater, vegetation and geo-political boundaries. This version of the BETR model framework includes modification of atmospheric degradation rates by seasonally variable hydroxyl radical concentrations and temperature. Degradation rates in all other compartments vary with seasonally changing temperature. Deposition to the deep ocean has been included as a loss mechanism. A case study was undertaken for α-HCH. Dynamic emission scenarios were estimated for each of the 25 regions. Predicted environmental concentrations showed good agreement with measured values for the northern regions in air, and fresh and oceanic water and with the results from a previous model of global chemical fate. Potential for long-range transport and deposition to the Arctic region was assessed using a Transfer Efficiency combined with estimated emissions. European regions and the Orient including China have a high potential to contribute α-HCH contamination in the Arctic due to high rates of emission in these regions despite low Transfer Efficiencies. Sensitivity analyses reveal that the performance and reliability of the model is strongly influenced by parameters controlling degradation rates. - A geographically explicit multi-compartment model is applied to the transport of α-HCH to the Arctic, showing Europe and the Orient are key sources

  10. Low Cloud Feedback to Surface Warming in the World's First Global Climate Model with Explicit Embedded Boundary Layer Turbulence

    Science.gov (United States)

    Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Wyant, M. C.; Khairoutdinov, M.; Singh, B.

    2017-12-01

    Biases and parameterization formulation uncertainties in the representation of boundary layer clouds remain a leading source of possible systematic error in climate projections. Here we show the first results of cloud feedback to +4K SST warming in a new experimental climate model, the ``Ultra-Parameterized (UP)'' Community Atmosphere Model, UPCAM. We have developed UPCAM as an unusually high-resolution implementation of cloud superparameterization (SP) in which a global set of cloud resolving arrays is embedded in a host global climate model. In UP, the cloud-resolving scale includes sufficient internal resolution to explicitly generate the turbulent eddies that form marine stratocumulus and trade cumulus clouds. This is computationally costly but complements other available approaches for studying low clouds and their climate interaction, by avoiding parameterization of the relevant scales. In a recent publication we have shown that UP, while not without its own complexity trade-offs, can produce encouraging improvements in low cloud climatology in multi-month simulations of the present climate and is a promising target for exascale computing (Parishani et al. 2017). Here we show results of its low cloud feedback to warming in multi-year simulations for the first time. References: Parishani, H., M. S. Pritchard, C. S. Bretherton, M. C. Wyant, and M. Khairoutdinov (2017), Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence, J. Adv. Model. Earth Syst., 9, doi:10.1002/2017MS000968.

  11. Interaction of the model alkyltrimethylammonium ions with alkali halide salts: an explicit water molecular dynamics study

    Directory of Open Access Journals (Sweden)

    M. Druchok

    2013-01-01

    Full Text Available We present an explicit water molecular dynamics simulation of dilute solutions of model alkyltrimethylammonium surfactant ions (number of methylene groups in the tail is 3, 5, 8, 10, and 12 in mixture with NaF, NaCl, NaBr, and NaI salts, respectively. The SPC/E model is used to describe water molecules. Results of the simulation at 298 K are presented in form of the radial distribution functions between nitrogen and carbon atoms of CH2 groups on the alkyltrimethylammonium ion, and the counterion species in the solution. The running coordination numbers between carbon atoms of surfactants and counterions are also calculated. We show that I- counterion exhibits the highest, and F- the lowest affinity to "bind" to the model surfactants. The results are discussed in view of the available experimental and simulation data for this and similar solutions.

  12. Novel application of explicit dynamics occupancy models to ongoing aquatic invasions

    Science.gov (United States)

    Sepulveda, Adam J.

    2018-01-01

    Identification of suitable habitats, where invasive species can establish, is an important step towards controlling their spread. Accurate identification is difficult for new or slow invaders because unoccupied habitats may be suitable, given enough time for dispersal, while occupied habitats may prove to be unsuitable for establishment.To identify the suitable habitat of a recent invader, I used an explicit dynamics occupancy modelling framework to evaluate habitat covariates related to successful and failed establishments of American bullfrogs (Lithobates catesbeianus) within the Yellowstone River floodplain of Montana, USA from 2012-2016.During this five-year period, bullfrogs failed to establish at most sites they colonized. Bullfrog establishment was most likely to occur and least likely to fail at sites closest to human-modified ponds and lakes and those with emergent vegetation. These habitat covariates were generally associated with the presence of permanent water.Suitable habitat for bullfrog establishment is abundant in the Yellowstone River floodplain, though many sites with suitable habitat remain uncolonized. Thus, the maximum distribution of bullfrogs is much greater than their current distribution.Synthesis and applications. Focused control efforts on habitats with or proximate to permanent waters are most likely to reduce the potential for invasive bullfrog establishment and spread in the Yellowstone River. The novel application of explicit dynamics occupancy models is a useful and widely applicable tool for guiding management efforts towards those habitats where new or slow invaders are most likely to establish and persist.

  13. Model of high-tech businesses management under the trends of explicit and implicit knowledge markets: classification and business model

    Directory of Open Access Journals (Sweden)

    Guzel Isayevna Gumerova

    2015-03-01

    Full Text Available Objective to define the notion of ldquohightech businessrdquo to elaborate classification of hightech businesses to elaborate the business model for hightech business management. Methods general scientific methods of theoretical and empirical cognition. Results the research presents a business model of hightech businesses management basing on the trends of explicit and explicit knowledge market with the dominating implicit knowledge market classification of hightech businesses taking into consideration the three types of economic activity possibilities to manage hightech business basing on its market cost technological innovations costs and business indicators. Scientific novelty the interpretation of the notion of ldquohightech businessrdquo has been renewed the classification of hightech businesses has been elaborated for the first time allocating three groups of enterprises. Practical value theoretical significance ndash development of notional apparatus of hightech business management practical significancenbsp ndash grounding of the necessity to manage enterprises under development of explicit and explicit knowledge markets in Russia as a complex of capital and noncapital assets with dominating indicators of ldquomarket valuerdquo and ldquolife span of a companyrdquo. nbsp

  14. Development of a reactive burn model based upon an explicit visco-plastic pore collapse model

    Science.gov (United States)

    Bouton, Eric; Lefrançois, Alexandre; Belmas, Robert

    2015-06-01

    Our aim in this study is to develop a reactive burn model based upon a microscopic hot spot model to compute the initiation and shock to detonation of pressed TATB explosives. For the sake of simplicity, the hot spots are supposed to result from the viscoplastic collapse of spherical micro-voids inside the composition. Such a model has been incorporated in a lagrangian hydrodynamic code. In our calculations, 8 different pore diameters, ranging from 100 nm to 1.2 μm, have been taken into account and the porosity associated to each pore size has been deduced from the PBX-9502 void distribution derived from the SAXS. The last ingredient of our model is the burn rate that depends on two main variables. The first one is the shock pressure as proposed by the developers of the CREST model. The second one is the number of effective chemical reaction sites calculated by the microscopic model. Furthermore, the function of the reaction progress variable of the burn rate is similar to that in the SURF model proposed by Menikoff. Our burn rate has been calibrated by using pressure profile, material velocities wave forms obtained with embedded particle velocity gauges and run distance to detonation. The comparison between the numerical and experimental results is really good and sufficient to perform a wide variety of simulations including single, double shock waves and the desensitization phenomenon. In conclusion, future works are described.

  15. Explicit Solution of Reinsurance-Investment Problem for an Insurer with Dynamic Income under Vasicek Model

    Directory of Open Access Journals (Sweden)

    De-Lei Sheng

    2016-01-01

    Full Text Available Unlike traditionally used reserves models, this paper focuses on a reserve process with dynamic income to study the reinsurance-investment problem for an insurer under Vasicek stochastic interest rate model. The insurer’s dynamic income is given by the remainder after a dynamic reward budget being subtracted from the insurer’s net premium which is calculated according to expected premium principle. Applying stochastic control technique, a Hamilton-Jacobi-Bellman equation is established and the explicit solution is obtained under the objective of maximizing the insurer’s power utility of terminal wealth. Some economic interpretations of the obtained results are explained in detail. In addition, numerical analysis and several graphics are given to illustrate our results more meticulous.

  16. From explicit to implicit normal mode initialization of a limited-area model

    Energy Technology Data Exchange (ETDEWEB)

    Bijlsma, S.J.

    2013-02-15

    In this note the implicit normal mode initialization of a limited-area model is discussed from a different point of view. To that end it is shown that the equations describing the explicit normal mode initialization applied to the shallow water equations in differentiated form on the sphere can readily be derived in normal mode space if the model equations are separable, but only in the case of stationary Rossby modes can be transformed into the implicit equations in physical space. This is a consequence of the simple relations between the components of the different modes in that case. In addition a simple eigenvalue problem is given for the frequencies of the gravity waves. (orig.)

  17. Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a High-Resolution Global Climate Model

    Directory of Open Access Journals (Sweden)

    Hirofumi Tomita

    2010-01-01

    Full Text Available The response of tropical cyclone activity to climate change is a matter of great inherent interest and practical importance. Most current global climate models are not, however, capable of adequately resolving tropical cyclones; this has led to the development of downscaling techniques designed to infer tropical cyclone activity from the large-scale fields produced by climate models. Here we compare the statistics of tropical cyclones simulated explicitly in a very high resolution (~14 km grid mesh global climate model to the results of one such downscaling technique driven by the same global model. This is done for a simulation of the current climate and also for a simulation of a climate warmed by the addition of carbon dioxide. The explicitly simulated and downscaled storms are similarly distributed in space, but the intensity distribution of the downscaled events has a somewhat longer high-intensity tail, owing to the higher resolution of the downscaling model. Both explicitly simulated and downscaled events show large increases in the frequency of events at the high-intensity ends of their respective intensity distributions, but the downscaled storms also show increases in low-intensity events, whereas the explicitly simulated weaker events decline in number. On the regional scale, there are large differences in the responses of the explicitly simulated and downscaled events to global warming. In particular, the power dissipation of downscaled events shows a 175% increase in the Atlantic, while the power dissipation of explicitly simulated events declines there.

  18. Cholera in the Lake Kivu region (DRC): Integrating remote sensing and spatially explicit epidemiological modeling

    Science.gov (United States)

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2014-07-01

    Mathematical models of cholera dynamics can not only help in identifying environmental drivers and processes that influence disease transmission, but may also represent valuable tools for the prediction of the epidemiological patterns in time and space as well as for the allocation of health care resources. Cholera outbreaks have been reported in the Democratic Republic of the Congo since the 1970s. They have been ravaging the shore of Lake Kivu in the east of the country repeatedly during the last decades. Here we employ a spatially explicit, inhomogeneous Markov chain model to describe cholera incidence in eight health zones on the shore of the lake. Remotely sensed data sets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers in addition to baseline seasonality. The effect of human mobility is also modelled mechanistically. We test several models on a multiyear data set of reported cholera cases. The best fourteen models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via proper cross validation. Among these, the one accounting for seasonality, El Niño Southern Oscillation, precipitation and human mobility outperforms the others in cross validation. Some drivers (such as human mobility and rainfall) are retained only by a few models, possibly indicating that the mechanisms through which they influence cholera dynamics in the area will have to be investigated further.

  19. Spatially explicit models, generalized reproduction numbers and the prediction of patterns of waterborne disease

    Science.gov (United States)

    Rinaldo, A.; Gatto, M.; Mari, L.; Casagrandi, R.; Righetto, L.; Bertuzzo, E.; Rodriguez-Iturbe, I.

    2012-12-01

    Metacommunity and individual-based theoretical models are studied in the context of the spreading of infections of water-borne diseases along the ecological corridors defined by river basins and networks of human mobility. The overarching claim is that mathematical models can indeed provide predictive insight into the course of an ongoing epidemic, potentially aiding real-time emergency management in allocating health care resources and by anticipating the impact of alternative interventions. To support the claim, we examine the ex-post reliability of published predictions of the 2010-2011 Haiti cholera outbreak from four independent modeling studies that appeared almost simultaneously during the unfolding epidemic. For each modeled epidemic trajectory, it is assessed how well predictions reproduced the observed spatial and temporal features of the outbreak to date. The impact of different approaches is considered to the modeling of the spatial spread of V. cholera, the mechanics of cholera transmission and in accounting for the dynamics of susceptible and infected individuals within different local human communities. A generalized model for Haitian epidemic cholera and the related uncertainty is thus constructed and applied to the year-long dataset of reported cases now available. Specific emphasis will be dedicated to models of human mobility, a fundamental infection mechanism. Lessons learned and open issues are discussed and placed in perspective, supporting the conclusion that, despite differences in methods that can be tested through model-guided field validation, mathematical modeling of large-scale outbreaks emerges as an essential component of future cholera epidemic control. Although explicit spatial modeling is made routinely possible by widespread data mapping of hydrology, transportation infrastructure, population distribution, and sanitation, the precise condition under which a waterborne disease epidemic can start in a spatially explicit setting is

  20. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations.

    Directory of Open Access Journals (Sweden)

    Ernest Ohene Asare

    Full Text Available Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.

  1. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations.

    Science.gov (United States)

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.

  2. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America

    Science.gov (United States)

    Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André

    2009-04-01

    SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.

  3. Design and application of a technologically explicit hybrid energy-economy policy model with micro and macro economic dynamics

    Science.gov (United States)

    Bataille, Christopher G. F.

    2005-11-01

    Are further energy efficiency gains, or more recently greenhouse gas reductions, expensive or cheap? Analysts provide conflicting advice to policy makers based on divergent modelling perspectives, a 'top-down/bottom-up debate' in which economists use equation based models that equilibrate markets by maximizing consumer welfare, and technologists use technology simulation models that minimize the financial cost of providing energy services. This thesis summarizes a long term research project to find a middle ground between these two positions that is more useful to policy makers. Starting with the individual components of a behaviourally realistic and technologically explicit simulation model (ISTUM---Inter Sectoral Technology Use Model), or "hybrid", the individual sectors of the economy are linked using a framework of micro and macro economic feedbacks. These feedbacks are taken from the economic theory that informs the computable general equilibrium (CGE) family of models. Speaking in the languages of both economists and engineers, the resulting "physical" equilibrium model of Canada (CIMS---Canadian Integrated Modeling System), equilibrates energy and end-product markets, including imports and exports, for seven regions and 15 economic sectors, including primary industry, manufacturing, transportation, commerce, residences, governmental infrastructure and the energy supply sectors. Several different policy experiments demonstrate the value-added of the model and how its results compare to top-down and bottom-up practice. In general, the results show that technical adjustments make up about half the response to simulated energy policy, and macroeconomic demand adjustments the other half. Induced technical adjustments predominate with minor policies, while the importance of macroeconomic demand adjustment increases with the strength of the policy. Results are also shown for an experiment to derive estimates of future elasticity of substitution (ESUB) and

  4. A spatially explicit model for the future progression of the current Haiti cholera epidemic

    Science.gov (United States)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2011-12-01

    As a major cholera epidemic progresses in Haiti, and the figures of the infection, up to July 2011, climb to 385,000 cases and 5,800 deaths, the development of general models to track and predict the evolution of the outbreak, so as to guide the allocation of medical supplies and staff, is gaining notable urgency. We propose here a spatially explicit epidemic model that accounts for the dynamics of susceptible and infected individuals as well as the redistribution of textit{Vibrio cholera}, the causative agent of the disease, among different human communities. In particular, we model two spreading pathways: the advection of pathogens through hydrologic connections and the dissemination due to human mobility described by means of a gravity-like model. To this end the country has been divided into hydrologic units based on drainage directions derived from a digital terrain model. Moreover the population of each unit has been estimated from census data downscaled to 1 km x 1 km resolution via remotely sensed geomorphological information (LandScan texttrademark project). The model directly account for the role of rainfall patterns in driving the seasonality of cholera outbreaks. The two main outbreaks in fact occurred during the rainy seasons (October and May) when extensive floodings severely worsened the sanitation conditions and, in turn, raised the risk of infection. The model capability to reproduce the spatiotemporal features of the epidemic up to date grants robustness to the foreseen future development. In this context, the duration of acquired immunity, a hotly debated topic in the scientific community, emerges as a controlling factor for progression of the epidemic in the near future. The framework presented here can straightforwardly be used to evaluate the effectiveness of alternative intervention strategies like mass vaccinations, clean water supply and educational campaigns, thus emerging as an essential component of the control of future cholera

  5. Explicit Nonlinear Model Predictive Control for a Saucer-Shaped Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Zhihui Xing

    2013-01-01

    Full Text Available A lifting body unmanned aerial vehicle (UAV generates lift by its body and shows many significant advantages due to the particular shape, such as huge loading space, small wetted area, high-strength fuselage structure, and large lifting area. However, designing the control law for a lifting body UAV is quite challenging because it has strong nonlinearity and coupling, and usually lacks it rudders. In this paper, an explicit nonlinear model predictive control (ENMPC strategy is employed to design a control law for a saucer-shaped UAV which can be adequately modeled with a rigid 6-degrees-of-freedom (DOF representation. In the ENMPC, control signal is calculated by approximation of the tracking error in the receding horizon by its Taylor-series expansion to any specified order. It enhances the advantages of the nonlinear model predictive control and eliminates the time-consuming online optimization. The simulation results show that ENMPC is a propriety strategy for controlling lifting body UAVs and can compensate the insufficient control surface area.

  6. Predicting drought propagation within peat layers using a three dimensionally explicit voxel based model

    Science.gov (United States)

    Condro, A. A.; Pawitan, H.; Risdiyanto, I.

    2018-05-01

    Peatlands are very vulnerable to widespread fires during dry seasons, due to availability of aboveground fuel biomass on the surface and belowground fuel biomass on the sub-surface. Hence, understanding drought propagation occurring within peat layers is crucial with regards to disaster mitigation activities on peatlands. Using a three dimensionally explicit voxel-based model of peatland hydrology, this study predicted drought propagation time lags into sub-surface peat layers after drought events occurrence on the surface of about 1 month during La-Nina and 2.5 months during El-Nino. The study was carried out on a high-conservation-value area of oil palm plantation in West Kalimantan. Validity of the model was evaluated and its applicability for disaster mitigation was discussed. The animations of simulated voxels are available at: goo.gl/HDRMYN (El-Nino 2015 episode) and goo.gl/g1sXPl (La-Nina 2016 episode). The model is available at: goo.gl/RiuMQz.

  7. Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6

    Directory of Open Access Journals (Sweden)

    P. Mathiot

    2017-07-01

    Full Text Available Ice-shelf–ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean–sea ice model NEMO (Nucleus for European Modelling of the Ocean currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface, inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used three equation ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated.

  8. Modeling the oxidation of ebselen and other organoselenium compounds using explicit solvent networks.

    Science.gov (United States)

    Bayse, Craig A; Antony, Sonia

    2009-05-14

    The oxidation of dimethylselenide, dimethyldiselenide, S-methylselenenyl-methylmercaptan, and truncated and full models of ebselen (N-phenyl-1,2-benzisoselenazol-3(2H)-one) by methyl hydrogen peroxide has been modeled using density functional theory (DFT) and solvent-assisted proton exchange (SAPE), a method of microsolvation that employs explicit solvent networks to facilitate proton transfer reactions. The calculated activation barriers for these systems were substantially lower in energy (DeltaG(double dagger) + DeltaG(solv) = 13 to 26 kcal/mol) than models that neglect the participation of solvent in proton exchange. The comparison of two- and three-water SAPE networks showed a reduction in the strain in the model system but without a substantial reduction in the activation barriers. Truncating the ebselen model to N-methylisoselenazol-3(2H)-one gave a larger activation barrier than ebselen or N-methyl-1,2-benzisoselenazol-3(2H)-one but provided an efficient means of determining an initial guess for larger transition-state models. The similar barriers obtained for ebselen and Me(2)Se(2) (DeltaG(double dagger) + DeltaG(solv) = 20.65 and 20.40 kcal/mol, respectively) were consistent with experimentally determined rate constants. The activation barrier for MeSeSMe (DeltaG(double dagger) + DeltaG(solv) = 21.25 kcal/mol) was similar to that of ebselen and Me(2)Se(2) despite its significantly lower experimental rate for oxidation of an ebselen selenenyl sulfide by hydrogen peroxide relative to ebselen and ebselen diselenide. The disparity is attributed to intramolecular Se-O interactions, which decrease the nucleophilicity of the selenium center of the selenenyl sulfide.

  9. Biomass supply from alternative cellulosic crops and crop residues: A spatially explicit bioeconomic modeling approach

    International Nuclear Information System (INIS)

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, César R.; Manowitz, David H.; Zhang, Xuesong

    2011-01-01

    This paper introduces a spatially-explicit bioeconomic model for the study of potential cellulosic biomass supply. For biomass crops to begin to replace current crops, farmers must earn more from them than from current crops. Using weather, topographic and soil data, the terrestrial ecosystem model, EPIC, dynamically simulates multiple cropping systems that vary by crop rotation, tillage, fertilization and residue removal rate. EPIC generates predicted crop yield and environmental outcomes over multiple watersheds. These EPIC results are used to parameterize a regional profit-maximization mathematical programming model that identifies profitable cropping system choices. The bioeconomic model is calibrated to 2007–09 crop production in a 9-county region of southwest Michigan. A simulation of biomass supply in response to rising biomass prices shows that cellulosic residues from corn stover and wheat straw begin to be supplied at minimum delivered biomass:corn grain price ratios of 0.15 and 0.18, respectively. At the mean corn price of $162.6/Mg ($4.13 per bushel) at commercial moisture content during 2007–2009, these ratios correspond to stover and straw prices of $24 and $29 per dry Mg. Perennial bioenergy crops begin to be supplied at price levels 2–3 times higher. Average biomass transport costs to the biorefinery plant range from $6 to $20/Mg compared to conventional crop production practices in the area, biomass supply from annual crop residues increased greenhouse gas emissions and reduced water quality through increased nutrient loss. By contrast, perennial cellulosic biomass crop production reduced greenhouse gas emissions and improved water quality. -- Highlights: ► A new bioeconomic model predicts biomass supply and its environmental impacts. ► The model captures the opportunity cost of switching to new cellulosic crops. ► Biomass from crop residues is supplied at lower biomass price than cellulosic crops. ► Biomass from cellulosic crops has

  10. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  11. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, T. [WaterHope, Helsinki (Finland)

    2013-11-15

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  12. Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    Directory of Open Access Journals (Sweden)

    R. Valorso

    2011-07-01

    Full Text Available The sensitivity of the formation of secondary organic aerosol (SOA to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A. Vapour pressures (Pvap were estimated with three commonly used structure activity relationships. The values of Pvap were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation, differences in the predicted Pvap range between a factor of 5 to 200 on average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NOx conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the Pvap estimation method.

  13. Modelling rapid subsurface flow at the hillslope scale with explicit representation of preferential flow paths

    Science.gov (United States)

    Wienhöfer, J.; Zehe, E.

    2012-04-01

    Rapid lateral flow processes via preferential flow paths are widely accepted to play a key role for rainfall-runoff response in temperate humid headwater catchments. A quantitative description of these processes, however, is still a major challenge in hydrological research, not least because detailed information about the architecture of subsurface flow paths are often impossible to obtain at a natural site without disturbing the system. Our study combines physically based modelling and field observations with the objective to better understand how flow network configurations influence the hydrological response of hillslopes. The system under investigation is a forested hillslope with a small perennial spring at the study area Heumöser, a headwater catchment of the Dornbirnerach in Vorarlberg, Austria. In-situ points measurements of field-saturated hydraulic conductivity and dye staining experiments at the plot scale revealed that shrinkage cracks and biogenic macropores function as preferential flow paths in the fine-textured soils of the study area, and these preferential flow structures were active in fast subsurface transport of artificial tracers at the hillslope scale. For modelling of water and solute transport, we followed the approach of implementing preferential flow paths as spatially explicit structures of high hydraulic conductivity and low retention within the 2D process-based model CATFLOW. Many potential configurations of the flow path network were generated as realisations of a stochastic process informed by macropore characteristics derived from the plot scale observations. Together with different realisations of soil hydraulic parameters, this approach results in a Monte Carlo study. The model setups were used for short-term simulation of a sprinkling and tracer experiment, and the results were evaluated against measured discharges and tracer breakthrough curves. Although both criteria were taken for model evaluation, still several model setups

  14. SPATIALLY EXPLICIT MICRO-LEVEL MODELLING OF LAND USE CHANGE AT THE RURAL-URBAN INTERFACE. (R828012)

    Science.gov (United States)

    This paper describes micro-economic models of land use change applicable to the rural–urban interface in the US. Use of a spatially explicit micro-level modelling approach permits the analysis of regional patterns of land use as the aggregate outcomes of many, disparate...

  15. Prediction of strongly-heated gas flows in a vertical tube using explicit algebraic stress/heat-flux models

    International Nuclear Information System (INIS)

    Baek, Seong Gu; Park, Seung O.

    2003-01-01

    This paper provides the assessment of prediction performance of explicit algebraic stress and heat-flux models under conditions of mixed convective gas flows in a strongly-heated vertical tube. Two explicit algebraic stress models and four algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the flows experimentally studied by Shehata and McEligot (IJHMT 41(1998) p.4333) in which property variation was significant. Among the various model combinations, the Wallin and Johansson (JFM 403(2000) p. 89) explicit algebraic stress model-Abe, Kondo, and Nagano (IJHFF 17(1996) p. 228) algebraic heat-flux model combination is found to perform best. We also found that the dimensionless wall distance y + should be calculated based on the local property rather than the property at the wall for property-variation flows. When the buoyancy or the property variation effects are so strong that the flow may relaminarize, the choice of the basic platform two-equation model is a most important factor in improving the predictions

  16. Human Mobility Patterns and Cholera Epidemics: a Spatially Explicit Modeling Approach

    Science.gov (United States)

    Mari, L.; Bertuzzo, E.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2010-12-01

    Cholera is an acute enteric disease caused by the ingestion of water or food contaminated by the bacterium Vibrio cholerae. Although most infected individuals do not develop severe symptoms, their stool may contain huge quantities of V.~cholerae cells. Therefore, while traveling or commuting, asymptomatic carriers can be responsible for the long-range dissemination of the disease. As a consequence, human mobility is an alternative and efficient driver for the spread of cholera, whose primary propagation pathway is hydrological transport through river networks. We present a multi-layer network model that accounts for the interplay between epidemiological dynamics, hydrological transport and long-distance dissemination of V.~cholerae due to human movement. In particular, building on top of state-of-the-art spatially explicit models for cholera spread through surface waters, we describe human movement and its effects on the propagation of the disease by means of a gravity-model approach borrowed from transportation theory. Gravity-like contact processes have been widely used in epidemiology, because they can satisfactorily depict human movement when data on actual mobility patterns are not available. We test our model against epidemiological data recorded during the cholera outbreak occurred in the KwaZulu-Natal province of South Africa during years 2000--2001. We show that human mobility does actually play an important role in the formation of the spatiotemporal patterns of cholera epidemics. In particular, long-range human movement may determine inter-catchment dissemination of V.~cholerae cells, thus in turn explaining the emergence of epidemic patterns that cannot be produced by hydrological transport alone. We also show that particular attention has to be devoted to study how heterogeneously distributed drinking water supplies and sanitation conditions may affect cholera transmission.

  17. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols

    Science.gov (United States)

    Lin, Renping; Zhu, Jiang; Zheng, Fei

    2016-12-01

    The East Asian summer monsoon (EASM) experienced decadal transitions over the past few decades, and the associated "wetter-South-drier-North" shifts in rainfall patterns in China significantly affected the social and economic development in China. Two viewpoints stand out to explain these decadal shifts, regarding the shifts either a result of internal variability of climate system or that of external forcings (e.g. greenhouse gases (GHGs) and anthropogenic aerosols). However, most climate models, for example, the Atmospheric Model Intercomparison Project (AMIP)-type simulations and the Coupled Model Intercomparison Project (CMIP)-type simulations, fail to simulate the variation patterns, leaving the mechanisms responsible for these shifts still open to dispute. In this study, we conducted a successful simulation of these decadal transitions in a coupled model where we applied ocean data assimilation in the model free of explicit aerosols and GHGs forcing. The associated decadal shifts of the three-dimensional spatial structure in the 1990s, including the eastward retreat, the northward shift of the western Pacific subtropical high (WPSH), and the south-cool-north-warm pattern of the upper-level tropospheric temperature, were all well captured. Our simulation supports the argument that the variations of the oceanic fields are the dominant factor responsible for the EASM decadal transitions.

  18. Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model

    International Nuclear Information System (INIS)

    Bogey, Christophe; Bailly, Christophe

    2006-01-01

    Large eddy simulations (LES) of round free jets at Mach number M = 0.9 with Reynolds numbers over the range 2.5 x 10 3 ≤ Re D ≤ 4 x 10 5 are performed using explicit selective/high-order filtering with or without dynamic Smagorinsky model (DSM). Features of the flows and of the turbulent kinetic energy budgets in the turbulent jets are reported. The contributions of molecular viscosity, filtering and DSM to energy dissipation are also presented. Using filtering alone, the results are independent of the filtering strength, and the effects of the Reynolds number on jet development are successfully calculated. Using DSM, the effective jet Reynolds number is found to be artificially decreased by the eddy viscosity. The results are also not appreciably modified when subgrid-scale kinetic energy is used. Moreover, unlike filtering which does not significantly affect the larger computed scales, the eddy viscosity is shown to dissipate energy through all the turbulent scales, in the same way as molecular viscosity at lower Reynolds numbers

  19. Resolution and Energy Dissipation Characteristics of Implicit LES and Explicit Filtering Models for Compressible Turbulence

    Directory of Open Access Journals (Sweden)

    Romit Maulik

    2017-04-01

    Full Text Available Solving two-dimensional compressible turbulence problems up to a resolution of 16, 384^2, this paper investigates the characteristics of two promising computational approaches: (i an implicit or numerical large eddy simulation (ILES framework using an upwind-biased fifth-order weighted essentially non-oscillatory (WENO reconstruction algorithm equipped with several Riemann solvers, and (ii a central sixth-order reconstruction framework combined with various linear and nonlinear explicit low-pass spatial filtering processes. Our primary aim is to quantify the dissipative behavior, resolution characteristics, shock capturing ability and computational expenditure for each approach utilizing a systematic analysis with respect to its modeling parameters or parameterizations. The relative advantages and disadvantages of both approaches are addressed for solving a stratified Kelvin-Helmholtz instability shear layer problem as well as a canonical Riemann problem with the interaction of four shocks. The comparisons are both qualitative and quantitative, using visualizations of the spatial structure of the flow and energy spectra, respectively. We observe that the central scheme, with relaxation filtering, offers a competitive approach to ILES and is much more computationally efficient than WENO-based schemes.

  20. Spatially Explicit Modelling of the Belgian Major Endurance Event 'The 100 km Dodentocht'.

    Directory of Open Access Journals (Sweden)

    Steffie Van Nieuland

    Full Text Available 'The 100 km Dodentocht', which takes place annually and has its start in Bornem, Belgium, is a long distance march where participants have to cover a 100 km trail in at most 24 hours. The approximately 11 000 marchers per edition are tracked by making use of passive radio-frequency-identification (RFID. These tracking data were analyzed to build a spatially explicit marching model that gives insights into the dynamics of the event and allows to evaluate the effect of changes in the starting procedure of the event. For building the model, the empirical distribution functions (edf of the marching speeds at every section of the trail in between two consecutive checkpoints and of the checkpoints where marchers retire, are determined, taking into account age, gender, and marching speeds at previous sections. These distribution functions are then used to sample the consecutive speeds and retirement, and as such to simulate the times when individual marchers pass by the consecutive checkpoints. We concluded that the data-driven model simulates the event reliably. Furthermore, we tested three scenarios to reduce the crowdiness along the first part of the trail and in this way were able to conclude that either the start should be moved to a location outside the town center where the streets are at least 25% wider, or that the marchers should start in two groups at two different locations, and that these groups should ideally merge at about 20 km after the start. The crowdiness at the start might also be reduced by installing a bottleneck at the start in order to limit the number of marchers that can pass per unit of time. Consequently, the operating hours of the consecutive checkpoints would be longer. The developed framework can likewise be used to analyze and improve the operation of other endurance events if sufficient tracking data are available.

  1. Modeling the Bergeron-Findeisen Process Using PDF Methods With an Explicit Representation of Mixing

    Science.gov (United States)

    Jeffery, C.; Reisner, J.

    2005-12-01

    Currently, the accurate prediction of cloud droplet and ice crystal number concentration in cloud resolving, numerical weather prediction and climate models is a formidable challenge. The Bergeron-Findeisen process in which ice crystals grow by vapor deposition at the expense of super-cooled droplets is expected to be inhomogeneous in nature--some droplets will evaporate completely in centimeter-scale filaments of sub-saturated air during turbulent mixing while others remain unchanged [Baker et al., QJRMS, 1980]--and is unresolved at even cloud-resolving scales. Despite the large body of observational evidence in support of the inhomogeneous mixing process affecting cloud droplet number [most recently, Brenguier et al., JAS, 2000], it is poorly understood and has yet to be parameterized and incorporated into a numerical model. In this talk, we investigate the Bergeron-Findeisen process using a new approach based on simulations of the probability density function (PDF) of relative humidity during turbulent mixing. PDF methods offer a key advantage over Eulerian (spatial) models of cloud mixing and evaporation: the low probability (cm-scale) filaments of entrained air are explicitly resolved (in probability space) during the mixing event even though their spatial shape, size and location remain unknown. Our PDF approach reveals the following features of the inhomogeneous mixing process during the isobaric turbulent mixing of two parcels containing super-cooled water and ice, respectively: (1) The scavenging of super-cooled droplets is inhomogeneous in nature; some droplets evaporate completely at early times while others remain unchanged. (2) The degree of total droplet evaporation during the initial mixing period depends linearly on the mixing fractions of the two parcels and logarithmically on Damköhler number (Da)---the ratio of turbulent to evaporative time-scales. (3) Our simulations predict that the PDF of Lagrangian (time-integrated) subsaturation (S) goes as

  2. A unitarized meson model including color Coulomb interaction

    International Nuclear Information System (INIS)

    Metzger, Kees.

    1990-01-01

    Ch. 1 gives a general introduction into the problem field of the thesis. It discusses in how far the internal structure of mesons is understood theoretically and which models exist. It discusses from a phenomenological point of view the problem of confinement indicates how quark models of mesons may provide insight in this phenomenon. In ch. 2 the formal theory of scattering in a system with confinement is given. It is shown how a coupled channel (CC) description and the work of other authors fit into this general framework. Explicit examples and arguments are given to support the CC treatment of such a system. In ch. 3 the full coupled-channel model as is employed in this thesis is presented. On the basis of arguments from the former chapters and the observed regularities in the experimental data, the choices underlying the model are supported. In this model confinement is described with a mass-dependent harmonic-oscillator potential and the presence of open (meson-meson) channels plays an essential role. In ch. 4 the unitarized model is applied to light scalar meson resonances. In this regime the contribution of the open channels is considerable. It is demonstrated that the model parameters as used for the description of the pseudo-scalar and vector mesons, unchanged can be used for the description of these mesons. Ch. 5 treats the color-Coulomb interaction. There the effect of the Coulomb interaction is studied in simple models without decay. The results of incorporating the color-Coulomb interaction into the full CC model are given in ch.6. Ch. 7 discusses the results of the previous chapters and the present status of the model. (author). 182 refs.; 16 figs.; 33 tabs

  3. Modeling Loop Reorganization Free Energies of Acetylcholinesterase: A Comparison of Explicit and Implicit Solvent Models

    National Research Council Canada - National Science Library

    Olson, Mark

    2004-01-01

    ... screening of charge-charge interactions. This paper compares different solvent models applied to the problem of estimating the free-energy difference between two loop conformations in acetylcholinesterase...

  4. Explicit Interaction

    DEFF Research Database (Denmark)

    Löwgren, Jonas; Eriksen, Mette Agger; Linde, Per

    2006-01-01

    We report an ongoing study of palpable computing to support surgical rehabilitation, in the general field of interaction design for ubiquitous computing. Through explorative design, fieldwork and participatory design techniques, we explore the design principle of explicit interaction as an interp...

  5. A new approach to spatially explicit modelling of forest dynamics: spacing, ageing and neighbourhood competition of mangrove trees

    NARCIS (Netherlands)

    Berger, U.; Hildenbrandt, H.

    2000-01-01

    This paper presents a new approach to spatially explicit modelling that enables the influence of neighbourhood effects on the dynamics of forests and plant communities to be analysed. We refer to this approach as 'field of neighbourhood' (FON). It combines the 'neighbourhood philosophy' of

  6. Development and Validation of Spatially Explicit Habitat Models for Cavity-nesting Birds in Fishlake National Forest, Utah

    Science.gov (United States)

    Randall A., Jr. Schultz; Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino

    2005-01-01

    The ability of USDA Forest Service Forest Inventory and Analysis (FIA) generated spatial products to increase the predictive accuracy of spatially explicit, macroscale habitat models was examined for nest-site selection by cavity-nesting birds in Fishlake National Forest, Utah. One FIA-derived variable (percent basal area of aspen trees) was significant in the habitat...

  7. Hydroclimatology of Dual Peak Cholera Incidence in Bengal Region: Inferences from a Spatial Explicit Model

    Science.gov (United States)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2010-12-01

    The seasonality of cholera and its relation with environmental drivers are receiving increasing interest and research efforts, yet they remain unsatisfactorily understood. A striking example is the observed annual cycle of cholera incidence in the Bengal region which exhibits two peaks despite the main environmental drivers that have been linked to the disease (air and sea surface temperature, zooplankton density, river discharge) follow a synchronous single-peak annual pattern. A first outbreak, mainly affecting the coastal regions, occurs in spring and it is followed, after a period of low incidence during summer, by a second, usually larger, peak in autumn also involving regions situated farther inland. A hydroclimatological explanation for this unique seasonal cycle has been recently proposed: the low river spring flows favor the intrusion of brackish water (the natural environment of the causative agent of the disease) which, in turn, triggers the first outbreak. The summer rising river discharges have a temporary dilution effect and prompt the repulsion of contaminated water which lowers the disease incidence. However, the monsoon flooding, together with the induced crowding of the population and the failure of the sanitation systems, can possibly facilitate the spatial transmission of the disease and promote the autumn outbreak. We test this hypothesis using a mechanistic, spatially explicit model of cholera epidemic. The framework directly accounts for the role of the river network in transporting and redistributing cholera bacteria among human communities as well as for the annual fluctuation of the river flow. The model is forced with the actual environmental drivers of the region, namely river flow and temperature. Our results show that these two drivers, both having a single peak in the summer, can generate a double peak cholera incidence pattern. Besides temporal patterns, the model is also able to qualitatively reproduce spatial patterns characterized

  8. Explicit calculation of indirect global warming potentials for halons using atmospheric models

    Directory of Open Access Journals (Sweden)

    D. J. Wuebbles

    2009-11-01

    Full Text Available The concept of Global Warming Potentials (GWPs has been extensively used in policy consideration as a relative index for comparing the climate impact of an emitted greenhouse gas (GHG, relative to carbon dioxide with equal mass emissions. Ozone depletion due to emission of chlorinated or brominated halocarbons leads to cooling of the climate system in the opposite direction to the direct warming contribution by halocarbons as GHGs. This cooling is a key indirect effect of the halocarbons on climatic radiative forcing, which is accounted for by indirect GWPs. With respect to climate, it is critical to understand net influences considering direct warming and indirect cooling effects especially for Halons due to the greater ozone-depleting efficiency of bromine over chlorine. Until now, the indirect GWPs have been calculated using a parameterized approach based on the concept of Equivalent Effective Stratospheric Chlorine (EESC and the observed ozone depletion over the last few decades. As a step towards obtaining indirect GWPs through a more robust approach, we use atmospheric models to explicitly calculate the indirect GWPs of Halon-1211 and Halon-1301 for a 100-year time horizon. State-of-the-art global chemistry-transport models (CTMs were used as the computational tools to derive more realistic ozone depletion changes caused by an added pulse emission of the two major Halons at the surface. The radiative forcings on climate from the ozone changes have been calculated for indirect GWPs using an atmospheric radiative transfer model (RTM. The simulated temporal variations of global average total column Halons after a pulse perturbation follow an exponential decay with an e-folding time which is consistent with the expected chemical lifetimes of the Halons. Our calculated indirect GWPs for the two Halons are much smaller than those from past studies but are within a single standard deviation of WMO (2007 values and the direct GWP values derived

  9. Explicit modeling the progressive interface damage in fibrous composite: Analytical vs. numerical approach

    DEFF Research Database (Denmark)

    Kushch, V.I.; Shmegera, S.V.; Mishnaevsky, Leon

    2011-01-01

    of the multiple inclusion problem by means of complex potentials. The second, finite element model of FRC is based on the cohesive zone model of interface. Simulation of progressive debonding in FRC using the many-fiber models of composite has been performed. The advantageous features and applicability areas...... of both models are discussed. It has been shown that the developed models provide detailed analysis of the progressive debonding phenomena including the interface crack cluster formation, overall stiffness reduction and induced anisotropy of the effective elastic moduli of composite....

  10. Explicit all-atom modeling of realistically sized ligand-capped nanocrystals

    KAUST Repository

    Kaushik, Ananth P.; Clancy, Paulette

    2012-01-01

    We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), capped with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well

  11. Explicit time integration of finite element models on a vectorized, concurrent computer with shared memory

    Science.gov (United States)

    Gilbertsen, Noreen D.; Belytschko, Ted

    1990-01-01

    The implementation of a nonlinear explicit program on a vectorized, concurrent computer with shared memory is described and studied. The conflict between vectorization and concurrency is described and some guidelines are given for optimal block sizes. Several example problems are summarized to illustrate the types of speed-ups which can be achieved by reprogramming as compared to compiler optimization.

  12. A Conceptual Model for the Design and Delivery of Explicit Thinking Skills Instruction

    Science.gov (United States)

    Kassem, Cherrie L.

    2005-01-01

    Developing student thinking skills is an important goal for most educators. However, due to time constraints and weighty content standards, thinking skills instruction is often embedded in subject matter, implicit and incidental. For best results, thinking skills instruction requires a systematic design and explicit teaching strategies. The…

  13. Extending PSA models including ageing and asset management - 15291

    International Nuclear Information System (INIS)

    Martorell, S.; Marton, I.; Carlos, S.; Sanchez, A.I.

    2015-01-01

    This paper proposes a new approach to Ageing Probabilistic Safety Assessment (APSA) modelling, which is intended to be used to support risk-informed decisions on the effectiveness of maintenance management programs and technical specification requirements of critical equipment of Nuclear Power Plants (NPP) within the framework of the Risk Informed Decision Making according to R.G. 1.174 principles. This approach focuses on the incorporation of not only equipment ageing but also effectiveness of maintenance and efficiency of surveillance testing explicitly into APSA models and data. This methodology is applied to a motor-operated valve of the auxiliary feed water system (AFWS) of a PWR. This simple example of application focuses on a critical safety-related equipment of a NPP in order to evaluate the risk impact of considering different approaches to APSA and the combined effect of equipment ageing and maintenance and testing alternatives along NPP design life. The risk impact of several alternatives in maintenance strategy is discussed

  14. Reducing fertilizer-nitrogen losses from rowcrop landscapes: Insights and implications from a spatially explicit watershed model

    Science.gov (United States)

    McLellan, Eileen; Schilling, Keith; Robertson, Dale M.

    2015-01-01

    We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.

  15. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  16. An open and extensible framework for spatially explicit land use change modelling: the lulcc R package

    Science.gov (United States)

    Moulds, S.; Buytaert, W.; Mijic, A.

    2015-10-01

    We present the lulcc software package, an object-oriented framework for land use change modelling written in the R programming language. The contribution of the work is to resolve the following limitations associated with the current land use change modelling paradigm: (1) the source code for model implementations is frequently unavailable, severely compromising the reproducibility of scientific results and making it impossible for members of the community to improve or adapt models for their own purposes; (2) ensemble experiments to capture model structural uncertainty are difficult because of fundamental differences between implementations of alternative models; and (3) additional software is required because existing applications frequently perform only the spatial allocation of change. The package includes a stochastic ordered allocation procedure as well as an implementation of the CLUE-S algorithm. We demonstrate its functionality by simulating land use change at the Plum Island Ecosystems site, using a data set included with the package. It is envisaged that lulcc will enable future model development and comparison within an open environment.

  17. Improvement, Verification, and Refinement of Spatially-Explicit Exposure Models in Risk Assessment - FishRand Spatially-Explicit Bioaccumulation Model Demonstration

    Science.gov (United States)

    2015-08-01

    Unaccounted dynamic habitats and resultant changes in wildlife usage;  Simplified foraging strategies (lacking important considerations such as...and water exposures, fish foraging strategies, and PCB uptake. Figure 2 additionally shows the comparison of standard deviations across the...area (1, 2, and 5) at the Tyndall AFB site. ....................................... 22  Figure 5. Comparison of model predictions to site data for

  18. Unsteady panel method for complex configurations including wake modeling

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2008-01-01

    Full Text Available implementations of the DLM are however not very versatile in terms of geometries that can be modeled. The ZONA6 code offers a versatile surface panel body model including a separated wake model, but uses a pressure panel method for lifting surfaces. This paper...

  19. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Directory of Open Access Journals (Sweden)

    Rachel R. Sleeter

    2015-06-01

    Full Text Available Spatially-explicit state-and-transition simulation models of land use and land cover (LULC increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS, a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age, spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest. Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  20. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Science.gov (United States)

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  1. Including investment risk in large-scale power market models

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Meibom, P.

    2003-01-01

    Long-term energy market models can be used to examine investments in production technologies, however, with market liberalisation it is crucial that such models include investment risks and investor behaviour. This paper analyses how the effect of investment risk on production technology selection...... can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate...... the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice...

  2. MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS

    International Nuclear Information System (INIS)

    BURRELL, K.H.

    2003-01-01

    OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal

  3. Explicit solution of the quantum three-body Calogero-Sutherland model

    CERN Document Server

    Perelomov, A.M.; Zaugg, P.

    1998-01-01

    Quantum integrable systems generalizing Calogero-Sutherland systems were introduced by Olshanetsky and Perelomov (1977). Recently, it was proved that for systems with trigonometric potential, the series in the product of two wave functions is a deformation of the Clebsch-Gordan series. This yields recursion relations for the wave functions of those systems. In this note, this approach is used to compute the explicit expressions for the three-body Calogero-Sutherland wave functions, which are the Jack polynomials. We conjecture that similar results are also valid for the more general two-parameters deformation introduced by Macdonald.

  4. Explicit and implicit springback simulation in sheet metal forming using fully coupled ductile damage and distortional hardening model

    Science.gov (United States)

    Yetna n'jock, M.; Houssem, B.; Labergere, C.; Saanouni, K.; Zhenming, Y.

    2018-05-01

    The springback is an important phenomenon which accompanies the forming of metallic sheets especially for high strength materials. A quantitative prediction of springback becomes very important for newly developed material with high mechanical characteristics. In this work, a numerical methodology is developed to quantify this undesirable phenomenon. This methodoly is based on the use of both explicit and implicit finite element solvers of Abaqus®. The most important ingredient of this methodology consists on the use of highly predictive mechanical model. A thermodynamically-consistent, non-associative and fully anisotropic elastoplastic constitutive model strongly coupled with isotropic ductile damage and accounting for distortional hardening is then used. An algorithm for local integration of the complete set of the constitutive equations is developed. This algorithm considers the rotated frame formulation (RFF) to ensure the incremental objectivity of the model in the framework of finite strains. This algorithm is implemented in both explicit (Abaqus/Explicit®) and implicit (Abaqus/Standard®) solvers of Abaqus® through the users routine VUMAT and UMAT respectively. The implicit solver of Abaqus® has been used to study spingback as it is generally a quasi-static unloading. In order to compare the methods `efficiency, the explicit method (Dynamic Relaxation Method) proposed by Rayleigh has been also used for springback prediction. The results obtained within U draw/bending benchmark are studied, discussed and compared with experimental results as reference. Finally, the purpose of this work is to evaluate the reliability of different methods predict efficiently springback in sheet metal forming.

  5. The explicit treatment of model uncertainties in the presence of aleatory and epistemic parameter uncertainties in risk and reliability analysis

    International Nuclear Information System (INIS)

    Ahn, Kwang Il; Yang, Joon Eon

    2003-01-01

    In the risk and reliability analysis of complex technological systems, the primary concern of formal uncertainty analysis is to understand why uncertainties arise, and to evaluate how they impact the results of the analysis. In recent times, many of the uncertainty analyses have focused on parameters of the risk and reliability analysis models, whose values are uncertain in an aleatory or an epistemic way. As the field of parametric uncertainty analysis matures, however, more attention is being paid to the explicit treatment of uncertainties that are addressed in the predictive model itself as well as the accuracy of the predictive model. The essential steps for evaluating impacts of these model uncertainties in the presence of parameter uncertainties are to determine rigorously various sources of uncertainties to be addressed in an underlying model itself and in turn model parameters, based on our state-of-knowledge and relevant evidence. Answering clearly the question of how to characterize and treat explicitly the forgoing different sources of uncertainty is particularly important for practical aspects such as risk and reliability optimization of systems as well as more transparent risk information and decision-making under various uncertainties. The main purpose of this paper is to provide practical guidance for quantitatively treating various model uncertainties that would often be encountered in the risk and reliability modeling process of complex technological systems

  6. Progressive IRP Models for Power Resources Including EPP

    Directory of Open Access Journals (Sweden)

    Yiping Zhu

    2017-01-01

    Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.

  7. Stable explicit coupling of the Yee scheme with a linear current model in fluctuating magnetized plasmas

    International Nuclear Information System (INIS)

    Silva, Filipe da; Pinto, Martin Campos; Després, Bruno; Heuraux, Stéphane

    2015-01-01

    This work analyzes the stability of the Yee scheme for non-stationary Maxwell's equations coupled with a linear current model with density fluctuations. We show that the usual procedure may yield unstable scheme for physical situations that correspond to strongly magnetized plasmas in X-mode (TE) polarization. We propose to use first order clustered discretization of the vectorial product that gives back a stable coupling. We validate the schemes on some test cases representative of direct numerical simulations of X-mode in a magnetic fusion plasma including turbulence

  8. Probing the role of interfacial waters in protein-DNA recognition using a hybrid implicit/explicit solvation model

    Science.gov (United States)

    Li, Shen; Bradley, Philip

    2013-01-01

    When proteins bind to their DNA target sites, ordered water molecules are often present at the protein-DNA interface bridging protein and DNA through hydrogen bonds. What is the role of these ordered interfacial waters? Are they important determinants of the specificity of DNA sequence recognition, or do they act in binding in a primarily non-specific manner, by improving packing of the interface, shielding unfavorable electrostatic interactions, and solvating unsatisfied polar groups that are inaccessible to bulk solvent? When modeling details of structure and binding preferences, can fully implicit solvent models be fruitfully applied to protein-DNA interfaces, or must the individualistic properties of these interfacial waters be accounted for? To address these questions, we have developed a hybrid implicit/explicit solvation model that specifically accounts for the locations and orientations of small numbers of DNA-bound water molecules while treating the majority of the solvent implicitly. Comparing the performance of this model to its fully implicit counterpart, we find that explicit treatment of interfacial waters results in a modest but significant improvement in protein sidechain placement and DNA sequence recovery. Base-by-base comparison of the performance of the two models highlights DNA sequence positions whose recognition may be dependent on interfacial water. Our study offers large-scale statistical evidence for the role of ordered water for protein DNA recognition, together with detailed examination of several well-characterized systems. In addition, our approach provides a template for modeling explicit water molecules at interfaces that should be extensible to other systems. PMID:23444044

  9. Modeling spatially- and temporally-explicit water stress indices for use in life cycle assessment

    Science.gov (United States)

    Scherer, L.; Venkatesh, A.; Karuppiah, R.; Usadi, A.; Pfister, S.; Hellweg, S.

    2013-12-01

    Water scarcity is a regional issue in many areas across the world, and can affect human health and ecosystems locally. Water stress indices (WSIs) have been developed as quantitative indicators of such scarcities - examples include the Falkenmark indicator, Social Water Stress Index, and the Water Supply Stress Index1. Application of these indices helps us understand water supply and demand risks for multiple users, including those in the agricultural, industrial, residential and commercial sectors. Pfister et al.2 developed a method to calculate WSIs that were used to estimate characterization factors (CFs) in order to quantify environmental impacts of freshwater consumption within a life cycle assessment (LCA) framework. Global WSIs were based on data from the WaterGAP model3, and presented as annual averages for watersheds. Since water supply and demand varies regionally and temporally, the resolution used in Pfister et al. does not effectively differentiate between seasonal and permanent water scarcity. This study aims to improve the temporal and spatial resolution of the water scarcity calculations used to estimate WSIs and CFs. We used the Soil and Water Assessment Tool (SWAT)4 hydrological model to properly simulate water supply in different world regions with high spatial and temporal resolution, and coupled it with water use data from WaterGAP3 and Pfister et al.5. Input data to SWAT included weather, land use, soil characteristics and a digital elevation model (DEM), all from publicly available global data sets. Potential evapotranspiration, which affects water supply, was determined using an improved Priestley-Taylor approach. In contrast to most other hydrological studies, large reservoirs, water consumption and major water transfers were simulated. The model was calibrated against observed monthly discharge, actual evapotranspiration, and snow water equivalents wherever appropriate. Based on these simulations, monthly WSIs were calculated for a few

  10. Spatially explicit modeling of blackbird abundance in the Prairie Pothole Region

    Science.gov (United States)

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.; Crimmins, Shawn M.

    2015-01-01

    Knowledge of factors influencing animal abundance is important to wildlife biologists developing management plans. This is especially true for economically important species such as blackbirds (Icteridae), which cause more than $100 million in crop damages annually in the United States. Using data from the North American Breeding Bird Survey, the National Land Cover Dataset, and the National Climatic Data Center, we modeled effects of regional environmental variables on relative abundance of 3 blackbird species (red-winged blackbird,Agelaius phoeniceus; yellow-headed blackbird, Xanthocephalus xanthocephalus; common grackle, Quiscalus quiscula) in the Prairie Pothole Region of the central United States. We evaluated landscape covariates at 3 logarithmically related spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and modeled weather variables at the 100,000-ha scale. We constructed models a priori using information from published habitat associations. We fit models with WinBUGS using Markov chain Monte Carlo techniques. Both landscape and weather variables contributed strongly to predicting blackbird relative abundance (95% credibility interval did not overlap 0). Variables with the strongest associations with blackbird relative abundance were the percentage of wetland area and precipitation amount from the year before bird surveys were conducted. The influence of spatial scale appeared small—models with the same variables expressed at different scales were often in the best model subset. This large-scale study elucidated regional effects of weather and landscape variables, suggesting that management strategies aimed at reducing damages caused by these species should consider the broader landscape, including weather effects, because such factors may outweigh the influence of localized conditions or site-specific management actions. The regional species distributional models we developed for blackbirds provide a tool for understanding these broader

  11. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  12. Modelling a linear PM motor including magnetic saturation

    NARCIS (Netherlands)

    Polinder, H.; Slootweg, J.G.; Compter, J.C.; Hoeijmakers, M.J.

    2002-01-01

    The use of linear permanent-magnet (PM) actuators increases in a wide variety of applications because of the high force density, robustness and accuracy. The paper describes the modelling of a linear PM motor applied in, for example, wafer steppers, including magnetic saturation. This is important

  13. Simple suggestions for including vertical physics in oil spill models

    International Nuclear Information System (INIS)

    D'Asaro, Eric; University of Washington, Seatle, WA

    2001-01-01

    Current models of oil spills include no vertical physics. They neglect the effect of vertical water motions on the transport and concentration of floating oil. Some simple ways to introduce vertical physics are suggested here. The major suggestion is to routinely measure the density stratification of the upper ocean during oil spills in order to develop a database on the effect of stratification. (Author)

  14. Formulation of an explicit-multiple-time-step time integration method for use in a global primitive equation grid model

    Science.gov (United States)

    Chao, W. C.

    1982-01-01

    With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.

  15. Aggregated Demand Modelling Including Distributed Generation, Storage and Demand Response

    OpenAIRE

    Marzooghi, Hesamoddin; Hill, David J.; Verbic, Gregor

    2014-01-01

    It is anticipated that penetration of renewable energy sources (RESs) in power systems will increase further in the next decades mainly due to environmental issues. In the long term of several decades, which we refer to in terms of the future grid (FG), balancing between supply and demand will become dependent on demand actions including demand response (DR) and energy storage. So far, FG feasibility studies have not considered these new demand-side developments for modelling future demand. I...

  16. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...... for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and potential...... are determined by the surface reactions, and therefore they depends on the bulk solution composition and concentration...

  17. An Explicit Structural Model of Root Hair and Soil Interactions Parameterised by Synchrotron X-ray Computed Tomography.

    Science.gov (United States)

    Keyes, Samuel David; Zygalakis, Konstantinos C; Roose, Tiina

    2017-12-01

    The rhizosphere is a zone of fundamental importance for understanding the dynamics of nutrient acquisition by plant roots. The canonical difficulty of experimentally investigating the rhizosphere led long ago to the adoption of mathematical models, the most sophisticated of which now incorporate explicit representations of root hairs and rhizosphere soil. Mathematical upscaling regimes, such as homogenisation, offer the possibility of incorporating into larger-scale models the important mechanistic processes occurring at the rhizosphere scale. However, we lack concrete descriptions of all the features required to fully parameterise models at the rhizosphere scale. By combining synchrotron X-ray computed tomography (SRXCT) and a novel root growth assay, we derive a three-dimensional description of rhizosphere soil structure suitable for use in multi-scale modelling frameworks. We describe an approach to mitigate sub-optimal root hair detection via structural root hair growth modelling. The growth model is explicitly parameterised with SRXCT data and simulates three-dimensional root hair ideotypes in silico, which are suitable for both ideotypic analysis and parameterisation of 3D geometry in mathematical models. The study considers different hypothetical conditions governing root hair interactions with soil matrices, with their respective effects on hair morphology being compared between idealised and image-derived soil/root geometries. The studies in idealised geometries suggest that packing arrangement of soil affects hair tortuosity more than the particle diameter. Results in field-derived soil suggest that hair access to poorly mobile nutrients is particularly sensitive to the physical interaction between the growing hairs and the phase of the soil in which soil water is present (i.e. the hydrated textural phase). The general trends in fluid-coincident hair length with distance from the root, and their dependence on hair/soil interaction mechanisms, are

  18. Diagnosis of dynamic systems based on explicit and implicit behavioural models: an application to gas turbines in Esprit Project Tiger

    Energy Technology Data Exchange (ETDEWEB)

    Trave-Massuyes, L. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Milne, R.

    1995-12-31

    We are interested in the monitoring and diagnosis of dynamic systems. In our work, we are combining explicit temporal models of the behaviour of a dynamic system with implicit behavioural models supporting model based approaches. This work is drive by the needs of and applied to, two gas turbines of very different size and power. In this paper we describe the problems of building systems for these domains and illustrate how we have developed a system where these two approaches complement each other to provide a comprehensive fault detection and diagnosis system. We also explore the strengths and weaknesses of each approach. The work described here is currently working continuously, on line to a gas turbine in a major chemical plant. (author) 24 refs.

  19. The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF

    Directory of Open Access Journals (Sweden)

    P. J. H. Volker

    2015-11-01

    Full Text Available We describe the theoretical basis, implementation, and validation of a new parametrisation that accounts for the effect of large offshore wind farms on the atmosphere and can be used in mesoscale and large-scale atmospheric models. This new parametrisation, referred to as the Explicit Wake Parametrisation (EWP, uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated for a neutral atmospheric boundary layer against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish offshore wind farm Horns Rev I. The simulated velocity deficit in the wake of the wind farm compares well to that observed in the measurements, and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real observations.

  20. Diagnosis of dynamic systems based on explicit and implicit behavioural models: an application to gas turbines in Esprit Project Tiger

    Energy Technology Data Exchange (ETDEWEB)

    Trave-Massuyes, L [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Milne, R

    1996-12-31

    We are interested in the monitoring and diagnosis of dynamic systems. In our work, we are combining explicit temporal models of the behaviour of a dynamic system with implicit behavioural models supporting model based approaches. This work is drive by the needs of and applied to, two gas turbines of very different size and power. In this paper we describe the problems of building systems for these domains and illustrate how we have developed a system where these two approaches complement each other to provide a comprehensive fault detection and diagnosis system. We also explore the strengths and weaknesses of each approach. The work described here is currently working continuously, on line to a gas turbine in a major chemical plant. (author) 24 refs.

  1. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.; Faí sca, N.P.; Panos, C.; Pistikopoulos, E.N.

    2011-01-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques

  2. Exclusive queueing model including the choice of service windows

    Science.gov (United States)

    Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2018-01-01

    In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.

  3. A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jia Kan; Sun Weifeng; Shi Longxing, E-mail: jiakan.01@gmail.com [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)

    2011-06-15

    A sub-circuit SPICE model of a MOSFET for low temperature operation is presented. Two resistors are introduced for the freeze-out effect, and the explicit behavioral models are developed for them. The model can be used in a wide temperature range covering both cryogenic temperature and regular temperatures. (semiconductor devices)

  4. Aggregate and Individual Replication Probability within an Explicit Model of the Research Process

    Science.gov (United States)

    Miller, Jeff; Schwarz, Wolf

    2011-01-01

    We study a model of the research process in which the true effect size, the replication jitter due to changes in experimental procedure, and the statistical error of effect size measurement are all normally distributed random variables. Within this model, we analyze the probability of successfully replicating an initial experimental result by…

  5. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    Science.gov (United States)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  6. BETR global - A geographically-explicit global-scale multimedia contaminant fate model

    International Nuclear Information System (INIS)

    MacLeod, Matthew; Waldow, Harald von; Tay, Pascal; Armitage, James M.; Woehrnschimmel, Henry; Riley, William J.; McKone, Thomas E.; Hungerbuhler, Konrad

    2011-01-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15 o x 15 o grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5). - Two new software implementations of the Berkeley-Trent Global Contaminant Fate Model are available. The new model software is illustrated using a case study of the global fate of decamethylcyclopentasiloxane (D5).

  7. Spatially explicit modeling of particulate nutrient flux in Large global rivers

    Science.gov (United States)

    Cohen, S.; Kettner, A.; Mayorga, E.; Harrison, J. A.

    2017-12-01

    Water, sediment, nutrient and carbon fluxes along river networks have undergone considerable alterations in response to anthropogenic and climatic changes, with significant consequences to infrastructure, agriculture, water security, ecology and geomorphology worldwide. However, in a global setting, these changes in fluvial fluxes and their spatial and temporal characteristics are poorly constrained, due to the limited availability of continuous and long-term observations. We present results from a new global-scale particulate modeling framework (WBMsedNEWS) that combines the Global NEWS watershed nutrient export model with the spatially distributed WBMsed water and sediment model. We compare the model predictions against multiple observational datasets. The results indicate that the model is able to accurately predict particulate nutrient (Nitrogen, Phosphorus and Organic Carbon) fluxes on an annual time scale. Analysis of intra-basin nutrient dynamics and fluxes to global oceans is presented.

  8. BETR Global - A geographically explicit global-scale multimedia contaminant fate model

    Energy Technology Data Exchange (ETDEWEB)

    Macleod, M.; Waldow, H. von; Tay, P.; Armitage, J. M.; Wohrnschimmel, H.; Riley, W.; McKone, T. E.; Hungerbuhler, K.

    2011-04-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15{sup o} x 15{sup o} grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5).

  9. Deterministic Compilation of Temporal Safety Properties in Explicit State Model Checking

    Data.gov (United States)

    National Aeronautics and Space Administration — The translation of temporal logic specifications constitutes an essen- tial step in model checking and a major influence on the efficiency of formal verification via...

  10. Using Satellite Remote Sensing Data in a Spatially Explicit Price Model

    Science.gov (United States)

    Brown, Molly E.; Pinzon, Jorge E.; Prince, Stephen D.

    2007-01-01

    Famine early warning organizations use data from multiple disciplines to assess food insecurity of communities and regions in less-developed parts of the World. In this paper we integrate several indicators that are available to enhance the information for preparation for and responses to food security emergencies. The assessment uses a price model based on the relationship between the suitability of the growing season and market prices for coarse grain. The model is then used to create spatially continuous maps of millet prices. The model is applied to the dry central and northern areas of West Africa, using satellite-derived vegetation indices for the entire region. By coupling the model with vegetation data estimated for one to four months into the future, maps are created of a leading indicator of potential price movements. It is anticipated that these maps can be used to enable early warning of famine and for planning appropriate responses.

  11. Communication: Role of explicit water models in the helix folding/unfolding processes

    Science.gov (United States)

    Palazzesi, Ferruccio; Salvalaglio, Matteo; Barducci, Alessandro; Parrinello, Michele

    2016-09-01

    In the last years, it has become evident that computer simulations can assume a relevant role in modelling protein dynamical motions for their ability to provide a full atomistic image of the processes under investigation. The ability of the current protein force-fields in reproducing the correct thermodynamics and kinetics systems behaviour is thus an essential ingredient to improve our understanding of many relevant biological functionalities. In this work, employing the last developments of the metadynamics framework, we compare the ability of state-of-the-art all-atom empirical functions and water models to consistently reproduce the folding and unfolding of a helix turn motif in a model peptide. This theoretical study puts in evidence that the choice of the water models can influence the thermodynamic and the kinetics of the system under investigation, and for this reason cannot be considered trivial.

  12. Kinetic models of gene expression including non-coding RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Vladimir P., E-mail: zhdanov@catalysis.r

    2011-03-15

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  13. A spatially explicit model of functional connectivity for the endangered Przewalski's gazelle (Procapra przewalskii in a patchy landscape.

    Directory of Open Access Journals (Sweden)

    Chunlin Li

    Full Text Available Habitat fragmentation, associated with human population expansion, impedes dispersal, reduces gene flow and aggravates inbreeding in species on the brink of extinction. Both scientific and conservation communities increasingly realize that maintaining and restoring landscape connectivity is of vital importance in biodiversity conservation. Prior to any conservation initiatives, it is helpful to present conservation practitioners with a spatially explicit model of functional connectivity for the target species or landscape.Using Przewalski's gazelle (Procapra przewalskii as a model of endangered ungulate species in highly fragmented landscape, we present a model providing spatially explicit information to inform the long-term preservation of well-connected metapopulations. We employed a Geographic Information System (GIS and expert-literature method to create a habitat suitability map, to identify potential habitats and to delineate a functional connectivity network (least-cost movement corridors and paths for the gazelle. Results indicated that there were limited suitable habitats for the gazelle, mainly found to the north and northwest of the Qinghai Lake where four of five potential habitat patches were identified. Fifteen pairs of least-cost corridors and paths were mapped connecting eleven extant populations and two neighboring potential patches. The least-cost paths ranged from 0.2 km to 26.8 km in length (averaging 12.4 km and were all longer than corresponding Euclidean distances.The model outputs were validated and supported by the latest findings in landscape genetics of the species, and may provide impetus for connectivity conservation programs. Dispersal barriers were examined and appropriate mitigation strategies were suggested. This study provides conservation practitioners with thorough and visualized information to reserve the landscape connectivity for Przewalski's gazelle. In a general sense, we proposed a heuristic framework

  14. An open and extensible framework for spatially explicit land use change modelling in R: the lulccR package (0.1.0)

    Science.gov (United States)

    Moulds, S.; Buytaert, W.; Mijic, A.

    2015-04-01

    Land use change has important consequences for biodiversity and the sustainability of ecosystem services, as well as for global environmental change. Spatially explicit land use change models improve our understanding of the processes driving change and make predictions about the quantity and location of future and past change. Here we present the lulccR package, an object-oriented framework for land use change modelling written in the R programming language. The contribution of the work is to resolve the following limitations associated with the current land use change modelling paradigm: (1) the source code for model implementations is frequently unavailable, severely compromising the reproducibility of scientific results and making it impossible for members of the community to improve or adapt models for their own purposes; (2) ensemble experiments to capture model structural uncertainty are difficult because of fundamental differences between implementations of different models; (3) different aspects of the modelling procedure must be performed in different environments because existing applications usually only perform the spatial allocation of change. The package includes a stochastic ordered allocation procedure as well as an implementation of the widely used CLUE-S algorithm. We demonstrate its functionality by simulating land use change at the Plum Island Ecosystems site, using a dataset included with the package. It is envisaged that lulccR will enable future model development and comparison within an open environment.

  15. Progress Towards an LES Wall Model Including Unresolved Roughness

    Science.gov (United States)

    Craft, Kyle; Redman, Andrew; Aikens, Kurt

    2015-11-01

    Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  16. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    Science.gov (United States)

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  17. Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems

    KAUST Repository

    Khajuria, Harish; Pistikopoulos, Efstratios N.

    2011-01-01

    objective is to fast track H2 purity to a set point value of 99.99%. To perform this task, a rigorous and systematic framework is employed. First, a high fidelity detailed dynamic model is built to represent the system's real operation, and understand its

  18. Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties.

    Science.gov (United States)

    Nugroho, Dwiyoga; Koch-Larrouy, Ariane; Gaspar, Philippe; Lyard, Florent; Reffray, Guillaume; Tranchant, Benoit

    2017-06-16

    Very intense internal tides take place in Indonesian seas. They dissipate and affect the vertical distribution of temperature and currents, which in turn influence the survival rates and transports of most planktonic organisms at the base of the whole marine ecosystem. This study uses the INDESO physical model to characterize the internal tides spatio-temporal patterns in the Indonesian Seas. The model reproduced internal tide dissipation in agreement with previous fine structure and microstructure observed in-situ in the sites of generation. The model also produced similar water mass transformation as the previous parameterization of Koch-Larrouy et al. (2007), and show good agreement with observations. The resulting cooling at the surface is 0.3°C, with maxima of 0.8°C at the location of internal tides energy, with stronger cooling in austral winter. The cycle of spring tides and neap tides modulates this impact by 0.1°C to 0.3°C. These results suggest that mixing due to internal tides might also upwell nutrients at the surface at a frequency similar to the tidal frequencies. Implications for biogeochemical modelling are important. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Explicit Foreground and Background Modeling in The Classification of Text Blocks in Scene Images

    NARCIS (Netherlands)

    Sriman, Bowornrat; Schomaker, Lambertus

    2015-01-01

    Achieving high accuracy for classifying foreground and background is an interesting challenge in the field of scene image analysis because of the wide range of illumination, complex background, and scale changes. Classifying fore- ground and background using bag-of-feature model gives a good result.

  20. An explicit statistical model of learning lexical segmentation using multiple cues

    NARCIS (Netherlands)

    Çöltekin, Ça ̆grı; Nerbonne, John; Lenci, Alessandro; Padró, Muntsa; Poibeau, Thierry; Villavicencio, Aline

    2014-01-01

    This paper presents an unsupervised and incremental model of learning segmentation that combines multiple cues whose use by children and adults were attested by experimental studies. The cues we exploit in this study are predictability statistics, phonotactics, lexical stress and partial lexical

  1. Explicit model predictive control applications in power systems: an AGC study for an isolated industrial system

    DEFF Research Database (Denmark)

    Jiang, Hao; Lin, Jin; Song, Yonghua

    2016-01-01

    Model predictive control (MPC), that can consider system constraints, is one of the most advanced control technology used nowadays. In power systems, MPC is applied in a way that an optimal control sequence is given every step by an online MPC controller. The main drawback is that the control law...

  2. Spatially explicit Schistosoma infection risk in eastern Africa using Bayesian geostatistical modelling

    DEFF Research Database (Denmark)

    Schur, Nadine; Hürlimann, Eveline; Stensgaard, Anna-Sofie

    2013-01-01

    are currently infected with either S. mansoni, or S. haematobium, or both species concurrently. Country-specific population-adjusted prevalence estimates range between 12.9% (Uganda) and 34.5% (Mozambique) for S. mansoni and between 11.9% (Djibouti) and 40.9% (Mozambique) for S. haematobium. Our models revealed...

  3. Improvement, Verification, and Refinement of Spatially-Explicit Exposure Models in Risk Assessment - SEEM

    Science.gov (United States)

    2015-06-01

    is Beltsville silt loam. Land use in the watershed is mainly upland or wetland forests, with significant urban and agricultural development. The...covered with extensive woodlands and wetlands that provide habitat for many animals, including white tail deer, foxes, and wild turkeys. The area is

  4. Improvement, Verification, and Refinement of Spatially Explicit Exposure Models in Risk Assessment - SEEM Demonstration

    Science.gov (United States)

    2015-06-01

    is Beltsville silt loam. Land use in the watershed is mainly upland or wetland forests, with significant urban and agricultural development. The...covered with extensive woodlands and wetlands that provide habitat for many animals, including white tail deer, foxes, and wild turkeys. The area is

  5. A speech production model including the nasal Cavity

    DEFF Research Database (Denmark)

    Olesen, Morten

    In order to obtain articulatory analysis of speech production the model is improved. the standard model, as used in LPC analysis, to a large extent only models the acoustic properties of speech signal as opposed to articulatory modelling of the speech production. In spite of this the LPC model...... is by far the most widely used model in speech technology....

  6. The “Destabilizing” Effect of Cannibalism in a Spatially Explicit Three-Species Age Structured Predator-Prey Model

    Directory of Open Access Journals (Sweden)

    Aladeen Al Basheer

    2017-01-01

    Full Text Available Cannibalism, the act of killing and consumption of conspecifics, is generally considered to be a stabilising process in ODE models of predator-prey systems. On the other hand, Sun et al. were the first to show that cannibalism can cause Turing instability, in the classical Rosenzweig-McArthur two-species PDE model, which is an impossibility without cannibalism. Magnússon’s classic work is the first to show that cannibalism in a structured three-species predator-prey ODE model can actually be destabilising. In the current manuscript we consider the PDE form of the three-species model proposed in Magnússon’s classic work. We prove that, in the absence of cannibalism, Turing instability is an impossibility in this model, for any range of parameters. However, the inclusion of cannibalism can cause Turing instability. Thus, to the best of our knowledge, we report the first cannibalism induced Turing instability result, in spatially explicit three-species age structured predator-prey systems. We also show that, in the classical ODE model proposed by Magnússon, cannibalism can act as a life boat mechanism, for the prey.

  7. HABSEED: a Simple Spatially Explicit Meta-Populations Model Using Remote Sensing Derived Habitat Quality Data

    Science.gov (United States)

    Heumann, B. W.; Guichard, F.; Seaquist, J. W.

    2005-05-01

    The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.

  8. Simulated x-ray scattering of protein solutions using explicit-solvent models

    International Nuclear Information System (INIS)

    Park, Sanghyun; Bardhan, Jaydeep P.; Makowski, Lee; Roux, Benoit

    2009-01-01

    X-ray solution scattering shows new promise for the study of protein structures, complementing crystallography and nuclear magnetic resonance. In order to realize the full potential of solution scattering, it is necessary to not only improve experimental techniques but also develop accurate and efficient computational schemes to relate atomistic models to measurements. Previous computational methods, based on continuum models of water, have been unable to calculate scattering patterns accurately, especially in the wide-angle regime which contains most of the information on the secondary, tertiary, and quaternary structures. Here we present a novel formulation based on the atomistic description of water, in which scattering patterns are calculated from atomic coordinates of protein and water. Without any empirical adjustments, this method produces scattering patterns of unprecedented accuracy in the length scale between 5 and 100 A, as we demonstrate by comparing simulated and observed scattering patterns for myoglobin and lysozyme.

  9. An explicit canopy BRDF model and inversion. [Bidirectional Reflectance Distribution Function

    Science.gov (United States)

    Liang, Shunlin; Strahler, Alan H.

    1992-01-01

    Based on a rigorous canopy radiative transfer equation, the multiple scattering radiance is approximated by the asymptotic theory, and the single scattering radiance calculation, which requires an numerical intergration due to considering the hotspot effect, is simplified. A new formulation is presented to obtain more exact angular dependence of the sky radiance distribution. The unscattered solar radiance and single scattering radiance are calculated exactly, and the multiple scattering is approximated by the delta two-stream atmospheric radiative transfer model. The numerical algorithms prove that the parametric canopy model is very accurate, especially when the viewing angles are smaller than 55 deg. The Powell algorithm is used to retrieve biospheric parameters from the ground measured multiangle observations.

  10. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  11. Spatially explicit modeling of lesser prairie-chicken lek density in Texas

    Science.gov (United States)

    Timmer, Jennifer M.; Butler, M.J.; Ballard, Warren; Boal, Clint W.; Whitlaw, Heather A.

    2014-01-01

    As with many other grassland birds, lesser prairie-chickens (Tympanuchus pallidicinctus) have experienced population declines in the Southern Great Plains. Currently they are proposed for federal protection under the Endangered Species Act. In addition to a history of land-uses that have resulted in habitat loss, lesser prairie-chickens now face a new potential disturbance from energy development. We estimated lek density in the occupied lesser prairie-chicken range of Texas, USA, and modeled anthropogenic and vegetative landscape features associated with lek density. We used an aerial line-transect survey method to count lesser prairie-chicken leks in spring 2010 and 2011 and surveyed 208 randomly selected 51.84-km(2) blocks. We divided each survey block into 12.96-km(2) quadrats and summarized landscape variables within each quadrat. We then used hierarchical distance-sampling models to examine the relationship between lek density and anthropogenic and vegetative landscape features and predict how lek density may change in response to changes on the landscape, such as an increase in energy development. Our best models indicated lek density was related to percent grassland, region (i.e., the northeast or southwest region of the Texas Panhandle), total percentage of grassland and shrubland, paved road density, and active oil and gas well density. Predicted lek density peaked at 0.39leks/12.96km(2) (SE=0.09) and 2.05leks/12.96km(2) (SE=0.56) in the northeast and southwest region of the Texas Panhandle, respectively, which corresponds to approximately 88% and 44% grassland in the northeast and southwest region. Lek density increased with an increase in total percentage of grassland and shrubland and was greatest in areas with lower densities of paved roads and lower densities of active oil and gas wells. We used the 2 most competitive models to predict lek abundance and estimated 236 leks (CV=0.138, 95% CI=177-306leks) for our sampling area. Our results suggest that

  12. High Performance Programming Using Explicit Shared Memory Model on the Cray T3D

    Science.gov (United States)

    Saini, Subhash; Simon, Horst D.; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The Cray T3D is the first-phase system in Cray Research Inc.'s (CRI) three-phase massively parallel processing program. In this report we describe the architecture of the T3D, as well as the CRAFT (Cray Research Adaptive Fortran) programming model, and contrast it with PVM, which is also supported on the T3D We present some performance data based on the NAS Parallel Benchmarks to illustrate both architectural and software features of the T3D.

  13. Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models

    DEFF Research Database (Denmark)

    Hubalek, Friedrich; Posedel, Petra

    expressions for the asymptotic covariance matrix. We develop in detail the martingale estimating function approach for a bivariate model, that is not a diffusion, but admits jumps. We do not use ergodicity arguments. We assume that both, logarithmic returns and instantaneous variance are observed...... on a discrete grid of fixed width, and the observation horizon tends to infinity. This anaysis is a starting point and benchmark for further developments concerning optimal martingale estimating functions, and for theoretical and empirical investigations, that replace the (actually unobserved) variance process...

  14. Analyzing key constraints to biogas production from crop residues and manure in the EU—A spatially explicit model

    Science.gov (United States)

    Persson, U. Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates’ biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures’ carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent). PMID:28141827

  15. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    Science.gov (United States)

    Einarsson, Rasmus; Persson, U Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent).

  16. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    Directory of Open Access Journals (Sweden)

    Rasmus Einarsson

    Full Text Available This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops, or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent.

  17. Water transport through tall trees: A vertically-explicit, analytical model of xylem hydraulic conductance in stems.

    Science.gov (United States)

    Couvreur, Valentin; Ledder, Glenn; Manzoni, Stefano; Way, Danielle A; Muller, Erik B; Russo, Sabrina E

    2018-05-08

    Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially-explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from nonlinear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits. This article is protected by copyright. All rights reserved.

  18. Spatially-explicit LCIA model for marine eutrophication as a tool for sustainability assessment

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Hauschild, Michael Zwicky

    2014-01-01

    The increasing emissions from human activities are overrunning the ecosystems’ natural capacity to absorb them. Nutrient emissions, mostly nitrogen- and phosphorus-forms (N, P) from e.g. agricultural runoff and combustion processes, may lead to social-economic impacts and environmental quality......-enrichment to impacts on marine ecosystems. Emitted nitrogen reaches marine coastal waters where it promotes the growth of phytoplankton biomass in the surface photic zone from where it eventually sinks to bottom waters. This downward flux of organic matter is respired there by bacteria resulting in the consumption...... of dissolved oxygen. An excessive depletion of oxygen affects the exposed organisms and loss of species diversity may be expected. A model framework was built to estimate the potential impacts arising from N-emissions (see figure). It combines the fate of N in rivers and coastal waters, the exposure...

  19. Modelling of friction anisotropy of deepdrawing sheet in ABAQUS/EXPLICIT

    Directory of Open Access Journals (Sweden)

    F. Stachowicz

    2010-07-01

    Full Text Available This paper presents the experimental and numerical results of rectangular cup drawing of steel sheets. The aim of the experimental study was to analyze material behavior under deformation. The received results were further used to verify the results from numerical simulation by taking friction and material anisotropy into consideration. A 3D parametric finite element (FE model was built using the FE-package ABAQUS/Standard. ABAQUS allows analyzing physical models of real processes putting special emphasis on geometrical non-linearities caused by large deformations, material non-linearities and complex friction conditions. Frictional properties of the deep drawing quality steel sheet were determined by using the pin-on-disc tribometer. It shows that the friction coefficient value depends on the measured angle from the rolling direction and corresponds to the surface topography. A quadratic Hill anisotropic yield criterion was compared with Huber-Mises yield criterion having isotropic hardening. Plastic anisotropy is the result of the distortion of the yield surface shape due to the material microstructural state. The sensitivity of constitutive laws to the initial data characterizing material behavior isalso presented. It is found that plastic anisotropy of the matrix in ductile sheet metal has influence on deformation behavior of the material. If the material and friction anisotropy are taken into account in the finite element analysis, this approach undoubtedly gives the most approximate numerical results to real processes. This paper is the first part of the study of numerical investigation using ABAQUS and mainly deals with the most influencing parameters in a forming process to simulate the sheet metal forming of rectangular cup.

  20. The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results

    International Nuclear Information System (INIS)

    Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J

    2008-01-01

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization

  1. The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results

    Energy Technology Data Exchange (ETDEWEB)

    Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, PO Box 999, MSIN K9-30, Richland, WA (United States)], E-mail: William.Gustafson@pnl.gov

    2008-04-15

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization.

  2. Modeling the fate of nitrogen on the catchment scale using a spatially explicit hydro-biogeochemical simulation system

    Science.gov (United States)

    Klatt, S.; Butterbach-Bahl, K.; Kiese, R.; Haas, E.; Kraus, D.; Molina-Herrera, S. W.; Kraft, P.

    2015-12-01

    The continuous growth of the human population demands an equally growing supply for fresh water and food. As a result, available land for efficient agriculture is constantly diminishing which forces farmers to cultivate inferior croplands and intensify agricultural practices, e.g., increase the use of synthetic fertilizers. This intensification of marginal areas in particular will cause a dangerous rise in nitrate discharge into open waters or even drinking water resources. In order to reduce the amount of nitrate lost by surface runoff or lateral subsurface transport, bufferstrips have proved to be a valuable means. Current laws, however, promote rather static designs (i.e., width and usage) even though a multitude of factors, e.g., soil type, slope, vegetation and the nearby agricultural management, determines its effectiveness. We propose a spatially explicit modeling approach enabling to assess the effects of those factors on nitrate discharge from arable lands using the fully distributed hydrology model CMF coupled to the complex biogeochemical model LandscapeDNDC. Such a modeling scheme allows to observe the displacement of dissolved nutrients in both vertical and horizontal directions and serves to estimate both their uptake by the vegetated bufferstrip and loss to the environment. First results indicate a significant reduction of nitrate loss in the presence of a bufferstrip (2.5 m). We show effects induced by various buffer strip widths and plant cover on the nitrate retention.

  3. Evaluating the effect of corridors and landscape heterogeneity on dispersal probability: a comparison of three spatially explicit modelling approaches

    DEFF Research Database (Denmark)

    Jepsen, J. U.; Baveco, J. M.; Topping, C. J.

    2004-01-01

    preferences of the modeller, rather than by a critical evaluation of model performance. We present a comparison of three common spatial simulation approaches (patch-based incidence-function model (IFM), individual-based movement model (IBMM), individual-based population model including detailed behaviour...

  4. Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California: a decision-support tool for management

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Overton, Cory T.; Sanchez-Chopitea, Erika; Kroger, Travis; Mauch, Kimberly; Niell, Lara; Howe, Kristy; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus, hereafter referred to as “sage-grouse”) populations are declining throughout the sagebrush (Artemisia spp.) ecosystem, including millions of acres of potential habitat across the West. Habitat maps derived from empirical data are needed given impending listing decisions that will affect both sage-grouse population dynamics and human land-use restrictions. This report presents the process for developing spatially explicit maps describing relative habitat suitability for sage-grouse in Nevada and northeastern California. Maps depicting habitat suitability indices (HSI) values were generated based on model-averaged resource selection functions informed by more than 31,000 independent telemetry locations from more than 1,500 radio-marked sage-grouse across 12 project areas in Nevada and northeastern California collected during a 15-year period (1998–2013). Modeled habitat covariates included land cover composition, water resources, habitat configuration, elevation, and topography, each at multiple spatial scales that were relevant to empirically observed sage-grouse movement patterns. We then present an example of how the HSI can be delineated into categories. Specifically, we demonstrate that the deviation from the mean can be used to classify habitat suitability into three categories of habitat quality (high, moderate, and low) and one non-habitat category. The classification resulted in an agreement of 93–97 percent for habitat versus non-habitat across a suite of independent validation datasets. Lastly, we provide an example of how space use models can be integrated with habitat models to help inform conservation planning. In this example, we combined probabilistic breeding density with a non-linear probability of occurrence relative to distance to nearest lek (traditional breeding ground) using count data to calculate a composite space use index (SUI). The SUI was then classified into two categories of use

  5. Ab initio joint density-functional theory of solvated electrodes, with model and explicit solvation

    Science.gov (United States)

    Arias, Tomas

    2015-03-01

    First-principles guided design of improved electrochemical systems has the potential for great societal impact by making non-fossil-fuel systems economically viable. Potential applications include improvements in fuel-cells, solar-fuel systems (``artificial photosynthesis''), supercapacitors and batteries. Economical fuel-cell systems would enable zero-carbon footprint transportation, solar-fuel systems would directly convert sunlight and water into hydrogen fuel for such fuel-cell vehicles, supercapacitors would enable nearly full recovery of energy lost during vehicle braking thus extending electric vehicle range and acceptance, and economical high-capacity batteries would be central to mitigating the indeterminacy of renewable resources such as wind and solar. Central to the operation of all of the above electrochemical systems is the electrode-electrolyte interface, whose underlying physics is quite rich, yet remains remarkably poorly understood. The essential underlying technical challenge to the first principles studies which could explore this physics is the need to properly represent simultaneously both the interaction between electron-transfer events at the electrode, which demand a quantum mechanical description, and multiscale phenomena in the liquid environment such as the electrochemical double layer (ECDL) and its associated shielding, which demand a statistical description. A direct ab initio approach to this challenge would, in principle, require statistical sampling and thousands of repetitions of already computationally demanding quantum mechanical calculations. This talk will begin with a brief review of a recent advance, joint density-functional theory (JDFT), which allows for a fully rigorous and, in principle, exact representation of the thermodynamic equilibrium between a system described at the quantum-mechanical level and a liquid environment, but without the need for costly sampling. We then shall demonstrate how this approach applies in

  6. Explicit Instruction Elements in Core Reading Programs

    Science.gov (United States)

    Child, Angela R.

    2012-01-01

    Classroom teachers are provided instructional recommendations for teaching reading from their adopted core reading programs (CRPs). Explicit instruction elements or what is also called instructional moves, including direct explanation, modeling, guided practice, independent practice, discussion, feedback, and monitoring, were examined within CRP…

  7. A generalized model for optimal transport of images including dissipation and density modulation

    KAUST Repository

    Maas, Jan

    2015-11-01

    © EDP Sciences, SMAI 2015. In this paper the optimal transport and the metamorphosis perspectives are combined. For a pair of given input images geodesic paths in the space of images are defined as minimizers of a resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport cost and the rate of viscous dissipation. Furthermore, the model is capable to deal with strongly varying image contrast and explicitly allows for sources and sinks in the transport equations which are incorporated in the metric related to the metamorphosis approach by Trouvé and Younes. In the non-viscous case with source term existence of geodesic paths is proven in the space of measures. The proposed model is explored on the range from merely optimal transport to strongly dissipative dynamics. For this model a robust and effective variational time discretization of geodesic paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals. These functionals are defined on corresponding pairs of intensity functions and on associated pairwise matching deformations. Existence of time discrete geodesics is demonstrated. Furthermore, a finite element implementation is proposed and applied to instructive test cases and to real images. In the non-viscous case this is compared to the algorithm proposed by Benamou and Brenier including a discretization of the source term. Finally, the model is generalized to define discrete weighted barycentres with applications to textures and objects.

  8. A High-Resolution Spatially Explicit Monte-Carlo Simulation Approach to Commercial and Residential Electricity and Water Demand Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morton, April M [ORNL; McManamay, Ryan A [ORNL; Nagle, Nicholas N [ORNL; Piburn, Jesse O [ORNL; Stewart, Robert N [ORNL; Surendran Nair, Sujithkumar [ORNL

    2016-01-01

    Abstract As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for high resolution spatially explicit estimates for energy and water demand has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy and water consumption, many are provided at a course spatial resolution or rely on techniques which depend on detailed region-specific data sources that are not publicly available for many parts of the U.S. Furthermore, many existing methods do not account for errors in input data sources and may therefore not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more flexible Monte-Carlo simulation approach to high-resolution residential and commercial electricity and water consumption modeling that relies primarily on publicly available data sources. The method s flexible data requirement and statistical framework ensure that the model is both applicable to a wide range of regions and reflective of uncertainties in model results. Key words: Energy Modeling, Water Modeling, Monte-Carlo Simulation, Uncertainty Quantification Acknowledgment This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  9. Analytical explicit formulas of average run length for long memory process with ARFIMA model on CUSUM control chart

    Directory of Open Access Journals (Sweden)

    Wilasinee Peerajit

    2017-12-01

    Full Text Available This paper proposes the explicit formulas for the derivation of exact formulas from Average Run Lengths (ARLs using integral equation on CUSUM control chart when observations are long memory processes with exponential white noise. The authors compared efficiency in terms of the percentage of absolute difference to a similar method to verify the accuracy of the ARLs between the values obtained by the explicit formulas and numerical integral equation (NIE method. The explicit formulas were based on Banach fixed point theorem which was used to guarantee the existence and uniqueness of the solution for ARFIMA(p,d,q. Results showed that the two methods are similar in good agreement with the percentage of absolute difference at less than 0.23%. Therefore, the explicit formulas are an efficient alternative for implementation in real applications because the computational CPU time for ARLs from the explicit formulas are 1 second preferable over the NIE method.

  10. Including spatial data in nutrient balance modelling on dairy farms

    Science.gov (United States)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies

  11. A risk explicit interval linear programming model for uncertainty-based environmental economic optimization in the Lake Fuxian watershed, China.

    Science.gov (United States)

    Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.

  12. A Risk Explicit Interval Linear Programming Model for Uncertainty-Based Environmental Economic Optimization in the Lake Fuxian Watershed, China

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2013-01-01

    Full Text Available The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers’ preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of “low risk and high return efficiency” in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.

  13. Modeling the elastic behavior of ductile cast iron including anisotropy in the graphite nodules

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2016-01-01

    by means of a 3D periodic unit cell model. In this respect, an explicit procedure to enforce both periodic displacement and periodic traction boundary conditions in ABAQUS is presented, and the importance of fulfilling the traction continuity conditions at the unit cell boundaries is discussed. It is shown...

  14. Modeling spatially explicit fire impact on gross primary production in interior Alaska using satellite images coupled with eddy covariance

    Science.gov (United States)

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Welp, Lisa R.; Liu, Jinxun; Liu, Shuguang

    2013-01-01

    In interior Alaska, wildfires change gross primary production (GPP) after the initial disturbance. The impact of fires on GPP is spatially heterogeneous, which is difficult to evaluate by limited point-based comparisons or is insufficient to assess by satellite vegetation index. The direct prefire and postfire comparison is widely used, but the recovery identification may become biased due to interannual climate variability. The objective of this study is to propose a method to quantify the spatially explicit GPP change caused by fires and succession. We collected three Landsat images acquired on 13 July 2004, 5 August 2004, and 6 September 2004 to examine the GPP recovery of burned area from 1987 to 2004. A prefire Landsat image acquired in 1986 was used to reconstruct satellite images assuming that the fires of 1987–2004 had not occurred. We used a light-use efficiency model to estimate the GPP. This model was driven by maximum light-use efficiency (Emax) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR). We applied this model to two scenarios (i.e., an actual postfire scenario and an assuming-no-fire scenario), where the changes in Emax and FPAR were taken into account. The changes in Emax were represented by the change in land cover of evergreen needleleaf forest, deciduous broadleaf forest, and shrub/grass mixed, whose Emax was determined from three fire chronosequence flux towers as 1.1556, 1.3336, and 0.5098 gC/MJ PAR. The changes in FPAR were inferred from NDVI change between the actual postfire NDVI and the reconstructed NDVI. After GPP quantification for July, August, and September 2004, we calculated the difference between the two scenarios in absolute and percent GPP changes. Our results showed rapid recovery of GPP post-fire with a 24% recovery immediately after burning and 43% one year later. For the fire scars with an age range of 2–17 years, the recovery rate ranged from 54% to 95%. In addition to the averaging

  15. Single-Phase Bundle Flows Including Macroscopic Turbulence Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.

  16. Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance

    International Nuclear Information System (INIS)

    Sourrouille, Lucas; Casana, Rodolfo

    2016-01-01

    We have studied the existence of self-dual solitonic solutions in a generalization of the Abelian Chern-Simons-Higgs model. Such a generalization introduces two different nonnegative functions, ω_1(|ϕ|) and ω(|ϕ|), which split the kinetic term of the Higgs field, |D_μϕ|"2→ω_1(|ϕ|)|D_0ϕ|"2-ω(|ϕ|)|D_kϕ|"2, breaking explicitly the Lorentz covariance. We have shown that a clean implementation of the Bogomolnyi procedure only can be implemented whether ω(|ϕ|)∝β|ϕ|"2"β"-"2 with β≥1. The self-dual or Bogomolnyi equations produce an infinity number of soliton solutions by choosing conveniently the generalizing function ω_1(|ϕ|) which must be able to provide a finite magnetic field. Also, we have shown that by properly choosing the generalizing functions it is possible to reproduce the Bogomolnyi equations of the Abelian Maxwell-Higgs and Chern-Simons-Higgs models. Finally, some new self-dual |ϕ|"6-vortex solutions have been analyzed from both theoretical and numerical point of view.

  17. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  18. The prediction of the cavitation phenomena including population balance modeling

    Science.gov (United States)

    Bannari, Rachid; Hliwa, Ghizlane Zineb; Bannari, Abdelfettah; Belghiti, Mly Taib

    2017-07-01

    Cavitation is the principal reason behind the behavior's modification of the hydraulic turbines. However, the experimental observations can not be appropriate to all cases due to the limitations in the measurement techniques. The mathematical models which have been implemented, use the mixture multiphase frame. As well as, most of the published work is limited by considering a constant bubble size distribution. However, this assumption is not realist. The aim of this article is the implementation and the use of a non-homogeneous multiphase model which solve two phases transport equation. The evolution of bubble size is considered by the population balance equation. This study is based on the eulerian-eulerian model, associated to the cavitation model. All the inter-phase forces such as drag, lift and virtual mass are used.

  19. Including model uncertainty in risk-informed decision making

    International Nuclear Information System (INIS)

    Reinert, Joshua M.; Apostolakis, George E.

    2006-01-01

    Model uncertainties can have a significant impact on decisions regarding licensing basis changes. We present a methodology to identify basic events in the risk assessment that have the potential to change the decision and are known to have significant model uncertainties. Because we work with basic event probabilities, this methodology is not appropriate for analyzing uncertainties that cause a structural change to the model, such as success criteria. We use the risk achievement worth (RAW) importance measure with respect to both the core damage frequency (CDF) and the change in core damage frequency (ΔCDF) to identify potentially important basic events. We cross-check these with generically important model uncertainties. Then, sensitivity analysis is performed on the basic event probabilities, which are used as a proxy for the model parameters, to determine how much error in these probabilities would need to be present in order to impact the decision. A previously submitted licensing basis change is used as a case study. Analysis using the SAPHIRE program identifies 20 basic events as important, four of which have model uncertainties that have been identified in the literature as generally important. The decision is fairly insensitive to uncertainties in these basic events. In three of these cases, one would need to show that model uncertainties would lead to basic event probabilities that would be between two and four orders of magnitude larger than modeled in the risk assessment before they would become important to the decision. More detailed analysis would be required to determine whether these higher probabilities are reasonable. Methods to perform this analysis from the literature are reviewed and an example is demonstrated using the case study

  20. Inferring the past and present connectivity across the range of a North American leaf beetle: combining ecological niche modeling and a geographically explicit model of coalescence.

    Science.gov (United States)

    Dellicour, Simon; Fearnley, Shannon; Lombal, Anicée; Heidl, Sarah; Dahlhoff, Elizabeth P; Rank, Nathan E; Mardulyn, Patrick

    2014-08-01

    The leaf beetle Chrysomela aeneicollis occurs across Western North America, either at high elevation or in small, isolated populations along the coast, and thus has a highly fragmented distribution. DNA sequence data (three loci) were collected from five regions across the species range. Population connectivity was examined using traditional ecological niche modeling, which suggested that gene flow could occur among regions now and in the past. We developed geographically explicit coalescence models of sequence evolution that incorporated a two-dimensional representation of the hypothesized ranges suggested by the niche-modeling estimates. We simulated sequence data according to these models and compared them to observed sequences to identify most probable scenarios regarding the migration history of C. aeneicollis. Our results disagreed with initial niche-modeling estimates by clearly rejecting recent connectivity among regions, and were instead most consistent with a long period of range fragmentation, extending well beyond the last glacial maximum. This application of geographically explicit models of coalescence has highlighted some limitations of the use of climatic variables for predicting the present and past range of a species and has explained aspects of the Pleistocene evolutionary history of a cold-adapted organism in Western North America. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  1. Transport modelling including radial electric field and plasma rotation

    International Nuclear Information System (INIS)

    Fukuyama, A.; Fuji, Y.; Itoh, S.-I.

    1994-01-01

    Using a simple turbulent transport model with a constant diffusion coefficient and a fixed temperature profile, the density profile in a steady state and the transient behaviour during the co and counter neutral beam injection are studied. More consistent analysis has been initiated with a turbulent transport model based on the current diffusive high-n ballooning mode. The enhancement of the radial electric field due to ion orbit losses and the reduction of the transport due to the poloidal rotation shear are demonstrated. The preliminary calculation indicates a sensitive temperature dependence of the density profile. (author)

  2. Identifying Clusters with Mixture Models that Include Radial Velocity Observations

    Science.gov (United States)

    Czarnatowicz, Alexis; Ybarra, Jason E.

    2018-01-01

    The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).

  3. Constitutive modeling of multiphase materials including phase transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B

    2011-01-01

    A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP

  4. Development of realistic concrete models including scaling effects

    International Nuclear Information System (INIS)

    Carpinteri, A.

    1989-09-01

    Progressive cracking in structural elements of concrete is considered. Two simple models are applied, which, even though different, lead to similar predictions for the fracture behaviour. Both Virtual Crack Propagation Model and Cohesive Limit Analysis (Section 2), show a trend towards brittle behaviour and catastrophical events for large structural sizes. A numerical Cohesive Crack Model is proposed (Section 3) to describe strain softening and strain localization in concrete. Such a model is able to predict the size effects of fracture mechanics accurately. Whereas for Mode I, only untieing of the finite element nodes is applied to simulate crack growth, for Mixed Mode a topological variation is required at each step (Section 4). In the case of the four point shear specimen, the load vs. deflection diagrams reveal snap-back instability for large sizes. By increasing the specimen sizes, such instability tends to reproduce the classical LEFM instability. Remarkable size effects are theoretically predicted and experimentally confirmed also for reinforced concrete (Section 5). The brittleness of the flexural members increases by increasing size and/or decreasing steel content. On the basis of these results, the empirical code rules regarding the minimum amount of reinforcement could be considerably revised

  5. Dynamic model including piping acoustics of a centrifugal compression system

    NARCIS (Netherlands)

    Helvoirt, van J.; Jager, de A.G.

    2007-01-01

    This paper deals with low frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the

  6. Comparing implicit and explicit semantic access of direct and indirect word pairs in schizophrenia to evaluate models of semantic memory.

    Science.gov (United States)

    Neill, Erica; Rossell, Susan Lee

    2013-02-28

    Semantic memory deficits in schizophrenia (SZ) are profound, yet there is no research comparing implicit and explicit semantic processing in the same participant sample. In the current study, both implicit and explicit priming are investigated using direct (LION-TIGER) and indirect (LION-STRIPES; where tiger is not displayed) stimuli comparing SZ to healthy controls. Based on a substantive review (Rossell and Stefanovic, 2007) and meta-analysis (Pomarol-Clotet et al., 2008), it was predicted that SZ would be associated with increased indirect priming implicitly. Further, it was predicted that SZ would be associated with abnormal indirect priming explicitly, replicating earlier work (Assaf et al., 2006). No specific hypotheses were made for implicit direct priming due to the heterogeneity of the literature. It was hypothesised that explicit direct priming would be intact based on the structured nature of this task. The pattern of results suggests (1) intact reaction time (RT) and error performance implicitly in the face of abnormal direct priming and (2) impaired RT and error performance explicitly. This pattern confirms general findings regarding implicit/explicit memory impairments in SZ whilst highlighting the unique pattern of performance specific to semantic priming. Finally, priming performance is discussed in relation to thought disorder and length of illness. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. "Tacit Knowledge" versus "Explicit Knowledge"

    DEFF Research Database (Denmark)

    Sanchez, Ron

    creators and carriers. By contrast, the explicit knowledge approach emphasizes processes for articulating knowledge held by individuals, the design of organizational approaches for creating new knowledge, and the development of systems (including information systems) to disseminate articulated knowledge...

  8. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  9. Parton recombination model including resonance production. RL-78-040

    International Nuclear Information System (INIS)

    Roberts, R.G.; Hwa, R.C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references

  10. Parton recombination model including resonance production. RL-78-040

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R. G.; Hwa, R. C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references.

  11. An explicit asymptotic model for the surface wave in a viscoelastic half-space based on applying Rabotnov's fractional exponential integral operators

    Science.gov (United States)

    Wilde, M. V.; Sergeeva, N. V.

    2018-05-01

    An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.

  12. Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework

    Energy Technology Data Exchange (ETDEWEB)

    Machesky, Michael L. [Illinois State Water Survey, Champaign, IL; Predota, M. [University of South Bohemia, Czech Republic; Wesolowski, David J [ORNL

    2008-01-01

    The detailed solvation structure at the (110) surface of rutile ({alpha}-TiO{sub 2}) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 {angstrom} of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pHznpc) at 25 C that agrees quantitatively with the experimentally determined value (5.4 {+-} 0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pH{sub znpc} values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pH{sub znpc} value of the rutile (110) surface at 25 C into quantitative agreement with the experimental value (4.8 {+-} 0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic

  13. Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework

    International Nuclear Information System (INIS)

    Machesky, Michael L.; Predota, M.; Wesolowski, David J.

    2008-01-01

    The detailed solvation structure at the (110) surface of rutile (α-TiO 2 ) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 (angstrom) of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pHznpc) at 25 C that agrees quantitatively with the experimentally determined value (5.4 ± 0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pH znpc values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pH znpc value of the rutile (110) surface at 25 C into quantitative agreement with the experimental value (4.8 ± 0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic strength. Additionally, the H

  14. Numerical study on two-point contact by an explicit integration finite element method : A contribution to the modeling of flange squeal

    NARCIS (Netherlands)

    Yang, Z.; Li, Z.; Dollevoet, R.P.B.J.; Tournay, H; Grassie, S

    2015-01-01

    The precise mechanism which activates squeal, especially flange squeal has not been fully explained. The complex non-Hertzian contact and the broad-band high frequency feature bring great challenges to the modelling work of flange squeal. In this paper, an explicit integration finite element method

  15. A study of the path-integral quantization of Abelian gauge theories when no explicit gauge-fixing term is included in the bilinear part of the gauge-field action

    International Nuclear Information System (INIS)

    Phillips, S.

    1985-01-01

    The mathematical problem of inverting the operator Δ x μν ≡ g μν g αβ δ x α δ x β -δ x μ δ x ν , as it arises in the path-integral quantization of an Abelian gauge theory, such as quantum electrodynamics, when no gauge-fixing Lagrangian field density is included, is studied in this article. Making use of the fact that the Schwinger source functions, which are introduced for the purpose of generating Green's functions, are free of divergence, a result that follows from the conversion of the exponentiated action into a Gaussian form, the apparently noninvertible partial differential equation, Δ x μν L ν (x) J μ (x), can, by the addition and subsequent subtraction of terms containing the divergence of the source function, be cast into a form that does possess a Green's function solution. The gauge-field propagator is the same as that obtained by the conventional technique, which involves gauge fixing when the gauge parameter, α, is set equal to one. Such an analysis suggests also that, provided the effect of fictitious particles that propagate only in closed loops are included for the study of Green's functions in non-Abelian gauge theories in Landau-type gauges, then, in quantizing either Abelian gauge theories or non-Abelian gauge theories in this generic kind of gauge, it is not necessary to add an explicit gauge-fixing term to the bilinear part of the gauge-field action

  16. Exploring a multi-scale method for molecular simulation in continuum solvent model: Explicit simulation of continuum solvent as an incompressible fluid.

    Science.gov (United States)

    Xiao, Li; Luo, Ray

    2017-12-07

    We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were able to bypass the challenge rigorously by merging the van der Waals potential and pressure together when solving the fluid dynamics equations and by considering its contribution in the free-boundary condition analytically. The multi-scale simulation method was first validated by reproducing the solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at equilibrium with detailed surface features resembling those found on the solvent excluded surface. Four typical small molecular complexes were then tested, both volume and force balancing analyses showing that these simple complexes can reach equilibrium within the simulation time window. Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer complexes and found that they agree well with the boundaries as sampled in the explicit water simulations.

  17. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin

    Science.gov (United States)

    Du, Liuying; Rajib, Adnan; Merwade, Venkatesh

    2018-07-01

    Looking only at climate change impacts provides partial information about a changing hydrologic regime. Understanding the spatio-temporal nature of change in hydrologic processes, and the explicit contributions from both climate and land use drivers, holds more practical value for water resources management and policy intervention. This study presents a comprehensive assessment on the spatio-temporal trend of Blue Water (BW) and Green Water (GW) in a 490,000 km2 temperate mid-latitude basin (Ohio River Basin) over the past 80 years (1935-2014), and from thereon, quantifies the combined as well as relative contributions of climate and land use changes. The Soil and Water Assessment Tool (SWAT) is adopted to simulate hydrologic fluxes. Mann-Kendall and Theil-Sen statistical tests are performed on the modeled outputs to detect respectively the trend and magnitude of changes at three different spatial scales - the entire basin, regional level, and sub-basin level. Despite the overall volumetric increase of both BW and GW in the entire basin, changes in their annual average values during the period of simulation reveal a distinctive spatial pattern. GW has increased significantly in the upper and lower parts of the basin, which can be related to the prominent land use change in those areas. BW has increased significantly only in the lower part, likely being associated with the notable precipitation change there. Furthermore, the simulation under a time-varying climate but constant land use scenario identifies climate change in the Ohio River Basin to be influential on BW, while the impact is relatively nominal on GW; whereas, land use change increases GW remarkably, but is counterproductive on BW. The approach to quantify combined/relative effects of climate and land use change as shown in this study can be replicated to understand BW-GW dynamics in similar large basins around the globe.

  18. Spatially explicit habitat models for 28 fishes from the Upper Mississippi River System (AHAG 2.0)

    Science.gov (United States)

    Ickes, Brian S.; Sauer, J.S.; Richards, N.; Bowler, M.; Schlifer, B.

    2014-01-01

    perhaps why). Our goal was to develop regionalized models, and to assess and describe circumstances when a good fit was not possible. Seven fish species composed the Lentic guild. Good fits were achieved for six Upper Reach models. In the Lower Reach, no model produced good fits for the Lentic guild. This was due to (1) lentic species being much less prominent in the Lower Reach study areas, and (2) those that do express greater prominence principally do so only in the La Grange reach of the Illinois River. Thus, developing Lower Reach models for Lentic species will require parsing La Grange from the other two Lower Reach study areas and fitting separate models. We did not do that as part of this study, but it could be done at a later time. Nine species comprised the Lotic guild. Good fits were achieved for seven Upper Reach models and six Lower Reach models. Four species had good fits for both regions (flathead catfish, blue sucker, sauger, and shorthead redhorse). Three species showed zoogeographic zonation, with a good model fit in one of the regions, but not in the region in which they were absent or rarely occurred (blue catfish, rock bass, and skipjack herring). Twelve species comprised the Generalist guild. Good fits were achieved for five Upper Reach models and eight Lower Reach models. Six species had good fits for both regions (brook silverside, emerald shiner, freshwater drum, logperch, longnose gar, and white bass). Two species showed zoogeographic zonation, with a good model fit in one of the regions, but not in the region in which they were absent or rarely occurred (red shiner and blackstripe topminnow). Poorly fit models were almost always due to the diagnostic variable “field station,” a surrogate for river mile. In these circumstances, the residuals for “field station” were non-randomly distributed and often strongly ordered. This indicates either fitting “pool scale” models for these species and regions, or explicitly model covariances

  19. Fuzzy risk explicit interval linear programming model for end-of-life vehicle recycling planning in the EU.

    Science.gov (United States)

    Simic, Vladimir

    2015-01-01

    End-of-life vehicles (ELVs) are vehicles that have reached the end of their useful lives and are no longer registered or licensed for use. The ELV recycling problem has become very serious in the last decade and more and more efforts are made in order to reduce the impact of ELVs on the environment. This paper proposes the fuzzy risk explicit interval linear programming model for ELV recycling planning in the EU. It has advantages in reflecting uncertainties presented in terms of intervals in the ELV recycling systems and fuzziness in decision makers' preferences. The formulated model has been applied to a numerical study in which different decision maker types and several ELV types under two EU ELV Directive legislative cases were examined. This study is conducted in order to examine the influences of the decision maker type, the α-cut level, the EU ELV Directive and the ELV type on decisions about vehicle hulks procuring, storing unprocessed hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Decision maker type can influence quantity of vehicle hulks kept in storages. The EU ELV Directive and decision maker type have no influence on which vehicle hulk type is kept in the storage. Vehicle hulk type, the EU ELV Directive and decision maker type do not influence the creation of metal allocation plans, since each isolated metal has its regular destination. The valid EU ELV Directive eco-efficiency quotas can be reached even when advanced thermal treatment plants are excluded from the ELV recycling process. The introduction of the stringent eco-efficiency quotas will significantly reduce the quantities of land-filled waste fractions regardless of the type of decision makers who will manage vehicle recycling system. In order to reach these stringent quotas, significant quantities of sorted waste need to be processed in advanced thermal treatment plants. Proposed model can serve as the support for the European

  20. Modeling flow and solute transport at a tile drain field site by explicit representation of preferential flow structures: Equifinality and uncertainty

    Science.gov (United States)

    Zehe, E.; Klaus, J.

    2011-12-01

    Rapid flow in connected preferential flow paths is crucial for fast transport of water and solutes through soils, especially at tile drained field sites. The present study tests whether an explicit treatment of worm burrows is feasible for modeling water flow, bromide and pesticide transport in structured heterogeneous soils with a 2-dimensional Richards based model. The essence is to represent worm burrows as morphologically connected paths of low flow resistance and low retention capacity in the spatially highly resolved model domain. The underlying extensive database to test this approach was collected during an irrigation experiment, which investigated transport of bromide and the herbicide Isoproturon at a 900 sqm tile drained field site. In a first step we investigated whether the inherent uncertainty in key data causes equifinality i.e. whether there are several spatial model setups that reproduce tile drain event discharge in an acceptable manner. We found a considerable equifinality in the spatial setup of the model, when key parameters such as the area density of worm burrows and the maximum volumetric water flows inside these macropores were varied within the ranges of either our measurement errors or measurements reported in the literature. Thirteen model runs yielded a Nash-Sutcliffe coefficient of more than 0.9. Also, the flow volumes were in good accordance and peak timing errors where less than or equal to 20 min. In the second step we investigated thus whether this "equifinality" in spatial model setups may be reduced when including the bromide tracer data into the model falsification process. We simulated transport of bromide for the 13 spatial model setups, which performed best with respect to reproduce tile drain event discharge, without any further calibration. Four of this 13 model setups allowed to model bromide transport within fixed limits of acceptability. Parameter uncertainty and equifinality could thus be reduced. Thirdly, we selected

  1. Towards anatomic scale agent-based modeling with a massively parallel spatially explicit general-purpose model of enteric tissue (SEGMEnT_HPC).

    Science.gov (United States)

    Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary

    2015-01-01

    Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis.

  2. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors

    Directory of Open Access Journals (Sweden)

    Justin V. Remais

    2013-07-01

    Full Text Available Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF 3.2.1 baseline/current (2001–2004 and projected (Representative Concentration Pathway (RCP 4.5 and RCP 8.5; 2057–2059 climate data. Ten dynamic population features (DPFs were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses—including altered phenology—of disease vectors to altered climate.

  3. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors.

    Science.gov (United States)

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V

    2013-09-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis , the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate.

  4. Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies.

    Directory of Open Access Journals (Sweden)

    Krisztian Magori

    2009-09-01

    Full Text Available Dengue is the most important mosquito-borne viral disease affecting humans. The only prevention measure currently available is the control of its vectors, primarily Aedes aegypti. Recent advances in genetic engineering have opened the possibility for a new range of control strategies based on genetically modified mosquitoes. Assessing the potential efficacy of genetic (and conventional strategies requires the availability of modeling tools that accurately describe the dynamics and genetics of Ae. aegypti populations.We describe in this paper a new modeling tool of Ae. aegypti population dynamics and genetics named Skeeter Buster. This model operates at the scale of individual water-filled containers for immature stages and individual properties (houses for adults. The biology of cohorts of mosquitoes is modeled based on the algorithms used in the non-spatial Container Inhabiting Mosquitoes Simulation Model (CIMSiM. Additional features incorporated into Skeeter Buster include stochasticity, spatial structure and detailed population genetics. We observe that the stochastic modeling of individual containers in Skeeter Buster is associated with a strongly reduced temporal variation in stage-specific population densities. We show that heterogeneity in container composition of individual properties has a major impact on spatial heterogeneity in population density between properties. We detail how adult dispersal reduces this spatial heterogeneity. Finally, we present the predicted genetic structure of the population by calculating F(ST values and isolation by distance patterns, and examine the effects of adult dispersal and container movement between properties.We demonstrate that the incorporated stochasticity and level of spatial detail have major impacts on the simulated population dynamics, which could potentially impact predictions in terms of control measures. The capacity to describe population genetics confers the ability to model the outcome

  5. BALANCED SCORECARDS EVALUATION MODEL THAT INCLUDES ELEMENTS OF ENVIRONMENTAL MANAGEMENT SYSTEM USING AHP MODEL

    Directory of Open Access Journals (Sweden)

    Jelena Jovanović

    2010-03-01

    Full Text Available The research is oriented on improvement of environmental management system (EMS using BSC (Balanced Scorecard model that presents strategic model of measurem ents and improvement of organisational performance. The research will present approach of objectives and environmental management me trics involvement (proposed by literature review in conventional BSC in "Ad Barska plovi dba" organisation. Further we will test creation of ECO-BSC model based on business activities of non-profit organisations in order to improve envir onmental management system in parallel with other systems of management. Using this approach we may obtain 4 models of BSC that includ es elements of environmen tal management system for AD "Barska plovidba". Taking into acc ount that implementation and evaluation need long period of time in AD "Barska plovidba", the final choice will be based on 14598 (Information technology - Software product evaluation and ISO 9126 (Software engineering - Product quality using AHP method. Those standards are usually used for evaluation of quality software product and computer programs that serve in organisation as support and factors for development. So, AHP model will be bas ed on evolution criteria based on suggestion of ISO 9126 standards and types of evaluation from two evaluation teams. Members of team & will be experts in BSC and environmental management system that are not em ployed in AD "Barska Plovidba" organisation. The members of team 2 will be managers of AD "Barska Plovidba" organisation (including manage rs from environmental department. Merging results based on previously cr eated two AHP models, one can obtain the most appropriate BSC that includes elements of environmental management system. The chosen model will present at the same time suggestion for approach choice including ecological metrics in conventional BSC model for firm that has at least one ECO strategic orientation.

  6. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.

    2011-08-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques. The algorithm features two key steps: (i) a dynamic programming step, in which the mp-MPC problem is decomposed into a set of smaller subproblems in which only the current control, state variables, and constraints are considered, and (ii) a multi-parametric programming step, in which each subproblem is solved as a convex multi-parametric programming problem, to derive the control variables as an explicit function of the states. The key feature of the proposed method is that it overcomes potential limitations of previous methods for solving multi-parametric programming problems with dynamic programming, such as the need for global optimization for each subproblem of the dynamic programming step. © 2011 Elsevier Ltd. All rights reserved.

  7. SMART: a spatially explicit bio-economic model for assessing and managing demersal fisheries, with an application to italian trawlers in the strait of sicily.

    Directory of Open Access Journals (Sweden)

    Tommaso Russo

    Full Text Available Management of catches, effort and exploitation pattern are considered the most effective measures to control fishing mortality and ultimately ensure productivity and sustainability of fisheries. Despite the growing concerns about the spatial dimension of fisheries, the distribution of resources and fishing effort in space is seldom considered in assessment and management processes. Here we propose SMART (Spatial MAnagement of demersal Resources for Trawl fisheries, a tool for assessing bio-economic feedback in different management scenarios. SMART combines information from different tasks gathered within the European Data Collection Framework on fisheries and is composed of: 1 spatial models of fishing effort, environmental characteristics and distribution of demersal resources; 2 an Artificial Neural Network which captures the relationships among these aspects in a spatially explicit way and uses them to predict resources abundances; 3 a deterministic module which analyzes the size structure of catches and the associated revenues, according to different spatially-based management scenarios. SMART is applied to demersal fishery in the Strait of Sicily, one of the most productive fisheries of the Mediterranean Sea. Three of the main target species are used as proxies for the whole range exploited by trawlers. After training, SMART is used to evaluate different management scenarios, including spatial closures, using a simulation approach that mimics the recent exploitation patterns. Results evidence good model performance, with a noteworthy coherence and reliability of outputs for the different components. Among others, the main finding is that a partial improvement in resource conditions can be achieved by means of nursery closures, even if the overall fishing effort in the area remains stable. Accordingly, a series of strategically designed areas of trawling closures could significantly improve the resource conditions of demersal fisheries in

  8. SMART: a spatially explicit bio-economic model for assessing and managing demersal fisheries, with an application to italian trawlers in the strait of sicily.

    Science.gov (United States)

    Russo, Tommaso; Parisi, Antonio; Garofalo, Germana; Gristina, Michele; Cataudella, Stefano; Fiorentino, Fabio

    2014-01-01

    Management of catches, effort and exploitation pattern are considered the most effective measures to control fishing mortality and ultimately ensure productivity and sustainability of fisheries. Despite the growing concerns about the spatial dimension of fisheries, the distribution of resources and fishing effort in space is seldom considered in assessment and management processes. Here we propose SMART (Spatial MAnagement of demersal Resources for Trawl fisheries), a tool for assessing bio-economic feedback in different management scenarios. SMART combines information from different tasks gathered within the European Data Collection Framework on fisheries and is composed of: 1) spatial models of fishing effort, environmental characteristics and distribution of demersal resources; 2) an Artificial Neural Network which captures the relationships among these aspects in a spatially explicit way and uses them to predict resources abundances; 3) a deterministic module which analyzes the size structure of catches and the associated revenues, according to different spatially-based management scenarios. SMART is applied to demersal fishery in the Strait of Sicily, one of the most productive fisheries of the Mediterranean Sea. Three of the main target species are used as proxies for the whole range exploited by trawlers. After training, SMART is used to evaluate different management scenarios, including spatial closures, using a simulation approach that mimics the recent exploitation patterns. Results evidence good model performance, with a noteworthy coherence and reliability of outputs for the different components. Among others, the main finding is that a partial improvement in resource conditions can be achieved by means of nursery closures, even if the overall fishing effort in the area remains stable. Accordingly, a series of strategically designed areas of trawling closures could significantly improve the resource conditions of demersal fisheries in the Strait of

  9. Producing Distribution Maps for a Spatially-Explicit Ecosystem Model Using Large Monitoring and Environmental Databases and a Combination of Interpolation and Extrapolation

    Directory of Open Access Journals (Sweden)

    Arnaud Grüss

    2018-01-01

    Full Text Available To be able to simulate spatial patterns of predator-prey interactions, many spatially-explicit ecosystem modeling platforms, including Atlantis, need to be provided with distribution maps defining the annual or seasonal spatial distributions of functional groups and life stages. We developed a methodology combining extrapolation and interpolation of the predictions made by statistical habitat models to produce distribution maps for the fish and invertebrates represented in the Atlantis model of the Gulf of Mexico (GOM Large Marine Ecosystem (LME (“Atlantis-GOM”. This methodology consists of: (1 compiling a large monitoring database, gathering all the fisheries-independent and fisheries-dependent data collected in the northern (U.S. GOM since 2000; (2 compiling a large environmental database, storing all the environmental parameters known to influence the spatial distribution patterns of fish and invertebrates of the GOM; (3 fitting binomial generalized additive models (GAMs to the large monitoring and environmental databases, and geostatistical binomial generalized linear mixed models (GLMMs to the large monitoring database; and (4 employing GAM predictions to infer spatial distributions in the southern GOM, and GLMM predictions to infer spatial distributions in the U.S. GOM. Thus, our methodology allows for reasonable extrapolation in the southern GOM based on a large amount of monitoring and environmental data, and for interpolation in the U.S. GOM accurately reflecting the probability of encountering fish and invertebrates in that region. We used an iterative cross-validation procedure to validate GAMs. When a GAM did not pass the validation test, we employed a GAM for a related functional group/life stage to generate distribution maps for the southern GOM. In addition, no geostatistical GLMMs were fit for the functional groups and life stages whose depth, longitudinal and latitudinal ranges within the U.S. GOM are not entirely covered by

  10. Minimizing Erosion and Agro-Pollutants Transport from Furrow Irrigated Fields to the Nearby Water Body Using Spatially-Explicit Agent Based Model and Decision Optimization Platform

    Science.gov (United States)

    Ghoveisi, H.; Al Dughaishi, U.; Kiker, G.

    2017-12-01

    Maintaining water quality in agricultural watersheds is a worldwide challenge, especially where furrow irrigation is being practiced. The Yakima River Basin watershed in south central Washington State, (USA) is an example of these impacted areas with elevated load of sediments and other agricultural products due to runoff from furrow-irrigated fields. Within the Yakima basin, the Granger Drain watershed (area of 75 km2) is particularly challenged in this regard with more than 400 flood-irrigated individual parcels (area of 21 km2) growing a variety of crops from maize to grapes. Alternatives for improving water quality from furrow-irrigated parcels include vegetated filter strip (VFS) implementation, furrow water application efficiency, polyacrylamide (PAM) application and irrigation scheduling. These alternatives were simulated separately and in combinations to explore potential Best Management Practices (BMPs) for runoff-related-pollution reduction in a spatially explicit, agent based modeling system (QnD:GrangerDrain). Two regulatory scenarios were tested to BMP adoption within individual parcels. A blanket-style regulatory scenario simulated a total of 60 BMP combinations implemented in all 409 furrow-irrigated parcels. A second regulatory scenario simulated the BMPs in 119 furrow-irrigated parcels designated as "hotspots" based on a standard 12 Mg ha-1 seasonal sediment load. The simulated cumulative runoff and sediment loading from all BMP alternatives were ranked using Multiple Criteria Decision Analysis (MCDA), specifically the Stochastic Multi-Attribute Acceptability Analysis (SMAA) method. Several BMP combinations proved successful in reducing loads below a 25 NTU (91 mg L-1) regulatory sediment concentration. The QnD:GrangerDrain simulations and subsequent MCDA ranking revealed that the BMP combinations of 5 m-VFS and high furrow water efficiency were highly ranked alternatives for both the blanket and hotspot scenarios.

  11. GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations.

    Science.gov (United States)

    Strbac, V; Pierce, D M; Vander Sloten, J; Famaey, N

    2017-12-01

    Finite element (FE) simulations are increasingly valuable in assessing and improving the performance of biomedical devices and procedures. Due to high computational demands such simulations may become difficult or even infeasible, especially when considering nearly incompressible and anisotropic material models prevalent in analyses of soft tissues. Implementations of GPGPU-based explicit FEs predominantly cover isotropic materials, e.g. the neo-Hookean model. To elucidate the computational expense of anisotropic materials, we implement the Gasser-Ogden-Holzapfel dispersed, fiber-reinforced model and compare solution times against the neo-Hookean model. Implementations of GPGPU-based explicit FEs conventionally rely on single-point (under) integration. To elucidate the expense of full and selective-reduced integration (more reliable) we implement both and compare corresponding solution times against those generated using underintegration. To better understand the advancement of hardware, we compare results generated using representative Nvidia GPGPUs from three recent generations: Fermi (C2075), Kepler (K20c), and Maxwell (GTX980). We explore scaling by solving the same boundary value problem (an extension-inflation test on a segment of human aorta) with progressively larger FE meshes. Our results demonstrate substantial improvements in simulation speeds relative to two benchmark FE codes (up to 300[Formula: see text] while maintaining accuracy), and thus open many avenues to novel applications in biomechanics and medicine.

  12. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    Science.gov (United States)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  13. The impact of convection in the West African monsoon region on global weather forecasts - explicit vs. parameterised convection simulations using the ICON model

    Science.gov (United States)

    Pante, Gregor; Knippertz, Peter

    2017-04-01

    The West African monsoon is the driving element of weather and climate during summer in the Sahel region. It interacts with mesoscale convective systems (MCSs) and the African easterly jet and African easterly waves. Poor representation of convection in numerical models, particularly its organisation on the mesoscale, can result in unrealistic forecasts of the monsoon dynamics. Arguably, the parameterisation of convection is one of the main deficiencies in models over this region. Overall, this has negative impacts on forecasts over West Africa itself but may also affect remote regions, as waves originating from convective heating are badly represented. Here we investigate those remote forecast impacts based on daily initialised 10-day forecasts for July 2016 using the ICON model. One set of simulations employs the default setup of the global model with a horizontal grid spacing of 13 km. It is compared with simulations using the 2-way nesting capability of ICON. A second model domain over West Africa (the nest) with 6.5 km grid spacing is sufficient to explicitly resolve MCSs in this region. In the 2-way nested simulations, the prognostic variables of the global model are influenced by the results of the nest through relaxation. The nest with explicit convection is able to reproduce single MCSs much more realistically compared to the stand-alone global simulation with parameterised convection. Explicit convection leads to cooler temperatures in the lower troposphere (below 500 hPa) over the northern Sahel due to stronger evaporational cooling. Overall, the feedback of dynamic variables from the nest to the global model shows clear positive effects when evaluating the output of the global domain of the 2-way nesting simulation and the output of the stand-alone global model with ERA-Interim re-analyses. Averaged over the 2-way nested region, bias and root mean squared error (RMSE) of temperature, geopotential, wind and relative humidity are significantly reduced in

  14. Modeling Behavior by Coastal River Otter (Lontra Canadensis in Response to Prey Availability in Prince William Sound, Alaska: A Spatially-Explicit Individual-Based Approach.

    Directory of Open Access Journals (Sweden)

    Shannon E Albeke

    Full Text Available Effects of climate change on animal behavior and cascading ecosystem responses are rarely evaluated. In coastal Alaska, social river otters (Lontra Canadensis, largely males, cooperatively forage on schooling fish and use latrine sites to communicate group associations and dominance. Conversely, solitary otters, mainly females, feed on intertidal-demersal fish and display mutual avoidance via scent marking. This behavioral variability creates "hotspots" of nutrient deposition and affects plant productivity and diversity on the terrestrial landscape. Because the abundance of schooling pelagic fish is predicted to decline with climate change, we developed a spatially-explicit individual-based model (IBM of otter behavior and tested six scenarios based on potential shifts to distribution patterns of schooling fish. Emergent patterns from the IBM closely mimicked observed otter behavior and landscape use in the absence of explicit rules of intraspecific attraction or repulsion. Model results were most sensitive to rules regarding spatial memory and activity state following an encounter with a fish school. With declining availability of schooling fish, the number of social groups and the time simulated otters spent in the company of conspecifics declined. Concurrently, model results suggested an elevation of defecation rate, a 25% increase in nitrogen transport to the terrestrial landscape, and significant changes to the spatial distribution of "hotspots" with declines in schooling fish availability. However, reductions in availability of schooling fish could lead to declines in otter density over time.

  15. ‘Safety Matters Have Become Too Important for Management to Leave it Up to the Workers’ –The Nordic OSH Model Between Implicit and Explicit Frameworks

    Directory of Open Access Journals (Sweden)

    Johnny Dyreborg

    2011-01-01

    Full Text Available In a globalized economy it is relevant to question whether the Nordic Working Environment (WE model will remain as the basic and implicit framework for the governance of the WE. This paper explores institutional changes in the governance of the WE, and critically examines how a more explicit and market-oriented framework might influence the governance of the WE in the Nordic countries. Firstly, the paper examines the changes in the governance of the WE at the societal level (Denmark for the period 1954 - 2007, and identifies institutional logics informing these changes. Secondly, the paper examines changes in the governance of the WE at the level of the construction sector, using case material from four of the largest construction projects completed in Denmark in recent years. The analyses reveal three discrete periods, representing distinct logics influencing the governance of the WE, i.e., the logic of the state, the logic of democracy and the logic of the market. The logic of the state and the logic of democracy represent an implicit framework, whereas the logic of the market entails a shift to a more explicit framework. The shift to a more explicit framework for the governance of the WE, is also identified at the level of the construction sector. This leads to a pivotal shift in the clients' and the construction companies' relationship with the institutional environment in the four large construction projects. From worker representatives being the primary stakeholders, to a shift where the fulcrum of the development of the WE lies between management, the state and stakeholders in the companies' environment. This shift opens up a range of new and more market-oriented approaches to the governance of the WE that seems to challenge the extant Nordic WE model.

  16. Spatially explicit models of full-season productivity and implications for landscape management of Golden-winged Warblers in the western Great Lakes Region: Chapter 9

    Science.gov (United States)

    Peterson, Sean M.; Streby, Henry M.; Andersen, David E.

    2016-01-01

    The relationship between landscape structure and composition and full-season productivity (FSP) is poorly understood for most birds. For species of high conservation concern, insight into how productivity is related to landscape structure and composition can be used to develop more effective conservation strategies that increase recruitment. We monitored nest productivity and fledgling survival of Golden-winged Warblers (Vermivora chrysoptera), a species of high conservation concern, in managed forest landscapes at two sites in northern Minnesota, and one site in southeastern Manitoba, Canada from 2010 to 2012. We used logistic exposure models to identify the influence of landscape structure and composition on nest productivity and fledgling survival. We used the models to predict spatially explicit, FSP across our study sites to identify areas of low relative productivity that could be targeted for management. We then used our models of spatially explicit, FSP to simulate the impact of potential management actions on our study sites with the goal of increasing total population productivity. Unlike previous studies that suggested wetland cover types provide higher quality breeding habitat for Golden-winged Warblers, our models predicted 14% greater productivity in upland cover types. Simulated succession of a 9-ha grassland patch to a shrubby upland suitable for nesting increased the total number of fledglings produced by that patch and adjacent upland shrublands by 30%, despite decreasing individual productivity by 13%. Further simulated succession of the same patch described above into deciduous forest reduced the total number of fledglings produced to independence on a landscape by 18% because of a decrease in the area available for nesting. Simulated reduction in the cumulative length of shrubby edge within a 50-m radius of any location in our landscapes from 0.6 to 0.3 km increased FSP by 5%. Our models demonstrated that the effects of any single management

  17. Exploring the Dynamic Mechanisms of Farmland Abandonment Based on a Spatially Explicit Economic Model for Environmental Sustainability: A Case Study in Jiangxi Province, China

    Directory of Open Access Journals (Sweden)

    Hualin Xie

    2014-03-01

    Full Text Available Farmland abandonment has important impacts on biodiversity and ecosystem recovery, as well as food security and rural sustainable development. Due to rapid urbanization and industrialization, farmland abandonment has become an increasingly important problem in many countries, particularly in China. To promote sustainable land-use management and environmental sustainability, it is important to understand the socioeconomic causes and spatial patterns of farmland abandonment. In this study, we explored the dynamic mechanisms of farmland abandonment in Jiangxi province of China using a spatially explicit economical model. The results show that the variables associated with the agricultural products yield are significantly correlated with farmland abandonment. The increasing opportunity cost of farming labor is the main factor in farmland abandonment in conjunction with a rural labor shortage due to rural-to-urban population migration and regional industrialization. Farmlands are more likely to be abandoned in areas located far from the villages and towns due to higher transportation costs. Additionally, farmers with more land but lower net income are more likely to abandon poor-quality farmland. Our results support the hypothesis that farmland abandonment takes place in locations in which the costs of cultivation are high and the potential crop yield is low. In addition, our study also demonstrates that a spatially explicit economic model is necessary to distinguish between the main driving forces of farmland abandonment. Policy implications are also provided for potential future policy decisions.

  18. Direct versus Indirect Explicit Methods of Enhancing EFL Students' English Grammatical Competence: A Concept Checking-Based Consciousness-Raising Tasks Model

    Science.gov (United States)

    Dang, Trang Thi Doan; Nguyen, Huong Thu

    2013-01-01

    Two approaches to grammar instruction are often discussed in the ESL literature: direct explicit grammar instruction (DEGI) (deduction) and indirect explicit grammar instruction (IEGI) (induction). This study aims to explore the effects of indirect explicit grammar instruction on EFL learners' mastery of English tenses. Ninety-four…

  19. Study of a diffusion flamelet model, with preferential diffusion effects included

    NARCIS (Netherlands)

    Delhaye, S.; Somers, L.M.T.; Bongers, H.; Oijen, van J.A.; Goey, de L.P.H.; Dias, V.

    2005-01-01

    The non-premixed flamelet model of Peters [1] (model1), which does not include preferential diffusion effects is investigated. Two similar models are presented, but without the assumption of unity Lewis numbers. One of these models was derived by Peters & Pitsch [2] (model2), while the other one was

  20. Integrated and spatially explicit modelling of the economic value of complex environmental change and its indirect effects

    OpenAIRE

    Bateman, Ian; Binner, Amy; Coombes, Emma; Day, Brett; Ferrini, Silvia; Fezzi, Carlo; Hutchins, Michael; Posen, Paulette

    2012-01-01

    Arguably the greatest challenge to contemporary research is to capture the inter-relatedness and complexity of the real world environment within models so at to better inform decision makers of the accurate and complete consequences of differing options. The paper presents an integrated model of the consequence of climate change upon land use and the secondary and subsequent effects arising subsequently. The model predicts the shift in land use which climate change is likely to induce and the...

  1. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.

    OpenAIRE

    Bateman, Ian; Agarwala, M.; Binner, A.; Coombes, E.; Day, B.; Ferrini, Silvia; Fezzi, C.; Hutchins, M.; Lovett, A.; Posen, P.

    2016-01-01

    We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact...

  2. Evaluating spatially explicit burn probabilities for strategic fire management planning

    Science.gov (United States)

    C. Miller; M.-A. Parisien; A. A. Ager; M. A. Finney

    2008-01-01

    Spatially explicit information on the probability of burning is necessary for virtually all strategic fire and fuels management planning activities, including conducting wildland fire risk assessments, optimizing fuel treatments, and prevention planning. Predictive models providing a reliable estimate of the annual likelihood of fire at each point on the landscape have...

  3. LANDIS 4.0 users guide. LANDIS: a spatially explicit model of forest landscape disturbance, management, and succession

    Science.gov (United States)

    Hong S. He; Wei Li; Brian R. Sturtevant; Jian Yang; Bo Z. Shang; Eric J. Gustafson; David J. Mladenoff

    2005-01-01

    LANDIS 4.0 is new-generation software that simulates forest landscape change over large spatial and temporal scales. It is used to explore how disturbances, succession, and management interact to determine forest composition and pattern. Also describes software architecture, model assumptions and provides detailed instructions on the use of the model.

  4. Building an explicit de Sitter

    International Nuclear Information System (INIS)

    Louis, Jan; Hamburg Univ.; Rummel, Markus; Valandro, Roberto; Westphal, Alexander

    2012-11-01

    We construct an explicit example of a de Sitter vacuum in type IIB string theory that realizes the proposal of Kaehler uplifting. As the large volume limit in this method depends on the rank of the largest condensing gauge group we carry out a scan of gauge group ranks over the Kreuzer-Skarke set of toric Calabi-Yau threefolds. We find large numbers of models with the largest gauge group factor easily exceeding a rank of one hundred. We construct a global model with Kaehler uplifting on a two-parameter model on CP 4 11169 , by an explicit analysis from both the type IIB and F-theory point of view. The explicitness of the construction lies in the realization of a D7 brane configuration, gauge flux and RR and NS flux choices, such that all known consistency conditions are met and the geometric moduli are stabilized in a metastable de Sitter vacuum with spontaneous GUT scale supersymmetry breaking driven by an F-term of the Kaehler moduli.

  5. Building an explicit de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Jan [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik; Rummel, Markus; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2012-11-15

    We construct an explicit example of a de Sitter vacuum in type IIB string theory that realizes the proposal of Kaehler uplifting. As the large volume limit in this method depends on the rank of the largest condensing gauge group we carry out a scan of gauge group ranks over the Kreuzer-Skarke set of toric Calabi-Yau threefolds. We find large numbers of models with the largest gauge group factor easily exceeding a rank of one hundred. We construct a global model with Kaehler uplifting on a two-parameter model on CP{sup 4}{sub 11169}, by an explicit analysis from both the type IIB and F-theory point of view. The explicitness of the construction lies in the realization of a D7 brane configuration, gauge flux and RR and NS flux choices, such that all known consistency conditions are met and the geometric moduli are stabilized in a metastable de Sitter vacuum with spontaneous GUT scale supersymmetry breaking driven by an F-term of the Kaehler moduli.

  6. Explicit treatment for Dirichlet, Neumann and Cauchy boundary conditions in POD-based reduction of groundwater models

    Science.gov (United States)

    Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas

    2018-05-01

    In recent years, proper orthogonal decomposition (POD) has become a popular model reduction method in the field of groundwater modeling. It is used to mitigate the problem of long run times that are often associated with physically-based modeling of natural systems, especially for parameter estimation and uncertainty analysis. POD-based techniques reproduce groundwater head fields sufficiently accurate for a variety of applications. However, no study has investigated how POD techniques affect the accuracy of different boundary conditions found in groundwater models. We show that the current treatment of boundary conditions in POD causes inaccuracies for these boundaries in the reduced models. We provide an improved method that splits the POD projection space into a subspace orthogonal to the boundary conditions and a separate subspace that enforces the boundary conditions. To test the method for Dirichlet, Neumann and Cauchy boundary conditions, four simple transient 1D-groundwater models, as well as a more complex 3D model, are set up and reduced both by standard POD and POD with the new extension. We show that, in contrast to standard POD, the new method satisfies both Dirichlet and Neumann boundary conditions. It can also be applied to Cauchy boundaries, where the flux error of standard POD is reduced by its head-independent contribution. The extension essentially shifts the focus of the projection towards the boundary conditions. Therefore, we see a slight trade-off between errors at model boundaries and overall accuracy of the reduced model. The proposed POD extension is recommended where exact treatment of boundary conditions is required.

  7. Exploring spatial change and gravity center movement for ecosystem services value using a spatially explicit ecosystem services value index and gravity model.

    Science.gov (United States)

    He, Yingbin; Chen, Youqi; Tang, Huajun; Yao, Yanmin; Yang, Peng; Chen, Zhongxin

    2011-04-01

    Spatially explicit ecosystem services valuation and change is a newly developing area of research in the field of ecology. Using the Beijing region as a study area, the authors have developed a spatially explicit ecosystem services value index and implemented this to quantify and spatially differentiate ecosystem services value at 1-km grid resolution. A gravity model was developed to trace spatial change in the total ecosystem services value of the Beijing study area from a holistic point of view. Study results show that the total value of ecosystem services for the study area decreased by 19.75% during the period 1996-2006 (3,226.2739 US$×10(6) in 1996, 2,589.0321 US$×10(6) in 2006). However, 27.63% of the total area of the Beijing study area increased in ecosystem services value. Spatial differences in ecosystem services values for both 1996 and 2006 are very clear. The center of gravity of total ecosystem services value for the study area moved 32.28 km northwestward over the 10 years due to intensive human intervention taking place in southeast Beijing. The authors suggest that policy-makers should pay greater attention to ecological protection under conditions of rapid socio-economic development and increase the area of green belt in the southeastern part of Beijing.

  8. A spatially and temporally explicit, individual-based, life-history and productivity modeling approach for aquatic species

    Science.gov (United States)

    Realized life history expression and productivity in aquatic species, and salmonid fishes in particular, is the result of multiple interacting factors including genetics, habitat, growth potential and condition, and the thermal regime individuals experience, both at critical stag...

  9. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    International Nuclear Information System (INIS)

    Unseren, M.A.

    1997-01-01

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system

  10. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1997-04-20

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  11. The role of spatially explicit models in land-use change research: a case study for cropping patterns in China

    NARCIS (Netherlands)

    Verburg, P.H.; Veldkamp, A.

    2001-01-01

    Single research methodologies do not suffice for a complete analysis of land-use change. Instead, a sequence of methodologies is needed that link up and integrate disciplinary components over a range of spatial and temporal scales. In this paper, a modelling methodology is presented aiming at the

  12. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.

    Science.gov (United States)

    Bateman, Ian; Agarwala, Matthew; Binner, Amy; Coombes, Emma; Day, Brett; Ferrini, Silvia; Fezzi, Carlo; Hutchins, Michael; Lovett, Andrew; Posen, Paulette

    2016-10-01

    We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact of changes in such pollution on riverine ecosystems showing that these will be spatially heterogeneous. Moreover, we consider further knock-on effects upon the recreational benefits derived from water environments, which we assess using revealed preference methods. This analysis permits a multi-layered examination of the economic consequences of climate change, assessing the sequence of impacts from climate change through farm gross margins, land use, water quality and recreation, both at the individual and catchment scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. BioModels: expanding horizons to include more modelling approaches and formats.

    Science.gov (United States)

    Glont, Mihai; Nguyen, Tung V N; Graesslin, Martin; Hälke, Robert; Ali, Raza; Schramm, Jochen; Wimalaratne, Sarala M; Kothamachu, Varun B; Rodriguez, Nicolas; Swat, Maciej J; Eils, Jurgen; Eils, Roland; Laibe, Camille; Malik-Sheriff, Rahuman S; Chelliah, Vijayalakshmi; Le Novère, Nicolas; Hermjakob, Henning

    2018-01-04

    BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland with a spatially explicit, individual-based model

    Science.gov (United States)

    2011-01-01

    Background Simulation models of influenza spread play an important role for pandemic preparedness. However, as the world has not faced a severe pandemic for decades, except the rather mild H1N1 one in 2009, pandemic influenza models are inherently hypothetical and validation is, thus, difficult. We aim at reconstructing a recent seasonal influenza epidemic that occurred in Switzerland and deem this to be a promising validation strategy for models of influenza spread. Methods We present a spatially explicit, individual-based simulation model of influenza spread. The simulation model bases upon (i) simulated human travel data, (ii) data on human contact patterns and (iii) empirical knowledge on the epidemiology of influenza. For model validation we compare the simulation outcomes with empirical knowledge regarding (i) the shape of the epidemic curve, overall infection rate and reproduction number, (ii) age-dependent infection rates and time of infection, (iii) spatial patterns. Results The simulation model is capable of reproducing the shape of the 2003/2004 H3N2 epidemic curve of Switzerland and generates an overall infection rate (14.9 percent) and reproduction numbers (between 1.2 and 1.3), which are realistic for seasonal influenza epidemics. Age and spatial patterns observed in empirical data are also reflected by the model: Highest infection rates are in children between 5 and 14 and the disease spreads along the main transport axes from west to east. Conclusions We show that finding evidence for the validity of simulation models of influenza spread by challenging them with seasonal influenza outbreak data is possible and promising. Simulation models for pandemic spread gain more credibility if they are able to reproduce seasonal influenza outbreaks. For more robust modelling of seasonal influenza, serological data complementing sentinel information would be beneficial. PMID:21554680

  15. Multi-scale modelling and simulation of the thermo-hydro-mechanical behavior of concrete with explicit representation of cracking

    International Nuclear Information System (INIS)

    Tognevi, Amen

    2012-01-01

    The concrete structures of nuclear power plants can be subjected to moderate thermo-hydric loadings characterized by temperatures of the order of hundred of degrees in service conditions as well as in accidental ones. These loadings can be at the origin of important disorders, in particular cracking which accelerate hydric transfers in the structure. In the framework of the study of durability of these structures, a coupled thermo-hydro-mechanical model denoted THMs has been developed at Laboratoire d'Etude du Comportement des Betons et des Argiles (LECBA) of CEA Saclay in order to perform simulations of the concrete behavior submitted to such loadings. In this work, we focus on the improvement in the model THMs in one hand of the assessment of the mechanical and hydro-mechanical parameters of the unsaturated micro-cracked material and in the other hand of the description of cracking in terms of opening and propagation. The first part is devoted to the development of a model based on a multi-scale description of cement-based materials starting from the scale of the main hydrated products (portlandite, ettringite, C-S-H etc.) to the macroscopic scale of the cracked material. The investigated parameters are obtained at each scale of the description by applying analytical homogenization techniques. The second part concerns a fine numerical description of cracking. To this end, we choose to use combined finite element and discrete element methods. This procedure is presented and illustrated through a series of mechanical tests in order to show the feasibility of the method and to proceed to its validation. Finally, we apply the procedure to a heated wall and the proposed method for estimating the permeability shows the interest to take into account an anisotropic permeability tensor when dealing with mass transfers in cracked concrete structures. (author) [fr

  16. CDMetaPOP: An individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics

    Science.gov (United States)

    Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason B.

    2016-01-01

    1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.

  17. ATEFlap aerodynamic model, a dynamic stall model including the effects of trailing edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.; Gaunaa, M.

    2012-02-15

    The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)

  18. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  19. A spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: an assessment of decentralised processing potential

    Directory of Open Access Journals (Sweden)

    Shah Nilay

    2008-07-01

    Full Text Available Abstract Background Lignocellulosic bioethanol technologies exhibit significant capacity for performance improvement across the supply chain through the development of high-yielding energy crops, integrated pretreatment, hydrolysis and fermentation technologies and the application of dedicated ethanol pipelines. The impact of such developments on cost-optimal plant location, scale and process composition within multiple plant infrastructures is poorly understood. A combined production and logistics model has been developed to investigate cost-optimal system configurations for a range of technological, system scale, biomass supply and ethanol demand distribution scenarios specific to European agricultural land and population densities. Results Ethanol production costs for current technologies decrease significantly from $0.71 to $0.58 per litre with increasing economies of scale, up to a maximum single-plant capacity of 550 × 106 l year-1. The development of high-yielding energy crops and consolidated bio-processing realises significant cost reductions, with production costs ranging from $0.33 to $0.36 per litre. Increased feedstock yields result in systems of eight fully integrated plants operating within a 500 × 500 km2 region, each producing between 1.24 and 2.38 × 109 l year-1 of pure ethanol. A limited potential for distributed processing and centralised purification systems is identified, requiring developments in modular, ambient pretreatment and fermentation technologies and the pipeline transport of pure ethanol. Conclusion The conceptual and mathematical modelling framework developed provides a valuable tool for the assessment and optimisation of the lignocellulosic bioethanol supply chain. In particular, it can provide insight into the optimal configuration of multiple plant systems. This information is invaluable in ensuring (near-cost-optimal strategic development within the sector at the regional and national scale. The framework

  20. Areal rainfall estimation using moving cars - computer experiments including hydrological modeling

    Science.gov (United States)

    Rabiei, Ehsan; Haberlandt, Uwe; Sester, Monika; Fitzner, Daniel; Wallner, Markus

    2016-09-01

    The need for high temporal and spatial resolution precipitation data for hydrological analyses has been discussed in several studies. Although rain gauges provide valuable information, a very dense rain gauge network is costly. As a result, several new ideas have emerged to help estimating areal rainfall with higher temporal and spatial resolution. Rabiei et al. (2013) observed that moving cars, called RainCars (RCs), can potentially be a new source of data for measuring rain rate. The optical sensors used in that study are designed for operating the windscreen wipers and showed promising results for rainfall measurement purposes. Their measurement accuracy has been quantified in laboratory experiments. Considering explicitly those errors, the main objective of this study is to investigate the benefit of using RCs for estimating areal rainfall. For that, computer experiments are carried out, where radar rainfall is considered as the reference and the other sources of data, i.e., RCs and rain gauges, are extracted from radar data. Comparing the quality of areal rainfall estimation by RCs with rain gauges and reference data helps to investigate the benefit of the RCs. The value of this additional source of data is not only assessed for areal rainfall estimation performance but also for use in hydrological modeling. Considering measurement errors derived from laboratory experiments, the result shows that the RCs provide useful additional information for areal rainfall estimation as well as for hydrological modeling. Moreover, by testing larger uncertainties for RCs, they observed to be useful up to a certain level for areal rainfall estimation and discharge simulation.

  1. Mathematical model of thyristor inverter including a series-parallel resonant circuit

    OpenAIRE

    Luft, M.; Szychta, E.

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with the aid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  2. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    OpenAIRE

    Miroslaw Luft; Elzbieta Szychta

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  3. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Miroslaw Luft

    2008-01-01

    Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  4. Modeling of Pem Fuel Cell Systems Including Controls and Reforming Effects for Hybrid Automotive Applications

    National Research Council Canada - National Science Library

    Boettner, Daisie

    2001-01-01

    .... This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator...

  5. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States.

    Science.gov (United States)

    Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh

    2017-09-01

    Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates

  6. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs.

    Science.gov (United States)

    Teshager, Awoke Dagnew; Gassman, Philip W; Secchi, Silvia; Schoof, Justin T; Misgna, Girmaye

    2016-04-01

    Applications of the Soil and Water Assessment Tool (SWAT) model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the model. In a given standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover, soil, and slope, but located at different places of a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as landuse/landcover (LULC), soil, crop rotation, and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for Raccoon River watershed in Iowa for 2002-2010 and Big Creek River watershed in Illinois for 2000-2003. SWAT was able to replicate annual, monthly, and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner.

  7. Hydrologic Drivers of Soil Organic Carbon Erosion and Burial: Insights from a Spatially-explicit Model of a Degraded Landscape at the Calhoun Critical Zone Observatory

    Science.gov (United States)

    Dialynas, Y. G.; Bras, R. L.; Richter, D. D., Jr.

    2017-12-01

    Soil erosion and burial of organic material may constitute a substantial sink of atmospheric CO2. Attempts to quantify impacts of soil erosion on the soil-atmosphere C exchange are limited by difficulties in accounting for the fate of eroded soil organic carbon (SOC), a key factor in estimating of the net effect of erosion on the C cycle. Processes that transport SOC are still inadequately represented in terrestrial carbon (C) cycle models. This study investigates hydrologic controls on SOC redistribution across the landscape focusing on dynamic feedbacks between watershed hydrology, soil erosional processes, and SOC burial. We use tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially-explicit model of SOC dynamics coupled with a physically-based hydro-geomorphic model. tRIBS-ECO systematically accounts for the fate of eroded SOC across the watershed: Rainsplash erosion and sheet erosion redistribute SOC from upland sites to depositional environments, altering depth-dependent soil biogeochemical properties in diverse soil profiles. Eroded organic material is transferred with sediment and can be partially oxidized upon transport, or preserved from decomposition by burial. The model was applied in the Calhoun Critical Zone Observatory (CZO), a site that is recovering from some of the most serious agricultural erosion in North America. Soil biogeochemical characteristics at multiple soil horizons were used to initialize the model and test performance. Remotely sensed soil moisture data (NASA SMAP) were used for model calibration. Results show significant rates of hydrologically-induced burial of SOC at the Calhoun CZO. We find that organic material at upland eroding soil profiles is largely mobilized by rainsplash erosion. Sheet erosion mainly drives C transport in lower elevation clayey soils. While SOC erosion and deposition rates declined with recent reforestation at the study site, the

  8. Explicit dissipative structures

    International Nuclear Information System (INIS)

    Roessler, O.E.

    1987-01-01

    Dissipative structures consisting of a few macrovariables arise out of a sea of reversible microvariables. Unexpected residual effects of the massive underlying reversibility, on the macrolevel, cannot therefore be excluded. In the age of molecular-dynamics simulations, explicit dissipative structures like excitable systems (explicit observers) can be generated in a computer from first reversible principles. A class of classical, 1-D Hamiltonian systems of chaotic type is considered which has the asset that the trajectorial behavior in phase space can be understood geometrically. If, as nuatural, the number of particle types is much smaller than that of particles, the Gibbs symmetry must be taken into account. The permutation invariance drastically changes the behavior in phase space (quasi-periodization). The explicity observer becomes effectively reversible on a short time scale. In consequence, his ability to measure microscopic motions is suspended in a characteristic fashion. Unlike quantum mechanics whose holistic nature cannot be transcended, the present holistic (internal-interface) effects - mimicking the former to some extent - can be understood fully in principle

  9. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2004-11-01

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO 2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO 2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)

  10. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  11. Enhanced UWB Radio Channel Model for Short-Range Communication Scenarios Including User Dynamics

    DEFF Research Database (Denmark)

    Kovacs, Istvan Zsolt; Nguyen, Tuan Hung; Eggers, Patrick Claus F.

    2005-01-01

    channel model represents an enhancement of the existing IEEE 802.15.3a/4a PAN channel model, where antenna and user-proximity effects are not included. Our investigations showed that significant variations of the received wideband power and time-delay signal clustering are possible due the human body...

  12. Influence of structural parameter included in nonlocal rock mass model on stress concentration around circular tunnel

    Science.gov (United States)

    Lavrikov, SV; Mikenina, OA; Revuzhenko, AF

    2018-03-01

    A model of elastic body, including local curvature of elementary volume, is matched with a nonlocal model with a linear structural parameter in the differential approximation. The problem on deformation of rock mass around a circular cross section tunnel is solved numerically. The contours of the calculated stresses are plotted. It is shown that inclusion of local bends in the model results in expansion of influence zone of the tunnel and reduces stress concentration factor at the tunnel boundary.

  13. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  14. Including model uncertainty in the model predictive control with output feedback

    Directory of Open Access Journals (Sweden)

    Rodrigues M.A.

    2002-01-01

    Full Text Available This paper addresses the development of an efficient numerical output feedback robust model predictive controller for open-loop stable systems. Stability of the closed loop is guaranteed by using an infinite horizon predictive controller and a stable state observer. The performance and the computational burden of this approach are compared to a robust predictive controller from the literature. The case used for this study is based on an industrial gasoline debutanizer column.

  15. A constitutive model for the forces of a magnetic bearing including eddy currents

    Science.gov (United States)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  16. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer

    International Nuclear Information System (INIS)

    Sitprasert, Chatcharin; Dechaumphai, Pramote; Juntasaro, Varangrat

    2009-01-01

    The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245-254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the 'Leong et al.'s dynamic model'. However, the Leong et al.'s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.'s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for

  17. The Role of Explicit and Implicit Self-Esteem in Peer Modeling of Palatable Food Intake: A Study on Social Media Interaction among Youngsters

    Science.gov (United States)

    Bevelander, Kirsten E.; Anschütz, Doeschka J.; Creemers, Daan H. M.; Kleinjan, Marloes; Engels, Rutger C. M. E.

    2013-01-01

    Objective This experimental study investigated the impact of peers on palatable food intake of youngsters within a social media setting. To determine whether this effect was moderated by self-esteem, the present study examined the roles of global explicit self-esteem (ESE), body esteem (BE) and implicit self-esteem (ISE). Methods Participants (N = 118; 38.1% boys; M age 11.14±.79) were asked to play a computer game while they believed to interact online with a same-sex normal-weight remote confederate (i.e., instructed peer) who ate either nothing, a small or large amount of candy. Results Participants modeled the candy intake of peers via a social media interaction, but this was qualified by their self-esteem. Participants with higher ISE adjusted their candy intake to that of a peer more closely than those with lower ISE when the confederate ate nothing compared to when eating a modest (β = .26, p = .05) or considerable amount of candy (kcal) (β = .32, p = .001). In contrast, participants with lower BE modeled peer intake more than those with higher BE when eating nothing compared to a considerable amount of candy (kcal) (β = .21, p = .02); ESE did not moderate social modeling behavior. In addition, participants with higher discrepant or “damaged” self-esteem (i.e., high ISE and low ESE) modeled peer intake more when the peer ate nothing or a modest amount compared to a substantial amount of candy (kcal) (β = −.24, p = .004; β = −.26, pesteem or damaged self-esteem may be more at risk to peer influences on food intake. PMID:24015251

  18. The role of explicit and implicit self-esteem in peer modeling of palatable food intake: a study on social media interaction among youngsters.

    Science.gov (United States)

    Bevelander, Kirsten E; Anschütz, Doeschka J; Creemers, Daan H M; Kleinjan, Marloes; Engels, Rutger C M E

    2013-01-01

    This experimental study investigated the impact of peers on palatable food intake of youngsters within a social media setting. To determine whether this effect was moderated by self-esteem, the present study examined the roles of global explicit self-esteem (ESE), body esteem (BE) and implicit self-esteem (ISE). Participants (N = 118; 38.1% boys; M age 11.14±.79) were asked to play a computer game while they believed to interact online with a same-sex normal-weight remote confederate (i.e., instructed peer) who ate either nothing, a small or large amount of candy. Participants modeled the candy intake of peers via a social media interaction, but this was qualified by their self-esteem. Participants with higher ISE adjusted their candy intake to that of a peer more closely than those with lower ISE when the confederate ate nothing compared to when eating a modest (β = .26, p = .05) or considerable amount of candy (kcal) (β = .32, p = .001). In contrast, participants with lower BE modeled peer intake more than those with higher BE when eating nothing compared to a considerable amount of candy (kcal) (β = .21, p = .02); ESE did not moderate social modeling behavior. In addition, participants with higher discrepant or "damaged" self-esteem (i.e., high ISE and low ESE) modeled peer intake more when the peer ate nothing or a modest amount compared to a substantial amount of candy (kcal) (β = -.24, p = .004; β = -.26, pesteem or damaged self-esteem may be more at risk to peer influences on food intake.

  19. The role of explicit and implicit self-esteem in peer modeling of palatable food intake: a study on social media interaction among youngsters.

    Directory of Open Access Journals (Sweden)

    Kirsten E Bevelander

    Full Text Available OBJECTIVE: This experimental study investigated the impact of peers on palatable food intake of youngsters within a social media setting. To determine whether this effect was moderated by self-esteem, the present study examined the roles of global explicit self-esteem (ESE, body esteem (BE and implicit self-esteem (ISE. METHODS: Participants (N = 118; 38.1% boys; M age 11.14±.79 were asked to play a computer game while they believed to interact online with a same-sex normal-weight remote confederate (i.e., instructed peer who ate either nothing, a small or large amount of candy. RESULTS: Participants modeled the candy intake of peers via a social media interaction, but this was qualified by their self-esteem. Participants with higher ISE adjusted their candy intake to that of a peer more closely than those with lower ISE when the confederate ate nothing compared to when eating a modest (β = .26, p = .05 or considerable amount of candy (kcal (β = .32, p = .001. In contrast, participants with lower BE modeled peer intake more than those with higher BE when eating nothing compared to a considerable amount of candy (kcal (β = .21, p = .02; ESE did not moderate social modeling behavior. In addition, participants with higher discrepant or "damaged" self-esteem (i.e., high ISE and low ESE modeled peer intake more when the peer ate nothing or a modest amount compared to a substantial amount of candy (kcal (β = -.24, p = .004; β = -.26, p<.0001, respectively. CONCLUSION: Youngsters conform to the amount of palatable food eaten by peers through social media interaction. Those with lower body esteem or damaged self-esteem may be more at risk to peer influences on food intake.

  20. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.

    Science.gov (United States)

    Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian

    2017-01-01

    The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Making the Tacit Explicit

    DEFF Research Database (Denmark)

    Blasco, Maribel

    2015-01-01

    The article proposes an approach, broadly inspired by culturally inclusive pedagogy, to facilitate international student academic adaptation based on rendering tacit aspects of local learning cultures explicit to international full degree students, rather than adapting them. Preliminary findings...... are presented from a focus group-based exploratory study of international student experiences at different stages of their studies at a Danish business school, one of Denmark’s most international universities. The data show how a major source of confusion for these students has to do with the tacit logics...... and expectations that shape how the formal steps of the learning cycle are understood and enacted locally, notably how learning and assessment moments are defined and related to one another. Theoretically, the article draws on tacit knowledge and sense-making theories to analyse student narratives...

  2. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics

    International Nuclear Information System (INIS)

    Obe, Emeka S.; Binder, A.

    2011-01-01

    A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.

  3. Using an Explicit Emission Tagging Method in Global Modeling of Source-Receptor Relationships for Black Carbon in the Arctic: Variations, Sources and Transport Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong; Rasch, Philip J.; Easter, Richard C.; Singh, Balwinder; Zhang, Rudong; Ma, Po-Lun; Qian, Yun; Ghan, Steven J.; Beagley, Nathaniel

    2014-11-27

    We introduce an explicit emission tagging technique in the Community Atmosphere Model to quantify source-region-resolved characteristics of black carbon (BC), focusing on the Arctic. Explicit tagging of BC source regions without perturbing the emissions makes it straightforward to establish source-receptor relationships and transport pathways, providing a physically consistent and computationally efficient approach to produce a detailed characterization of the destiny of regional BC emissions and the potential for mitigation actions. Our analysis shows that the contributions of major source regions to the global BC burden are not proportional to the respective emissions due to strong region-dependent removal rates and lifetimes, while the contributions to BC direct radiative forcing show a near-linear dependence on their respective contributions to the burden. Distant sources contribute to BC in remote regions mostly in the mid- and upper troposphere, having much less impact on lower-level concentrations (and deposition) than on burden. Arctic BC concentrations, deposition and source contributions all have strong seasonal variations. Eastern Asia contributes the most to the wintertime Arctic burden. Northern Europe emissions are more important to both surface concentration and deposition in winter than in summer. The largest contribution to Arctic BC in the summer is from Northern Asia. Although local emissions contribute less than 10% to the annual mean BC burden and deposition within the Arctic, the per-emission efficiency is much higher than for major non-Arctic sources. The interannual variability (1996-2005) due to meteorology is small in annual mean BC burden and radiative forcing but is significant in yearly seasonal means over the Arctic. When a slow aging treatment of BC is introduced, the increase of BC lifetime and burden is source-dependent. Global BC forcing-per-burden efficiency also increases primarily due to changes in BC vertical distributions. The

  4. Dipole model analysis of highest precision HERA data, including very low Q"2's

    International Nuclear Information System (INIS)

    Luszczak, A.; Kowalski, H.

    2016-12-01

    We analyse, within a dipole model, the final, inclusive HERA DIS cross section data in the low χ region, using fully correlated errors. We show, that these highest precision data are very well described within the dipole model framework starting from Q"2 values of 3.5 GeV"2 to the highest values of Q"2=250 GeV"2. To analyze the saturation effects we evaluated the data including also the very low 0.35< Q"2 GeV"2 region. The fits including this region show a preference of the saturation ansatz.

  5. Tacit to explicit knowledge conversion.

    Science.gov (United States)

    Cairó Battistutti, Osvaldo; Bork, Dominik

    2017-11-01

    The ability to create, use and transfer knowledge may allow the creation or improvement of new products or services. But knowledge is often tacit: It lives in the minds of individuals, and therefore, it is difficult to transfer it to another person by means of the written word or verbal expression. This paper addresses this important problem by introducing a methodology, consisting of a four-step process that facilitates tacit to explicit knowledge conversion. The methodology utilizes conceptual modeling, thus enabling understanding and reasoning through visual knowledge representation. This implies the possibility of understanding concepts and ideas, visualized through conceptual models, without using linguistic or algebraic means. The proposed methodology is conducted in a metamodel-based tool environment whose aim is efficient application and ease of use.

  6. Key Characteristics of Combined Accident including TLOFW accident for PSA Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-05-15

    The conventional PSA techniques cannot adequately evaluate all events. The conventional PSA models usually focus on single internal events such as DBAs, the external hazards such as fire, seismic. However, the Fukushima accident of Japan in 2011 reveals that very rare event is necessary to be considered in the PSA model to prevent the radioactive release to environment caused by poor treatment based on lack of the information, and to improve the emergency operation procedure. Especially, the results from PSA can be used to decision making for regulators. Moreover, designers can consider the weakness of plant safety based on the quantified results and understand accident sequence based on human actions and system availability. This study is for PSA modeling of combined accidents including total loss of feedwater (TLOFW) accident. The TLOFW accident is a representative accident involving the failure of cooling through secondary side. If the amount of heat transfer is not enough due to the failure of secondary side, the heat will be accumulated to the primary side by continuous core decay heat. Transients with loss of feedwater include total loss of feedwater accident, loss of condenser vacuum accident, and closure of all MSIVs. When residual heat removal by the secondary side is terminated, the safety injection into the RCS with direct primary depressurization would provide alternative heat removal. This operation is called feed and bleed (F and B) operation. Combined accidents including TLOFW accident are very rare event and partially considered in conventional PSA model. Since the necessity of F and B operation is related to plant conditions, the PSA modeling for combined accidents including TLOFW accident is necessary to identify the design and operational vulnerabilities.The PSA is significant to assess the risk of NPPs, and to identify the design and operational vulnerabilities. Even though the combined accident is very rare event, the consequence of combined

  7. Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures.

    Science.gov (United States)

    Klenk, Jochen; Becker, Clemens; Palumbo, Pierpaolo; Schwickert, Lars; Rapp, Kilan; Helbostad, Jorunn L; Todd, Chris; Lord, Stephen R; Kerse, Ngaire

    2017-11-01

    Falls are a major cause of injury and disability in older people, leading to serious health and social consequences including fractures, poor quality of life, loss of independence, and institutionalization. To design and provide adequate prevention measures, accurate understanding and identification of person's individual fall risk is important. However, to date, the performance of fall risk models is weak compared with models estimating, for example, cardiovascular risk. This deficiency may result from 2 factors. First, current models consider risk factors to be stable for each person and not change over time, an assumption that does not reflect real-life experience. Second, current models do not consider the interplay of individual exposure including type of activity (eg, walking, undertaking transfers) and environmental risks (eg, lighting, floor conditions) in which activity is performed. Therefore, we posit a dynamic fall risk model consisting of intrinsic risk factors that vary over time and exposure (activity in context). eHealth sensor technology (eg, smartphones) begins to enable the continuous measurement of both the above factors. We illustrate our model with examples of real-world falls from the FARSEEING database. This dynamic framework for fall risk adds important aspects that may improve understanding of fall mechanisms, fall risk models, and the development of fall prevention interventions. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  8. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y W [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Zhang, L F [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Huang, J P [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China)

    2007-07-20

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property.

  9. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    International Nuclear Information System (INIS)

    Chen, Y W; Zhang, L F; Huang, J P

    2007-01-01

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property

  10. Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects

    International Nuclear Information System (INIS)

    Gupta, Santosh K.; Baishya, Srimanta

    2013-01-01

    A physically based analytical model for surface potential and threshold voltage including the fringing gate capacitances in cylindrical surround gate (CSG) MOSFETs has been developed. Based on this a subthreshold drain current model has also been derived. This model first computes the charge induced in the drain/source region due to the fringing capacitances and considers an effective charge distribution in the cylindrically extended source/drain region for the development of a simple and compact model. The fringing gate capacitances taken into account are outer fringe capacitance, inner fringe capacitance, overlap capacitance, and sidewall capacitance. The model has been verified with the data extracted from 3D TCAD simulations of CSG MOSFETs and was found to be working satisfactorily. (semiconductor devices)

  11. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio

    2016-01-01

    This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...... of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind...

  12. Including Effects of Water Stress on Dead Organic Matter Decay to a Forest Carbon Model

    Science.gov (United States)

    Kim, H.; Lee, J.; Han, S. H.; Kim, S.; Son, Y.

    2017-12-01

    Decay of dead organic matter is a key process of carbon (C) cycling in forest ecosystems. The change in decay rate depends on temperature sensitivity and moisture conditions. The Forest Biomass and Dead organic matter Carbon (FBDC) model includes a decay sub-model considering temperature sensitivity, yet does not consider moisture conditions as drivers of the decay rate change. This study aimed to improve the FBDC model by including a water stress function to the decay sub-model. Also, soil C sequestration under climate change with the FBDC model including the water stress function was simulated. The water stress functions were determined with data from decomposition study on Quercus variabilis forests and Pinus densiflora forests of Korea, and adjustment parameters of the functions were determined for both species. The water stress functions were based on the ratio of precipitation to potential evapotranspiration. Including the water stress function increased the explained variances of the decay rate by 19% for the Q. variabilis forests and 7% for the P. densiflora forests, respectively. The increase of the explained variances resulted from large difference in temperature range and precipitation range across the decomposition study plots. During the period of experiment, the mean annual temperature range was less than 3°C, while the annual precipitation ranged from 720mm to 1466mm. Application of the water stress functions to the FBDC model constrained increasing trend of temperature sensitivity under climate change, and thus increased the model-estimated soil C sequestration (Mg C ha-1) by 6.6 for the Q. variabilis forests and by 3.1 for the P. densiflora forests, respectively. The addition of water stress functions increased reliability of the decay rate estimation and could contribute to reducing the bias in estimating soil C sequestration under varying moisture condition. Acknowledgement: This study was supported by Korea Forest Service (2017044B10-1719-BB01)

  13. Including an ocean carbon cycle model into iLOVECLIM (v1.0)

    NARCIS (Netherlands)

    Bouttes, N.; Roche, D.M.V.A.P.; Mariotti, V.; Bopp, L.

    2015-01-01

    The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a

  14. The Model of the Software Running on a Computer Equipment Hardware Included in the Grid network

    Directory of Open Access Journals (Sweden)

    T. A. Mityushkina

    2012-12-01

    Full Text Available A new approach to building a cloud computing environment using Grid networks is proposed in this paper. The authors describe the functional capabilities, algorithm, model of software running on a computer equipment hardware included in the Grid network, that will allow to implement cloud computing environment using Grid technologies.

  15. Why explicit gluonic components are needed in multiquark wave functions

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1982-03-01

    Constituent quark models with nontrivial correlations between color and space and no explicit description of the gluon degrees of freedom are inconsistent with local color gauge invariance. The screening by gluons of local color density in the quark sector must be included in treatments of long range forces in multiquark states. Neglect of gauge invariance and screening leads to erroneous predictions like unobserved Van der Weals forces and unobserved ''baryonium'' states with localized color. (author)

  16. Children and adolescents' internal models of food-sharing behavior include complex evaluations of contextual factors.

    Science.gov (United States)

    Markovits, Henry; Benenson, Joyce F; Kramer, Donald L

    2003-01-01

    This study examined internal representations of food sharing in 589 children and adolescents (8-19 years of age). Questionnaires, depicting a variety of contexts in which one person was asked to share a resource with another, were used to examine participants' expectations of food-sharing behavior. Factors that were varied included the value of the resource, the relation between the two depicted actors, the quality of this relation, and gender. Results indicate that internal models of food-sharing behavior showed systematic patterns of variation, demonstrating that individuals have complex contextually based internal models at all ages, including the youngest. Examination of developmental changes in use of individual patterns is consistent with the idea that internal models reflect age-specific patterns of interactions while undergoing a process of progressive consolidation.

  17. Observational constraint on the interacting dark energy models including the Sandage-Loeb test

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2014-05-01

    Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational data (OHD), cosmic microwave background shift parameter, and the secular Sandage-Loeb (SL) test. In the investigation, we have used two sets of parameter priors including WMAP-9 and Planck 2013. They have shown some interesting differences. We find that the inclusion of SL test can obviously provide a more stringent constraint on the parameters in both models. For the constant coupling model, the interaction term has been improved to be only a half of the original scale on corresponding errors. Comparing with only SNIa and OHD, we find that the inclusion of the SL test almost reduces the best-fit interaction to zero, which indicates that the higher-redshift observation including the SL test is necessary to track the evolution of the interaction. For the varying coupling model, data with the inclusion of the SL test show that the parameter at C.L. in Planck priors is , where the constant is characteristic for the severity of the coincidence problem. This indicates that the coincidence problem will be less severe. We then reconstruct the interaction , and we find that the best-fit interaction is also negative, similar to the constant coupling model. However, for a high redshift, the interaction generally vanishes at infinity. We also find that the phantom-like dark energy with is favored over the CDM model.

  18. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    Directory of Open Access Journals (Sweden)

    M. Proksch

    2015-08-01

    Full Text Available The Microwave Emission Model of Layered Snowpacks (MEMLS was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  19. Safe distance car-following model including backward-looking and its stability analysis

    Science.gov (United States)

    Yang, Da; Jin, Peter Jing; Pu, Yun; Ran, Bin

    2013-03-01

    The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps' model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps' safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.

  20. An imprecise Dirichlet model for Bayesian analysis of failure data including right-censored observations

    International Nuclear Information System (INIS)

    Coolen, F.P.A.

    1997-01-01

    This paper is intended to make researchers in reliability theory aware of a recently introduced Bayesian model with imprecise prior distributions for statistical inference on failure data, that can also be considered as a robust Bayesian model. The model consists of a multinomial distribution with Dirichlet priors, making the approach basically nonparametric. New results for the model are presented, related to right-censored observations, where estimation based on this model is closely related to the product-limit estimator, which is an important statistical method to deal with reliability or survival data including right-censored observations. As for the product-limit estimator, the model considered in this paper aims at not using any information other than that provided by observed data, but our model fits into the robust Bayesian context which has the advantage that all inferences can be based on probabilities or expectations, or bounds for probabilities or expectations. The model uses a finite partition of the time-axis, and as such it is also related to life-tables

  1. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  2. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  3. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  4. A New Circuit Model for Spin-Torque Oscillator Including Perpendicular Torque of Magnetic Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Hyein Lim

    2013-01-01

    Full Text Available Spin-torque oscillator (STO is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model.

  5. Fuzzy Control of Yaw and Roll Angles of a Simulated Helicopter Model Includes Articulated Manipulators

    Directory of Open Access Journals (Sweden)

    Hossein Sadegh Lafmejani

    2015-09-01

    Full Text Available Fuzzy logic controller (FLC is a heuristic method by If-Then Rules which resembles human intelligence and it is a good method for designing Non-linear control systems. In this paper, an arbitrary helicopter model includes articulated manipulators has been simulated with Matlab SimMechanics toolbox. Due to the difficulties of modeling this complex system, a fuzzy controller with simple fuzzy rules has been designed for its yaw and roll angles in order to stabilize the helicopter while it is in the presence of disturbances or its manipulators are moving for a task. Results reveal that a simple FLC can appropriately control this system.

  6. A roller chain drive model including contact with guide-bars

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard; Hansen, John Michael; Ambrósio, J. A. C.

    2004-01-01

    A model of a roller chain drive is developed and applied to the simulation and analysis of roller chain drives of large marine diesel engines. The model includes the impact with guide-bars that are the motion delimiter components on the chain strands between the sprockets. The main components...... and the sprocket centre, i.e. a constraint is added when such distance is less than the pitch radius. The unilateral kinematic constraint is removed when its associated constraint reaction force, applied on the roller, is in the direction of the root of the sprocket teeth. In order to improve the numerical...

  7. TS Fuzzy Model-Based Controller Design for a Class of Nonlinear Systems Including Nonsmooth Functions

    DEFF Research Database (Denmark)

    Vafamand, Navid; Asemani, Mohammad Hassan; Khayatiyan, Alireza

    2018-01-01

    This paper proposes a novel robust controller design for a class of nonlinear systems including hard nonlinearity functions. The proposed approach is based on Takagi-Sugeno (TS) fuzzy modeling, nonquadratic Lyapunov function, and nonparallel distributed compensation scheme. In this paper, a novel...... criterion, new robust controller design conditions in terms of linear matrix inequalities are derived. Three practical case studies, electric power steering system, a helicopter model and servo-mechanical system, are presented to demonstrate the importance of such class of nonlinear systems comprising...

  8. Validation of lumbar spine loading from a musculoskeletal model including the lower limbs and lumbar spine.

    Science.gov (United States)

    Actis, Jason A; Honegger, Jasmin D; Gates, Deanna H; Petrella, Anthony J; Nolasco, Luis A; Silverman, Anne K

    2018-02-08

    Low back mechanics are important to quantify to study injury, pain and disability. As in vivo forces are difficult to measure directly, modeling approaches are commonly used to estimate these forces. Validation of model estimates is critical to gain confidence in modeling results across populations of interest, such as people with lower-limb amputation. Motion capture, ground reaction force and electromyographic data were collected from ten participants without an amputation (five male/five female) and five participants with a unilateral transtibial amputation (four male/one female) during trunk-pelvis range of motion trials in flexion/extension, lateral bending and axial rotation. A musculoskeletal model with a detailed lumbar spine and the legs including 294 muscles was used to predict L4-L5 loading and muscle activations using static optimization. Model estimates of L4-L5 intervertebral joint loading were compared to measured intradiscal pressures from the literature and muscle activations were compared to electromyographic signals. Model loading estimates were only significantly different from experimental measurements during trunk extension for males without an amputation and for people with an amputation, which may suggest a greater portion of L4-L5 axial load transfer through the facet joints, as facet loads are not captured by intradiscal pressure transducers. Pressure estimates between the model and previous work were not significantly different for flexion, lateral bending or axial rotation. Timing of model-estimated muscle activations compared well with electromyographic activity of the lumbar paraspinals and upper erector spinae. Validated estimates of low back loading can increase the applicability of musculoskeletal models to clinical diagnosis and treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects

    Directory of Open Access Journals (Sweden)

    P. Anandan

    2014-01-01

    Full Text Available Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resistance shows significant improvement as the channel length decreases. The effects of thermal noise including self-heating of the device are explored. Moreover, significant reduction in noise with respect to channel thermal resistance, gate length, and biasing is analyzed.

  10. Model for safety reports including descriptive examples; Mall foer saekerhetsrapporter med beskrivande exempel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository.

  11. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  12. Collisional-radiative model including recombination processes for W27+ ion★

    Science.gov (United States)

    Murakami, Izumi; Sasaki, Akira; Kato, Daiji; Koike, Fumihiro

    2017-10-01

    We have constructed a collisional-radiative (CR) model for W27+ ions including 226 configurations with n ≤ 9 and ł ≤ 5 for spectroscopic diagnostics. We newly include recombination processes in the model and this is the first result of extreme ultraviolet spectrum calculated for recombining plasma component. Calculated spectra in 40-70 Å range in ionizing and recombining plasma components show similar 3 strong lines and 1 line weak in recombining plasma component at 45-50 Å and many weak lines at 50-65 Å for both components. Recombination processes do not contribute much to the spectrum at around 60 Å for W27+ ion. Dielectronic satellite lines are also minor contribution to the spectrum of recombining plasma component. Dielectronic recombination (DR) rate coefficient from W28+ to W27+ ions is also calculated with the same atomic data in the CR model. We found that larger set of energy levels including many autoionizing states gave larger DR rate coefficients but our rate agree within factor 6 with other works at electron temperature around 1 keV in which W27+ and W28+ ions are usually observed in plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.

  13. How to include frequency dependent complex permeability Into SPICE models to improve EMI filters design?

    Science.gov (United States)

    Sixdenier, Fabien; Yade, Ousseynou; Martin, Christian; Bréard, Arnaud; Vollaire, Christian

    2018-05-01

    Electromagnetic interference (EMI) filters design is a rather difficult task where engineers have to choose adequate magnetic materials, design the magnetic circuit and choose the size and number of turns. The final design must achieve the attenuation requirements (constraints) and has to be as compact as possible (goal). Alternating current (AC) analysis is a powerful tool to predict global impedance or attenuation of any filter. However, AC analysis are generally performed without taking into account the frequency-dependent complex permeability behaviour of soft magnetic materials. That's why, we developed two frequency-dependent complex permeability models able to be included into SPICE models. After an identification process, the performances of each model are compared to measurements made on a realistic EMI filter prototype in common mode (CM) and differential mode (DM) to see the benefit of the approach. Simulation results are in good agreement with the measured ones especially in the middle frequency range.

  14. RELAP5-3D Code Includes ATHENA Features and Models

    International Nuclear Information System (INIS)

    Riemke, Richard A.; Davis, Cliff B.; Schultz, Richard R.

    2006-01-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, SF 6 , xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5-3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper. (authors)

  15. Double-gate junctionless transistor model including short-channel effects

    International Nuclear Information System (INIS)

    Paz, B C; Pavanello, M A; Ávila-Herrera, F; Cerdeira, A

    2015-01-01

    This work presents a physically based model for double-gate junctionless transistors (JLTs), continuous in all operation regimes. To describe short-channel transistors, short-channel effects (SCEs), such as increase of the channel potential due to drain bias, carrier velocity saturation and mobility degradation due to vertical and longitudinal electric fields, are included in a previous model developed for long-channel double-gate JLTs. To validate the model, an analysis is made by using three-dimensional numerical simulations performed in a Sentaurus Device Simulator from Synopsys. Different doping concentrations, channel widths and channel lengths are considered in this work. Besides that, the series resistance influence is numerically included and validated for a wide range of source and drain extensions. In order to check if the SCEs are appropriately described, besides drain current, transconductance and output conductance characteristics, the following parameters are analyzed to demonstrate the good agreement between model and simulation and the SCEs occurrence in this technology: threshold voltage (V TH ), subthreshold slope (S) and drain induced barrier lowering. (paper)

  16. Refitting density dependent relativistic model parameters including Center-of-Mass corrections

    International Nuclear Information System (INIS)

    Avancini, Sidney S.; Marinelli, Jose R.; Carlson, Brett Vern

    2011-01-01

    Full text: Relativistic mean field models have become a standard approach for precise nuclear structure calculations. After the seminal work of Serot and Walecka, which introduced a model Lagrangian density where the nucleons interact through the exchange of scalar and vector mesons, several models were obtained through its generalization, including other meson degrees of freedom, non-linear meson interactions, meson-meson interactions, etc. More recently density dependent coupling constants were incorporated into the Walecka-like models, which are then extensively used. In particular, for these models a connection with the density functional theory can be established. Due to the inherent difficulties presented by field theoretical models, only the mean field approximation is used for the solution of these models. In order to calculate finite nuclei properties in the mean field approximation, a reference set has to be fixed and therefore the translational symmetry is violated. It is well known that in such case spurious effects due to the center-of-mass (COM) motion are present, which are more pronounced for light nuclei. In a previous work we have proposed a technique based on the Pierls-Yoccoz projection operator applied to the mean-field relativistic solution, in order to project out spurious COM contributions. In this work we obtain a new fitting for the density dependent parameters of a density dependent hadronic model, taking into account the COM corrections. Our fitting is obtained taking into account the charge radii and binding energies for He 4 , O 16 , Ca 40 , Ca 48 , Ni 56 , Ni 68 , Sn 100 , Sn 132 and Pb 208 . We show that the nuclear observables calculated using our fit are of a quality comparable to others that can be found in the literature, with the advantage that now a translational invariant many-body wave function is at our disposal. (author)

  17. Including policy and management in socio-hydrology models: initial conceptualizations

    Science.gov (United States)

    Hermans, Leon; Korbee, Dorien

    2017-04-01

    Socio-hydrology studies the interactions in coupled human-water systems. So far, the use of dynamic models that capture the direct feedback between societal and hydrological systems has been dominant. What has not yet been included with any particular emphasis, is the policy or management layer, which is a central element in for instance integrated water resources management (IWRM) or adaptive delta management (ADM). Studying the direct interactions between human-water systems generates knowledges that eventually helps influence these interactions in ways that may ensure better outcomes - for society and for the health and sustainability of water systems. This influence sometimes occurs through spontaneous emergence, uncoordinated by societal agents - private sector, citizens, consumers, water users. However, the term 'management' in IWRM and ADM also implies an additional coordinated attempt through various public actors. This contribution is a call to include the policy and management dimension more prominently into the research focus of the socio-hydrology field, and offers first conceptual variables that should be considered in attempts to include this policy or management layer in socio-hydrology models. This is done by drawing on existing frameworks to study policy processes throughout both planning and implementation phases. These include frameworks such as the advocacy coalition framework, collective learning and policy arrangements, which all emphasis longer-term dynamics and feedbacks between actor coalitions in strategic planning and implementation processes. A case about longter-term dynamics in the management of the Haringvliet in the Netherlands is used to illustrate the paper.

  18. The Role of Explicit and Implicit Self-Esteem in Peer Modeling of Palatable Food Intake: A Study on Social Media Interaction among Youngsters

    NARCIS (Netherlands)

    Bevelander, K.E.; Anschutz, D.J.; Creemers, D.H.M.; Kleinjan, M.; Engels, R.C.M.E.

    2013-01-01

    Objective: This experimental study investigated the impact of peers on palatable food intake of youngsters within a social media setting. To determine whether this effect was moderated by self-esteem, the present study examined the roles of global explicit self-esteem (ESE), body esteem (BE) and

  19. SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM

    Science.gov (United States)

    Porod, W.; Staub, F.

    2012-11-01

    We describe recent extensions of the program SPhenoincluding flavour aspects, CP-phases, R-parity violation and low energy observables. In case of flavour mixing all masses of supersymmetric particles are calculated including the complete flavour structure and all possible CP-phases at the 1-loop level. We give details on implemented seesaw models, low energy observables and the corresponding extension of the SUSY Les Houches Accord. Moreover, we comment on the possibilities to include MSSM extensions in SPheno. Catalogue identifier: ADRV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRV_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154062 No. of bytes in distributed program, including test data, etc.: 1336037 Distribution format: tar.gz Programming language: Fortran95. Computer: PC running under Linux, should run in every Unix environment. Operating system: Linux, Unix. Classification: 11.6. Catalogue identifier of previous version: ADRV_v1_0 Journal reference of previous version: Comput. Phys. Comm. 153(2003)275 Does the new version supersede the previous version?: Yes Nature of problem: The first issue is the determination of the masses and couplings of supersymmetric particles in various supersymmetric models, the R-parity conserved MSSM with generation mixing and including CP-violating phases, various seesaw extensions of the MSSM and the MSSM with bilinear R-parity breaking. Low energy data on Standard Model fermion masses, gauge couplings and electroweak gauge boson masses serve as constraints. Radiative corrections from supersymmetric particles to these inputs must be calculated. Theoretical constraints on the soft SUSY breaking parameters from a high scale theory are imposed and the parameters at the electroweak scale are obtained from the

  20. Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2015-11-01

    The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with

  1. Modeling of in-vessel fission product release including fuel morphology effects for severe accident analyses

    International Nuclear Information System (INIS)

    Suh, K.Y.

    1989-10-01

    A new in-vessel fission product release model has been developed and implemented to perform best-estimate calculations of realistic source terms including fuel morphology effects. The proposed bulk mass transfer correlation determines the product of fission product release and equiaxed grain size as a function of the inverse fuel temperature. The model accounts for the fuel-cladding interaction over the temperature range between 770 K and 3000 K in the steam environment. A separate driver has been developed for the in-vessel thermal hydraulic and fission product behavior models that were developed by the Department of Energy for the Modular Accident Analysis Package (MAAP). Calculational results of these models have been compared to the results of the Power Burst Facility Severe Fuel Damage tests. The code predictions utilizing the mass transfer correlation agreed with the experimentally determined fractional release rates during the course of the heatup, power hold, and cooldown phases of the high temperature transients. Compared to such conventional literature correlations as the steam oxidation model and the NUREG-0956 correlation, the mass transfer correlation resulted in lower and less rapid releases in closer agreement with the on-line and grab sample data from the Severe Fuel Damage tests. The proposed mass transfer correlation can be applied for best-estimate calculations of fission products release from the UO 2 fuel in both nominal and severe accident conditions. 15 refs., 10 figs., 2 tabs

  2. Health Promotion Behavior of Chinese International Students in Korea Including Acculturation Factors: A Structural Equation Model.

    Science.gov (United States)

    Kim, Sun Jung; Yoo, Il Young

    2016-03-01

    The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.

  3. Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase.

    Science.gov (United States)

    Zhang, Hai-Mei; Chen, Shi-Lu

    2015-06-09

    The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.

  4. S5-4: Formal Modeling of Affordance in Human-Included Systems

    Directory of Open Access Journals (Sweden)

    Namhun Kim

    2012-10-01

    Full Text Available In spite of it being necessary for humans to consider modeling, analysis, and control of human-included systems, it has been considered a challenging problem because of the critical role of humans in complex systems and of humans' capability of executing unanticipated actions–both beneficial and detrimental ones. Thus, to provide systematic approaches to modeling human actions as a part of system behaviors, a formal modeling framework for human-involved systems in which humans play a controlling role based on their perceptual information is presented. The theory of affordance provides definitions of human actions and their associated properties; Finite State Automata (FSA based modeling is capable of mapping nondeterministic humans into computable components in the system representation. In this talk, we investigate the role of perception in human actions in the system operation and examine the representation of perceptual elements in affordance-based modeling formalism. The proposed framework is expected to capture the natural ways in which humans participate in the system as part of its operation. A human-machine cooperative manufacturing system control example and a human agent simulation example will be introduced for the illustrative purposes at the end of the presentation.

  5. Statistical methodology for discrete fracture model - including fracture size, orientation uncertainty together with intensity uncertainty and variability

    International Nuclear Information System (INIS)

    Darcel, C.; Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O.

    2009-11-01

    starting point we built Statistical Fracture Domains whose significance rely exclusively on fracturing statistics, not including explicitly the current Fracture Domains or closeness between one borehole section or the other. Theoretical developments are proposed in order to incorporate the orientation uncertainty and the fracturing variability into a resulting parent distribution density uncertainty. When applied to both sites, it comes that variability prevails in front of uncertainty, thus validating the good level of data accuracy. Moreover, this allows to define a possible range of variation around the mean values of densities. Finally a sorting algorithm is developed for providing, from the initial elementary bricks mentioned above, a division of a site into Statistical Fracture Domains whose internal variability is reduced. The systematic comparison is based on the division of the datasets according to several densities referring to a division of the orientations into 13 subsets (pole zones). The first application of the methodology shows that some main trends can be defined for the orientation/density distributions throughout the site, which are combined with a high level of overlapping. Moreover the final Statistical Fracture Domain definition differ from the Fracture Domains existing at the site. The SFD are an objective comparison of statistical fracturing properties. Several perspectives are proposed in order to bridge the gap between constraints brought by a relevant statistical modeling and modeling specificities of the SKB sites and more generally conditions inherent to geological models

  6. Prediction of phase equilibrium for gas hydrate in the presence of organic inhibitors and electrolytes by using an explicit pressure-dependent Langmuir adsorption constant in the van der Waals–Platteeuw model

    International Nuclear Information System (INIS)

    Chin, Huai-Ying; Hsieh, Min-Kang; Chen, Yan-Ping; Chen, Po-Chun; Lin, Shiang-Tai; Chen, Li-Jen

    2013-01-01

    Highlights: • The hydrate phase is described by the van der Waals and Platteeuw model. • An explicit pressure-dependent Langmuir adsorption constant is used in our model. • Phase behavior of gas hydrates with organic inhibitors and electrolytes predicted. • Our model well predicts phase behavior of gas hydrates at high pressures. -- Abstract: A new approach is developed for the prediction of the melting curve of gas hydrate with single or multiple additives, including organic inhibitors and electrolytes. This is made possible by combining a predictive equation of state for the fluid phase, the Peng–Robinson–Stryjek–Vera equation of state (PRSV EoS) combined with the COSMO-SAC activity coefficient model through the first order modified Huron–Vidal (MHV1) mixing rule, and a modified van der Waals–Platteeuw model for the hydrate phase. We have examined this method for the change of the melting condition of gas hydrate upon addition of single organic inhibitor, single electrolyte, and a mixture of organic and electrolyte. The absolute average relative deviation in temperature (AARD-T) for these three types of systems are 0.79% (695 data points, T from 230.2 K to 294.0 K, P from 0.10 MPa to 33.9 MPa), 0.16% (810 data points, T from 259.5 K to 299.1 K, P from 0.13 MPa to 71.56 MPa), and 1.56% (316 data points, T from 248.2 K to 292.9 K, P from 0.90 MPa to 73.28 MPa), respectively. We believe that the proposed model is useful for the exploitation of natural or synthetic gas hydrates with multiple additives

  7. CDPOP: A spatially explicit cost distance population genetics program

    Science.gov (United States)

    Erin L. Landguth; S. A. Cushman

    2010-01-01

    Spatially explicit simulation of gene flow in complex landscapes is essential to explain observed population responses and provide a foundation for landscape genetics. To address this need, we wrote a spatially explicit, individual-based population genetics model (CDPOP). The model implements individual-based population modelling with Mendelian inheritance and k-allele...

  8. Impact of including surface currents on simulation of Indian Ocean variability with the POAMA coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mei; Wang, Guomin; Hendon, Harry H.; Alves, Oscar [Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne (Australia)

    2011-04-15

    Impacts on the coupled variability of the Indo-Pacific by including the effects of surface currents on surface stress are explored in four extended integrations of an experimental version of the Bureau of Meteorology's coupled seasonal forecast model POAMA. The first pair of simulations differs only in their treatment of momentum coupling: one version includes the effects of surface currents on the surface stress computation and the other does not. The version that includes the effect of surface currents has less mean-state bias in the equatorial Pacific cold tongue but produces relatively weak coupled variability in the Tropics, especially that related to the Indian Ocean dipole (IOD) and El Nino/Southern Oscillation (ENSO). The version without the effects of surface currents has greater bias in the Pacific cold tongue but stronger IOD and ENSO variability. In order to diagnose the role of changes in local coupling from changes in remote forcing by ENSO for causing changes in IOD variability, a second set of simulations is conducted where effects of surface currents are included only in the Indian Ocean and only in the Pacific Ocean. IOD variability is found to be equally reduced by inclusion of the local effects of surface currents in the Indian Ocean and by the reduction of ENSO variability as a result of including effects of surface currents in the Pacific. Some implications of these results for predictability of the IOD and its dependence on ENSO, and for ocean subsurface data assimilation are discussed. (orig.)

  9. Implicit, explicit and speculative knowledge

    NARCIS (Netherlands)

    van Ditmarsch, H.; French, T.; Velázquez-Quesada, F.R.; Wáng, Y.N.

    We compare different epistemic notions in the presence of awareness of propositional variables: the logic of implicit knowledge (in which explicit knowledge is definable), the logic of explicit knowledge, and the logic of speculative knowledge. Speculative knowledge is a novel epistemic notion that

  10. Implicit and explicit ethnocentrism: revisiting the ideologies of prejudice.

    Science.gov (United States)

    Cunningham, William A; Nezlek, John B; Banaji, Mahzarin R

    2004-10-01

    Two studies investigated relationships among individual differences in implicit and explicit prejudice, right-wing ideology, and rigidity in thinking. The first study examined these relationships focusing on White Americans' prejudice toward Black Americans. The second study provided the first test of implicit ethnocentrism and its relationship to explicit ethnocentrism by studying the relationship between attitudes toward five social groups. Factor analyses found support for both implicit and explicit ethnocentrism. In both studies, mean explicit attitudes toward out groups were positive, whereas implicit attitudes were negative, suggesting that implicit and explicit prejudices are distinct; however, in both studies, implicit and explicit attitudes were related (r = .37, .47). Latent variable modeling indicates a simple structure within this ethnocentric system, with variables organized in order of specificity. These results lead to the conclusion that (a) implicit ethnocentrism exists and (b) it is related to and distinct from explicit ethnocentrism.

  11. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 3; Material Model Development and Simulation of Experiments

    Science.gov (United States)

    Simmons, J.; Erlich, D.; Shockey, D.

    2009-01-01

    A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.

  12. A new model for including the effect of fly ash on biochemical methane potential.

    Science.gov (United States)

    Gertner, Pablo; Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna

    2017-10-01

    The modelling of the effect of trace elements on anaerobic digestion, and specifically the effect of fly ash, has been scarcely studied. Thus, the present work was aimed at the development of a new function that allows accumulated methane models to predict the effect of FA on the volume of methane accumulation. For this, purpose five fly ash concentrations (10, 25, 50, 250 and 500mg/L) using raw and pre-treated sewage sludge were used to calibrate the new function, while three fly ash concentrations were used (40, 150 and 350mg/L) for validation. Three models for accumulated methane volume (the modified Gompertz equation, the logistic function, and the transfer function) were evaluated. The results showed that methane production increased in the presence of FA when the sewage sludge was not pre-treated, while with pretreated sludge there is inhibition of methane production at FA concentrations higher than 50mg/L. In the calibration of the proposed function, it fits well with the experimental data under all the conditions, including the inhibition and stimulating zones, with the values of the parameters of the methane production models falling in the range of those reported in the literature. For validation experiments, the model succeeded in representing the behavior of new experiments in both the stimulating and inhibiting zones, with NRMSE and R 2 ranging from 0.3577 to 0.03714 and 0.2209 to 0.9911, respectively. Thus, the proposed model is robust and valid for the studied conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Models of epidemics: when contact repetition and clustering should be included

    Directory of Open Access Journals (Sweden)

    Scholz Roland W

    2009-06-01

    Full Text Available Abstract Background The spread of infectious disease is determined by biological factors, e.g. the duration of the infectious period, and social factors, e.g. the arrangement of potentially contagious contacts. Repetitiveness and clustering of contacts are known to be relevant factors influencing the transmission of droplet or contact transmitted diseases. However, we do not yet completely know under what conditions repetitiveness and clustering should be included for realistically modelling disease spread. Methods We compare two different types of individual-based models: One assumes random mixing without repetition of contacts, whereas the other assumes that the same contacts repeat day-by-day. The latter exists in two variants, with and without clustering. We systematically test and compare how the total size of an outbreak differs between these model types depending on the key parameters transmission probability, number of contacts per day, duration of the infectious period, different levels of clustering and varying proportions of repetitive contacts. Results The simulation runs under different parameter constellations provide the following results: The difference between both model types is highest for low numbers of contacts per day and low transmission probabilities. The number of contacts and the transmission probability have a higher influence on this difference than the duration of the infectious period. Even when only minor parts of the daily contacts are repetitive and clustered can there be relevant differences compared to a purely random mixing model. Conclusion We show that random mixing models provide acceptable estimates of the total outbreak size if the number of contacts per day is high or if the per-contact transmission probability is high, as seen in typical childhood diseases such as measles. In the case of very short infectious periods, for instance, as in Norovirus, models assuming repeating contacts will also behave

  14. Particle-based modeling of heterogeneous chemical kinetics including mass transfer

    Science.gov (United States)

    Sengar, A.; Kuipers, J. A. M.; van Santen, Rutger A.; Padding, J. T.

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  15. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  16. Particle-based modeling of heterogeneous chemical kinetics including mass transfer.

    Science.gov (United States)

    Sengar, A; Kuipers, J A M; van Santen, Rutger A; Padding, J T

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  17. Effect of including decay chains on predictions of equilibrium-type terrestrial food chain models

    International Nuclear Information System (INIS)

    Kirchner, G.

    1990-01-01

    Equilibrium-type food chain models are commonly used for assessing the radiological impact to man from environmental releases of radionuclides. Usually these do not take into account build-up of radioactive decay products during environmental transport. This may be a potential source of underprediction. For estimating consequences of this simplification, the equations of an internationally recognised terrestrial food chain model have been extended to include decay chains of variable length. Example calculations show that for releases from light water reactors as expected both during routine operation and in the case of severe accidents, the build-up of decay products during environmental transport is generally of minor importance. However, a considerable number of radionuclides of potential radiological significance have been identified which show marked contributions of decay products to calculated contamination of human food and resulting radiation dose rates. (author)

  18. A temperature dependent cyclic plasticity model for hot work tool steel including particle coarsening

    Science.gov (United States)

    Jilg, Andreas; Seifert, Thomas

    2018-05-01

    Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material's yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.

  19. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics.

    Science.gov (United States)

    Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A

    2017-04-01

    In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  1. Empirical Validation of a Thermal Model of a Complex Roof Including Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Stéphane Guichard

    2015-12-01

    Full Text Available This paper deals with the empirical validation of a building thermal model of a complex roof including a phase change material (PCM. A mathematical model dedicated to PCMs based on the heat apparent capacity method was implemented in a multi-zone building simulation code, the aim being to increase the understanding of the thermal behavior of the whole building with PCM technologies. In order to empirically validate the model, the methodology is based both on numerical and experimental studies. A parametric sensitivity analysis was performed and a set of parameters of the thermal model has been identified for optimization. The use of the generic optimization program called GenOpt® coupled to the building simulation code enabled to determine the set of adequate parameters. We first present the empirical validation methodology and main results of previous work. We then give an overview of GenOpt® and its coupling with the building simulation code. Finally, once the optimization results are obtained, comparisons of the thermal predictions with measurements are found to be acceptable and are presented.

  2. Standardized Competencies for Parenteral Nutrition Order Review and Parenteral Nutrition Preparation, Including Compounding: The ASPEN Model.

    Science.gov (United States)

    Boullata, Joseph I; Holcombe, Beverly; Sacks, Gordon; Gervasio, Jane; Adams, Stephen C; Christensen, Michael; Durfee, Sharon; Ayers, Phil; Marshall, Neil; Guenter, Peggi

    2016-08-01

    Parenteral nutrition (PN) is a high-alert medication with a complex drug use process. Key steps in the process include the review of each PN prescription followed by the preparation of the formulation. The preparation step includes compounding the PN or activating a standardized commercially available PN product. The verification and review, as well as preparation of this complex therapy, require competency that may be determined by using a standardized process for pharmacists and for pharmacy technicians involved with PN. An American Society for Parenteral and Enteral Nutrition (ASPEN) standardized model for PN order review and PN preparation competencies is proposed based on a competency framework, the ASPEN-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines, and is intended for institutions and agencies to use with their staff. © 2016 American Society for Parenteral and Enteral Nutrition.

  3. Analytical and numerical modelling of thermoviscous shocks in their interactions in nonlinear fluids including dissipation

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich

    2010-01-01

    A wave equation, that governs finite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. The equation preserves the Hamiltonian structure of the fundamental fluid dynamical equations in the non dissipative limit. An exact...... thermoviscous shock solution is derived. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation, the model equation considered here is capable to describe waves propagating in opposite directions. Studies of head...

  4. A model for Huanglongbing spread between citrus plants including delay times and human intervention

    Science.gov (United States)

    Vilamiu, Raphael G. d'A.; Ternes, Sonia; Braga, Guilherme A.; Laranjeira, Francisco F.

    2012-09-01

    The objective of this work was to present a compartmental deterministic mathematical model for representing the dynamics of HLB disease in a citrus orchard, including delay in the disease's incubation phase in the plants, and a delay period on the nymphal stage of Diaphorina citri, the most important HLB insect vector in Brazil. Numerical simulations were performed to assess the possible impacts of human detection efficiency of symptomatic plants, as well as the influence of a long incubation period of HLB in the plant.

  5. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris population in central India

    Directory of Open Access Journals (Sweden)

    Mriganka Shekhar Sarkar

    2017-11-01

    Full Text Available Background Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals’ ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger (Panthera tigris, which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. Methods We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly’s selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D2 method and the Boyce index. Results There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory

  6. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD{sub 3}CN treated with a parallel multi-state EVB model

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, David R., E-mail: drglowacki@gmail.com [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Department of Computer Science, University of Bristol, Bristol BS8 1UB (United Kingdom); PULSE Institute and Department of Chemistry, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Orr-Ewing, Andrew J. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Harvey, Jeremy N. [Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee (Belgium)

    2015-07-28

    We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD{sub 3}CN → DF + CD{sub 2}CN reaction in CD{sub 3}CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD{sub 3}CN solvent, equilibrium power spectra of DF in CD{sub 3}CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol{sup −1} localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD{sub 3}CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational

  7. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India.

    Science.gov (United States)

    Sarkar, Mriganka Shekhar; Krishnamurthy, Ramesh; Johnson, Jeyaraj A; Sen, Subharanjan; Saha, Goutam Kumar

    2017-01-01

    Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals' ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger ( Panthera tigris ), which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly's selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D 2 method and the Boyce index. There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory and settled periods. Based on threshold limits

  8. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD3CN treated with a parallel multi-state EVB model.

    Science.gov (United States)

    Glowacki, David R; Orr-Ewing, Andrew J; Harvey, Jeremy N

    2015-07-28

    We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD3CN → DF + CD2CN reaction in CD3CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD3CN solvent, equilibrium power spectra of DF in CD3CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol(-1) localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD3CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational relaxation of the nascent DF results in a spectral

  9. Statistical methodology for discrete fracture model - including fracture size, orientation uncertainty together with intensity uncertainty and variability

    Energy Technology Data Exchange (ETDEWEB)

    Darcel, C. (Itasca Consultants SAS (France)); Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O. (Geosciences Rennes, UMR 6118 CNRS, Univ. def Rennes, Rennes (France))

    2009-11-15

    the lineament scale (k{sub t} = 2) on the other, addresses the issue of the nature of the transition. We develop a new 'mechanistic' model that could help in modeling why and where this transition can occur. The transition between both regimes would occur for a fracture length of 1-10 m and even at a smaller scale for the few outcrops that follow the self-similar density model. A consequence for the disposal issue is that the model that is likely to apply in the 'blind' scale window between 10-100 m is the self-similar model as it is defined for large-scale lineaments. The self-similar model, as it is measured for some outcrops and most lineament maps, is definitely worth being investigated as a reference for scales above 1-10 m. In the rest of the report, we develop a methodology for incorporating uncertainty and variability into the DFN modeling. Fracturing properties arise from complex processes which produce an intrinsic variability; characterizing this variability as an admissible variation of model parameter or as the division of the site into subdomains with distinct DFN models is a critical point of the modeling effort. Moreover, the DFN model encompasses a part of uncertainty, due to data inherent uncertainties and sampling limits. Both effects must be quantified and incorporated into the DFN site model definition process. In that context, all available borehole data including recording of fracture intercept positions, pole orientation and relative uncertainties are used as the basis for the methodological development and further site model assessment. An elementary dataset contains a set of discrete fracture intercepts from which a parent orientation/density distribution can be computed. The elementary bricks of the site, from which these initial parent density distributions are computed, rely on the former Single Hole Interpretation division of the boreholes into sections whose local boundaries are expected to reflect - locally - geology

  10. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    Science.gov (United States)

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  11. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS

    Science.gov (United States)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2010-12-01

    With 4 million ha currently grown for ethanol in Brazil only, approximately half the global bioethanol production in 2005 (Smeets 2008), and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Indeed, ethanol made from biomass is currently the most widespread option for alternative transportation fuels. It was originally promoted as a carbon neutral energy resource that could bring energy independence to countries and local opportunities to farmers, until attention was drawn to its environmental and socio-economical drawbacks. It is still not clear to which extent it is a solution or a contributor to climate change mitigation. Dynamic Global Vegetation models can help address these issues and quantify the potential impacts of biofuels on ecosystems at scales ranging from on-site to global. The global agro-ecosystem model ORCHIDEE describes water, carbon and energy exchanges at the soil-atmosphere interface for a limited number of natural and agricultural vegetation types. In order to integrate agricultural management to the simulations and to capture more accurately the specificity of crops' phenology, ORCHIDEE has been coupled with the agronomical model STICS. The resulting crop-oriented vegetation model ORCHIDEE-STICS has been used so far to simulate temperate crops such as wheat, corn and soybean. As a generic ecosystem model, each grid cell can include several vegetation types with their own phenology and management practices, making it suitable to spatial simulations. Here, ORCHIDEE-STICS is altered to include sugar cane as a new agricultural Plant functional Type, implemented and parametrized using the STICS approach. An on-site calibration and validation is then performed based on biomass and flux chamber measurements in several sites in Australia and variables such as LAI, dry weight, heat fluxes and respiration are used to evaluate the ability of the model to simulate the specific

  12. Web-accessible molecular modeling with Rosetta: The Rosetta Online Server that Includes Everyone (ROSIE).

    Science.gov (United States)

    Moretti, Rocco; Lyskov, Sergey; Das, Rhiju; Meiler, Jens; Gray, Jeffrey J

    2018-01-01

    The Rosetta molecular modeling software package provides a large number of experimentally validated tools for modeling and designing proteins, nucleic acids, and other biopolymers, with new protocols being added continually. While freely available to academic users, external usage is limited by the need for expertise in the Unix command line environment. To make Rosetta protocols available to a wider audience, we previously created a web server called Rosetta Online Server that Includes Everyone (ROSIE), which provides a common environment for hosting web-accessible Rosetta protocols. Here we describe a simplification of the ROSIE protocol specification format, one that permits easier implementation of Rosetta protocols. Whereas the previous format required creating multiple separate files in different locations, the new format allows specification of the protocol in a single file. This new, simplified protocol specification has more than doubled the number of Rosetta protocols available under ROSIE. These new applications include pK a determination, lipid accessibility calculation, ribonucleic acid redesign, protein-protein docking, protein-small molecule docking, symmetric docking, antibody docking, cyclic toxin docking, critical binding peptide determination, and mapping small molecule binding sites. ROSIE is freely available to academic users at http://rosie.rosettacommons.org. © 2017 The Protein Society.

  13. MHD model including small-scale perturbations in a plasma with temperature variations

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhailovskii, A.B.

    1996-01-01

    The possibility is studied of using a hydrodynamic model to describe a magnetized plasma with density and temperature variations on scales that are arbitrary with respect to the ion Larmor radius. It is shown that the inertial component of the transverse ion thermal flux should be taken into account. This component is found from the collisionless kinetic equation. It can also be obtained from the equations of the Grad type. A set of two-dimensional hydrodynamic equations for ions is obtained with this component taken into account. These equations are used to derive model hydrodynamic expressions for the density and temperature variations. It is shown that, for large-scale perturbations (when the wavelengths are longer than the ion Larmor radius), the expressions derived coincide with the corresponding kinetic expressions and, for perturbations on sub-Larmor scales (when the wavelengths are shorter than the Larmor radius), they agree qualitatively. Hydrodynamic dispersion relations are derived for several types of drift waves with arbitrary wavenumbers. The range of applicability of the MHD model is determined from a comparison of these dispersion relations with the kinetic ones. It is noted that, on the basis of results obtained, drift effects can be included in numerical MHD codes for studying plasma instabilities in high-temperature regimes in tokamaks

  14. Integrated Sachs-Wolfe effect in a quintessence cosmological model: Including anisotropic stress of dark energy

    International Nuclear Information System (INIS)

    Wang, Y. T.; Xu, L. X.; Gui, Y. X.

    2010-01-01

    In this paper, we investigate the integrated Sachs-Wolfe effect in the quintessence cold dark matter model with constant equation of state and constant speed of sound in dark energy rest frame, including dark energy perturbation and its anisotropic stress. Comparing with the ΛCDM model, we find that the integrated Sachs-Wolfe (ISW)-power spectrums are affected by different background evolutions and dark energy perturbation. As we change the speed of sound from 1 to 0 in the quintessence cold dark matter model with given state parameters, it is found that the inclusion of dark energy anisotropic stress makes the variation of magnitude of the ISW source uncertain due to the anticorrelation between the speed of sound and the ratio of dark energy density perturbation contrast to dark matter density perturbation contrast in the ISW-source term. Thus, the magnitude of the ISW-source term is governed by the competition between the alterant multiple of (1+3/2xc-circumflex s 2 ) and that of δ de /δ m with the variation of c-circumflex s 2 .

  15. A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE

    Directory of Open Access Journals (Sweden)

    Giuliana Zanchi

    2016-03-01

    Full Text Available The study presents a hydrology concept developed to include lateral water flow in the biogeochemical model ForSAFE. The hydrology concept was evaluated against data collected at Svartberget in the Vindeln Research Forest in Northern Sweden. The results show that the new concept allows simulation of a saturated and an unsaturated zone in the soil as well as water flow that reaches the stream comparable to measurements. The most relevant differences compared to streamflow measurements are that the model simulates a higher base flow in winter and lower flow peaks after snowmelt. These differences are mainly caused by the assumptions made to regulate the percolation at the bottom of the simulated soil columns. The capability for simulating lateral flows and a saturated zone in ForSAFE can greatly improve the simulation of chemical exchange in the soil and export of elements from the soil to watercourses. Such a model can help improve the understanding of how environmental changes in the forest landscape will influence chemical loads to surface waters.

  16. Modelling and control of a microgrid including photovoltaic and wind generation

    Science.gov (United States)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  17. A surplus production model including environmental effects: Application to the Senegalese white shrimp stocks

    Science.gov (United States)

    Thiaw, Modou; Gascuel, Didier; Jouffre, Didier; Thiaw, Omar Thiom

    2009-12-01

    In Senegal, two stocks of white shrimp ( Penaeusnotialis) are intensively exploited, one in the north and another in the south. We used surplus production models including environmental effects to analyse their changes in abundance over the past 10 years and to estimate their Maximum Sustainable Yield (MSY) and the related fishing effort ( EMSY). First, yearly abundance indices were estimated from commercial statistics using GLM techniques. Then, two environmental indices were alternatively tested in the model: the coastal upwelling intensity from wind speeds provided by the SeaWifs database and the primary production derived from satellite infrared images of chlorophyll a. Models were fitted, with or without the environmental effect, to the 1996-2005 time series. They express stock abundance and catches as functions of the fishing effort and the environmental index (when considered). For the northern stock, fishing effort and abundance fluctuate over the period without any clear trends. The model based on the upwelling index explains 64.9% of the year-to-year variability. It shows that the stock was slightly overexploited in 2002-2003 and is now close to full exploitation. Stock abundance strongly depends on environmental conditions; consequently, the MSY estimate varies from 300 to 900 tons according to the upwelling intensity. For the southern stock, fishing effort has strongly increased over the past 10 years, while abundance has been reduced 4-fold. The environment has a significant effect on abundance but only explains a small part of the year-to-year variability. The best fit is obtained using the primary production index ( R2 = 0.75), and the stock is now significantly overfished regardless of environmental conditions. MSY varies from 1200 to 1800 tons according to environmental conditions. Finally, in northern Senegal, the upwelling is highly variable from year to year and constitutes the major factor determining productivity. In the south, hydrodynamic

  18. 3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

    International Nuclear Information System (INIS)

    Pupurs, A; Varna, J

    2012-01-01

    Fiber/matrix interface debond growth is one of the main mechanisms of damage evolution in unidirectional (UD) polymer composites. Because for polymer composites the fiber strain to failure is smaller than for the matrix multiple fiber breaks occur at random positions when high mechanical stress is applied to the composite. The energy released due to each fiber break is usually larger than necessary for the creation of a fiber break therefore a partial debonding of fiber/matrix interface is typically observed. Thus the stiffness reduction of UD composite is contributed both from the fiber breaks and from the interface debonds. The aim of this paper is to analyze the debond growth in carbon fiber/epoxy and glass fiber/epoxy UD composites using fracture mechanics principles by calculation of energy release rate G II . A 3-D FEM model is developed for calculation of energy release rate for fiber/matrix interface debonds at different locations in the composite including the composite surface region where the stress state differs from the one in the bulk composite. In the model individual partially debonded fiber is surrounded by matrix region and embedded in a homogenized composite.

  19. Challenges of including nitrogen effects on decomposition in earth system models

    Science.gov (United States)

    Hobbie, S. E.

    2011-12-01

    Despite the importance of litter decomposition for ecosystem fertility and carbon balance, key uncertainties remain about how this fundamental process is affected by nitrogen (N) availability. Nevertheless, resolving such uncertainties is critical for mechanistic inclusion of such processes in earth system models, towards predicting the ecosystem consequences of increased anthropogenic reactive N. Towards that end, we have conducted a series of experiments examining nitrogen effects on litter decomposition. We found that both substrate N and externally supplied N (regardless of form) accelerated the initial decomposition rate. Faster initial decomposition rates were linked to the higher activity of carbohydrate-degrading enzymes associated with externally supplied N and the greater relative abundances of Gram negative and Gram positive bacteria associated with green leaves and externally supplied organic N (assessed using phospholipid fatty acid analysis, PLFA). By contrast, later in decomposition, externally supplied N slowed decomposition, increasing the fraction of slowly decomposing litter and reducing lignin-degrading enzyme activity and relative abundances of Gram negative and Gram positive bacteria. Our results suggest that elevated atmospheric N deposition may have contrasting effects on the dynamics of different soil carbon pools, decreasing mean residence times of active fractions comprising very fresh litter, while increasing those of more slowly decomposing fractions including more processed litter. Incorporating these contrasting effects of N on decomposition processes into models is complicated by lingering uncertainties about how these effects generalize across ecosystems and substrates.

  20. Exergoeconomic performance optimization for a steady-flow endoreversible refrigeration model including six typical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingen; Kan, Xuxian; Sun, Fengrui; Wu, Feng [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2013-07-01

    The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate) and the utilization factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.

  1. High performance computation of landscape genomic models including local indicators of spatial association.

    Science.gov (United States)

    Stucki, S; Orozco-terWengel, P; Forester, B R; Duruz, S; Colli, L; Masembe, C; Negrini, R; Landguth, E; Jones, M R; Bruford, M W; Taberlet, P; Joost, S

    2017-09-01

    With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. samβada identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an F ST outlier method (FDIST approach in arlequin) and compare their results. samβada - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  2. CFD simulations and reduced order modeling of a refrigerator compartment including radiation effects

    International Nuclear Information System (INIS)

    Bayer, Ozgur; Oskay, Ruknettin; Paksoy, Akin; Aradag, Selin

    2013-01-01

    Highlights: ► Free convection in a refrigerator is simulated including radiation effects. ► Heat rates are affected drastically when radiation effects are considered. ► 95% of the flow energy can be represented by using one spatial POD mode. - Abstract: Considering the engineering problem of natural convection in domestic refrigerator applications, this study aims to simulate the fluid flow and temperature distribution in a single commercial refrigerator compartment by using the experimentally determined temperature values as the specified constant wall temperature boundary conditions. The free convection in refrigerator applications is evaluated as a three-dimensional (3D), turbulent, transient and coupled non-linear flow problem. Radiation heat transfer mode is also included in the analysis. According to the results, taking radiation effects into consideration does not change the temperature distribution inside the refrigerator significantly; however the heat rates are affected drastically. The flow inside the compartment is further analyzed with a reduced order modeling method called Proper Orthogonal Decomposition (POD) and the energy contents of several spatial and temporal modes that exist in the flow are examined. The results show that approximately 95% of all the flow energy can be represented by only using one spatial mode

  3. Explicit Versus Implicit Income Insurance

    OpenAIRE

    Thomas J. Kniesner; James P. Z‎iliak

    2001-01-01

    October 2001 (Revised from July 2001). Abstract: By supplementing income explicitly through payments or implicitly through taxes collected, income-based taxes and transfers make disposable income less variable. Because disposable income determines consumption, policies that smooth disposable income also create welfare improving consumption insurance. With data from the Panel Study of Income Dynamics we find that annual consumption variation is reduced by almost 20 percent due to explicit and ...

  4. A Thermal Evolution Model of the Earth Including the Biosphere, Continental Growth and Mantle Hydration

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2014-12-01

    By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the

  5. Including adverse drug events in economic evaluations of anti-tumour necrosis factor-α drugs for adult rheumatoid arthritis: a systematic review of economic decision analytic models.

    Science.gov (United States)

    Heather, Eleanor M; Payne, Katherine; Harrison, Mark; Symmons, Deborah P M

    2014-02-01

    were identified from 2,483 initially identified studies (2,473 published; ten technology appraisals). Of these, nine studies had incorporated the incidence and costs of ADEs and were critically reviewed. One study also explicitly estimated the potential consequences for patient utility. There was a general lack of detail specifically reporting on how ADEs were included in the economic models. Furthermore, there was substantial heterogeneity amongst the nine studies concerning the (i) application of risk-related terminology; (ii) method of incorporating the incidence, costs and consequences of ADEs; and (iii) ADE-related assumptions. Model-based economic evaluations have played an integral role in healthcare reimbursement and funding decisions relating to anti-TNFs for adult patients with RA. However, current economic models have not routinely or systematically considered the direct costs or consequences of ADEs, which may bias the estimates of the relative cost-effectiveness of anti-TNFs. Omitting information on relevant costs and consequences of interventions for RA will affect the validity of the associated recommendations for informed decision making. To improve current practice it is recommended that (i) greater efforts be made to provide appropriate long-term safety data on the use of anti-TNFs in adult RA; (ii) empirical research be undertaken to identify and quantify the impact of, and possible methods for, including ADEs in economic models to inform future good practice guidelines; and (iii) economic modelling guidelines and reference cases be updated to explicitly identify ADEs as an important treatment outcome and address how they might be incorporated into economic models. Improved consideration of the possible implications of ADEs in economic models will ensure that healthcare decision makers are provided with reliable and accurate information with which to make efficient reimbursement and financing decisions.

  6. Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model

    Science.gov (United States)

    Li, Weidong; Rukavina, Paul

    2012-01-01

    In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…

  7. A methodology for including wall roughness effects in k-ε low-Reynolds turbulence models

    International Nuclear Information System (INIS)

    Ambrosini, W.; Pucciarelli, A.; Borroni, I.

    2015-01-01

    Highlights: • A model for taking into account wall roughness in low-Reynolds k-ε models is presented. • The model is subjected to a first validation to show its potential in general applications. • The application of the model in predicting heat transfer to supercritical fluids is also discussed. - Abstract: A model accounting for wall roughness effects in k-ε low-Reynolds turbulence models is described in the present paper. In particular, the introduction in the transport equations of k and ε of additional source terms related to roughness, based on simple assumptions and dimensional relationships, is proposed. An objective of the present paper, in addition to obtaining more realistic predictions of wall friction, is the application of the proposed model to the study of heat transfer to supercritical fluids. A first validation of the model is reported. The model shows the capability of predicting, at least qualitatively, some of the most important trends observed when dealing with rough pipes in very different flow conditions. Qualitative comparisons with some DNS data available in literature are also performed. Further analyses provided promising results concerning the ability of the model in reproducing the trend of friction factor when varying the flow conditions, though improvements are necessary for achieving better quantitative accuracy. First applications of the model in simulating heat transfer to supercritical fluids are also described, showing the capability of the model to affect the predictions of these heat transfer phenomena, in particular in the vicinity of the pseudo-critical conditions. A more extended application of the model to relevant deteriorated heat transfer conditions will clarify the usefulness of this modelling methodology in improving predictions of these difficult phenomena. Whatever the possible success in this particular application that motivated its development, this approach suggests a general methodology for accounting

  8. A spatially-explicit count data regression for modeling the density of forest cockchafer (Melolontha hippocastani larvae in the Hessian Ried (Germany

    Directory of Open Access Journals (Sweden)

    Matthias Schmidt

    2014-10-01

    Full Text Available Background In this paper, a regression model for predicting the spatial distribution of forest cockchafer larvae in the Hessian Ried region (Germany is presented. The forest cockchafer, a native biotic pest, is a major cause of damage in forests in this region particularly during the regeneration phase. The model developed in this study is based on a systematic sample inventory of forest cockchafer larvae by excavation across the Hessian Ried. These forest cockchafer larvae data were characterized by excess zeros and overdispersion. Methods Using specific generalized additive regression models, different discrete distributions, including the Poisson, negative binomial and zero-inflated Poisson distributions, were compared. The methodology employed allowed the simultaneous estimation of non-linear model effects of causal covariates and, to account for spatial autocorrelation, of a 2-dimensional spatial trend function. In the validation of the models, both the Akaike information criterion (AIC and more detailed graphical procedures based on randomized quantile residuals were used. Results The negative binomial distribution was superior to the Poisson and the zero-inflated Poisson distributions, providing a near perfect fit to the data, which was proven in an extensive validation process. The causal predictors found to affect the density of larvae significantly were distance to water table and percentage of pure clay layer in the soil to a depth of 1 m. Model predictions showed that larva density increased with an increase in distance to the water table up to almost 4 m, after which it remained constant, and with a reduction in the percentage of pure clay layer. However this latter correlation was weak and requires further investigation. The 2-dimensional trend function indicated a strong spatial effect, and thus explained by far the highest proportion of variation in larva density. Conclusions As such the model can be used to support forest

  9. Single Event Kinetic Modelling without Explicit Generation of Large Networks: Application to Hydrocracking of Long Paraffins Modélisation cinétique par événements constitutifs sans génération explicite de grands réseaux : application à l’hydrocraquage des paraffines longues

    Directory of Open Access Journals (Sweden)

    Guillaume D.

    2011-08-01

    Full Text Available The single event modelling concept allows developing kinetic models for the simulation of refinery processes. For reaction networks with several hundreds of thousands of species, as is the case for catalytic reforming, rigorous relumping by carbon atom number and branching degree were efficiently employed by assuming chemical equilibrium in each lump. This relumping technique yields a compact lumped model without any loss of information, but requires the full detail of an explicitly generated reaction network. Classic network generation techniques become impractical when the hydrocarbon species contain more than approximately 20 carbon atoms, because of the extremely rapid growth of reaction network. Hence, implicit relumping techniques were developed in order to compute lumping coefficients without generating the detailed reaction network. Two alternative and equivalent approaches are presented, based either on structural classes or on lateral chain decomposition. These two methods are discussed and the lateral chain decomposition method is applied to the kinetic modelling of long chain paraffin hydroisomerization and hydrocracking. The lateral chain decomposition technique is exactly equivalent to the original calculation method based on the explicitly generated detailed reaction network, as long as Benson’s group contribution method is used to calculate the necessary thermodynamic data in both approaches. Le concept de modélisation par événements constitutifs permet de développer des modèles cinétiques pour la simulation des procédés de raffinage. Pour des réseaux réactionnels de centaines de milliers d'espèces, comme cela est le cas pour le reformage catalytique, le regroupement rigoureux par nombre d'atomes de carbone et degré de ramification a été utilisé efficacement en faisant l'hypothèse de l'équilibre chimique dans chaque groupe. Cette technique de regroupement conduit à un modèle regroupé compact sans perte d

  10. Measurement network design including traveltime determinations to minimize model prediction uncertainty

    NARCIS (Netherlands)

    Janssen, G.M.C.M.; Valstar, J.R.; Zee, van der S.E.A.T.M.

    2008-01-01

    Traveltime determinations have found increasing application in the characterization of groundwater systems. No algorithms are available, however, to optimally design sampling strategies including this information type. We propose a first-order methodology to include groundwater age or tracer arrival

  11. Modelling Deep Water Habitats to Develop a Spatially Explicit, Fine Scale Understanding of the Distribution of the Western Rock Lobster, Panulirus cygnus

    Science.gov (United States)

    Hovey, Renae K.; Van Niel, Kimberly P.; Bellchambers, Lynda M.; Pember, Matthew B.

    2012-01-01

    Background The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Methods and Findings Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D2 of 64 and an 80% correct classification. Conclusions Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats. PMID

  12. Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster, Panulirus cygnus.

    Directory of Open Access Journals (Sweden)

    Renae K Hovey

    Full Text Available BACKGROUND: The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. METHODS AND FINDINGS: Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand and dominant biota (kelp, sessile invertebrates and macroalgae within a 40 km(2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2 of 64 and an 80% correct classification. CONCLUSIONS: Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical

  13. Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster, Panulirus cygnus.

    Science.gov (United States)

    Hovey, Renae K; Van Niel, Kimberly P; Bellchambers, Lynda M; Pember, Matthew B

    2012-01-01

    The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km(2) area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2) of 64 and an 80% correct classification. Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats.

  14. Validation on groundwater flow model including sea level change. Modeling on groundwater flow in coastal granite area

    International Nuclear Information System (INIS)

    Hasegawa, Takuma; Miyakawa, Kimio

    2009-01-01

    It is important to verify the groundwater flow model that reproduces pressure head, water chemistry, and groundwater age. However, water chemistry and groundwater age are considered to be influenced by historical events. In this study, sea level change during glacial-interglacial cycle was taken into account for simulating salinity and groundwater age at coastal granite area. As a result of simulation, salinity movement could not catch up with sea level changes, and mixing zone was formed below the fresh-water zone. This mixing zone was observed in the field measurement, and the observed salinities were agreed with simulated results including sea level change. The simulated residence time including sea level change is one-tenth of steady state. The reason is that the saline water was washed out during regression and modern sea-water was infiltrated during transgression. As mentioned before, considering sea level change are important to reproduce salinity and helium age at coastal area. (author)

  15. Hardware-in-the-loop vehicle system including dynamic fuel cell model

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Z.; Lenhart, T.; Braun, M.; Maencher, H. [MAGNUM Automatisierungstechnik GmbH, Darmstadt (Germany)

    2005-07-01

    In order to reduce costs and accelerate the development of fuel cells and systems the usage of hardware-in-the-loop (HIL) testing and dynamic modelling opens new possibilities. The dynamic model of a proton exchange membrane fuel cell (PEMFC) together with a vehicle model is used to carry out a comprehensive system investigation, which allows designing and optimising the behaviour of the components and the entire fuel cell system. The set-up of a HIL system enables real time interaction between the selected hardware and the model. (orig.)

  16. Transverse Crack Modeling and Validation in Rotor Systems, Including Thermal Effects

    Directory of Open Access Journals (Sweden)

    N. Bachschmid

    2003-01-01

    Full Text Available This article describes a model that allows the simulation of the static behavior of a transverse crack in a horizontal rotor under the action of weight and other possible static loads and the dynamic behavior of cracked rotating shaft. The crack breathes—that is, the mechanism of the crack's opening and closing is ruled by the stress on the cracked section exerted by the external loads. In a rotor, the stresses are time-dependent and have a period equal to the period of rotation; thus, the crack periodically breathes. An original, simplified model allows cracks of various shapes to be modeled and thermal stresses to be taken into account, as they may influence the opening and closing mechanism. The proposed method was validated by using two criteria. First the crack's breathing mechanism, simulated by the model, was compared with the results obtained by a nonlinear, threedimensional finite element model calculation, and a good agreement in the results was observed. Then the proposed model allowed the development of the equivalent cracked beam. The results of this model were compared with those obtained by the three-dimensional finite element model. Also in this case, there was a good agreement in the results.

  17. A model for firm-specific strategic wisdom : including illustrations and 49 guiding questions

    NARCIS (Netherlands)

    van Straten, Roeland Peter

    2017-01-01

    This PhD thesis provides an answer to the question ‘How may one think strategically’. It does so by presenting a new prescriptive ‘Model for Firm-Specific Strategic Wisdom’. This Model aims to guide any individual strategist in his or her thinking from a state of firm-specific ‘ignorance’ to a state

  18. A two-dimensional simulation model of phosphorus uptake including crop growth and P-response

    NARCIS (Netherlands)

    Mollier, A.; Willigen, de P.; Heinen, M.; Morel, C.; Schneider, A.; Pellerin, S.

    2008-01-01

    Modelling nutrient uptake by crops implies considering and integrating the processes controlling the soil nutrient supply, the uptake by the root system and relationships between the crop growth response and the amount of nutrient absorbed. We developed a model that integrates both dynamics of maize

  19. Deterministic Model for Rubber-Metal Contact Including the Interaction Between Asperities

    NARCIS (Netherlands)

    Deladi, E.L.; de Rooij, M.B.; Schipper, D.J.

    2005-01-01

    Rubber-metal contact involves relatively large deformations and large real contact areas compared to metal-metal contact. Here, a deterministic model is proposed for the contact between rubber and metal surfaces, which takes into account the interaction between neighboring asperities. In this model,

  20. Development of numerical dispersion model for radioactive nuclei including resuspension processes

    International Nuclear Information System (INIS)

    Chiba, Masaru; Kurita, Susumu; Sasaki, Hidetaka

    2003-01-01

    Global-scale and local-scale dispersion model are developed combining to global and local scale meteorological forecasting model. By applying this system to another miner constituent such as mineral dust blowing by strong wind in arid region, this system shows very good performance to watch and predict the distribution of it. (author)

  1. An investigation of FLUENT's fan model including the effect of swirl velocity

    International Nuclear Information System (INIS)

    El Saheli, A.; Barron, R.M.

    2002-01-01

    The purpose of this paper is to investigate and discuss the reliability of simplified models for the computational fluid dynamics (CFD) simulation of air flow through automotive engine cooling fans. One of the most widely used simplified fan models in industry is a variant of the actuator disk model which is available in most commercial CFD software, such as FLUENT. In this model, the fan is replaced by an infinitely thin surface on which pressure rise across the fan is specified as a polynomial function of normal velocity or flow rate. The advantages of this model are that it is simple, it accurately predicts the pressure rise through the fan and the axial velocity, and it is robust

  2. Spatial modelling of marine organisms in Forsmark and Oskarshamn. Including calculation of physical predictor variables

    Energy Technology Data Exchange (ETDEWEB)

    Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin (AquaBiota Water Research, Stockholm (SE))

    2007-06-15

    GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All

  3. Spatial modelling of marine organisms in Forsmark and Oskarshamn. Including calculation of physical predictor variables

    International Nuclear Information System (INIS)

    Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin

    2007-06-01

    GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All

  4. Age effects on explicit and implicit memory

    Directory of Open Access Journals (Sweden)

    Emma eWard

    2013-09-01

    Full Text Available It is well documented that explicit memory (e.g., recognition declines with age. In contrast, many argue that implicit memory (e.g., priming is preserved in healthy aging. For example, priming on tasks such as perceptual identification is often not statistically different in groups of young and older adults. Such observations are commonly taken as evidence for distinct explicit and implicit learning/memory systems. In this article we discuss several lines of evidence that challenge this view. We describe how patterns of differential age-related decline may arise from differences in the ways in which the two forms of memory are commonly measured, and review recent research suggesting that under improved measurement methods, implicit memory is not age-invariant. Formal computational models are of considerable utility in revealing the nature of underlying systems. We report the results of applying single and multiple-systems models to data on age effects in implicit and explicit memory. Model comparison clearly favours the single-system view. Implications for the memory systems debate are discussed.

  5. Age effects on explicit and implicit memory.

    Science.gov (United States)

    Ward, Emma V; Berry, Christopher J; Shanks, David R

    2013-01-01

    It is well-documented that explicit memory (e.g., recognition) declines with age. In contrast, many argue that implicit memory (e.g., priming) is preserved in healthy aging. For example, priming on tasks such as perceptual identification is often not statistically different in groups of young and older adults. Such observations are commonly taken as evidence for distinct explicit and implicit learning/memory systems. In this article we discuss several lines of evidence that challenge this view. We describe how patterns of differential age-related decline may arise from differences in the ways in which the two forms of memory are commonly measured, and review recent research suggesting that under improved measurement methods, implicit memory is not age-invariant. Formal computational models are of considerable utility in revealing the nature of underlying systems. We report the results of applying single and multiple-systems models to data on age effects in implicit and explicit memory. Model comparison clearly favors the single-system view. Implications for the memory systems debate are discussed.

  6. A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk

    Directory of Open Access Journals (Sweden)

    Ninna Reitzel Jensen

    2015-06-01

    Full Text Available Using a two-account model with event risk, we model life insurance contracts taking into account both guaranteed and non-guaranteed payments in participating life insurance as well as in unit-linked insurance. Here, event risk is used as a generic term for life insurance events, such as death, disability, etc. In our treatment of participating life insurance, we have special focus on the bonus schemes “consolidation” and “additional benefits”, and one goal is to formalize how these work and interact. Another goal is to describe similarities and differences between participating life insurance and unit-linked insurance. By use of a two-account model, we are able to illustrate general concepts without making the model too abstract. To allow for complicated financial markets without dramatically increasing the mathematical complexity, we focus on economic scenarios. We illustrate the use of our model by conducting scenario analysis based on Monte Carlo simulation, but the model applies to scenarios in general and to worst-case and best-estimate scenarios in particular. In addition to easy computations, our model offers a common framework for the valuation of life insurance payments across product types. This enables comparison of participating life insurance products and unit-linked insurance products, thus building a bridge between the two different ways of formalizing life insurance products. Finally, our model distinguishes itself from the existing literature by taking into account the Markov model for the state of the policyholder and, hereby, facilitating event risk.

  7. Potential transformation of trace species including aircraft exhaust in a cloud environment. The `Chedrom model`

    Energy Technology Data Exchange (ETDEWEB)

    Ozolin, Y.E.; Karol, I.L. [Main Geophysical Observatory, St. Petersburg (Russian Federation); Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    Box model for coupled gaseous and aqueous phases is used for sensitivity study of potential transformation of trace gases in a cloud environment. The rate of this transformation decreases with decreasing of pH in droplets, with decreasing of photodissociation rates inside the cloud and with increasing of the droplet size. Model calculations show the potential formation of H{sub 2}O{sub 2} in aqueous phase and transformation of gaseous HNO{sub 3} into NO{sub x} in a cloud. This model is applied for exploration of aircraft exhausts evolution in plume inside a cloud. (author) 10 refs.

  8. Potential transformation of trace species including aircraft exhaust in a cloud environment. The `Chedrom model`

    Energy Technology Data Exchange (ETDEWEB)

    Ozolin, Y E; Karol, I L [Main Geophysical Observatory, St. Petersburg (Russian Federation); Ramaroson, R [Office National d` Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1998-12-31

    Box model for coupled gaseous and aqueous phases is used for sensitivity study of potential transformation of trace gases in a cloud environment. The rate of this transformation decreases with decreasing of pH in droplets, with decreasing of photodissociation rates inside the cloud and with increasing of the droplet size. Model calculations show the potential formation of H{sub 2}O{sub 2} in aqueous phase and transformation of gaseous HNO{sub 3} into NO{sub x} in a cloud. This model is applied for exploration of aircraft exhausts evolution in plume inside a cloud. (author) 10 refs.

  9. ETM documentation update – including modelling conventions and manual for software tools

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik

    This is the final report for the DTU contribution to Socio Economic Research on Fusion (SERF), EFDA Technology Work programme 2013. The structure and contents of this report was presented at the EFDA-TIMES workshop in Garching 12-13 December 2013. This report gives further background and references......, it summarises the work done during 2013, and it also contains presentations for promotion of fusion as a future element in the electricity generation mix and presentations for the modelling community concerning model development and model documentation – in particular for TIAM collaboration workshops....

  10. A generalized model for optimal transport of images including dissipation and density modulation

    KAUST Repository

    Maas, Jan; Rumpf, Martin; Schö nlieb, Carola; Simon, Stefan

    2015-01-01

    transport to strongly dissipative dynamics. For this model a robust and effective variational time discretization of geodesic paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals

  11. Advanced Modeling of Ramp Operations including Departure Status at Secondary Airports, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses three modeling elements relevant to NASA's IADS research and ATD-2 project, two related to ramp operations at primary airports and one related...

  12. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  13. Extending the formal model of a spatial data infrastructure to include volunteered geographical information

    CSIR Research Space (South Africa)

    Cooper, Antony K

    2011-07-01

    Full Text Available , Information and Computational Viewpoints of the Reference Model for Open Distributed Processing (RM-ODP). We identified six stakeholders: Policy Maker, Producer, Provider, Broker, Value-added Reseller and End User. The Internet has spawned the development...

  14. Transverse Crack Modeling and Validation in Rotor Systems Including Thermal Effects

    Directory of Open Access Journals (Sweden)

    N. Bachschmid

    2004-01-01

    Full Text Available In this article, a model is described that allows one to simulate the static behavior of a transversal crack in a horizontal rotor, under the action of the weight and other possible static loads and the dynamical behavior of the rotating cracked shaft. The crack “breaths,” i.e., the mechanism of opening and closing of the crack, is ruled by the stress acting on the cracked section due to the external loads; in a rotor the stress is time-depending with a period equal to the period of rotation, thus the crack “periodically breaths.” An original simplified model is described that allows cracks of different shape to be modeled and thermal stresses to be taken into account, since they may influence the opening and closing mechanism. The proposed method has been validated using two criteria. Firstly, the crack “breathing” mechanism, simulated with the model, has been compared with the results obtained by a nonlinear 3-D FEM calculation and a good agreement in the results has been observed. Secondly, the proposed model allows the development of the equivalent cracked beam. The results of this model are compared with those obtained by the above-mentioned 3-D FEM. There is a good agreement in the results, of this case as well.

  15. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS: calibration and validation

    Science.gov (United States)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2011-12-01

    Sugarcane is currently the most efficient bioenergy crop with regards to the energy produced per hectare. With approximately half the global bioethanol production in 2005, and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Dynamic global vegetation models coupled with agronomical models are powerful and novel tools to tackle many of the environmental issues related to biofuels if they are carefully calibrated and validated against field observations. Here we adapt the agro-terrestrial model ORCHIDEE-STICS for sugar cane simulations. Observation data of LAI are used to evaluate the sensitivity of the model to parameters of nitrogen absorption and phenology, which are calibrated in a systematic way for six sites in Australia and La Reunion. We find that the optimal set of parameters is highly dependent on the sites' characteristics and that the model can reproduce satisfactorily the evolution of LAI. This careful calibration of ORCHIDEE-STICS for sugar cane biomass production for different locations and technical itineraries provides a strong basis for further analysis of the impacts of bioenergy-related land use change on carbon cycle budgets. As a next step, a sensitivity analysis is carried out to estimate the uncertainty of the model in biomass and carbon flux simulation due to its parameterization.

  16. Simplification and Validation of a Spectral-Tensor Model for Turbulence Including Atmospheric Stability

    Science.gov (United States)

    Chougule, Abhijit; Mann, Jakob; Kelly, Mark; Larsen, Gunner C.

    2018-02-01

    A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate ɛ , the length scale of energy-containing eddies L , a turbulence anisotropy parameter Γ, the Richardson number Ri, and the normalized rate of destruction of temperature variance η _θ ≡ ɛ _θ /ɛ . Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin-Obukhov similarity theory, where z is the height above the Earth's surface, and L is the Obukhov length corresponding to Ri,η _θ. Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale ˜ 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.

  17. A Novel Mean-Value Model of the Cardiovascular System Including a Left Ventricular Assist Device.

    Science.gov (United States)

    Ochsner, Gregor; Amacher, Raffael; Schmid Daners, Marianne

    2017-06-01

    Time-varying elastance models (TVEMs) are often used for simulation studies of the cardiovascular system with a left ventricular assist device (LVAD). Because these models are computationally expensive, they cannot be used for long-term simulation studies. In addition, their equilibria are periodic solutions, which prevent the extraction of a linear time-invariant model that could be used e.g. for the design of a physiological controller. In the current paper, we present a new type of model to overcome these problems: the mean-value model (MVM). The MVM captures the behavior of the cardiovascular system by representative mean values that do not change within the cardiac cycle. For this purpose, each time-varying element is manually converted to its mean-value counterpart. We compare the derived MVM to a similar TVEM in two simulation experiments. In both cases, the MVM is able to fully capture the inter-cycle dynamics of the TVEM. We hope that the new MVM will become a useful tool for researchers working on physiological control algorithms. This paper provides a plant model that enables for the first time the use of tools from classical control theory in the field of physiological LVAD control.

  18. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    Science.gov (United States)

    Canuto, V. M.

    1994-01-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The

  19. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

    Science.gov (United States)

    Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris

    2017-07-01

    While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.

  20. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

    Science.gov (United States)

    Deng, Nanjie; Zhang, Bin W; Levy, Ronald M

    2015-06-09

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.

  1. Spatially explicit modeling of annual and seasonal habitat for greater sage-grouse (Centrocercus urophasianus) in Nevada and Northeastern California—An updated decision-support tool for management

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Sanchez-Chopitea, Erika; Mauch, Kimberly; Niell, Lara; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.

    2016-05-20

    Successful adaptive management hinges largely upon integrating new and improved sources of information as they become available. As a timely example of this tenet, we updated a management decision support tool that was previously developed for greater sage-grouse (Centrocercus urophasianus, hereinafter referred to as “sage-grouse”) populations in Nevada and California. Specifically, recently developed spatially explicit habitat maps derived from empirical data played a key role in the conservation of this species facing listing under the Endangered Species Act. This report provides an updated process for mapping relative habitat suitability and management categories for sage-grouse in Nevada and northeastern California (Coates and others, 2014, 2016). These updates include: (1) adding radio and GPS telemetry locations from sage-grouse monitored at multiple sites during 2014 to the original location dataset beginning in 1998; (2) integrating output from high resolution maps (1–2 m2) of sagebrush and pinyon-juniper cover as covariates in resource selection models; (3) modifying the spatial extent of the analyses to match newly available vegetation layers; (4) explicit modeling of relative habitat suitability during three seasons (spring, summer, winter) that corresponded to critical life history periods for sage-grouse (breeding, brood-rearing, over-wintering); (5) accounting for differences in habitat availability between more mesic sagebrush steppe communities in the northern part of the study area and drier Great Basin sagebrush in more southerly regions by categorizing continuous region-wide surfaces of habitat suitability index (HSI) with independent locations falling within two hydrological zones; (6) integrating the three seasonal maps into a composite map of annual relative habitat suitability; (7) deriving updated land management categories based on previously determined cut-points for intersections of habitat suitability and an updated index of sage

  2. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    Energy Technology Data Exchange (ETDEWEB)

    García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.

  3. Results of including geometric nonlinearities in an aeroelastic model of an F/A-18

    Science.gov (United States)

    Buttrill, Carey S.

    1989-01-01

    An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.

  4. Cracked rotors. A survey on static and dynamic behaviour including modelling and diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Bachschmid, Nicolo; Pennacchi, Paolo; Tanzi, Ezio [Politecnico di Milano (Italy). Dept. of Mechanical Engineering

    2010-07-01

    Cracks can develop in rotating shafts and can propagate to relevant depths without affecting consistently the normal operating conditions of the shaft. In order to avoid catastrophic failures, accurate vibration analyses have to be performed for crack detection. The identification of the crack location and depth is possible by means of a model based diagnostic approach, provided that the model of the crack and the model of the cracked shaft dynamical behavior are accurate and reliable. This monograph shows the typical dynamical behavior of cracked shafts and presents tests for detecting cracks. The book describes how to model cracks, how to simulate the dynamical behavior of cracked shaft, and compares the corresponding numerical with experimental results. All effects of cracks on the vibrations of rotating shafts are analyzed, and some results of a numerical sensitivity analysis of the vibrations to the presence and severity of the crack are shown. Finally the book describes some crack identification procedures and shows some results in model based crack identification in position and depth. The book is useful for higher university courses in mechanical and energetic engineering, but also for skilled technical people employed in power generation industries. (orig.)

  5. HIV Model Parameter Estimates from Interruption Trial Data including Drug Efficacy and Reservoir Dynamics

    Science.gov (United States)

    Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan

    2012-01-01

    Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727

  6. A void ratio dependent water retention curve model including hydraulic hysteresis

    Directory of Open Access Journals (Sweden)

    Pasha Amin Y.

    2016-01-01

    Full Text Available Past experimental evidence has shown that Water Retention Curve (WRC evolves with mechanical stress and structural changes in soil matrix. Models currently available in the literature for capturing the volume change dependency of WRC are mainly empirical in nature requiring an extensive experimental programme for parameter identification which renders them unsuitable for practical applications. In this paper, an analytical model for the evaluation of the void ratio dependency of WRC in deformable porous media is presented. The approach proposed enables quantification of the dependency of WRC on void ratio solely based on the form of WRC at the reference void ratio and requires no additional parameters. The effect of hydraulic hysteresis on the evolution process is also incorporated in the model, an aspect rarely addressed in the literature. Expressions are presented for the evolution of main and scanning curves due to loading and change in the hydraulic path from scanning to main wetting/drying and vice versa as well as the WRC parameters such as air entry value, air expulsion value, pore size distribution index and slope of the scanning curve. The model is validated using experimental data on compacted and reconstituted soils subjected to various hydro-mechanical paths. Good agreement is obtained between model predictions and experimental data in all the cases considered.

  7. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.

    Science.gov (United States)

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-08-15

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem.

  8. A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk

    DEFF Research Database (Denmark)

    Jensen, Ninna Reitzel; Schomacker, Kristian Juul

    2015-01-01

    Using a two-account model with event risk, we model life insurance contracts taking into account both guaranteed and non-guaranteed payments in participating life insurance as well as in unit-linked insurance. Here, event risk is used as a generic term for life insurance events, such as death......, disability, etc. In our treatment of participating life insurance, we have special focus on the bonus schemes “consolidation” and “additional benefits”, and one goal is to formalize how these work and interact. Another goal is to describe similarities and differences between participating life insurance...... product types. This enables comparison of participating life insurance products and unit-linked insurance products, thus building a bridge between the two different ways of formalizing life insurance products. Finally, our model distinguishes itself from the existing literature by taking into account...

  9. A new mammalian circadian oscillator model including the cAMP module

    International Nuclear Information System (INIS)

    Jun-Wei, Wang; Tian-Shou, Zhou

    2009-01-01

    In this paper, we develop a new mathematical model for the mammalian circadian clock, which incorporates both transcriptional/translational feedback loops (TTFLs) and a cAMP-mediated feedback loop. The model shows that TTFLs and cAMP signalling cooperatively drive the circadian rhythms. It reproduces typical experimental observations with qualitative similarities, e.g. circadian oscillations in constant darkness and entrainment to light–dark cycles. In addition, it can explain the phenotypes of cAMP-mutant and Rev-erbα −/− -mutant mice, and help us make an experimentally-testable prediction: oscillations may be rescued when arrhythmic mice with constitutively low concentrations of cAMP are crossed with Rev-erbα −/− mutant mice. The model enhances our understanding of the mammalian circadian clockwork from the viewpoint of the entire cell. (cross-disciplinary physics and related areas of science and technology)

  10. A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation

    Directory of Open Access Journals (Sweden)

    David L. Spencer

    2016-10-01

    Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.

  11. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  12. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  13. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    Science.gov (United States)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  14. Molecular Modeling of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy

    Science.gov (United States)

    Radue, Matthew S.

    Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices. The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli for all epoxies modeled. Therefore, the ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies. While epoxies have been well-studied using MD, there has been no concerted effort to model cured BMI polymers due to the complexity of the network-forming reactions. A novel, adaptable crosslinking framework is developed for implementing 5 distinct cure reactions of Matrimid-5292 (a BMI resin) and investigating the network structure using MD simulations. The influence of different cure reactions and extent of curing are analyzed on the several thermo-mechanical properties such as mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed crosslinked models correctly predict experimentally observed trends for various properties. Finally, the epoxies modeled (di-, tri-, and tetra

  15. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    International Nuclear Information System (INIS)

    Rest, J.; Hofman, G.L.

    1997-01-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 -Al for various dispersion fuel element designs with the data

  16. Assimilation of Remotely Sensed Leaf Area Index into the Community Land Model with Explicit Carbon and Nitrogen Components using Data Assimilation Research Testbed

    Science.gov (United States)

    Ling, X.; Fu, C.; Yang, Z. L.; Guo, W.

    2017-12-01

    Information of the spatial and temporal patterns of leaf area index (LAI) is crucial to understand the exchanges of momentum, carbon, energy, and water between the terrestrial ecosystem and the atmosphere, while both in-situ observation and model simulation usually show distinct deficiency in terms of LAI coverage and value. Land data assimilation, combined with observation and simulation together, is a promising way to provide variable estimation. The Data Assimilation Research Testbed (DART) developed and maintained by the National Centre for Atmospheric Research (NCAR) provides a powerful tool to facilitate the combination of assimilation algorithms, models, and real (as well as synthetic) observations to better understanding of all three. Here we systematically investigated the effects of data assimilation on improving LAI simulation based on NCAR Community Land Model with the prognostic carbon-nitrogen option (CLM4CN) linked with DART using the deterministic Ensemble Adjustment Kalman Filter (EAKF). Random 40-member atmospheric forcing was used to drive the CLM4CN with or without LAI assimilation. The Global Land Surface Satellite LAI data (GLASS LAI) LAI is assimilated into the CLM4CN at a frequency of 8 days, and LAI (and leaf carbon / nitrogen) are adjusted at each time step. The results show that assimilating remotely sensed LAI into the CLM4CN is an effective method for improving model performance. In detail, the CLM4-CN simulated LAI systematically overestimates global LAI, especially in low latitude with the largest bias of 5 m2/m2. While if updating both LAI and leaf carbon and leaf nitrogen simultaneously during assimilation, the analyzed LAI can be corrected, especially in low latitude regions with the bias controlled around ±1 m2/m2. Analyzed LAI could also represent the seasonal variation except for the Southern Temperate (23°S-90°S). The obviously improved regions located in the center of Africa, Amazon, the South of Eurasia, the northeast of

  17. Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects

    International Nuclear Information System (INIS)

    Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe

    2008-01-01

    The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust 2 and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.

  18. Analysis of shallow water experimental acoustic data including normal mode model comparisons

    NARCIS (Netherlands)

    McHugh, R.; Simons, D.G.

    2000-01-01

    Ss part of a propagation model validation exercise experimental acoustic and oceanographic data was collected from a shallow-water, long-range channel, off the west coast of Scotland. Temporal variability effects in this channel were assessed through visual inspection of stacked plots, each of which

  19. Description of the new version 4.0 of the tritium model UFOTRI including user guide

    International Nuclear Information System (INIS)

    Raskob, W.

    1993-08-01

    In view of the future operation of fusion reactors the release of tritium may play a dominant role during normal operation as well as after accidents. Because of its physical and chemical properties which differ significantly from those of other radionuclides, the model UFOTRI for assessing the radiological consequences of accidental tritium releases has been developed. It describes the behaviour of tritium in the biosphere and calculates the radiological impact on individuals and the population due to the direct exposure and by the ingestion pathways. Processes such as the conversion of tritium gas into tritiated water (HTO) in the soil, re-emission after deposition and the conversion of HTO into organically bound tritium, are considered. The use of UFOTRI in its probabilistic mode shows the spectrum of the radiological impact together with the associated probability of occurrence. A first model version was established in 1991. As the ongoing work on investigating the main processes of the tritium behaviour in the environment shows up new results, the model has been improved in several points. The report describes the changes incorporated into the model since 1991. Additionally provides the up-dated user guide for handling the revised UFOTRI version which will be distributed to interested organizations. (orig.) [de

  20. 3D numerical surface charge model including relative permeability : the general theory

    NARCIS (Netherlands)

    Casteren, van D.T.E.H.; Paulides, J.J.H.; Lomonova, E.A.

    2014-01-01

    One of the still "open" issues within low-frequency magnetics is the inclusion of µr in the calculations using the magnetic charge method. In this paper a new iterative method to take the relative permeability into account is investigated. Results show that the model accurately accounts for the

  1. Loss and thermal model for power semiconductors including device rating information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2014-01-01

    The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal models, only the electrical loadings are focused and treated as design variables, while the device rating is normally...

  2. Multiscale modelling of solidification microstructures, including microsegregation and microporosity, in an Al-Si-Cu alloy

    International Nuclear Information System (INIS)

    Lee, P.D.; Chirazi, A.; Atwood, R.C.; Wang, W.

    2004-01-01

    Phase transition phenomena in metallic alloys involve complex physical processes occurring over a wide range of temporal, spatial and energy scales. Multiscale modelling is a powerful methodology for understanding these complex systems. In this paper, a multiscale model of grain and pore formation is presented during solidification. At the microscale, a combined stochastic-deterministic approach based on the cellular automata method is used to solve multicomponent diffusion in a three-phase system (liquid, solid and gas), simulating the nucleation and growth of both grains and pores. The impingement of the growing pores upon the developing solid is also solved to predict the tortuous shape of the porosity, a critical factor for fatigue properties. The micromodel is coupled with a finite element method (FEM) solution of the macroscale heat transfer and fluid flow in industrial castings through the temperature and pressure fields. The result model was used to investigate the influence of local solidification time, hydrogen content, local metallostatic pressure and alloy composition upon the predicted grain structure and pore morphology. Comparison of the model predictions to both laboratory and industrial scale castings are presented

  3. Situational effects of the school factors included in the dynamic model of educational effectiveness

    NARCIS (Netherlands)

    Creerners, Bert; Kyriakides, Leonidas

    We present results of a longitudinal study in which 50 schools, 113 classes and 2,542 Cypriot primary students participated. We tested the validity of the dynamic model of educational effectiveness and especially its assumption that the impact of school factors depends on the current situation of

  4. Non-local modelling of cyclic thermal shock damage including parameter estimation

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    In this paper, rate dependent evolution laws are identified and characterized to model the mechanical (elasticity-based) and thermal damage occurring in coarse grain refractory material subject to cyclic thermal shock. The interacting mechanisms for elastic deformation driven damage induced by

  5. Logical diagnosis model turbojet engine including double-circuit intermittent flow of his injuries

    Directory of Open Access Journals (Sweden)

    О.П. Стьопушкіна

    2007-01-01

    Full Text Available  In this article is considered question of the change quantitative and qualitative factors of the technical condition constructive element running part of jet engine. As a result called on experimental studies diagnostic sign were definite sign with provision for intermittent damages and on base this is built expert model of the turbojet double-circuit engine.

  6. Static aeroelastic analysis including geometric nonlinearities based on reduced order model

    Directory of Open Access Journals (Sweden)

    Changchuan Xie

    2017-04-01

    Full Text Available This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model (ROM. The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities; meanwhile, the non-planar effects of aerodynamics and follower force effect have been considered. ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method (FEM especially in aeroelastic solutions. The approach for structure modeling presented here is on the basis of combined modal/finite element (MFE method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis. Moreover, the non-planar aerodynamic force is computed by the non-planar vortex lattice method (VLM. Structure and aerodynamics can be coupled with the surface spline method. The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.

  7. A biologically inspired neural model for visual and proprioceptive integration including sensory training.

    Science.gov (United States)

    Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi

    2013-12-01

    Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model

  8. Eco-SpaCE: An object-oriented, spatially explicit model to assess the risk of multiple environmental stressors on terrestrial vertebrate populations

    International Nuclear Information System (INIS)

    Loos, Mark; Ragas, Ad M.J.; Plasmeijer, Rinus; Schipper, Aafke M.; Hendriks, A. Jan

    2010-01-01

    Wildlife organisms are exposed to a combination of chemical, biological and physical stressors. Information about the relative impact of each stressor can support management decisions, e.g., by the allocation of resources to counteract those stressors that cause most harm. The present paper introduces Eco-SpaCE; a novel receptor-oriented cumulative exposure model for wildlife species that includes relevant ecological processes such as spatial habitat variation, food web relations, predation, and life history. A case study is presented in which the predicted mortality due to cadmium contamination is compared with the predicted mortality due to flooding, starvation, and predation for three small mammal species (Wood mouse, Common vole, and European mole) and a predator (Little owl) living in a lowland floodplain along the river Rhine in The Netherlands. Results indicated that cadmium is the principal stressor for European mole and Little owl populations. Wood mouse and Common vole population densities were mainly influenced by flooding and food availability. Their estimated population sizes were consistent with numbers reported in literature. Predictions for cadmium accumulation and flooding stress were in agreement with field data. The large uncertainty around cadmium toxicity for wildlife leads to the conclusion that more species-specific ecotoxicological data is required for more realistic risk assessments. The predictions for starvation were subject to the limited quantitative information on biomass obtainable as food for vertebrates. It is concluded that the modelling approach employed in Eco-SpaCE, combining ecology with ecotoxicology, provides a viable option to explore the relative contribution of contamination to the overall stress in an ecosystem. This can help environmental managers to prioritize management options, and to reduce local risks.

  9. European column buckling curves and finite element modelling including high strength steels

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Stan, Tudor-Cristian

    2017-01-01

    Eurocode allows for finite element modelling of plated steel structures, however the information in the code on how to perform the analysis or what assumptions to make is quite sparse. The present paper investigates the deterministic modelling of flexural column buckling using plane shell elements...... imperfections may be very conservative if considered by finite element analysis as described in the current Eurocode code. A suggestion is given for a slightly modified imperfection formula within the Ayrton-Perry formulation leading to adequate inclusion of modern high grade steels within the original four...... bucking curves. It is also suggested that finite element or frame analysis may be performed with equivalent column bow imperfections extracted directly from the Ayrton-Perry formulation....

  10. Classical model for nuclear collisions including the meson degree of freedom

    International Nuclear Information System (INIS)

    Babinet, R.; Kunz, J.; Mosel, U.; Wilets, L.

    1980-01-01

    Many different approaches have been taken to describe high energy heavy ion collisions. L. Wilets et al proposed a classical treatment of the problem. In his model non-relativistic nucleons move on classical trajectories. However, the Pauli-principle is simulated by a momentum dependent potential acting between the nucleons. This model is extended in two ways. The nucleons are coupled to a pionfield, which enables us to describe inelastic processes. Nucleons and pionfiled are treated completely relativistically, this also assures Lorentz invariance. We aim at a set of classical equations of motion describing the interacting system of nucleons and pionfield. These classical equations should have a quantum mechanical basis. Further, they should contain such fundamental properties of the pion-nucleon system as the Δ(3,3)-resonance, at least in a qualitative manner. (orig./FKS)

  11. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    International Nuclear Information System (INIS)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L.

    2001-01-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  12. Framework of cloud parameterization including ice for 3-D mesoscale models

    Energy Technology Data Exchange (ETDEWEB)

    Levkov, L; Jacob, D; Eppel, D; Grassl, H

    1989-01-01

    A parameterization scheme for the simulation of ice in clouds incorporated into the hydrostatic version of the GKSS three-dimensional mesoscale model. Numerical simulations of precipitation are performed: over the Northe Sea, the Hawaiian trade wind area and in the region of the intertropical convergence zone. Not only some major features of convective structures in all three areas but also cloud-aerosol interactions have successfully been simulated. (orig.) With 19 figs., 2 tabs.

  13. The baryonic spectrum in a constituent quark model including a three-body force

    International Nuclear Information System (INIS)

    Desplanques, B.; Gignoux, C.; Silvestre-Brac, B.; Gonzalez, P.; Navarro, J.; Noguera, S.

    1992-01-01

    We analyze, within a non-relativistic quark model, the low energy part of the baryonic spectrum in the octet and decuplet flavour representations. The relevance of a strong Coulomb potential is emphasized in order to explain its general features. The addition of a three-body force allows to solve the 'Roper puzzle', giving a consistent explanation to its relative position in the spectrum. (orig.)

  14. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L. [CEA Grenoble (France)

    2001-07-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  15. An Evacuation Model for Passenger Ships That Includes the Influence of Obstacles in Cabins

    Directory of Open Access Journals (Sweden)

    Baocheng Ni

    2017-01-01

    Full Text Available Passenger behavior and ship environment are the key factors affecting evacuation efficiency. However, current studies ignore the interior layout of passenger ship cabins and treat the cabins as empty rooms. To investigate the influence of obstacles (e.g., tables and stools on cabin evacuation, we propose an agent-based social force model for advanced evacuation analysis of passenger ships; this model uses a goal-driven submodel to determine a plan and an extended social force submodel to govern the movement of passengers. The extended social force submodel considers the interaction forces between the passengers, crew, and obstacles and minimises the range of these forces to improve computational efficiency. We drew the following conclusions based on a series of evacuation simulations conducted in this study: (1 the proposed model endows the passenger with the behaviors of bypassing and crossing obstacles, (2 funnel-shaped exits from cabins can improve evacuation efficiency, and (3 as the exit angle increases, the evacuation time also increases. These findings offer ship designers some insight towards increasing the safety of large passenger ships.

  16. Kinetic model of water disinfection using peracetic acid including synergistic effects.

    Science.gov (United States)

    Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2016-01-01

    The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.

  17. A stepped leader model for lightning including charge distribution in branched channels

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Zhang, Li [School of Electrical Engineering, Shandong University, Jinan 250061 (China); Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn [Beijing Key Lab of HV and EMC, North China Electric Power University, Beijing 102206 (China); State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206 (China)

    2014-09-14

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.

  18. A stepped leader model for lightning including charge distribution in branched channels

    International Nuclear Information System (INIS)

    Shi, Wei; Zhang, Li; Li, Qingmin

    2014-01-01

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.

  19. Modeling and Control of Risley Prism Beam Steering Including BLDC Motors

    OpenAIRE

    Gunnarsson, Oscar

    2016-01-01

    Saab AB Training & Simulation is specialized on military training, including laserbased training. To continue being the world leader in this area, a new generationof laser simulators needs to be developed. To simplify the development of thishighly complex system, this master thesis have resulted in a MATLAB/Simulinkmodel which simulates the electro-opto/mechanical system representing theirlaser based simulation platform. The focus of this master thesis has been to simulateand control the ...

  20. Investigations on socio economic indicators of French Alps ski industry from an explicit spatial modelling of managed snow on ski slopes

    Science.gov (United States)

    Spandre, Pierre; François, Hugues; Morin, Samuel; George-Marcelpoil, Emmanuelle; Lafaysse, Matthieu

    2017-04-01

    Investigations of the capacity of ski resorts to anticipate, cope with and recover from the impact of natural snow scarcity through snow management (grooming, snowmaking) have been realized in most of the major regions in terms of international ski offer although not in the French Alps hitherto. The present work therefore introduces an innovative approach for the investigation of socio economic implications of changes in snow conditions for the French Alps ski resorts based on a panel of 129 resorts representing 96% of the total French Alps ski lifts infrastructures. We integrated detailed spatial representations of ski resorts (including priority areas for snowmaking equipment) along with physically based snowpack modelling (including the physical impact of grooming and snowmaking). The viability of ski resorts was further adressed thanks to a commonly used rule based on the snow season duration at the village and ski lifts average elevations along with the development of original viability indicators of snow conditions in the French Alps ski resorts based on the specific periods for the economic success of winter sports: Christmas and February school holidays. Such indicators were correlated to the number of ski lifts tickets sales over the 2001 - 2014 period and proved to be relevant to investigate and predict the evolutions of ski lifts tickets sales under the current ski market conditions in the French Alps. Our results outlined the contrast of snow conditions between French Alps ski resorts, even when accounting for snow management, particularly regarding the geographical location of resorts (Southern versus Northern Alps), the size and related elevation range of ski resorts. Our physically based approach also allowed to compute the water and energy requirements for the production of Machine Made snow since the start of the development of snowguns in the French Alps. Our computations proved to be strongly correlated to the observed amounts of water from the

  1. Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.

    Science.gov (United States)

    Morrison, Ian S; Gowanlock, Michael G

    2015-08-01

    Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own.

  2. Double pendulum model for a tennis stroke including a collision process

    Science.gov (United States)

    Youn, Sun-Hyun

    2015-10-01

    By means of adding a collision process between the ball and racket in the double pendulum model, we analyzed the tennis stroke. The ball and the racket system may be accelerated during the collision time; thus, the speed of the rebound ball does not simply depend on the angular velocity of the racket. A higher angular velocity sometimes gives a lower rebound ball speed. We numerically showed that the proper time-lagged racket rotation increased the speed of the rebound ball by 20%. We also showed that the elbow should move in the proper direction in order to add the angular velocity of the racket.

  3. Model - including thermal creep effects - for the analysis of three-dimensional concrete structures

    International Nuclear Information System (INIS)

    Rodriguez, C.; Rebora, B.; Favrod, J.D.

    1979-01-01

    This article presents the most recent developments and results of research carried out by IPEN to establish a mathematical model for the non-linear rheological three-dimensional analysis of massive prestressed concrete structures. The main point of these latest developments is the simulation of the creep of concrete submitted to high temperatures over a long period of time. This research, financed by the Swiss National Science Foundation, has taken an increased importance with the advent of nuclear reactor vessels of the HHT type and new conceptions concerning the cooling of their concrete (replacement of the thermal insulation by a zone of hot concrete). (orig.)

  4. An Infusion Model for Including Content on Elders with Chronic Illness in the Curriculum

    Directory of Open Access Journals (Sweden)

    Sherry M. Cummings

    2000-05-01

    Full Text Available Older people with chronic mental illness (CMI are experiencing longer life expectancies that parallel those of the general population. Due to their experience of having CMI, these older adults present unique issues that affect service delivery and care provision. Content on this population is often omitted in the curriculum, which leaves students unprepared to practice with these clients. This article proposes an infusion model that can be used in baccalaureate or graduate foundation courses to increase exposure to elders with CMI.

  5. porewater chemistry experiment at Mont Terri rock laboratory. Reactive transport modelling including bacterial activity

    International Nuclear Information System (INIS)

    Tournassat, Christophe; Gaucher, Eric C.; Leupin, Olivier X.; Wersin, Paul

    2010-01-01

    Document available in extended abstract form only. An in-situ test in the Opalinus Clay formation, termed pore water Chemistry (PC) experiment, was run for a period of five years. It was based on the concept of diffusive equilibration whereby traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed off borehole. The main original focus was to obtain reliable data on the pH/pCO 2 of the pore water, but because of unexpected microbially- induced redox reactions, the objective was then changed to elucidate the biogeochemical processes happening in the borehole and to understand their impact on pH/pCO 2 and pH in the low permeability clay formation. The biologically perturbed chemical evolution of the PC experiment was simulated with reactive transport models. The aim of this modelling exercise was to develop a 'minimal-' model able to reproduce the chemical evolution of the PC experiment, i.e. the chemical evolution of solute inorganic and organic compounds (organic carbon, dissolved inorganic carbon etc...) that are coupled with each other through the simultaneous occurrence of biological transformation of solute or solid compounds, in-diffusion and out-diffusion of solute species and precipitation/dissolution of minerals (in the borehole and in the formation). An accurate description of the initial chemical conditions in the surrounding formation together with simplified kinetics rule mimicking the different phases of bacterial activities allowed reproducing the evolution of all main measured parameters (e.g. pH, TOC). Analyses from the overcoring and these simulations evidence the high buffer capacity of Opalinus clay regarding chemical perturbations due to bacterial activity. This pH buffering capacity is mainly attributed to the carbonate system as well as to the clay surfaces reactivity. Glycerol leaching from the pH-electrode might be the primary organic source responsible for

  6. Able but unintelligent: including positively stereotyped black subgroups in the stereotype content model.

    Science.gov (United States)

    Walzer, Amy S; Czopp, Alexander M

    2011-01-01

    The stereotype content model (SCM) posits that warmth and competence are the key components underlying judgments about social groups. Because competence can encompass different components (e.g., intelligence, talent) different group members may be perceived to be competent for different reasons. Therefore, we believe it may be important to specify the type of competence being assessed when examining perceptions of groups that are positively stereotyped (i.e., Black athletes and musical Blacks). Consistent with the SCM, these subgroups were perceived as high in competence-talent but not in competence-intelligence and low in warmth. Both the intelligence and talent frame of competence fit in the SCM's social structural hypothesis.

  7. A model for optimal offspring size in fish, including live-bearing and parental effects.

    Science.gov (United States)

    Jørgensen, Christian; Auer, Sonya K; Reznick, David N

    2011-05-01

    Since Smith and Fretwell's seminal article in 1974 on the optimal offspring size, most theory has assumed a trade-off between offspring number and offspring fitness, where larger offspring have better survival or fitness, but with diminishing returns. In this article, we use two ubiquitous biological mechanisms to derive the shape of this trade-off: the offspring's growth rate combined with its size-dependent mortality (predation). For a large parameter region, we obtain the same sigmoid relationship between offspring size and offspring survival as Smith and Fretwell, but we also identify parameter regions where the optimal offspring size is as small or as large as possible. With increasing growth rate, the optimal offspring size is smaller. We then integrate our model with strategies of parental care. Egg guarding that reduces egg mortality favors smaller or larger offspring, depending on how mortality scales with size. For live-bearers, the survival of offspring to birth is a function of maternal survival; if the mother's survival increases with her size, then the model predicts that larger mothers should produce larger offspring. When using parameters for Trinidadian guppies Poecilia reticulata, differences in both growth and size-dependent predation are required to predict observed differences in offspring size between wild populations from high- and low-predation environments.

  8. Modeling radiation dosimetry to predict cognitive outcomes in pediatric patients with CNS embryonal tumors including medulloblastoma

    International Nuclear Information System (INIS)

    Merchant, Thomas E.; Kiehna, Erin N.; Li Chenghong; Shukla, Hemant; Sengupta, Saikat; Xiong Xiaoping; Gajjar, Amar; Mulhern, Raymond K.

    2006-01-01

    Purpose: Model the effects of radiation dosimetry on IQ among pediatric patients with central nervous system (CNS) tumors. Methods and Materials: Pediatric patients with CNS embryonal tumors (n = 39) were prospectively evaluated with serial cognitive testing, before and after treatment with postoperative, risk-adapted craniospinal irradiation (CSI) and conformal primary-site irradiation, followed by chemotherapy. Differential dose-volume data for 5 brain volumes (total brain, supratentorial brain, infratentorial brain, and left and right temporal lobes) were correlated with IQ after surgery and at follow-up by use of linear regression. Results: When the dose distribution was partitioned into 2 levels, both had a significantly negative effect on longitudinal IQ across all 5 brain volumes. When the dose distribution was partitioned into 3 levels (low, medium, and high), exposure to the supratentorial brain appeared to have the most significant impact. For most models, each Gy of exposure had a similar effect on IQ decline, regardless of dose level. Conclusions: Our results suggest that radiation dosimetry data from 5 brain volumes can be used to predict decline in longitudinal IQ. Despite measures to reduce radiation dose and treatment volume, the volume that receives the highest dose continues to have the